WorldWideScience

Sample records for catalytic carbonyl allylation

  1. CATALYTIC ENANTIOSELECTIVE ALLYLIC OXIDATION

    NARCIS (Netherlands)

    Rispens, Minze T.; Zondervan, Charon; Feringa, Bernard

    Several chiral Cu(II)-complexes of cyclic amino acids catalyse the enantioselective allylic oxidation of cyclohexene to cyclohexenyl esters. Cyclohexenyl propionate was obtained in 86% yield with e.e.'s up to 61%.

  2. Diastereo- and Enantioselective Iridium Catalyzed Carbonyl (α-Cyclopropyl)allylation via Transfer Hydrogenation.

    Science.gov (United States)

    Tsutsumi, Ryosuke; Hong, Suckchang; Krische, Michael J

    2015-09-07

    The first examples of diastereo- and enantioselective carbonyl α-(cyclopropyl)allylation are reported. Under the conditions of iridium catalyzed transfer hydrogenation using the chiral precatalyst (R)-Ir-I modified by SEGPHOS, carbonyl α-(cyclopropyl)allylation may be achieved with equal facility from alcohol or aldehyde oxidation levels. This methodology provides a conduit to hitherto inaccessible inaccessible enantiomerically enriched cyclopropane-containing architectures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  4. Noticeable facilitation of the bismuth-mediated Barbier-type allylation of aromatic carbonyl compounds under solvent-free conditions.

    Science.gov (United States)

    Wada, Shinobu; Hayashi, Nobuyuki; Suzuki, Hitomi

    2003-06-21

    When milled together with bismuth shot in the presence of allyl halide, aromatic aldehydes readily underwent a Barbier-type allylation to afford the corresponding homoallyl alcohols in good yield. In contrast to the failure in solution reaction, aromatic ketones also underwent allylic carbonyl addition under solvent-free conditions to give the expected tertiary homoallyl alcohols in moderate to good yield.

  5. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium.

    Science.gov (United States)

    Wu, San; Li, Ying; Zhang, Songlin

    2016-09-02

    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions.

  6. Enantioselective Iridium Catalyzed Carbonyl Allylation from the Alcohol Oxidation Level via Transfer Hydrogenation: Minimizing Pre-Activation for Synthetic Efficiency

    Science.gov (United States)

    Han, Soo Bong; Kim, In Su; Krische, Michael J.

    2010-01-01

    Existing methods for enantioselective carbonyl allylation, crotylation and tert-prenylation require stoichiometric generation of pre-metallated nucleophiles and often employ stoichiometric chiral modifiers. Under the conditions of transfer hydrogenation employing an ortho-cyclometallated iridium C,O-benzoate catalyst, enantioselective carbonyl allylations, crotylations and tert-prenylations are achieved in the absence of stoichiometric metallic reagents or stoichiometric chiral modifiers. Moreover, under transfer hydrogenation conditions, primary alcohols function dually as hydrogen donors and aldehyde precursors, enabling enantioselective carbonyl addition directly from the alcohol oxidation level. PMID:20024203

  7. Catalytic membrane-installed microchannel reactors for one-second allylic arylation.

    Science.gov (United States)

    Yamada, Yoichi M A; Watanabe, Toshihiro; Torii, Kaoru; Uozumi, Yasuhiro

    2009-10-07

    A variety of catalytic membranes of palladium-complexes with linear polymer ligands were prepared inside a microchannel reactor via coordinative and ionic molecular convolution to provide catalytic membrane-installed microdevices, which were applied to the instantaneous allylic arylation reaction of allylic esters and aryl boron reagents under microflow conditions to afford the corresponding coupling products within 1 second of residence time.

  8. 1,n-glycols as dialdehyde equivalents in iridium-catalyzed enantioselective carbonyl allylation and iterative two-directional assembly of 1,3-polyols.

    Science.gov (United States)

    Lu, Yu; Kim, In Su; Hassan, Abbas; Del Valle, David J; Krische, Michael J

    2009-01-01

    Unstable? We're able! 1,n-Glycols serve as synthetic equivalents to unstable dialdehydes in two-directional carbonyl allylation from the alcohol oxidation level under iridium-catalyzed transfer hydrogenation conditions. Iterative asymmetric allylation employing 1,3-propanediol enables the rapid assembly of protected 1,3-polyol substructures with exceptional levels of stereocontrol.

  9. Catalytic Enantioselective Synthesis of Naturally Occurring Butenolides via Hetero-Allylic Alkylation and Ring Closing Metathesis

    NARCIS (Netherlands)

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; Zijl, Anthoni W. van; Fletcher, Stephen P.; Minnaard, Adriaan J.; Feringa, Bernard

    2011-01-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey

  10. Catalytic enantioselective synthesis of naturally occurring butenolides via hetero-allylic alkylation and ring closing metathesis.

    Science.gov (United States)

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; van Zijl, Anthoni W; Fletcher, Stephen P; Minnaard, Adriaan J; Feringa, Ben L

    2011-03-04

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey lactone, (-)-cognac lactone, (-)-nephrosteranic acid, and (-)-roccellaric acid.

  11. Ruthenium(II) carbonyl complexes bearing quinoline-based NNO tridentate ligands as catalyst for one-pot conversion of aldehydes to amides and o-allylation of phenols.

    Science.gov (United States)

    Manikandan, R; Prakash, G; Kathirvel, R; Viswanathamurthi, P

    2013-12-01

    Six new octahedral ruthenium(II) carbonyl complexes having the general molecular formula [RuCl(CO)(B)L(1-2)] (B = PPh3, AsPh3 or py; L(1-2) = quinoline based NNO ligand) were synthesized. The quinoline based ligands behave as monoanionic tridentate donor and coordinated to ruthenium via ketoenolate oxygen, azomethine nitrogen and quinoline nitrogen. The composition of the complexes has been established by elemental analysis and spectral methods (FT-IR, electronic, (1)H NMR, (13)C NMR, (31)P NMR and ESI-Mass). The complexes were used as efficient catalysts for one-pot conversion of various aldehydes to their corresponding primary amides in presence of NH2OH · HCl and NaHCO3. The effect of catalyst loading and reaction temperature on catalytic activity of the ruthenium(II) carbonyl complexes were also investigated. The synthesized complexes also possess good catalytic activity for the o-allylation of phenols in the presence of K2CO3 under mild conditions. The complexes afforded branched allyl aryl ethers according to a regioselective reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Polymerizations of beta-substituted allylic arsonium ylides with catalytic amounts of organoboron compounds

    International Nuclear Information System (INIS)

    Mondiere, R.

    2004-01-01

    My Ph.D. work consisted in the generalization and optimization of a new polymerization reaction involving allylic arsonium ylides and catalytic amounts of various boron compounds. Thus, various β-substituted allylic arsonium salts were produced according to synthetic strategies that depended on the nature of the functional group born by the salt. These salts were converted in situ to the corresponding arsonium ylides which were then treated with boron compounds to yield polymers. Our new method of polymerization afforded either non conjugated polyenes that are functionalized every three atoms of carbon, or statistic copolymers, depending on the nature of the group R born on the β position of the ylide. These new polymers cannot be synthesized by usual methods of polymerization. Initial molar ratios of reactants were found to give molar mass control of the synthesized polymers. This controlled polymerization allowed us to produce several bloc copolymers. All the polymers were characterized by NMR techniques, by size exclusion chromatography and, for some of them, by mass spectrometry. Investigation of their physicochemical properties will need additional experiments. (author)

  13. Ti-catalyzed Barbier-type allylations and related reactions.

    Science.gov (United States)

    Estévez, Rosa E; Justicia, José; Bazdi, Btissam; Fuentes, Noelia; Paradas, Miguel; Choquesillo-Lazarte, Duane; García-Ruiz, Juan M; Robles, Rafael; Gansäuer, Andreas; Cuerva, Juan M; Oltra, J Enrique

    2009-01-01

    Titanocene(III) complexes, easily generated in situ from commercial Ti(IV) precursors, catalyze Barbier-type allylations, intramolecular crotylations (cyclizations), and prenylations of a wide range of aldehydes and ketones. The reaction displays surprising and unprecedented mechanistic subtleties. In cyclizations a fast and irreversible addition of an allyl radical to a Ti(III)-coordinated carbonyl group seems to occur. Intermolecular additions to conjugated aldehydes proceed through a coupling of a Ti(IV)-bound ketyl radical with an allyl radical. Reactions of ketones with allylic halides take place by the classical addition of an allylic organometallic reagent. The radical coupling processes enable transformations such as the highly regioselective alpha-prenylation that are otherwise difficult to achieve. The mild reaction conditions and the possibility to employ titanocene complexes in only catalytic quantities are highly attractive features of our protocol. These unusual properties have been taken advantage of for the straightforward synthesis of the natural products rosiridol, shikalkin, and 12-hydroxysqualene.

  14. Hydroxymethylation beyond Carbonylation: Enantioselective Iridium Catalyzed Reductive Coupling of Formaldehyde with Allylic Acetates via Enantiotopic ?-Facial Discrimination

    OpenAIRE

    Garza, Victoria J.; Krische, Michael J.

    2016-01-01

    Chiral iridium complexes modified by SEGPHOS catalyze the 2-propanol mediated reductive coupling of branched allylic acetates 1a?1o with formaldehyde to form primary homoallylic alcohols 2a?2o with excellent control of regio- and enantioselectivity. These processes, which rely on enantiotopic ?-facial discrimination of ?-allyliridium intermediates, represent the first examples of enantioselective formaldehyde C-C coupling beyond aldol addition.

  15. Catalytic performance of heterogeneous Rh/C3N4 for the carbonylation of methanol

    Science.gov (United States)

    Budiman, Anatta Wahyu; Choi, Myoung Jae; Nur, Adrian

    2018-02-01

    The excess of water in homogeneous the carbonylation of methanol system could increase the amount of by-products formed through water-gas shift reaction and could accelerate the rusting of equipment. Many scientists tried to decrease the content of water in the carbonylation of methanol system by using lithium and iodide promoter that results a moderate catalytic activity in the water content at 2wt%. The heterogenized catalyst offers several distinct advantages such as it was enables increased catalyst concentration in the reaction mixture, which is directly proportional to acetic acid production rate, without the addition of an alkali iodide salt promoter. The heterogeneous catalyst also results in reduced by-product formation. This study is aimed to produce a novel catalyst (Rh/C3N4) with a high selectivity of acetic acid in a relatively lower water and halide content. This novel catalyst performs high conversion and selectivity of acetic acid as the result of the strong ionic bonding of melamine and rhodium complex species that was caused by the presence of methyl iodide species. The CO2 in feed gas significantly decreases the catalytic activity of Rh-melamine because of its inert characteristics. The kinetic test was performed as that the first order kinetic equation. The kinetic tests revealed the reaction route of the the carbonylation of methanol in this system was performed trough the methyl acetate.

  16. Hydroxymethylation beyond Carbonylation: Enantioselective Iridium-Catalyzed Reductive Coupling of Formaldehyde with Allylic Acetates via Enantiotopic π-Facial Discrimination.

    Science.gov (United States)

    Garza, Victoria J; Krische, Michael J

    2016-03-23

    Chiral iridium complexes modified by SEGPHOS catalyze the 2-propanol-mediated reductive coupling of branched allylic acetates 1a-1o with formaldehyde to form primary homoallylic alcohols 2a-2o with excellent control of regio- and enantioselectivity. These processes, which rely on enantiotopic π-facial discrimination of σ-allyliridium intermediates, represent the first examples of enantioselective formaldehyde C-C coupling beyond aldol addition.

  17. Iterative Cr-mediated catalytic asymmetric allylation to synthesize syn/syn- and anti/anti-1,3,5-triols.

    Science.gov (United States)

    Zhang, Zhiyu; Aubry, Sylvain; Kishi, Yoshito

    2008-07-17

    Iterative use of Cr-mediated catalytic asymmetric allylation could give a simple access to 1,3-polyols. Using syn/syn- and anti/anti-1,3,5-triols as representative examples, the feasibility of this approach is studied, thereby demonstrating that (1) the pre-existing TMS-protected alcohol at the beta-position does not give a significant effect on the Cr-mediated catalytic asymmetric allylation and (2) this synthetic route furnishes the expected syn/syn- and anti/anti-1,3,5-triols at the useful level of asymmetric induction and yield.

  18. Ruthenium complexes with dendritic ferrocenyl phosphanes: synthesis, characterization, and application in the catalytic redox isomerization of allylic alcohols.

    Science.gov (United States)

    Neumann, Paul; Dib, Hanna; Sournia-Saquet, Alix; Grell, Toni; Handke, Marcel; Caminade, Anne-Marie; Hey-Hawkins, Evamarie

    2015-04-20

    An efficient system for the catalytic redox isomerization of the allylic alcohol 1-octen-3-ol to 3-octanone is presented. The homogeneous ruthenium(II) catalyst contains a monodentate phosphane ligand with a ferrocene moiety in the backbone and provides 3-octanone in quantitative yields. The activity is increased by nearly 90 % with respect to the corresponding triphenyl phosphane ruthenium(II) complex. By grafting the catalyst at the surface of a dendrimer, the catalytic activity is further increased. By introducing different spacers between ferrocene and phosphorus, the influence on the electronic properties of the complexes is shown by evaluating the electrochemical behavior of the compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Catalytic asymmetric allylation of aliphatic aldehydes by chiral bipyridine N,N'-dioxides

    Czech Academy of Sciences Publication Activity Database

    Hrdina, R.; Boyd, T.; Valterová, Irena; Hodačová, Jana; Kotora, Martin

    -, č. 20 (2008), s. 3141-3144 ISSN 0936-5214 Grant - others:GA MŠk(CZ) LC06070 Program:LC Institutional research plan: CEZ:AV0Z40550506 Keywords : allylations * aldehydes * Lewis base * asymmetric catalysis * solvent effect Subject RIV: CC - Organic Chemistry Impact factor: 2.659, year: 2008

  20. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Rojas-Buzo, Sergio; García-García, Pilar; Corma, Avelino

    2018-01-23

    A series of highly crystalline, porous, hafnium-based metal-organic frameworks (Hf-MOFs) have been shown to catalyze the transfer hydrogenation reaction of levulinic ester to produce γ-valerolactone by using isopropanol as a hydrogen donor. The results are compared with their zirconium-based counterparts. The role of the metal center in Hf-MOFs has been identified and reaction parameters optimized. NMR studies using isotopically labeled isopropanol provide evidence that the transfer hydrogenation occurs through a direct intermolecular hydrogen transfer route. The catalyst, Hf-MOF-808, can be recycled several times with only a minor decrease in catalytic activity. The generality of the procedure has been demonstrated by accomplishing the transformation with aldehydes, ketones, and α,β-unsaturated carbonyl compounds. The combination of Hf-MOF-808 with the Brønsted-acidic Al-Beta zeolite gives the four-step one-pot transformation of furfural to γ-valerolactone in good yield of 75 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Catalytic diastereo- and enantioselective additions of versatile allyl groups to N-H ketimines

    Science.gov (United States)

    Jang, Hwanjong; Romiti, Filippo; Torker, Sebastian; Hoveyda, Amir H.

    2017-12-01

    There are many biologically active organic molecules that contain one or more nitrogen-containing moieties, and broadly applicable and efficient catalytic transformations that deliver them diastereoselectively and/or enantioselectively are much sought after. Various methods for enantioselective synthesis of α-secondary amines are available (for example, from additions to protected/activated aldimines), but those involving ketimines are much less common. There are no reported additions of carbon-based nucleophiles to unprotected/unactivated (or N-H) ketimines. Here, we report a catalytic, diastereo- and enantioselective three-component strategy for merging an N-H ketimine, a monosubstituted allene and B2(pin)2, affording products in up to 95% yield, >98% diastereoselectivity and >99:1 enantiomeric ratio. The utility of the approach is highlighted by synthesis of the tricyclic core of a class of compounds that have been shown to possess anti-Alzheimer activity. Stereochemical models developed with the aid of density functional theory calculations, which account for the observed trends and levels of enantioselectivity, are presented.

  2. Effect of pretreatment temperature on catalytic performance of the catalysts derived from cobalt carbonyl cluster in Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Byambasuren O

    2017-02-01

    Full Text Available The monometallic cobalt-based catalysts were prepared by pretreating the catalysts derived from carbonyl cluster precursor (CO6Co2CC(COOH2 supported on γ-Al2O3 with hydrogen at 180, 220, and 260°C respectively. The temperature effect of the pretreatments on the structure evolution of cluster precursors and the catalytic performance of the Fischer-Tropsch (F-T synthesis was investigated. The pretreated catalyst at 220°C with unique phase structure exhibited best catalytic activity and selectivity among three pretreated catalysts. Moreover, the catalysts exhibited high dispersion due to the formation of hydrogen bonds between the cluster precursor and γ-Al2O3 support.

  3. Catalytic synthesis of aromatic diisocyanates by means of carbonylation of nitrocompounds with carbon monoxide

    International Nuclear Information System (INIS)

    Nefedov, B.K.; Manov-Yuvenskij, V.I.; Khoshdurdyev, Kh.O.; Novikov, S.S.

    1977-01-01

    The development of an active and selective heterogeneous catalyst for synthesis of aromatic diisocyanates has been studied. The catalytic ability of the catalyst PdO-MoO 3 -Fe 2 O 3 deposited on γ-Al 2 O 3 has been investigated in the reactions of carbonilation of aromatic dinitrocompounds with carbon oxide. The effect of the catalyst composition, method of catalyst production, reaction temperature and pressure on the catalytic ability have been studied. It has been established that the catalyst PdO-MoO 3 -Fe 2 O 3 (2-6:1:1) deposited on γ-Al 2 O 3 is highly active and selective in the reactions of carbonilation of aromatic dinitrocompounds at 210 deg and 300 atm. It has been used for synthesis of aromatic diisocyanates in yield 32-75%

  4. A novel NAD(P)H-dependent carbonyl reductase specifically expressed in the thyroidectomized chicken fatty liver: catalytic properties and crystal structure.

    Science.gov (United States)

    Fukuda, Yudai; Sone, Takeki; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa; Shibata, Takeshi; Yoneda, Kazunari

    2015-10-01

    A gene encoding a functionally unknown protein that is specifically expressed in the thyroidectomized chicken fatty liver and has a predicted amino acid sequence similar to that of NAD(P)H-dependent carbonyl reductase was overexpressed in Escherichia coli; its product was purified and characterized. The expressed enzyme was an NAD(P)H-dependent broad substrate specificity carbonyl reductase and was inhibited by arachidonic acid at 1.5 μm. Enzymological characterization indicated that the enzyme could be classified as a cytosolic-type carbonyl reductase. The enzyme's 3D structure was determined using the molecular replacement method at 1.98 Å resolution in the presence of NADPH and ethylene glycol. The asymmetric unit consisted of two subunits, and a noncrystallographic twofold axis generated the functional dimer. The structures of the subunits, A and B, differed from each other. In subunit A, the active site contained an ethylene glycol molecule absent in subunit B. Consequently, Tyr172 in subunit A rotated by 103.7° in comparison with subunit B, which leads to active site closure in subunit A. In Y172A mutant, the Km value for 9,10-phenanthrenequinone (model substrate) was 12.5 times higher than that for the wild-type enzyme, indicating that Tyr172 plays a key role in substrate binding in this carbonyl reductase. Because the Tyr172-containing active site lid structure (Ile164-Gln174) is not conserved in all known carbonyl reductases, our results provide new insights into substrate binding of carbonyl reductase. The catalytic properties and crystal structure revealed that thyroidectomized chicken fatty liver carbonyl reductase is a novel enzyme. © 2015 FEBS.

  5. Aqueous Catalytic Pauson-Khand-Type Reactions of Enynes with Formaldehyde: Transfer Carbonylation Involving an Aqueous Decarbonylation and a Micellar Carbonylation

    OpenAIRE

    Fuji, Koji; Morimoto, Tsumoru; Tsutsumi, Ken; Kakiuchi, Kiyomi

    2003-01-01

    One rhodium(I) complex catalyzes two processes in an overall Pauson-Khand-type reaction of enynes such as 1 with formaldehyde in an aqueous medium to give bicyclic cyclopentenones such as 2 in excellent yields. The use of a water-soluble phosphane ligand in conjunction with a hydrophobic phosphane ligand in the presence of a surfactant promotes the decarbonylation of formaldehyde in the aqueous phase and the carbonylation of enynes in the micellar phase.

  6. Transition metal catalysed Grignard-like allylic activation across ...

    Indian Academy of Sciences (India)

    Unknown

    The reaction chosen for the present study is the Barbier variation of the Grignard reaction, wherein the organic halide and a carbonyl compound react to provide the corresponding homoallylic alcohol5. With specific reference to carbonyl allylation via tin(II) salts, it was previously shown that allyltrihalostannane is formed as a ...

  7. Synthesis and characterization of an iron complex bearing a hemilabile NNN-pincer for catalytic hydrosilylation of organic carbonyl compounds.

    Science.gov (United States)

    Lin, Hsiu-Jung; Lutz, Sean; O'Kane, Catherine; Zeller, Matthias; Chen, Chun-Hsing; Al Assil, Talal; Lee, Wei-Tsung

    2018-03-06

    A low-coordinate iron(ii) complex (Cz tBu (Pz tBu ) 2 )Fe[N(SiMe 3 ) 2 ], 1 bearing an NNN-pincer ligand was prepared and fully characterized. Intramolecular C-H activation on the 5-position of a pyrazole at elevated temperatures was observed. Complex 1 was found to be an efficient and chemoselective pre-catalyst for the hydrosilylation of organo carbonyl substrates.

  8. Pd Nanoparticle-Catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-Dependent Regioselectivity.

    Science.gov (United States)

    Sadeghmoghaddam, Elham; Gu, Hanmo; Shon, Young-Seok

    2012-09-07

    Our previous work has shown that alkanethiolate-capped Pd nanoparticles generated from sodium S -dodecylthiosulfate are excellent catalysts for selective isomerization of various allyl alcohols to the carbonyl analogues. The present work focuses on understanding the mechanism and the regioselectivity of Pd nanoparticles in different environments. First, the presence of H 2 gas has turned out to be essential for the efficient catalytic isomerization reaction. This suggests that the mechanism likely involves the Pd-alkyl intermediate rather than the η 3 π-allyl Pd hydride intermediate. Second, the Pd nanoparticles are found to convert allyl alcohol selectively to either propanal or 1-propanol depending on the type of solvent used for the catalytic reactions. The reaction pathway is most likely determined by steric hindrance, which is the result of the interaction between substrate and alkylthiolate ligands on Pd nanoparticles. Presumably, the conformation of alkylthiolate ligands changes upon the type of solvents, resulting in varying degree of available space close to the nanoparticle surface. In general, nonpolar or weakly polar solvents such as benzene and chloroform, respectively, promote the isomerization of allyl alcohol to propanal via the formation of the branched Pd-alkyl intermediate. On the other hand, polar protic solvents such as methanol and water foster the hydrogenation of allyl alcohol to 1-propanol involving the steric induced formation of a linear Pd-alkyl intermediate. Third, the use of sodium S -hexylthiosulfate instead of sodium S -dodecylthiosulfate for the synthesis of Pd nanoparticles results in nanoparticle catalysts with a lower regioselectivity toward isomerization over hydrogenation. This is due to the higher surface ligand density of hexanethiolate-capped Pd nanoparticles, which negatively impacts the formation of branched Pd-alkyl intermediate. The results clearly indicate that controlling the structure and surface density of

  9. Side chain dynamics of carboxyl and carbonyl groups in the catalytic function of Escherichia coli ribonuclease H

    Science.gov (United States)

    Stafford, Kate A.; Ferrage, Fabien; Cho, Jae-Hyun; Palmer, Arthur G.

    2014-01-01

    Many proteins use Asx and Glx (x = n, p, or u) side chains as key functional groups in enzymatic catalysis and molecular recognition. In this study, NMR spin relaxation experiments and molecular dynamics (MD) simulations are used to measure the dynamics of the side chain amide and carboxyl groups, 13Cγ/δ, in Escherichia coli ribonuclease HI (RNase H). Model-free analysis shows that the catalytic residues in RNase H are pre-organized on ps-ns timescales via a network of electrostatic interactions. However, chemical exchange line broadening shows that these residues display significant conformational dynamics on μs – ms timescales upon binding of Mg2+ ions. Two groups of catalytic residues exhibit differential linebroadening, implicating distinct reorganizational processes upon binding of metal ions. These results support the “mobile metal ion” hypothesis, which was inferred from structural studies of RNase H. PMID:24219366

  10. Catalytic isomerization of ethylenic hydrocarbons. XII. Isomerization of 2-butenes selectively deuterated in the allylic and vinylic positions over alumina and silica-alumina

    International Nuclear Information System (INIS)

    Perot, G.; Guisnet, M.; Maurel, R.

    1976-01-01

    The isomerization of 2,3-d 2 - and 1,4-d 6 -cis-butenes was carried out on alumina and silica-alumina catalysts. Over both catalysts, double-bond shift is closely related to exchange between the allylic hydrogens of the reactant and the catalyst. On the other hand, it becomes apparent from the reported data that cis-trans isomerization proceeds through two different paths: a mechanism (I) involving exchange between the catalyst and the vinylic hydrogens of the reactant and an ''intramolecular'' mechanism (II) without any exchange between the reactant and the catalyst. It is shown that both double-bond shift and cis-trans reaction by mechanism I can occur on the two catalysts by a stereospecific carbonium ion mechanism while mechanism II is not fully understood

  11. A general approach to intermolecular carbonylation of arene C-H bonds to ketones through catalytic aroyl triflate formation

    Science.gov (United States)

    Garrison Kinney, R.; Tjutrins, Jevgenijs; Torres, Gerardo M.; Liu, Nina Jiabao; Kulkarni, Omkar; Arndtsen, Bruce A.

    2018-02-01

    The development of metal-catalysed methods to functionalize inert C-H bonds has become a dominant research theme in the past decade as an approach to efficient synthesis. However, the incorporation of carbon monoxide into such reactions to form valuable ketones has to date proved a challenge, despite its potential as a straightforward and green alternative to Friedel-Crafts reactions. Here we describe a new approach to palladium-catalysed C-H bond functionalization in which carbon monoxide is used to drive the generation of high-energy electrophiles. This offers a method to couple the useful features of metal-catalysed C-H functionalization (stable and available reagents) and electrophilic acylations (broad scope and selectivity), and synthesize ketones simply from aryl iodides, CO and arenes. Notably, the reaction proceeds in an intermolecular fashion, without directing groups and at very low palladium-catalyst loadings. Mechanistic studies show that the reaction proceeds through the catalytic build-up of potent aroyl triflate electrophiles.

  12. Catalytic enantioselective allyl- and crotylboration of aldehydes using chiral diol x SnCl4 complexes. optimization, substrate scope and mechanistic investigations.

    Science.gov (United States)

    Rauniyar, Vivek; Zhai, Huimin; Hall, Dennis G

    2008-07-02

    We report a novel class of C2-symmetric chiral diols derived from the hydrobenzoin skeleton. The combination of these diols with SnCl4 under Yamamoto's concept of Lewis acid assisted Brønsted acidity (LBA catalysis) leads to high levels of asymmetric induction in the allylboration of aldehydes by commercially available allylboronic acid pinacol ester 1a. The corresponding homoallylic alcohol products of synthetically useful aliphatic aldehydes are obtained in excellent yields with up to 98:2 er. This combined acid manifold is also efficient in catalyzing the diastereo- and enantioselective crotylboration of aldehydes, thus providing the propionate units in >95:5 dr and up to 98:2 er. The X-ray crystal structure of the optimal diol x SnCl4 complex, Vivol (4m) x SnCl4, unambiguously shows the Brønsted acidic character of this LBA catalyst and its highly dissymmetrical environment. Further controls have ruled out a possible boron trans-esterification mechanism with the chiral diol and point to LBA catalyst-derived activation of the pinacol allylic boronates 1. Due to slow dissociation of the diol x SnCl4 complex, a small excess of diol is required in order to suppress a competing racemic cycle catalyzed by free SnCl4.

  13. Oxy-Allyl Cation Catalysis: An Enantioselective Electrophilic Activation Mode

    Science.gov (United States)

    Liu, Chun; Oblak, E. Zachary; Vander Wal, Mark N.; Dilger, Andrew K.; Almstead, Danielle K.; MacMillan, David W. C.

    2016-01-01

    A generic activation mode for asymmetric LUMO-lowering catalysis has been developed using the long-established principles of oxy-allyl cation chemistry. Here, the enantioselective conversion of racemic α-tosyloxy ketones to optically enriched α-indolic carbonyls has been accomplished using a new amino alcohol catalyst in the presence of electron-rich indole nucleophiles. Kinetic studies reveal that the rate-determining step in this SN1 pathway is the catalyst-mediated α-tosyloxy ketone deprotonation step to form an enantiodiscriminant oxy-allyl cation prior to the stereodefining nucleophilic addition event. PMID:26797012

  14. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    International Nuclear Information System (INIS)

    Cruz-Aguilar, A; Herrera-González, A M; Vázquez-García, R A; Coreño, J; Navarro-Rodríguez, D

    2013-01-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1 H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  15. Direct and enantioselective α-allylation of ketones via singly occupied molecular orbital (SOMO) catalysis

    Science.gov (United States)

    Mastracchio, Anthony; Warkentin, Alexander A.; Walji, Abbas M.; MacMillan, David W. C.

    2010-01-01

    The first enantioselective organocatalytic α-allylation of cyclic ketones has been accomplished via singly occupied molecular orbital catalysis. Geometrically constrained radical cations, forged from the one-electron oxidation of transiently generated enamines, readily undergo allylic alkylation with a variety of commercially available allyl silanes. A reasonable latitude in both the ketone and allyl silane components is readily accommodated in this new transformation. Moreover, three new oxidatively stable imidazolidinone catalysts have been developed that allow cyclic ketones to successfully participate in this transformation. The new catalyst platform has also been exploited in the first catalytic enantioselective α-enolation and α-carbooxidation of ketones. PMID:20921367

  16. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  17. Catalytic

    Directory of Open Access Journals (Sweden)

    S.A. Hanafi

    2014-03-01

    Full Text Available A series of dealuminated Y-zeolites impregnated by 0.5 wt% Pt catalysts promoted by different amounts of Ni, Pd or Cr (0.3 and 0.6 wt% were prepared and characterized as hydrocracking catalysts. The physicochemical and structural characterization of the solid catalysts were investigated and reported through N2 physisorption, XRD, TGA-DSC, FT-IR and TEM techniques. Solid catalysts surface acidities were investigated through FT-IR spectroscopy aided by pyridine adsorption. The solid catalytic activities were evaluated through hydroconversion of n-hexane and n-heptane employing micro-catalytic pulse technique directly connected to a gas chromatograph analyzer. The thermal stability of the solids was also investigated up to 800 °C. Crystallinity studies using the XRD technique of all modified samples proved analogous to the parent Y-zeolite, exhibiting nearly an amorphous and microcrystalline character of the second metal oxides. Disclosure of bimetallic catalysts crystalline characterization, through XRD, was not viable. The nitrogen adsorption–desorption isotherms for all samples concluded type I adsorption isotherms, without any hysteresis loop, indicating that the entire pore system is composed of micropores. TEM micrographs of the solid catalysts demonstrate well-dispersed Pt, Ni and Cr nanoparticles having sizes of 2–4 nm and 7–8 nm, respectively. The catalytic activity results indicate that the bimetallic (0.5Pt–0.3Cr/D18H–Y catalyst is the most active towards n-hexane and n-heptane isomerization while (0.5Pt–0.6Ni/D18H–Y catalyst can be designed as most suitable as a cracking catalyst.

  18. Catalytic dehydrogenative N-((triisopropylsilyl)oxy)carbonyl (Tsoc) protection of amines using iPr3SiH and CO2.

    Science.gov (United States)

    Tanaka, S; Yamamura, T; Nakane, S; Kitamura, M

    2015-08-25

    A versatile method has been found to catalyze the dehydrogenative N-((triisopropylsilyl)oxy)carbonyl (Tsoc) protection of amines using Pd/C, volatile iPr3SiH and CO2 gas without the liberation of any salts. A simple filtration/evaporation process facilitates the easy isolation of the product, thereby enhancing the utility of Tsoc as an amine-protecting group in organic synthesis.

  19. Comparison of Carbonyls and BTEX Emissions from a Light Duty Vehicle Fuelled with Gasoline and Ethanol-Gasoline Blend, and Operated without 3-Way Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Asad Naeem Shah

    2011-10-01

    Full Text Available This paper presents the comparison of unregulated emissions such as carbonyls and BTEX (Benzene, Toluene, Ethyl Benzene, and Xylenes species emanated from a light duty SI (Spark Ignition vehicle E-0 (fuelled on gasoline and E-10 (ethanol-gasoline blend. Meanwhile, the ozone forming potential of these pollutants based on their ozone SR (Specific Reactivity has also been addressed in this study. The experiments were performed on transient as well as steady-state modes in accordance with the standard protocols recommended for light duty vehicle emissions. Carbonyls and BTEX were analyzed by HPLC (High Performance Liquid Chromatography with UV detector and GC/MS (Gas Chromatography/Mass Spectroscopy, respectively. Formaldehyde and acetaldehyde were the predominant components of the carbonyls for E-0 and E-10, respectively. During transient mode, formaldehyde, acrolein + acetone, and tolualdehyde pollutants were decreased but, acetaldehyde emissions increased with E-10 as compared to E-0. The BTEX emissions were also decreased with E-10, relative to E-0. During the steady-state modes, formaldehyde, acrolein + acetone and propionaldehyde were lower, aromatic aldehydes were absent, but acetaldehyde pollutants were higher with E-10 compared to E-0. The BTEX emissions were decreased at medium and higher speed modes however, increased at lower speed mode with E-10 as compared to E-0. Total BTEX emissions were maximal at lower speed mode but, least at medium speed mode for both the fuels. SR of the pollutants was higher over transient cycle of operation, compared with steady-state mode. Relative to E-0, E-10 displayed lower SR during both transient as well as steady-state mode.

  20. Catalytic properties and crystal structure of thermostable NAD(P)H-dependent carbonyl reductase from the hyperthermophilic archaeon Aeropyrum pernix K1.

    Science.gov (United States)

    Fukuda, Yudai; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa; Yoneda, Kazunari

    2016-09-01

    A gene encoding NAD(P)H-dependent carbonyl reductase (CR) from the hyperthermophilic archaeon Aeropyrum pernix K1 was overexpressed in Escherichia coli. Its product was effectively purified and characterized. The expressed enzyme was the most thermostable CR found to date; the activity remained at approximately 75% of its activity after incubation for 10min up to 90°C. In addition, A. pernix CR exhibited high stability at a wider range of pH values and longer periods of storage compared with CRs previously identified from other sources. A. pernix CR catalyzed the reduction of various carbonyl compounds including ethyl 4-chloro-3-oxobutanoate and 9,10-phenanthrenequinone, similar to the CR from thyroidectomized (Tx) chicken fatty liver. However, A. pernix CR exhibited significantly higher Km values against several substrates than Tx chicken fatty liver CR. The three-dimensional structure of A. pernix CR was determined using the molecular replacement method at a resolution of 2.09Å, in the presence of NADPH. The overall fold of A. pernix CR showed moderate similarity to that of Tx chicken fatty liver CR; however, A. pernix CR had no active-site lid unlike Tx chicken fatty liver CR. Consequently, the active-site cavity in the A. pernix CR was much more solvent-accessible than that in Tx chicken fatty liver CR. This structural feature may be responsible for the enzyme's lower affinity for several substrates and NADPH. The factors contributing to the much higher thermostability of A. pernix CR were analyzed by comparing its structure with that of Tx chicken fatty liver CR. This comparison showed that extensive formation of the intrasubunit ion pair networks, and the presence of the strong intersubunit interaction, is likely responsible for A. pernix CR thermostability. Site-directed mutagenesis showed that Glu99 plays a major role in the intersubunit interaction. This is the first report regarding the characteristics and three-dimensional structure of

  1. Tsuji-Trost N-allylation with allylic acetates using cellulose-Pd catalyst

    Science.gov (United States)

    Allylic amines are synthesized using heterogeneous cellulose-Pd catalyst via N-allylation of amines; aliphatic and benzyl amines undergo facile reaction with substituted and unsubstituted allyl acetates in high yields.

  2. Comparative study of the anchorage and the catalytic properties of nanoporous TiO2 films modified with ruthenium (II) and rhenium (I) carbonyl complexes

    Science.gov (United States)

    Oyarzún, Diego P.; Chardon-Noblat, Sylvie; Linarez Pérez, Omar E.; López Teijelo, Manuel; Zúñiga, César; Zarate, Ximena; Shott, Eduardo; Carreño, Alexander; Arratia-Perez, Ramiro

    2018-02-01

    In this article we study the anchoring of cis-[Ru(bpyC4pyr)(CO)2(CH3CN)2]2+, cis-[Ru(bpy)2(CO)2]2+ and cis-[Ru(bpyac)(CO)2Cl2], onto nanoporous TiO2 employing electropolymerization, electrostatic interaction and chemical bonding. Also, the [Re(bpyac)(CO)3Cl] rhenium(I) complex for chemical anchorage was analyzed. The characterization of TiO2/Ru(II) and TiO2/Re(I) nanocomposite films was performed by field emission scanning electron microscopy (FESEM), electron dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. In addition, for the more stable nanocomposites obtained, the catalytic properties (solar energy conversion and CO2 reduction) were evaluated. The efficiency improvement in redox process derived from the (photo)electrochemical evidence indicates that modified nanoporous TiO2 structures enhance the rate of charge transfer reactions.

  3. A computational study of the catalytic aerobic epoxidation of propylene over the coordinatively unsaturated metal-organic framework Fe3(btc)2: formation of propylene oxide and competing reactions.

    Science.gov (United States)

    Maihom, Thana; Sawangphruk, Montree; Probst, Michael; Limtrakul, Jumras

    2018-02-19

    The aerobic epoxidation of propylene over the metal-organic framework Fe 3 (btc) 2 (btc = 1,3,5-benzentricarboxylate) as catalyst has been investigated by means of density functional calculations. The mechanisms of the reaction towards propylene oxide, carbonylic products (acetone and propanal) and a pi-allyl radical were investigated to assess the efficiency of Fe 3 (btc) 2 for the selective formation of propylene oxide. Propylene oxide and carbonylic products are formed on Fe 3 (btc) 2 by proceeding via propyleneoxy intermediates in the first step. Subsequently, the intermediates can then either be transformed to propylene oxide by way of ring closure of the intermediate or to the carbonylic compounds of propanal and acetone via 1,2-hydride shift. The results show that the formation of propylene oxide is favored over the formation of carbonylic products mainly due to the activation barriers being 2-3 times smaller. The activation barriers for the formation of the propyleneoxy intermediates on the Fe 3 (btc) 2 catalyst for the first and second reaction cycle are also lower than the barriers obtained for the formation of the pi-allyl radical that acts as the precursor to combustion products. On the basis of these computational results, we therefore expect a high catalytic selectivity of the Fe 3 (btc) 2 catalyst with respect to the formation of propylene oxide. We also compared the catalytic activities of Fe 3 (btc) 2 and Cu 3 (btc) 2 . The activation energy of the rate-determining step is almost 2 times lower for Fe 3 (btc) 2 than that for Cu 3 (btc) 2 , due to a larger charge transfer from the catalytic site to the O 2 molecule in the case of Fe 3 (btc) 2 .

  4. Carbonyl-Olefin Exchange Reaction and Related Chemistry

    Science.gov (United States)

    Jossifov, Christo; Kalinova, Radostina

    A new carbon—carbon double bond forming reaction (carbonyl olefin exchange reaction) mediated by transition metal catalytic systems has been discovered. The catalytic systems used (transition metal halides or oxohalides alone or in combination with Lewis acids) are active only in the case when the two reacting groups are in one molecules and are conjugated. In addition these systems accelerate other reactions which run simultaneously with the carbonyl olefin metathesis rendering a detailed investigation of the process very complicated.

  5. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.

    Science.gov (United States)

    Li, Houhua; Mazet, Clément

    2016-06-21

    This Account presents the development of the iridium-catalyzed isomerization of primary allylic alcohols in our laboratory over the past 8 years. Our initial interest was driven by the long-standing challenge associated with the development of a general catalyst even for the nonasymmetric version of this seemingly simple chemical transformation. The added value of the aldehyde products and the possibility to rapidly generate molecular complexity from readily accessible allylic alcohols upon a redox-economical isomerization reaction were additional sources of motivation. Certainly influenced by the success story of the related isomerization of allylic amines, most catalysts developed for the selective isomerization of allylic alcohols were focused on rhodium as a transition metal of choice. Our approach has been based on the commonly accepted precept that hydrogenation and isomerization are often competing processes, with the latter being usually suppressed in favor of the former. The cationic iridium complexes [(Cy3P)(pyridine)Ir(cod)]X developed by Crabtree (X = PF6) and Pfaltz (X = BArF) are usually considered as the most versatile catalysts for the hydrogenation of allylic alcohols. Using molecular hydrogen to generate controlled amounts of the active form of these complexes but performing the reaction in the absence of molecular hydrogen enabled deviation from the typical hydrogenation manifold and favored exclusively the isomerization of allylic alcohols into aldehydes. Isotopic labeling and crossover experiments revealed the intermolecular nature of the process. Systematic variation of the ligand on the iridium center allowed us to identify the structural features beneficial for catalytic activity. Subsequently, three generations of chiral catalysts have been investigated and enabled us to reach excellent levels of enantioselectivity for a wide range of 3,3-disubstituted aryl/alkyl and alkyl/alkyl primary allylic alcohols leading to β-chiral aldehydes. The

  6. Cesium Carbonate-Catalyzed α-Phenylchalcogenation of Carbonyl Compounds with Diphenyl Dichalcogenide

    Directory of Open Access Journals (Sweden)

    Yutaka Nishiyama

    2009-09-01

    Full Text Available It was found that cesium carbonate has a unique catalytic ability on the reaction of carbonyl compounds with diphenyl diselenide to give the corresponding α-phenylseleno carbonyl compounds in moderate to good yields. Similarly, the α-phenylthiolation of carbonyl compounds with diphenyl disulfide was promoted by the cesium carbonate catalyst.

  7. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst

    Directory of Open Access Journals (Sweden)

    Viviane P. de Souza

    2016-11-01

    Full Text Available Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  8. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    Science.gov (United States)

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  9. Sulfonamides as new hydrogen atom transfer (HAT) catalysts for photoredox allylic and benzylic C-H arylations.

    Science.gov (United States)

    Tanaka, Hirotaka; Sakai, Kentaro; Kawamura, Atsushi; Oisaki, Kounosuke; Kanai, Motomu

    2018-02-02

    A catalytic amount of a sterically and electronically tuned diarylsulfonamide promoted allylic and benzylic C-H arylations in cooperation with a visible light photoredox catalyst. This is the first example of the catalytic use of a sulfonamidyl radical to promote the hydrogen atom transfer process.

  10. Protein carbonylation in plants

    DEFF Research Database (Denmark)

    Møller, Ian Max; Havelund, Jesper; Rogowska-Wrzesinska, Adelina

    2017-01-01

    This chapter provides an overview of the current knowledge on protein carbonylation in plants and its role in plant physiology. It starts with a brief outline of the turnover and production sites of reactive oxygen species (ROS) in plants and the causes of protein carbonylation. This is followed...... by a description of the methods used to study protein carbonylation in plants, which is also very brief as the methods are similar to those used in studies on animals. The chapter also focuses on protein carbonylation in plants in general and in mitochondria and in seeds in particular, as case stories where...

  11. The allylic chalcogen effect in olefin metathesis

    Directory of Open Access Journals (Sweden)

    Yuya A. Lin

    2010-12-01

    Full Text Available Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.

  12. The allylic chalcogen effect in olefin metathesis.

    Science.gov (United States)

    Lin, Yuya A; Davis, Benjamin G

    2010-12-23

    Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.

  13. Cascade synthesis of dihydrobenzofuran via Claisen rearrangement of allyl aryl ethers using FeCl3/MCM-41 catalyst

    Directory of Open Access Journals (Sweden)

    Sachin S. Sakate

    2018-05-01

    Full Text Available Dihydrobenzofuran as one of the active ingredients of the naturally occurring motif is synthesized by using in situ generation of ortho allyl phenols. Aryl allyl ethers on reacting with catalytic amounts of non noble metal iron (III chloride supported on MCM-41 under moderate reaction conditions yield dihydrobenzofuran. First step via Claisen rearrangement gives ortho allyl phenol followed by its in situ cyclization to yield dihydrobenzofuran in very good yields. Both Lewis as well as Brønsted acidity of the catalyst as evidenced by Py-FTIR studies was found to catalyze the cascade synthesis of dihydrobenzofuran. The scope of the present strategy was successfully demonstrated for several substrates with varying electronic effects for the synthesis of corresponding dihydrobenzofuran with high yields in a range of 71–86%. Keywords: Claisen rearrangement, Dihydrobenzofuran, Aryl allyl ether, MCM-41, Ferric chloride

  14. Dual Palladium(II)/Tertiary Amine Catalysis for Asymmetric Regioselective Rearrangements of Allylic Carbamates.

    Science.gov (United States)

    Bauer, Johannes Moritz; Frey, Wolfgang; Peters, René

    2016-04-11

    The streamlined catalytic access to enantiopure allylic amines as valuable precursors towards chiral β- and γ-aminoalcohols as well as α- and β-aminoacids is desirable for industrial purposes. In this article an enantioselective method is described that transforms achiral allylic alcohols and N-tosylisocyanate in a single step into highly enantioenriched N-tosyl protected allylic amines via an allylic carbamate intermediate. The latter is likely to undergo a cyclisation-induced [3,3]-rearrangement catalysed by a planar chiral pentaphenylferrocene palladacycle in cooperation with a tertiary amine base. The otherwise often indispensable activation of palladacycle catalysts by a silver salt is not required in the present case and there is also no need for an inert gas atmosphere. To further improve the synthetic value, the rearrangement was used to form dimethylaminosulfonyl-protected allylic amines, which can be deprotected under non-reductive conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Beyond alkyl transfer: Synthesis of main group metal (Mg, Ca, Zn) silyl and tris(oxazolinyl)borato complexes and their stoichiometric and catalytic reactions with borane Lewis acids and carbonyls

    Energy Technology Data Exchange (ETDEWEB)

    Lampland, Nicole Lynn [Iowa State Univ., Ames, IA (United States)

    2015-05-09

    Recently, the fundamental knowledge of main group metal chemistry has grown. This progress is crucial for the further development of main group metal compounds in silicon chemistry and catalysis and for advancing their applications as green alternatives to many rare earth and transition metal compounds. This thesis focuses on reactivity beyond the welldocumented alkyl-transfer applications for main group metals, and it highlights examples of reactions with Lewis acids and the reduction of carbonyls.

  16. Iron(III)-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    Saá, Carlos

    2016-09-05

    Recent developments in catalytic carbonyl-olefin metathesis are summarized in this Highlight. Schindler and co-workers have reported that the environmentally benign FeCl3 catalyst promotes ring-closing carbonyl-olefin metathesis (RCCOM) in high yield under very mild conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu

    2013-05-17

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  18. [bmim][Br] as a solvent and activator for the Ga-mediated Barbier allylation: direct formation of an N-heterocyclic carbene from Ga metal.

    Science.gov (United States)

    Goswami, Dibakar; Chattopadhyay, Angshuman; Sharma, Anubha; Chattopadhyay, Subrata

    2012-12-21

    The room-temperature ionic liquid (RTIL) [bmim][Br] has been found to be an excellent green and inexpensive medium for the Ga-mediated allylation of aromatic and aliphatic aldehydes and ketones. The RTIL activated the metal via formation of a Ga-N-heterocyclic carbene complex that assisted in the completion of the reaction at ambient temperature with only 0.5 equiv of Ga and 1.2 equiv of allyl bromide with respect to the carbonyl substrates. The present protocol required a much shorter time than those reported in the literature using other metals and solvents and proceeded with good yields and excellent selectivity.

  19. Selective Oxidative Carbonylation of Aniline to Diphenylurea with Ionic Liquids

    DEFF Research Database (Denmark)

    Zahrtmann, Nanette; Claver, Carmen; Godard, Cyril

    2018-01-01

    A catalytic system for the selective oxidative carbonylation of aniline to diphenylurea based on Pd complexes in combination with imidazolium ionic liquids is presented. Both oxidants, Pd complexes and ionic liquids affect the activity of the reaction while the choice of oxidant determines...

  20. Allyl functionalized phosphinite and phosphonite ligands: Synthesis ...

    Indian Academy of Sciences (India)

    Allyl functionalized phosphinite and phosphonite ligands: Synthesis, transition metal chemistry and orthopalladation reactions. SINGAPPAGUDEM GOVINDARAJUa, GUDDEKOPPA S ANANTHNAGa, SUSMITA NAIKa,. SHAIKH M MOBINb and MARAVANJI S BALAKRISHNAa,∗. aPhosphorus Laboratory, Department of ...

  1. FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    Ma, Lina; Li, Wenjuan; Xi, Hui; Bai, Xiaohui; Ma, Enlu; Yan, Xiaoyu; Li, Zhiping

    2016-08-22

    Exploiting catalytic carbonyl-olefin metathesis is an ongoing challenge in organic synthesis. Reported herein is an FeCl3 -catalyzed ring-closing carbonyl-olefin metathesis. The protocol allows access to a range of carbo-/heterocyclic alkenes with good efficiency and excellent trans diastereoselectivity. The methodology presents one of the rare examples of catalytic ring-closing carbonyl-olefin metathesis. This process is proposed to take place by FeCl3 -catalyzed oxetane formation followed by retro-ring-opening to deliver metathesis products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reciprocal carbonyl-carbonyl interactions in small molecules and proteins.

    Science.gov (United States)

    Rahim, Abdur; Saha, Pinaki; Jha, Kunal Kumar; Sukumar, Nagamani; Sarma, Bani Kanta

    2017-07-19

    Carbonyl-carbonyl n→π* interactions where a lone pair (n) of the oxygen atom of a carbonyl group is delocalized over the π* orbital of a nearby carbonyl group have attracted a lot of attention in recent years due to their ability to affect the 3D structure of small molecules, polyesters, peptides, and proteins. In this paper, we report the discovery of a "reciprocal" carbonyl-carbonyl interaction with substantial back and forth n→π* and π→π* electron delocalization between neighboring carbonyl groups. We have carried out experimental studies, analyses of crystallographic databases and theoretical calculations to show the presence of this interaction in both small molecules and proteins. In proteins, these interactions are primarily found in polyproline II (PPII) helices. As PPII are the most abundant secondary structures in unfolded proteins, we propose that these local interactions may have implications in protein folding.Carbonyl-carbonyl π* non covalent interactions affect the structure and stability of small molecules and proteins. Here, the authors carry out experimental studies, analyses of crystallographic databases and theoretical calculations to describe an additional type of carbonyl-carbonyl interaction.

  3. Ruthenium(ii)-catalyzed olefination via carbonyl reductive cross-coupling.

    Science.gov (United States)

    Wei, Wei; Dai, Xi-Jie; Wang, Haining; Li, Chenchen; Yang, Xiaobo; Li, Chao-Jun

    2017-12-01

    Natural availability of carbonyl groups offers reductive carbonyl coupling tremendous synthetic potential for efficient olefin synthesis, yet the catalytic carbonyl cross-coupling remains largely elusive. We report herein such a reaction, mediated by hydrazine under ruthenium(ii) catalysis. This method enables facile and selective cross-couplings of two unsymmetrical carbonyl compounds in either an intermolecular or intramolecular fashion. Moreover, this chemistry accommodates a variety of substrates, proceeds under mild reaction conditions with good functional group tolerance, and generates stoichiometric benign byproducts. Importantly, the coexistence of KO t Bu and bidentate phosphine dmpe is vital to this transformation.

  4. Compound list: allyl alcohol [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available allyl alcohol AA 00010 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/allyl_alcohol....Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/allyl_alcohol...dbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/allyl_alcohol.Rat.in_vivo.Liver.Repeat.zip ftp:/.../ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/allyl_alcohol.Rat.in_vivo.Kidney....Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Repeat/allyl_alcohol.Rat.in_vivo.Kidney.Repeat.zip ...

  5. Tether-directed synthesis of highly substituted oxasilacycles via an intramolecular allylation employing allylsilanes

    Directory of Open Access Journals (Sweden)

    Cox Liam R

    2007-02-01

    Full Text Available Abstract Background Using a silyl tether to unite an aldehyde electrophile and allylsilane nucleophile into a single molecule allows a subsequent Lewis-acid-mediated allylation to proceed in an intramolecular sense and therefore receive all the benefits associated with such processes. However, with the ability to cleave the tether post allylation, a product that is the result of a net intermolecular reaction can be obtained. In the present study, four diastereoisomeric β-silyloxy-α-methyl aldehydes, which contain an allylsilane tethered through the β-carbinol centre, have been prepared, in order to probe how the relative configuration of the two stereogenic centres affects the efficiency and selectivity of the intramolecular allylation. Results Syn-aldehydes, syn-4a and syn-4b, both react poorly, affording all four possible diastereoisomeric oxasilacycle products. In contrast, the anti aldehydes anti-4a and anti-4b react analogously to substrates that lack substitution at the α-site, affording only two of the four possible allylation products. Conclusion The outcome of the reaction with anti-aldehydes is in accord with reaction proceeding through a chair-like transition state (T.S.. In these systems, the sense of 1,3-stereoinduction can be rationalised by the aldehyde electrophile adopting a pseudoaxial orientation, which will minimise dipole-dipole interactions in the T.S. The 1,4-stereoinduction in these substrates is modest and seems to be modulated by the R substituent in the starting material. In the case of the syn-substrates, cyclisation through a chair T.S. is unlikely as this would require the methyl substituent α to the reacting carbonyl group to adopt an unfavourable pseudoaxial position. It is therefore proposed that these substrates react through poorly-defined T.S.s and consequently exhibit essentially no stereoselectivity.

  6. Two-dimensional NMR studies of allyl palladium complexes of ...

    Indian Academy of Sciences (India)

    Administrator

    h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.

  7. Palladium-Catalyzed Asymmetric Allylic Allylation of Racemic Morita-Baylis-Hillman Adducts.

    Science.gov (United States)

    Wang, Xubin; Wang, Xiaoming; Han, Zhaobin; Wang, Zheng; Ding, Kuiling

    2017-01-19

    A palladium-catalyzed asymmetric allyl-allyl cross-coupling of acetates of racemic Morita-Baylis-Hillman adducts and allylB(pin) has been developed using a spiroketal-based bis(phosphine) as the chiral ligand, thus affording a series of chiral 1,5-dienes bearing a vinylic ester functionality in good yields, high branched regioselectivities, and uniformly excellent enantioselectivities (95-99 % ee). Further synthetic manipulations of the allylation products provided novel ways for rapid access to a range of chiral polycyclic lactones and polycyclic lactams, as well as the antidepressant drug (-)-Paroxetine, in high optical purities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Validation of protein carbonyl measurement

    DEFF Research Database (Denmark)

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna

    2015-01-01

    protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5min of UV irradiation irrespective of method used. After irradiation for 15min, less oxidation was detected by half of the laboratories than after 5min...

  9. Dynamic kinetic resolution of allylic sulfoxides by Rh-catalyzed hydrogenation: a combined theoretical and experimental mechanistic study.

    Science.gov (United States)

    Dornan, Peter K; Kou, Kevin G M; Houk, K N; Dong, Vy M

    2014-01-08

    A dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation. Scrambling experiments and theoretical modeling support a novel mode of sulfoxide racemization which occurs via a rhodium π-allyl intermediate in polar solvents. In nonpolar solvents, however, the substrate racemization is primarily uncatalyzed. Computational studies suggest that the sulfoxide binds to rhodium via O-coordination throughout the catalytic cycle for hydrogenation.

  10. Palladium Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Fristrup, Peter

    2011-01-01

    an acetate ion coordinated to Pd. Several of the reported systems rely on benzoquinone for re-oxidation of the active catalyst. The scope for nucleophilic addition in allylic C-H alkylation is currently limited, due to demands on pKa of the nucleophile. This limitation could be due to the pH dependence...

  11. Iron(III)-catalysed carbonyl-olefin metathesis

    Science.gov (United States)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  12. Synthesis and catalytic properties of ferrocenophane phosphines

    OpenAIRE

    Škoch, Karel

    2014-01-01

    6 Title: Sythesis and catalytic properties of ferrocenophane phosphines Author: Karel Škoch Institution: Faculty of Science, Charles University in Prague, Department of Inorganic Chemistry Supervisor: prof. RNDr. Petr Štěpnička, Ph.D. Keywords: ferrocene, ferrocenophane, phosphine ligands, palladium, asymetric catalysis, aza- Morita-Baylis-Hillman reaction, asymetric allylic alkylation Abstract: This Thesis describes the preparation of five sterically and electronically different ferrocene ph...

  13. Catalytic Organometallic Reactions of Ammonia

    Science.gov (United States)

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  14. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    Science.gov (United States)

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-04

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.

  15. Enantioselective 1,2-Difunctionalization of 1,3-Butadiene by Sequential Alkylation and Carbonyl Allylation.

    Science.gov (United States)

    Xiong, Yang; Zhang, Guozhu

    2018-02-28

    A highly enantioselective three-component coupling of 1,3-butadiene with a variety of fluorinated or nonfluorinated alkyl halides and aldehydes has been achieved relying on a Cr/Co bimetallic catalysis system. The strategy established here facilitates straightforward introduction of the privileged fluoro functionalities into homoallylic alcohols from bulk feedstock materials in a highly anti-diastereo and enantioselective manner.

  16. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  17. SYNTHESIS OF ALLYL PHENYL ETHER AND CLAISEN REARRANGEMENT

    Directory of Open Access Journals (Sweden)

    Gagik Torosyan

    2011-12-01

    Full Text Available It has been established the possibility for phenol allylation on natural zeolites and them analogs. Here is demonstrated the synthesis of allyl phenol, which has wide industrial applications. The offered method in comparison with the traditional methods has more advantages – higher selectivity, smaller material and power resources consumption. It has been obtained the mixture of allylating phenols (30% in general with allyl phenyl ether (1 with 80% yields. At 600 K is obtained allylphenyl ether, at 700 K beginning the formation of allyl phenols, which is the result of direct C-allylation of the aromatic ring. It has been investigated the possibility of Claisen rearrangement in the same conditions. All of that are established by gas-liquid chromatography and liquid chromatography data.

  18. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  19. Mechanistic Investigation of Palladium–Catalyzed Allylic C–H Activation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Jensen, Thomas; Rodríguez-Rodríguez, Sergio

    2013-01-01

    The mechanism for the palladium–catalyzed allylic C–H activation was investigated using a combination of experimental and theoretical methods. A Hammett study revealed a buildup of a partial negative charge in the rate-determining step, while determination of the kinetic isotope effect (KIE......) indicated that the C–H bond is broken in the turnover-limiting transition state. The-se experimental findings were further substantiated by carrying out a detailed density functional theory (DFT) based investigation of the entire catalytic cycle. The DFT modeling supports a mechanism where a coordinated...... acetate acts as a base in an intramolecular fashion during the C–H activation step. The re-oxidation of palladium was found to reach a similar energy level as that of the C–H activation. Calculations of turnover frequencies (TOF) for the entire catalytic cycle for the C–H alkylation were used to acquire...

  20. Radiation and thermal polymerization of allyl(p-allylcarbonate) benzoate

    International Nuclear Information System (INIS)

    Lopez-V, D.; Herrera-G, A.M.; Castillo-Rojas, S.

    2011-01-01

    Bulk polymerization of novel allyl(p-allylcarbonate) benzoate was investigated using different sources of energy, such as gamma rays, ultraviolet rays as well as thermal polymerization. The poly(allyl(p-allylcarbonate) benzoate) obtained is a cross-linking, transparent, thermoset polycarbonate. Compositions of the monomer and the polycarbonate were analyzed by infrared spectroscopy, elemental analysis, and 1 H NMR spectroscopy.

  1. Allyl borates: a novel class of polyhomologation initiators

    KAUST Repository

    Wang, De

    2016-12-24

    Allyl borates, a new class of monofunctional polyhomologation initiators, are reported. These monofunctional initiators are less sensitive and more effective towards polymethylene-based architectures. As an example, the synthesis of α-vinyl-ω-hydroxypolymethylenes is given. By designing/synthesizing different allylic borate initiators, and using 1H and 11B NMR spectroscopy, the initiation mechanism was elucidated.

  2. Reactivity of (η3-allyl)dicarbonylnitrosyl iron complexes with ...

    African Journals Online (AJOL)

    The introduction of variable substituents exhibited diverse reactivities. Generally, it was observed that the reactivity decreased by increasing the size of substituentin (η3-allyl)dicarbonylnitrosyl iron complexes (1–9). Strong impact on the reactivity was observed due to substitution pattern of the allyl moiety. A considerable ...

  3. Metal Carbonyl-Hydrosilane Reactions and Hydrosilation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, A. R.

    2001-04-14

    Manganese carbonyl complexes serve as hydrosilation precatalysts for selectively transforming a carbonyl group into a siloxy methylene or a fully reduced methylene group. Substrates of interest include (1) aldehydes, ketones, carboxylic acids, silyl esters, and esters, and (2) their organometallic acyl counterparts. Three relevant catalytic reactions are shown. Two types of manganese precatalysts have been reported: (a) alkyl and acyl complexes (L)(C0){sub 4}MnR [L = CO, PPh{sub 3}; R = COCH{sub 3}, COPh, CH{sub 3}] and (b) halides (CO){sub 5}MnX and [(CO){sub 4}MnX]{sub 2} (X = Br, I). The former promote hydrosilation and deoxygenation catalysis; the latter promote dehydrogenative silation of alcohols and carboxylic acids as well as hydrosilation and deoxygenation of some metallocarboxylic acid derivatives. In every case studied, these Mn precatalysts are far more reactive or selective than traditional Rh(I) precatalysts.

  4. Enantioselective α-Arylation of Carbonyls via Cu(I)-Bisoxazoline Catalysis

    Science.gov (United States)

    Harvey, James S.; Simonovich, Scott P.; Jamison, Christopher R.; MacMillan, David W. C.

    2011-01-01

    The enantioselective α-arylation of both lactones and acyl oxazolidones has been accomplished using a combination of diaryliodonium salts and copper catalysis. These mild catalytic conditions provide a new strategy for the enantioselective construction and retention of enolizable α-carbonyl benzylic stereocenters, a valuable synthon for the production of medicinal agents. PMID:21848265

  5. Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO3, –MnO2, and –Mn2O3 Nanocomposites for Aerial Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Mohamed E. Assal

    2017-01-01

    Full Text Available Zinc oxide nanoparticles doped manganese carbonate catalysts [X% ZnOx–MnCO3] (where X = 0–7 were prepared via a facile and straightforward coprecipitation procedure, which upon different calcination treatments yields different manganese oxides, that is, [X% ZnOx–MnO2] and [X% ZnOx–Mn2O3]. A comparative catalytic study was conducted to evaluate the catalytic efficiency between carbonates and oxides for the selective oxidation of secondary alcohols to corresponding ketones using molecular oxygen as a green oxidizing agent without using any additives or bases. The prepared catalysts were characterized by different techniques such as SEM, EDX, XRD, TEM, TGA, BET, and FTIR spectroscopy. The 1% ZnOx–MnCO3 calcined at 300°C exhibited the best catalytic performance and possessed highest surface area, suggesting that the calcination temperature and surface area play a significant role in the alcohol oxidation. The 1% ZnOx–MnCO3 catalyst exhibited superior catalytic performance and selectivity in the aerial oxidation of 1-phenylethanol, where 100% alcohol conversion and more than 99% product selectivity were obtained in only 5 min with superior specific activity (48 mmol·g−1·h−1 and 390.6 turnover frequency (TOF. The specific activity obtained is the highest so far (to the best of our knowledge compared to the catalysts already reported in the literatures used for the oxidation of 1-phenylethanol. It was found that ZnOx nanoparticles play an essential role in enhancing the catalytic efficiency for the selective oxidation of alcohols. The scope of the oxidation process is extended to different types of alcohols. A variety of primary, benzylic, aliphatic, allylic, and heteroaromatic alcohols were selectively oxidized into their corresponding carbonyls with 100% convertibility without overoxidation to the carboxylic acids under base-free conditions.

  6. A green synthesis of α,β-unsaturated carbonyl compounds from glyceraldehyde acetonide

    Directory of Open Access Journals (Sweden)

    Cláudia O. Veloso

    2011-01-01

    Full Text Available The catalytic behavior of Cs-exchanged and Cs-impregnated zeolites (X and Y was studied using the Knoevenagel condensation between glyceraldehyde acetonide and ethyl acetoacetate in order to produce the corresponding α,β-unsaturated carbonyl compound that is an important intermediate for fine chemicals. The influence of reaction temperature, type of zeolite, and basicity of the sites on the catalytic behavior of the samples was evaluated. All zeolites were active for the studied reaction. The formation of the main condensation product was favored at lower reaction temperatures. Products of further condensations were also observed especially for samples that were only dried before catalytic test.

  7. Direct, Intermolecular, Enantioselective, Iridium-Catalyzed Allylation of Carbamates to Form Carbamate-Protected, Branched Allylic Amines

    Science.gov (United States)

    Weix, Daniel J.; Marković, Dean; Ueda, Mitsuhiro; Hartwig, John F.

    2009-01-01

    The direct reaction between carbamates and achiral allylic carbonates to form branched, conveniently protected primary allylic amines with high regioselectivity and enantioselectivity is reported. This process occurs without base or with 0.5 equiv K3PO4 in the presence of a metalacyclic iridium catalyst containing a labile ethylene ligand. The reactions of aryl, heteroaryl and alkyl-substituted allylic carbonates with BocNH2, FmocNH2, CbzNH2, TrocNH2, TeocNH2, and 2-oxazolidinone occur in good yields, with high selectivity for the branched isomer, and high enantioselectivities (98% average ee). PMID:19552468

  8. The zeolite mediated isomerization of allyl phenyl ether

    Science.gov (United States)

    Pebriana, R.; Mujahidin, D.; Syah, Y. M.

    2017-04-01

    Allyl phenyl ether is an important starting material in organic synthesis that has several applications in agrochemical industry. The green transformation of allyl phenyl ether assisted by heterogeneous catalyst is an attractive topic for an industrial process. In this report, we investigated the isomerization of allyl phenyl ether by heating it in zeolite H-ZSM-5 and Na-ZSM-5. The conversion of allyl phenyl ether (neat) in H-ZSM-5 was 67% which produced 40% of 2-allylphenol, 17% of 2-methyldihydrobenzofuran, and other product (4:1.7:1), while in Na-ZSM-5 produced exclusively 2-allylphenol with 52% conversion. These results showed that zeolite properties can be tuned to give a selective transformation by substitution of metal ion into the zeolite interior.

  9. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    African Journals Online (AJOL)

    tetrabromobenzene- 1,3-disulphonamide (TBBDA) can be used for solvent-free oxidation of primary and secondary alcohols to the corresponding carbonyl compounds without over-oxidation, and efficient catalytic deprotection of various silyl ...

  10. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    African Journals Online (AJOL)

    NJD

    tetrabromobenzene-1,3-disulphonamide. (TBBDA) can be used for solvent-free oxidation of primary and secondary alcohols to the corresponding carbonyl compounds without over-oxidation, and efficient catalytic deprotection of various silyl ...

  11. Asymmetric allylation, crotylation, and cinnamylation of N-heteroaryl hydrazones.

    Science.gov (United States)

    Feske, Miriam Inbar; Santanilla, Alexander Buitrago; Leighton, James L

    2010-02-19

    A new class of N-heteroaryl hydrazones has been developed as an alternative to N-acylhydrazones and 2-aminophenol-derived imines in asymmetric allylation, crotylation, and cinnamylation reactions with chiral allylchlorosilanes. The hydrazones are readily and inexpensively prepared, perform well in the allylation chemistry, and more importantly, the product hydrazides may be smoothly reduced by Pd(OH)(2)-catalyzed hydrogenation to reveal the corresponding amine products.

  12. Zinc Mediated Tandem Fragmentation-Allylation of Methyl 5-Iodopentofuranosides

    DEFF Research Database (Denmark)

    Hyldtoft, Lene; Madsen, Robert

    1999-01-01

    In the presence of zinc and allyl bromide methyl 5-iodopentofuranosides undergo a tandem fragmentation alkylation to give functionalized dienes. These can undergo ring-closing olefin metathesis to produce cyclohexenes which on dihydroxylation give quercitols.......In the presence of zinc and allyl bromide methyl 5-iodopentofuranosides undergo a tandem fragmentation alkylation to give functionalized dienes. These can undergo ring-closing olefin metathesis to produce cyclohexenes which on dihydroxylation give quercitols....

  13. General Allylic C–H Alkylation with Tertiary Nucleophiles

    Science.gov (United States)

    2015-01-01

    A general method for intermolecular allylic C–H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C–H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C–H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C–H reactivity are illustrated in an allylic C–H alkylation/Diels–Alder reaction cascade: a reactive diene is generated via intermolecular allylic C–H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids. PMID:24641574

  14. General allylic C-H alkylation with tertiary nucleophiles.

    Science.gov (United States)

    Howell, Jennifer M; Liu, Wei; Young, Andrew J; White, M Christina

    2014-04-16

    A general method for intermolecular allylic C-H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C-H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C-H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C-H reactivity are illustrated in an allylic C-H alkylation/Diels-Alder reaction cascade: a reactive diene is generated via intermolecular allylic C-H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids.

  15. Polycyclic Aromatic Hydrocarbons via Iron(III)-Catalyzed Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    McAtee, Christopher C; Riehl, Paul S; Schindler, Corinna S

    2017-03-01

    Polycyclic aromatic hydrocarbons are important structural motifs in organic chemistry, pharmaceutical chemistry, and materials science. The development of a new synthetic strategy toward these compounds is described based on the design principle of iron(III)-catalyzed carbonyl-olefin metathesis reactions. This approach is characterized by its operational simplicity, high functional group compatibility, and regioselectivity while relying on FeCl 3 as an environmentally benign, earth-abundant metal catalyst. Experimental evidence for oxetanes as reactive intermediates in the catalytic carbonyl-olefin ring-closing metathesis has been obtained.

  16. Molecular Mechanics and Quantum Chemistry Based Study of Nickel-N-Allyl Urea and N-Allyl Thiourea Complexes

    Directory of Open Access Journals (Sweden)

    P. D. Sharma

    2009-01-01

    Full Text Available Eigenvalue, eigenvector and overlap matrix of nickel halide complex of N-allyl urea and N-allyl thiourea have been evaluated. Our results indicate that ligand field parameters (Dq, B’ and β evaluated earlier by electronic spectra are very close to values evaluated with the help of eigenvalues and eigenvectors. Eigenvector analysis and population analysis shows that in bonding 4s, 4p, and 3dx2-y2, 3dyz orbitals of nickel are involved but the coefficient values differ in different complexes. Out of 4px, 4py, 4pz the involvement of either 4pz or 4py, is noticeable. The theoretically evaluated positions of infrared bands indicate that N-allyl urea is coordinated to nickel through its oxygen and N-allyl thiourea is coordinated to nickel through its sulphur which is in conformity with the experimental results.

  17. Decarboxylative-coupling of allyl acetate catalyzed by group 10 organometallics, [(phen)M(CH3)]+.

    Science.gov (United States)

    Woolley, Matthew; Ariafard, Alireza; Khairallah, George N; Kwan, Kim Hong-Yin; Donnelly, Paul S; White, Jonathan M; Canty, Allan J; Yates, Brian F; O'Hair, Richard A J

    2014-12-19

    Gas-phase carbon-carbon bond forming reactions, catalyzed by group 10 metal acetate cations [(phen)M(O2CCH3)](+) (where M = Ni, Pd or Pt) formed via electrospray ionization of metal acetate complexes [(phen)M(O2CCH3)2], were examined using an ion trap mass spectrometer and density functional theory (DFT) calculations. In step 1 of the catalytic cycle, collision induced dissociation (CID) of [(phen)M(O2CCH3)](+) yields the organometallic complex, [(phen)M(CH3)](+), via decarboxylation. [(phen)M(CH3)](+) reacts with allyl acetate via three competing reactions, with reactivity orders (% reaction efficiencies) established via kinetic modeling. In step 2a, allylic alkylation occurs to give 1-butene and reform metal acetate, [(phen)M(O2CCH3)](+), with Ni (36%) > Pd (28%) > Pt (2%). Adduct formation, [(phen)M(C6H11O2)](+), occurs with Pt (24%) > Pd (21%) > Ni(11%). The major losses upon CID on the adduct, [(phen)M(C6H11O2)](+), are 1-butene for M = Ni and Pd and methane for Pt. Loss of methane only occurs for Pt (10%) to give [(phen)Pt(C5H7O2)](+). The sequences of steps 1 and 2a close a catalytic cycle for decarboxylative carbon-carbon bond coupling. DFT calculations suggest that carbon-carbon bond formation occurs via alkene insertion as the initial step for all three metals, without involving higher oxidation states for the metal centers.

  18. Transition metal catalyzed carbonylation reactions carbonylative activation of C-X bonds

    CERN Document Server

    Beller, Matthias

    2014-01-01

    This book provides students and researchers in organic synthesis with a detailed discussion of carbonylation from the basics through to applications. It discusses the past, present and future of carbonylation reactions.

  19. Facile Preparation of (2Z,4E)-Dienamides by the Olefination of Electron-deficient Alkenes with Allyl Acetate.

    Science.gov (United States)

    Ding, Liyuan; Yu, Chunbing; Zhao, Zhenqiang; Li, Feifei; Zhang, Jian; Zhong, Guofu

    2017-06-21

    Direct cross-coupling between two alkenes via vinylic C-H bond activation represents an efficient strategy for the synthesis of butadienes with high atomic and step economy. However, this functionality-directed cross-coupling reaction has not been developed, as there are still limited directing groups in practical use. In particular, a stoichiometric amount of oxidant is usually required, producing a large amount of waste. Due to our interest in novel 1,3-butadiene synthesis, we describe the ruthenium-catalyzed olefination of electron-deficient alkenes using allyl acetate and without external oxidant. The reaction of 2-phenyl acrylamide and allyl acetate was chosen as a model reaction, and the desired diene product was obtained in 80% isolated yield with good stereoselectivity (Z,E/Z,Z = 88:12) under optimal conditions: [Ru(p-cymene) Cl2]2 (3 mol %) and AgSbF6 (20 mol %) in DCE at 110 ºC for 16 h. With the optimized catalytic conditions in hand, representative α- and/or β-substituted acrylamides were investigated, and all reacted smoothly, regardless of aliphatic or aromatic groups. Also, differently N-substituted acrylamides have proven to be good substrates. Moreover, we examined the reactivity of different allyl derivatives, suggesting that the chelation of acetate oxygen to the metal is crucial for the catalytic process. Deuterium-labeled experiments were also conducted to investigate the reaction mechanism. Only Z-selective H/D exchanges on acrylamide were observed, indicating a reversible cyclometalation event. In addition, a kinetic isotope effect (KIE) of 3.2 was observed in the intermolecular isotopic study, suggesting that the olefinic C-H metalation step is probably involved in the rate-determining step.

  20. Hydrocarbon conversion with an attenuated superactive multimetallic catalytic composite

    International Nuclear Information System (INIS)

    Antos, G.J.

    1981-01-01

    Hydrocarbons are converted by contacting them at hydrocarbon conversion conditions with a novel attenuated superactive multimetallic catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component, and of an iron component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, iron component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.005 to about 4 wt. % iron and about 0.1 to about 5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of an iron component and of a platinum group component maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (i.e., platinum-seeking) propensities of the carbon monoxide ligands associated with the rhenium reagent. A specific example of the type of hydrocarbon conversion process disclosed herein is a process for the catalytic reforming of a low octane gasoline fraction wherein the gasoline fraction and a hydrogen stream are contacted with the attenuated superactive multimetallic catalytic composite at reforming conditions

  1. Water promoted allylic nucleophilic substitution reactions of (E)-1,3 diphenylallyl acetate

    KAUST Repository

    Ghorpade, Seema Arun

    2017-11-30

    Transition metal free, water based, greener protocol for allylic alkylation, allylic amination, O-allylation of (E)-1,3-diphenylallyl acetate is described. The developed methodology is applicable for a wide range of nucleophiles furnishing excellent yields of corresponding products up to 87% under mild reaction conditions. A Distinct effect of water and base is explored for allylic nucleophilic substitution reactions of (E)-1,3-diphenylallyl acetate.

  2. Iodine-catalyzed addition of 2-mercaptoethanol to chalcone derivatives: Synthesis of the novel β-mercapto carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Gürkan Yerli

    2012-01-01

    Full Text Available In this study, a series of novel β-mercapto carbonyl derivatives (3-(2-hydroxyethylthio-1,3-diarylpropan-1-one (5a-i were prepared by addition of 2-mercaptoethanol (4 to chalcones (3a-i in the presence of catalytic amount of iodine (10 mol % in CH 2Cl 2.

  3. Convenient Reduction of Carbonyl Compounds to their ...

    African Journals Online (AJOL)

    Sodium borohydride (0.4–1.5 equivalents) in the presence of ammonium oxalate (0.2 equivalents) reduces varieties of organic carbonyl compounds such as aldehydes, ketones, acyloins, α-diketones and α,β-unsaturated carbonyl compounds to their corresponding alcohols. Reduction reactions were carried out in ...

  4. Contribution to radiation-chemically catalyzed hydroformylation of butenes in the presence of metal carbonyls

    International Nuclear Information System (INIS)

    Joosten, L.

    1976-01-01

    In this paper a study is presented of the influence of gamma-radiation on the catalytic hydroformylation of olefines. As model olefines buten-1 and buten-2 as well as their mixtures have been used together with the catalysts di-cobalt octacarbonyle and rhodium (I) tristri phenyl-phosphine carbonyle hydride. In addition the catalytic activity of the VI. side group carbonyles Cr(CO) 6 , Mo(CO) 6 and W(CO) 6 has been studied under radiation chemical conditions. For this purpose a mixture of olefine, solvent (cyclo hexane) and calalyst has been pressurized and processed in a mixing autoklave together with a Co and H 2 (1:1) mixture, variing the reaction variables within certain limits. (orig.) [de

  5. Urinary excretion of N-acetyl-S-allyl-L-cystein upon garlic consumption by human volunteers.

    NARCIS (Netherlands)

    de Rooij, B.M.; Boogaard, P.J.; Rijksen, D.A.; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1996-01-01

    N-Acetyl-S-allyl-L-cysteine (allylmercapturic acid, ALMA) was previously detected in urine from humans consuming garlic. Exposure of rats to allyl halides is also known to lead to excretion of ALMA in urine. ALMA is a potential biomarker for exposure assessment of workers exposed to allyl halides.

  6. Rapid synthesis of polyprenylated acylphloroglucinol analogs via dearomative conjunctive allylic annulation.

    Science.gov (United States)

    Grenning, Alexander J; Boyce, Jonathan H; Porco, John A

    2014-08-20

    Polyprenylated acylphloroglucinols (PPAPs) are structurally complex natural products with promising biological activities. Herein, we present a biosynthesis-inspired, diversity-oriented synthesis approach for rapid construction of PPAP analogs via double decarboxylative allylation (DcA) of acylphloroglucinol scaffolds to access allyl-desoxyhumulones followed by dearomative conjunctive allylic alkylation (DCAA).

  7. Redox-Neutral Rh(III)-Catalyzed Olefination of Carboxamides with Trifluoromethyl Allylic Carbonate.

    Science.gov (United States)

    Park, Jihye; Han, Sangil; Jeon, Mijin; Mishra, Neeraj Kumar; Lee, Seok-Yong; Lee, Jong Suk; Kwak, Jong Hwan; Um, Sung Hee; Kim, In Su

    2016-11-18

    The rhodium(III)-catalyzed olefination of various carboxamides with α-CF 3 -substituted allylic carbonate is described. This reaction provides direct access to linear CF 3 -allyl frameworks with complete trans-selectivity. In particular, a rhodium catalyst provided Heck-type γ-CF 3 -allylation products via the β-O-elimination of rhodacycle intermediate and subsequent olefin migration process.

  8. A convenient procedure for the synthesis of allyl and benzyl ethers ...

    Indian Academy of Sciences (India)

    Unknown

    Allyl and benzyl groups are commonly employed for the protection of alcohol and phenol moieties for ease of synthesis and convenient deprotection. Allyl and benzyl ethers are also intermediates in sigmatropic rearrangement reactions such as the Claisen and the. Cope rearrangements. Allyl ethers can be prepared from ...

  9. An Efficient Protocol for the Palladium-catalyzed Asymmetric Decarboxylative Allylic Alkylation Using Low Palladium Concentrations and a Palladium(II) Precatalyst.

    Science.gov (United States)

    Marziale, Alexander N; Duquette, Douglas C; Craig, Robert A; Kim, Kelly E; Liniger, Marc; Numajiri, Yoshitaka; Stoltz, Brian M

    2015-07-06

    Enantioselective catalytic allylic alkylation for the synthesis of 2-alkyl-2-allylcycloalkanones and 3,3-disubstituted pyrrolidinones, piperidinones and piperazinones has been previously reported by our laboratory. The efficient construction of chiral all-carbon quaternary centers by allylic alkylation was previously achieved with a catalyst derived in situ from zero valent palladium sources and chiral phosphinooxazoline (PHOX) ligands. We now report an improved reaction protocol with broad applicability among different substrate classes in industry-compatible reaction media using loadings of palladium(II) acetate as low as 0.075 mol % and the readily available chiral PHOX ligands. The novel and highly efficient procedure enables facile scale-up of the reaction in an economical and sustainable fashion.

  10. Palladium-catalyzed asymmetric allylic substitution of 2-arylcyclohexenol derivatives: asymmetric total syntheses of (+)-crinamine, (-)-haemanthidine, and (+)-pretazettine.

    Science.gov (United States)

    Nishimata, Toyoki; Sato, Yoshihiro; Mori, Miwako

    2004-03-19

    Much interest has been shown in Amaryllidaceae alkaloids as synthetic targets due to their wide range of biological activities. Over 100 alkaloids have been isolated from members of the Amaryllidaceae family; most of them can be classified into eight skeletally homogeneous groups. We have succeeded in the first asymmetric total syntheses of the crinane-type alkaloids (+)-crinamine (1), (-)-haemanthidine (2), and (+)-pretazettine (3). The starting cyclohexenylamine 14 was obtained from allyl phosphonate 11c by palladium-catalyzed asymmetric amination in 82% yield and with 74% ee. The product was recrystallized from MeOH. Interestingly, (-)-14 with 99% ee was obtained from the mother liquor (74% recovery). Intramolecular carbonyl-ene reaction of (-)-10 proceeds in a highly stereoselective manner to give hexahydroindole derivative 9 as the sole product. In the Lewis-acid-catalyzed carbonyl-ene reaction, an interesting rearrangement product, 20, was isolated in high yield. From 9, (+)-crinamine was synthesized. Thus, the asymmetric total synthesis of (+)-crinamine was achieved in 10 steps from 11c, and the overall yield is 19%. The total synthesis of (-)-haemanthidine was also achieved from 9 by a short sequence of steps.

  11. Ruthenium(ii)-catalyzed olefination via carbonyl reductive cross-coupling† †Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c7sc04207h

    Science.gov (United States)

    Wei, Wei; Dai, Xi-Jie; Wang, Haining; Li, Chenchen; Yang, Xiaobo

    2017-01-01

    Natural availability of carbonyl groups offers reductive carbonyl coupling tremendous synthetic potential for efficient olefin synthesis, yet the catalytic carbonyl cross-coupling remains largely elusive. We report herein such a reaction, mediated by hydrazine under ruthenium(ii) catalysis. This method enables facile and selective cross-couplings of two unsymmetrical carbonyl compounds in either an intermolecular or intramolecular fashion. Moreover, this chemistry accommodates a variety of substrates, proceeds under mild reaction conditions with good functional group tolerance, and generates stoichiometric benign byproducts. Importantly, the coexistence of KOtBu and bidentate phosphine dmpe is vital to this transformation. PMID:29568466

  12. Redox non-innocence permits catalytic nitrene carbonylation by (dadi)Ti 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 NAd (Ad = adamantyl)† †Electronic supplementary information (ESI) available. CCDC 1522529–1522531. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc05610e Click here for additional data file. Click here for additional data file.

    Science.gov (United States)

    Heins, Spencer P.; MacMillan, Samantha N.

    2017-01-01

    Application of the diamide, diimine {–CHN(1,2-C6H4)N(2,6-iPr2-C6H3)}2 m ((dadi)m) ligand to titanium provided adducts (dadi)TiLx (1-Lx; Lx = THF, PMe2Ph, (CNMe)2), which possess the redox formulation [(dadi)4–]Ti(iv)Lx, and 22 πe– (4n + 2). Related complexes containing titanium-ligand multiple bonds, (dadi)TiX (2 X; X = O, NAd), exhibit a different dadi redox state, [(dadi)2–]Ti(iv)X, consistent with 20 πe– (4n). The Redox Non-Innocence (RNI) displayed by dadim impedes binding by CO, and permits catalytic conversion of AdN3 + CO to AdNCO + N2. Kinetics measurements support carbonylation of 2 NAd as the rate determining step. Structural and computational evidence for the observed RNI is provided. PMID:28507712

  13. A protic ionic liquid as an atom economical solution for palladium catalyzed asymmetric allylic alkylation.

    Science.gov (United States)

    Guerrero-Ríos, Itzel; Ortiz-Ramírez, Alfonso H; van Leeuwen, Piet W N M; Martin, Erika

    2018-03-12

    The asymmetric allylic alkylation of rac-1,3-diphenyl-3-acetoxyprop-1-ene (I) catalysed by palladium and diverse phosphorus containing ligands [(S)-BINAP, (R,R)-Chiraphite and (R,R)-Et-Duphos] in an ionic liquid [HDBU][OAc] was successfully performed, achieving full conversions and up to 96% ee of the (S)-product when (R,R)-Et-Duphos was used as a ligand. The reaction could be performed using an equimolar amount of substrate, malonate and base DBU, in which case the total products sum to the desired alkylated product and the ionic pair [HDBU][OAc]; this system thus produces its own IL solvent as the only co-product. These catalytic systems were active in recycling experiments for up to four cycles, albeit with a loss of activity due to the poor retention of palladium in the ionic liquid. The catalytic performance of each Pd/ligand system was optimized by varying the ratio of the substrate and malonate. Systems based on [HDBU][OAc] were found to be the best.

  14. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    Science.gov (United States)

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  15. REACTIVITY OF (η3-ALLYL)DICARBONYLNITROSYL IRON ...

    African Journals Online (AJOL)

    iron complexes to develop a green chemistry approach [7]. Catalysis based on such metal complexes have been recognized as powerful synthetic tool in organic synthesis. Roustan et al. reported the first Fe–catalyzed allylic substitution and observed good regioselectivity, where substitution preferentially occurred at the ...

  16. Investigation Of Total Phenolic, Total Flavonoid, Antioxidantand Allyl ...

    African Journals Online (AJOL)

    Background: This study was carried out to investigate the total polyphenol (TP), total flavonoid (TF), antioxidative effect and allyl isothyocyanate (ITC) content in different organs of wasabi plant grown in an organic system. Materials and Methods: Invitro study of methanol and boiled water extracts of wasabi were conducted ...

  17. Stereoselective Barbier-type allylation reaction of trifluoromethyl aldimines.

    Science.gov (United States)

    Legros, Julien; Meyer, Franck; Coliboeuf, Matthieu; Crousse, Benoît; Bonnet-Delpon, Danièle; Bégué, Jean-Pierre

    2003-08-08

    Trifluoromethyl aldimines could react, under Barbier conditions in the presence of activated zinc, in DMF at room temperature or in THF at reflux, with various allyl bromides to provide the corresponding homoallylamines. Secondary homoallyl trifluoromethylamines were stereoselectively obtained from the optically active aldimine 12 with an excellent diastereoisomeric excess (98%).

  18. 1-Allyl-5-chloroindoline-2,3-dione

    Directory of Open Access Journals (Sweden)

    Zineb Tribak

    2016-06-01

    Full Text Available In the title compound, C11H8ClNO2, the allyl side chain is almost perpendicular to the 5-chloroindoline-2,3-dione ring system, with a dihedral angle of 88.0 (3°. In the crystal, C—H...O interactions link the molecules into layers lying parallel to the bc plane.

  19. Improving selectivity in catalytic hydrodefluorination by limiting SNV reactivity.

    Science.gov (United States)

    Krüger, Juliane; Ehm, Christian; Lentz, Dieter

    2016-10-25

    Catalytic hydrodefluorination of perfluoroallylbenzene with Cp 2 TiH in THF is unselective and yields a variety of previously unknown compounds, predominantly activated in the allylic position. Several different mechanisms have been examined in detail using solvent corrected (THF) DFT(M06-2X) calculations for the archetypal perfluorinated olefin perfluoropropene and perfluoroallylbenzene: (a) single electron transfer, (b) hydrometallation/fluoride elimination, (c) σ-bond metathesis (allylic or vinylic), and (d) nucleophilic vinylic substitution (S N V, w/o Ti-F contacts in the TS). S N V is shown to be a competitive mechanism to hydrometallation and proceeds via ionic species from which F-elimination is facile and unselective leading to low selectivity in polar solvents. Subsequent experiments show that selectivity can be increased in a non-polar solvent.

  20. Protein Carbonylation and Adipocyte Mitochondrial Function*

    Science.gov (United States)

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  1. Protein carbonylation and adipocyte mitochondrial function.

    Science.gov (United States)

    Curtis, Jessica M; Hahn, Wendy S; Stone, Matthew D; Inda, Jacob J; Droullard, David J; Kuzmicic, Jovan P; Donoghue, Margaret A; Long, Eric K; Armien, Anibal G; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J; Bernlohr, David A

    2012-09-21

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte.

  2. Application of vanadium incorporated phosphomolybdate supported on the modified kaolinin synthesis of diphenyl carbonate by oxidative carbonylation with phenol

    Directory of Open Access Journals (Sweden)

    Peng Meng

    2017-01-01

    Full Text Available Keggin-type molybdophosphoric acid, molybdophosphoric salt and vanadium incorporated molybdophosphoric salt supported on the modified kaolin (MK were investigated as redox co-catalysts for the oxidative carbonylation of phenol to diphenyl carbonate (DPC in the absence of solvent. The 20 wt.% of MnAMPV5 (one kind of vanadium incorporated molybdophosphoric salt loaded on MK showed the highest catalytic activity with the yield of 24.68% and a TON of 306, while the selectivity amounts to nearly 100% in all the carbonylation reactions. The catalysts were characterized by XRD, BET, XPS and H2-TPR. The reusability study showed that the catalysts were stable and active.

  3. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy.

    Science.gov (United States)

    Negishi, Ei-ichi; Huang, Zhihong; Wang, Guangwei; Mohan, Swathi; Wang, Chao; Hattori, Hatsuhiko

    2008-11-18

    precursor to the desired alkene is readily available as an aldehyde, the carbonyl olefination is generally the more convenient of the two. This is a particularly important factor in many cases where the desired alkene contains an allylic asymmetric carbon center, since alpha-chiral aldehydes can be prepared by a variety of known asymmetric methods and readily converted to allylically chiral alkenes via carbonyl olefination. On the other hand, a homoallylically carbon-branched asymmetric center can be readily installed by either Pd-catalyzed isoalkyl-alkenyl coupling or Zr-catalyzed asymmetric carboalumination (ZACA reaction) of 1,4-dienes. In short, it takes all kinds to make alkenes, just as it takes all kinds to make the world.

  4. Mechanism of the Suzuki–Miyaura Cross-Coupling Reaction Mediated by [Pd(NHC)(allyl)Cl] Precatalysts

    KAUST Repository

    Meconi, Giulia Magi

    2017-05-24

    Density functional theory calculations have been used to investigate the activation mechanism for the precatalyst series [Pd]-X-1–4 derived from [Pd(IPr)(R-allyl)X] species by substitutions at the terminal position of the allyl moiety ([Pd] = Pd(IPr); R = H (1), Me (2), gem-Me2 (3), Ph (4), X = Cl, Br). Next, we have investigated the Suzuki–Miyaura cross-coupling reaction for the active catalyst species IPr-Pd(0) using 4-chlorotoluene and phenylboronic acid as substrates and isopropyl alcohol as a solvent. Our theoretical findings predict an upper barrier trend, corresponding to the activation mechanism for the [Pd]-Cl-1–4 series, in good agreement with the experiments. They indeed provide a quantitative explanation of the low yield (12%) displayed by [Pd]-Cl-1 species (ΔG⧧ ≈ 30.0 kcal/mol) and of the high yields (≈90%) observed in the case of [Pd]-Cl-2–4 complexes (ΔG⧧ ≈ 20.0 kcal/mol). Additionally, the studied Suzuki–Miyaura reaction involving the IPr-Pd(0) species is calculated to be thermodynamically favorable and kinetically facile. Similar investigations for the [Pd]-Br-1–4 series, derived from [Pd(IPr)(R-allyl)Br], indicate that the oxidative addition step for IPr-Pd(0)-mediated catalysis with 4-bromotoluene is kinetically more favored than that with 4-chlorotoluene. Finally, we have explored the potential of Ni-based complexes [Ni((IPr)(R-allyl)X] (X = Cl, Br) as Suzuki–Miyaura reaction catalysts. Apart from a less endergonic reaction energy profile for both precatalyst activation and catalytic cycle, a steep increase in the predicted upper energy barriers (by 2.0–15.0 kcal/mol) is calculated in the activation mechanism for the [Ni]-X-1–4 series compared to the [Pd]-X-1–4 series. Overall, these results suggest that Ni-based precatalysts are expected to be less active than the Pd-based precatalysts for the studied Suzuki–Miyaura reaction.

  5. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    Science.gov (United States)

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  6. Radiation initiated copolymerization of allyl alcohol with acrylonitrile

    International Nuclear Information System (INIS)

    Solpan, Dilek; Guven, Olgun

    1996-01-01

    Copolymerization of allyl alcohol (AA) with acrylonitrile (AN) initiated by γ-rays has been investigated to determine the respective reactivity ratios. Three different experimental techniques, namely Fourier Transform Infrared (FTIR), Ultraviolet (UV/vis) and elemental analysis (EA) have been used for the determination of copolymer compositions. Fineman-Ross (FR), Kelen-Tudos (KT), Non-Linear Least Square (NLLS) Analysis and Q-e methods have been applied to the three sets of experimental data. It has been concluded that data obtained from elemental analysis as applied to the Non-Linear Least Square approach gave the most reliable reactivity ratios as 2.09 and 0.40 for acrylonitrile and allyl alcohol, respectively. (Author)

  7. Catalytic devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Zhang, Xiang

    2018-01-23

    This disclosure provides systems, methods, and apparatus related to catalytic devices. In one aspect, a device includes a substrate, an electrically insulating layer disposed on the substrate, a layer of material disposed on the electrically insulating layer, and a catalyst disposed on the layer of material. The substrate comprises an electrically conductive material. The substrate and the layer of material are electrically coupled to one another and configured to have a voltage applied across them.

  8. Aqueous Barbier Allylation of Aldehydes Mediated by Tin

    OpenAIRE

    Ivani Malvestiti; Lothar W. Bieber; Marcelo Navarro; Fernando Hallwass; Lívia N. Cavalcanti; Maria Ester S. B. Barros; Dimas J. P. Lima; Ricardo L. Guimarães

    2007-01-01

    The aqueous tin-mediated Barbier reaction affords good to excellent yields and moderate syn diastereoselectivity under basic and acidic conditions. The high yields and stereoselectivity observed in the case of o-substituted aldehydes suggest a cyclic organotin intermediate or transition state in K2HPO4 solution. A practical and efficient aqueous tin allylation of methoxy- and hydroxybenzaldehydes can be carried out in HCl solution in 15 minutes to afford the corresponding homoallylic alcohols...

  9. Brønsted Acid-Catalyzed Carbonyl-Olefin Metathesis inside a Self-Assembled Supramolecular Host.

    Science.gov (United States)

    Catti, Lorenzo; Tiefenbacher, Konrad

    2017-12-20

    Carbonyl-olefin metathesis represents a powerful yet underdeveloped method for the formation of carbon-carbon bonds. So far, no Brønsted acid based method for the catalytic carbonyl-olefin metathesis has been described. Herein, a cocatalytic system based on a simple Brønsted acid (HCl) and a self-assembled supramolecular host is presented. The developed system compares well with the current benchmark catalyst for carbonyl-olefin metathesis in terms of substrate scope and yield of isolated product. Control experiments provide strong evidence that the reaction proceeds inside the cavity of the supramolecular host. A mechanistic probe indicates that a stepwise reaction mechanism is likely. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene

    International Nuclear Information System (INIS)

    Fujimura, T.; Hayakawa, N.; Kuriyama, I.

    1978-01-01

    The decay of alkyl radicals, the conversion of alkyl radicals to allyl radicals and the trapping of allyl radicals in irradiated single crystal mats of polyethylene have been studied by electron spin resonance (e.s.r.). It has been suggested that in the crystal core alkyl radicals react with trans-vinylene double bonds and are converted into trans-vinylene allyl radicals; at the crystal surface, alkyl radicals react with vinyl end groups and are converted into allyl radicals with vinyl end groups. The decay of radical pairs and the formation of trans-vinylene double bonds are discussed. (author)

  11. Allylic C-S Bond Construction through Metal-Free Direct Nitroalkene Sulfonation.

    Science.gov (United States)

    Lei, Xue; Zheng, Lei; Zhang, Chuanxin; Shi, Xiaodong; Chen, Yunfeng

    2018-02-16

    A metal-free, open-flask protocol was developed for the preparation of allylic sulfones through direct condensation of sodium arylsulfinates and β,β-disubstituted nitroalkenes. The key step of this process was the Lewis base-promoted equilibrium between nitroalkenes and allylic nitro compounds. Through this process, the readily available conjugated nitroalkenes can be easily converted into allylic nitro compounds, which contain more reactive C═C bonds toward the sulfonyl radical addition. As a result, allylic sulfones were prepared in excellent yields with a broad substrate scope under mild conditions.

  12. Carbonated soft drinks and carbonyl stress burden.

    Science.gov (United States)

    Nakayama, Keisuke; Nakayama, Masaaki; Terawaki, Hiroyuki; Murata, Yaeko; Sato, Toshinobu; Kohno, Masahiro; Ito, Sadayoshi

    2009-12-01

    Carbonated soft drinks reportedly contain methylglyoxal (MG), which is strongly associated with human carbonyl stress. We sought to evaluate the effects of carbonated drink intake on human carbonyl stress. We measured MG levels in 4 commercial beverage brands, and evaluated the changes in plasma MG in healthy subjects following the intake of carbonated drinks. By 30 min after intake of samples containing high glucose and high MG, the levels of plasma MG, glucose, insulin and uric acid had increased significantly, and then returned to basal levels by 120 min. After intake of the low-calorie carbonated samples containing little MG, there were no increases in plasma MG. Our results suggest that glucose-containing carbonated soft drinks are associated with increases in not only glucose but also carbonyl burden.

  13. Hydrolysis of cellulose catalyzed by quaternary ammonium perrhenates in 1-allyl-3-methylimidazolium chloride.

    Science.gov (United States)

    Wang, Jingyun; Zhou, Mingdong; Yuan, Yuguo; Zhang, Quan; Fang, Xiangchen; Zang, Shuliang

    2015-12-01

    Quaternary ammonium perrhenates were applied as catalyst to promote the hydrolysis of cellulose in 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The quaternary ammonium perrhenates displayed good catalytic performance for cellulose hydrolysis. Water was also proven to be effective to promote cellulose hydrolysis. Accordingly, 97% of total reduced sugar (TRS) and 42% of glucose yields could be obtained under the condition of using 5mol% of tetramethyl ammonium perrhenate as catalyst, 70μL of water, ca. 0.6mmol of microcrystalline cellulose (MCC) and 2.0g of [Amim]Cl as solvent under microwave irradiation for 30min at 150°C (optimal conditions). The influence of quaternary ammonium cation on the efficiency of cellulose hydrolysis was examined based on different cation structures of perrhenates. The mechanism on perrhenate catalyzed cellulose hydrolysis is also discussed, whereas hydrogen bonding between ReO4 anion and hydroxyl groups of cellulose is assumed to be the key step for depolymerization of cellulose. Copyright © 2015. Published by Elsevier Ltd.

  14. Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s as high-efficiency catalysts for carbonyl-group transformation reactions.

    Science.gov (United States)

    Qiu, Renhua; Xu, Xinhua; Peng, Lifeng; Zhao, Yalei; Li, Ningbo; Yin, Shuangfeng

    2012-05-14

    Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s [M(Cp)(2)][OSO(2)C(8)F(17)](2)⋅nH(2)O⋅THF (M = Zr (2 a⋅3 H(2)O⋅THF), M = Ti (2 b⋅2 H(2)O⋅THF)) were synthesized by the reaction of [M(Cp)(2)]Cl(2) (M = Zr (1 a), M = Ti (1 b)) with nBuLi and C(8)F(17)SO(3)H (2 equiv) or with C(8)F(17)SO(3)Ag (2 equiv). The hydrate numbers (n) of these complexes were variable, changing from 0 to 4 depending on conditions. In contrast to well-known metallocene triflates, these complexes suffered no change in open air for a year. thermogravimetry-differential scanning calorimetry (TG-DSC) analysis showed that 2 a and 2 b were thermally stable at 300 and 180 °C, respectively. These complexes exhibited unusually high solubility in polar organic solvents. Conductivity measurement showed that the complexes (2 a and 2 b) were ionic dissociation in CH(3)CN solution. X-ray analysis result confirmed 2 a⋅3 H(2)O⋅THF was a cationic organometallic Lewis acid. UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2 a. Fluorescence spectra showed that the Lewis acidity of 2 a fell between those of Sc(3+) (λ(em)=474 nm) and Fe(3+) (λ(em)=478 nm). ESR spectra showed the Lewis acidity of 2 a (0.91 eV) was at the same level as that of Sc(3+) (1.00 eV) and Y(3+) (0.85 eV), while the Lewis acidity of 2 b (1.06 eV) was larger than that of Sc(3+) (1.00 eV) and Y(3+) (0.85 eV). They showed high catalytic ability in carbonyl-compound transformation reactions, such as the Mannich reaction, the Mukaiyama aldol reaction, allylation of aldehydes, the Friedel-Crafts acylation of alkyl aromatic ethers, and cyclotrimerization of ketones. Moreover, the complexes possessed good reusability. On account of their excellent catalytic efficiency, stability, and reusability, the complexes will find broad catalytic applications in organic synthesis. Copyright © 2012

  15. Benzyllithiums bearing aldehyde carbonyl groups. A flash chemistry approach.

    Science.gov (United States)

    Nagaki, Aiichiro; Tsuchihashi, Yuta; Haraki, Suguru; Yoshida, Jun-ichi

    2015-07-14

    Reductive lithiation of benzyl halides bearing aldehyde carbonyl groups followed by reaction with subsequently added electrophiles was successfully accomplished without affecting the carbonyl groups by taking advantage of short residence times in flow microreactors.

  16. Interception and characterization of catalyst species in rhodium bis(diazaphospholane)-catalyzed hydroformylation of octene, vinyl acetate, allyl cyanide, and 1-phenyl-1,3-butadiene.

    Science.gov (United States)

    Nelsen, Eleanor R; Brezny, Anna C; Landis, Clark R

    2015-11-11

    In the absence of H2, reaction of [Rh(H) (CO)2(BDP)] [BDP = bis(diazaphospholane)] with hydroformylation substrates vinyl acetate, allyl cyanide, 1-octene, and trans-1-phenyl-1,3-butadiene at low temperatures and pressures with passive mixing enables detailed NMR spectroscopic characterization of rhodium acyl and, in some cases, alkyl complexes of these substrates. For trans-1-phenyl-1,3-butadiene, the stable alkyl complex is an η(3)-allyl complex. Five-coordinate acyl dicarbonyl complexes appear to be thermodynamically preferred over the four-coordinate acyl monocarbonyls at low temperatures and one atmosphere of CO. Under noncatalytic (i.e., no H2 present) reaction conditions, NMR spectroscopy reveals the kinetic and thermodynamic selectivity of linear and branched acyl dicarbonyl formation. Over the range of substrates investigated, the kinetic regioselectivity observed at low temperatures under noncatalytic conditions roughly predicts the regioselectivity observed for catalytic transformations at higher temperatures and pressures. Thus, kinetic distributions of off-cycle acyl dicarbonyls constitute reasonable models for catalytic selectivity. The Wisconsin high-pressure NMR reactor (WiHP-NMRR) enables single-turnover experiments with active mixing; such experiments constitute a powerful strategy for elucidating the inherent selectivity of acyl formation and acyl hydrogenolysis in hydroformylation reactions.

  17. Hafnium trifluoromethanesulfonate (hafnium triflate) as a highly efficient catalyst for chemoselective thioacetalization and transthioacetalization of carbonyl compounds.

    Science.gov (United States)

    Wu, Yan-Chao; Zhu, Jieping

    2008-12-05

    A range of carbonyl compounds including aliphatic and aromatic aldehydes and ketones were converted to the corresponding thioacetals in high yields in the presence of a catalytic amount of hafnium trifluoromethanesulfonate (0.1 mol %, room temperature). The mild conditions tolerated various sensitive functional and protecting groups and were racemization-free when applied to alpha-aminoaldehydes. Transacetalization and chemoselective thioacetalization of aromatic aldehydes in the presence of aliphatic aldehydes and ketones were also documented.

  18. Protein Carbonylation in Patients with Myelodysplastic Syndromes

    Czech Academy of Sciences Publication Activity Database

    Hlaváčková, A.; Štikarová, J.; Kotlín, R.; Chrastinová, L.; Šácha, Pavel; Májek, P.; Čermák, J.; Suttnar, J.; Dyr, J. E.

    2015-01-01

    Roč. 126, č. 23 (2015), s. 5232 ISSN 0006-4971. [Annual Meeting and Exposition of the American Society of Hematology /55./. 07.12.2013-10.12.2013, New Orleans] Institutional support: RVO:61388963 Keywords : protein carbonylation * myelodysplastic syndromes Subject RIV: CE - Biochemistry

  19. Polymethylhydrosiloxane reduction of carbonyl function catalysed by ...

    African Journals Online (AJOL)

    However, in the reduction of the substrate with two methoxy groups in close proximity (1,2-positions), the reaction necessitated a larger amount of the titanium catalyst and a longer reaction time to complete the reduction of the carbonyl function due to a likely complex formation of titanium tetrachloride with the methoxy ...

  20. Cyclometallated ruthenium (II) carbonyl complexes with 1 ...

    Indian Academy of Sciences (India)

    A facile method for the synthesis of a series of cyclometallated ruthenium(II) carbonyl complexes with 1-pyrenaldehyde 4-R-3-thiosemicarbazones (H2Ln where the two H's represent the dissociable thioamide and pyrenyl protons; R = H, Me and Ph) has been described. The characterization of the complexes having the ...

  1. Studies of coupled chemical and catalytic coal conversion methods

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.

    1990-01-01

    This report concerns our research on base-catalyzed coal solubilization and a new approach for hydrogen addition. The work on base-catalyzed, chemical solubilization is continuing. this report is focused on the hydrogenation research. Specifically it deals with the use of arene chromium carbonyl complexes as reagents for the addition of dideuterium to coal molecules. In one phase of the work, he has established that the aromatic hydrocarbons in a representative coal liquid can be converted in very good yield to arene chromium carbonyl compounds. In a second phase of the work directly related to our objective of improved methods for catalytic hydrogenation, he has established that the aromatic constituents of the same coal liquid add dideuterium in the presence of added napththalene chromium carbonyl.

  2. Method for conversion of .beta.-hydroxy carbonyl compounds

    Science.gov (United States)

    Lilga, Michael A.; White, James F.; Holladay, Johnathan E.; Zacher, Alan H.; Muzatko, Danielle S.; Orth, Rick J.

    2010-03-30

    A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

  3. Vapor-phase carbonylation of dimethoxymethane over H-Faujasite.

    Science.gov (United States)

    Celik, Fuat E; Kim, Tae-Jin; Bell, Alexis T

    2009-01-01

    Carbonylation gets a phase lift: The usual liquid-phase, high-pressure processes for carbonylating formaldehydes are avoided in a novel vapor-phase reaction. Using an acid zeolite (Faujasite) at near-atmospheric pressure dimethoxymethane (DMM; the dimethyl acetal of formaldehyde; see scheme) is carbonylated to produce methyl methoxyacetate (MMAc). This approach provides a new route to ethylene glycol under mild conditions.

  4. Pd/C Catalyzed Carbonylation of Azides in the Presence of Amines.

    Science.gov (United States)

    Zhao, Jin; Li, Zongyang; Yan, Shuaihu; Xu, Shiyang; Wang, Ming-An; Fu, Bin; Zhang, Zhenhua

    2016-04-15

    A facile and efficient Pd/C-catalyzed carbonylation of both aliphatic and aromatic azides in the presence of amines is reported. Serving as the widely existed fragments in an array of biological pharmaceuticals, functionalized unsymmetrical ureas were straightforwardly synthesized by using readily available and cheap azides with amines under CO atmosphere, with the extrusion of N2 as the only byproduct. It was found that not only aryl azides but also benzyl and alkyl azides were suited for this methodology. Another feature of this procedure was the employment of a highly efficient palladium charcoal catalytic system.

  5. Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction.

    Science.gov (United States)

    Ludwig, Jacob R; Phan, Susan; McAtee, Christopher C; Zimmerman, Paul M; Devery, James J; Schindler, Corinna S

    2017-08-09

    Iron(III)-catalyzed carbonyl-olefin ring-closing metathesis represents a new approach toward the assembly of molecules traditionally generated by olefin-olefin metathesis or olefination. Herein, we report detailed synthetic, spectroscopic, kinetic, and computational studies to determine the mechanistic features imparted by iron(III), substrate, and temperature to the catalytic cycle. These data are consistent with an iron(III)-mediated asynchronous, concerted [2+2]-cycloaddition to form an intermediate oxetane as the turnover-limiting step. Fragmentation of the oxetane via Lewis acid-activation results in the formation of five- and six-membered unsaturated carbocycles.

  6. Z-Selective Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents

    NARCIS (Netherlands)

    Giannerini, Massimo; Fananas-Mastral, Martin; Feringa, Ben L.; Fañanás-Mastral, Martín

    2012-01-01

    Allylic gem-dichlorides undergo regio- and enanantioselective (er up to 99:1) copper-catalyzed allylic alkylation with Grignard reagents affording chiral Z-vinyl chlorides. This highly versatile class of synthons can be subjected to Suzuki cross coupling affording optically active Z-alkenes and

  7. Highly diastereoselective preparation of aldol products using new functionalized allylic aluminum reagents.

    Science.gov (United States)

    Shen, Zhi-Liang; Peng, Zhihua; Yang, Chun-Ming; Helberg, Julian; Mayer, Peter; Marek, Ilan; Knochel, Paul

    2014-02-07

    Chloro-substituted triethylsilyl enol ethers derived from cyclohexanone and related ketones are converted with aluminum powder in the presence of indium trichloride to functionalized allylic aluminum reagents which represent a new type of synthetic equivalent of metal enolates. These allylic organometallics undergo highly diastereoselective additions to aldehydes and methyl aryl ketones, giving aldol products with a β-quaternary center.

  8. Allyl sulphides in olefin metathesis: catalyst considerations and traceless promotion of ring-closing metathesis.

    Science.gov (United States)

    Edwards, Grant A; Culp, Phillip A; Chalker, Justin M

    2015-01-11

    Allyl sulphides are reactive substrates in ruthenium-catalysed olefin metathesis reactions, provided each substrate is matched with a suitable catalyst. A profile of catalyst activity is described, along with the first demonstration of allyl sulphides as traceless promoters in relayed ring-closing metathesis reactions.

  9. Isomerization Reactions of Allylic Alcohols into Ketones with the Grubbs Reagent

    Directory of Open Access Journals (Sweden)

    Motoo Tori

    2004-06-01

    Full Text Available Allylic alcohols were isomerized into ketones by the action of the Grubbs reagent. Some model alcohols were prepared and tested under similar conditions to reveal that less substituted alkenes rearrange more easily. More hindered alcohols are stable under these conditions, however, the simple allylic alcohols tend to isomerize producing ethyl ketone and the corresponding degraded methyl ketone.

  10. A convenient method for lactonization of α-allyl esters using iodine ...

    African Journals Online (AJOL)

    A simple method for the synthesis of α-γ-disubstituted-γ-butyrolactones by cyclization of α-allyl esters using iodine in dimethylsulphoxide is reported. This method is efficient and operationally simple in comparison to methods using transition metal complexes. KEY WORDS: γ-Butyrolactones, α-Allyl esters, Iodine, Dimethyl ...

  11. Organocatalyzed Asymmetric Vinylogous Allylic-Allylic Alkylation of Morita-Baylis-Hillman Carbonates with Olefinic Azlactones: Facile Access to Chiral Multifunctional α-Amino Acid Derivatives.

    Science.gov (United States)

    Zhao, Shuai; Zhao, Yuan-Yuan; Lin, Jun-Bing; Xie, Ting; Liang, Yong-Min; Xu, Peng-Fei

    2015-07-02

    Vinylogous reactivity of olefinic azlactones was realized through the development of a chiral amine-catalyzed highly stereoselective allylic-allylic alkylation with Morita-Baylis-Hillman carbonates. The Lewis base activation of electrophile and Brønsted base activation of nucleophile were efficiently combined, giving access to multifunctional acyclic α-amino acid derivatives in a highly stereocontrolled manner. The synthetic utility of these versatile synthons was further demonstrated by the facile synthesis of protected cyclic quaternary α-amino acids.

  12. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Daria L. [Department of Chemistry, Yale University, 225; Beltrán-Suito, Rodrigo [Department of Chemistry, Yale University, 225; Thomsen, Julianne M. [Department of Chemistry, Yale University, 225; Hashmi, Sara M. [Department of Chemical and Environmental; Materna, Kelly L. [Department of Chemistry, Yale University, 225; Sheehan, Stafford W. [Catalytic Innovations LLC, 70 Crandall; Mercado, Brandon Q. [Department of Chemistry, Yale University, 225; Brudvig, Gary W. [Department of Chemistry, Yale University, 225; Crabtree, Robert H. [Department of Chemistry, Yale University, 225

    2016-02-05

    This paper introduces IrI(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*IrIII(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue IrIV species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting IrIV species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By 1H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

  13. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  14. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts satisfact......A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts...... satisfactorily oxidation of OCS over a wide range of stoichiometric air–fuel ratios (0.5 ≤λ≤7.3), temperatures (450–1700 K), and pressures (0.02–3.0 atm) under dry conditions. The governing reaction mechanisms are outlined based on calculations with the kinetic model. The oxidation rate of OCS is controlled...

  15. Organocatalytic Hydrophosphonylation Reaction of Carbonyl Groups.

    Science.gov (United States)

    Herrera, Raquel P

    2017-09-01

    This revision is covering the limited examples reported for a pivotal strategy in the formation of C-P bonds such as the asymmetric organocatalytic hydrophosphonylation of carbonyl groups (Pudovik reaction). The scope and limitations, and the proposed mechanisms for the scarce different possibilities of asymmetric induction are also shown. The recent evolution and future trends of this undeveloped approach are commented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Carbonyl Compounds Generated from Electronic Cigarettes

    Directory of Open Access Journals (Sweden)

    Kanae Bekki

    2014-10-01

    Full Text Available Electronic cigarettes (e-cigarettes are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  17. Decarbonylation and hydrogenation reactions of allyl alcohol and acrolein on Pd(110)

    Science.gov (United States)

    Shekhar, Ratna; Barteau, Mark A.

    1994-11-01

    Allyl alcohol and acrolein reactions on the Pd(110) surface were investigated using temperature programmed desorption. For both unsaturated oxygenates, three coverage-dependent reaction pathways were observed. At low coverages, allyl alcohol decomposed completely to CO, hydrogen and carbonaceous species on the surface. For θ > 0.15 monolayer, ethylene (and small amounts of ethane) desorbed at ca. 295 K. Near saturation coverages, desorption of propanal was detected at ca. 235 K. The parent molecule, allyl alcohol, desorbed only after exposures sufficient to saturate these channels. Acrolein decomposition spectra were similar to those observed for allyl alcohol decomposition on the clean surface. Additional experiments with allyl alcohol on hydrogen- and deuterium-precoveredPd(110) surfaces demonstrated increased hydrogenation of the C 2-hydrocarbon products along with hydrogenation of allyl alcohol to 1-propanol. However, in contrast to previous results for allyl alcohol on the Pd(111) surface, there was no evidence for C-O scission reactions of any C 3 oxygenate on Pd(110).

  18. Validation of protein carbonyl measurement: A multi-centre study

    Directory of Open Access Journals (Sweden)

    Edyta Augustyniak

    2015-04-01

    Full Text Available Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial kits. We have further explored the potential causes of variance in carbonyl analysis in a ring study. A soluble protein fraction was prepared from rat liver and exposed to 0, 5 and 15 min of UV irradiation. Lyophilised preparations were distributed to six different laboratories that routinely undertook protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5 min of UV irradiation irrespective of method used. After irradiation for 15 min, less oxidation was detected by half of the laboratories than after 5 min irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated and control liver proteins, only seven were common in all three liver preparations. Lysine and arginine residues modified by carbonyls are likely to be resistant to tryptic proteolysis. Use of a cocktail of proteases may increase the recovery of oxidised peptides. In conclusion, standardisation is critical for carbonyl analysis and heavily oxidised proteins may not be effectively analysed by any existing technique.

  19. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde forcarbonyls and 6-fluoro-4-chromanone for>_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  20. A Facile and Mild Synthesis of Trisubstituted Allylic Sulfones from Morita-Baylis-Hillman Carbonates

    Directory of Open Access Journals (Sweden)

    Lin Jiang

    2015-05-01

    Full Text Available An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%–99% with good to high selectivity (Z/E from 79:21 to >99:1. Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.

  1. A facile and mild synthesis of trisubstituted allylic sulfones from Morita-Baylis-Hillman carbonates.

    Science.gov (United States)

    Jiang, Lin; Li, Yong-Gen; Zhou, Jiang-Feng; Chuan, Yong-Ming; Li, Hong-Li; Yuan, Ming-Long

    2015-05-07

    An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH) carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%-99%) with good to high selectivity (Z/E from 79:21 to >99:1). Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.

  2. Aqueous reactions of triplet excited states with allylic compounds

    Science.gov (United States)

    Kaur, R.; Anastasio, C.; Hudson, B. M.; Tantillo, D. J.

    2016-12-01

    Triplet excited states of dissolved organic matter react with several classes of aromatic organics such as phenols, anilines, sulfonamide antibiotics and phenylurea herbicides. Aqueous triplets appear to be among the most important oxidants for atmospheric phenols in regions with biomass burning, with phenol lifetimes on the order of a few hours to a day. However, little is known of the reactions of triplets with other classes of organic compounds. Recent work from our group shows that triplets react rapidly with several biogenic volatile organic compounds (BVOCs), such as methyl jasmonate, cis-3-hexenyl acetate, and cis-3-hexen-1-ol. However, there are only a few rate constants for aqueous reactions between alkenes such as these and triplet excited states. For our work, we refer to these and similar alkenes which have hydrogen(s) attached to a carbon adjacent to the double bond, as allylic compounds. To better assess the importance of triplets as aqueous oxidants, we measured second-order rate constants (kAC+3BP*) for a number of allylic compounds (ACs) with the triplet state of benzophenone; then established a quantitative structure-activity relationship (QSAR) between kAC+3BP* and computed oxidation potential of the ACs (R2 =0.65). Using the QSAR, we estimated the rate constants for triplets with some allylic isoprene and limonene oxidation products that have high Henry's law constants (KH>103 M atm-1). Hydroxylated limonene products and the delta-isomers of isoprene hydroxyhydroperoxides (δ4ISOPOOH) and hydroxynitrates (δ4ISONO2) were faster with predicted kAC+3BP* values ranging between (0.5-3.5) x 109 M-1-s-1 whereas the beta-isomers of ISOPOOH and ISONO2 were slower (kAC+3BP* gas and aqueous hydroxyl radical and ozone, triplets in fog could account for up to 20 % of the measured loss of these compounds in the atmosphere. We are currently evaluating the importance of triplets in particulate matter (PM) which can have much higher concentrations of triplet

  3. Direct synthesis of B-allyl and B-allenyldiisopinocampheylborane reagents using allyl or propargyl halides and indium metal under Barbier-type conditions.

    Science.gov (United States)

    Hirayama, Lacie C; Haddad, Terra D; Oliver, Allen G; Singaram, Bakthan

    2012-05-04

    We report the first one-pot process for the asymmetric addition of allyl, methallyl, and propargyl groups to aldehydes and ketones using B-chlorodiisopinocampheylborane ((d)DIP-Cl) and indium metal. Under Barbier-type conditions, indium metal was used to generate allyl- and allenylindium intermediates, and subsequent reaction with (d)DIP-Cl successfully promoted the transfer of these groups to boron forming the corresponding chiral borane reagents. The newly formed borane reagents were reacted with aldehydes and ketones to produce the corresponding alcohol products in high yields and up to excellent enantioselectivity (98% ee). This method produced excellent enantioenriched secondary homoallylic alcohols from the allylation and methallylation of benzaldehyde. Using this method, the methallylation and cinnamylation of ketones afforded the highest enantioselectivities, while the propargylation of both aldehydes and ketones provided low enantiomeric excesses. In addition, this procedure provided the first synthesis of B-allenyldiisopinocampheylborane, which was characterized by (1)H and (11)B NMR spectroscopy. This is the first example of the direct synthesis of allylboranes that contained substitutions from the corresponding allyl bromide and indium, thereby expanding the utility of the DIP-Cl reagent. Hence, a general and straightforward route to these chiral organoborane reagents in one-pot has been developed along with the asymmetric Barbier-type allylation and propargylation of aldehyde and ketone substrates using these chiral organoborane reagents in subsequent coupling reactions.

  4. Polymerization of allyl alcohol by radiation to obtain microencapsulated structure

    International Nuclear Information System (INIS)

    Usanmaz, A.; Saricilar, S.

    1989-01-01

    Allyl alcohol was polymerized by radiation under various conditions. The limiting conversions were about 30 % in bulk, 35 % when containing 0.03 mole fraction AlCl 3 and 50 % when water was contained at 27 % (v/v). Irradiation was done with Co-60 gamma rays at room temperature and under vacuum. The presence of oxygen did not cause any change in the reaction rate. Molecular weights were determined by viscosity and cryoscopic methods. K and α values were found to be 3.57 x 10 -4 and 0.62 for solutions in methanol at 25degC. The polymers up to about 10 % conversion were viscous liquids having microcapsular structures: at high conversions, they became hard and glassy. The microencapsulated structures were also retained in solutions in methanol, acetone, and isopropyl alcohol. The samples were insoluble in water, benzene, and toluence. (author)

  5. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  6. α,β-Unsaturated imines via Ru-catalyzed coupling of allylic alcohols and amines.

    Science.gov (United States)

    Rigoli, Jared W; Moyer, Sara A; Pearce, Simon D; Schomaker, Jennifer M

    2012-03-07

    A convenient synthesis of α,β-unsaturated imines requiring only an allylic alcohol, an amine and a Ru catalyst has been developed. The use of large excesses of oxidant and the purification of sensitive intermediates can be avoided.

  7. Electronic differentiation competes with transition state sensitivity in palladium-catalyzed allylic substitutions

    Directory of Open Access Journals (Sweden)

    Goldfuss Bernd

    2007-10-01

    Full Text Available Abstract Electronic differentiations in Pd-catalyzed allylic substitutions are assessed computationally from transition structure models with electronically modified phospha-benzene-pyridine ligands. Although donor/acceptor substitutions at P and N ligand sites were expected to increase the site selectivity, i.e. the preference for "trans to P" attack at the allylic intermediate, acceptor/acceptor substitution yields the highest selectivity. Energetic and geometrical analyses of transition structures show that the sensitivity for electronic differentiation is crucial for this site selectivity. Early transition structures with acceptor substituted ligands give rise to more intensive Pd-allyl interactions, which transfer electronic P,N differentiation of the ligand more efficiently to the allyl termini and hence yield higher site selectivities.

  8. Development of chiral terminal-alkene-phosphine hybrid ligands for palladium-catalyzed asymmetric allylic substitutions.

    Science.gov (United States)

    Liu, Zhaoqun; Du, Haifeng

    2010-07-02

    A variety of novel chiral terminal-alkene-phosphine hybrid ligands were successfully developed from diethyl L-tartrate for palladium-catalyzed asymmetric allylic alkylations, etherifications, and amination to give the desired products in excellent yields and ee's.

  9. Total synthesis of broussonetine F: the orthoamide Overman rearrangement of an allylic diol.

    Science.gov (United States)

    Hama, Naoto; Aoki, Toshihiro; Miwa, Shohei; Yamazaki, Miki; Sato, Takaaki; Chida, Noritaka

    2011-02-18

    A first total synthesis of broussonetine F from diethyl L-tartrate was achieved. The cornerstone of our synthesis was an orthoamide Overman rearrangement, which provided an allylic amino alcohol with complete diastereoselectivity.

  10. Solid radiation curable polyene compositions containing liquid polythiols and solid styrene-allyl copolymer based polyenes

    International Nuclear Information System (INIS)

    Morgan, C.R.

    1977-01-01

    Novel styrene-allyl alcohol copolymer based solid polyene compositions which when mixed with liquid polythiols can form solid curable polyene-polythiol systems are claimed. These solid polyenes, containing at least two reactive carbon-to-carbon unsaturated bonds, are urethane or ester derivatives of styrene-allyl alcohol copolymers. The solid polyenes are prepared by treating the hydroxyl groups of a styrene-allyl alcohol copolymer with a reactive unsaturated isocyanate, e.g., allyl isocyanate or a reactive unsaturated carboxylic acid, e.g., acrylic acid. Upon exposure to a free radical generator, e.g., actinic radiation, the solid polyene-polythiol compositions cure to solid, insoluble, chemically resistant, cross-linked polythioether products. Since the solid polyene-liquid polythiol composition can be cured in a solid state, such a curable system finds particular use in preparation of coatings, imaged surfaces such as photoresists, particularly solder-resistant photoresists, printing plates, etc

  11. Biomarkers derived from heterolytic and homolytic cleavage of allylic hydroperoxides resulting from alkenone autoxidation

    Digital Repository Service at National Institute of Oceanography (India)

    Rontania, J.F; Harji, R.; Volkmanc, J.K.

    Laboratory incubation of alkenone mixtures with tert-butyl hydroperoxide and di-tert-butyl nitroxide (radical initiator) in hexane, as a means to simulate alkenone autoxidation processes, rapidly led to the formation of allylic hydroperoxides, whose...

  12. A Concomitant Allylic Azide Rearrangement/Intramolecular Azide–Alkyne Cycloaddition Sequence

    Science.gov (United States)

    2015-01-01

    An intramolecular Huisgen cycloaddition of an interconverting set of isomeric allylic azides with alkynes affords substituted triazoles in high yield. The stereoisomeric vinyl-substituted triazoloxazines formed depend on the rate of cycloaddition of the different allylic azide precursors when the reaction is carried out under thermal conditions. In contrast, dimerized macrocyclic products were obtained when the reaction was done using copper(I)-catalyzed conditions, demonstrating the ability to control the reaction products through changing conditions. PMID:24635056

  13. Selective epoxidation of allylic alcohols with a titania-silica aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Dusi, M.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    An amorphous mesoporous titania-silica aerogel (20 wt%TiO{sub 2} - 80 wt% SiO{sub 2}) and tert.-butylhydroperoxide (TBHP) have been used for the epoxidation of various allylic alcohols. Allylic alcohols possessing an internal double bond were more reactive than those with a terminal C=C bond. Epoxide selectivities could be improved by addition of (basic) zeolite 4 A and NaHCO{sub 3} to the reaction mixture. (orig.)

  14. Highly diastereoselective epoxidation of allyl-substituted cycloalkenes catalyzed by metalloporphyrins.

    Science.gov (United States)

    Chan, Wing-Kei; Liu, Peng; Yu, Wing-Yiu; Wong, Man-Kin; Che, Chi-Ming

    2004-05-13

    Highly diastereoselective epoxidations of allyl-substituted cycloalkenes including allylic alcohols, esters, and amines using sterically bulky metalloporphyrins [Mn(TDCPP)Cl] (1) and [Ru(TDCPP)CO] (2) as catalysts have been achieved. The "1 + H(2)O(2)" and "2 + 2,6-Cl(2)pyNO" protocols afforded trans-epoxides selectively in good yields (up to 99%) with up to >99:1 trans-selectivity.

  15. Atmospheric degradation of 2-chloroethyl vinyl ether, allyl ether and allyl ethyl ether: Kinetics with OH radicals and UV photochemistry.

    Science.gov (United States)

    Antiñolo, M; Ocaña, A J; Aranguren, J P; Lane, S I; Albaladejo, J; Jiménez, E

    2017-08-01

    Unsaturated ethers are oxygenated volatile organic compounds (OVOCs) emitted by anthropogenic sources. Potential removal processes in the troposphere are initiated by hydroxyl (OH) radicals and photochemistry. In this work, we report for the first time the rate coefficients of the gas-phase reaction with OH radicals (k OH ) of 2-chloroethyl vinyl ether (2ClEVE), allyl ether (AE), and allyl ethyl ether (AEE) as a function of temperature in the 263-358 K range, measured by the pulsed laser photolysis-laser induced fluorescence technique. No pressure dependence of k OH was observed in the 50-500 Torr range in He as bath gas, while a slightly negative T-dependence was observed. The temperature dependent expressions for the rate coefficients determined in this work are: The estimated atmospheric lifetimes (τ OH ) assuming k OH at 288 K were 3, 2, and 4 h for 2ClEVE, AE and AEE, respectively. The kinetic results are discussed in terms of the chemical structure of the unsaturated ethers by comparison with similar compounds. We also report ultraviolet (UV) and infrared (IR) absorption cross sections (σ λ and σ(ν˜), respectively). We estimate the photolysis rate coefficients in the solar UV actinic region to be less than 10 -7 s -1 , implying that these compounds are not removed from the atmosphere by this process. In addition, from σ(ν˜) and τ OH , the global warming potential of each unsaturated ether was calculated to be almost zero. A discussion on the atmospheric implications of the titled compounds is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of allyl isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    John Russell Williams

    2015-01-01

    Full Text Available The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also reported to damage DNA and is toxic to aquatic organisms, the objective of the present study was to determine whether it possesses teratogenic properties. The frog embryo teratogenesis assay-Xenopus (FETAX was used to determine the following measures of developmental toxicity of the allyl isothiocyanate: (a 96-h LC50, defined as the median concentration causing 50% embryo lethality; (b 96-h EC50, defined as the median concentration causing 50% malformations of the surviving embryos; and (c teratogenic malformation index (TI, equal to 96-h LC50/96-h EC50. The quantitative results and the photographs of embryos before and after exposure suggest that allyl isothiocyanate seems to exhibit moderate teratogenic properties. The results also indicate differences in the toxicity of allyl isothiocyanate toward exposed embryos observed in the present study compared to reported adverse effects of allyl isothiocyanate in fish, rodents, and humans. The significance of the results for food safety and possible approaches to protect against adverse effects of allyl isothiocyanate are discussed.

  17. Enantioselective synthesis of alkyne-substituted quaternary carbon stereogenic centers through NHC-Cu-catalyzed allylic substitution reactions with (i-Bu)2(alkynyl)aluminum reagents.

    Science.gov (United States)

    Dabrowski, Jennifer A; Gao, Fang; Hoveyda, Amir H

    2011-04-06

    A catalytic enantioselective method for the formation of alkyne-substituted all-carbon quaternary stereogenic centers is reported. Additions of alkynylaluminums to alkyl-, aryl-, carboxylic ester-, or silyl-substituted allylic phosphates are promoted by 1.0-5.0 mol % loadings of NHC-Cu complexes derived from air-stable and commercially available CuCl(2)·2H(2)O. The requisite Al-based reagents are prepared through treatment of the corresponding aryl-, heteroaryl-, alkyl-, or alkenyl-substituted terminal alkynes with diisobutylaluminum hydride in the presence of 5.0 mol % Et(3)N at ambient temperature. The desired 1,4-enynes are obtained in up to 98% yield and >99:1 enantiomeric ratio. Selected Au-catalyzed cyclizations involving the alkyne unit of the enantiomerically enriched products are presented as a demonstration of the method's utility in chemical synthesis. © 2011 American Chemical Society

  18. Enantioselective Synthesis of Alkyne-Substituted Quaternary Carbon Stereogenic Centers through NHC–Cu-Catalyzed Allylic Substitution Reactions with (i-Bu)2(Alkynyl)aluminum Reagents

    Science.gov (United States)

    Dabrowski, Jennifer A.; Gao, Fang; Hoveyda, Amir H.

    2011-01-01

    A catalytic enantioselective method for formation of alkyne-substituted all-carbon quaternary carbon stereogenic centers is reported. Additions of alkynylaluminums to alkyl-, aryl-, carboxylic ester-, or silyl-substituted allylic phosphates are promoted by 1.0–5.0 mol % of NHC–Cu complexes derived from air stable and commercially available CuCl2•2H2O. The requisite Al-based reagents are prepared through treatment of the corresponding aryl-, heteroaryl-, alkyl-, or alkenyl-substituted terminal alkynes with di-iso-butylaluminum hydride in the presence of 5.0 mol % Et3N at ambient temperature. The desired 1,4-enynes are obtained in up to >98% yield and >99:1 enantiomeric ratio. Selected Au-catalyzed cyclizations involving the alkyne unit of the enantiomerically enriched products are presented as a demonstration of the method’s utility in chemical synthesis. PMID:21384918

  19. Bifunctional dendrons for multiple carbohydrate presentation via carbonyl chemistry

    Directory of Open Access Journals (Sweden)

    Davide Bini

    2014-07-01

    Full Text Available The synthesis of new dendrons of the generations 0, 1 and 2 with a double bond at the focal point and a carbonyl group at the termini has been carried out. The carbonyl group has been exploited for the multivalent conjugation to a sample saccharide by reductive amination and alkoxyamine conjugation.

  20. Carbonyl emissions in diesel and biodiesel exhaust

    Science.gov (United States)

    Machado Corrêa, Sérgio; Arbilla, Graciela

    With the use of biodiesel in clear growth, it is important to quantify any potential emission benefits or liabilities of this fuel. Several researches are available concerning the regulated emissions of biodiesel/diesel blends, but there is a lack of information about non-regulated emissions. In a previous paper [Corrêa, S.M., Arbilla, G., 2006. Emissões de formaldeído e acetaldeído de misturas biodiesel/diesel. Periódico Tchê Química, 3, 54-68], the emissions of aromatic hydrocarbons were reported. In this work, seven carbonyl emissions (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, butyraldehyde, and benzaldehyde) were evaluated by a heavy-duty diesel engine fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were conducted using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, in a steady-state condition under 1000, 1500, and 2000 rpm. The exhaust gases were diluted nearly 20 times and the carbonyls were sampled with SiO 2-C18 cartridges, impregnated with acid solution of 2,4-dinitrophenylhydrazine. The chemical analyses were performed by high performance liquid chromatography using UV detection. Using average values for the three modes of operation (1000, 1500, and 2000 rpm) benzaldehyde showed a reduction on the emission (-3.4% for B2, -5.3% for B5, -5.7% for B10, and -6.9% for B20) and all other carbonyls showed a significative increase: 2.6, 7.3, 17.6, and 35.5% for formaldehyde; 1.4, 2.5, 5.4, and 15.8% for acetaldehyde; 2.1, 5.4, 11.1, and 22.0% for acrolein+acetone; 0.8, 2.7, 4.6, and 10.0% for propionaldehyde; 3.3, 7.8, 16.0, and 26.0% for butyraldehyde.

  1. Carbonyl-Olefin Exchange Reaction: Present State and Outlook

    Science.gov (United States)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction (COER) is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis (OM) - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The α, β-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the COER. The question arises: is it possible the COER to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction became an alternative of the existing carbonyl olefination reactions?

  2. Radiation synthesis and characterization of new hydrogels based on acrylamide copolymers cross-linked with 1-allyl-2-thiourea

    Energy Technology Data Exchange (ETDEWEB)

    Sahiner, Nurettin [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Malci, Savas [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Celikbicak, Oemuer [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Kantoglu, Oemer [Ankara Nuclear Research Center, Turkish Atomic Energy Authority, 06983 Ankara (Turkey); Salih, Bekir [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey)]. E-mail: bekir@hacettepe.edu.tr

    2005-10-01

    Poly(acrylamide-1-allyl-2-thiourea) hydrogels, Poly(AA-AT), were synthesized by gamma irradiation using {sup 60}Co {gamma} source in different irradiation dose and at different 1-allyl-2-thiourea content in the monomer mixture. For the characterization of the hydrogels, Fourier transform infrared spectrometer (FT-IR), thermogravimetric analyzer (TGA), elemental analyzer and the swellability of the hydrogels were used. It was noted that 1-allyl-2-thiourea in the synthesized hydrogels was increased by the increasing the content of the 1-allyl-2-thiourea in the irradiation monomer mixture and increasing the radiation dose for the hydrogel synthesis. sis.

  3. Catalyst Initiation in the Oscillatory Carbonylation Reaction

    Directory of Open Access Journals (Sweden)

    Katarina Novakovic

    2011-01-01

    Full Text Available Palladium(II iodide is used as a catalyst in the phenylacetylene oxidative carbonylation reaction that has demonstrated oscillatory behaviour in both pH and heat of reaction. In an attempt to extract the reaction network responsible for the oscillatory nature of this reaction, the system was divided into smaller parts and they were studied. This paper focuses on understanding the reaction network responsible for the initial reactions of palladium(II iodide within this oscillatory reaction. The species researched include methanol, palladium(II iodide, potassium iodide, and carbon monoxide. Several chemical reactions were considered and applied in a modelling study. The study revealed the significant role played by traces of water contained in the standard HPLC grade methanol used.

  4. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  5. Oxidative carbonylation of phenol to diphenyl carbonate by Pd/MFe2O4 magnetic catalyst

    Directory of Open Access Journals (Sweden)

    Zhang Linfeng

    2015-01-01

    Full Text Available In order to screen one suitable catalyst for magnetically stabilized fluidized bed (MSFB reactor in the process of oxidative carbonylation of phenol to diphenyl carbonate (DPC, Pd/MFe2O4 catalysts were chosen, then prepared and characterized by XRD, H2-TPR, XPS and VSM (Vibrating Sample Magnetometer. Compared to the other metal ion doped spinel ferrite catalysts, the catalytic activity of Pd/MnFe2O4 was much higher, which the single pass yield of DPC reached 33.12% with selectivity above 99%, and TOF (turnover frequency reached 70.56molDPC•(molPd•h-1.The result showed that the formation of the ferrite oxygen-deficient and ion transference in the ferrites was in favor of the catalytic activity. When the support MnFe2O4 was calcinated at 500ºC, the saturation magnetization of the obtained catalyst Pd/MnFe2O4 came up to 43.1 A•m2•kg-1. With good magnetic property and brilliant catalytic activity the catalyst Pd/MnFe2O4 may suite for industrial experiments in MSFB reactor in future.

  6. Production of allyl phenyl carbinol (APC by biotrans-formation using Rhizopus arrhizus

    Directory of Open Access Journals (Sweden)

    Vilas B. Shukla

    2000-01-01

    Full Text Available The objective of the present work was to study the stereoselective synthesis of homo-allylic alcohol using stereoselective hydrolysis by Rhizopus arrhizus and also to study the stereoselective synthesis of allyl phenyl carbinol (APC or 1-Phenyl-3-butene-1-o by combination of chemical synthesis and biotransformation from cheap raw materials such as benzaldehyde and allyl bromide. Stereospecific synthesis of allyl phenyl carbinol (APC was achieved by acetate hydrolysis by R. arrhizus giving R (+ enantiomer. Maximum enantiomeric excess of APC was obtained at 16 h where as maximum yield of it was obtained at 48 h of biotransformation.O objetivo deste trabalho foi estudar a síntese estereo-seletiva do álcool homo-allylico usando hidrólise estereo-seletiva pelo Rhizopus arrhizus e também estudar a síntese estereo-seletiva do allyl phenyl carbinol (APC ou 1-Phenyl-3-butene- 1-o pela combinação da síntese química e biotransformação dos materiais brutos e baratos, tais como; benzaldehyde and allyl bromide. A síntese Stereospecifica do allyl phenyl carbinol (APC foi conseguida pela hidrólise de acetato pelo R. arrhizus fornecendo enantiomero R (+. O excesso máximo do enantiomérico do APC foi obtido em 16 h sendo que seu rendimento máximo foi obtido após 48 h de biotransformação.

  7. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation.

    Science.gov (United States)

    Krügener, Sven; Krings, Ulrich; Zorn, Holger; Berger, Ralf G

    2010-01-01

    A selective and highly efficient allylic oxidation of the sesquiterpene (+)-valencene to the grapefruit flavour compound (+)-nootkatone was achieved with lyophilisate of the edible mushroom Pleurotus sapidus. The catalytic reaction sequence was elucidated through the identification of intermediate, (+)-valencene derived hydroperoxides. A specific staining of hydroperoxides allowed the semi-preparative isolation of two secondary (+)-valencene hydroperoxides, 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-4(S)-yl-hydroperoxide and 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-2(R)-yl-hydroperoxide. Chemical reduction of the biotransformation products yielded a tertiary alcohol identified as 2(R)-Isopropenyl-8(R),8a(S)-dimethyl-1,3,4,7,8,8a-hexahydro-2H-naphthalen-4a(R)-ol. This suggested a lipoxygenase-type oxidation of (+)-valencene via secondary and tertiary hydroperoxides and confirmed homology data of the key enzyme obtained previously from amino acid sequencing.

  8. Resonance effect in the allyl cation and anion: a revisit.

    Science.gov (United States)

    Mo, Yirong

    2004-08-20

    The interest over the magnitude of the conjugation effect in the allyl cation (1) and anion (2) has been revived recently by Barbour and Karty (J. Org. Chem. 2004, 69, 648-654), who derived the resonance energies of 20-22 and 17-18 kcal/mol for 1 and 2, respectively, using an empirical extrapolation approximation. This paper revisits the case by explicitly calculating the Pauling-Wheland resonance energy, which measures the stabilization from the most stable resonance structure to the delocalized energy-minimum state of a conjugated system, using our newly developed block-localized wave function (BLW) method. This BLW method has the geometrical optimization capability. The computations result in adiabatic resonance energies of 37 kcal/mol for 1 and 38 kcal/mol for 2. The significant disagreement between these values and Barbour and Karty's results originates from the neglect of structural and electronic variations in their derivation which are energy costing. Copyright 2004 American Chemical Society

  9. Release of allyl isothiocyanate from mustard seed meal powder.

    Science.gov (United States)

    Dai, Ruyan; Lim, Loong-Tak

    2014-01-01

    Allyl isothiocyanate (AITC) is a wide-spectrum antimicrobial compound found in mustard seeds, produced when their tissues are disrupted. The formation of AITC in mustard seed is mediated by the myrosinase enzyme which catalyzes the release of volatile AITC from a glucosinolate-sinigrin. Since water is a substrate in the reaction, humidity from the air can be used to activate the release of AITC from mustard seed. In this study, defatted and partially defatted mustard seed meals were ground into powders with particle size ranging from 5 to 300 μm. The mustard seed meal powder (MSMP) samples were enclosed within hermetically sealed glass jars wherein the headspace air was adjusted to 85% or 100% relative humidity at 5, 20, or 35 °C. Data from gas chromatography analysis showed that AITC release rate and amount increased with increasing relative humidity and temperature. Moreover, the release rate can be manipulated by particle size and lipid content of the MSMP samples. The amount of AITC released ranged from 2 to 17 mg/g MSMP within 24 h under the experimental conditions tested. In view of the antimicrobial properties of AITC, the mustard meal powder may be used as a natural antimicrobial material for extending the shelf life of food products. © 2013 Institute of Food Technologists®

  10. Aqueous Barbier allylation of aldehydes mediated by tin.

    Science.gov (United States)

    Guimarães, Ricardo L; Lima, Dimas J P; Barros, Maria Ester S B; Cavalcanti, Lívia N; Hallwass, Fernando; Navarro, Marcelo; Bieber, Lothar W; Malvestiti, Ivani

    2007-08-29

    The aqueous tin-mediated Barbier reaction affords good to excellent yields and moderate syn diastereoselectivity under basic and acidic conditions. The high yields and stereoselectivity observed in the case of o-substituted aldehydes suggest a cyclic organotin intermediate or transition state in K2HPO4 solution. A practical and efficient aqueous tin allylation of methoxy- and hydroxybenzaldehydes can be carried out in HCl solution in 15 minutes to afford the corresponding homoallylic alcohols in high yields. Aliphatic aldehydes give moderate to excellent yields with reaction times ranging from 30 to 60 minutes. Under these conditions, crotylation gives exclusively the gamma-product and the syn isomer is formed preferentially. For 2-methoxybenzaldehyde, an equilibration of the isomers to a syn/anti ratio of 1:1 can be observed after several hours. Control experiments with radical sources or scavengers give no support for radical intermediates. NMR studies suggest a mechanism involving an organotin intermediate. The major organotin species formed depends on the reaction medium and the reaction time. The use of acidic solution reduces the reaction times, due to the acceleration of the formation of the allyltin(IV) species.

  11. Aqueous Barbier Allylation of Aldehydes Mediated by Tin

    Directory of Open Access Journals (Sweden)

    Ivani Malvestiti

    2007-08-01

    Full Text Available The aqueous tin-mediated Barbier reaction affords good to excellent yields and moderate syn diastereoselectivity under basic and acidic conditions. The high yields and stereoselectivity observed in the case of o-substituted aldehydes suggest a cyclic organotin intermediate or transition state in K2HPO4 solution. A practical and efficient aqueous tin allylation of methoxy- and hydroxybenzaldehydes can be carried out in HCl solution in 15 minutes to afford the corresponding homoallylic alcohols in high yields. Aliphatic aldehydes give moderate to excellent yields with reaction times ranging from 30 to 60 minutes. Under these conditions, crotylation gives exclusively the γ-product and the syn isomer is formed preferentially. For 2-methoxybenzaldehyde, an equilibration of the isomers to a syn/anti ratio of 1:1 can be observed after several hours. Control experiments with radical sources or scavengers give no support for radical intermediates. NMR studies suggest a mechanism involving an organotin intermediate. The major organotin species formed depends on the reaction medium and the reaction time. The use of acidic solution reduces the reaction times, due to the acceleration of the formation of the allyltin(IV species.

  12. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Saini AkalRachna K

    2011-11-01

    Full Text Available Abstract Background Allyl isothiocyanate (AITC from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC ( 1.0 μM resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. Conclusions • AITC induced toxicity in C. elegans, as measured by HSP70 expression. • Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined. • The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed.

  13. Make the most of catalytic hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Landert, J.P.; Scubla, T. [Biazzi S.A., Chailly-Montreux (Switzerland)

    1995-03-01

    Liquid-phase catalytic hydrogenation is one of the most useful and versatile reactions available for organic synthesis. Because it is environmentally clean, it has replaced other reduction processes, such as the Bechamp reaction, and zinc and sulfide reductions. Moreover, the economics are favorable, provided that raw materials free of catalyst poisons are used. The hydrogenation reaction is very selective with appropriate catalysts and can often be carried out without a solvent. Applications include reduction of unsaturated carbon compounds to saturated derivatives (for example, in vegetable-oil processing), carbonyl compounds to alcohols (such as sorbitol), and nitrocompounds to amines. the reactions are usually run in batch reactors to rapidly reach complete conversion and allow quick change-over of products. The paper describes the basics of hydrogenation; steering clear of process hazards; scale-up and optimization; and system design in practice.

  14. High throughput assay for evaluation of reactive carbonyl scavenging capacity

    Directory of Open Access Journals (Sweden)

    N. Vidal

    2014-01-01

    Full Text Available Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  15. Metallocene-catalyzed alkene polymerization and the observation of Zr-allyls

    Science.gov (United States)

    Landis, Clark R.; Christianson, Matthew D.

    2006-01-01

    Single-site polymerization catalysts enable exquisite control over alkene polymerization reactions to produce new materials with unique properties. Knowledge of catalyst speciation and fundamental kinetics are essential for full mechanistic understanding of zirconocene-catalyzed alkene polymerization. Currently the effect of activators on fundamental polymerization steps is not understood. Progress in understanding activator effects requires determination of fundamental kinetics for zirconocene catalysts with noncoordinating anions such as [B(C6F5)4]−. Kinetic NMR studies at low temperature demonstrate a very fast propagation rate for 1-hexene polymerization catalyzed by [(SBI)Zr(CH2SiMe3)][B(C6F5)4] [where SBI is rac-Me2Si(indenyl)2] with complete consumption of 1-hexene before the first NMR spectrum. Surprisingly, the first NMR spectrum reveals, aside from uninitiated catalyst, Zr-allyls as the sole catalyst-containing species. These Zr-allyls, which exist in two diastereomeric forms, have been characterized by physical and chemical methods. The mechanism of Zr-allyl formation was probed with a trapping experiment, leading us to favor a mechanism in which Zr-polymeryl undergoes β-H transfer to metal without dissociation of coordinated alkene followed by σ-bond metathesis to form H2 and Zr-allyl. Zr-allyl species undergo slow reactions with alkene but react rapidly with H2 to form hydrogenation products. PMID:17032772

  16. SYNTHESIS OF 4-ALLYL-2-METHOXY-6-AMINOPHENOL FROM NATURAL EUGENOL

    Directory of Open Access Journals (Sweden)

    I Made Sudarma

    2010-06-01

    Full Text Available The aim of this preliminary research was to synthesize derivatives of eugenol such as 4-allyl-2-methoxy-6-nitrophenol (2 and 4-allyl-2-methoxy-6-aminophenol (3. The result could be used as a reference on the transformation of eugenol to its derivatives. Theoriticaly nitration of eugenol (1 by nitric acid could produced 4-allyl-2-methoxy-6-nitrophenol (2 and followed by reduction could achieved 4-allyl-2-mehtoxy-6-aminophenol (3. The formation of this product was analyzed by analytical thin layer chromatography (TLC and GC-MS. These analysis showed the formation of product (2 and (3 were visible. TLC showed product (1 less polar than eugenol and gave orange colour, and supported by GC-MS which showed molecular ion at m/z 209 due to the presence of -NO2 by replacing one H at 6 position of eugenol. Product (3 was afforded by reduction of (2 with Sn/HCl and tlc analysis showed compound (3 more polar than eugenol (1 and (2 and supported by GC-MS which showed molecular ion at m/z 179 due to the presence of -NH2.   Keywords: Synthesis, 4-allyl-2-methoxy-6-aminophenol, Eugenol

  17. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.

    Science.gov (United States)

    Boronat, S; García-Santamarina, S; Hidalgo, E

    2015-05-01

    Oxidative modifications in proteins have been traditionally considered as hallmarks of damage by oxidative stress and aging. However, oxidants can generate a huge variety of reversible and irreversible modifications in amino acid side chains as well as in the protein backbones, and these post-translational modifications can contribute to the activation of signal transduction pathways, and also mediate the toxicity of oxidants. Among the reversible modifications, the most relevant ones are those arising from cysteine oxidation. Thus, formation of sulfenic acid or disulfide bonds is known to occur in many enzymes as part of their catalytic cycles, and it also participates in the activation of signaling cascades. Furthermore, these reversible modifications have been usually attributed with a protective role, since they may prevent the formation of irreversible damage by scavenging reactive oxygen species. Among irreversible modifications, protein carbonyl formation has been linked to damage and death, since it cannot be repaired and can lead to protein loss-of-function and to the formation of protein aggregates. This review is aimed at researchers interested on the biological consequences of oxidative stress, both at the level of signaling and toxicity. Here we are providing a concise overview on current mass-spectrometry-based methodologies to detect reversible cysteine oxidation and irreversible protein carbonyl formation in proteomes. We do not pretend to impose any of the different methodologies, but rather to provide an objective catwalk on published gel-free approaches to detect those two types of modifications, from a biologist's point of view.

  18. Toward Green Acylation of (Heteroarenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-11-01

    Full Text Available Green Friedel–Crafts acylation reactions belong to the most desired transformations in organic chemistry. The resulting ketones constitute important intermediates, building blocks, and functional molecules in organic synthesis as well as for the chemical industry. Over the past 60 years, advances in this topic have focused on how to make this reaction more economically and environmentally friendly by using green acylating conditions, such as stoichiometric acylations and catalytic homogeneous and heterogeneous acylations. However, currently well-established methodologies for their synthesis either produce significant amounts of waste or proceed under harsh conditions, limiting applications. Here, we present a new protocol for the straightforward and selective introduction of acyl groups into (hetero­arenes without directing groups by using available olefins with inexpensive CO. In the presence of commercial palladium catalysts, inter- and intramolecular carbonylative C–H functionalizations take place with good regio- and chemoselectivity. Compared to classical Friedel–Crafts chemistry, this novel methodology proceeds under mild reaction conditions. The general applicability of this methodology is demonstrated by the direct carbonylation of industrial feedstocks (ethylene and diisobutene as well as of natural products (eugenol and safrole. Furthermore, synthetic applications to drug molecules are showcased.

  19. 16th Carbonyl Metabolism Meeting: from enzymology to genomics

    Directory of Open Access Journals (Sweden)

    Maser Edmund

    2012-12-01

    Full Text Available Abstract The 16th International Meeting on the Enzymology and Molecular Biology of Carbonyl Metabolism, Castle of Ploen (Schleswig-Holstein, Germany, July 10–15, 2012, covered all aspects of NAD(P-dependent oxido-reductases that are involved in the general metabolism of xenobiotic and physiological carbonyl compounds. Starting 30 years ago with enzyme purification, structure elucidation and enzyme kinetics, the Carbonyl Society members have meanwhile established internationally recognized enzyme nomenclature systems and now consider aspects of enzyme genomics and enzyme evolution along with their roles in diseases. The 16th international meeting included lectures from international speakers from all over the world.

  20. Synthesis of optically active bifunctional building blocks through enantioselective copper-catalyzed allylic alkylation using Grignard reagents

    NARCIS (Netherlands)

    van Zijl, Anthoni W.; Lopez, Fernando; Minnaard, Adriaan J.; Feringa, Ben L.

    2007-01-01

    Enantioselective copper-catalyzed allylic alkylations were performed on allylic bromides with a protected hydroxyl or amine functional group using several Grignard reagents and Taniaphos L1 as a ligand. The terminal olefin moiety in the products was transformed into various functional groups without

  1. Dual platinum and pyrrolidine catalysis in the direct alkylation of allylic alcohols: selective synthesis of monoallylation products.

    Science.gov (United States)

    Shibuya, Ryozo; Lin, Lu; Nakahara, Yasuhito; Mashima, Kazushi; Ohshima, Takashi

    2014-04-22

    A dual platinum- and pyrrolidine-catalyzed direct allylic alkylation of allylic alcohols with various active methylene compounds to produce products with high monoallylation selectivity was developed. The use of pyrrolidine and acetic acid was essential, not only for preventing undesirable side reactions, but also for obtaining high monoallylation selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Indium- and zinc-mediated Barbier-type allylations of an N,N-(dimethylsulfamoyl)-protected aldimine and subsequent deprotection

    NARCIS (Netherlands)

    Kallstrom, Sara; Saloranta, Tiina; Minnaard, Adriaan J.; Leino, Reko; Källström, Sara

    2007-01-01

    Barbier-type Zn and In-mediated allylations of an N,N-(dimethylsulfamoyl)-protected aldimine with different allyl bromides were investigated for the preparation of N-homoallylic sulfamides. The desired N,N-(dimethylsulfamoyl)-protected products were obtained in moderate to high yields in THF as the

  3. On the Nature of the Intermediates and the Role of Chloride Ions in Pd-Catalyzed Allylic Alkylations: Added Insight from Density Functional Theory

    DEFF Research Database (Denmark)

    Fristrup, Peter; Ahlquist, Mårten Sten Gösta; Tanner, David Ackland

    2008-01-01

    The reactivity of intermediates in palladium-catalyzed allylic alkylation was investigated using DFT (B3LYP) calculations including a PB-SCRF solvation model. In the presence of both phosphine and chloride ligands, the allyl intermediate is in equilibrium between a cationic eta(3)-allylPd complex...

  4. Supported Single-Site Ti(IV) on a Metal–Organic Framework for the Hydroboration of Carbonyl Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiyuan [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Liu, Dong [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Camacho-Bunquin, Jeffrey [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Zhang, Guanghui [Department; Yang, Dali [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; López-Encarnación, Juan M. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Department; Xu, Yunjie [Department; Ferrandon, Magali S. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Niklas, Jens [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Poluektov, Oleg G. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Jellinek, Julius [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Lei, Aiwen [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Bunel, Emilio E. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Delferro, Massimiliano [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States

    2017-10-10

    ABSTRACT: A stable and structurally well-defined titanium alkoxide catalyst supported on a metal-organic-framework (MOF) of UiO-67 topology (ANL1-Ti(OiPr)2) was synthesized and fully characterized by a variety of analytical and spectroscopic techniques, including BET, TGA, PXRD, XAS, DRIFT, SEM, and DFT computations. The Ti-functionalized MOF was demonstrated active for the catalytic hydroboration of a wide range of aldehydes and ketones with HBpin as the boron source. Compared to traditional homogeneous and supported hydroboration catalysts, ANL1-Ti(OiPr)2 is completely recyclable and reusable, making it a promising hydroboration catalyst alternative for green and sustainable chemical synthesis. DFT calculations suggest that the catalytic hydroboration proceeds via a (1) hydride transfer between the active Ti-hydride species and a carbonyl moiety (rate determining step), and (2) alkoxide transfer (intramolecular σ-bond metathesis) to generate the boronate ester product.

  5. How phenyl makes a difference: mechanistic insights into the ruthenium( ii )-catalysed isomerisation of allylic alcohols

    KAUST Repository

    Manzini, Simone

    2013-10-16

    [RuCl(η5-3-phenylindenyl)(PPh3)2] (1) has been shown to be a highly active catalyst for the isomerisation of allylic alcohols to the corresponding ketones. A variety of substrates undergo the transformation, typically with 0.25-0.5 mol% of catalyst at room temperature, outperforming commonly-used complexes such as [RuCl(Cp)(PPh3) 2] and [RuCl(η5-indenyl)(PPh3) 2]. Mechanistic experiments and density functional theory have been employed to investigate the mechanism and understand the effect of catalyst structure on reactivity. These investigations suggest a oxo-π-allyl mechanism is in operation, avoiding intermediate ruthenium hydride complexes and leading to a characteristic 1,3-deuterium shift. Important mechanistic insights from DFT and experiments also allowed for the design of a protocol that expands the scope of the transformation to include primary allylic alcohols. © 2013 The Royal Society of Chemistry.

  6. Positive trends in Southern Hemisphere carbonyl sulfide

    Science.gov (United States)

    Kremser, Stefanie; Jones, Nicholas B.; Palm, Mathias; Lejeune, Bernard; Wang, Yuting; Smale, Dan; Deutscher, Nicholas M.

    2015-11-01

    Transport of carbonyl sulfide (OCS) from the troposphere to the stratosphere contributes sulfur to the stratospheric aerosol layer, which reflects incoming short-wave solar radiation, cooling the climate system. Previous analyses of OCS observations have shown no significant trend, suggesting that OCS is unlikely to be a major contributor to the reported increases in stratospheric aerosol loading and indicating a balanced OCS budget. Here we present analyses of ground-based Fourier transform spectrometer measurements of OCS at three Southern Hemisphere sites spanning 34.45°S to 77.80°S. At all three sites statistically significant positive trends are seen from 2001 to 2014 with an observed overall trend in total column OCS at Wollongong of 0.73 ± 0.03%/yr, at Lauder of 0.43 ± 0.02%/yr, and at Arrival Heights of 0.45 ± 0.05%/yr. These observed trends in OCS imply that the OCS budget is not balanced and could contribute to constraints on current estimates of sources and sinks.

  7. Catalytic Oligopeptide Synthesis.

    Science.gov (United States)

    Liu, Zijian; Noda, Hidetoshi; Shibasaki, Masakatsu; Kumagai, Naoya

    2018-02-02

    Waste-free catalytic assembly of α-amino acids is fueled by a multiboron catalyst that features a characteristic B 3 NO 2 heterocycle, providing a versatile catalytic protocol wherein functionalized natural α-amino acid units are accommodated and commonly used protecting groups are tolerated. The facile dehydrative conditions eliminate the use of engineered peptide coupling reagents, exemplifying a greener catalytic alternative for peptide coupling. The catalysis is sufficiently robust to enable pentapeptide synthesis, constructing all four amide bond linkages in a catalytic fashion.

  8. The effects of γ-irradiation on the garlic oil contents in garlic bulbs and the radiolysis of allyl trisulfide

    International Nuclear Information System (INIS)

    Wei Genshuan, Wang Guanghui; Yang Ruipu; Wu Jilan

    1995-01-01

    The study of the effects of γ-irradiation on the garlic oil contents in the garlic bulbs and the radiolysis of allyl trisulfide and disulfide were carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant as stored for 10 months long. The main components of the garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3 C HOH radical into acetaldehyde, which causes that the formation of 2,3-butanediol is extensively inhibited. (author)

  9. The effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide

    International Nuclear Information System (INIS)

    Wei Genshuan; Wang Guanghui; Yang Ruipu; Wu Jilan

    1996-01-01

    A study of the effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisufide and disulfide was carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant when stored for 10 months. The main components of garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3 C . HOH radical into acetaldehyde, which means that the formation of 2,3-butanediol is extensively inhibited. (author)

  10. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop small, low power instrumentation for the real-time direct measurement of carbonyl sulfide (OCS) in the atmosphere, especially...

  11. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR program, Southwest Sciences will continue the development of small, low power instrumentation for real-time direct measurement of carbonyl...

  12. Efficiency of Carbonyl Iron in Prevention of Anaemia in Piglets

    Directory of Open Access Journals (Sweden)

    M. Svoboda

    2007-01-01

    Full Text Available The aim of this study was to evaluate efficiency of elemental iron preparation in the form of carbonyl iron in prevention of iron deficiency in piglets. The piglets in group I (n = 14 were given 210 mg of carbonyl iron orally at the age of 3 days. The piglets in group II (n = 15 received 210 mg of carbonyl iron orally on days 3 and 9. In group III (n = 14 the piglets were injected i.m. with 200 mg Fe3+ as iron dextran. Fourteen days after birth, haemoglobin concentration in group I started to decrease and the piglets developed anaemia. In group II, at the age of 28 days, Hb dropped below 80 g/l and the piglets developed anaemia. Under conditions of this trial, the oral administration of carbonyl iron did not prevent development of iron deficiency in piglets.

  13. Targeting Reactive Carbonyl Species with Natural Sequestering Agents

    Directory of Open Access Journals (Sweden)

    Sung Won Hwang

    2016-02-01

    Full Text Available Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents for reactive carbonyl species, various analytical techniques such as spectrophotometry, high performance liquid chromatography, western blot, and mass spectrometry have been utilized. In particular, recent advances using a novel high resolution mass spectrometry approach allows screening of complex mixtures such as natural products for their sequestering ability of reactive carbonyl species. To overcome the limited bioavailability and bioefficacy of natural products, new techniques using nanoparticles and nanocarriers may offer a new attractive strategy for increased in vivo utilization and targeted delivery of bioactives.

  14. Aerobic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by ...

    Indian Academy of Sciences (India)

    hydroxyphthalimide. 1. Introduction. The selective oxidation of alcohols to the corresponding carbonyl compounds is one of the most important reac- tions in organic synthesis and fine chemical industries.1. Numerous methods have been developed for the ...

  15. Synthesis of main-chain metal carbonyl organometallic macromolecules (MCMCOMs).

    Science.gov (United States)

    Cao, Kai; Murshid, Nimer; Wang, Xiaosong

    2015-04-01

    Synthesis of main-chain metal carbonyl organometallic macromolecules (MCMCOMs) is difficult, mainly due to the instability of metal carbonyl complexes. Despite its challenge a number of MCMCOMs has been prepared by strategically using organometallic, organic, and polymer synthetic chemistry. Main contributions to this research field were reported by the groups of Tyler, Pannell, and Wang and are briefly summarized in this article. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Allylic azides as potential building blocks for the synthesis of nitrogenated compounds

    Directory of Open Access Journals (Sweden)

    Sá Marcus M.

    2003-01-01

    Full Text Available The synthetic potential of multifunctional allylic azides and imines in attempted intramolecular cyclizations to nitrogen-containing heterocycles was investigated. Tandem Staudinger/aza-Wittig reaction of (E-3-aryl-2-(azidomethylpropenoates with triphenylphosphine and aldehydes yielded N-allylic imines in good yield. The (E-stereochemistry of C=C and C=N bonds was assigned based on NOESY experiments. AlCl3 mediated formation of 3-carbomethoxyquinoline from methyl (E-2-(azidomethyl-3-phenylpropenoate is also described.

  17. Surprisingly Mild Enolate-Counterion-Free Pd(0)-Catalyzed Intramolecular Allylic Alkylations

    DEFF Research Database (Denmark)

    Madec, David; Prestat, Guillaume; Martini, Elisabetta

    2005-01-01

    Palladium-catalyzed intramolecular allylic alkylations of unsaturated EWG-activated amides can take place under phase-transfer conditions or in the presence of a crown ether. These new reaction conditions are milder and higher yielding than those previously reported. A rationalization for such an......Palladium-catalyzed intramolecular allylic alkylations of unsaturated EWG-activated amides can take place under phase-transfer conditions or in the presence of a crown ether. These new reaction conditions are milder and higher yielding than those previously reported. A rationalization...

  18. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Nils Klüver

    Full Text Available Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L. Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1 during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos. Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L. Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes

  19. Use of Cyclic Allylic Bromides in the Zinc–Mediated Aqueous Barbier–Grignard Reaction

    OpenAIRE

    Breton, Gary W.; Shugart, John H.; Hughey, Christine A.; Conrad, Brian P.; Perala, Suzanne M.

    2001-01-01

    The zinc–mediated aqueous Barbier–Grignard reaction of cyclic allylic bromide substrates with various aldehydes and ketones to afford homoallylic alcohols was investigated. Aromatic aldehydes and ketones afforded adducts in good yields (66–90%) and with good diastereoselectivities. Non–aromatic aldehydes also reacted well under these conditions, but only poor yields were obtained with non–aromatic ketones. Regioselectivity was high when some substituted cyclic allylic...

  20. Antimicrobial activity of allylic thiocyanates derived from the Morita-Baylis-Hillman reaction

    Directory of Open Access Journals (Sweden)

    Marcus Mandolesi Sá

    2014-09-01

    Full Text Available Bacterial resistance to commonly used antibiotics has been recognized as a significant global health issue. In this study, we carried out the screening of a family of allylic thiocyanates for their action against a diversity of bacteria and fungi with a view to developing new antimicrobial agents. Allylic thiocyanates bearing halogenated aryl groups, which were readily obtained in two steps from the Morita-Baylis-Hillman adducts, showed moderate-to-high activity against selective pathogens, including a methicillin-resistant S. aureus (MRSA strain. In particular cases, methyl (Z-3-(2,4-dichlorophenyl-2-(thiocyanomethyl-2-propenoate exhibited antimicrobial activity comparable to the reference antibiotic Imipenem.

  1. Antimicrobial activity of allylic thiocyanates derived from the Morita-Baylis-Hillman reaction.

    Science.gov (United States)

    Sá, Marcus Mandolesi; Ferreira, Misael; Lima, Emerson Silva; dos Santos, Ivanildes; Orlandi, Patrícia Puccinelli; Fernandes, Luciano

    2014-01-01

    Bacterial resistance to commonly used antibiotics has been recognized as a significant global health issue. In this study, we carried out the screening of a family of allylic thiocyanates for their action against a diversity of bacteria and fungi with a view to developing new antimicrobial agents. Allylic thiocyanates bearing halogenated aryl groups, which were readily obtained in two steps from the Morita-Baylis-Hillman adducts, showed moderate-to-high activity against selective pathogens, including a methicillin-resistant S. aureus (MRSA) strain. In particular cases, methyl (Z)-3-(2,4-dichlorophenyl)-2-(thiocyanomethyl)-2-propenoate exhibited antimicrobial activity comparable to the reference antibiotic Imipenem.

  2. Studies of coupled chemical and catalytic coal conversion methods. Tenth quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.

    1990-12-31

    This report concerns our research on base-catalyzed coal solubilization and a new approach for hydrogen addition. The work on base-catalyzed, chemical solubilization is continuing. this report is focused on the hydrogenation research. Specifically it deals with the use of arene chromium carbonyl complexes as reagents for the addition of dideuterium to coal molecules. In one phase of the work, he has established that the aromatic hydrocarbons in a representative coal liquid can be converted in very good yield to arene chromium carbonyl compounds. In a second phase of the work directly related to our objective of improved methods for catalytic hydrogenation, he has established that the aromatic constituents of the same coal liquid add dideuterium in the presence of added napththalene chromium carbonyl.

  3. Carbonyl species characteristics during the evaporation of essential oils

    Science.gov (United States)

    Chiang, Hsiu-Mei; Chiu, Hua-Hsien; Lai, Yen-Ming; Chen, Ching-Yen; Chiang, Hung-Lung

    2010-06-01

    Carbonyls emitted from essential oils can affect the air quality when they are used in indoors, especially under poor ventilation conditions. Lavender, lemon, rose, rosemary, and tea tree oils were selected as typical and popular essential oils to investigate in terms of composition, thermal characteristics and fifteen carbonyl constituents. Based on thermogravimetric (TG) analysis, the activation energy was 7.6-8.3 kcal mol -1, the reaction order was in the range of 0.6-0.7 and the frequency factor was 360-2838 min -1. Formaldehyde, acetaldehyde, acetone, and propionaldehyde were the dominant carbonyl compounds, and their concentrations were 0.034-0.170 ppm. The emission factors of carbonyl compounds were 2.10-3.70 mg g -1, and acetone, propionaldehyde, acetaldehyde, and formaldehyde accounted for a high portion of the emission factor of carbonyl compounds in essential oil exhaust. Some unhealthy carbonyl species such as formaldehyde and valeraldehyde, were measured at low-temperature during the vaporization of essential oils, indicating a potential effect on indoor air quality and human health.

  4. Crystal structure of 4′-allyl-4,5,6,7,2′,7′-hexachlorofluorescein allyl ester unknown solvate

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-01-01

    Full Text Available In the title compound, 4′-allyl-4,5,6,7,2′,7′-hexachlorofluorescein allyl ester {systematic name: prop-2-en-1-yl 2,3,4,5-tetrachloro-6-[2,7-dichloro-6-hydroxy-3-oxo-4-(prop-2-en-1-yl-3H-xanthen-9-yl]benzoate}, C26H14Cl6O5, accompanied by unknown solvate molecules, the dihedral angle between the xanthene ring system (r.m.s. deviation = 0.046 Å and the pentasubstituted benzene ring is 71.67 (9°. Both allyl groups are disordered over two sets of sites in statistical ratios. The scattering contributions of the disordered solvent molecules (both Ph2O and CHCl3, as identified by NMR were removed with the PLATON SQUEEZE algorithm [Spek (2015. Acta Cryst. C71, 9–18]. In the crystal, tetrameric supramolecular aggregates linked by O—H...O hydrogen bonds occur; these further interact with neighboring aggregates through C—Cl...π interactions arising from the benzene rings, forming infinite two-dimensional sheets. Each C6Cl4 ring shifts in the direction perpendicular to the two-dimensional sheet, exhibiting a helical chain in which every C6Cl4 ring is utilized as both a donor and an acceptor of Cl...π contacts. Thus, these two-dimensional sheets pack in a helical fashion, constructing a three-dimensional network.

  5. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... ether, and ethylene oxide. 721.7000 Section 721.7000 Protection of Environment ENVIRONMENTAL PROTECTION... ethylene oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  6. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 2

    NARCIS (Netherlands)

    Keppler, Julia K.; Steffen-Heins, Anja; Berton-Carabin, Claire C.; Ropers, Marie Hélène; Schwarz, Karin

    2018-01-01

    Allyl isothiocyanate (AITC) is a small electrophilic molecule which can be found in cabbage after degradation of glucosinolates. The covalent attachment of AITC to whey protein isolate (WPI) was previously reported to increase their hydrophobicity and structural flexibility at acidic pH values. It

  7. Synthesis of telechelic vinyl/allyl functional siloxane copolymers with structural control

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Javakhishvili, Irakli; Jensen, Rasmus Egekjær

    2014-01-01

    Multifunctional siloxane copolymers with terminal vinyl or allyl functional groups are synthesised through the borane-catalysed polycondensation of hydrosilanes and alkoxysilanes. Copolymers of varying mole- cular weights ( M ̄ w =13200 – 70 300 g mol − 1 ), spatially well-distributed functional ...

  8. FeCl3 catalysed regioselective allylation of phenolic substrates with ...

    Indian Academy of Sciences (India)

    Oxylipid from brown algae (IV). Chart 1. Selected products obtained using vinylphospho- nates. cyclic phosphonate is that in general, it leads to solid crystalline products. Removal of α-OH by a Lewis acid. (LA) can lead to allyl cation V which is in resonance with VI. Hence if arylation is accomplished, we can get either an ...

  9. Enantioselective Allylation of Thiophene-2-carbaldehyde: Formal Total Synthesis of Duloxetine

    Czech Academy of Sciences Publication Activity Database

    Motloch, P.; Valterová, Irena; Kotora, M.

    2014-01-01

    Roč. 356, č. 1 (2014), s. 199-204 ISSN 1615-4150 Grant - others:GA ČR(CZ) GAP207/11/0587 Institutional support: RVO:61388963 Keywords : aldehydes * allylation * Lewis bases * organocatalysis * synthetic methods Subject RIV: CC - Organic Chemistry Impact factor: 5.663, year: 2014

  10. Copper-catalyzed asymmetric allylic substitution reactions with organozinc and Grignard reagents

    NARCIS (Netherlands)

    Geurts, Koen; Fletcher, Stephen P.; van Zijl, Anthoni W.; Minnaard, Adriaan J.; Feringa, Ben L.; Bignall, H. E.; Jauncey, D. L.; Lovell, J. E. J.; Tzioumis, A. K.; Kedziora-Chudczer, L. L.; MacQuart, J. P.; Tingay, S. J.; Rayner, D. P.; Clay, R. W.

    Asymmetric allylic alkylations (AAAs) are among the most powerful C-C bond-forming reactions. We present a brief overview of copper-catalyzed AAAs with organometallic reagents and discuss our own contributions to this field. Work with zinc reagents and phosphoramidite ligands provided a framework

  11. A convenient procedure for the synthesis of allyl and benzyl ethers ...

    Indian Academy of Sciences (India)

    Unknown

    (scheme 1). Even though benzyl protection on a carbohydrate substrate was previously carried out with benzyl chloride in the presence of potassium hydroxide pellets 9, the scope of the reaction was not fully explored. While our work was in progress, Bogdal and coworkers recently reported 10 solvent-free allyl and benzyl ...

  12. Cu-Catalyzed Asymmetric Allylic Alkylation of Phosphonates and Phosphine Oxides with Grignard Reagents

    NARCIS (Netherlands)

    Hornillos, Valentin; Perez, Manuel; Fananas-Mastral, Martin; Feringa, Ben L.

    An efficient and highly enantioselective copper-catalyzed allylic alkylation of phosphonates and phosphine oxides with Grignard reagents and Taniaphos or phosphoramidites as chiral ligands is reported. Transformation of these products leads to a variety of new phosphorus-containing chiral

  13. Nematicidal activity of allyl bromide and dibromo(nitro)methane under laboratory conditions.

    Science.gov (United States)

    Oka, Yuji; Shuker, Shimshon; Tkachi, Nadia

    2016-01-01

    Restrictions on soil fumigants are prompting the development of new compounds for controlling nematodes, other soilborne pathogens and weeds. We evaluated the nematicidal activity of five bromine compounds against Meloidogyne javanica in vitro, and tested the two most effective ones against Pratylenchus penetrans and Xiphinema index in vitro and in soil. Only allyl bromide and dibromo(nitro)methane showed nematicidal activity against M. javanica juveniles in vitro at activity than dibromo(nitro)methane against M. javanica and P. penetrans in soil. Allyl bromide at 40 and 20 mg L(-1) soil eliminated root galls and nematode eggs on tomato roots grown in M. javanica-inoculated loess and sandy soils respectively, showing higher nematicidal activity than 1,3-dichloropropene. No P. penetrans were recovered from soil treated with 80 mg allyl bromide L(-1) soil or 320 mg dibromo(nitro)methane L(-1) soil. Allyl bromide showed high nematicidal activity against all three nematode species, and nematicidal activity of dibromo(nitro)methane was discovered. These compounds could serve as new fumigation nematicides, pending further experiments. © 2015 Society of Chemical Industry.

  14. Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Hansen, E. Louise; Kane, John

    2001-01-01

    A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed by asy...

  15. Enantioselective copper catalyzed allylic alkylation using Grignard reagents; Applications in synthesis

    NARCIS (Netherlands)

    Zijl, Anthoni Wouter van

    2009-01-01

    Enantioselective copper catalyzed allylic alkylation is a powerful carbon-carbon bond forming reaction. In this thesis the development of a new catalyst for the use of Grignard reagents in this reaction is described. This catalyst is based on copper and the ligand Taniaphos. The high regio- and

  16. Bio-based acrylic acid from sugar via propylene glycol and allyl alcohol

    NARCIS (Netherlands)

    Pramod, C. V.; Fauziah, R.; Seshan, K.; Lange, J. P.

    2018-01-01

    A new route for producing bio-based acrylic acid is proposed. It starts with the conversion of carbohydrates to propylene glycol, being main or by-product, and proceeds via a subsequent dehydration to allyl alcohol under gas-phase conditions over K-modified ZrO2 and a final oxidation over MoWVOx

  17. Preparation of pyrrolizinone derivatives via sequential transformations of cyclic allyl imides: synthesis of quinolactacide and marinamide.

    Science.gov (United States)

    Simic, Milena; Tasic, Gordana; Jovanovic, Predrag; Petkovic, Milos; Savic, Vladimir

    2018-03-28

    A facile synthetic route has been developed for the preparation of pyrrolizinone derivatives employing N-allyl imides as starting materials. The nucleophilic addition of a vinyl Grignard reagent/RCM/elimination sequence afforded pyrrolizinones in good yields and has been applied for the preparation of naturally occurring quinolactacide and marinamide.

  18. Enantioselective Copper-Catalyzed Arylation-Driven Semipinacol Rearrangement of Tertiary Allylic Alcohols with Diaryliodonium Salts.

    Science.gov (United States)

    Lukamto, Daniel H; Gaunt, Matthew J

    2017-07-12

    A copper-catalyzed enantioselective arylative semipinacol rearrangement of allylic alcohols using diaryliodonium salts is reported. Chiral Cu(II)-bisoxazoline catalysts initiate an electrophilic alkene arylation, triggering a 1,2-alkyl migration to afford a range of nonracemic spirocyclic ketones with high yields, diastereo- and enantioselectivities.

  19. On the key role of water in the allylic activation catalysed by Pd (II ...

    Indian Academy of Sciences (India)

    Palladium and platinum complexes of bisphosphinites and bisphosphines derived from mandelic acid have been prepared and characterized. Their ability to catalyze allylation of imines with allyltributylstannane has been studied. Bisphophinite complexes of Pd (II) are shown to be ideal and they work best in the presence ...

  20. On the key role of water in the allylic activation catalysed by Pd (II ...

    Indian Academy of Sciences (India)

    On the key role of water in the allylic activation catalysed by Pd (II) bisphosphinite complexes. RAKESH KUMAR SHARMA and ASHOKA G SAMUELSON*. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 e-mail: ashoka@ipc.iisc.ernet.in. Abstract. Palladium and platinum ...

  1. Reactivity of olefin and allyl ligands in π-complexes of metals

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    The data on reactivity of olefin and allyl ligands in transition metal (Ru, W) π-complexes, published up to 1984 are presented. Metal ion coordination of olefins causes their appreciable reactivity change. Transformations of π-olefin ligands into σ-alkyl ones, interaction of π-complexes with oxygen nucleophilic reagents, amines, halogenides and pseudohalogenides are considered

  2. Organocatalytic asymmetric allylic amination of Morita–Baylis–Hillman carbonates of isatins

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2012-08-01

    Full Text Available The investigation of a Lewis base catalyzed asymmetric allylic amination of Morita–Baylis–Hillman carbonates derived from isatins afforded an electrophilic pathway to access multifunctional oxindoles bearing a C3-quaternary stereocenter, provided with good to excellent enantioselectivity (up to 94% ee and in high yields (up to 97%.

  3. Organocatalytic asymmetric allylic amination of Morita-Baylis-Hillman carbonates of isatins.

    Science.gov (United States)

    Zhang, Hang; Zhang, Shan-Jun; Zhou, Qing-Qing; Dong, Lin; Chen, Ying-Chun

    2012-01-01

    The investigation of a Lewis base catalyzed asymmetric allylic amination of Morita-Baylis-Hillman carbonates derived from isatins afforded an electrophilic pathway to access multifunctional oxindoles bearing a C3-quaternary stereocenter, provided with good to excellent enantioselectivity (up to 94% ee) and in high yields (up to 97%).

  4. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  5. Syntheses of a Flobufen Metabolite and Dapoxetine Based on Enantioselective Allylation of Aromatic Aldehydes

    Czech Academy of Sciences Publication Activity Database

    Hessler, F.; Korotvička, A.; Nečas, D.; Valterová, Irena; Kotora, M.

    2014-01-01

    Roč. 2014, č. 12 (2014), s. 2543-2548 ISSN 1434-193X Grant - others:GA ČR(CZ) GAP207/11/0587 Institutional support: RVO:61388963 Keywords : synthetic methods * asymmetric catalysis * organocatalysis * allylation * aldehydes * enantioselectivity Subject RIV: CC - Organic Chemistry Impact factor: 3.065, year: 2014

  6. A Regio- and Enantioselective CuH-Catalyzed Ketone Allylation with Terminal Allenes.

    Science.gov (United States)

    Tsai, Erica Y; Liu, Richard Y; Yang, Yang; Buchwald, Stephen L

    2018-02-14

    We report a method for the highly enantioselective CuH-catalyzed allylation of ketones that employs terminal allenes as allylmetal surrogates. Ketones and allenes bearing diverse and sensitive functional groups are efficiently coupled with high stereoselectivity and exclusive branched regioselectivity. In stoichiometric experiments, each elementary step of the proposed hydrocupration-addition-metathesis mechanism can be followed by NMR spectroscopy.

  7. Iterative asymmetric allylic substitutions: syn- and anti-1,2-diols through catalyst control.

    Science.gov (United States)

    Park, Jin Kyoon; McQuade, D Tyler

    2012-03-12

    A copper-catalyzed asymmetric allylic boronation (AAB) gives access to syn- and anti-1,2-diols. The method facilitates an iterative strategy for the preparation of polyols, such as the fully differentiated L-ribo-tetrol and protected D-arabino-tetrol. P=protecting group. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rationalizing Ring-Size Selectivity in Intramolecular Pd-Catalyzed Allylations of Resonance-Stabilized Carbanions

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Mader, Mary M.; Vitale, Maxime

    2003-01-01

    Computational methods were applied to the Pd-catalyzed intramolecular allylations of resonance-stabilized carbanions obtained from amide and ketone substrates, with the aim of rationalizing the endo- vs. exo-selectivity in the cyclizations. In addition, ester substrates were prepared and subjecte...

  9. Design of supramolecular metal complex catalytic systems for organic and petrochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Karakhanov, Eduard A; Maksimov, Anton L; Runova, Elena A [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2005-01-31

    The state-of-the-art in investigations into the supramolecular catalysis by metal complexes using macrocyclic receptor molecules is surveyed. The emphasis is placed on issues related to the design of novel metal complex catalysts capable of molecular recognition and to their applications in organic synthesis, in particular, in such reactions as hydrogenation, hydroformylation, carbonylation, hydroxylation, Wacker oxidation, biomimetic oxidation, and some others. The factors affecting the activity, stability and selectivity of such catalytic systems are discussed.

  10. Determination of Carbonyl Compounds in Exhaled Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu S

    2014-12-01

    Full Text Available This paper presents the findings on a quantitative evaluation of carbonyl levels in exhaled cigarette smoke from human subjects. The cigarettes evaluated include products with 5.0 mg ‘tar’, 10.6 mg ‘tar’ and 16.2 mg ‘tar’, where ‘tar’ is defined as the weight of total wet particulate matter (TPM minus the weight of nicotine and water, and the cigarettes are smoked following U.S. Federal Trade Commission (FTC recommendations. The measured levels of carbonyls in the exhaled smoke were compared with calculated yields of carbonyls in the inhaled smoke and a retention efficiency was obtained. The number of human subjects included a total of ten smokers for the 10.6 mg ‘tar’, five for the 16.2 mg ‘tar’, and five for the 5.0 mg ‘tar’ product, each subject smoking three cigarettes. The analyzed carbonyl compounds included several aldehydes (formaldehyde, acetaldehyde, acrolein, propionaldehyde, crotonaldehyde and n-butyraldehyde, and two ketones (acetone and 2-butanone. The smoke collection from the human subjects was vacuum assisted. Exhaled smoke was collected on Cambridge pads pretreated with a solution of dinitrophenylhydrazine (DNPH followed by high performance liquid chromatography (HPLC analysis of the dinitrophenylhydrazones of the carbonyl compounds. The cigarette butts from the smokers were collected and analyzed for nicotine. The nicotine levels for the cigarette butts from the smokers were used to calculate the level of carbonyls in the inhaled smoke, based on calibration curves. These were generated separately by analyzing the carbonyls in smoke and the nicotine in the cigarette butts obtained by machine smoking under different puffing regimes. The comparison of the level of carbonyl compounds in exhaled smoke with that from the inhaled smoke showed high retention of all the carbonyls. The retention of aldehydes was above 95% for all three different ‘tar’ levels cigarettes. The ketones were retained with a

  11. Emissions of carbonyl compounds from various cookstoves in China

    International Nuclear Information System (INIS)

    Zhang, J.; Smith, K.R.; Univ. of California, Berkeley, CA

    1999-01-01

    This paper presents a new database of carbonyl emission factors for commonly used cookstoves in China. The emission factors, reported both on a fuel-mass basis (mg/kg) and on a defined cooking-task basis (mg/task), were determined using a carbon balance approach for 22 types of fuel/stove combinations. These include various stoves using different species of crop residues and wood, kerosene, and several types of coals and gases. The results show that all the tested cookstoves produced formaldehyde and acetaldehyde and that the vast majority of the biomass stoves produced additional carbonyl compounds such as acetone, acrolein, propionaldehyde, crotonaldehyde, 2-butanone, isobutyraldehyde, butyraldehyde, isovaleraldehyde, valeraldehyde, hexaldehyde, benzaldehyde, o-tolualdehyde, m,p-tolualdehyde, and 2,4-dimethylbenzaldehyde. Carbonyls other than formaldehyde and acetaldehyde, however, were rarely generated by burning coal, coal gas, and natural gas. Kerosene and LPG stoves generated more carbonyl compounds than coal, coal gas, and natural gas stoves, but less than biomass stoves. Indoor levels of carbonyl compounds for typical village houses during cooking hours, estimated using a mass balance model and the measured emission factors, can be high enough to cause acute health effects documented for formaldehyde exposure, depending upon house parameters and individuals' susceptibility

  12. Biosynthesis of a linoleic acid allylic epoxide: mechanistic comparison with its chemical synthesis and leukotriene A biosynthesiss⃞

    Science.gov (United States)

    Niisuke, Katrin; Boeglin, William E.; Murray, John J.; Schneider, Claus; Brash, Alan R.

    2009-01-01

    Biosynthesis of the leukotriene A (LTA) class of epoxide is a lipoxygenase-catalyzed transformation requiring a fatty acid hydroperoxide substrate containing at least three double bonds. Here, we report on biosynthesis of a dienoic analog of LTA epoxides via a different enzymatic mechanism. Beginning with homolytic cleavage of the hydroperoxide moiety, a catalase/peroxidase-related hemoprotein from Anabaena PCC 7120, which occurs in a fusion protein with a linoleic acid 9R-lipoxygenase, dehydrates 9R-hydroperoxylinoleate to a highly unstable epoxide. Using methods we developed for isolating extremely labile compounds, we prepared and purified the epoxide and characterized its structure as 9R,10R-epoxy-octadeca-11E,13E-dienoate. This epoxide hydrolyzes to stable 9,14-diols that were reported before in linoleate autoxidation (Hamberg, M. 1983. Autoxidation of linoleic acid: Isolation and structure of four dihydroxy octadecadienoic acids. Biochim. Biophys. Acta 752: 353–356) and in incubations with the Anabaena enzyme (Lang, I., C. Göbel, A. Porzel, I. Heilmann, and I. Feussner. 2008. A lipoxygenase with linoleate diol synthase activity from Nostoc sp. PCC 7120. Biochem. J. 410: 347–357). We also prepared an equivalent epoxide from 13S-hydroperoxylinoleate using a “biomimetic” chemical method originally described for LTA4 synthesis and showed that like LTA4, the C18.2 epoxide conjugates readily with glutathione, a potential metabolic fate in vivo. We compare and contrast the mechanisms of LTA-type allylic epoxide synthesis by lipoxygenase, catalase/peroxidase, and chemical transformations. These findings provide new insights into the reactions of linoleic acid hydroperoxides and extend the known range of catalytic activities of catalase-related hemoproteins. PMID:19244216

  13. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  14. Catalytic Functions of Standards

    NARCIS (Netherlands)

    K. Blind (Knut)

    2009-01-01

    textabstractThe three different areas and the examples have illustrated several catalytic functions of standards for innovation. First, the standardisation process reduces the time to market of inventions, research results and innovative technologies. Second, standards themselves promote the

  15. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  16. Z-Selective Catalytic Olefin Cross-Metathesis

    Science.gov (United States)

    Meek, Simon J.; O’Brien, Robert V.; Llaveria, Josep; Schrock, Richard R.; Hoveyda, Amir H.

    2011-01-01

    Alkenes are found in a great number of biologically active molecules and are employed in numerous transformations in organic chemistry. Many olefins exist as E or higher energy Z isomers. Catalytic procedures for stereoselective formation of alkenes are therefore valuable; nonetheless, methods for synthesis of 1,2-disubstituted Z olefins are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and allylic amides, employed thus far only in E-selective processes; the corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. Transformations, promoted by catalysts that contain the highly abundant and inexpensive molybdenum, are amenable to gram scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. Utility is demonstrated by syntheses of anti-oxidant C18 (plasm)-16:0 (PC), found in electrically active tissues and implicated in Alzheimer’s disease, and the potent immunostimulant KRN7000. PMID:21430774

  17. Magnetorheological Fluids with Carbonyl and Water Atomized Iron Powders

    Science.gov (United States)

    Bombard, Antonio J. F.; Teodoro, João Victor R.

    Our aim in this work was to propose the use of a ternary blend of two carbonyl iron powder CIP, mixed with water atomized iron powder (WAIP), to reduce the off-state viscosity, without prejudice of MRF performance in terms of yield stress and torque output. The idea of mix water atomized iron powder with carbonyl iron powder is not new. The US Pat. # 5,900,184 by Weiss et al. (1999) describes that a binary blend, half-to-half, can reduces the viscosity of MRF in the absence of magnetic field, and increase the torque output under field.

  18. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    Science.gov (United States)

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  19. Indium-mediated asymmetric Barbier-type allylation of aldimines in alcoholic solvents: synthesis of optically active homoallylic amines.

    Science.gov (United States)

    Vilaivan, Tirayut; Winotapan, Chutima; Banphavichit, Vorawit; Shinada, Tetsuro; Ohfune, Yasufumi

    2005-04-29

    [reaction: see text] Chiral aldimines derived from phenylglycinol were diastereoselectively allylated with indium powder/allyl bromide in alcoholic solvents. Both aliphatic and aromatic aldimines provided good yield of the desired products with high diastereoselectivity. A racemization-free protocol for removal of the phenylglycinol auxiliary was also developed. The stereochemical assignment of the homoallylic amine was made by NMR spectroscopy and a transition state model was proposed to explain the selectivity.

  20. Allylic chlorination of terpenic olefins using a combination of MoCl{sub 5} and NaOCl

    Energy Technology Data Exchange (ETDEWEB)

    Boualy, Brahim; Firdoussi, Larbi El; Ali, Mustapha Ait; Karim, Abdellah, E-mail: elfirdoussi@ucam.ac.m [Universite Cadi Ayyad, Marrakech (Morocco). Faculte des Sciences Semlalia. Lab. de Chimie de Coordination

    2011-07-01

    MoCl{sub 5} is applied as efficient agent in allylic chlorination of terpenic olefins in the presence of NaOCl as chlorine donor. Various terpenes are converted to the corresponding allylic chlorides in moderate to good yield under mild and optimized reaction conditions. Different molybdenum precursors are also studied. Among them, MoO{sub 3} gives good yield, but after a longer reaction time. (author)

  1. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.

    Science.gov (United States)

    Chakraborty, Sumit; Bhattacharya, Papri; Dai, Huiguang; Guan, Hairong

    2015-07-21

    The reductions of aldehydes, ketones, and esters to alcohols are important processes for the synthesis of chemicals that are vital to our daily life, and the reduction of CO2 to methanol is expected to provide key technology for carbon management and energy storage in our future. Catalysts that affect the reduction of carbonyl compounds often contain ruthenium, osmium, or other precious metals. The high and fluctuating price, and the limited availability of these metals, calls for efforts to develop catalysts based on more abundant and less expensive first-row transition metals, such as nickel and iron. The challenge, however, is to identify ligand systems that can increase the thermal stability of the catalysts, enhance their reactivity, and bypass the one-electron pathways that are commonly observed for first-row transition metal complexes. Although many other strategies exist, this Account describes how we have utilized pincer ligands along with other ancillary ligands to accomplish these goals. The bis(phosphinite)-based pincer ligands (also known as POCOP-pincer ligands) create well-defined nickel hydride complexes as efficient catalysts for the hydrosilylation of aldehydes and ketones and the hydroboration of CO2 to methanol derivatives. The hydride ligands in these complexes are substantially nucleophilic, largely due to the enhancement by the strongly trans-influencing aryl groups. Under the same principle, the pincer-ligated nickel cyanomethyl complexes exhibit remarkably high activity (turnover numbers up to 82,000) for catalytically activating acetonitrile and the addition of H-CH2CN across the C═O bonds of aldehydes without requiring a base additive. Cyclometalation of bis(phosphinite)-based pincer ligands with low-valent iron species "Fe(PR3)4" results in diamagnetic Fe(II) hydride complexes, which are active catalysts for the hydrosilylation of aldehydes and ketones. Mechanistic investigation suggests that the hydride ligand is not delivered to the

  2. One-pot desymmetrizing hydroformylation/carbonyl ene cyclization process: straightforward access to highly functionalized cyclohexanols.

    Science.gov (United States)

    Bigot, Aurélien; Breuninger, Daniel; Breit, Bernhard

    2008-12-04

    Rapid access to highly functionalized alkylidene cyclohexanols through a one-pot desymmetrizing hydroformylation/carbonyl ene cyclization starting from simple bisalkenylcarbinols is reported. Mechanistic insight into the carbonyl ene reaction is given, highlighting the importance of hyperconjugative substituent effects.

  3. Deactivation mechanism of the simultaneous removal of carbonyl ...

    Indian Academy of Sciences (India)

    KAI LI

    2017-11-10

    Nov 10, 2017 ... REGULAR ARTICLE. Deactivation mechanism of the simultaneous removal of carbonyl sulphide and carbon disulphide over Fe–Cu–Ni/MCSAC catalysts. KAI LIa, XIN SONGa, CHI WANGb, YI MEIb, XIN SUNa and PING NINGa,∗. aFaculty of Environmental Science and Engineering, Kunming University of ...

  4. Electromagnetic properties of carbonyl iron and their microwave ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The complex permittivity, permeability and microwave-absorbing properties of rubber composites filled with carbonyl iron are measured at frequencies from 2–18 GHz. The results indicate that the reflection loss peak shifts towards low frequency region with increasing layer thickness or increasing weight concentra-.

  5. CARBONYL SULFIDE INHALATION PRODUCES BRAIN LESIONS IN F344 RATS.

    Science.gov (United States)

    Carbonyl sulfide (COS) is an intermediate in the production of pesticides and herbicides, and is a metabolite of the neurotoxicant carbon disulfide. The potential neurotoxicity of inhaled COS was investigated in F344 rats. Male rats were exposed to 0, 75, 150, 300, or 600 ppm COS...

  6. Electromagnetic properties of carbonyl iron and their microwave ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 5. Electromagnetic properties of carbonyl iron and their microwave absorbing characterization as filler in silicone rubber. Yuping Duan ... These results show that the composites possess good microwave absorbing ability in both low- and highfrequency bands.

  7. cyclo-addition reaction of triplet carbonyl compounds to substituted ...

    Indian Academy of Sciences (India)

    Abstract. Regioselectivity of the photochemical [2 + 2] cyclo-addition of triplet carbonyl compounds with a series of ground state electron-rich and electron-poor alkenes, the Paterno-Büchi reaction, is studied. Activation barriers for the first step of the triplet reaction are computed in the case of the O-attack. Next, the observed ...

  8. Sampling And Analysis Of Carbonyl In Laboratory Atmospheres ...

    African Journals Online (AJOL)

    A sampling and analytical method has been developed for carbonyl concentrations in different laboratory atmospheres at the faculty of Science Bayero University; Kano, Nigeria using cold oximation followed by titrimetric finish. The analysis was carried out between 008 and 1800 hrs from from October 2002 to June 2003.

  9. Hyperfine coupling constants in muonium adducts of the carbonyl bond

    International Nuclear Information System (INIS)

    Cox, S.F.J.; Scott, C.A.; Geeson, D.A.; Rhodes, C.J.; Symons, M.C.R.; Roduner, E.

    1986-01-01

    A representative series is studied of organic radicals formed by the effective addition of muonium to the carbonyl oxygen atom of aldehydes, ketones, esters and amides. Low values of the muon-electron hyperfine coupling are measured which are particularly sensitive to radical structure and dynamics. The systematics of these values are discussed in terms of the opposing contributions of conjugation and hyperconjugation. (orig.)

  10. Olefination of carbonyl compounds: modern and classical methods

    Energy Technology Data Exchange (ETDEWEB)

    Korotchenko, V N; Nenajdenko, Valentine G; Balenkova, Elizabeth S [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Shastin, Aleksey V [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2004-10-31

    The published data on the methods for alkene synthesis by olefination of carbonyl compounds are generalised and systematised. The main attention is given to the use of transition metals and organoelement compounds. The review covers the data on both classical and newly developed methods that are little known to chemists at large.

  11. Olefination of carbonyl compounds: modern and classical methods

    Science.gov (United States)

    Korotchenko, V. N.; Nenajdenko, Valentine G.; Balenkova, Elizabeth S.; Shastin, Aleksey V.

    2004-10-01

    The published data on the methods for alkene synthesis by olefination of carbonyl compounds are generalised and systematised. The main attention is given to the use of transition metals and organoelement compounds. The review covers the data on both classical and newly developed methods that are little known to chemists at large.

  12. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    DEFF Research Database (Denmark)

    Marek, Ales; Pedersen, Martin Holst Friborg

    2015-01-01

    An alternative and robust method for the reduction of carbonyl groups by frustrated Lewis pairs (FLPs) is reported in this paper. With its very mild reaction conditions, good to excellent yields, absolute regioselectivity and the non-metallic character of the reagent, it provides an excellent too...

  13. Crystal structure of (E-3-allyl-2-sulfanylidene-5-[(thiophen-2-ylmethylidene]thiazolidin-4-one

    Directory of Open Access Journals (Sweden)

    Rahhal El Ajlaoui

    2015-06-01

    Full Text Available Molecules of the title compound, C11H9NOS3, are built up by one thiophene and one 2-thioxathiazolidin-4-one ring which are connected by a methylene bridge. In addition, there is an allyl substituent attached to nitrogen. The two rings are almost coplanar, making a dihedral angle between them of 0.76 (11°. The allyl group is oriented perpendicular to the mean plane through both ring systems. The crystal structure exhibits inversion dimers in which molecules are linked by pairs of C—H...O hydrogen bonds. Additional π–π interactions between neighboring thiophene and 2-thioxathiazolidin-4-one rings [intercentroid distance = 3.694 (2 Å] lead to the formation of a three-dimensional network.

  14. A new polyester based on allyl α-hydroxy glutarate as shell for magnetite nanoparticles

    Science.gov (United States)

    Nan, Alexandrina; Feher, Ioana Coralia

    2017-12-01

    Allyl side-chain-functionalized lactide was synthesized from commercially available glutamic acid and polymerized by ring opening polymerization using 4-dimethylaminopyridine as an organocatalyst in the presence of magnetic nanoparticles. The resulting magnetic nanostructures coated with the allyl-containing polyester were then functionalized with cysteine by thiol-ene click reaction leading to highly functionalized magnetic nano-platforms of practical interest. The polyester precursors were characterized by nuclear magnetic resonance and mass spectrometry. The morphology of magnetic nanostructures based on the functionalized polyester was determined by transmission electron microscopy TEM, while the chemical structure was investigated by FT-IR. TGA investigations and the magnetic properties of the magnetic nanostructures are also described.

  15. Degradation of carbonyl hydroperoxides in the atmosphere and in combustion

    KAUST Repository

    Xing, Lili

    2017-10-12

    Oxygenates with carbonyl and hydroperoxy functional groups are important intermediates that are generated during the autooxidation of organic compounds in the atmosphere and during the autoignition of transport fuels. In the troposphere, the degradation of carbonyl hydroperoxides leads to low-vapor-pressure polyfunctional species that be taken into in cloud and fog droplets or to the formation of secondary organic aerosols (SOAs). In combustion, the fate of carbonyl hydroperoxides is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the carbonyl hydroperoxides is reac-tion with OH radicals, for which kinetics data are experimentally unavailable. Here, we study 4-hydroperoxy-2-pentanone (CH3C(=O)CH2CH(OOH)CH3) as a model compound to clarify the kinetics of OH reactions with carbonyl hydroperoxides, in par-ticular H-atom abstraction and OH addition reactions. With a combination of electronic structure calculations, we determine previ-ously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunnel-ing (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in atmospheric and combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for the addition reaction are computed using system-specific quantum RRK theory. The calculated temperature range is 298-2400 K, and the pressure range is 0.01–100 atm. The accu-rate thermodynamic and kinetics data determined in this work are indispensable in the global modeling of SOAs in atmospheric science and in the detailed understanding and prediction of ignition properties of hydrocarbons

  16. Iron(III) chloride catalyzed glycosylation of peracylated sugars with allyl/alkynyl alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Narayanaperumal, Senthil; Silva, Rodrigo Cesar da; Monteiro, Julia L.; Correa, Arlene G.; Paixao, Marcio W., E-mail: mwpaixao@ufscar.br [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica

    2012-11-15

    In this work, the use of ferric chloride as an efficient catalyst in glycosylation reactions of sugars in the presence of allyl and alkynyl alcohols is described. The corresponding glycosides were obtained with moderate to good yields. This new procedure presented greater selectivity when compared to classic methods found in the literature. Principal features of this simple method include non-hazardous reaction conditions, low-catalyst loading, good yields and high anomeric selectivity (author)

  17. Antenna elicitation and behavioral responses of oriental fruit moth, Grapholita molesta, to allyl cinnamate

    OpenAIRE

    Giner Gil, Marta; Balcells Fluvià, Mercè; Avilla Hernández, Jesús

    2014-01-01

    Female sex pheromones have been used in pest control since the 90s; attracting males to baited traps (mass-trapping and monitoring) or avoiding (or reducing) mating in fields under mating disruption. By contrast, little is done among the use of male sex pheromones in pest control. Allyl cinnamate was evaluated as potential oriental fruit moth (Grapholita molesta, Busck) (Lepidoptera: Tortricidae) behaviour modifier, after recording positive electroantenographical responses in both male and fe...

  18. Synthesis of alkenyl boronates from allyl-substituted aromatics using an olefin cross-metathesis protocol.

    Science.gov (United States)

    Hemelaere, Rémy; Carreaux, François; Carboni, Bertrand

    2013-07-05

    An efficient synthesis of 3-aryl-1-propenyl boronates from pinacol vinyl boronic ester and allyl-substituted aromatics by cross metathesis is reported. Although the allylbenzene derivatives are prone to isomerization reaction under metathesis conditions, we found that some ruthenium catalysts are effective for this methodology. This strategy thus provides an interesting alternative approach to alkyne hydroboration, leading to the preparation of unknown compounds. Moreover, the boron substituent can be replaced by various functional groups in good yields.

  19. FeCl3-catalysed Zn-mediated allylation of cyclic enol ethers in water

    Indian Academy of Sciences (India)

    FeCl3-catalysed Zn-mediated allylation of cyclic enol ethers in water. P CHAKRABORTY and ... To a stirred mixture of dihydropyran (84.2mg,. 1.0 mmol), water (5 ... 2b (syn/anti = 1:1) was prepared from dihydropyran and 1b following the procedure described for com- pound 2a. Viscous oil. Rf = 0.21 (30% ethyl acetate. 509 ...

  20. FeCl3 catalysed regioselective allylation of phenolic substrates with ...

    Indian Academy of Sciences (India)

    MAXIS mass spectrometer with ESI-QTOF-II method. Synthesis of the precursor 1 is described in the supple- mentary material. 2.1 General procedure for the allylation of arenes with phosphonoallylic alcohol 1. To phosphonoallylic alcohol 1 (0.282 g, 1 mmol) and. FeCl3 (0.016 g, 0.1 mmol) in nitromethane (3 mL) was.

  1. Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics.

    Science.gov (United States)

    Westbrook, Charles K; Pitz, William J; Mehl, Marco; Glaude, Pierre-Alexandre; Herbinet, Olivier; Bax, Sarah; Battin-Leclerc, Frederique; Mathieu, Olivier; Petersen, Eric L; Bugler, John; Curran, Henry J

    2015-07-16

    Two experimental studies have been carried out on the oxidation of 2-methyl-2-butene, one measuring ignition delay times behind reflected shock waves in a stainless steel shock tube, and the other measuring fuel, intermediate, and product species mole fractions in a jet-stirred reactor (JSR). The shock tube ignition experiments were carried out at three different pressures, approximately 1.7, 11.2, and 31 atm, and at each pressure, fuel-lean (ϕ = 0.5), stoichiometric (ϕ = 1.0), and fuel-rich (ϕ = 2.0) mixtures were examined, with each fuel/oxygen mixture diluted in 99% Ar, for initial postshock temperatures between 1330 and 1730 K. The JSR experiments were performed at nearly atmospheric pressure (800 Torr), with stoichiometric fuel/oxygen mixtures with 0.01 mole fraction of 2M2B fuel, a residence time in the reactor of 1.5 s, and mole fractions of 36 different chemical species were measured over a temperature range from 600 to 1150 K. These JSR experiments represent the first such study reporting detailed species measurements for an unsaturated, branched hydrocarbon fuel larger than iso-butene. A detailed chemical kinetic reaction mechanism was developed to study the important reaction pathways in these experiments, with particular attention on the role played by allylic C-H bonds and allylic pentenyl radicals. The results show that, at high temperatures, this olefinic fuel reacts rapidly, similar to related alkane fuels, but the pronounced thermal stability of the allylic pentenyl species inhibits low temperature reactivity, so 2M2B does not produce "cool flames" or negative temperature coefficient behavior. The connections between olefin hydrocarbon fuels, resulting allylic fuel radicals, the resulting lack of low-temperature reactivity, and the gasoline engine concept of octane sensitivity are discussed.

  2. Palladium-Catalyzed Allylation/Benzylation of H-Phosphinate Esters with Alcohols

    Directory of Open Access Journals (Sweden)

    Anthony Fers-Lidou

    2016-09-01

    Full Text Available The Pd-catalyzed direct alkylation of H-phosphinic acids and hypophosphorous acid with allylic/benzylic alcohols has been described previously. Here, the extension of this methodology to H-phosphinate esters is presented. The new reaction appears general, although its scope is narrower than with the acids, and its mechanism is likely different. Various alcohols are examined in their reaction with phosphinylidene compounds R1R2P(OH.

  3. Lewis base catalyzed enantioselective allylic hydroxylation of Morita-Baylis-Hillman carbonates with water

    KAUST Repository

    Zhu, Bo

    2011-08-19

    A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using 18O-labeling experiments. © 2011 American Chemical Society.

  4. Asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates with α-fluoro-β-keto esters

    Directory of Open Access Journals (Sweden)

    Lin Yan

    2013-09-01

    Full Text Available In the presence of a commercially available Cinchona alkaloid as catalyst, the asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates, with α-fluoro-β-keto esters as nucleophiles, have been successfully developed. A series of important fluorinated adducts, with chiral quaternary carbon centres containing a fluorine atom, was achieved in good yields (up to 93%, with good to excellent enantioselectivities (up to 96% ee and moderate diastereoselectivities (up to 4:1 dr.

  5. Asymmetric allylic alkylation of Morita-Baylis-Hillman carbonates with α-fluoro-β-keto esters.

    Science.gov (United States)

    Yan, Lin; Han, Zhiqiang; Zhu, Bo; Yang, Caiyun; Tan, Choon-Hong; Jiang, Zhiyong

    2013-01-01

    In the presence of a commercially available Cinchona alkaloid as catalyst, the asymmetric allylic alkylation of Morita-Baylis-Hillman carbonates, with α-fluoro-β-keto esters as nucleophiles, have been successfully developed. A series of important fluorinated adducts, with chiral quaternary carbon centres containing a fluorine atom, was achieved in good yields (up to 93%), with good to excellent enantioselectivities (up to 96% ee) and moderate diastereoselectivities (up to 4:1 dr).

  6. Low pressure carbonylation of benzyl chloride = Die carbonylierung von benzylchlorid bei niedrigen drücken

    NARCIS (Netherlands)

    Luggenhorst, H.J.; Westerterp, K.R.

    1986-01-01

    For carbonylations, metal carbonyls, particularly cobalt and iron carbonyls, are often used as catalysts. These reactions take place under rather drastic reaction conditions, e.g. 200–300 °C and 60–100 MPa. In some patents it is stated that similar reactions using the same catalysts can also be

  7. Optimized biotin-hydrazide enrichment and mass spectrometry analysis of peptide carbonyls

    DEFF Research Database (Denmark)

    Havelund, Jesper F.; Wojdyla, K; Jensen, O. N.

    Irreversible cell damage through protein carbonylation is the result of reaction with reactive oxygen species (ROS) and has been coupled to many diseases. The precise molecular consequences of protein carbonylation, however, are still not clear. The localization of the carbonylated amino acid is ...

  8. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  9. Effect of various process treatment conditions on the allyl isothiocyanate extraction rate from mustard meal.

    Science.gov (United States)

    Sharma, Harish K; Ingle, Sandeep; Singh, Charanjiv; Sarkar, Bhavesh C; Upadhyay, Ashutosh

    2012-06-01

    Allyl isothiocyanate (AITC), which has the potential to be used as flavoring, antibacterial, antifungal, antifermentative and antibrowning agent in food industry, was extracted from the pretreated MM by distillation technique. The mustard meal was analyzed for the proximate composition and the metals Fe, Mg and Zn. At the optimum pretreatment conditions of temperature 60 °C, time 120 min and pH 4.5, the effect of fractional distillation, mesh size and different additives was studied. Considerable effect of mesh size was observed, as the mesh size was decreased from 1,690 to 400 μm, the allyl isothiocyanate content was increased from 99.15 to 337.11 mg/100 ml. Addition of magnesium chloride (0.05 g/l to 0.2 g/l) and L-ascorbic acid (1 g/l to 5 g/l) increased allyl isothiocyanate from 257.79 to 317.28 mg/100 ml and 316.77 to 396.60 mg/100 ml respectively whereas the addition of the magnesium chloride and L-ascorbic acid in combination did not affect the AITC extraction rate as compare to their addition in single effect.

  10. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia.

    Science.gov (United States)

    Miyata, T; Ueda, Y; Yamada, Y; Izuhara, Y; Wada, T; Jadoul, M; Saito, A; Kurokawa, K; van Ypersele de Strihou, C

    1998-12-01

    Advanced glycation end product (AGE) formation is related to hyperglycemia in diabetes but not in uremia, because plasma AGE levels do not differ between diabetic and nondiabetic hemodialysis patients. The mechanism of this phenomenon remains elusive. Previously, it was suggested that elevation of AGE levels in uremia might result from the accumulation of unknown AGE precursors. The present study evaluates the in vitro generation of pentosidine, a well identified AGE structure. Plasma samples from healthy subjects and nondiabetic hemodialysis patients were incubated under air for several weeks. Pentosidine levels were determined at intervals by HPLC assay. Pentosidine rose to a much larger extent in uremic than in control plasma. Pentosidine yield, i.e., the change in pentosidine level between 0 and 4 wk divided by 28 d, averaged 0.172 nmol/ml per d in uremic versus 0.072 nmol/ml per d in control plasma (P aminoguanidine and OPB-9195, which inhibit the Maillard reaction, lowered pentosidine yield in both uremic and control plasma. When ultrafiltrated plasma was exposed to 2,4-dinitrophenylhydrazine, the yield of hydrazones, formed by interaction with carbonyl groups, was markedly higher in uremic than in control plasma. These observations strongly suggest that the pentosidine precursors accumulated in uremic plasma are carbonyl compounds. These precursors are unrelated to glucose or ascorbic acid, whose concentration is either normal or lowered in uremic plasma. They are also unrelated to 3-deoxyglucosone, a glucose-derived dicarbonyl compound whose level is raised in uremic plasma: Its addition to normal plasma fails to increase pentosidine yield. This study reports an elevated level of reactive carbonyl compounds ("carbonyl stress") in uremic plasma. Most have a lower than 5000 Da molecular weight and are thus partly removed by hemodialysis. Their effect on pentosidine generation can be inhibited by aminoguanidine or OPB-9195. Carbonyl stress might contribute to

  11. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  12. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Based on the property that in 0.12 M sulfuric acid medium titanium(IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of titanium is

  13. Encapsulation of vanadium complexes in inorganic or hybrid matrices via the sol-gel method: application to the epoxidation of allylic alcohols

    International Nuclear Information System (INIS)

    Pellegrino, Rodolfo B.; Buffon, Regina

    2004-01-01

    Vanadium complexes have been encapsulated in inorganic (based on hydrolysis/condensation of tetramethyl orthosilicate - TMOS) and hybrid matrices (TMOS plus a co-condensation agent) using the sol-gel method. The resulting solids were tested in the epoxidation of allylic alcohols in the presence of tert-butyl hydroperoxide (TBHP) as the oxidant agent at 70 deg C. When the catalyst was based on [VO(salen)], the hybrid matrix led to higher initial turnover frequencies than the inorganic one for all tested alcohols (trans-3-phenyl-2-methyl-2-propen-1-ol, trans-2-hexen-1-ol, cis-2-hexen-1-ol, 1-octen-3-ol), which might be related to its higher pore diameter. Although no vanadium leaching was observed during the catalytic reactions, recycling experiments with the hybrid catalyst and trans-2-hexen-1-ol showed that some loss of vanadium took place at every Soxhlet washing (performed after every run, using CH 2 Cl 2 ): a total of 1.5 wt.% after three reactions. In four successive runs, keeping the initial molar ratios, conversions decreased from 100% to 85%, 65% and 40% (in 5h). (author)

  14. Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products

    Science.gov (United States)

    Smith, Jeremy D.; Kinney, Haley; Anastasio, Cort

    2016-02-01

    We investigated the aqueous photochemistry of six phenolic carbonyls - vanillin, acetovanillone, guaiacyl acetone, syringaldehyde, acetosyringone, and coniferyl aldehyde - that are emitted from wood combustion. The phenolic carbonyls absorb significant amounts of solar radiation and decay rapidly via direct photodegradation, with lifetimes (τ) of 13-140 min under Davis, CA winter solstice sunlight at midday (solar zenith angle = 62°). The one exception is guaiacyl acetone, where the carbonyl group is not directly connected to the aromatic ring: This species absorbs very little sunlight and undergoes direct photodegradation very slowly (τ > 103 min). We also found that the triplet excited states (3C*) of the phenolic carbonyls rapidly oxidize syringol (a methoxyphenol without a carbonyl group), on timescales of 1-5 h for solutions containing 5 μM phenolic carbonyl. The direct photodegradation of the phenolic carbonyls, and the oxidation of syringol by 3C*, both efficiently produce low volatility products, with SOA mass yields ranging from 80 to 140%. Contrary to most aliphatic carbonyls, under typical fog conditions we find that the primary sink for the aromatic phenolic carbonyls is direct photodegradation in the aqueous phase. In areas of significant wood combustion, phenolic carbonyls appear to be small but significant sources of aqueous SOA: over the course of a few hours, nearly all of the phenolic carbonyls will be converted to SOA via direct photodegradation, enhancing the POA mass from wood combustion by approximately 3-5%.

  15. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  16. Auto-Tandem Catalysis in Ionic Liquids: Synthesis of 2-Oxazolidinones by Palladium-Catalyzed Oxidative Carbonylation of Propargylic Amines in EmimEtSO₄.

    Science.gov (United States)

    Mancuso, Raffaella; Maner, Asif; Ziccarelli, Ida; Pomelli, Christian; Chiappe, Cinzia; Della Ca', Nicola; Veltri, Lucia; Gabriele, Bartolo

    2016-07-08

    A convenient carbonylative approach to 2-oxazolidinone derivatives carried out using an ionic liquid (1-ethyl-3-methylimidazolium ethyl sulfate, EmimEtSO₄) as the solvent is presented. It is based on the sequential concatenation of two catalytic cycles, both catalyzed by the same metal species (auto-tandem catalysis): the first cycle corresponds to the oxidative monoaminocarbonylation of the triple bond of propargylic amines to give the corresponding 2-ynamide intermediates, while the second one involves the cyclocarbonylation of the latter to yield 2-(2-oxooxazolidin-5-ylidene)-acetamides. Reactions are carried out using a simple catalytic system consisting of PdI₂ in conjunction with an excess of KI, and the catalyst/solvent system could be recycled several times without appreciable loss of activity after extraction of the organic product with Et₂O.

  17. Anchoring selenido-carbonyl ruthenium clusters to functionalized silica xerogels

    International Nuclear Information System (INIS)

    Cauzzi, Daniele; Graiff, Claudia; Pattacini, Roberto; Predieri, Giovanni; Tiripicchio, Antonio

    2003-01-01

    Silica Xerogels containing carbonyl Ru 3 Se 2 nido clusters were prepared in three different ways. The simple dispersion of [Ru 3 (μ 3 -Se) 2 (CO) 7 (PPh 3 ) 2 ] via sol gel process produces an inhomogeneous material; by contrast, homogeneous xerogels were obtained by reaction of [Ru 3 (μ 3 -Se) 2 (CO) 8 (PPh 3 )] with functionalized xerogels containing grafted diphenylphosphine moieties and by reaction of [Ru 3 (CO) 12 ] with a xerogel containing grafted phosphine-selenide groups. The reaction between [Ru 3 (CO) 12 ] and dodecyl diphenylphosphine selenide led to the formation of four selenido carbonyl clusters, which are soluble in hydrocarbon solvents and can be deposited as thin films from their solution by slow evaporation. (author)

  18. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation

    Science.gov (United States)

    Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura

    2016-01-01

    Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis.

  19. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    Science.gov (United States)

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  20. Carbonyl Sulfides as Possible Intermediates in the Photolysis of Oxathiiranes

    DEFF Research Database (Denmark)

    Carlsen, Lars; Snyder, J. P.; Holm, A.

    1981-01-01

    Diphenyl oxathiirane, formed by irradiation of thiobenzophenone S-oxide at 77 K, is photochemically converted into a blue, thermally unstable compound which decomposes at ca 100–110 K (λmax 550 nm, (ϵ ca 11,000). Lack of change in magnetic susceptibility during the light induced conversion...... of sulfine to ketone via the oxathiirane and the subsequent blue intermediate implies the absence of triplet and biradical singlet transients. The unknown carbonyl sulfide functionality, R2C&z.dbnd;O&z.dbnd;S, thereby emerges as a strong candidate for producing the visible absorption. Comparison of the wave...... functions for CH2&z.dbnd;S&z.dbnd;O and CH2&z.dbnd;O&z.dbnd;S arising from MNDO limited CI geometry optimizations leads to the conclusion that the carbonyl sulfide structure is best described as a zwitterion rather than as a singlet biradical. The failure to observe cycloaddition products between the blue...

  1. Synthetic and mechanistic aspects of titanium-mediated carbonyl olefinations

    Energy Technology Data Exchange (ETDEWEB)

    Petasis, N.A.; Staszewski, J.P.; Hu, Yong-Han; Lu, Shao-Po [Univ. of Southern California, Los Angeles, CA (United States)

    1995-12-31

    A new method for the olefination of carbonyl compounds with dimethyl titanocene, and other related bishydrocarbyl titanocene derivatives has been recently developed in the author`s laboratories. This process is experimentally convenient and works with various types of carbonyl compounds, including aldehydes, ketones, esters, lactones, carbonates, anhydrides, amides, imides, lactams, thioesters, selenoesters, and acylsilanes. More recent studies have focused on the scope and utility of this reaction, including mechanistic studies and synthetic applications. In addition to varying the reaction conditions, the authors have examined several mixed titanocene derivatives and have found ways for carrying out this type of olefination at room temperature, such as the use of tris(trimethylsilyl) titanacyclobutene. The authors have also employed this reaction in the modification of carbohydrates and cyclobutenediones. This olefination was also followed-up with subsequent transformations to produce carbocycles and heterocycles, including tetrahydrofurans and tetrahydropyrans.

  2. A three-membered ring approach to carbonyl olefination.

    Science.gov (United States)

    Niyomchon, Supaporn; Oppedisano, Alberto; Aillard, Paul; Maulide, Nuno

    2017-10-23

    The carbon-carbon double bond, with its diverse and multifaceted reactivity, occupies a prominent position in organic synthesis. Although a variety of simple alkenes are readily available, the mild and chemoselective introduction of a unit of unsaturation into a functionalized organic molecule remains an ongoing area of research, and the olefination of carbonyl compounds is a cornerstone of such approaches. Here we show the direct olefination of hydrazones via the intermediacy of three-membered ring species generated by addition of sulfoxonium ylides, departing from the general dogma of alkenes synthesis from carbonyls. Moreover, the mild reaction conditions and operational simplicity of the transformation render the methodology appealing from a practical point of view.

  3. The reaction of sulfhydryl groups with carbonyl compounds.

    Science.gov (United States)

    Włodek, L

    1988-01-01

    The sulfhydryl groups of L-cysteine and reduced glutathione (GSH) react nonenzymatically with formaldehyde (F), acrolein (Al), acetaldehyde (AA), malondialdehyde (DAM), pyruvate (P), oxoglutarate (oxo-G) and glucose (G) to form thiazolidine derivatives. These reactions show different velocities and the adducts formed show different stabilities. The equilibrium constants K, as well as the rate constants kr for the reverse reaction, show considerable variation. The carbonyls reveal higher reactivity with sulfhydryl group of L-Cys than with those of GSH, and the stability of the adducts is higher than that of GSH. Al, F and AA react more rapidly with both thiol compounds than the other carbonyls, but the adducts are less stable. The sulfhydryl groups level of bovine serum albumin as well as those of high- and low-molecular thiols of human plasma is reduced in the presence of Al, F or DAM.

  4. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by 3O2; Implications for Combustion Modeling and Simulation.

    Science.gov (United States)

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O 2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants

  5. Nucleophilic tetrafluoroethylation of carbonyl compounds with fluorinated sulfones

    Czech Academy of Sciences Publication Activity Database

    Václavík, Jiří; Chernykh, Yana; Jurásek, Bronislav; Beier, Petr

    2015-01-01

    Roč. 169, Jan (2015), s. 24-31 ISSN 0022-1139 R&D Projects: GA ČR GAP207/11/0421 Grant - others:GA MŠk(CZ) ED3.2.00/08.0144; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : fluorine * tetrafluoroethylation * sulfones * nucleophilic addition * carbonyl compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.213, year: 2015

  6. Magnetophoretic manipulation in microsystem using carbonyl iron-polydimethylsiloxane microstructures

    OpenAIRE

    Faivre, Magalie; Gelszinnis, Renaud; Degouttes, Jérôme; Terrier, Nicolas; Rivière, Charlotte; Ferrigno, Rosaria; Deman, Anne-Laure

    2014-01-01

    This paper reports the use of a recent composite material, noted hereafter i-PDMS, made of carbonyl iron microparticles mixed in a PolyDiMethylSiloxane (PDMS) matrix, for magnetophoretic functions such as capture and separation of magnetic species. We demonstrated that this composite which combine the advantages of both components, can locally generate high gradients of magnetic field when placed between two permanent magnets. After evaluating the magnetic susceptibility of the material as a ...

  7. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  8. Metal-Free Catalytic Asymmetric Fluorination of Keto Esters Using a Combination of Hydrogen Fluoride (HF) and Oxidant: Experiment and Computation

    KAUST Repository

    Pluta, Roman

    2018-02-09

    A chiral iodoarene organocatalyst for the catalytic asymmetric fluorination has been developed. The catalyst was used in the asymmetric fluorination of carbonyl compounds, providing the products with a quaternary stereocenter with high enantioselectivities. Chiral hypervalent iodine difluoride intermediates were generated in situ by treatment of the catalyst with an oxidant and hydrogen fluoride as fluoride source. As such, the α-fluorination of a carbonyl compound was achieved with a nucleophilic fluorine source. A combined computational and experimental approach provided insight into the reaction mechanism and the origin of enantioselectivity.

  9. Effects of oral administration of brassica secondary metabolites, allyl cyanide, allyl isothiocyanate and dimethyl disulphide, on the voluntary food intake and metabolism of sheep.

    Science.gov (United States)

    Duncan, A J; Milne, J A

    1993-09-01

    Glucosinolates, such as sinigrin, and S-methyl cysteine sulphoxide (SMCO), which are found in forage brassica species have been implicated in the low intakes observed among lambs consuming such diets. To test both the individual and interactive effects of these compounds in sheep, all combinations of the sinigrin breakdown products, allyl cyanide (ACN) and allyl isothiocyanate (AITC; 10 mmol/d), and the SMCO metabolite dimethyl disulphide (DMDS; 25 mmol/d) were orally administered twice daily for 5 weeks to forty sheep offered dried grass pellets ad lib. As well as measuring voluntary food intake (VFI), a number of haematological and clinical function tests were conducted to assess the physiological effects of the compounds. VFI was significantly depressed by both ACN and AITC but not by DMDS. DMDS significantly ameliorated the effects of ACN on VFI (P < 0.001). Concentrations of reduced glutathione in the blood were depressed by ACN and AITC and elevated by DMDS but no significant interactions were evident. Elevated plasma gamma-glutamyl transpeptidase (EC 2.3.2.1) activity on ACN and AITC treatments indicated possible liver damage. DMDS elicited a rise in Heinz bodies to 11% by week 2 but this was not reflected in packed cell volume and blood haemoglobin levels which were unaffected by treatment. The increased Heinz body count caused by DMDS was not further influenced by ACN or AITC. In conclusion, the depressive effects of sinigrin breakdown products on VFI were not compounded by the additional presence of DMDS which, on the contrary, lessened the depression of VFI caused by ACN.

  10. [3+3] annulation of allylic phosphoryl-stabilized carbanions/phosphorus ylides and vinyl azides: a practice strategy for synthesis of polyfunctionalized anilines.

    Science.gov (United States)

    Liu, Shen; Chen, Wenteng; Luo, Jing; Yu, Yongping

    2014-08-11

    Tandem Michael addition and Witting or Horner-Wadsworth-Emmons olefination initiated [3+3] annulation between vinyl azides and allylic phosphorus ylides or allylic phosphoryl-stabilized carbanions has been developed. This one-pot protocol furnishes highly functionalized anilines in good to excellent yields under mild, room-temperature conditions. A rational mechanism is also proposed.

  11. Et3B-mediated and palladium-catalyzed direct allylation of β-dicarbonyl compounds with Morita–Baylis–Hillman alcohols

    Directory of Open Access Journals (Sweden)

    Ahlem Abidi

    2016-11-01

    Full Text Available A practical and efficient palladium-catalyzed direct allylation of β-dicarbonyl compounds with both cyclic and acyclic Morita–Baylis–Hillman (MBH alcohols, using Et3B as a Lewis acid promoter, is described herein. A wide range of the corresponding functionalized allylated derivatives have been obtained in good yields and with high selectivity.

  12. A highly efficient kinetic resolution of Morita-Baylis-Hillman adducts achieved by N-Ar axially chiral Pd-complexes catalyzed asymmetric allylation.

    Science.gov (United States)

    Wang, Feijun; Li, Shengke; Qu, Mingliang; Zhao, Mei-Xin; Liu, Lian-Jun; Shi, Min

    2011-12-28

    Palladium complexes with an axially chiral N-Ar framework have been developed. These complexes showed high stereoselectivities in asymmetric allylic arylation to achieve the kinetic resolution of Morita-Baylis-Hillman adducts, affording up to 99% ee of (E)-allylation products and 92% ee of recovered Morita-Baylis-Hillman adducts. This journal is © The Royal Society of Chemistry 2011

  13. Et3B-mediated and palladium-catalyzed direct allylation of β-dicarbonyl compounds with Morita-Baylis-Hillman alcohols.

    Science.gov (United States)

    Abidi, Ahlem; Oueslati, Yosra; Rezgui, Farhat

    2016-01-01

    A practical and efficient palladium-catalyzed direct allylation of β-dicarbonyl compounds with both cyclic and acyclic Morita-Baylis-Hillman (MBH) alcohols, using Et 3 B as a Lewis acid promoter, is described herein. A wide range of the corresponding functionalized allylated derivatives have been obtained in good yields and with high selectivity.

  14. Carbonyl compounds in gas and particle phases of mainstream cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaobing, E-mail: pangxbyuanj@gmail.com [Department of Chemistry, University of York, Heslington, York, YO10 5DD (United Kingdom); Lewis, Alastair C., E-mail: ally.lewis@york.ac.uk [National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD (United Kingdom)

    2011-11-01

    Carbonyl compounds (carbonyls) are important constituents of cigarette smoke and some are toxic and may be carcinogenic or mutagenic to humans. In this study carbonyl emissions in the gas and particle phases of mainstream cigarette smoke were assessed by GC-MS with pentafluorophenyl hydrazine (PFPH) derivatization. Seven brands of cigarettes and one brand of cigar common in the UK market and having differing nicotine, tar and carbon monoxide yields were investigated. Sixteen carbonyl components were identified in gaseous emissions and twenty in the particle phase. In the gaseous emissions, acetaldehyde presented as the predominant species, followed by formaldehyde, 2-propenal, and pentanal. In the particulate emissions, 1-hydroxy-2-propanone was the most abundant followed by formaldehyde, benzaldehyde, and 2,5-dimethylbenzaldehyde. Significant differences were found in carbonyl emissions among the brands of cigarettes. The gaseous carbonyl emissions varied in the range of 216-405 {mu}g cigarette{sup -1} ({mu}g cig{sup -1}) and the particulate carbonyl emissions varied in the range of 23-127 {mu}g cig{sup -1}. Positive correlations were found between the total emission of carbonyls, tar yield and carbon monoxide yield. Similar gas/particle (G/P) partitioning ratios of carbonyls were found among all cigarettes, which implies that G/P partitions of carbonyls in smoke mainly depend on the physical properties of the carbonyls. The gaseous carbonyl emissions were enhanced by 40% to 130% when some of the water, accounting for 8-12% of cigarettes in mass, was removed from the tobacco. Non-filtered cigarettes showed significantly higher carbonyl emissions compared to their filtered equivalents. Carbonyl particulate accounted for 11-19% by mass of total particulate matter from tobacco smoke. The cigar generated 806 {mu}g cig{sup -1} gaseous and 141 {mu}g cig{sup -1} particulate carbonyls, which is 2-4 times greater than the cigarettes. - Highlights: {yields} Carbonyl

  15. Carbonyl compounds in gas and particle phases of mainstream cigarette smoke

    International Nuclear Information System (INIS)

    Pang, Xiaobing; Lewis, Alastair C.

    2011-01-01

    Carbonyl compounds (carbonyls) are important constituents of cigarette smoke and some are toxic and may be carcinogenic or mutagenic to humans. In this study carbonyl emissions in the gas and particle phases of mainstream cigarette smoke were assessed by GC-MS with pentafluorophenyl hydrazine (PFPH) derivatization. Seven brands of cigarettes and one brand of cigar common in the UK market and having differing nicotine, tar and carbon monoxide yields were investigated. Sixteen carbonyl components were identified in gaseous emissions and twenty in the particle phase. In the gaseous emissions, acetaldehyde presented as the predominant species, followed by formaldehyde, 2-propenal, and pentanal. In the particulate emissions, 1-hydroxy-2-propanone was the most abundant followed by formaldehyde, benzaldehyde, and 2,5-dimethylbenzaldehyde. Significant differences were found in carbonyl emissions among the brands of cigarettes. The gaseous carbonyl emissions varied in the range of 216-405 μg cigarette -1 (μg cig -1 ) and the particulate carbonyl emissions varied in the range of 23-127 μg cig -1 . Positive correlations were found between the total emission of carbonyls, tar yield and carbon monoxide yield. Similar gas/particle (G/P) partitioning ratios of carbonyls were found among all cigarettes, which implies that G/P partitions of carbonyls in smoke mainly depend on the physical properties of the carbonyls. The gaseous carbonyl emissions were enhanced by 40% to 130% when some of the water, accounting for 8-12% of cigarettes in mass, was removed from the tobacco. Non-filtered cigarettes showed significantly higher carbonyl emissions compared to their filtered equivalents. Carbonyl particulate accounted for 11-19% by mass of total particulate matter from tobacco smoke. The cigar generated 806 μg cig -1 gaseous and 141 μg cig -1 particulate carbonyls, which is 2-4 times greater than the cigarettes. - Highlights: → Carbonyl emission factors in both gas (16 species) and

  16. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C, 15N-labeled peptides and proteins

    Science.gov (United States)

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly 13C, 15N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22 kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600 MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i - 2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.

  17. Determination of Carbonyl Functional Groups in Bio-oils by Potentiometric Titration: The Faix Method.

    Science.gov (United States)

    Black, Stuart; Ferrell, Jack R

    2017-02-07

    Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. Specifically, carbonyls cause an increase in viscosity (often referred to as 'aging') during storage of bio-oils. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Additionally, carbonyls are also responsible for coke formation in bio-oil upgrading processes. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here, we present a modification of the traditional carbonyl oximation procedures that results in less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. While traditional carbonyl oximation methods occur at room temperature, the Faix method presented here occurs at an elevated temperature of 80 °C.

  18. Ambient levels of carbonyl compounds and their sources in Guangzhou, China

    Science.gov (United States)

    Feng, Yanli; Wen, Sheng; Chen, Yingjun; Wang, Xinming; Lü, Huixiong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    Ambient levels of carbonyl compounds and their possible sources, vehicular exhaust and cooking exhaust, were studied at seven places in Guangzhou, including five districts (a residential area, an industrial area, a botanical garden, a downtown area and a semi-rural area), a bus station and a restaurant during the period of June-September 2003. Nineteen carbonyl compounds were identified in the ambient air, of which acetone was the most abundant carbonyl, followed by formaldehyde and acetaldehyde. Only little changes were found in carbonyl concentration levels in the five different districts because of their dispersion and mixture in the atmosphere in summer. The lower correlations between the carbonyls' concentrations might result from the mixture of carbonyls derived from different sources, including strong photochemical reactions at noon in summer. Formaldehyde and acetaldehyde were the main carbonyls in bus station, while straight-chain carbonyls were comparatively abundant in cooking exhaust. Besides vehicular exhaust, cooking might be another major source of carbonyl compounds in Guangzhou City, especially for high molecular weight carbonyls.

  19. Aerobic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by ...

    Indian Academy of Sciences (India)

    hydroxyphthalimide (NHPI) com- bined with cobalt porphyrin intercalated heterogeneous hybrid catalyst (CoTPP-Zn2Al-LDH) has been devel- oped. The results showed that this catalytic system can effectively catalyze the oxidation of alcohols to the.

  20. Aerobic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by ...

    Indian Academy of Sciences (India)

    NHPI) combined with cobalt porphyrin intercalated heterogeneous hybrid catalyst (CoTPP-Zn2Al-LDH) has been developed. The results showed that this catalytic system can effectively catalyze the oxidation of alcohols to thecorresponding ...

  1. The reaction of allyl and benzylarsonic acids with thiols: mechanistic aspects and implications for dioxygen activation by trivalent arsenic compounds.

    Science.gov (United States)

    Lala, Maria A; Ioannou, Panayiotis V

    2003-12-01

    The reaction of allyl and benzylarsonic acids with thiophenol gives not only the expected diphenyl alkyldithioarsonites and diphenyl disulfide but also various other compounds arising from the decomposition at the arsenic(V) oxidation level (the arsonic acids) by thiophenol and at the arsenic(III) oxidation level (mainly the alkyldithioarsonites) by thiophenol and by dissolved dioxygen. The reaction of these arsonic acids with 4-nitrothiophenol, which is not oxidized by dioxygen, revealed that the arsenic(III) of these alkyldithioarsonites is the active atom towards dioxygen. However, the reaction of allyl, benzyl, and 2-picolylarsonic acids with DL-penicillamine gives the expected products with no or very small oxidative decomposition. The decomposition pathways of allyl and benzylarsonic acids were elucidated. The results are briefly discussed in the contexts of the use of arsonic acids in chemotherapy and the ability of arsenic(III) compounds to generate reactive oxygen species.

  2. The reactivity of allyl and propargyl alcohols with solvated electrons: temperature and solvent effects

    International Nuclear Information System (INIS)

    Afanassiev, A.M.; Okazaki, K.; Freeman, G.R.

    1979-01-01

    The rate constants K 1 for the reaction of solvated electrons with allyl alcohol in a number of hydroxylic solvents differ by up to two orders of magnitude and decrease in the order tert-butyl alcohol > 2-propanol > l-propanol approximately ethanol > methanol approximately ethylene glycol > water. In methanol and ethylene glycol the rate constants (7 x 10 7 M -1 s -1 at 298 K) and activation energies (16 kJ/mol) are equal, in spite of a 32-fold difference in solvent viscosity (0.54 and 17.3 cP, respectively) and 3-fold difference in its activation energy (11 and 32 kJ/mol, respectively). The reaction in tert-butyl alcohol is nearly diffusion controlled and has a high activation energy that is characteristic of transport in that liquid (E 1 = 31 kJ/mol, E sub(eta) = 39 kJ/mol). The activation energies in the other alcohols are all 16 kJ/mol, and it is 14 kJ/mol in water. They do not correlate with transport properties. The solvent effect is connected primarily with the entropy of activation. The rate constants correlate with the solvated electron trap depth. When the electron affinity of the scavenger is small, a favorable configuration of solvent molecules about the electron/scavenger encounter pair is required for the electron jump to take place. The behavior of the rate parameters for propargyl alcohol is similar to that for allyl alcohol, but k 1 , A 1 , and E 1 are larger for the former. The ratio k(propargyl)/k(allyl) at 298 K equals 10.5 in water and decreases through the series, reaching 1.3 in tert-butyl alcohol. Rate parameters for several other scavengers are also reported. (author)

  3. Expression of liver functions following sub-lethal and non-lethal doses of allyl alcohol and acetaminophen in the rat

    DEFF Research Database (Denmark)

    Tygstrup, N; Jensen, S A; Krog, B

    1997-01-01

    BACKGROUND/AIMS: To relate severity of intoxication with allyl alcohol and acetaminophen to modulated hepatic gene expression of liver functions and regeneration. METHODS: Rats fasted for 12 h received acetaminophen 3.5 or 5.6 g per kg body weight, or allyl alcohol 100 or 125 microl by gastric tube...... synthesis, and for proteins related to liver regeneration. RESULTS: After allyl alcohol, mRNA of "positive" acute phase proteins was higher than after acetaminophen and increased with the dose, whereas after acetaminophen it decreased with the dose. The mRNA of the urea cycle enzymes and glutamine...... synthetase was uniformly reduced by allyl alcohol, whereas that of most urea cycle enzymes was above the controls after the non-lethal, but not after the sub-lethal, dose of acetaminophen. The mRNA of glutamine synthetase was significantly more reduced by acetaminophen than by allyl alcohol. The mRNA of cell...

  4. Direct asymmetric allylic alkenylation of N-itaconimides with Morita-Baylis-Hillman carbonates

    KAUST Repository

    Yang, Wenguo

    2012-08-03

    The asymmetric allylic alkenylation of Morita-Baylis-Hillman (MBH) carbonates with N-itaconimides as nucleophiles has been developed using a commercially available Cinchona alkaloid catalyst. A variety of multifunctional chiral α-methylene-β-maleimide esters were attained in moderate to excellent yields (up to 99%) and good to excellent enantioselectivities (up to 91% ee). The origin of the regio- and stereoselectivity was verified by DFT methods. Calculated geometries and relative energies of various transition states strongly support the observed regio- and enantioselectivity. © 2012 American Chemical Society.

  5. N-(2-Allyl-4-ethoxy-2H-indazol-5-yl-4-methylbenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    Hakima Chicha

    2014-05-01

    Full Text Available The indazole ring system of the title compound, C19H21N3O3S, is almost planar (r.m.s. deviation = 0.0192 Å and forms dihedral angles of 77.99 (15 and 83.9 (3° with the benzene ring and allyl group, respectively. In the crystal, centrosymmetrically related molecules are connected by pairs of N—H...O hydrogen bonds into dimers, which are further linked by C—H...O hydrogen bonds, forming columns parallel to the b axis.

  6. Thermophysical properties and reaction kinetics of γ-irradiated poly allyl diglycol carbonates nuclear track detector

    Science.gov (United States)

    Elmaghraby, Elsayed K.; Seddik, Usama

    2015-07-01

    Kinetic thermogravimetric technique was used to study the effect of gamma irradiation on the poly allyl diglycol carbonates (PADC) within the dose range from 50 to ? Gy. The approach of Coats-Redfern was used to analyze the data. Results showed that low doses around 50 Gy make the polymer slightly more resistive to heat treatment. Higher radiation doses cause severe effects in the samples accompanied by the formation of lower molecular mass species and consequent crosslinking. Results support the domination of re-polymerization and crosslinking for the γ radiation interaction PADC at dose below about ? Gy, while the situation is inverted above ? Gy in which chain secession dominates.

  7. Unusual selectivity-determining factors in the phosphine-free Heck arylation of allyl ethers

    DEFF Research Database (Denmark)

    Ambrogio, I.; Fabrizi, G.; Cacchi, S.

    2008-01-01

    The Heck reaction of aryl iodides and bromides with allyl ethers has been investigated. Using phosphinefree Pd(OAc)(2) in DNIF at 90 degrees C in the presence of Bu4NOAc, the reaction gave cinnamyl derivatives, usually in good to high yields, with a wide range of aryl halides. The reaction...... tolerates a variety of functional groups, including ether, amide, alcohol, aldehyde, ketone, ester, cyano, carboxylic acid, and nitro groups. Ortho-substituted arylating agents afforded moderate yields in some cases, though good to high yields were obtained with o-iodotoluene, iodovanillin, and 1...

  8. Design of the passive personal dosimeter for miners using an allyl diglycol carbonate plastic. Phase 1

    International Nuclear Information System (INIS)

    1983-12-01

    The report summarizes the results of the feasibility study on the design and development of a passive personal dosimeter incorporating an allyl diglycol carbonate plastic (CR39) detector, for use by uranium miners. Based upon the feasibility study, a passive personal dosimeter using a capacitor-type electrostatic enhancement device has been designed. Preliminary tests indicate that the prototype could be used in the mine environment to differentiate radon and thoron daughters with a detection efficiency comparable to that of a typical active device. Further study is required, however, into the possible influence in the mine environment of local variations in charged fraction, upon the calibration of this dosimeter

  9. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    International Nuclear Information System (INIS)

    Visscher, A de; Dewulf, J; Durme, J van; Leys, C; Morent, R; Langenhove, H Van

    2008-01-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation

  10. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    Science.gov (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  11. Evaluation of the toxicity of 3-allyl-beta-lapachone against Trypanosoma cruzi bloodstream forms.

    Science.gov (United States)

    Gonçalves, A M; Vasconcellos, M E; Docampo, R; Cruz, F S; de Souza, W; Leon, W

    1980-06-01

    In vitro incubation of Trypanosoma cruzi (Y strain) with 3-allyl-beta-lapachone was followed by: (1) growth inhibition of epimastigotes, (2) damage to cellular membranes, especially of the mitochondria, alterations in the chromatin structure and swelling of mitochondria, (3) increase in the respiratory rate, (4) increase in the rate of H2O2 generation by the epimastigotes, (5) increase of the rate of lipid peroxidation as detected by malonyldialdehyde formation, (6) decrease or total disappearance of trypomastigotes from mouse-infected blood. This drug might therefore be useful in preventing transmission of Chagas' disease during blood transfusion. It is not, however, active against infections in mice.

  12. N-(1-Allyl-3-chloro-4-ethoxy-1H-indazol-5-yl-4-methylbenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    Hakima Chicha

    2014-06-01

    Full Text Available In the title compound, C19H20ClN3O3S, the benzene ring is inclined to the indazole ring system by 51.23 (8°. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers which stack in columns parallel to [011]. The atoms in the allyl group are disordered over two sets of sites with an occupancy ratio of 0.624 (8:0.376 (8.

  13. Sensitization and desensitization to allyl isothiocyanate (mustard oil) in the nasal cavity.

    Science.gov (United States)

    Brand, Gerard; Jacquot, Laurence

    2002-09-01

    The aim of this study was to investigate the response, acute effects and time-course of sensitization and desensitization to allyl isothiocyanate (mustard oil) nasal stimuli in healthy subjects. Sixty subjects participated in the experiment, which employed psychophysical (intensity ratings) and psychophysiological (skin conductance response) measurements. Nasal stimuli were delivered three times with different inter-stimulus intervals. The results showed that the psychophysical and psycho-physiological data were correlated and that the successive nasal stimuli after a short period of time (3 min produced a markedly decreased intensity of irritation. These findings are in agreement with those obtained with capsaicin, the most frequently used irritant molecule.

  14. [Inhibition of aflatoxin production and fungal growth on stored corn by allyl isothiocyanate vapor].

    Science.gov (United States)

    Okano, Kiyoshi; Ose, Ayaka; Takai, Mitsuhiro; Kaneko, Misao; Nishioka, Chikako; Ohzu, Yuji; Odano, Masayoshi; Sekiyama, Yasushi; Mizukami, Yuichi; Nakamura, Nobuya; Ichinoe, Masakatsu

    2015-01-01

    Studies were conducted to determine the effectiveness of allyl isothiocyanate (AIT) vapor treatment with a commercial mustard seed extract (Wasaouro(®)) in controlling aflatoxin-producing fungi on stored corn. The concentration of AIT in the closed container peaked at 54.6 ng/mL on the 14th day and remained at 21.8 ng/mL on the 42nd day. AIT inhibited visible growth of aflatoxigenic molds in unsterilized corn and in sterilized corn inoculated with various aflatoxigenic fungi. However, fungi such as Aspergillus glaucus group, A. penicillioides and A. restrictus were detected by means of culture methods.

  15. Organocatalytic Enantioselective Allylic Etherification of Morita-Baylis-Hillman Carbonates and Silanols.

    Science.gov (United States)

    Liu, Hui-Li; Xie, Ming-Sheng; Qu, Gui-Rong; Guo, Hai-Ming

    2016-10-21

    The organocatalytic asymmetric allylic etherification reaction of Morita-Baylis-Hillman carbonates and silanols was reported for the first time. With modified cinchona alkaloid (DHQD) 2 PYR as the catalyst, a series of aromatic, heterocyclic, or aliphatic Morita-Baylis-Hillman carbonates (25 examples) worked well with triphenylsilanol, affording the corresponding products in moderate to good yields (up to 98%), high regioselectivities (>20:1), and good enantioselectivities (up to 92%). When dimethylphenylsilanol was used as the nucleophile, the product was obtained in 60% yield and 87% ee.

  16. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo

    2012-02-08

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  17. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions

    Science.gov (United States)

    Lee, Kyunga; Silverio, Daniel L.; Torker, Sebastian; Robbins, Daniel W.; Haeffner, Fredrik; van der Mei, Farid W.; Hoveyda, Amir H.

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  18. Catalytic properties and dynamic behaviour of uranium complexes

    International Nuclear Information System (INIS)

    Le Marechal, J.F.

    1986-01-01

    The catalytic properties of organometallic uranium III and IV compounds in solution as well as reaction mechanisms are studied. The structure in solution of CpUCl 3 L 2 (L=THF, HMPA, OPPh 3 , OP(OR) 3 ) is investigated. When L=HMPA, the complex exists in two isomers in equilibrium with the L ligands either in trans or mer-cis configuration. The isomerization (Ea=92 kJ mol -1 ) as well as the bimolecular exchange with an outer sphere ligand L are observable in 1 H and 31 P NMR, and quantified with the spin saturation transfer technique in several solvents and at different temperatures between 230 and 330 K. This property is extended to other ligands. The compound U(AlH 4 ) 3 is synthetized. This compound catalyses the hydroalumination of olefins by LiAlH 4 with a very good anti-Markovnikov regioselectivity. A simple mechanism for this reaction is suggested. The reactions of the organoaluminates products with several reactants (D 2 O, I 2 , CH 2 O, Allyl-Br...) has been shown to be a powerful synthetic tool. Some specific alkenes and alkynes exhibit an interesting behaviour as dimerization or β-alkyl elimination which is easily interpreted by our mechanism [fr

  19. Weakly Coordinating, Ketone-Directed Cp*Co(III)-Catalyzed C-H Allylation on Arenes and Indoles.

    Science.gov (United States)

    Sk, Md Raja; Bera, Sourav Sekhar; Maji, Modhu Sudan

    2018-01-05

    Weakly coordinating, ketone-directed, regioselective monoallylation of arenes and indoles is reported using a stable and cost-effective high-valent cobalt(III)-catalyst to access several important molecular building blocks. The allylation proceeds smoothly with a variety of substrates in the presence of various electron-rich and -deficient substituents. The method was applied to the formal synthesis of an ancisheynine alkaloid, a highly conjugated azatetracene, and isochroman. The mechanistic study reveals that the allylation reaction follows a base-assisted intermolecular electrophilic substitution pathway.

  20. Catalytic reforming methods

    Science.gov (United States)

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  1. Carbonyl Compounds Produced by Vaporizing Cannabis Oil Thinning Agents.

    Science.gov (United States)

    Troutt, William D; DiDonato, Matthew D

    2017-11-01

    Cannabis use has increased in the United States, particularly the use of vaporized cannabis oil, which is often mixed with thinning agents for use in vaporizing devices. E-cigarette research shows that heated thinning agents produce potentially harmful carbonyls; however, similar studies have not been conducted (1) with agents that are commonly used in the cannabis industry and (2) at temperatures that are appropriate for cannabis oil vaporization. The goal of this study was to determine whether thinning agents used in the cannabis industry produce potentially harmful carbonyls when heated to a temperature that is appropriate for cannabis oil vaporization. Four thinning agents (propylene glycol [PG], vegetable glycerin [VG], polyethylene glycol 400 [PEG 400], and medium chain triglycerides [MCT]) were heated to 230°C and the resulting vapors were tested for acetaldehyde, acrolein, and formaldehyde. Each agent was tested three times. Testing was conducted in a smoking laboratory. Carbonyl levels were measured in micrograms per puff block. Analyses showed that PEG 400 produced significantly higher levels of acetaldehyde and formaldehyde than PG, MCT, and VG. Formaldehyde production was also significantly greater in PG compared with MCT and VG. Acrolein production did not differ significantly across the agents. PG and PEG 400 produced high levels of acetaldehyde and formaldehyde when heated to 230°C. Formaldehyde production from PEG 400 isolate was particularly high, with one inhalation accounting for 1.12% of the daily exposure limit, nearly the same exposure as smoking one cigarette. Because PG and PEG 400 are often mixed with cannabis oil, individuals who vaporize cannabis oil products may risk exposure to harmful formaldehyde levels. Although more research is needed, consumers and policy makers should consider these potential health effects before use and when drafting cannabis-related legislation.

  2. Determination of Carbonyl Compounds in Cigarette Mainstream Smoke. The CORESTA 2010 Collaborative Study and Recommended Method

    Directory of Open Access Journals (Sweden)

    Intorp M

    2014-12-01

    Full Text Available A recommended method has been developed and published by CORESTA, applicable to the quantification of selected carbonyl compounds (acetaldehyde, formaldehyde, acetone, acrolein, methyl ethyl ketone, crotonaldehyde, propionaldehyde and butyraldehyde in cigarette mainstream smoke. The method involved smoke collection in impinger traps, derivatisation of carbonyls with 2,4-dinitrophenylhydrazine (DNPH, separation of carbonyl hydrazones by reversed phase high performance liquid chromatography and detection by ultra violet or diode array.

  3. Preparation and magnetorheological characteristics of polymer coated carbonyl iron suspensions

    International Nuclear Information System (INIS)

    Choi, J.S.; Park, B.J.; Cho, M.S.; Choi, H.J.

    2006-01-01

    Core-shell structured magnetic carbonyl iron (CI)-poly(methyl methacrylate) (PMMA) particles were fabricated via CI-seeded dispersion polymerization method, in order to enhance dispersion stability of their magnetorheological (MR) fluid when dispersed in mineral oil. The rheological properties of MR fluid with core-shell structured magnetic particles were then measured via a rotational rheometer with a magnetic field generator. It was found that the synthesized core-shell structured encapsulated CI particles possess better dispersion stability in suspending oil than bare CI particle suspension, due to the density reduction of the particles

  4. Determination of carbonyl compounds in air by HPLC

    International Nuclear Information System (INIS)

    Garcia, S.; Perez, R.M.; Campos, A.; Gonzalez, D.

    1995-01-01

    A method for the determination of seven carbonyl compounds in air is presented. The procedure involve sampling of air by a Sep-Pak Cartridge impregnated with 2,4-dinitrophenylhydrazine. Elution was done with 3 mL of acetonitrile and the eluate was diluted to 5 mL. The analysis was done by HPLC with UV detection and external standard method quantification. It has been achieved relative standard deviations about 5% and detection limits of 80 ng/cartridge for formaldehyde, acetaldehyde and acetoacetonitrile. Three different types of samples (rural, urban, petrol emission) were successfully analyzed. (Author) 12 refs

  5. Determination of carbonyl compounds in air by HPLC

    International Nuclear Information System (INIS)

    Garcia, S.; Perez, R.M.; Campos, A.; Gonzalez, D.

    1995-09-01

    A method for the determination of seven carbonyl compounds in air is presented. The procedure involve sampling of air by a Sep-Pak cartridge impregnated with 2,4-dinitrophenylhydrazine. Elution was done with 3 mL of acetonitrile and the eluate was diluted to 5 mL. The analysis was done by HPLC with UV detection and external standard method quantification. It has been achieved relative standard deviations about 5% and detection limits of 80 ng/cartridge for formaldehyde, acetaldehyde and acetone+acrolein. Three different types of samples (rural, urban, petrol emission) were successfully analyzed

  6. Further exploration of the heterocyclic diversity accessible from the allylation chemistry of indigo

    Directory of Open Access Journals (Sweden)

    Alireza Shakoori

    2015-04-01

    Full Text Available Diversity-directed synthesis based on the cascade allylation chemistry of indigo, with its embedded 2,2’-diindolic core, has resulted in rapid access to new examples of the hydroxy-8a,13-dihydroazepino[1,2-a:3,4-b']diindol-14(8H-one skeleton in up to 51% yield. Additionally a derivative of the novel bridged heterocycle 7,8-dihydro-6H-6,8a-epoxyazepino[1,2-a:3,4-b']diindol-14(13H-one was produced when the olefin of the allylic substrate was terminally disubstituted. Further optimisation also produced viable one-pot syntheses of derivatives of the spiro(indoline-2,9'-pyrido[1,2-a]indol-3-one (65% and pyrido[1,2,3-s,t]indolo[1,2-a]azepino[3,4-b]indol-17-one (72% heterocyclic systems. Ring-closing metathesis of the N,O-diallylic spiro structure and subsequent Claisen rearrangement gave rise to the new (1R,8aS,17aS-rel-1,2-dihydro-1-vinyl-8H,17H,9H-benz[2',3']pyrrolizino[1',7a':2,3]pyrido[1,2-a]indole-8,17-(2H,9H-dione heterocyclic system.

  7. Combined experimental and theoretical mechanistic investigation of the Barbier allylation in aqueous media.

    Science.gov (United States)

    Dam, Johan Hygum; Fristrup, Peter; Madsen, Robert

    2008-04-18

    The Barbier allylation of a series of para-substituted benzaldehydes with allylbromide in the presence of Zn, In, Sn, Sb, Bi, and Mg was investigated using competition experiments. In all cases, the slope of the Hammett plots indicated a build-up of negative charge in the selectivity-determining step. For Zn, In, Sn, Sb, and Bi, an inverse secondary kinetic isotope effect was found (kH/kD = 0.75-0.95), which was compatible with the formation of a discrete organometallic species prior to allylation via a closed six-membered transition state. With Mg, a significantly larger build-up of negative charge along with a small positive secondary kinetic isotope effect (kH/kD = 1.06) indicated that the selectivity-determining step was the generation of the radical anion of benzaldehyde. The reaction through a six-membered transition state was modeled using density functional theory with the effect of solvent described by a polarized continuum model. The calculated secondary deuterium isotope effects based on this mechanism were found to be in good agreement with experimental values, thus adding further support to this mechanistic scenario.

  8. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

    Directory of Open Access Journals (Sweden)

    David Porter

    2015-12-01

    Full Text Available Iron(II complexes of the tetradentate amines tris(2-pyridylmethylamine (TPA and N,N′-bis(2-pyridylmethyl-N,N′-dimethylethane-1,2-diamine (BPMEN are established catalysts of C–O bond formation, oxidising hydrocarbon substrates via hydroxylation, epoxidation and dihydroxylation pathways. Herein we report the capacity of these catalysts to promote C–N bond formation, via allylic amination of alkenes. The combination of N-Boc-hydroxylamine with either FeTPA (1 mol % or FeBPMEN (10 mol % converts cyclohexene to the allylic hydroxylamine (tert-butyl cyclohex-2-en-1-yl(hydroxycarbamate in moderate yields. Spectroscopic studies and trapping experiments suggest the reaction proceeds via a nitroso–ene mechanism, with involvement of a free N-Boc-nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+-(2R,2′R-1,1′-bis(2-pyridylmethyl-2,2′-bipyrrolidine ((R,R′-PDP.

  9. Carbonylated plasma proteins as potential biomarkers of obesity induced type 2 diabetes mellitus.

    Science.gov (United States)

    Bollineni, Ravi Chand; Fedorova, Maria; Blüher, Matthias; Hoffmann, Ralf

    2014-11-07

    Protein carbonylation is a common nonenzymatic oxidative post-translational modification, which is often considered as biomarker of oxidative stress. Recent evidence links protein carbonylation also to obesity and type 2 diabetes mellitus (T2DM), though the protein targets of carbonylation in human plasma have not been identified. In this study, we profiled carbonylated proteins in plasma samples obtained from lean individuals and obese patients with or without T2DM. The plasma samples were digested with trypsin, carbonyl groups were derivatized with O-(biotinylcarbazoylmethyl)hydroxylamine, enriched by avidin affinity chromatography, and analyzed by RPC-MS/MS. Signals of potentially modified peptides were targeted in a second LC-MS/MS analysis to retrieve the peptide sequence and the modified residues. A total of 158 unique carbonylated proteins were identified, of which 52 were detected in plasma samples of all three groups. Interestingly, 36 carbonylated proteins were detected only in obese patients with T2DM, whereas 18 were detected in both nondiabetic groups. The carbonylated proteins originated mostly from liver, plasma, platelet, and endothelium. Functionally, they were mainly involved in cell adhesion, signaling, angiogenesis, and cytoskeletal remodeling. Among the identified carbonylated proteins were several candidates, such as VEGFR-2, MMP-1, argin, MKK4, and compliment C5, already connected before to diabetes, obesity and metabolic diseases.

  10. A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma

    DEFF Research Database (Denmark)

    Havelund, Jesper F; Wojdyla, Katarzyna Iwona; Davies, Michael J

    2017-01-01

    preparation and chromatography. For the first time MS/MS data analysis utilising diagnostic biotin fragment ions is used to pinpoint sites of biotin labelling and improve the confidence of carbonyl peptide assignments. We identified a total of 125 carbonylated residues in bovine serum albumin after extensive...... at the protein level and help to understand how carbonylation affects protein structure and function. The challenge for future research is to identify the type and nature of oxidised residues to gain a deeper understanding of the mechanism(s) governing carbonylation in cells and organisms and assess their role...

  11. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  12. trans-Di-μ-carbonyl-bis{carbonyl[η5-2,3,4,5-tetramethyl-1-(5-methyl-2-furylcyclopentadienyl]ruthenium(I}(Ru—Ru

    Directory of Open Access Journals (Sweden)

    Jin Lin

    2009-08-01

    Full Text Available In the crystal structure of the title compound, [Ru2(C14H17O2(CO4], each RuI atom is connected to one end-on and two bridging carbonyl groups and one cyclopentadienyl ring. The two Ru atoms are connected into binuclear complexes via two bridging carbonyl groups, forming four-membered rings which are located on centres of inversion. The Ru—Ru distance of 2.7483 (11 Å corresponds to a single bond. The two carbonyl groups in these binuclear complexes are trans-oriented.

  13. Copper-Catalyzed Intermolecular Trifluoromethylazidation and Trifluoromethylthiocyanation of Allenes: Efficient Access to CF3-Containing Allyl Azides and Thiocyanates.

    Science.gov (United States)

    Zhu, Na; Wang, Fei; Chen, Pinhong; Ye, Jinxing; Liu, Guosheng

    2015-07-17

    A mild and efficient method for copper-catalyzed trifluoromethylazidation and trifluoromethylthiocyanation of allenes was explored. A series of CF3-containing allyl azides and thiocyanates were obtained with high yields and good stereoselectivities, which can be used for further transformation to some valuable compounds.

  14. A simple approach to unsymmetric atropoisomeric bipyridine N,N'-dioxides and their application in enantioselective allylation of aldehydes

    Czech Academy of Sciences Publication Activity Database

    Hrdina, R.; Valterová, Irena; Hodačová, Jana; Císařová, I.; Kotora, Martin

    2007-01-01

    Roč. 349, č. 6 (2007), s. 822-826 ISSN 1615-4150 R&D Projects: GA ČR(CZ) GA203/05/0102; GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40550506 Keywords : allylation * asymmetric catalysis * Lewis bases Subject RIV: CC - Organic Chemistry Impact factor: 4.977, year: 2007

  15. Mechanistic Dichotomy in the Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes Catalyzed by Chiral Pyridine N-Oxides

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Stončius, S.; Bell, M.; Castelluzzo, F.; Ramírez-López, P.; Biedermannová, Lada; Langer, V.; Rulíšek, Lubomír; Kočovský, P.

    2013-01-01

    Roč. 19, č. 28 (2013), s. 9167-9185 ISSN 0947-6539 R&D Projects: GA MŠk LC512 Institutional support: RVO:61388963 ; RVO:86652036 Keywords : allylation * allylsilanes * calculations * organocatalysis * pyridine N-oxides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013

  16. Antimicrobial effect of allyl isothiocyanate and modified atmosphere on Pseudomonas aeruginosa in fresh catfish fillet under abuse temperatures

    Science.gov (United States)

    Pseudomonas aeruginosa, a common spoilage microorganism on fresh catfish products, can grow rapidly at temperatures above 4 degree C during storage and transportation. Allyl isothiocyanate (AIT), an extract of horseradish oil, and modified atmosphere (MA) can be used to inhibit the growth of P. aeru...

  17. Effect of allyl isothiocyanate in headspace and modified atmosphere on Pseduomonas Aeruginosa growth in fresh catfish fillets under abuse temperatures

    Science.gov (United States)

    Pseudomonas aeruginosa, a common spoilage microorganism on fresh catfish products, can grow rapidly at temperatures above 4 deg C during storage and transportation. Allyl isothiocyanate (AIT), an extract of horseradish oil, and modified atmosphere (MA) can be used to inhibit the growth of P. aerugin...

  18. Growth behavior prediction of fresh catfish fillet with Pseudomonas aeruginosa under stresses of allyl isothiocyanate, temperature and modified atmosphere

    Science.gov (United States)

    Pseudomonas aeruginosa, a common spoilage microorganism in fish, grows rapidly when temperature rises above 4 degree C. The combination of allyl isothiocyanate (AIT) and modified atmosphere (MA) was applied and proved to be effective to retard the growth of P. aeruginosa. The objective of this resea...

  19. Asymmetric allylic alkylation in combination with ring-closing metathesis for the preparation of chiral N-heterocycles

    NARCIS (Netherlands)

    Teichert, Johannes F.; Zhang, Suyan; Zijl, Anthoni W. van; Slaa, Jan Willem; Minnaard, Adriaan J.; Feringa, Bernard

    2010-01-01

    Asymmetric copper-catalyzed allylic substitution with methylmagnesium bromide is employed in combination with ring-closing olefin metathesis or ene-yne metathesis to achieve the synthesis of chiral, unsaturated nitrogen heterocycles. The resulting six- to eight-membered chiral heterocycles are

  20. Allyl deprotection of galacturonic acid derivatives: mechanistic aspects of mercuric-catalyzed prop-1-enyl acetal cleavage.

    Science.gov (United States)

    Barbier, Maximilien; Grand, Eric; Kovensky, José

    2007-12-10

    Different deallylation methods were assayed for selective deprotection of allyl galactopyranosiduronic acid derivatives. A two-step procedure using DABCO and (Ph(3)P)(3)RhCl followed by mercuric-assisted cleavage gave quantitative yields. Reaction in the presence of [(18)O]water allowed us to obtain evidence about the mechanism of prop-1-enyl cleavage.

  1. Indium-mediated asymmetric barbier-type allylations: additions to aldehydes and ketones and mechanistic investigation of the organoindium reagents.

    Science.gov (United States)

    Haddad, Terra D; Hirayama, Lacie C; Singaram, Bakthan

    2010-02-05

    We report a simple, efficient, and general method for the indium-mediated enantioselective allylation of aromatic and aliphatic aldehydes and ketones under Barbier-type conditions in a one-pot synthesis affording the corresponding chiral alcohol products in very good yield (up to 99%) and enantiomeric excess (up to 93%). Our method is able to tolerate various functional groups, such as esters, nitriles, and phenols. Additionally, more substituted allyl bromides, such as crotyl and cinnamyl bromide, can be used providing moderate enantioselectivity (72% and 56%, respectively) and excellent diastereoselectivity when employing cinnamyl bromide (>95/5 anti/syn). However, the distereoselectivity when using crotyl bromide was poor and other functionalized allyl bromides under our method afforded low enantioselectivities for the alcohol products. In these types of indium-mediated additions, solvent plays a major role in determining the nature of the organoindium intermediate and we observed the susceptibility of some allylindium intermediates to hydrolysis in protic solvents. Under our reaction conditions using a polar aprotic solvent, we suggest that an allylindium(III) species is the active allylating intermediate. In addition, we have observed the presence of a shiny, indium(0) nugget throughout the reaction, irrespective of the stoichiometry, indicating disproportionation of indium halide byproduct formed during the reaction.

  2. Aqueous protocol for allylic arylation of cinnamyl acetates with sodium tetraphenylborate using Bedford-type palladacycle catalyst

    KAUST Repository

    Ghorpade, Seema Arun

    2018-03-19

    Allylic arylation of cinnamyl acetates with sodium tetraphenylborate using 0.002 mol % of Bedford-type palladacycle catalyst is described. The developed methodology is applicable for wide range of cinnamyl acetates furnishing excellent yields up to 93%. Notably all reactions proceed smoothly under mild reaction conditions in water under air atmosphere.

  3. Olefination of Electron-Deficient Alkenes with Allyl Acetate: Stereo- and Regioselective Access to (2Z,4E)-Dienamides.

    Science.gov (United States)

    Li, Feifei; Yu, Chunbing; Zhang, Jian; Zhong, Guofu

    2016-09-16

    A Ru-catalyzed direct olefination of electron-deficient alkenes with allyl acetate via C-H bond activation is disclosed. By using N,N-disubstituted aminocarbonyl as the directing group, this external oxidant-free protocol resulted in high reaction efficiency and good stereo- and regioselectivities, which opens a novel synthetic passway for access to (Z,E)-butadiene skeletons.

  4. Modular synthesis of optically active lactones by Ru-catalyzed asymmetric allylic carboxylation and ring-closing metathesis reaction.

    Science.gov (United States)

    Takii, Koichiro; Kanbayashi, Naoya; Onitsuka, Kiyotaka

    2012-04-21

    A new synthetic route to optically active unsaturated γ- and δ-lactones has been demonstrated via asymmetric allylic carboxylation with a planar-chiral Cp'Ru catalyst and ring-closing metathesis reaction with a Grubbs II catalyst, and successfully applied to the enantioselective synthesis of (R)-(-)-massoialactone. This journal is © The Royal Society of Chemistry 2012

  5. Inactivation of Salmonella in tomato stem scars by organic acid wash and chitosan-allyl isothiocyanate coating

    Science.gov (United States)

    The objective of this study was to evaluate inactivation of inoculated Salmonella enterica on tomato stem scars exploiting integrated treatment of organic acid wash (AW) followed by chitosan-allyl isothiocyanate (CT-AIT) coating. The treatment effect on microbial loads and fruit quality during 21 d...

  6. Catalytic Antibodies: Concept and Promise

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 11. Catalytic Antibodies: Concept and Promise. Desirazu N Rao Bharath Wootla. General Article Volume 12 Issue ... Keywords. Catalytic antibodies; abzymes; hybridome technology; Diels– Alder reaction; Michaelis– Menten kinetics; Factor VIII.

  7. S-nitrosoglutathione covalently modifies cysteine residues of human carbonyl reductase 1 and affects its activity.

    Science.gov (United States)

    Hartmanová, Tereza; Tambor, Vojtěch; Lenčo, Juraj; Staab-Weijnitz, Claudia A; Maser, Edmund; Wsól, Vladimír

    2013-02-25

    Carbonyl reductase 1 (CBR1 or SDR21C1) is a ubiquitously-expressed, cytosolic, monomeric, and NADPH-dependent enzyme. CBR1 participates in apoptosis, carcinogenesis and drug resistance, and has a protective role in oxidative stress, cancer and neurodegeneration. S-Nitrosoglutathione (GSNO) represents the newest addition to its diverse substrate spectrum, which includes a wide range of xenobiotics and endogenous substances. GSNO has also been shown to covalently modify and inhibit CBR1. The aim of the present study was to quantify and characterize the resulting modifications. Of five candidate cysteines for modification by 2 mM GSNO (positions 26, 122, 150, 226, 227), the last four were analyzed using MALDI-TOF/TOF mass spectrometry and then quantified using the Selected Reaction Monitoring Approach on hyphenated HPLC with a triple quadrupole mass spectrometer. The analysis confirmed GSNO concentration-dependent S-glutathionylation of cysteines at positions 122, 150, 226, 227 which was 2-700 times higher compared to wild-type CBR1 (WT-CBR1). Moreover, a disulfide bond between neighboring Cys-226 and Cys-227 was detected. We suggest a role of these two cysteines as a redox-sensitive cysteine pair. The catalytic properties of wild-type and enzyme modified with 2 mM GSNO were also investigated by steady state kinetic experiments with various substrates. GSNO treatment of CBR1 resulted in a 2-5-fold decrease in kcat with menadione, 4-benzoylpyridine, 2,3-hexanedione, daunorubicin and 1,4-naphthoquinone. In contrast, the same treatment increased kcat for substrates containing a 1,2-diketo group in a ring structure (1,2-naphthoquinone, 9,10-phenanthrenequinone, isatin). Except for 9,10-phenanthrenequinone, all changes in kcat were at least in part compensated for by a similar change in Km, overall yielding no drastic changes in catalytic efficiency. The findings indicate that GSNO-induced covalent modification of cysteine residues affects the kinetic mechanism of CBR1

  8. Catalytic interface erosion

    International Nuclear Information System (INIS)

    Meng, H.; Cohen, E.G.D.

    1995-01-01

    We study interface erosion processes: catalytic erosions. We present two cases. (1) The erosion of a completely occupied lattice by one single moving particle starting from somewhere inside the lattice, considering deterministic as well as probabilistic erosion rules. In the latter case, the eroded regions appear to have interfaces with continuously tunable fractal dimensions. (2) The kinetic roughening of an initially flat surface, where ballistic or diffusion-limited particles, which remain intact themselves, erode the surface coming from the outside, using the same erosion rules as in (1). Many features resembling realistic interfaces, for example, islands and inlets, are generated. The dependence of the surface width on the system size is due to both the erosion mechanism and the way particles move before reaching the surface

  9. Catalytic detritiation of water

    International Nuclear Information System (INIS)

    Rogers, M.L.; Lamberger, P.H.; Ellis, R.E.; Mills, T.K.

    1977-01-01

    A pilot-scale system has been used at Mound Laboratory to investigate the catalytic detritiation of water. A hydrophobic, precious metal catalyst is used to promote the exchange of tritium between liquid water and gaseous hydrogen at 60 0 C. Two columns are used, each 7.5 m long by 2.5 cm ID and packed with catalyst. Water flow is 5-10 cm 3 /min and countercurrent hydrogen flow is 9,000-12,000 cm 3 /min. The equipment, except for the columns, is housed in an inert atmosphere glovebox and is computer controlled. The hydrogen is obtained by electrolysis of a portion of the water stream. Enriched gaseous tritium is withdrawn for further enrichment. A description of the system is included along with an outline of its operation. Recent experimental data are discussed

  10. Studies Relevent to Catalytic Activation Co & other small Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Peter C

    2005-02-22

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.

  11. Metal carbonyl-hydrosilane reactions and hydrosilation catalysis. Final report for period May 1, 1995 - August 14, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, Alan R.

    2001-04-14

    Manganese carbonyl complexes serve as hydrosilation precatalysts for selectively transforming a carbonyl group into a doxy methylene or a fully reduced methylene group. Substrates of interest include (1) aldehydes, ketones, carboxylic acids, silyl esters, and esters, and (2) their organometallic acyl counterparts. Two types of manganese precatalysts have been reported: (a) alkyl and acyl complexes (L)(CO){sub 4}MnR [L = CO, PPh{sub 3}; R = COCH{sub 3}, COPh, CH{sub 3}] and (b) halides (CO){sub 5}MnX and [(CO){sub 4}MnX]{sub 2} (X = Br, I). The former promote hydrosilation and deoxygenation catalysis; the latter promote dehydrogenative silation of alcohols and carboxylic acids as well as hydrosilation and deoxygenation of some metallocarboxylic acid derivatives. In every case studied, these Mn precatalysts are far more reactive or selective than traditional Rh(l) precatalysts. The reaction chemistry of the above and other Mn alkyl complexes with hydrosilanes was studied in order to probe catalysis mechanism(s). Thus, Mn(CO){sub 5} methyl, benzyl, acetyl, and benzoyl (4 p-substituents) complexes reacted with hydrosilines by four different mechanisms, which were established. A noteworthy development was that the methyl and benzoyl complexes gave moderate yields of a new ({eta}{sup 2}-Si-H) silane adduct (CO){sub 4}Mn(SiMe{sub 2}Ph)(H-SiMe{sub 2}Ph), which is stable in the presence of excess silane. This silane adduct promotes all three catalytic reactions; its extraordinary activity and potential selectivity are under study.

  12. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  13. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.

    Science.gov (United States)

    Boire, Timothy C; Gupta, Mukesh K; Zachman, Angela L; Lee, Sue Hyun; Balikov, Daniel A; Kim, Kwangho; Bellan, Leon M; Sung, Hak-Joon

    2016-04-01

    Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise

  14. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.

    Science.gov (United States)

    Boire, Timothy C; Gupta, Mukesh K; Zachman, Angela L; Lee, Sue Hyun; Balikov, Daniel A; Kim, Kwangho; Bellan, Leon M; Sung, Hak-Joon

    2015-09-01

    Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37°C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise

  15. Preparation and microwave shielding property of silver-coated carbonyl iron powder

    International Nuclear Information System (INIS)

    Cao, Xiao Guo; Ren, Hao; Zhang, Hai Yan

    2015-01-01

    Highlights: • The silver-coated carbonyl iron powder is prepared by the electroless plating process. • The silver-coated carbonyl iron powder is a new kind of conductive filler. • The reflection and absorption dominate the shielding mechanism of the prepared powder. • Increasing the thickness of electroconductive adhesive will increase the SE. - Abstract: Electroless silver coating of carbonyl iron powder is demonstrated in the present investigation. The carbonyl iron powders are characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD) before and after the coating process. The relatively uniform and continuous silver coating is obtained under the given coating conditions. In this paper, the electromagnetic interference (EMI) shielding mechanism of the silver-coated carbonyl iron powder is suggested. The reflection of silver coating and absorption of carbonyl iron powder dominate the shielding mechanism of the silver-coated carbonyl iron powder. The silver-coated carbonyl iron powders are used as conductive filler in electroconductive adhesive for electromagnetic interference shielding applications. The effect of the thickness of electroconductive adhesive on the shielding effectiveness (SE) is investigated. The results indicate that the SE increases obviously with the increase of the thickness of electroconductive adhesive. The SE of the electroconductive adhesive with 0.35 mm thickness is above 38 dB across the tested frequency range

  16. Quantification of airborne fossil and biomass carbonylic carbon by combined radiocarbon and liquid chromatography mass spectrometry

    Science.gov (United States)

    Larsen, B. R.; Tudos, A.; Slanina, J.; Van der Borg, K.; Kotzias, D.

    Airborne carbonyl compounds have been sampled at three European semi-remote to semi-urban test sites for radiocarbon ( 14C) analysis. The used methodology included collection on 2,4-dinitrophenylhydrazine coated silica gel cartridges, chromatographic isolation of the formed hydrazones, combustion into CO 2, reduction into graphite followed by accelerator mass spectrometry. In combination with this, liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry was used for chemical speciation of the collected carbonyls. At all sites the carbonyls were found to be of a mixed biogenic/anthropogenic origin. The determining factor for the proportion of fossil (anthropogenic) carbon in the samples was the vicinity of urban sources for carbonyls and their photochemical precursors. At meteorological conditions, which gave the test sites semi-rural/semi-remote characteristics the samples contained an average of 24% (range: 10-34%) of fossil carbonylic carbon. When air masses were transported from urban areas to the test-sites significantly higher proportions of fossil carbonylic carbon were determined with a maximum of 61%. Principal component analysis on this limited data set indicated that a low fossil proportion of carbonylic carbon is associated with high proportions of acetaldehyde, acetone, pentanone and acrolein. Until further radicarbon studies are carried out the conclusion remains that for the carbonyl compounds measured European background levels are of a predominant biogenic origin.

  17. Protein carbonyl content: a novel biomarker for aging in HIV/AIDS patients

    Directory of Open Access Journals (Sweden)

    Vaishali Kolgiri

    2017-01-01

    Conclusions: Carbonyl content may has a role as a biomarker for detecting oxidative DNA damage induced ART toxicity and/or accelerated aging in HIV/AIDS patients. Larger studies are warranted to elucidate the role of carbonyl content as a biomarker for premature aging in HIV/AIDS patients.

  18. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    Science.gov (United States)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  19. One-pot Reductive Amination of Carbonyl Compounds with NaBH4 ...

    Indian Academy of Sciences (India)

    product. Another problem during reductive amination of carbonyl compounds with primary amines is over- alkylation and direct reduction of carbonyl compound to the corresponding alcohol. In these cases, formation and isolation of the imines which followed by reduction can avoid the problem, but the need to isolate imines.

  20. PROCESS OF COATING WITH NICKEL BY THE DECOMPOSITION OF NICKEL CARBONYL

    Science.gov (United States)

    Hoover, T.B.

    1959-04-01

    An improved process is presented for the deposition of nickel coatings by the thermal decomposition of nickel carbonyl vapor. The improvement consists in incorporating a small amount of hydrogen sulfide gas in the nickel carbonyl plating gas. It is postulated that the hydrogen sulfide functions as a catalyst. i

  1. Deactivation mechanism of the simultaneous removal of carbonyl ...

    Indian Academy of Sciences (India)

    Ni/MCSAC catalyst involves two steps: hydrolysis of COS/CS ₂ and oxidation of H ₂S. The SEM/EDS and XPS results indicate that that catalytic hydrolysis of CS ₂ can be achieved by the actions of alkaline groups and active components.

  2. Probing the Catalytic Mechanism of S-Ribosylhomocysteinase (LuxS) with Catalytic Intermediates and Substrate Analogues

    Energy Technology Data Exchange (ETDEWEB)

    Gopishetty, Bhaskar; Zhu, Jinge; Rajan, Rakhi; Sobczak, Adam J.; Wnuk, Stanislaw F.; Bell, Charles E.; Pei, Dehua; (OSU); (FIU)

    2009-05-12

    S-Ribosylhomocysteinase (LuxS) cleaves the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine (Hcys) and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of the type II bacterial quorum sensing molecule (AI-2). The catalytic mechanism of LuxS comprises three distinct reaction steps. The first step involves carbonyl migration from the C1 carbon of ribose to C2 and the formation of a 2-ketone intermediate. The second step shifts the C=O group from the C2 to C3 position to produce a 3-ketone intermediate. In the final step, the 3-ketone intermediate undergoes a {beta}-elimination reaction resulting in the cleavage of the thioether bond. In this work, the 3-ketone intermediate was chemically synthesized and shown to be chemically and kinetically competent in the LuxS catalytic pathway. Substrate analogues halogenated at the C3 position of ribose were synthesized and reacted as time-dependent inhibitors of LuxS. The time dependence was caused by enzyme-catalyzed elimination of halide ions. Examination of the kinetics of halide release and decay of the 3-ketone intermediate catalyzed by wild-type and mutant LuxS enzymes revealed that Cys-84 is the general base responsible for proton abstraction in the three reaction steps, whereas Glu-57 likely facilitates substrate binding and proton transfer during catalysis.

  3. Probing the Catalytic Mechanism of S-Ribosylhomocysteinase (LuxS) with Catalytic Intermediates and Substrate Analogues

    International Nuclear Information System (INIS)

    Gopishetty, Bhaskar; Zhu, Jinge; Rajan, Rakhi; Sobczak, Adam J.; Wnuk, Stanislaw F.; Bell, Charles E.; Pei, Dehua

    2009-01-01

    S-Ribosylhomocysteinase (LuxS) cleaves the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine (Hcys) and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of the type II bacterial quorum sensing molecule (AI-2). The catalytic mechanism of LuxS comprises three distinct reaction steps. The first step involves carbonyl migration from the C1 carbon of ribose to C2 and the formation of a 2-ketone intermediate. The second step shifts the C=O group from the C2 to C3 position to produce a 3-ketone intermediate. In the final step, the 3-ketone intermediate undergoes a β-elimination reaction resulting in the cleavage of the thioether bond. In this work, the 3-ketone intermediate was chemically synthesized and shown to be chemically and kinetically competent in the LuxS catalytic pathway. Substrate analogues halogenated at the C3 position of ribose were synthesized and reacted as time-dependent inhibitors of LuxS. The time dependence was caused by enzyme-catalyzed elimination of halide ions. Examination of the kinetics of halide release and decay of the 3-ketone intermediate catalyzed by wild-type and mutant LuxS enzymes revealed that Cys-84 is the general base responsible for proton abstraction in the three reaction steps, whereas Glu-57 likely facilitates substrate binding and proton transfer during catalysis.

  4. Catalytic Activity of Silicon Nanowires Decorated with Gold and Copper Nanoparticles Deposited by Pulsed Laser Ablation

    Directory of Open Access Journals (Sweden)

    Michele Casiello

    2018-01-01

    Full Text Available Silicon nanowires (SiNWs decorated by pulsed laser ablation with gold or copper nanoparticles (labeled as AuNPs@SiNWs and CuNPs@SiNWs were investigated for their catalytic properties. Results demonstrated high catalytic performances in the Caryl–N couplings and subsequent carbonylations for gold and copper catalysts, respectively, that have no precedents in the literature. The excellent activity, attested by the very high turn over number (TON values, was due both to the uniform coverage along the NW length and to the absence of the chemical shell surrounding the metal nanoparticles (MeNPs. A high recyclability was also observed and can be ascribed to the strong covalent interaction at the Me–Si interface by virtue of metal “silicides” formation.

  5. α-Halo Amides as Competent Latent Enolates: Direct Catalytic Asymmetric Mannich-Type Reaction.

    Science.gov (United States)

    Sun, Bo; Balaji, Pandur Venkatesan; Kumagai, Naoya; Shibasaki, Masakatsu

    2017-06-21

    α-Halogenated carbonyl compounds are susceptible to dehalogenation and thus largely neglected as enolate precursors in catalytic enantioselective C-C bond-forming reactions. By merging the increased stability of the α-C-halogen bond of amides and the direct enolization methodology of the designed amide, we explored a direct catalytic asymmetric Mannich-type reaction of α-halo 7-azaindoline amides with N-carbamoyl imines. All α-halo substituents, α-F, -Cl, -Br, -I amides, were tolerated to provide the Mannich-adducts in a highly stereoselective manner without undesirable dehalogenation. The diastereoselectivity switched intriguingly depending on the substitution pattern of the aromatic imines, which is ascribed to stereochemical differentiation based on the open transition-state model. Functional group interconversion of the 7-azaindoline amide moiety of the Mannich-adducts and further elaboration into a diamide without dehalogenation highlight the synthetic utility of the present protocol for accessing enantioenriched halogenated chemical entities.

  6. Reactions of rhodium(I) carbonyl chloride with olefins

    International Nuclear Information System (INIS)

    Varshavskii, Yu.S.; Kiseleva, N.V.; Cherkasova, T.G.; Buzina, N.A.; Bresler, L.S.

    1987-01-01

    The reactions of [Rh(CO) 2 Cl] 2 (Y 0 ) with cyclooctene and several other olefins (1-heptene, 1-hexene, ethylene, and cyclohexene) have been studied by IR and 13 C NMR spectroscopy. The main reaction products are the binuclear complexes Rh 2 L(CO) 3 Cl 2 (Y 1 ) and [RhL(CO)Cl] 2 (Y 2 ), where L denotes the olefin. The extent of replacement of the carbonyl groups depends on the nature of the olefin and the conditions under which the reaction is carried out (the L:Rh ratio and the removal of CO from the reaction sphere). The liquid olefins form the following series according to their ability to replace the carbonyl groups: C 8 H 14 > C 7 H 14 , C 6 H 12 > C 6 H 10 . In the presence of an excess of C 8 H 14 , Y 2 disproportionates with the formation of a dicarbonyl product, which presumably corresponds to the formula Rh(C 8 H 14 ) 2 (CO) 2 Cl (a pentacoordinate complex with a trigonal-bipyramidal structure). The 13 C signal in the NMR spectrum of a solution of Y 2 in C 8 H 14 is a singlet with σ( 13 C) 180.3 ppm, which is an indication of the rapid exchange of the carbonyl groups. Rapid exchange of the CO ligands is also observed in solutions of Y 0 in the olefins (with the exception of C 6 H 10 ). For example, the 13 C signal in the spectrum of a solution of Y 0 in C 8 H 14 is a singlet with σ( 13 C) 179.8 ppm. The spectrum of Y 0 in C 6 H 10 is a doublet with σ( 13 C) = 178.5 ppm and 1 J(CRh) = 76.3 Hz. A scheme for the interaction of Y 0 with olefins based on the conception of the trans antagonism of π-acceptor ligands has been proposed

  7. Synthesis and characterization of branched fcc/hcp ruthenium nanostructures and their catalytic activity in ammonia borane hydrolysis

    KAUST Repository

    AlYami, Noktan

    2018-01-30

    Several systems have shown the ability to stabilize uncommon crystal structures during the synthesis of metallic nanoparticles. By tailoring the nanoparticle crystal structure, the physical and chemical properties of the particles can also be controlled. Herein, we first synthesized branched nanoparticles of mixed hcp/fcc ruthenium, which were formed using tungsten carbonyl [W(CO)6] as both a reducing agent and a source of carbon monoxide. The branched particles were formed from multiple particulates off a central core. High-resolution transmission electron microscopy (HRTEM) clearly showed that the branched structures consisted of aligned hcp crystal domains, a mixture of fcc and hcp crystal domains with several defects and misalignments, and particles that contained multiple cores and branches. Branched particles were also formed with molybdenum carbonyl [Mo(CO)6], and faceted particles of hcp and fcc particles were formed with Re2(CO)10 as a carbon monoxide source. Without metal carbonyls, small particles of spherical hcp ruthenium were produced, and their size could be controlled by the selection of the precursor. The ruthenium nanoparticles were tested for ammonia borane hydrolysis; the branched nanoparticles were more reactive for catalytic hydrogen evolution than the faceted hcp/fcc nanoparticles or the spherical hcp nanoparticles. This work showcases the potential of crystal phase engineering of transition metal nanoparticles by different carbon monoxide precursors for tailoring their catalytic reactivity.

  8. Catalytic method for synthesizing hydrocarbons

    Science.gov (United States)

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  9. Development of an automatic sampling device for the continuous measurement of atmospheric carbonyls compounds

    International Nuclear Information System (INIS)

    Perraud, V.

    2007-12-01

    Two sampling strategies were studied to develop an automatic instrument for the continuous measurement of atmospheric carbonyl compounds. Because of its specificity towards carbonyls compounds, sampling by using a transfer of gaseous phase in a liquid phase associated with a simultaneous chemical derivatization of the trapped compounds was first studied. However, this method do not allow a quantitative sampling of all studied carbonyl compounds, nor a continuous measurement in the field. To overcome the difficulties, a second strategy was investigated: the cryogenic adsorption onto solid adsorbent followed by thermodesorption and a direct analysis by GC/MS. Collection efficiency using different solid adsorbents was found greater than 95% for carbonyl compounds consisting of 1 to 7 carbons. This work is a successful first step towards the realization of the automatic sampling device for a continuous measurement of atmospheric carbonyls compounds. (author)

  10. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective

    DEFF Research Database (Denmark)

    Møller, Ian Max; Rogowska-Wrzesinska, Adelina; Rao, Shyama Prasad

    2011-01-01

    Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought...... to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo...... and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation...

  11. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  12. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    KAUST Repository

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  13. Isomerization of Allylic Alcohols to Ketones Catalyzed by Well-Defined Iron PNP Pincer Catalysts.

    Science.gov (United States)

    Xia, Tian; Wei, Zhihong; Spiegelberg, Brian; Jiao, Haijun; Hinze, Sandra; de Vries, Johannes G

    2018-03-15

    [Fe(PNP)(CO)HCl] (PNP=di-(2-diisopropylphosphanyl-ethyl)amine), activated in situ with KOtBu, is a highly active catalyst for the isomerization of allylic alcohols to ketones without an external hydrogen supply. High reaction rates were obtained at 80 °C, but the catalyst is also sufficiently active at room temperature with most substrates. The reaction follows a self-hydrogen-borrowing mechanism, as verified by DFT calculations. An alternative isomerization through alkene insertion and β-hydride elimination could be excluded on the basis of a much higher barrier. In alcoholic solvents, the ketone product is further reduced to the saturated alcohol. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Highly Diastereoselective Indium-Mediated Allylation of Proline-Derived Hydrazones

    International Nuclear Information System (INIS)

    Satyender, Apuri; Jang, Doo Ok

    2013-01-01

    A highly diastereoselective indium-mediated addition reaction to L-proline-derived hydrazones has been developed. The method affords an efficient and general synthesis of homoallylic amines of high optically purity in high yields and diastereomeric ratios up to 98:2. It is well known that (S)-1-amino-2-methoxymethylpyrro-lidine and (S)-4-isopropyl- or (S)-4-phenylmethyl-oxa-zolidin-2-one-derived hydrazones have been used for metal-mediated diastereoselective allylation additions to produce chiral homoallylic amines. However, the optically pure hydrazine precursors are either commercially expensive and/or involve laborious synthetic procedures employing toxic reagents for their preparation. Thus, the design of novel classes of chiral hydrazines that would further broaden the scope of asymmetric synthesis to access optically pure homoallylic amines is highly desirable

  15. A method of detecting carbonyl compounds in tree leaves in China.

    Science.gov (United States)

    Huang, Juan; Feng, Yanli; Fu, Jiamo; Sheng, Guoying

    2010-06-01

    Carbonyl compounds have been paid more and more attention because some carbonyl species have been proven to be carcinogenic or a risk for human health. Plant leaves are both an important emission source and an important sink of carbonyl compounds. But the research on carbonyl compounds from plant leaves is very scarce. In order to make an approach to the emission mechanism of plant leaves, a new method was established to extract carbonyl compounds from fresh plant leaves. The procedure combining derivatization with ultrasonication was developed for the fast extraction of carbonyl compounds from tree leaves. Fresh leaves (trees, i.e., camphor tree (Cinnamomum camphora), sweet olive (Osmanthus fragrans), cedar (Cedrus deodara), and dawn redwood (Metasequoia glyptostroboides), were selected and extracted by this method. Seven carbonyl compounds, including formaldehyde, acetaldehyde, acetone, acrolein, p-tolualdehyde, m/o-tolualdehyde, and hexaldehyde were determined and quantified. The most common carbonyl species of the four tree leaves were formaldehyde, acrolein, and m/o-tolualdehyde. They accounted for 67.3% in cedar, 50.8% in sweet olive, 45.8% in dawn redwood, and 44.6% in camphor tree, respectively. Camphor tree had the highest leaf level of m/o-tolualdehyde with 15.0 +/- 3.4 microg g(-1)(fresh leaf weight), which indicated that camphor tree may be a bioindicator of the level of tolualdehyde or xylene in the atmosphere. By analyzing carbonyl compounds from different tree leaves, it is not only helpful for further studying the relationship between sink and emission of carbonyls from plants, but also helpful for exploring optimum plant population in urban greening.

  16. SILP catalysis in gas-phase hydroformylation and carbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Riisager, A.; Fehrmann, R. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry; Haumann, M.; Wasserscheid, P. [Univ. Erlangen-Nuernberg (Germany). Lehrstuhl fuer Chemische Reaktionstechnik

    2006-07-01

    Supported ionic liquid phase (SILP) catalysts are new materials consisting of an ionic liquid-metal catalyst solution highly dispersed on a porous support. The use of a non-volatile, ionic liquid catalyst phase in SILP catalysts results in a stable heterogeneous-type material with selectivity and efficiency like homogeneous catalysts. The silica-supported SILP Rh-bisphosphine hydroformylation catalyst exhibited good activities and excellent selectivities in gas phase hydroformylation with stability exceeding 700 hours time-on-stream. Spectroscopic and kinetic data confirmed the homogeneous nature of the catalyst. In the Rh- SILP catalysed carbonylation of methanol the formation of undesired by-products could be suppressed by variation of residence time and gas pressure. (orig.)

  17. Effect of Redox “Non-Innocent” Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Vermeulen, Nicolaas A. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Huang, Zhiyuan [Chemical Sciences & amp, Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Cui, Yuexing [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Liu, Jian [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Krzyaniak, Matthew D. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Li, Zhanyong [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Noh, Hyunho [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Wasielewski, Michael R. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Delferro, Massimiliano [Chemical Sciences & amp, Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Farha, Omar K. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

    2017-12-19

    Two new UiO-68 type of Zr-MOFs featuring redox non-innocent catechol-based linkers of different redox activities have been synthesized through a de novo mixed-linker strategy. Metalation of the MOFs with Cu(II) precursors triggers the reduction of Cu(II) by the phenyl-catechol groups to Cu(I) with the concomitant formation of semiquinone radicals as evidenced by EPR and XPS characterization. The MOF-supported catalysts are selective toward the allylic oxidation of cyclohexene and it is found that the presence of in situ-generated Cu(I) species exhibits enhanced catalytic activity as compared to a similar MOF with Cu(II) metalated naphthalenyl-dihydroxy groups. This work unveils the importance of metal-support redox interactions in the catalytic activity of MOF-supported catalysts which are not easily accessible in traditional metal oxide supports.

  18. Anti-Amoebic Properties of Carbonyl Thiourea Derivatives

    Directory of Open Access Journals (Sweden)

    Maizatul Akma Ibrahim

    2014-04-01

    Full Text Available Thiourea derivatives display a broad spectrum of applications in chemistry, various industries, medicines and various other fields. Recently, different thiourea derivatives have been synthesized and explored for their anti-microbial properties. In this study, four carbonyl thiourea derivatives were synthesized and characterized, and then further tested for their anti-amoebic properties on two potential pathogenic species of Acanthamoeba, namely A. castellanii (CCAP 1501/2A and A. polyphaga (CCAP 1501/3A. The results indicate that these newly-synthesized thiourea derivatives are active against both Acanthamoeba species. The IC50 values obtained were in the range of 2.39–8.77 µg·mL‑1 (9.47–30.46 µM for A. castellanii and 3.74–9.30 µg·mL‑1 (14.84–31.91 µM for A. polyphaga. Observations on the amoeba morphology indicated that the compounds caused the reduction of the amoeba size, shortening of their acanthopodia structures, and gave no distinct vacuolar and nuclear structures in the amoeba cells. Meanwhile, fluorescence microscopic observation using acridine orange and propidium iodide (AOPI staining revealed that the synthesized compounds induced compromised-membrane in the amoeba cells. The results of this study proved that these new carbonyl thiourea derivatives, especially compounds M1 and M2 provide potent cytotoxic properties toward pathogenic Acanthamoeba to suggest that they can be developed as new anti-amoebic agents for the treatment of Acanthamoeba keratitis.

  19. Fabrication of Yolk-Shell Cu@C Nanocomposites as High-Performance Catalysts in Oxidative Carbonylation of Methanol to Dimethyl Carbonate

    Science.gov (United States)

    Wang, Juan; Hao, Panpan; Shi, Ruina; Yang, Leilei; Liu, Shusen; Zhao, Jinxian; Ren, Jun; Li, Zhong

    2017-08-01

    A facile way was developed to fabricate yolk-shell composites with tunable Cu cores encapsulated within hollow carbon spheres (Cu@C) with an average diameter about 210 nm and cavity size about 80 nm. During pyrolysis, the confined nanospace of hollow cavity ensures that the nucleation-and-growth process of Cu nanocrystals take place exclusively inside the cavities. The size of Cu cores can be easily tuned from 30 to 55 nm by varying the copper salt concentration. By deliberately creating shell porosity through KOH chemical activation, at an optimized KOH/HCS mass ratio of 1/4, the catalytic performance for the oxidative carbonylation of methanol to dimethyl carbonate (DMC) of the activated sample is enhanced remarkably with TOF up to 8.6 h-1 at methanol conversion of 17.1%. The activated yolk-shell catalyst shows promising catalytic properties involving the reusability with slight loss of catalytic activity and negligible leaching of activated components even after seven recycles, which is beneficial to the implementation of clean production for the eco-friendly chemical DMC thoroughly.

  20. Catalytic cracking with deasphalted oil

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, W.I.; Taylor, J.L.; Peck, L.B.; Mosby, J.F.

    1990-07-10

    This patent describes a catalytic cracking process. It comprises: hydrotreating resid; thereafter deasphalting the hydrotreated resid to produce substantially deasphalted oil; catalytically cracking the hydrotreated oil in a catalytic cracking unit in the presence of a cracking catalyst to produce upgraded oil leaving coked catalyst; and regenerating the coked catalyst in the presence of a combustion-supporting gas comprising excess molecular oxygen in an amount greater than the stoichiometric amount required for substantially completely combusting the coke on the catalyst to carbon dioxide.

  1. Enantioselective allylations of selected alpha, beta, gamma, delta-unsaturated aldehydes by axially chiral N,N'-dioxides. Synthesis of the left-hand part of papulacandin D

    Czech Academy of Sciences Publication Activity Database

    Vlašaná, K.; Betík, R.; Valterová, Irena; Nečas, D.; Kotora, M.

    2016-01-01

    Roč. 3, č. 3 (2016), s. 301-305 ISSN 2213-3372 Institutional support: RVO:61388963 Keywords : allylation * aldehyde * Lewis base * asymmetric synthesis * organocatalysis * homoallylic alcohol s Subject RIV: CC - Organic Chemistry

  2. Synthesis of Imidazo[1,5-a]quinolines and Imidazo[5,1-a]isoquinolines via the In-Mediated Allylation of Reissert Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Kim, Yu Mi; Park, Bo Ram; Kim, Jae Nyoung [Chonnam National University, Gwangju (Korea, Republic of)

    2010-10-15

    In summary, a facile indium-mediated synthesis of allyl-substituted imidazo[1,5-a]quinoline and its derivatives has been disclosed starting from the Reissert compounds of quinoline and related compounds. Allylindium reagents have been used extensively for the introduction of allyl group in a Barbier type manner to various electrophiles. Although many reactive electrophiles such as aldehydes and imines have been used in the indium-mediated allylations, the reaction of less reactive nitrile has not been reported much except the first successful results of Yamamoto group and our recent papers. Recently, we reported a series of indium-mediated Barbier type allylations of nitrile groups in γ-cyanoesters, γ-ketonitriles, δ-ketonitriles, ortho-cyanobenzoates, and N-(ortho-cyanoaryl) amides.

  3. Modification of Bisphenol-A Based Bismaleimide Resin (BPA-BMI) with an Allyl-Terminated Hyperbranched Polyimide (AT-PAEKI)

    National Research Council Canada - National Science Library

    Qin, Haihu; Mather, Patrick T; Baek, Jong-Beom; Tan, Loon-Seng

    2006-01-01

    As a continuation of previous work involving synthesis of an allyl-functionalized hyperbranched polyimide, AT-PAEKI, we have studied the use of this reactive polymer as a modifier of bisphenol-A based...

  4. Diaza [1,4] Wittig-type rearrangement of N-allylic-N-Boc-hydrazines into γ-amino-N-Boc-enamines.

    Science.gov (United States)

    Tayama, Eiji; Kobayashi, Yoshiaki; Toma, Yuka

    2016-08-18

    Diaza [1,4] Wittig-type rearrangement of N-allylic-N-Boc-hydrazines into γ-amino-N-Boc-enamines was demonstrated. The scope and limitation, experimental mechanistic studies, and a proposed reaction mechanism were also described.

  5. Catalytic Membrane Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  6. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  7. The physicochemical properties and catalytic performance of carbon-covered alumina for oxidative dehydrogenation of ethylbenzene with CO2

    Science.gov (United States)

    Wang, Tehua; Chong, Siying; Wang, Tongtong; Lu, Huiyi; Ji, Min

    2018-01-01

    In order to correlate the physicochemical properties of carbon-covered alumina (CCA) materials with their catalytic performance for oxidative dehydrogenation of ethylbenzene with CO2 (CO2-ODEB), a series of CCA materials with diverse carbon contents (8.7-31.3 wt%) and pyrolysis temperatures (600-800 °C), which were synthesized via an impregnation method followed by pyrolysis, were applied. These catalytic materials were characterized by TGA, N2 physisorption, XRD, Raman spectroscopy and XPS techniques. It was found that the catalytic performance of these CCA materials highly depended on their physicochemical properties, and the optimum CCA catalyst exhibited much better catalytic stability than conventional hydroxyl carbon nanotubes. Below an optimum value of carbon content, the CCA catalyst preserved the main pore characteristics of the Al2O3 support and its catalytic activity increased with the carbon content. Excessive carbon loading resulted in significant textural alterations and thereby decreased both the ethylbenzene conversion and styrene selectivity. On the other hand, high pyrolysis temperature was detrimental to the ordered graphitic structure of the carbon species within the Al2O3 pore. The decreased ordered graphitic degree was found to be associated with the loss of the surface active carbonyl groups, consequently hampering the catalytic efficiency of the CCA catalyst.

  8. Efficient synthesis of α,β-unsaturated alkylimines performed with allyl cations and azides: application to the synthesis of an ant venom alkaloid.

    Science.gov (United States)

    Hayashi, Kyohei; Tanimoto, Hiroki; Zhang, Huan; Morimoto, Tsumoru; Nishiyama, Yasuhiro; Kakiuchi, Kiyomi

    2012-11-16

    An efficient synthesis of α,β-unsaturated alkylimines at low temperature using azides has been developed. Carbocations generated from allyl alcohols helped achieve a rapid conversion under mild conditions with azides to afford reactive α,β-unsaturated imines. Hydroxy or alkoxy groups are essential for these transformations, and utilizing readily accessible allyl alcohols gave a wide extension of substrates. The efficiency of this novel method is demonstrated in the total synthesis of an iminium ant venom alkaloid.

  9. A convenient and stereoselective synthesis of (Z)-allyl selenides via Sm/TMSCl system-promoted coupling of Baylis-Hillman adducts with diselenides*

    Science.gov (United States)

    Liu, Yun-kui; Xu, Dan-qian; Xu, Zhen-yuan; Zhang, Yong-min

    2006-01-01

    A simple and convenient procedure for stereoselective synthesis of (Z)-allyl selenides has been developed by a one-pot reaction of diselenides with Baylis-Hillman adducts in the presence of samarium metal-trimethylsilyl chloride under mild conditions. Presumably, the diselenides are cleaved by Sm/TMSCl system to form selenide anions, which then undergo SN2′ substitution of Baylis-Hillman adducts to produce the (Z)-allyl selenides. PMID:16615170

  10. Oxidation reaction of 4-allyl-4-hydroperoxy-2-methoxycyclohexa-2,5-dienone in the presence of potassium permanganate without a co-oxidant

    Directory of Open Access Journals (Sweden)

    Mehmet Serdar Gültekin

    2016-12-01

    Full Text Available 4-Allyl-4-hydroperoxy-2-methoxycyclohexa-2,5-dienone (5 was synthesized by photooxygenation of commercially available Eugenol in the presence of tetraphenylporphyrin (TPP as a singlet oxygen sensitizer. The brief and one-pot syntheses of some natural product skeletons were conducted using the corresponding allylic hydroperoxide at different temperatures (0 oC and room temperature with potassium permanganate (KMnO 4 in mild condition at N 2(g atm.

  11. Catalytic pyrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Seshan, Kulathuiyer; Sa, Jacinto

    2014-01-01

    This chapter reports on the latest developments of biomass catalytic pyrolysis for the production of fuels. The primary focus is on the role of catalysts in the process, namely, their influence in the liquefaction of lignocellulosic biomass.

  12. Computational Design of Enone-Binding Proteins with Catalytic Activity for the Morita-Baylis-Hillman Reaction

    Science.gov (United States)

    Bjelic, Sinisa; Nivon, Lucas G.; Çelebi-Ölçüm, Nihan; Kiss, Gert; Rosewall, Carolyn F.; Lovick, Helena M.; Ingalls, Erica L.; Gallaher, Jasmine Lynn; Seetharaman, Jayaraman; Lew, Scott; Montelione, Gaetano Thomas; Hunt, John Francis; Michael, Forrest Edwin; Houk, K. N.; Baker, David

    2013-01-01

    The Morita-Baylis-Hillman reaction forms a carbon-carbon bond between the alpha carbon of a conjugated carbonyl compound and a carbon electrophile. The reaction mechanism involves Michael addition of a nucleophile catalyst at the carbonyl beta carbon, followed by bond formation with the electrophile and catalyst disassociation to release the product. We used Rosetta to design 48 proteins containing active sites predicted to carry out this mechanism, of which two show catalytic activity by mass spectrometry (MS). Substrate labeling measured by MS and site-directed mutagenesis experiments show that the designed active-site residues are responsible for activity, although rate acceleration over background is modest. To characterize the designed proteins, we developed a fluorescence-based screen for intermediate formation in cell lysates, carried out microsecond molecular dynamics simulations, and solved X-ray crystal structures. These data indicate a partially formed active site, and suggest several clear avenues for designing more active catalysts. PMID:23330600

  13. Asymmetric allylation of α-ketoester-derived N-benzoylhydrazones promoted by chiral sulfoxides/N-oxides Lewis bases: highly enantioselective synthesis of quaternary α-substituted α-allyl-α-amino acids.

    Science.gov (United States)

    Reyes-Rangel, Gloria; Bandala, Yamir; García-Flores, Fred; Juaristi, Eusebio

    2013-09-01

    Chiral sulfoxides/N-oxides (R)-1 and (R,R)-2 are effective chiral promoters in the enantioselective allylation of α-keto ester N-benzoylhydrazone derivatives 3a-g to generate the corresponding N-benzoylhydrazine derivatives 4a-g, with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a-b were subsequently treated with SmI2, and the resulting amino esters 5a-b with LiOH to obtain quaternary α-substituted α-allyl α-amino acids 6a-b, whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. © 2013 Wiley Periodicals, Inc.

  14. Protein carbonylation sites in bovine raw milk and processed milk products.

    Science.gov (United States)

    Milkovska-Stamenova, Sanja; Mnatsakanyan, Ruzanna; Hoffmann, Ralf

    2017-08-15

    During thermal treatment of milk, proteins are oxidized, which may reduce the nutritional value of milk, abolish protein functions supporting human health, especially important for newborns, and yield potentially harmful products. The side chains of several amino acids can be oxidized to reactive carbonyls, which are often used to monitor oxidative stress in organisms. Here we mapped protein carbonylation sites in raw milk and different brands of pasteurized, ultra high temperature (UHT) treated milk, and infant formulas (IFs) after digesting the precipitated proteins with trypsin. Reactive carbonyls were derivatized with O-(biotinylcarbazoylmethyl)hydroxylamine to enrich the modified peptides by avidin-biotin affinity chromatography and analyze them by nanoRP-UPLC-ESI-MS. Overall, 53 unique carbonylated peptides (37 carbonylation sites, 15 proteins) were identified. Most carbonyls were derived from dicarbonyls (mainly glyoxal). The number of carbonylation sites increased with the harsher processing from raw milk (4) to pasteurized (16) and UHT milk (16) and to IF (24). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Paraquat exposure and Sod2 knockdown have dissimilar impacts on the Drosophila melanogaster carbonylated protein proteome

    Science.gov (United States)

    Narayanasamy, Suresh K.; Simpson, David C.; Martin, Ian; Grotewiel, Mike; Gronert, Scott

    2014-01-01

    Exposure to Paraquat and RNA interference knockdown of Mn or mitochondrial superoxide dismutase (Sod2) are known to result in significant lifespan reduction, locomotor dysfunction, and mitochondrial degeneration in Drosophila melanogaster. Both perturbations increase the flux of the progenitor ROS, superoxide, but the molecular underpinnings of the resulting phenotypes are poorly understood. Improved understanding of such processes could lead to advances in the treatment of numerous age-related disorders. Superoxide toxicity can act through protein carbonylation. Analysis of carbonylated proteins is attractive since carbonyl groups are not present in the twenty canonical amino acids and are amenable to labeling and enrichment strategies. Here, carbonylated proteins were labeled with biotin hydrazide and enriched on streptavidin beads. On-bead digestion was used to release carbonylated protein peptides, with relative abundance ratios versus controls obtained using the iTRAQ MS-based proteomics approach. Western blotting and biotin quantitation assay approaches were also investigated. By both western blotting and proteomics, Paraquat exposure, but not Sod2 knockdown, resulted in increased carbonylated protein relative abundance. For Paraquat exposure versus control, the median carbonylated protein relative abundance ratio (1.53) determined using MS-based proteomics was in good agreement with that obtained using a commercial biotin quantitation kit (1.36). PMID:25091824

  16. Characteristics of carbonyls: Concentrations and source strengths for indoor and outdoor residential microenvironments in China

    Science.gov (United States)

    Wang, B.; Lee, S. C.; Ho, K. F.

    Indoor and outdoor carbonyl concentrations were measured simultaneously in 12 urban dwellings in Beijing, Shanghai, Guangzhou, and Xi'an, China in summer (from July to September in 2004) and winter (from December 2004 to February 2005). Formaldehyde was the most abundant indoor carbonyls species, while formaldehyde, acetaldehyde and acetone were found to be the most abundant outdoor carbonyls species. The average formaldehyde concentrations in summer indoor air varied widely between cities, ranging from a low of 19.3 μg m -3 in Xi'an to a high of 92.8 μg m -3 in Beijing. The results showed that the dwellings with tobacco smoke, incense burning or poor ventilation had significantly higher indoor concentrations of certain carbonyls. It was noticed that although one half of the dwellings in this study installed with low emission building materials or furniture, the carbonyls levels were still significantly high. It was also noted that in winter both the indoor and outdoor acetone concentrations in two dwellings in Guangzhou were significantly high, which were mainly caused by the usage of acetone as industrial solvent in many paint manufacturing and other industries located around Guangzhou and relatively longer lifetime of acetone for removal by photolysis and OH reaction than other carbonyls species. The indoor carbonyls levels in Chinese dwellings were higher than that in dwellings in the other countries. The levels of indoor and ambient carbonyls showed great seasonal differences. Six carbonyls species were carried out the estimation of indoor source strengths. Formaldehyde had the largest indoor source strength, with an average of 5.25 mg h -1 in summer and 1.98 mg h -1 in winter, respectively. However, propionaldehyde, crotonaldehyde and benzaldehyde had the weakest indoor sources.

  17. Catalytic Z-selective olefin cross-metathesis for natural product synthesis.

    Science.gov (United States)

    Meek, Simon J; O'Brien, Robert V; Llaveria, Josep; Schrock, Richard R; Hoveyda, Amir H

    2011-03-24

    Alkenes are found in many biologically active molecules, and there are a large number of chemical transformations in which alkenes act as the reactants or products (or both) of the reaction. Many alkenes exist as either the E or the higher-energy Z stereoisomer. Catalytic procedures for the stereoselective formation of alkenes are valuable, yet methods enabling the synthesis of 1,2-disubstituted Z alkenes are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and of allylic amides, used until now only in E-selective processes. The corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. These transformations, promoted by catalysts that contain the highly abundant and inexpensive metal molybdenum, are amenable to gram-scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. The utility of this method is demonstrated by its use in syntheses of an anti-oxidant plasmalogen phospholipid, found in electrically active tissues and implicated in Alzheimer's disease, and the potent immunostimulant KRN7000.

  18. Olefin cross-metathesis on proteins: investigation of allylic chalcogen effects and guiding principles in metathesis partner selection.

    Science.gov (United States)

    Lin, Yuya A; Chalker, Justin M; Davis, Benjamin G

    2010-12-01

    Olefin metathesis has recently emerged as a viable reaction for chemical protein modification. The scope and limitations of olefin metathesis in bioconjugation, however, remain unclear. Herein we report an assessment of various factors that contribute to productive cross-metathesis on protein substrates. Sterics, substrate scope, and linker selection are all considered. It was discovered during this investigation that allyl chalcogenides generally enhance the rate of alkene metathesis reactions. Allyl selenides were found to be exceptionally reactive olefin metathesis substrates, enabling a broad range of protein modifications not previously possible. The principles considered in this report are important not only for expanding the repertoire of bioconjugation but also for the application of olefin metathesis in general synthetic endeavors.

  19. Crystal structure of (Z-3-allyl-5-(3-bromobenzylidene-2-sulfanylidene-1,3-thiazolidin-4-one

    Directory of Open Access Journals (Sweden)

    Rahhal El Ajlaoui

    2015-12-01

    Full Text Available In the title compound, C13H10BrNOS2, the rhodanine (systematic name: 2-sulfanylidene-1,3-thiazolidin-4-one and the 3-bromobenzylidene ring systems are inclined slightly, forming a dihedral angle of 5.86 (12°. The rhodanine moiety is linked to an allyl group at the N atom and to the 3-bromobenzylidene ring system. The allyl group, C=C—C, is nearly perpendicular to the mean plane through the rhodanine ring, maling a dihedral angle of 87.2 (5°. In the crystal, molecules are linked by pairs of C—H...O hydrogen bonds, forming inversion dimers with an R22(10 ring motif.

  20. One-pot synthesis of enantiomerically pure N-protected allylic amines from N-protected α-amino esters

    Directory of Open Access Journals (Sweden)

    Gastón Silveira-Dorta

    2016-05-01

    Full Text Available An improved protocol for the synthesis of enantiomerically pure allylic amines is reported. N-Protected α-amino esters derived from natural amino acids were submitted to a one-pot tandem reduction–olefination process. The sequential reduction with DIBAL-H at −78 °C and subsequent in situ addition of organophosphorus reagents yielded the corresponding allylic amines without the need to isolate the intermediate aldehyde. This circumvents the problem of instability of the aldehydes. The method tolerates well both Wittig and Horner–Wadsworth–Emmons organophosphorus reagents. A better Z-(diastereoselectivity was observed when compared to the previous one-pot method. The (diastereoselectivity of the process was affected neither by the reaction solvent nor by the amount of DIBAL-H employed. The method is compatible with the presence of free hydroxy groups as shown with serine and threonine derivatives.

  1. Millimeter-Wave Transmittance and Reflectance Measurement on Pure and Diluted Carbonyl Iron

    Science.gov (United States)

    Korolev, Konstantin; Chen, Shu; Li, Zijing; Afsar, Mohammed

    2010-03-01

    Transmittance and reflectance measurements on highly absorbing carbonyl iron materials over a broad millimeter-wave frequency range have been performed. Frequency dependence of the complex dielectric permittivity of carbonyl iron diluted composite and pure powdered materials have been determined in the millimeter waves for the first time. The measurements have been employed using a free-space quasi-optical millimeter-wave spectrometer equipped with a set of high power backward wave oscillators as sources of coherent radiation, tunable in the range from 30 -- 120 GHz. Significant transmission zone of the millimeter-wave radiation at frequency around 60 GHz has been observed in transmittance spectra for the carbonyl iron materials.

  2. Visible Light-Induced Carbonylation Reactions with Organic Dyes as the Photosensitizers.

    Science.gov (United States)

    Peng, Jin-Bao; Qi, Xinxin; Wu, Xiao-Feng

    2016-09-08

    Dyes can CO do it: Organic dyes and pigments are usually applied in textile dyeing, which can be dated back to the Neolithic period. Interestingly, the possibility to use organic dyes as photoredox catalysts has also been noticed by organic chemists and applied in organic synthesis. Carbonylation reactions as a powerful procedure in carbonyl-containing compound preparation have also been studied. In this manuscript, the recent achievements in using organic dyes as visible-light sensitizers in carbonylation chemistry are summarized and discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    International Nuclear Information System (INIS)

    Tian Binghui; Luan Zhaokun; Li Mingming

    2005-01-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC

  4. Oxidant-free Rh(III)-catalyzed direct C-H olefination of arenes with allyl acetates.

    Science.gov (United States)

    Feng, Chao; Feng, Daming; Loh, Teck-Peng

    2013-07-19

    Rh(III)-catalyzed direct olefination of arenes with allyl acetate via C-H bond activation is described using N,N-disubstituted aminocarbonyl as the directing group. The catalyst undergoes a redox neutral process, and high to excellent yields of trans-products are obtained. This protocol exhibits a wide spectrum of functionality compatibility because of the simple reaction conditions employed and provides a highly effective synthetic method in the realm of C-H olefination.

  5. Rapid assembly of functionalised spirocyclic indolines by palladium-catalysed dearomatising diallylation of indoles with allyl acetate

    OpenAIRE

    Dhankher, P.; Benhamou, L.; Sheppard, T. D.

    2014-01-01

    Herein, we report the application of allyl acetate to the palladium-catalysed dearomatising diallylation of indoles. The reaction can be carried out by using a readily available palladium catalyst at room temperature, and can be applied to a wide range of substituted indoles to provide access to the corresponding 3,3-diallylindolinines. These compounds are versatile synthetic intermediates that readily undergo Ugi reactions or proline-catalysed asymmetric Mannich reactions. Alternatively, acy...

  6. A combined experimental and theoretical study of the thermal [3+2] cycloaddition of carbonyl ylides with activated alkenes

    Science.gov (United States)

    Hamza-Reguig, Samira; Bentabed-Ababsa, Ghenia; Domingo, Luis R.; Ríos-Gutiérrez, Mar; Philippot, Stéphanie; Fontanay, Stéphane; Duval, Raphaël E.; Ruchaud, Sandrine; Bach, Stéphane; Roisnel, Thierry; Mongin, Florence

    2018-04-01

    4-Benzoyl-3,5-diaryltetrahydrofuran-2,2-dicarbonitriles were first synthesized from 2,2-dicyano-3-aryloxiranes and chalcones at toluene reflux; the 4,5-cis products proved to be predominantly formed and were isolated. Whereas shortened reaction times were observed by using microwave irradiation or catalytic cuprous chloride, no significant stereoselectivity change was in general noticed. Reacting 2,2-dicyano-3-aryloxiranes with 2-cyclopentenone next afforded 3-aryl-4-oxohexahydro-1H-cyclopenta[c]furan-1,1-dicarbonitriles, and the endo stereoisomers were isolated. That no stereoselectivity change was noticed in the presence of cuprous chloride rather suggests an impact of the salt on the epoxide ring opening. Finally, treatment of 2,2-dicyano-3-aryloxiranes by 2-morpholinoacrylonitrile yielded 3-cyano-3-morpholino-5-phenyltetrahydrofuran-2,2-dicarbonitriles from which the preponderant trans isomers were isolated. Importantly, the molecular mechanism of the domino reaction between 2,2-dicyano-3-phenyloxirane and 2-cyclopentenone was studied. The rate-determining thermal ring opening of the oxirane is followed by a non-concerted pseudoradical-type reaction of the carbonyl ylide with 2-cyclopentenone. Using the bond evolution theory also allowed the regioselectivity of this non-polar reaction to be explained.

  7. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10-6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C6H11) and π-allyl C6H9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C6H9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C6H9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E2u mode of free benzene, which leads to catalysis. Linear C6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt

  8. Plant Uptake of Atmospheric Carbonyl Sulfide in Coast Redwood Forests

    Science.gov (United States)

    Campbell, J. E.; Whelan, M. E.; Berry, J. A.; Hilton, T. W.; Zumkehr, A.; Stinecipher, J.; Lu, Y.; Kornfeld, A.; Seibt, U.; Dawson, T. E.; Montzka, S. A.; Baker, I. T.; Kulkarni, S.; Wang, Y.; Herndon, S. C.; Zahniser, M. S.; Commane, R.; Loik, M. E.

    2017-12-01

    The future resilience of coast redwoods (Sequoia sempervirens) is now of critical concern due to the detection of a 33% decline in California coastal fog over the 20th century. However, ecosystem-scale measurements of photosynthesis and stomatal conductance are challenging in coast redwood forests, making it difficult to anticipate the impacts of future changes in fog. To address this methodological problem, we explore coastal variations in atmospheric carbonyl sulfide (COS or OCS), which could potentially be used as a tracer of these ecosystem processes. We conducted atmospheric flask campaigns in coast redwood sites, sampling at surface heights and in the canopy ( 70 m), at the University of California Landels-Hill Big Creek Reserve and Big Basin State Park. We simulated COS atmosphere-biosphere exchange with a high-resolution 3-D model to interpret these data. Flask measurements indicated a persistent daytime drawdown between the coast and the downwind forest (45 ± 6 ppt COS) that is consistent with the expected relationship between COS plant uptake, stomatal conductance, and gross primary production. Other sources and sinks of COS that could introduce noise to the COS tracer technique (soils, anthropogenic activity, nocturnal plant uptake, and surface hydrolysis on leaves) are likely to be small relative to daytime COS plant uptake. These results suggest that COS measurements may be useful for making ecosystem-scale estimates of carbon, water, and energy exchange in coast redwood forests.

  9. Tropical sources and sinks of carbonyl sulfide observed from space

    Science.gov (United States)

    Glatthor, Norbert; Höpfner, Michael; Baker, Ian T.; Berry, Joe; Campbell, Elliott; Kawa, Stephan R.; Krysztofiak, Gisele; Sinnhuber, Björn-Martin; Stiller, Gabriele; Stinecipher, Jim; von Clarmann, Thomas

    2016-04-01

    According to current budget estimations the seasonal variation of carbonyl sulfide (COS) is governed by oceanic release and vegetation uptake. Its assimilation by plants is assumed to be similar to the photosynthetic uptake of CO2 but, contrary to the latter process, to be irreversible. Therefore COS has been suggested as co-tracer of the carbon cycle. Observations of COS, however, are sparse, especially in tropical regions. We use the comprehensive data set of spaceborne measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) to analyze its global distribution. Two major features are observed in the tropical upper troposphere around 250 hPa: enhanced amounts over the western Pacific and the Maritime Continent, peaking around 550 pptv in boreal summer, and a seasonally varying depletion of COS extending from tropical South America to Africa. The large-scale COS depletion, which in austral summer amounts up to -40 pptv as compared to the rest of the respective latitude band, has not been observed before and reveals the seasonality of COS uptake through tropical vegetation. The observations can only be reproduced by global models, when a large vegetation uptake and a corresponding increase in oceanic emissions as proposed in several recent publications is assumed.

  10. Assessing canopy performance using carbonyl sulfide (COS) measurements.

    Science.gov (United States)

    Yang, Fulin; Qubaja, Rafat; Tatarinov, Fyodor; Rotenberg, Eyal; Yakir, Dan

    2018-03-25

    Carbonyl sulfide (COS) is a tracer of ecosystem photosynthesis that can advance carbon cycle research from leaf to global scales; however, a range of newly reported caveats related to sink/source strength of various ecosystem components hinder its application. Using comprehensive eddy-covariance and chamber measurements, we systematically measure ecosystem contributions from leaf, stem, soil and litter and were able to close the ecosystem COS budget. The relative contributions of non-photosynthetic components to the overall canopy-scale flux are relatively small (~4% during peak activity season) and can be independently estimated based on their responses to temperature and humidity. Converting COS to photosynthetic CO 2 fluxes based on the leaf relative uptake of COS/CO 2 , faces challenges due to observed daily and seasonal changes. Yet, this ratio converges around a constant value (~1.6), and the variations, dominated by light intensity, were found unimportant on a flux-weighted daily time-scale, indicating a mean ratio of daytime gross-to-net primary productivity of ~2 in our ecosystem. The seasonal changes in the leaf relative uptake ratio may indicate a reduction in mesophyll conductance in winter, and COS-derived canopy conductance permitted canopy temperature estimate consistent with radiative skin temperature. These results support the feasibility of using COS as a powerful and much-needed means of assessing ecosystem function and its response to change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Carbonyl Sulfide for Tracing Carbon Fluxes Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. Elliott [Univ. of California, Merced, CA (United States); Berry, Joseph A. [Carnegie Inst. of Science, Stanford, CA (United States); Billesbach, Dave [Univ. of Nebraska, Lincoln, NE (United States); Torn, Margaret S [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zahniser, Mark [Aerodyne Research, Inc., Billerica, MA (United States); Seibt, Ulrike [Univ. of California, Los Angeles, CA (United States); Maseyk, Kadmiel [Pierre and Marie Curie Univ., Paris (France)

    2016-04-01

    The April-June 2012 campaign was located at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site Central Facility and had three purposes. One goal was to demonstrate the ability of current instrumentation to correctly measure fluxes of atmospheric carbonyl sulfide (COS). The approach has been describe previously as a critical approach to advancing carbon cycle science1,2, but requires further investigation at the canopy scale to resolve ecosystem processes. Previous canopy-scale efforts were limited to data rates of 1Hz. While 1 Hz measurements may work in a few ecosystems, it is widely accepted that data rates of 10 to 20 Hz are needed to fully capture the exchange of traces gases between the atmosphere and vegetative canopy. A second goal of this campaign was to determine if canopy observations could provide information to help interpret the seasonal double peak in airborne observations at SGP of CO2 and COS mixing ratios. A third goal was to detect potential sources and sinks of COS that must be resolved before using COS as a tracer of gross primary productivity (GPP).

  12. Photodecomposition of Molybdenum andTungsten Carbonyl Complexes

    Directory of Open Access Journals (Sweden)

    Thamer A. Alwani

    2009-01-01

    Full Text Available The photodecomposition of four different colored organometallic molybdenum and tungsten carbonyl complexes, i.e. [Mo(CO52LA] (complex I, [(Mo(CO3(bipy2LB] (complex II, [(W(CO3(tmen2LB] (complex III and [Mo(CO2LC]2 (complex I V where LA 2-phenyl-1,3-indandionebis(2-methyl anilines, LB 2-phenyl-1,3-indandione bis (4-hydroxy anilines and LCbis (2-hydroxo-benzalydine benzidine ion have been performed at 365 nm in chloroform at 25 °C under oxygen atmosphere. The absorbance spectrum of these complexes has been recorded with the time of irradiation in order to examine the kinetics of photodecomposition. The rate of the photodecomposition process was investigated and the relative values of the rate constants of dissociation (Kd for the first-order reaction are tabulated. The apparent rate constant of photodecomposition was found to be (8.33-11.50 × 10-5 s-1.

  13. Fluorescent hydrazides for the high-performance liquid chromatographic determination of biological carbonyls.

    Science.gov (United States)

    Anderson, J M

    1986-01-01

    Methods for the determination of carbonyl compounds of biological origin by high-performance liquid chromatography were improved by the use of new fluorescent derivatizing agents. Eight fluorescent hydrazides were either synthesized or obtained commercially and compared to dansyl hydrazine (1-dimethylaminonaphthalene-5-sulfonylohydrazide). Four of the compounds yielded carbonyl hydrazones with a higher relative fluorescence quantum yield than dansyl hydrazine in acetonitrile:water mixtures. Darpsyl hydrazide [(3-phenylpyrazoline-1-yl)-4-phenylsulfonylohydrazide] and apmayl hydrazide [N-(2-aminophenyl-6-methylbenzthiazole)-acetylohydrazide] both yielded an increase of greater than 20-fold in sensitivity over dansyl hydrazine in determinations of abscisic acid and jasmonic acid from plant tissues. Different hydrazides and derivatizing conditions were found to be optimum for the determination of different carbonyl compounds. Also, a simple method for precolumn purification of the hydrazones of acidic carbonyls was developed to remove contaminants arising during derivatization and from the tissue source.

  14. Magnetic carbonyl iron suspension with organoclay additive and its magnetorheological properties

    CSIR Research Space (South Africa)

    Hato, MJ

    2011-02-01

    Full Text Available Soft magnetic carbonyl iron (CI) based magnetorheological (MR) fluids containing three different loadings of submicron-sized organoclay were prepared. The MR characteristics were measured via rotational and oscillatory tests, in which the flow...

  15. Protective mechanisms of Cucumis sativus in diabetes-related models of oxidative stress and carbonyl stress

    Directory of Open Access Journals (Sweden)

    Himan Heidari

    2016-03-01

    Conclusion: It can be concluded that C. sativus has protective effects in diabetes complications and can be considered a safe and suitable candidate for decreasing the oxidative stress and carbonyl stress that is typically observed in diabetes mellitus.

  16. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Matthias, E-mail: matthias.schindler@physik.uni-erlangen.de; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-15

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO{sub 2} and reduced to graphite to determine {sup 14}C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  17. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    Science.gov (United States)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  18. Reaction or organomagnesium compounds of the adamantane series with carbonyl compounds

    International Nuclear Information System (INIS)

    Yurchenko, A.G.; Fedorenko, T.V.

    1987-01-01

    In the transformations of organomagnesium compounds of the adamantane series involving aldehydes, ketones, esters, and acid chlorides the nature of the reaction products and their yields are determined by the steric hindrances at the reaction centers of the organomagnesium and carbonyl compounds and by the ease of homolysis of the C-H bonds of the carbonyl reagent. The retardation of the faster addition of the Grignard reagent at the carbonyl group as a result of steric hindrances permits homolytic removal of a hydrogen atom from the carbonyl compound by the adamantyl radical. The PMR spectra were measured on a Tesla BS-487C spectrometer at 80 MHz in carbon tetrachloride with the substances at concentrations of 5-20% and with TMS as internal standard. The IR spectra were obtained in carbon tetrachloride on a UR-10 spectrophotometer

  19. Structure and Bonding in Binuclear Metal Carbonyls. Classical Paradigms vs. Insights from Modern Theoretical Calculations

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert

    2015-01-01

    Roč. 1053, SI (2015), s. 195-213 ISSN 2210-271X Institutional support: RVO:67985858 Keywords : binuclear metal carbonyls * DAFH analysis * 18-electron rule Subject RIV: CC - Organic Chemistry Impact factor: 1.403, year: 2015

  20. Efficient and selective α-bromination of carbonyl compounds with N-bromosuccinimide under microwave

    KAUST Repository

    Guan, Xiao-Yu

    2014-02-07

    A highly efficient method for the synthesis of α-halocarbonyl compounds has been achieved via selective monobromination of aromatic and aliphatic carbonyl compounds with N-bromosuccinimide catalyzed by p-toluenesulfonic acid under microwave irradiation within 30 min.

  1. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  2. 1,2,3-Triazoles from carbonyl azides and alkynes: filling the gap.

    Science.gov (United States)

    Haldón, Estela; Álvarez, Eleuterio; Nicasio, M Carmen; Pérez, Pedro J

    2014-08-18

    Electron deficient azides are challenging substrates in CuAAC reactions. Particularly, when N-carbonyl azides are applied the formation of N-carbonyl triazoles has not yet been observed. We report herein the first example of this class of reaction, with a copper-based system that efficiently enables the synthesis of N-carbamoyl 1,2,3-triazoles by [3+2] cycloaddition of N-carbamoyl azides and alkynes.

  3. Chemoselective Reduction and Alkylation of Carbonyl Functions Using Phosphonium Salts as an in Situ Protecting Groups.

    Science.gov (United States)

    Ohta, Reiya; Fujioka, Hiromichi

    2017-01-01

    Recent progress in the chemoselective reduction and alkylation of carbonyl functions using our in situ protection method is described. Methods that enable reversal or control of the reactivity of a carbonyl functional group are potentially useful. They open up new areas of synthetic organic chemistry and change the concept of retrosynthesis because they remove the need for complicated protection/deprotection sequences. In this account, we discuss the strategy and applications of our in situ protection method using phosphonium salts.

  4. Functionalization of 6-Nitrobenzo[1,3]dioxole with Carbonyl Compounds via TDAE methodology

    Directory of Open Access Journals (Sweden)

    Patrice Vanelle

    2005-05-01

    Full Text Available We report herein the synthesis of substituted 2-(6-nitrobenzo[1,3]dioxol-5-yl-1- aryl ethanols and 2-(6-nitrobenzo[1,3]dioxol-5-yl-propionic acid ethyl esters from the reaction of 5-chloromethyl-6-nitrobenzo[1,3]dioxole with various aromatic carbonyl and α- carbonyl ester derivatives using the tetrakis(dimethylaminoethylene (TDAE methodology.

  5. Organocatalyzed α-Sulfenylation of carbonyl compounds using N-formly/Acyl Sulfenmides

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyeon Wan; Lee, Chan; Jang, Hye Young [Dept. of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2017-03-15

    α-Sulfenylation of aldehydes and ketones using N-formyl and N-acyl sulfenamides, prepared by Cu-catalyzed aerobic coupling of amides and thiols, was achieved in the presence of cyclic secondary amine⋅HCl catalysts. To obtain various sulfur-functionalized carbonyl compounds, sulfenamides containing aromatic and aliphatic organosulfur were investigated. As carbonyl compounds, cyclic and acyclic ketones, 1,3-dicarbonyl compounds, and aldehydes were investigated, affording the desired α-sulfenylation products in good yields.

  6. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Study of interaction products of chromium, molybdenum and tungsten carbonyls with ethanolamines

    Energy Technology Data Exchange (ETDEWEB)

    Mozgin, S.V.; Felin, M.G.; Subbotina, N.A.; Spitsyn, V.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1982-11-01

    The interaction of the 6th group metal carbonyls with mono-, di-, and triethanolamines was investigated. It was established that chromium, molybdenum and tungsten carbonyls could react with ethanolamines. Complex compounds of the mentioned metals that had been separated after carrying out those reactions were characterized by chemical analysis data. Properties of the produced complexes were studied by methods of UV, visible and IR spectroscopy, thermomagnetic and thermal analyses and their structure is proposed.

  8. Selective Palladium(II)-Catalyzed Carbonylation of Methylene β-C-H Bonds in Aliphatic Amines.

    Science.gov (United States)

    Cabrera-Pardo, Jaime R; Trowbridge, Aaron; Nappi, Manuel; Ozaki, Kyohei; Gaunt, Matthew J

    2017-09-18

    Palladium(II)-catalyzed C-H carbonylation reactions of methylene C-H bonds in secondary aliphatic amines lead to the formation of trans-disubstituted β-lactams in excellent yields and selectivities. The generality of the C-H carbonylation process is aided by the action of xantphos-based ligands and is important in securing good yields for the β-lactam products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ammonia synthesis in the presence of rhodium-ruthenium-iridium carbonyl clusters

    International Nuclear Information System (INIS)

    Fedoseev, I.V.; Solov'ev, N.V.

    2007-01-01

    Researches in the field of platinum metal coordination compounds, where nitrogen enters as a ligand in coordination sphere of metal, are discussed. Results of experiments on the ammonia synthesis during the CO+N 2 mixture passing through alkali solution containing mixture of carbonyl clusters of rhodium, ruthenium and iridium at atmospheric pressure are given. Technique of the experiment and steps of assumed reactions of nitrogen fixation by Rh, Ir and Ru carbonyl clusters are demonstrated [ru

  10. Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids

    OpenAIRE

    Sedlačík, M.; Pavlínek, V.; Lehocký, M.; Mráček, A.; Grulich, O.; Švrčinová, P. (Petra); Filip, P. (Petr); Vesel, A.

    2011-01-01

    The aim of this paper is to document suitability of plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids. Surface-modified carbonyl iron particles were prepared via their exposure to 50% argon and 50% octafluorocyclobutane plasma. The X-ray photoelectron spectroscopy was used for analysis of chemical bonding states in the surface layer. Plasma-treated particles were adopted for a dispersed phase in magnetorheological (MR) fluids, and the MR behaviour was in...

  11. Applications of the water--gas shift reaction. II. Catalytic exchange of deuterium for hydrogen at saturated carbon

    International Nuclear Information System (INIS)

    Laine, R.M.; Thomas, D.W.; Cary, L.W.; Buttrill, S.E.

    1978-01-01

    Previous studies on the homogeneous catalysis of the water-gas shift reaction by metal complexes of groups 6 and 8 had been carried out using aqueous alcoholic solutions of group 8 metal carbonyl complexes made basic with KOH. Substitution of triethylamine (Et 3 N) for KOH as base and alcohol for solvent led to the discovery that Et 3 N in the presence of D 2 O, CO, and Rh 6 (CO) 16 at 150 0 C undergoes an unusual catalytic exchange of deuterium for hydrogen. A suggested mechanism for this reaction is given and includes activation of hydrogen at a saturated carbon

  12. Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Zhiqi Wang

    2016-01-01

    Full Text Available Oxidative stress has long been known as a pathogenic factor of ulcerative colitis (UC and colitis-associated colorectal cancer (CAC, but the effects of secondary carbonyl lesions receive less emphasis. In inflammatory conditions, reactive oxygen species (ROS, such as superoxide anion free radical (O2∙-, hydrogen peroxide (H2O2, and hydroxyl radical (HO∙, are produced at high levels and accumulated to cause oxidative stress (OS. In oxidative status, accumulated ROS can cause protein dysfunction and DNA damage, leading to gene mutations and cell death. Accumulated ROS could also act as chemical messengers to activate signaling pathways, such as NF-κB and p38 MAPK, to affect cell proliferation, differentiation, and apoptosis. More importantly, electrophilic carbonyl compounds produced by lipid peroxidation may function as secondary pathogenic factors, causing further protein and membrane lesions. This may in turn exaggerate oxidative stress, forming a vicious cycle. Electrophilic carbonyls could also cause DNA mutations and breaks, driving malignant progression of UC. The secondary lesions caused by carbonyl compounds may be exceptionally important in the case of host carbonyl defensive system deficit, such as aldo-keto reductase 1B10 deficiency. This review article updates the current understanding of oxidative stress and carbonyl lesions in the development and progression of UC and CAC.

  13. A study of photochemical and physical processes affecting carbonyl compounds in the Arctic atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Grannas, A.M.; Shepson, P.B.; Guimbaud, C. [Purdue Univ., West Lafayette, IN (US). Dept. of Earth and Atmospheric Sciences] [and others

    2002-06-01

    Experiments were conducted during the ALERT 2000 field campaign aimed at understanding the role of air-snow interactions in carbonyl compound chemistry and the associated ozone depletion in the atmospheric boundary layer. Under sunlit conditions, we find that formaldehyde, acetaldehyde and acetone exhibit a significant diel cycle with average ambient air concentrations of 166, 53 and 385 ppt, respectively. A box model of Arctic surface layer chemistry was used to understand the diel behavior of carbonyl compound concentrations at Alert, Nunavut, Canada, with a focus on the chemical and physical processes that affect carbonyl compounds. Results of the study showed that the measured carbonyl compound concentrations can only be simulated when a radiation-dependent snowpack source term (possibly photochemistry) and a temperature-dependent sink (physical uptake on snow grains) of carbonyl compounds were added to the model. We are able to simulate the concentration and amplitude of the observed diel cycle, but not the phase of the cycle. These results help confirm the importance of snowpack chemistry and physical processes with respect to carbonyl compound concentrations in the Arctic surface boundary layer, and reveal weakness in the details of our understanding. (Author)

  14. Role of protein-bound carbonyl groups in the formation of advanced glycation endproducts.

    Science.gov (United States)

    Liggins, J; Furth, A J

    1997-08-22

    Several mechanisms have been postulated for the formation of advanced glycation endproducts (AGEs) from glycated proteins; they all feature protein-bound carbonyl intermediates. Using 2,4-dinitrophenylhydrazine (DNPH), we have detected these intermediates on bovine serum albumin, lysozyme and beta-lactoglobulin after in vitro glycation by glucose or fructose. Carbonyls were formed in parallel with AGE-fluorophores, via oxidative Maillard reactions. Neither Amadori nor Heyns products contributed to the DNPH reaction. Fluorophore and carbonyl yields were much enhanced in lipid-associated proteins, but both groups could also be detected in lipid-free proteins. When pre-glycated proteins were incubated in the absence of free sugar, carbonyl groups were rapidly lost in a first-order reaction, while fluorescence continued to develop beyond the 21 days of incubation. Another unexpected finding was that not all carbonyl groups were blocked by aminoguanidine, although there was complete inhibition of reactions leading to AGE-fluorescence. It is suggested that carbonyls acting as fluorophore precursors react readily with aminoguanidine, while others are resistant to this hydrazine, possibly because they are involved in ring closure. Factors influencing the relative rates of acyclisation and hydrazone formation are discussed, together with possible implications for antiglycation therapy.

  15. Characteristics of carbonyl compounds in public vehicles of Beijing city: Concentrations, sources, and personal exposures

    Science.gov (United States)

    Pang, Xiaobing; Mu, Yujing

    The characteristics of carbonyl compounds (carbonyls) including concentrations, major sources, and personal exposure were investigated for 29 vehicles including taxi, bus and subway in Beijing. It was found that the taxis (Xiali, TA) and buses (Huanghe, BA) fueled by gasoline with longer service years had the higher indoor carbonyl levels (178±42.7 and 188±31.6 μg m -3) while subways energized by electricity without exhaust and the jingwa buses (BB) driven in the suburb had the lower levels with total concentrations of 98.5±26.3 and 92.1±20.3 μg m -3, respectively. Outdoor carbonyls of taxi cars and buses were nearly at the same level with their total concentrations varying from 80 to 110 μg m -3. The level of outdoor subways carbonyls was equal with the ambient air levels. Exhaust leakage, indoor material emissions, photochemical formation, and infiltration of outdoor air were considered to be the major sources to in-vehicle carbonyls. Personal exposures and cancer risk to formaldehyde and acetaldehyde were calculated for professional bus and taxi drivers, respectively. Taxi drivers had the highest cancer risk with personal exposure to formaldehyde and acetaldehyde of 212 and 243 μg day -1, respectively. The public concern should pay considerable attention to professional drivers' health.

  16. COMPARATIVE STUDY OF EFFICACY OF FERROUS SULPHATE AND CARBONYL IRON IN ANEMIA OF ANTENATAL WOMEN

    Directory of Open Access Journals (Sweden)

    Radhika

    2015-03-01

    Full Text Available Iron deficiency anemia is the most common and important public health problem all over the world in the risk group of antenatal women. Research is going on to improve the iron status of the pregnant women with different forms of iron available. In this regard, Carbonyl Iron is showing promising results in improving the red cell mass with better compliance. 120 antenatal women were recruited in this study. The study comprised of 6weeks for each patient. They were given Carbonyl Iron 100 mg/day and FeS04 100gm/day . Before and after treatment all the baseline and specific investigations were one. Results were tabulated, comparison and significance were tested by unpaired student ’s’ test and their 'p' value was calculated. Results were shown graphically also. Carbonyl Iron showed improvement in hemoglobin, PCV and better than ferrous Sulphate (P <0.001. Incidence of side effects were less with Carbonyl Iron than Ferrous Sulphate, better compliance was seen with Carbonyl Iron. In conclusion, the present study s howed that Carbonyl Iron had better efficacy and safety in the management of Iron deficiency anemia in antenatal women than ferrous Sulphate

  17. Predicting personal exposure to airborne carbonyls using residential measurements and time/activity data

    Science.gov (United States)

    Liu, Weili; Zhang, Junfeng (Jim); Korn, Leo R.; Zhang, Lin; Weisel, Clifford P.; Turpin, Barbara; Morandi, Maria; Stock, Tom; Colome, Steve

    As a part of the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study, 48 h integrated residential indoor, outdoor, and personal exposure concentrations of 10 carbonyls were simultaneously measured in 234 homes selected from three US cities using the Passive Aldehydes and Ketones Samplers (PAKS). In this paper, we examine the feasibility of using residential indoor concentrations to predict personal exposures to carbonyls. Based on paired t-tests, the means of indoor concentrations were not different from those of personal exposure concentrations for eight out of the 10 measured carbonyls, indicating indoor carbonyls concentrations, in general, well predicted the central tendency of personal exposure concentrations. In a linear regression model, indoor concentrations explained 47%, 55%, and 65% of personal exposure variance for formaldehyde, acetaldehyde, and hexaldehyde, respectively. The predictability of indoor concentrations on cross-individual variability in personal exposure for the other carbonyls was poorer, explainingexposure concentrations. It was found that activities related to driving a vehicle and performing yard work had significant impacts on personal exposures to a few carbonyls.

  18. A new agent for derivatizing carbonyl species used to investigate limonene ozonolysis

    Science.gov (United States)

    Wells, J. R.; Ham, Jason E.

    2014-12-01

    A new method for derivatizing carbonyl compounds is presented. The conversion of a series of dicarbonyls to oximes in aqueous solution and from gas-phase sampling was achieved using O-tert-butylhydroxylamine hydrochloride (TBOX). Some advantages of using this derivatization agent include: aqueous reactions, lower molecular weight oximes, and shortened oxime-formation reaction time. Additionally, the TBOX derivatization technique was used to investigate the carbonyl reaction products from limonene ozonolysis. With ozone (O3) as the limiting reagent, four carbonyl compounds were detected: 7-hydroxy-6-oxo-3-(prop-1-en-2-yl)heptanal; 3-Isopropenyl-6-oxoheptanal (IPOH), 3-acetyl-6-oxoheptanal (3A6O) and one carbonyl of unknown structure. Using cyclohexane as a hydroxyl (OHrad) radical scavenger, the relative yields (peak area) of the unknown carbonyl, IPOH, and 3A6O were reduced indicating the influence secondary OH radicals have on limonene ozonolysis products. The relative yield of the hydroxy-dicarbonyl based on the chromatogram was unchanged suggesting it is only made by the limonene + O3 reaction. The detection of 3A6O using TBOX highlights the advantages of a smaller molecular weight derivatization agent for the detection of multi-carbonyl compounds. The use of TBOX derivatization if combined with other derivatization agents may address a recurring need to simply and accurately detect multi-functional oxygenated species in air.

  19. Catalytic Decoupling of Quantum Information

    DEFF Research Database (Denmark)

    Majenz, Christian; Berta, Mario; Dupuis, Frédéric

    2017-01-01

    The decoupling technique is a fundamental tool in quantum information theory with applications ranging from quantum thermodynamics to quantum many body physics to the study of black hole radiation. In this work we introduce the notion of catalytic decoupling, that is, decoupling in the presence...... of an uncorrelated ancilla system. This removes a restriction on the standard notion of decoupling, which becomes important for structureless resources, and yields a tight characterization in terms of the max-mutual information. Catalytic decoupling naturally unifies various tasks like the erasure of correlations...

  20. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...

  1. Esterification Mechanism of Bagasse Modified with Glutaric Anhydride in 1-Allyl-3-methylimidazolium Chloride.

    Science.gov (United States)

    Wang, Huihui; Chen, Wei; Zhang, Xueqin; Liu, Chuanfu; Sun, Runcang

    2017-08-18

    The esterification of bagasse with glutaric anhydride could increase surface adhesion compatibility and the surface of derived polymers has the potential of immobilizing peptides or proteins for biomedical application. Due to its complicated components, the esterification mechanism of bagasse esterified with glutaric anhydride in ionic liquids has not been studied. In this paper, the homogenous esterification of bagasse with glutaric anhydride was comparatively investigated with the isolated cellulose, hemicelluloses, and lignin in 1-allyl-3-methylimidazolium chloride (AmimCl) to reveal the reaction mechanism. Fourier transform infrared (FT-IR) indicated that the three components (cellulose, hemicelluloses, and lignin) were all involved in the esterification. The percentage of substitution (PS) of bagasse was gradually improved with the increased dosage of glutaric anhydride (10-40 mmol/g), which was primarily attributed to the increased esterification of cellulose and hemicelluloses. However, the PS fluctuation of lignin led to a decrease in the PS of bagasse at high glutaric anhydride dosage (50 mmol/g). The esterification reactivity of bagasse components followed the order of lignin > hemicelluloses > cellulose. The esterification mechanism was proposed as a nucleophilic substitution reaction. Nuclear magnetic resonance (NMR) analysis indicated that lignin aliphatic hydroxyls were prior to be esterified, and primary hydroxyls were more reactive than secondary hydroxyls in cellulose and hemicelluloses.

  2. Increased presevation of sliced mozzarella cheese by antimibrobial sachet incorporated with allyl isothiocyanate

    Directory of Open Access Journals (Sweden)

    Ana Clarissa dos Santos Pires

    2009-12-01

    Full Text Available There is an increasing tendency to add natural antimicrobials of plant origin into food. The objective of this work was to develop a microbial sachet incorporated with allyl isothiocyanate (AIT, a volatile compound of plant origin, and to test its efficiency against growth of yeasts and molds, Staphylococcus sp. and psychrotrophic bacteria on sliced mozzarella cheese. Another objective was to quantify the concentration of AIT in the headspace of cheese packaging. A reduction of 3.6 log cycles was observed in yeasts and molds counts in the mozzarella packed with the antimicrobial sachet over 15-day storage time. The sachet also showed an antibacterial effect on Staphylococcus sp., reducing 2.4 log cycles after 12-day storage. Psychrotrophic bacteria species were the most resistant to the antimicrobial action. The highest concentration of AIT (0.08µg.mL-1 inside the active packaging system was observed at the 6-day of storage at 12 ºC ± 2 ºC. At the end of the storage time, AIT concentration decreased to only 10% of the initial concentration. Active packaging containing antimicrobial sachet has a potential use for sliced mozzarella, with molds and yeasts being the most sensitive to the antimicrobial effects.

  3. Non-Directed Allylic C–H Acetoxylation in the Presence of Lewis Basic Heterocycles

    Science.gov (United States)

    Malik, Hasnain A.; Taylor, Buck L. H.; Kerrigan, John R.; Grob, Jonathan E.; Houk, K. N.; Du Bois, J.; Hamann, Lawrence G.; Patterson, Andrew W.

    2015-01-01

    We outline a strategy to enable non-directed Pd(II)-catalyzed C–H functionalization in the presence of Lewis basic heterocycles. In a high-throughput screen of two Pd-catalyzed C–H acetoxylation reactions, addition of a variety of N-containing heterocycles is found to cause low product conversion. A pyridine-containing test substrate is selected as representative of heterocyclic scaffolds that are hypothesized to cause catalyst arrest. We pursue two approaches in parallel that allow product conversion in this representative system: Lewis acids are found to be effective in situ blocking groups for the Lewis basic site, and a pre-formed pyridine N-oxide is shown to enable high yield of allylic C–H acetoxylation. Computational studies with density functional theory (M06) of binding affinities of selected heterocycles to Pd(OAc)2 provide an inverse correlation of the computed heterocycle–Pd(OAc)2 binding affinities with the experimental conversions to products. Additionally, 1H NMR binding studies provide experimental support for theoretical calculations. PMID:25685311

  4. Allyl m-Trifluoromethyldiazirine Mephobarbital: An Unusually Potent Enantioselective and Photoreactive Barbiturate General Anesthetic

    Energy Technology Data Exchange (ETDEWEB)

    Savechenkov, Pavel Y.; Zhang, Xi; Chiara, David C.; Stewart, Deirdre S.; Ge, Rile; Zhou, Xiaojuan; Raines, Douglas E.; Cohen, Jonathan B.; Forman, Stuart A.; Miller, Keith W.; Bruzik, Karol S. (Harvard-Med); (Mass. Gen. Hosp.); (UIC)

    2012-12-10

    We synthesized 5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (14), a trifluoromethyldiazirine-containing derivative of general anesthetic mephobarbital, separated the racemic mixture into enantiomers by chiral chromatography, and determined the configuration of the (+)-enantiomer as S by X-ray crystallography. Additionally, we obtained the {sup 3}H-labeled ligand with high specific radioactivity. R-(-)-14 is an order of magnitude more potent than the most potent clinically used barbiturate, thiopental, and its general anesthetic EC{sub 50} approaches those for propofol and etomidate, whereas S-(+)-14 is 10-fold less potent. Furthermore, at concentrations close to its anesthetic potency, R-(-)-14 both potentiated GABA-induced currents and increased the affinity for the agonist muscimol in human {alpha}1{beta}2/3{gamma}2L GABA{sub A} receptors. Finally, R-(-)-14 was found to be an exceptionally efficient photolabeling reagent, incorporating into both {alpha}1 and {beta}3 subunits of human {alpha}1{beta}3 GABAA receptors. These results indicate R-(-)-14 is a functional general anesthetic that is well-suited for identifying barbiturate binding sites on Cys-loop receptors.

  5. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  6. On the X-ray reflectivity by poly allyl diglycol carbonate (PADC)

    International Nuclear Information System (INIS)

    Ghazaly, M. El

    2011-01-01

    X-ray reflectivity via the poly allyl diglycol carbonate (CR-39 polymer sheet) was investigated. X-ray reflectivity was measured for a pristine and a chemically etched CR-39 detector in 6.25N NaOH at (70 ± 0.5) .deg. C for different durations. Far from the spectral peak, the reflectivity of the CR-39 polymer sheet has a wide peak at 2θ = 20.1 .deg. , and its intensity is decreased by increasing the etching time. Moreover, the integrated counts under the peaks, C(t e ), vary linearly as a function of the etching time t e . Data are fitted using a linear function C(t e ) = A+Bt e , with fitting parameters A = (3271 ± 170) and B = (- 960 ± 84). The reflectivity deterioration is attributed to the increase of CR-39 surface's roughness due to the chemical etching. The rocking curves of X-ray reflectivity were measured for a pristine and an etched CR-39 polymer sheet. Specular reflections are observed, as well as Yoneda wings, which broaden and move away from the specular reflections due to the increase in the CR-39 surface's roughness.

  7. Sustainable and Low Viscous 1-Allyl-3-methylimidazolium Acetate + PEG Solvent for Cellulose Processing

    Directory of Open Access Journals (Sweden)

    Airong Xu

    2017-02-01

    Full Text Available Developing sustainable, low viscous and efficient solvents are always advantageous to the processing/fabricating of cellulose materials in practical applications. To this end, in this work novel solvents were developed; ([Amim][CH3COO]/PEG by dissolving polyethylene glycol 200 (PEG-200 in 1-allyl-3-methylimidazolium acetate ([Amim][CH3COO]. The solubilities of cellulose in [Amim][CH3COO]/PEG solvents were determined as a function of temperature, and the possible dissolution mechanism of cellulose in [Amim][CH3COO]/PEG solvent was investigated. The novel solvent exhibits outstanding advantages for good dissolution capacity of cellulose, such as low viscosity, negligible vapor pressure, and recycling capability. The [CH3COO]− anion and the [Amim]+ cation of [Amim][CH3COO] in [Amim][CH3COO]/PEG-10 are the driving force for cellulose dissolution verified by the 13C NMR spectra. In addition, the regenerated cellulose films from [Amim][CH3COO]/PEG solvent were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR, and thermogravimetric analysis (TGA to estimate their morphologies and structures.

  8. Effect of allyl isothiocyanate against Anisakis larvae during the anchovy marinating process.

    Science.gov (United States)

    Giarratana, Filippo; Panebianco, Felice; Muscolino, Daniele; Beninati, Chiara; Ziino, Graziella; Giuffrida, Alessandro

    2015-04-01

    Allyl isothiocyanate (AITC), is a natural compound found in plants belonging to the family Cruciferae and has strong antimicrobial activity and a biocidal activity against plants parasites. Anisakidosis is a zoonotic disease caused by the ingestion of larval nematodes in raw, almost raw, and marinated and/or salted seafood dishes. The aim of this work was to evaluate the effect of AITC against Anisakis larvae and to study its potential use during the marinating process. The effects of AITC against Anisakis larvae were tested in three experiment: in vitro with three liquid media, in semisolid media with a homogenate of anchovy muscle, and in a simulation of two kinds of anchovy fillets marinating processes. For all tests, the concentrations of AITC were 0, 0.01, 0.05, and 0.1%. Significant activity of AITC against Anisakis larvae was observed in liquid media, whereas in the semisolid media, AITC was effective only at higher concentrations. In anchovy fillets, prior treatment in phosphate buffer solution (1.5% NaCl, pH 6.8) with 0.1% AITC and then marination under standard conditions resulted in a high level of larval inactivation. AITC is a good candidate for further investigation as a biocidal agent against Anisakis larvae during the industrial marinating process.

  9. Protein carbonylation, protein aggregation and neuronal cell death in a murine model of multiple sclerosis

    Science.gov (United States)

    Dasgupta, Anushka

    Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal

  10. Organometallic and Bioorganometallic Chemistry - Ferrocene and Metal Carbonyls

    Directory of Open Access Journals (Sweden)

    Čakić Semenčić, M.

    2011-02-01

    Full Text Available Organometallic chemistry deals with compounds containing metal-carbon bonds. Basic organometallics derived from the s- and p-block metals (containing solely σ-bonds were understood earlier, while organometallic chemistry of the d- and f-block has developed much more recently. These compounds are characterized by three types of M-C bonds (σ, π and δand their structures are impossible to deduce by chemical means alone; fundamental advances had to await the development of X-ray diffraction, as well as IR- and NMR-spectroscopy. On the other hand, elucidation of the structure of e. g. vitamin B12 and ferrocene (discovered in 1951 contributed to progress in these instrumental analytical methods, influencing further phenomenal success of transition-metal organometallic chemistry in the second half of the twentieth century. The most thoroughly explored fields of application of organometallics were in the area of catalysis, asymmetric synthesis, olefin metathesis, as well as organic synthesis and access to new materials and polymers.The most usual ligands bound to d- and f-metals are carbon monoxide, phosphines, alkyls, carbenes and arenes, and in this review the bonding patterns in the metal carbonyls and ferrocene are elaborated. The common characteristics of these two classes are two-component bonds. The CO-M bonds include (i donation from ligand HOMO to vacant M d-orbitals (σ-bond, and (ii back-donation from the filled M d-orbitals in the ligand LUMO (π-bond. Similar (but much more complicated ferrocene contains delocalized bonds consisting of electron donation from Cp to Fe (σ-bonds- and π-bonding and δ-back-bonding from metal to Cp. In such a way ferrocene, i. e. (η5-Cp2Fe contains 18 bonding electrons giving to this compound "superaromatic" properties in the sense of stability and electrophilic substitution. In contrast to benzenoid aromatic compounds reactions in two Cp-rings can occur giving homo- and heteroannularly mono-, two-… per

  11. Benchmarking of protein carbonylation analysis in Caenorhabditis elegans: specific considerations and general advice.

    Science.gov (United States)

    Pyr Dit Ruys, S; Bonzom, J-M; Frelon, S

    2016-10-01

    Oxidative stress has been extensively studied due to its correlation with cellular disorders and aging. In proteins, one biomarker of oxidative stress is the presence of carbonyl groups, such as aldehyde and ketone, in specific amino acid side chains such as lysine, proline, arginine and threonine, so-called protein carbonylation (PC). PC study is now a growing field in general and medical science since PC accumulation is associated with various pathologies and disorders. At present, enzyme-linked immunosorbent assays (ELISA) seem to be the most robust method of quantifying the presence of carbonyl groups in proteins, despite having some recognised caveats. In parallel, gel-based approaches present cross-comparison difficulties, along with other technical problems. As generic PC analyses still suffer from poor homogeneity, leading to cross-data analysis difficulties and poor results overlap, the need for harmonisation in the field of carbonyl detection is now widely accepted. This study aims to highlight some of the technical challenges in proteomic gel-based multiplexing experiments when dealing with PC in difficult samples like those from Caenorhabditis elegans, from protein extraction to carbonyl detection. We demonstrate that some critical technical parameters, such as labelling time, probe concentration, and total and carbonylated protein recovery rates, should be re-addressed in a sample-specific way. We also defined a procedure to cost-effectively adapt CyDye™-hydrazide-based protocols to specific samples, especially when the experimental interest is focused on studying differences between stimulating conditions with a maximised signal-to-noise ratio. Moreover, we have improved an already-existing powerful solubilisation buffer, making it potentially useful for hard-to-solubilise protein pellets. Lastly, the depicted methodology exemplifies a simple way of normalising carbonyl-related signal to total protein in SDS-PAGE multiplexing experiments. Within

  12. Aspects of the Influence of Light on the Adsorption and Electrooxidation of Allyl Alcohol on Pt/Pt Electrodes in Perchloric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Barin Claudia Smaniotto

    1998-01-01

    Full Text Available The electrooxidation of the adsorbed species produced by allyl alcohol adsorption on platinized platinum electrode has been studied in 1.0 M HClO4 medium. The maximum amount of adsorbed intermediates formed during allyl alcohol adsorption on the electrode surface, was observed at the adsorption potential, Eads = 0.00 V (SCE. Chronoamperometric studies at this potential confirm that the current associated with the hydrogen adsorption process decreases in the presence of the organic compound. Allyl alcohol displaces adsorbed hydrogen at the active sites. The incidence of polychromatic light on the electrode improves this effect as shown by comparison with the same experiments in the darkness. However, the electrooxidation of the adsorbed species comprise a monoelectronic charge transfer step. The anodic current associated with this process was higher under illumination than in the dark. This difference was attributed to a light-induced effect: either on the adsorption process of allyl alcohol on Pt/Pt, or on the electrooxidation of the adsorbed species. The electrooxidation of the adsorbed species formed during allyl alcohol adsorption demands apparent activation energies equivalent to 33.3 kJ mol-1 and 24.9 kJ mol-1 in the dark and under illumination, respectively.

  13. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    ... improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies ...

  14. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    Tanabe, K.; Iizuka, T.

    1983-04-01

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author) [pt

  15. Catalytic carboxyester hydrolysis by diaminodiphenols

    Indian Academy of Sciences (India)

    Administrator

    Two diaminodiphenols, 1 and 2, have been examined as catalysts for the hydrolysis of 4- nitrophenyl acetate (NA) and 4-nitrophenylphosphate (NP) in aqueous-acetonitrile (25% acetonitrile v/v) media at 35ºC, I = 1·0 mol dm–3. The compound 1 enhances the hydrolysis rate of NA more than 105 times. Its catalytic efficiency ...

  16. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so ...

  17. Heterometallic metal-organic framework-templated synthesis of porous Co3O4/ZnO nanocage catalysts for the carbonylation of glycerol

    Science.gov (United States)

    Lü, Yinyun; Jiang, Yating; Zhou, Qi; Li, Yunmei; Chen, Luning; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2017-12-01

    The efficient synthesis of glycerol carbonate (GLC) has recently received great attention due to its significance in reducing excess glycerol in biodiesel production as well as its promising applications in several industrial fields. However, the achievement of high conversion and high selectivity of GLC from glycerol in heterogeneous catalytic processes remains a challenge due to the absence of high-performance solid catalysts. Herein, highly porous nanocage catalysts composed of well-mixed Co3O4 and ZnO nanocrystals were successfully fabricated via a facile heterometallic metal-organic framework (MOF)-templated synthetic route. Benefiting from a high porosity and the synergistic effect between Co3O4 and ZnO, the as-prepared composite catalysts exhibited a significantly enhanced production efficiency of GLC in the carbonylation reaction of glycerol with urea compared to the single-component counterparts. The yield of GLC over the Co50Zn50-350 catalyst reached 85.2%, with 93.3% conversion and near 91% GLC selectivity, and this catalytic performance was superior to that over most heterogeneous catalysts. More importantly, the proposed templated synthetic strategy of heterometallic MOFs facilitates the regulation of catalyst composition and surface structure and can therefore be potentially extended in the tailoring of other metal oxide composite catalysts.

  18. Proteomic identification of carbonylated proteins in F344 rat hippocampus after 1-bromopropane exposure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan); Department of Toxicology, Guangdong Prevention and Treatment Center for Occupational Diseases, Guangzhou 510‐300 (China); Ichihara, Sahoko [Graduate School of Regional Innovation Studies, Mie University, Tsu 514‐8507 (Japan); Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514‐8507 (Japan); Chang, Jie; Zhang, Lingyi; Subramanian, Kaviarasan; Mohideen, Sahabudeen Sheik [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan); Ichihara, Gaku, E-mail: gak@med.nagoya-u.ac.jp [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan)

    2012-08-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and humans. Previous proteomic analysis of rat hippocampus implicated alteration of protein expression in oxidative stress, suggesting that oxidative stress plays a role in 1-BP-induced neurotoxicity. To understand this role at the protein level, we exposed male F344 rats to 1-BP at 0, 400, or 1000 ppm for 8 h/day for 1 week or 4 weeks by inhalation and quantitated changes in hippocampal protein carbonyl using a protein carbonyl assay, two-dimensional gel electrophoresis (2-DE), immunoblotting, and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). Hippocampal reactive oxygen species and protein carbonyl were significantly increased, demonstrating 1-BP-associated induction of oxidative stress and protein damage. MALDI-TOF-TOF/MS identified 10 individual proteins with increased carbonyl modification (p < 0.05; fold-change ≥ 1.5). The identified proteins were involved in diverse biological processes including glycolysis, ATP production, tyrosine catabolism, GTP binding, guanine degradation, and neuronal metabolism of dopamine. Hippocampal triosephosphate isomerase (TPI) activity was significantly reduced and negatively correlated with TPI carbonylation (p < 0.001; r = 0.83). Advanced glycation end-product (AGE) levels were significantly elevated both in the hippocampus and plasma, and hippocampal AGEs correlated negatively with TPI activity (p < 0.001; r = 0.71). In conclusion, 1-BP-induced neurotoxicity in the rat hippocampus seems to involve oxidative damage of cellular proteins, decreased TPI activity, and elevated AGEs. -- Highlights: ► 1-BP increases hippocampal ROS levels and hippocampal and plasma protein carbonyls. ► 1-BP increases TPI carbonylation and decreases TPI activity in the hippocampus. ► 1-BP increases hippocampal and plasma AGE levels.

  19. Characterization of nicotinamidases: steady state kinetic parameters, classwide inhibition by nicotinaldehydes, and catalytic mechanism.

    Science.gov (United States)

    French, Jarrod B; Cen, Yana; Vrablik, Tracy L; Xu, Ping; Allen, Eleanor; Hanna-Rose, Wendy; Sauve, Anthony A

    2010-12-14

    Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast, and invertebrates, but there are none found in mammals. Although recent structural work has improved our understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data show that nicotinamidases are required for the growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans regulate life span in their respective organisms, consistent with proposed roles in the regulation of NAD(+) metabolism and organismal aging. In this work, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, Sa. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme disease), and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state k(cat) values typically exceeding 1 s(-1). The K(m) values for nicotinamide are low and in the range of 2 -110 μM. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low micromolar to low nanomolar range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex that is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyze exchange of (18)O into the carboxy oxygens of nicotinic acid with H(2)(18)O. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic

  20. The catalytic mechanism of NADH-dependent reduction of 9,10-phenanthrenequinone by Candida tenuis xylose reductase reveals plasticity in an aldo-keto reductase active site.

    Science.gov (United States)

    Pival, Simone L; Klimacek, Mario; Nidetzky, Bernd

    2009-06-12

    Despite their widely varying physiological functions in carbonyl metabolism, AKR2B5 (Candida tenuis xylose reductase) and many related enzymes of the aldo-keto reductase protein superfamily utilise PQ (9,10-phenanthrenequinone) as a common in vitro substrate for NAD(P)H-dependent reduction. The catalytic roles of the conserved active-site residues (Tyr51, Lys80 and His113) of AKR2B5 in the conversion of the reactive alpha-dicarbonyl moiety of PQ are not well understood. Using wild-type and mutated (Tyr51, Lys80 and His113 individually replaced by alanine) forms of AKR2B5, we have conducted steady-state and transient kinetic studies of the effects of varied pH and deuterium isotopic substitutions in coenzyme and solvent on the enzymatic rates of PQ reduction. Each mutation caused a 10(3)-10(4)-fold decrease in the rate constant for hydride transfer from NADH to PQ, whose value in the wild-type enzyme was determined as approximately 8 x 10(2) s(-1). The data presented support an enzymic mechanism in which a catalytic proton bridge from the protonated side chain of Lys80 (pK=8.6+/-0.1) to the carbonyl group adjacent to the hydride acceptor carbonyl facilitates the chemical reaction step. His113 contributes to positioning of the PQ substrate for catalysis. Contrasting its role as catalytic general acid for conversion of the physiological substrate xylose, Tyr51 controls release of the hydroquinone product. The proposed chemistry of AKR2B5 action involves delivery of both hydrogens required for reduction of the alpha-dicarbonyl substrate to the carbonyl group undergoing (stereoselective) transformation. Hydride transfer from NADH probably precedes the transfer of a proton from Tyr51 whose pK of 7.3+/-0.3 in the NAD+-bound enzyme appears suitable for protonation of a hydroquinone anion (pK=8.8). These results show that the mechanism of AKR2B5 is unusually plastic in the exploitation of the active-site residues, for the catalytic assistance provided to carbonyl group

  1. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air

    Science.gov (United States)

    Hanson, Susan Kloek; Silks, Louis A; Wu, Ruilian

    2013-08-27

    The invention concerns processes for oxidizing an alcohol to produce a carbonyl compound. The processes comprise contacting the alcohol with (i) a gaseous mixture comprising oxygen; and (ii) an amine compound in the presence of a catalyst, having the formula: ##STR00001## where each of R.sup.1-R.sup.12 are independently H, alkyl, aryl, CF.sub.3, halogen, OR.sup.13, SO.sub.3R.sup.14, C(O)R.sup.15, CONR.sup.16R.sup.17 or CO.sub.2R.sup.18; each of R.sup.13-R.sup.18 is independently alkyl or aryl; and Z is alkl or aryl.

  2. Rh(I)-catalyzed CO gas-free carbonylative cyclization reactions of alkynes with 2-bromophenylboronic acids using formaldehyde.

    Science.gov (United States)

    Morimoto, Tsumoru; Yamasaki, Kae; Hirano, Akihisa; Tsutsumi, Ken; Kagawa, Natsuko; Kakiuchi, Kiyomi; Harada, Yasuyuki; Fukumoto, Yoshiya; Chatani, Naoto; Nishioka, Takanori

    2009-04-16

    The rhodium(I)-catalyzed reaction of alkynes with 2-bromophenylboronic acids in the presence of paraformaldehyde resulted in a CO gas-free carbonylative cyclization, yielding indenone derivatives. [RhCl(BINAP)](2) and [RhCl(cod)](2) were responsible for the decarbonylation of formaldehyde and the subsequent carbonylation of alkynes with 2-haloboronic acids, respectively, leading to efficient whole carbonylation. Sterically bulky and electron-withdrawing groups on unsymmetrically substituted alkynes favored the alpha-position of indenones.

  3. The Crystal Structures of the Open and Catalytically Competent Closed Conformation of Escherichia coli Glycogen Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Fang; Jia, Xiaofei; Yep, Alejandra; Preiss, Jack; Geiger, James H.; (MSU)

    2009-07-06

    Escherichia coli glycogen synthase (EcGS, EC 2.4.1.21) is a retaining glycosyltransferase (GT) that transfers glucose from adenosine diphosphate glucose to a glucan chain acceptor with retention of configuration at the anomeric carbon. EcGS belongs to the GT-B structural superfamily. Here we report several EcGS x-ray structures that together shed considerable light on the structure and function of these enzymes. The structure of the wild-type enzyme bound to ADP and glucose revealed a 15.2 degrees overall domain-domain closure and provided for the first time the structure of the catalytically active, closed conformation of a glycogen synthase. The main chain carbonyl group of His-161, Arg-300, and Lys-305 are suggested by the structure to act as critical catalytic residues in the transglycosylation. Glu-377, previously thought to be catalytic is found on the alpha-face of the glucose and plays an electrostatic role in the active site and as a glucose ring locator. This is also consistent with the structure of the EcGS(E377A)-ADP-HEPPSO complex where the glucose moiety is either absent or disordered in the active site

  4. Mechanistic and kinetic study on the catalytic hydrolysis of COS in small clusters of sulfuric acid.

    Science.gov (United States)

    Li, Kai; Song, Xin; Zhu, Tingting; Wang, Chi; Sun, Xin; Ning, Ping; Tang, Lihong

    2018-01-01

    The catalytic hydrolysis of carbonyl sulfide (COS) and the effect of small clusters of H 2 O and H 2 SO 4 have been studied by theoretical calculations. The addition of H 2 SO 4 could increase the enthalpy change (ΔHCOS + H 2 SO 4 -H 2 O) reaction has the lowest energy barrier of 29.97 kcal/mol. Although an excess addition of H 2 O and H 2 SO 4 increases the energy barrier, decreases the catalytic hydrolysis, which is consistent with experimental observations. The order of the energy barriers for the three reactions from low to high are as follows: COS + H 2 SO 4 -H 2 O COS + H 2 O + H 2 SO 4 -H 2 O COS + H 2 O+(H 2 SO 4 ) 2 . Kinetic simulations show that the addition of H 2 SO 4 can increase the reaction rate constants. Consequently, adding an appropriate amount of sulfuric acid promotes the catalytic hydrolysis of COS both kinetically and thermodynamically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Positive trends in Southern Hemisphere observations of carbonyl sulfide

    Science.gov (United States)

    Kremser, Stefanie; Jones, Nicholas; Smale, Dan; Palm, Mathias; Lejeune, Bernard; Wang, Yuting; Deutscher, Nicholas

    2016-04-01

    Carbonyl sulfide (OCS; lifetime of about 5.7 years) is the longest lived reduced sulfur-containing gas in the atmosphere. The primary source of OCS is the ocean, which is both a direct source (through OCS emission) and an indirect source (due to oxidation of carbon disulfide, CS2, and dimethyl sulfide). Other natural sources of OCS include volcanic outgassing and direct fluxes from wetland regions. The removal of OCS from the atmosphere is dominated by soil and vegetation uptake, with minor contributions from reactions with the hydroxyl radical. Small anthropogenic sources of OCS are coal combustion, biomass burning, and aluminum production. A dominant indirect source results from CS2 emissions from the rayon industry. Transport of tropospheric OCS to the stratosphere during volcanically quiescent periods has been suggested to contribute sulfur to the stratospheric aerosol layer which affects atmospheric radiative balance. If, however, production of stratospheric aerosols from OCS oxidation is smaller than typical estimates, this OCS contribution would be overestimated. The magnitude of the OCS flux to the stratosphere is currently not well quantified as is the relative contribution of OCS to background aerosol loading. While earlier model simulations indicate OCS fluxes into the atmosphere exceeding removal, past total column observations of OCS show no significant trend. Analysis of tropospheric OCS columns at Arrival Heights (Antarctica) and Lauder (New Zealand) show strong positive trends from 2001-2008 followed by weaker trends to 2015, with unexpected temporal coherence. Since trends in ocean and land sources/sinks at these two sites, respectively, are unlikely to be similar, the coherence in trend structure likely results from changes in transport of OCS from the tropics to middle and high latitudes. Potential causes for OCS increases are (i) increases in tropical lower stratospheric OCS and/or (ii) strengthening of the large-scale circulation which

  6. Multiple-sulfur isotope effects during photolysis of carbonyl sulfide

    Directory of Open Access Journals (Sweden)

    Y. Lin

    2011-10-01

    Full Text Available Laboratory experiments were carried out to determine sulfur isotope effects during ultraviolet photolysis of carbonyl sulfide (OCS to carbon monoxide (CO and elemental sulfur (S0. The OCS gas at 3.7 to 501 mbar was irradiated with or without a N2 bath gas using a 150 W Xe arc lamp. Sulfur isotope ratios for the product S0 and residual OCS were analyzed by an isotope ratio mass-spectrometer with SF6 as the analyte gas. The isotope fractionation after correction for the reservoir effects is −6.8‰ for the ratio 34S/32S, where product S0 is depleted in heavy isotopes. The magnitude of the overall isotope effect is not sensitive to the addition of N2 but increases to −9.5‰ when radiation of λ > 285 nm is used. The measured isotope effect reflects that of photolysis as well as the subsequent sulfur abstraction (from OCS reaction. The magnitude of isotope effects for the abstraction reaction is estimated by transition state theory to be between −18.9 and −3.1‰ for 34S which gives the photolysis isotope effect as −10.5 to +5.3‰. The observed triple isotope coefficients are ln(δ34S + 1/ln(δ34S + 1 = 0.534 ± 0.005 and ln(δ36S + 1/ln(δ34S + 1 = 1.980 ± 0.021. These values differ from canonical values for mass-dependent fractionation of 0.515 and 1.90, respectively. The result demonstrates that the OCS photolysis does not produce large isotope effects of more than about 10‰ for 34S/32S, and can be the major source of background stratospheric sulfate aerosol (SSA during volcanic quiescence.

  7. Elucidation of the regio- and chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus – conversion of selected spirocyclic terpenoids and computational analysis

    Directory of Open Access Journals (Sweden)

    Verena Weidmann

    2013-10-01

    Full Text Available Allylic oxidations of olefins to enones allow the efficient synthesis of value-added products from simple olefinic precursors like terpenes or terpenoids. Biocatalytic variants have a large potential for industrial applications, particularly in the pharmaceutical and food industry. Herein we report efficient biocatalytic allylic oxidations of spirocyclic terpenoids by a lyophilisate of the edible fungus Pleurotus sapidus. This ‘’mushroom catalysis’’ is operationally simple and allows the conversion of various unsaturated spirocyclic terpenoids. A number of new spirocyclic enones have thus been obtained with good regio- and chemoselectivity and chiral separation protocols for enantiomeric mixtures have been developed. The oxidations follow a radical mechanism and the regioselectivity of the reaction is mainly determined by bond-dissociation energies of the available allylic CH-bonds and steric accessibility of the oxidation site.

  8. Effects of microencapsulated Allyl isothiocyanate (AITC) on the extension of the shelf-life of Kimchi.

    Science.gov (United States)

    Ko, J A; Kim, W Y; Park, H J

    2012-02-01

    Allyl isothiocyanate (AITC) is a well-recognized antimicrobial agent but, application of AITC to food systems is limited due to its high volatility and strong odor. This study was performed to overcome the volatility of AITC by encapsulation using gum Arabic and chitosan and to investigate the effect of microencapsulated AITC as a natural additive on the shelf-life and quality of Kimchi. AITC loaded microparticles were prepared using gum Arabic and chitosan and were added to Kimchi at various concentrations (0-0.02%, w/w). The titratable acidity, pH, microbial changes, and sensory test of Kimchi were examined for 15days at different fermentation temperatures (4 and 10°C). The pH of Kimchi containing AITC microparticles was significantly higher than that of control and the higher the quantity of added AITC, the higher the pH became. The titratable acidity of Kimchi increased during storage especially, titratable acidity of control increased significantly higher than those of Kimchi with added AITC microparticles. The number of Leuconostoc and Lactobacillus species in Kimchi decreased with an increase in the concentration of AITC. The addition of AITC induced reduction of sour taste and improvement of the texture of Kimchi during fermentation. However, as the content of AITC increased, the scores of overall acceptability decreased due to the odor of AITC. These results indicate that addition of AITC (less than 0.1%) to Kimchi is an effective way of enhancing the shelf-life of Kimchi without reducing quality. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Proton conductive membranes based on poly (styrene-co-allyl alcohol semi-IPN

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Moro Loureiro

    2014-01-01

    Full Text Available The optimization of fuel cell materials, particularly polymer membranes, for PEMFC has driven the development of methods and alternatives to achieve systems with more adequate properties to this application. The sulfonation of poly (styrene-co-allyl alcohol (PSAA, using sulfonating agent:styrene ratios of 2:1, 1:1, 1:2, 1:4, 1:6, 1:8 and 1:10, was previously performed to obtain proton conductive polymer membranes. Most of those membranes exhibited solubility in water with increasing temperature and showed conductivity of approximately 10-5 S cm-1. In order to optimize the PSAA properties, especially decreasing its solubility, semi-IPN (SIPN membranes are proposed in the present study. These membranes were obtained from the diglycidyl ether of bisphenol A (DGEBA, curing reactions in presence of DDS (4,4-diaminodiphenyl sulfone and PSAA. Different DGEBA/PSAA weight ratios were employed, varying the PSAA concentration between 9 and 50% and keeping the mass ratio of DGEBA:DDS as 1:1. The samples were characterized by FTIR and by electrochemical impedance spectroscopy. Unperturbed bands of PSAA were observed in the FTIR spectra of membranes, suggesting that chemical integrity of the polymer is maintained during the synthesis. In particular, bands involving C-C stretching (1450 cm-1, C=C (aromatic, ~ 3030 cm-1 and C-H (2818 and 2928 cm-1 were observed, unchanged after the synthesis. The disappearance or reduction of the intensity of the band at 916 cm-1, attributed to the DGEBA epoxy ring, is evidenced for all samples, indicating the epoxy ring opening and the DGEBA crosslinking. Conductivity of H3PO4 doped membranes increases with temperature, reaching 10-4 S cm-1.

  10. Rate of Molecular Transfer of Allyl Alcohol across an AOT Surfactant Layer Using Muon Spin Spectroscopy.

    Science.gov (United States)

    Jayasooriya, Upali A; Clayden, Nigel J; Steytler, David C; Oganesyan, Vasily S; Peck, Jamie N T; Khasanov, Rustem; Scheuermann, Robert; Stoykov, Alexey

    2016-01-26

    The transfer rate of a probe molecule across the interfacial layer of a water-in-oil (w/o) microemulsion was investigated using a combination of transverse field muon spin rotation (TF-μSR), avoided level crossing muon spin resonance (ALC-μSR), and Monte Carlo simulations. Reverse microemulsions consist of nanometer-sized water droplets dispersed in an apolar solvent separated by a surfactant monolayer. Although the thermodynamic, static model of these systems has been well described, our understanding of their dynamics is currently incomplete. For example, what is the rate of solute transfer between the aqueous and apolar solvents, and how this is influenced by the structure of the interface? With an appropriate choice of system and probe molecule, μSR offers a unique opportunity to directly probe these interfacial transfer dynamics. Here, we have employed a well characterized w/o microemulsion stabilized by bis(2-ethylhexyl) sodium sulfosuccinate (Aerosol OT), with allyl alcohol (CH2═CH-CH2-OH, AA) as the probe. Resonances due to both muoniated radicals, CMuH2-C*H-CH2-OH and C*H2-CHMu-CH2-OH, were observed with the former being the dominant species. All resonances displayed solvent dependence, with those in the microemulsion observed as a single resonance located at intermediate magnetic fields to those present in either of the pure solvents. Observation of a single resonance is strong evidence for interfacial transfer being in the fast exchange limit. Monte Carlo calculations of the ΔM = 0 ALC resonances are consistent with the experimental data, indicating exchange rates greater than 10(9) s(-1), placing the rate of interfacial transfer at the diffusion limit.

  11. Antibacterial activity of starch/acrylamide/allyl triphenyl phosphonium bromide copolymers synthesized by gamma irradiation

    International Nuclear Information System (INIS)

    Song, Weiqiang; Guo, Zhengchao; Zhang, Linqi; Zheng, Hongjuan; Zhao, Zhiwei

    2013-01-01

    Starch/acrylamide/allyl triphenyl phosphonium bromide (St/AM/TP) copolymers were synthesized by simultaneous gamma irradiation and characterized by FTIR and 1 H NMR techniques, weight measurement and titration method. Moreover, their antibacterial activities against Staphylococcus aureus were explored by the viable cell counting method in sterile distilled water. At St/AM/TP 6:8.4:5.6 g, copolymers with higher graft ratio (G) and higher (AM+TP) graft efficiency (E AM+TP ) were obtained at 3 and 6 kGy, while cationic degree (CD) and TP graft efficiency (E TP ) continuously increased with absorbed dose from 1 to 6 kGy. All of the copolymers were capable of killing >99.75% of 10 7 CFU/ml S. aureus within 30 mins. Moreover, at 3 kGy, G, E AM+TP and E TP increased with AM/TP from 0:14 to 11.2:2.8 g at St/(AM+TP) 6:14 g, while the optimum CD and antibacterial activity were achieved at AM/TP 7:7 and 8.4:5.6 g. In addition, at 3 kGy, G, E AM+TP and CD increased with St/(AM+TP) from 6:3 to 6:18 g at AM/TP 8.4:5.6 g, while the optimum antibacterial activity was achieved at 6:10 to 6:18 g, and the optimum E TP was achieved at 6:14. - Highlights: • Cationic starch is prepared from AM and TP by Gamma irradiation. • Cationic starch is characterized by FTIR, NMR, weight method and titration method. • Grafting ratio and cationic degree depend on absorbed dose and composition. • Cationic starch shows good antibacterial activity against Staphylococcus aureus

  12. Novel 3-hydroxypropyl-bonded phase by direct hydrosilylation of allyl alcohol on amorphous hydride silica.

    Science.gov (United States)

    Gómez, Jorge E; Navarro, Fabián H; Sandoval, Junior E

    2014-09-01

    A novel 3-hydroxypropyl (propanol)-bonded silica phase has been prepared by hydrosilylation of allyl alcohol on a hydride silica intermediate, in the presence of platinum (0)-divinyltetramethyldisiloxane (Karstedt's catalyst). The regio-selectivity of this synthetic approach had been correctly predicted by previous reports involving octakis(dimethylsiloxy)octasilsesquioxane (Q8 M8 (H) ) and hydrogen silsesquioxane (T8 H8 ), as molecular analogs of hydride amorphous silica. Thus, C-silylation predominated (∼94%) over O-silylation, and high surface coverages of propanol groups (5 ± 1 μmol/m(2) ) were typically obtained in this work. The propanol-bonded phase was characterized by spectroscopic (infrared (IR) and solid-state NMR on silica microparticles), contact angle (on fused-silica wafers) and CE (on fused-silica tubes) techniques. CE studies of the migration behavior of pyridine, caffeine, Tris(2,2'-bipyridine)Ru(II) chloride and lysozyme on propanol-modified capillaries were carried out. The adsorption properties of these select silanol-sensitive solutes were compared to those on the unmodified and hydride-modified tubes. It was found that hydrolysis of the SiH species underlying the immobilized propanol moieties leads mainly to strong ion-exchange-based interactions with the basic solutes at pH 4, particularly with lysozyme. Interestingly, and in agreement with water contact angle and electroosmotic mobility figures, the silanol-probe interactions on the buffer-exposed (hydrolyzed) hydride surface are quite different from those of the original unmodified tube. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mechanism of copper(I)-catalyzed allylic alkylation of phosphorothioate esters: influence of the leaving group on α regioselectivity.

    Science.gov (United States)

    Sheng, Wenhao; Wang, Mian; Lein, Matthias; Jiang, Linbin; Wei, Wanxing; Wang, Jianyi

    2013-10-11

    The mechanism of Cu(I) -catalyzed allylic alkylation and the influence of the leaving groups (OPiv, SPiv, Cl, SPO(OiPr)2 ; Piv: pivavloyl) on the regioselectivity of the reaction have been explored by using density functional theory (DFT). A comprehensive comparison of many possible reaction pathways shows that [(iPr)2 Cu](-) prefers to bind first oxidatively to the double bond of the allylic substrate at the anti position with respect to the leaving group, and this is followed by dissociation of the leaving group. If the leaving group is not taken into account, the reaction then undergoes an isomerization and a reductive elimination process to give the α- or γ-selective product. If OPiv, SPiv, Cl, or SPO(OiPr)2 groups are present, the optimal route for the formation of both α- and γ-substituted products changes from the stepwise elimination to the direct process, in which the leaving group plays a stabilizing role for the reactant and destabilizes the transition state. The differences to the energy barrier for the α- and γ-substituted products are 2.75 kcal mol(-1) with SPO(OiPr)2 , 2.44 kcal mol(-1) with SPiv, 2.33 kcal mol(-1) with OPiv, and 1.98 kcal mol(-1) with Cl, respectively; these values show that α regioselectivity in the allylic alkylation follows a SPO(OiPr)2 >SPiv>OPiv>Cl trend, which is in satisfactory agreement with the experimental findings. This trend mainly originates in the differences between the attractive electrostatic forces and the repelling steric interactions of the SPO(OiPr)2 , SPiv, OPiv, and Cl groups on the Cu group. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ambient gas-particle partitioning of atmospheric carbonyl at an urban site in Beijing

    Science.gov (United States)

    Shen, H.; Chen, Z.

    2017-12-01

    Carbonyls are important oxidation intermediates of hydrocarbons and major carcinogenic and genotoxic compounds in urban areas. While their health and climate impacts are primarily associated with their gas-particle conversion such as oligomers and brown carbon formation in particle phase, however, observations of their actual ambient gas-particle partitioning are sparse. In this study, the Sep-Pak DNPH-Silica Gel Cartridges and a four-channel particle sampler were used to collect carbonyls in gaseous and particle (PM2.5) phases simultaneously. Six carbonyls (formaldehyde, acetaldehyde, acetone, propionaldehyde and two dicarbonyls, glyoxal and methylglyoxal) of the ten observed in gas phase (plus butyraldehyde, methacrolein, methyl vinyl ketone, benzaldehyde) were detected in ambient particles. The measured gas/particle (G/P) partitioning coefficients (Kp,field) of the six carbonyls were calculated and compared to their predicted G/P partitioning coefficients (Kp,theor) based on the absorptive partitioning theory. The values of Kp,field are 105-106 times higher than Kp,theor and the Kp,field of the measured total carbonyls were determined to be as high as (0.3-11)×10-4 m3 µg-1, indicating that small carbonyls were much easier to enter the particle phase than previously expected and their distribution between gas and particles varied greatly with environmental conditions. The measured Kp,CHOCHO > Kp,CH3COCHO > Kp,CH3CH3CHO > Kp,CH3CHO ≈ Kp,HCHO > Kp,CH3COCH3, suggesting that the aldehyde group, to some extent, is more likely to promote the carbonyl compounds into particle phase than ketone group and methyl group. The variation trends of the measured G/P partitioning coefficients were very consistent and significantly correlated, and did not reflect the different salting effect for glyoxal and methylglyoxal ("salting-in" for glyoxal and "salting-out" for methylglyoxal), which indicated that the factors affecting the gas-particle partitioning of carbonyls in the

  15. Proteomic evaluation of myofibrillar carbonylation in chilled fish mince and its inhibition by catechin.

    Science.gov (United States)

    Pazos, Manuel; Maestre, Rodrigo; Gallardo, José M; Medina, Isabel

    2013-01-01

    The present study investigates the susceptibility of individual myofibrillar proteins from mackerel (Scomber scombrus) mince to undergo carbonylation reactions during chilled storage, and the antioxidant capacity of (+)-catechin to prevent oxidative processes of proteins. The carbonylation of each particular protein was quantified by combining the labelling of protein carbonyls by fluorescein-5-thiosemicarbazide (FTSC) with 1-D or 2-D gel electrophoresis. Alpha skeletal actin, glycogen phosphorylase, unnamed protein product (UNP) similar to enolase, pyruvate kinase, isoforms of creatine kinase, aldolase A and an isoform of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) showed elevated oxidation in chilled non-supplemented mince. Myosin heavy chain (MHC) was not carbonylated in chilled muscle, but an extensive MHC degradation was observed in those samples. The supplementation of catechin reduced protein oxidation and lipid oxidation in a concentration-dependent manner: control>25>100≈200ppm. Therefore, the highest catechin concentrations (100 and 200ppm) exhibited the strongest antioxidant activity. Catechin (200ppm) reduced significantly carbonylation of protein spots identified as glycogen phosphorylase, pyruvate kinase muscle isozyme, isoforms of creatine kinase. Conversely, catechin was ineffective to inhibit the oxidation of actin and UNP similar to enolase. These results draw attention to the inefficiency of catechin to prevent actin oxidation, in contrast to the extremely high efficiency of catechin in inhibiting oxidation of lipids and other proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The effect of humidity on peak value of HEMA carbonyl absorbance band

    Directory of Open Access Journals (Sweden)

    Adioro Soetojo

    2006-09-01

    Full Text Available Bond strength between 2-Hydroxyethyl methacrylate HEMA-based dentin bonding agent and dentin collagen had proved by presence of the chemical interaction. This union involved the carbonyl group on HEMA resin with amino group on dentin collagen following produce an amide chain. However, this bond strength influence by humidity condition of dentin collagen and HEMA resin. The aim of this study is to measure the effect of humidity on peak value of the HEMA carbonyl absorbance band. The bond strength between by HEMA bonding agent and dentine collagen was analyzed in different humidity, e.g. in 60%, 70%, 80%, and 90% humidity. Control experiment was done in ambient room humidity that is 65%. Chemical bond that formed between HEMA and dentine collagen was carried out by mixing pure HEMA with bovine type-I collagen which had been stored in different humidity. The esther carbonyl group of HEMA will react with the amino group of collagen, produced an amide bonding, which is observed by measuring the IR spectrum absorbance of the esther carbonyl group of HEMA in KBr method. The decrease of the carbonyl group absorbance indicates the more chemical bonds formed. By measuring the absorbance of C=O esther in different humidity, it showed that the greatest number of chemical bonds resulted when the experiment was done in 70% humidity condition.

  17. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles

    Science.gov (United States)

    Zhou, Yingying; Xie, Hui; Zhou, Wancheng; Ren, Zhaowen

    2018-01-01

    SiO2 was successfully coated on the surface of flaky carbonyl iron particles using a chemical bath deposition method in the presence of 3-aminopropyl triethoxysilane (APTES). The morphologies, composition, valence states of elements, as well as antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and microwave network analyzer. TG curve shows the obvious weight gain of carbonyl iron was deferred to 360 °C after SiO2-coated, which can be ascribed to the exits of SiO2 overlayer. Compared with the raw carbonyl iron, SiO2-coated sample shows good wave absorption performance due to its impedance matching. The electromagnetic properties of raw and SiO2-coated carbonyl iron particles were characterized in X band before and after heat treatment at 250 °C for 10 h. It was established that SiO2-coated carbonyl iron demonstrate good thermal stability, indicating SiO2-coating is useful in the usage of microwave absorbers operating at temperature up to 250 °C.

  18. Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material

    International Nuclear Information System (INIS)

    Zhou Chang; Fang Qingqing; Yan Fangliang; Wang Weina; Wu Keyue; Liu Yanmei; Lv Qingrong; Zhang Hanming; Zhang Qiping; Li Jinguang; Ding Qiongqiong

    2012-01-01

    The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0–20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<−5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<−5 dB and RL<−8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was −29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites. - Highlights: ► We fabricated zinc oxide/carbonyl iron composites by high energy ball milling. ► ZnO dielectric property increased absorption effect and absorption bandwidth. ► Absorbing frequence of composites is expanding to low frequency direction. ► The craft of high energy ball milling is easy to realize commerce production.

  19. Formation of carbonyl groups on cellulose during ozone treatment of pulp: consequences for pulp bleaching.

    Science.gov (United States)

    Pouyet, Frédéric; Chirat, Christine; Potthast, Antje; Lachenal, Dominique

    2014-08-30

    The formation of carbonyl groups during the ozone treatment (Z) of eucalyptus (Eucalyptus grandis and Eucalyptus urophylla hybrid) kraft pulps and their behaviors during subsequent alkaline stages were investigated by the CCOA method with carbazole-9-carboxylic acid [2-(2-aminooxethoxy)-ethoxy] amide (CCOA) as the carbonyl-selective fluorescence label. Several pulp samples with or without lignin and hexenuronic acids (hexA) were used to elucidate the effects of these components when present in unbleached kraft pulp. Both hexA and lignin increased the formation of carbonyl groups on cellulose and hemicellulose during ozonation. It was concluded that radicals are likely formed when ozone reacts with either lignin or hexA. These carbonyl groups were involved in cellulose depolymerization during subsequent alkaline extraction stages with sodium hydroxide (E) and alkaline hydrogen peroxide (P, in ZEP or ZP). Their numbers decreased after E but increased during P when H2O2 was not stabilized enough. Several ways to minimize the occurrence of carbonyl group formation are suggested. Copyright © 2014. Published by Elsevier Ltd.

  20. Brand variation in oxidant production in mainstream cigarette smoke: Carbonyls and free radicals.

    Science.gov (United States)

    Reilly, Samantha M; Goel, Reema; Trushin, Neil; Elias, Ryan J; Foulds, Jonathan; Muscat, Joshua; Liao, Jason; Richie, John P

    2017-08-01

    Oxidative stress/damage resulting from exposure to cigarette smoke plays a critical role in the development of tobacco-caused diseases. Carbonyls and free radicals are two major classes of oxidants in tobacco smoke. There is little information on the combined delivery of these oxidants across different cigarette brands; thus, we set out to measure and compare their levels in mainstream smoke from popular US cigarettes. Mainstream smoke from 28 different cigarette brands produced by smoking (FTC protocol) was analyzed for five important, abundant carbonyls, and levels were compared to previously determined free radical for the same brands. Overall, there were large variations (3- to 6-fold) in carbonyl levels across brands with total carbonyl levels ranging from 275 to 804 μg/cigarette, which persisted even after adjusting for ventilation. Individual carbonyl levels were highly correlated with each other (r 2 : 0.40-0.95, P brand and the resulting difference in oxidant burden could potentially lead to differences in disease risk. Copyright © 2017 Elsevier Ltd. All rights reserved.