WorldWideScience

Sample records for catalytic carbonyl allylation

  1. Catalytic deallylation of allyl- and diallylmalonates.

    Science.gov (United States)

    Necas, David; Turský, Matyás; Kotora, Martin

    2004-08-25

    Substituted allylmalonates undergo the selective C-C bond cleavage in the presence of triethylaluminum and a catalytic amount of nickel and ruthenium phosphine complexes, resulting in the loss of the allyl moiety and formation of monosubstituted malonates. Comparison of reactivity of the nickel and ruthenium complexes showed that the use of the former is general with respect to the structure of the substituted allylmalonates, and the activity of the latter depended on the substitution pattern of the double bond of the allylic moiety. The smooth deallylation may encourage the use of the allyl group as a protective group for the acidic hydrogen in malonates. PMID:15315416

  2. Green Synthesis and Regioselective Control of Sn/I2 Mediated Allylation of Carbonyl Compounds with Crotyl Halide in Water

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yan; ZHA,Zhang-Gen; ZHOU,Yu-Qing; WANG,Zhi-Yong

    2004-01-01

    @@ Barbier-type carbonyl allylation is particularly useful due to ease of operation and the availability and tractability of allylic substrates,[1] Metals such as indium, zinc and tin are often used as the mediator. Here we present a green approach toward the synthesis, that is, Sn/I2 mediated allylation of carbonyl compounds with crotyl halide in water.

  3. Cationic ruthenium-cyclopentadienyl-diphosphine complexes as catalysts for the allylation of phenols with allyl alcohol: relation between structure and catalytic performance in O- vs. C-allylation

    NARCIS (Netherlands)

    van Rijn, J.A.; Lutz, M.; von Chrzanowski, L.S.; Spek, A.L.; Bouwman, E.; Drent, E.

    2009-01-01

    A new catalytic method has been investigated to obtain either O- or C-allylated phenolic products using allyl alcohol or diallyl ether as the allyl donor. With the use of new cationic ruthenium(II) complexes as catalyst, both reactions can be performed with good selectivity. Active cationic Ru(II) c

  4. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium.

    Science.gov (United States)

    Wu, San; Li, Ying; Zhang, Songlin

    2016-09-01

    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions. PMID:27490708

  5. Transition metal catalysed Grignard-like allylic activation across tetragonal tin(II) oxide

    Indian Academy of Sciences (India)

    Pradipta Sinha; Moloy Banerjee; Abhijit Kundu; Sujit Roy

    2002-08-01

    The reaction of allyl halide and a carbonyl compound under the aegis of tetragonal tin(II) oxide and catalytic 8, 10 metal complexes provides the corresponding homoallylic alcohol, via a novel allyl tin intermediate.

  6. Palladium-Catalyzed Carbonylation of (Hetero)Aryl, Alkenyl and Allyl Halides by Means of N-Hydroxysuccinimidyl Formate as CO Surrogate.

    Science.gov (United States)

    Barré, Anaïs; Ţînţaş, Mihaela-Liliana; Alix, Florent; Gembus, Vincent; Papamicaël, Cyril; Levacher, Vincent

    2015-07-01

    An efficient Pd-catalyzed carbonylation protocol is described for the coupling of a large panel of aryl, heteroaryl, benzyl, vinyl and allyl halides 2 with the unusual N-hydroxysuccinimidyl (NHS) formate 1 as a CO surrogate to afford the corresponding valuable NHS esters 3. High conversion to the coupling products was achieved with up to 98% yield by means of Pd(OAc)2/Xantphos catalyst system. PMID:26098725

  7. Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts.

    Science.gov (United States)

    Falletta, Ermelinda; Della Pina, Cristina; Rossi, Michele; He, Qian; Kiely, Christopher J; Hutchings, Graham J

    2011-01-01

    One of the strategic building blocks in organic synthesis is 3-hydroxypropionic acid, which is particularly important for the manufacture of high performance polymers. However, to date, despite many attempts using both biological and chemical routes, no large scale effective process for manufacturing 3-hydroxypropionic acid has been developed. One potentially useful starting point is from allyl alcohol, as this can be obtained in principle from the dehydration of glycerol, thereby presenting a bio-renewable green pathway to this important building block. The catalytic transformation of allyl alcohol to 3-hydroxypropionic acid presents interesting challenges in catalyst design, particularly with respect to the control of selectivity among the products that can be expected, as acrylic acid, acrolein and glyceric acid can also be formed. In this paper, we present a novel eco-sustainable catalytic pathway leading to 3-hydroxypropionic acid, which highlights the outstanding potential of gold-based and bimetallic catalysts in the aerobic oxidation of allyl alcohol. PMID:22455056

  8. Polymerizations of beta-substituted allylic arsonium ylides with catalytic amounts of organoboron compounds

    International Nuclear Information System (INIS)

    My Ph.D. work consisted in the generalization and optimization of a new polymerization reaction involving allylic arsonium ylides and catalytic amounts of various boron compounds. Thus, various β-substituted allylic arsonium salts were produced according to synthetic strategies that depended on the nature of the functional group born by the salt. These salts were converted in situ to the corresponding arsonium ylides which were then treated with boron compounds to yield polymers. Our new method of polymerization afforded either non conjugated polyenes that are functionalized every three atoms of carbon, or statistic copolymers, depending on the nature of the group R born on the β position of the ylide. These new polymers cannot be synthesized by usual methods of polymerization. Initial molar ratios of reactants were found to give molar mass control of the synthesized polymers. This controlled polymerization allowed us to produce several bloc copolymers. All the polymers were characterized by NMR techniques, by size exclusion chromatography and, for some of them, by mass spectrometry. Investigation of their physicochemical properties will need additional experiments. (author)

  9. Reactivity of Ir(III) carbonyl complexes with water: alternative by-product formation pathways in catalytic methanol carbonylation

    OpenAIRE

    Haynes, A.; Elliott, P. I. P.; Haak, S; Meijer, A.J.H.M.; Sunley, G.J

    2013-01-01

    The reactions of water with a number of iridium(III) complexes relevant to the mechanism for catalytic methanol carbonylation are reported. The iridium acetyl, [Ir(CO)2I3(COMe)]−, reacts with water under mild conditions to release CO2 and CH4, rather than the expected acetic acid. Isotopic labeling and kinetic experiments are consistent with a mechanism involving nucleophilic attack by water on a terminal CO ligand of [Ir(CO)2I3(COMe)]− to give an (undetected) hydroxycarbonyl spec...

  10. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid).

    Science.gov (United States)

    Costa, M I C F; Steter, J R; Purgato, F L S; Romero, J R

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H(+) with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H(+) was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  11. Catalytic Z-Selective Cross-Metathesis with Secondary Silyl- and Benzyl-Protected Allylic Ethers: Mechanistic Aspects and Applications to Natural Product Synthesis**

    OpenAIRE

    Mann, Tyler J.; Speed, Alexander W. H.; Schrock, Richard R.; Hoveyda, Amir H.

    2013-01-01

    Efficient catalytic cross-metathesis reactions that afford Z-disubstituted allylic silyl or benzyl ethers are reported (see scheme, MAP=monoalkoxide pyrrolide). The approach, in combination with catalytic cross-coupling, provides a general entry to otherwise difficult-to-access alkyne-containing Z olefins.

  12. Formation of gold clusters on La-Ni mixed oxides and its catalytic performance for isomerization of allylic alcohols to saturated aldehydes

    International Nuclear Information System (INIS)

    Au/NiO catalyzed the isomerization of allylic alcohols to afford saturated aldehydes. La-Ni mixed oxide could stabilize Au(III) and afford gold clusters smaller than 1 nm by H2 reduction. The resulting Au clusters on La-Ni-O exhibited superior catalytic performance to Au/NiO for the isomerization of internal allylic alcohol, 2-octen-1-ol to octanal. (author)

  13. Hydroxymethylation beyond Carbonylation: Enantioselective Iridium-Catalyzed Reductive Coupling of Formaldehyde with Allylic Acetates via Enantiotopic π-Facial Discrimination.

    Science.gov (United States)

    Garza, Victoria J; Krische, Michael J

    2016-03-23

    Chiral iridium complexes modified by SEGPHOS catalyze the 2-propanol-mediated reductive coupling of branched allylic acetates 1a-1o with formaldehyde to form primary homoallylic alcohols 2a-2o with excellent control of regio- and enantioselectivity. These processes, which rely on enantiotopic π-facial discrimination of σ-allyliridium intermediates, represent the first examples of enantioselective formaldehyde C-C coupling beyond aldol addition. PMID:26958737

  14. Catalytic asymmetric allylation of aliphatic aldehydes by chiral bipyridine N,N'-dioxides

    Czech Academy of Sciences Publication Activity Database

    Hrdina, R.; Boyd, T.; Valterová, Irena; Hodačová, Jana; Kotora, Martin

    -, č. 20 (2008), s. 3141-3144. ISSN 0936-5214 Grant ostatní: GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40550506 Keywords : allylations * aldehydes * Lewis base * asymmetric catalysis * solvent effect Subject RIV: CC - Organic Chemistry Impact factor: 2.659, year: 2008

  15. Impact of Substituents Attached to N-Heterocyclic Carbenes on the Catalytic Activity of Copper Complexes in the Reduction of Carbonyl Compounds with Triethoxysilane

    Institute of Scientific and Technical Information of China (English)

    PENG, Jiajian; CHEN, Lingzhen; XU, Zheng; HU, Yingqian; LI, Jiayun; BAI, Ying; QIU, Huayu; LAI, Guoqiao

    2009-01-01

    By using functionalized imidazolium salts such as 1-allyl-3-alkylimidazolium or 1-alkyi-3-vinylimidazolium salts as carbene ligand precursors, the reduction of aryl ketones with triethoxysilane may be catalyzed by copper salt/imidazolium salt/KO~tBu systems. The functional substituents attached to the N-heterocyclic carbene (NHC) serve to enhance the catalytic activity. Different copper salts also have an effect on the catalytic activity, with copper(Ⅱ) acetate monohydrate being superior to copper(I) chloride.

  16. Aldehyde Selective Wacker Oxidations of Phthalimide Protected Allylic Amines : A New Catalytic Route to beta(3)-Amino Acids

    NARCIS (Netherlands)

    Weiner, Barbara; Baeza Garcia, Alejandro; Jerphagnon, Thomas; Feringa, Ben L.

    2009-01-01

    A new method for the synthesis of B-3-amino acids is presented. Phthalimide protected allylic amines are oxidized under Wacker conditions selectively to aldehydes using PdCl2 and CuCl or Pd(MeCN)(2)Cl(NO2) and CuCl2 as complementary catalyst systems. The aldehydes are produced in excellent yields an

  17. Luminescent property and catalytic activity of Ru(II) carbonyl complexes containing N, O donor of 2-hydroxy-1-naphthylideneimines

    Science.gov (United States)

    Sivagamasundari, M.; Ramesh, R.

    2007-05-01

    The reaction of the chelating ligands (obtained by the condensation of 2-hydroxy-1-naphthaldehyde with various primary amines) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P; B = PPh 3, py or pip: E = As; B = AsPh 3) in benzene afforded new stable ruthenium(II) carbonyl complexes of the general formula [Ru(Cl)(CO)(EPh 3)(B)(L)] (L = anion of bidentate Schiff bases). The structure of the new complexes was investigated using elemental analyses, spectral (FT-IR, UV-vis and 1H NMR) and electrochemical studies and is found to be octahedral. All the metal complexes exhibit characteristic MLCT absorption and luminescence bands in the visible region. The luminescence efficiency of the ruthenium(II) complexes was explained based on the ligand environment around the metal ion. These complexes catalyze oxidation of primary and secondary alcohols into their corresponding carbonyl compounds in the presence of N-methylmorpholine- N-oxide (NMO) as the source of oxygen. The formation of high valent Ru IVdbnd O species as a catalytic intermediate is proposed for the catalytic process.

  18. Synthesis, electronic structure and catalytic activity of ruthenium-iodo-carbonyl complexes with thioether containing NNS donor ligand

    Science.gov (United States)

    Jana, Subrata; Jana, Mahendra Sekhar; Biswas, Sujan; Sinha, Chittaranjan; Mondal, Tapan Kumar

    2014-05-01

    The ruthenium carbonyl complexes 1 and 2 with redox noninnocent NNS donor ligand, 1-methyl-2-{(o-thiomethyl)phenylazo}imidazole (L) have been synthesized and characterized by various analytical and spectroscopic (IR, UV-Vis and 1H NMR) techniques. The complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 1.11 V for 1 and 0.76 V for 2 along with two successive one electron ligand reductions. Catalytic activity of the compounds has been investigated to the oxidation of PhCH2OH to PhCHO, 2-butanol (C4H9OH) to 2-butanone, 1-phenylethanol (PhC2H4OH) to acetophenone, cyclopentanol (C5H9OH) to cyclopentanone, cyclohexanol to cyclohexanone, cycloheptanol to cycloheptanone and cycloctanol to cycloctanone using N-methylmorpholine-N-oxide (NMO) as oxidant. The catalytic efficiency of 2 is greater than complex 1 and well correlate with the metal oxidation potential. DFT, NBO and TDDFT calculations in DFT/B3LYP/6-31G(d)/lanL2TZ(f) method are employed to interpret the structural and electronic features of the complexes.

  19. Kinetic Resolution of Racemic and Branched Monosubstituted Allylic Acetates by a Ruthenium-Catalyzed Regioselective Allylic Etherification.

    Science.gov (United States)

    Shinozawa, Toru; Terasaki, Shou; Mizuno, Shota; Kawatsura, Motoi

    2016-07-01

    We demonstrated the kinetic resolution of racemic and branched monosubstituted allylic acetates by a ruthenium-catalyzed regioselective allylic etherification. The reaction was effectively catalyzed by the chiral ruthenium catalyst, which was generated by [RuCl2(p-cymene)]2 and (S,S)-iPr-pybox and a catalytic amount of TFA, and both the allylic etherification product and recovered allylic acetate were obtained as an enantiomerically enriched form with up to a 103 s value. PMID:27276556

  20. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air.

    Science.gov (United States)

    Hanson, Susan K; Wu, Ruilian; Silks, L A Pete

    2011-04-15

    Transition metal-catalyzed aerobic alcohol oxidation is an attractive method for the synthesis of carbonyl compounds, but most catalytic systems feature precious metals and require pure oxygen. The vanadium complex (HQ)(2)V(V)(O)(O(i)Pr) (2 mol %, HQ = 8-quinolinate) and NEt(3) (10 mol %) catalyze the oxidation of benzylic, allylic, and propargylic alcohols with air. The catalyst can be easily prepared under air using commercially available reagents and is effective for a wide range of primary and secondary alcohols. PMID:21434606

  1. Temperature-controlled redox-neutral ruthenium(ii)-catalyzed regioselective allylation of benzamides with allylic acetates.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2016-08-10

    Substituted aromatic amides reacted efficiently with allylic acetates in the presence of a cationic ruthenium complex in ClCH2CH2Cl at room temperature providing ortho allylated benzamides in a highly regioselective manner without any oxidant and base. The whole catalytic reaction occurred in a Ru(ii) oxidation state and thus the oxidation step is avoided. By tuning the reaction temperature, ortho allyl and vinyl benzamides were prepared exclusively. Later, ortho allyl and vinylated benzamides were converted into biologically useful six- and five-membered benzolactones in the presence of HCl. PMID:27456467

  2. Palladium Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Fristrup, Peter

    2011-01-01

    The atom-efficiency of one of the most widely used catalytic reactions for forging C-C bonds, the Tsuji-Trost reaction, is limited by the need of preoxidized reagents. This limitation can be overcome by utilization of the recently discovered palladium-catalyzed C-H activation, the allylic C...

  3. Mild and Selective Catalytic Hydrogenation of the C=C Bond in α,β-Unsaturated Carbonyl Compounds Using Supported Palladium Nanoparticles.

    Science.gov (United States)

    Nagendiran, Anuja; Pascanu, Vlad; Bermejo Gómez, Antonio; González Miera, Greco; Tai, Cheuk-Wai; Verho, Oscar; Martín-Matute, Belén; Bäckvall, Jan-E

    2016-05-17

    Chemoselective reduction of the C=C bond in a variety of α,β-unsaturated carbonyl compounds using supported palladium nanoparticles is reported. Three different heterogeneous catalysts were compared using 1 atm of H2 : 1) nano-Pd on a metal-organic framework (MOF: Pd(0) -MIL-101-NH2 (Cr)), 2) nano-Pd on a siliceous mesocellular foam (MCF: Pd(0) -AmP-MCF), and 3) commercially available palladium on carbon (Pd/C). Initial studies showed that the Pd@MOF and Pd@MCF nanocatalysts were superior in activity and selectivity compared to commercial Pd/C. Both Pd(0) -MIL-101-NH2 (Cr) and Pd(0) -AmP-MCF were capable of delivering the desired products in very short reaction times (10-90 min) with low loadings of Pd (0.5-1 mol %). Additionally, the two catalytic systems exhibited high recyclability and very low levels of metal leaching. PMID:27111403

  4. Dicyano-Functionalized MCM-41-Supported Palladium Complex as An Efficient Catalyst for Allylation of Aldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong; CAI Ming-Zhong

    2006-01-01

    Dicyano-functionalized MCM-41-supported palladium complex was prepared from dicyano-functionalized MCM-41 and palladium chloride. This complex exhibited high catalytic activity in the allylation of aldehydes and ketones with allylic chlorides in the presence of SnCl2. This polymeric palladium complex can be recovered and reused without noticeable loss of activity.

  5. Comparison of Carbonyls and BTEX Emissions from a Light Duty Vehicle Fuelled with Gasoline and Ethanol-Gasoline Blend, and Operated without 3-Way Catalytic Converter

    OpenAIRE

    Asad Naeem Shah; Ge Yun-Shan; Muhammad Akram Shaikh

    2011-01-01

    This paper presents the comparison of unregulated emissions such as carbonyls and BTEX (Benzene, Toluene, Ethyl Benzene, and Xylenes) species emanated from a light duty SI (Spark Ignition) vehicle E-0 (fuelled on gasoline) and E-10 (ethanol-gasoline blend). Meanwhile, the ozone forming potential of these pollutants based on their ozone SR (Specific Reactivity) has also been addressed in this study. The experiments were performed on transient as well as steady-state modes in accordance with th...

  6. Mild and Site-Selective Allylation of Enol Carbamates with Allylic Carbonates under Rhodium Catalysis.

    Science.gov (United States)

    Sharma, Satyasheel; Han, Sang Hoon; Oh, Yongguk; Mishra, Neeraj Kumar; Han, Sangil; Kwak, Jong Hwan; Lee, Seok-Yong; Jung, Young Hoon; Kim, In Su

    2016-03-18

    The rhodium(III)-catalyzed mild and site-selective C-H allylation of enol carbamates with 4-vinyl-1,3-dioxolan-2-one and allylic carbonates affords allylic alcohols and terminal allylated products, respectively. The assistance of the carbamoyl directing group provides a straightforward preparation of biologically and synthetically important allylated enol carbamates. PMID:26906724

  7. Comparison of Carbonyls and BTEX Emissions from a Light Duty Vehicle Fuelled with Gasoline and Ethanol-Gasoline Blend, and Operated without 3-Way Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Asad Naeem Shah

    2011-10-01

    Full Text Available This paper presents the comparison of unregulated emissions such as carbonyls and BTEX (Benzene, Toluene, Ethyl Benzene, and Xylenes species emanated from a light duty SI (Spark Ignition vehicle E-0 (fuelled on gasoline and E-10 (ethanol-gasoline blend. Meanwhile, the ozone forming potential of these pollutants based on their ozone SR (Specific Reactivity has also been addressed in this study. The experiments were performed on transient as well as steady-state modes in accordance with the standard protocols recommended for light duty vehicle emissions. Carbonyls and BTEX were analyzed by HPLC (High Performance Liquid Chromatography with UV detector and GC/MS (Gas Chromatography/Mass Spectroscopy, respectively. Formaldehyde and acetaldehyde were the predominant components of the carbonyls for E-0 and E-10, respectively. During transient mode, formaldehyde, acrolein + acetone, and tolualdehyde pollutants were decreased but, acetaldehyde emissions increased with E-10 as compared to E-0. The BTEX emissions were also decreased with E-10, relative to E-0. During the steady-state modes, formaldehyde, acrolein + acetone and propionaldehyde were lower, aromatic aldehydes were absent, but acetaldehyde pollutants were higher with E-10 compared to E-0. The BTEX emissions were decreased at medium and higher speed modes however, increased at lower speed mode with E-10 as compared to E-0. Total BTEX emissions were maximal at lower speed mode but, least at medium speed mode for both the fuels. SR of the pollutants was higher over transient cycle of operation, compared with steady-state mode. Relative to E-0, E-10 displayed lower SR during both transient as well as steady-state mode.

  8. A Comparative 90 Day Toxicity Study of Allyl Acetate, Allyl Alcohol and Acrolein

    OpenAIRE

    Auerbach, Scott S.; Mahler, Joel; Travlos, Gregory S.; Irwin, Richard D

    2008-01-01

    Allyl acetate (AAC), allyl alcohol (AAL), and acrolein (ACR) are used in the manufacture of detergents, plastics, pharmaceuticals, and chemicals and as agricultural agents. A metabolic relationship exists between these chemicals in which allyl acetate is metabolized to allyl alcohol and subsequently to the highly reactive,α,β-unsaturated aldehyde, acrolein. Due to the weaker reactivity of the protoxicants, allyl acetate and allyl alcohol, relative to acrolien we hypothesized the protoxicants ...

  9. Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters

    Directory of Open Access Journals (Sweden)

    Malcolm J. D'Souza

    2013-04-01

    Full Text Available At 25.0 °C the specific rates of solvolysis for allyl and vinyl chloroformates have been determined in a wide mix of pure and aqueous organic mixtures. In all the solvents studied, vinyl chloroformate was found to react significantly faster than allyl chloroformate. Multiple correlation analyses of these rates are completed using the extended (two-term Grunwald-Winstein equation with incorporation of literature values for solvent nucleophilicity (NT and solvent ionizing power (YCl. Both substrates were found to solvolyze by similar dual bimolecular carbonyl-addition and unimolecular ionization channels, each heavily dependent upon the solvents nucleophilicity and ionizing ability.

  10. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.

    Science.gov (United States)

    Li, Houhua; Mazet, Clément

    2016-06-21

    This Account presents the development of the iridium-catalyzed isomerization of primary allylic alcohols in our laboratory over the past 8 years. Our initial interest was driven by the long-standing challenge associated with the development of a general catalyst even for the nonasymmetric version of this seemingly simple chemical transformation. The added value of the aldehyde products and the possibility to rapidly generate molecular complexity from readily accessible allylic alcohols upon a redox-economical isomerization reaction were additional sources of motivation. Certainly influenced by the success story of the related isomerization of allylic amines, most catalysts developed for the selective isomerization of allylic alcohols were focused on rhodium as a transition metal of choice. Our approach has been based on the commonly accepted precept that hydrogenation and isomerization are often competing processes, with the latter being usually suppressed in favor of the former. The cationic iridium complexes [(Cy3P)(pyridine)Ir(cod)]X developed by Crabtree (X = PF6) and Pfaltz (X = BArF) are usually considered as the most versatile catalysts for the hydrogenation of allylic alcohols. Using molecular hydrogen to generate controlled amounts of the active form of these complexes but performing the reaction in the absence of molecular hydrogen enabled deviation from the typical hydrogenation manifold and favored exclusively the isomerization of allylic alcohols into aldehydes. Isotopic labeling and crossover experiments revealed the intermolecular nature of the process. Systematic variation of the ligand on the iridium center allowed us to identify the structural features beneficial for catalytic activity. Subsequently, three generations of chiral catalysts have been investigated and enabled us to reach excellent levels of enantioselectivity for a wide range of 3,3-disubstituted aryl/alkyl and alkyl/alkyl primary allylic alcohols leading to β-chiral aldehydes. The

  11. Asymmetric Catalysis with CO2 : The Direct α-Allylation of Ketones.

    Science.gov (United States)

    Pupo, Gabriele; Properzi, Roberta; List, Benjamin

    2016-05-10

    Quaternary stereocenters are found in numerous bioactive molecules. The Tsuji-Trost reaction has proven to be a powerful C-C bond forming process, and, at least in principle, should be well suited to access quaternary stereocenters via the α-allylation of ketones. However, while indirect approaches are known, the direct, catalytic asymmetric α-allylation of branched ketones has been elusive until today. By combining "enol catalysis" with the use of CO2 as a formal catalyst for asymmetric catalysis, we have now developed a solution to this problem: we report a direct, highly enantioselective and highly atom-economic Tsuji-Trost allylation of branched ketones with allylic alcohol. Our reaction delivers products bearing quaternary stereocenters with high enantioselectivity and water as the sole by-product. We expect our methodology to be of utility in asymmetric catalysis and inspire the design of other highly atom-economic transformations. PMID:27071633

  12. Gold(I)-Catalyzed Intramolecular Hydroamination of N-Allylic,N′-Aryl Ureas to form Imidazolidin-2-ones

    OpenAIRE

    Li, Hao; Song, Feijie; Widenhoefer, Ross A.

    2011-01-01

    Treatment of N-allylic,N′-aryl ureas with a catalytic 1:1 mixture of di-tert-butyl-o-biphenylphoshphine gold(I) chloride and silver hexafluorophosphate (1 mol %) in chloroform at room temperature led to 5-exo hydroamination to form the corresponding imidazolidin-2-ones in excellent yield. In the case of N-allylic ureas that possessed an allylic alkyl, benzyloxymethyl, or acetoxymethyl substituent, gold(I)-catalyzed 5-exo hydroamination leads to formation of the corresponding trans-3,4-disubst...

  13. Gold(I)-Catalyzed Intramolecular Hydroamination of N-Allylic,N'-Aryl Ureas to form Imidazolidin-2-ones.

    Science.gov (United States)

    Li, Hao; Song, Feijie; Widenhoefer, Ross A

    2011-04-18

    Treatment of N-allylic,N'-aryl ureas with a catalytic 1:1 mixture of di-tert-butyl-o-biphenylphoshphine gold(I) chloride and silver hexafluorophosphate (1 mol %) in chloroform at room temperature led to 5-exo hydroamination to form the corresponding imidazolidin-2-ones in excellent yield. In the case of N-allylic ureas that possessed an allylic alkyl, benzyloxymethyl, or acetoxymethyl substituent, gold(I)-catalyzed 5-exo hydroamination leads to formation of the corresponding trans-3,4-disubstituted imidazolidin-2-ones in excellent yield with ≥50:1 diastereoselectivity. PMID:21709731

  14. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    Science.gov (United States)

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  15. Allylic and benzylic sp3 C-H oxidation in water.

    Science.gov (United States)

    Ang, Wei Jie; Lam, Yulin

    2015-01-28

    A copper-catalyzed method for the oxidation of allylic and benzylic sp(3) C-H by aqueous tert-butyl hydroperoxide (T-Hydro) in water using a recyclable fluorous ligand has been developed. The reaction procedure is tolerant to additional functional groups and the fluorous ligand could be reused with little loss of catalytic activity. PMID:25412371

  16. In(OTf)3 catalyzed allylation reaction of imines with tetraallyltin

    Institute of Scientific and Technical Information of China (English)

    Xiao Ning Wei; Ling Yan Liu; Bing Wang; Wei Xing Chang; Jing Li

    2009-01-01

    In the presence of catalytic amount of In(OTf)3 (10 mol%), a series of aldimines reacted with tetraallyltin in a 2:1 molar ratio to afford the corresponding homoallylic amines in good yields. The good atom efficiency was achieved under mild reaction conditions and a new protocol (allyl)4Sn/In(OTf)3 for simple imines was developed.

  17. Advances in the catalytic synthesis of dimethyl carbonate by oxidative carbonylation%氧化羰基化合成碳酸二甲酯催化剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    王坤; 李忠; 李安民

    2013-01-01

    In past few years,methanol oxidative carbonylation is an important method for the synthesis of dimethyl carbonate (DMC) , becomes one of the most important approaches for clean coal utilization,and has got a significant development. In this paper,according to its supporters,the supported copper-based catalysts are divided to three categories:molecular sieve supporters,activated carbon supporters and other supporters. Their research progress is fully reviewed,including research advances in catalyst for synthesis technology,the feature and microstructure of surface,the catalytic performance and catalysis mechanism. Through in-depth analysis and comparison,it’s concluded that chlorine-free copper-based catalysts with zeolite or actived carbon as supporter are prospective in future,because of its high catalytic activity,high stability and no Cl−in the active component of CuCl/CuCl2 catalysts,which avoid the harmful HCl production in the reaction processes.%甲醇氧化羰基化是合成碳酸二甲酯的重要方法,也是重要的煤炭清洁利用途径之一,近年来获得较大发展。本文详细阐述了该工艺过程中有关催化剂的国内外研究现状及发展趋势,并根据载体的结构特征,按照分子筛载体、活性炭载体和其它载体,将铜基催化剂分为三类,综合论述了合成催化剂的制备技术,表面微观结构和特征、催化性能以及催化机理等方面的最新研究进展。通过深入分析和比较,认为分子筛和活性炭为载体制备的负载无氯铜基催化剂,不仅具有较好的催化活性和稳定性,而且避免了以前 CuCl/CuCl2为活性组分催化剂中Cl离子对催化剂活性和稳定性的影响,以及对设备造成的腐蚀,具有较好的发展前景。

  18. The allylic chalcogen effect in olefin metathesis

    Directory of Open Access Journals (Sweden)

    Yuya A. Lin

    2010-12-01

    Full Text Available Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.

  19. Regioselective hydroformylation of allylic alcohols.

    Science.gov (United States)

    Lightburn, Thomas E; De Paolis, Omar A; Cheng, Ka H; Tan, Kian L

    2011-05-20

    A highly regioselective hydroformylation of allylic alcohols is reported toward the synthesis of β-hydroxy-acid and aldehyde products. The selectivity is achieved through the use of a ligand that reversibly binds to alcohols in situ, allowing for a directed hydroformylation to occur. The application to trisubstituted olefins was also demonstrated, which yields a single diastereomer product consistent with a stereospecific addition of CO and hydrogen. PMID:21504208

  20. Regioselective Hydroformylation of Allylic Alcohols

    Science.gov (United States)

    Lightburn, Thomas E.; De Paolis, Omar A.; Cheng, Ka H.; Tan, Kian L.

    2011-01-01

    A highly regioselective hydroformylation of allylic alcohols is reported towards the synthesis of β-hydroxy-acid and aldehyde products. The selectivity is achieved through the use of a ligand that reversibly binds to alcohols in situ, allowing for a directed hydroformylation to occur. The application to trisubstituted olefins was also demonstrated, which yields a single diastereomer product consistent with a stereospecific addition of CO and hydrogen. PMID:21504208

  1. Interplay of metal-allyl and metal-metal bonding in dimolybdenum allyl complexes.

    Energy Technology Data Exchange (ETDEWEB)

    Trovitch, R. J.; John, K. D.; Martin, R. L.; Obrey, S. J.; Sattelberger, A. P.; Scott, B. L.; Baker, R. T.; LANL; Univ. of Ottawa

    2009-01-01

    Addition of PMe{sub 3} to Mo{sub 2}(allyl){sub 4} afforded Mo{sub 2}(allyl){sub 4}(PMe{sub 3}){sub 2}, in which two of the allyl groups adopt an unprecedented {mu}{sub 2}-{eta}{sup 1}, {eta}{sup 3} bonding mode; theoretical studies elucidate the roles of the {sigma}- and {pi}-donor ligands in the interplay of metal-allyl and metal-metal bonding.

  2. Synthesis and uranyl ion adsorption study of cross-linked allyl propionate-maleic anhydride-styrene terpolymer

    OpenAIRE

    AKPEROV, Elchin; MAHARRAMOV, Abel; AKPEROV, Oktay

    2010-01-01

    Allyl propionate-maleic anhydride-styren terpolymer has been modified with glycerin in order to prepare a new cross-linked functional polymer sorbent. The synthesized cross-linked polymer sorbent has a network structure and contains carboxylic acid, carbonyl, hydroxy, and ester groups, all of which are capable ofinteracting with metal ions. The sorption behavior of UO22+ ions under optimum sorption conditions was determined. The sorption properties of the sorbent were determined unde...

  3. Rhodium(III)-catalyzed C-C coupling of 7-azaindoles with vinyl acetates and allyl acetates.

    Science.gov (United States)

    Li, Shuai-Shuai; Wang, Cheng-Qi; Lin, Hui; Zhang, Xiao-Mei; Dong, Lin

    2016-01-01

    The behaviour of electron-rich alkenes with 7-azaindoles in rhodium(III)-catalyzed C-H activation is investigated. Various substituted vinyl acetates and allyl acetates as coupling partners reacted smoothly providing a wide variety of 7-azaindole derivatives, and the selectivity of the coupling reaction is alkene-dependent. In addition, the approaches of rhodium(III)-catalyzed dehydrogenative Heck-type reaction (DHR) and carbonylation reaction were quite novel and simple. PMID:26553424

  4. An Efficient Protocol for the Palladium-Catalyzed Asymmetric Decarboxylative Allylic Alkylation Using Low Palladium Concentrations and a Palladium(II) Precatalyst

    OpenAIRE

    Marziale, Alexander N.; Duquette, Douglas C.; Craig, Robert A.; Kim, Kelly E.; Liniger, Marc; Numajiri, Yoshitaka; Stoltz, Brian M.

    2015-01-01

    Enantioselective catalytic allylic alkylation for the synthesis of 2-alkyl-2-allylcycloalkanones and 3,3-disubstituted pyrrolidinones, piperidinones and piperazinones has been previously reported by our laboratory. The efficient construction of chiral all-carbon quaternary centers by allylic alkylation was previously achieved with a catalyst derived in situ from zero-valent palladium sources and chiral phosphinooxazoline (PHOX) ligands. We now report an improved reaction protocol with broad a...

  5. An Efficient Protocol for the Palladium-catalyzed Asymmetric Decarboxylative Allylic Alkylation Using Low Palladium Concentrations and a Palladium(II) Precatalyst

    OpenAIRE

    Marziale, Alexander N.; Duquette, Douglas C.; Craig, Robert A.; Kim, Kelly E.; Liniger, Marc; Numajiri, Yoshitaka; Stoltz, Brian M.

    2015-01-01

    Enantioselective catalytic allylic alkylation for the synthesis of 2-alkyl-2-allylcycloalkanones and 3,3-disubstituted pyrrolidinones, piperidinones and piperazinones has been previously reported by our laboratory. The efficient construction of chiral all-carbon quaternary centers by allylic alkylation was previously achieved with a catalyst derived in situ from zero valent palladium sources and chiral phosphinooxazoline (PHOX) ligands. We now report an improved reaction protocol with broad a...

  6. Synthesis of diversely substituted 2-(furan-3-yl)acetates from allenols through cascade carbonylations.

    Science.gov (United States)

    He, Yan; Zhang, Xinying; Fan, Xuesen

    2015-11-21

    Novel synthesis of diversely substituted 2-(furan-3-yl)acetates via palladium-catalyzed one-pot multi-component reactions of allenols, aryl iodides, alcohols, and carbon monoxide has been developed. Notably, the formation of the title compounds features a cascade process combining carbonylation of aryl iodide, alcohoxyl carbonylation of the in situ formed allyl palladium complex, and intramolecular condensation of the α-hydroxyl enone intermediate. Moreover, the 2-(furan-3-yl)acetates obtained herein were found to be ready intermediates for the construction of the biologically significant naphtho[1,2-b]furan-5-ol scaffold. PMID:26399394

  7. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu

    2013-05-17

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  8. N-Allylation of amines with allyl acetates using chitosan-immobilized palladium

    Science.gov (United States)

    A simple procedure for N-Allylation of allyl Acetates has been developed using a biodegradable and easily recyclable heterogeneous chitosan-supported palladium catalyst. The general methodology, applicable to wide range of substrates, has sustainable features that include a ligan...

  9. Compound list: allyl alcohol [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available allyl alcohol AA 00010 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/allyl_alcohol....Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/allyl_alcohol...dbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/allyl_alcohol.Rat.in_vivo.Liver.Repeat.zip ftp:/.../ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/allyl_alcohol.Rat.in_vivo.Kidney....Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Repeat/allyl_alcohol.Rat.in_vivo.Kidney.Repeat.zip ...

  10. From a Sequential to a Concurrent Reaction in Aqueous Medium: Ruthenium-Catalyzed Allylic Alcohol Isomerization and Asymmetric Bioreduction.

    Science.gov (United States)

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Liardo, Elisa; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2016-07-18

    The ruthenium-catalyzed redox isomerization of allylic alcohols was successfully coupled with the enantioselective enzymatic ketone reduction (mediated by KREDs) in a concurrent process in aqueous medium. The overall transformation, formally the asymmetric reduction of allylic alcohols, took place with excellent conversions and enantioselectivities, under mild reaction conditions, employing commercially and readily available catalytic systems, and without external coenzymes or cofactors. Optimization resulted in a multistep approach and a genuine cascade reaction where the metal catalyst and biocatalyst coexist from the beginning. PMID:27258838

  11. Cobalt-Catalyzed Cross-Coupling of Grignards with Allylic and Vinylic Bromides: Use of Sarcosine as a Natural Ligand.

    Science.gov (United States)

    Frlan, Rok; Sova, Matej; Gobec, Stanislav; Stavber, Gaj; Časar, Zdenko

    2015-08-01

    Sarcosine was discovered to be an excellent ligand for cobalt-catalyzed carbon-carbon cross-coupling of Grignard reagents with allylic and vinylic bromides. The Co(II)/sarcosine catalytic system is shown to perform efficiently when phenyl and benzyl Grignards are coupled with alkenyl bromides. Notably, previously unachievable Co-catalyzed coupling of allylic bromides with Grignards to linearly coupled α-products was also realized with Co(II)/sarcosine catalyst. This method was used for efficient preparation of the key intermediate in an alternative synthesis of the antihyperglycemic drug sitagliptin. PMID:26158563

  12. Transition‐Metal‐Free Borylation of Allylic and Propargylic Alcohols

    Science.gov (United States)

    Miralles, Núria; Alam, Rauful

    2016-01-01

    Abstract The base‐catalyzed allylic borylation of tertiary allylic alcohols allows the synthesis of 1,1‐disubstituted allyl boronates, in moderate to high yield. The unexpected tandem performance of the Lewis acid–base adduct, [Hbase]+[MeO‐B2pin2]− favored the formation of 1,2,3‐triborylated species from the tertiary allylic alcohols and 1‐propargylic cyclohexanol at 90 °C. PMID:26934578

  13. Transition-Metal-Free Borylation of Allylic and Propargylic Alcohols.

    Science.gov (United States)

    Miralles, Núria; Alam, Rauful; Szabó, Kálmán J; Fernández, Elena

    2016-03-18

    The base-catalyzed allylic borylation of tertiary allylic alcohols allows the synthesis of 1,1-disubstituted allyl boronates, in moderate to high yield. The unexpected tandem performance of the Lewis acid-base adduct, [Hbase](+) [MeO-B2 pin2 ](-) favored the formation of 1,2,3-triborylated species from the tertiary allylic alcohols and 1-propargylic cyclohexanol at 90 °C. PMID:26934578

  14. Catalytic enantioselective reductions and allylations of prochiral ketones

    CERN Document Server

    Cunningham, A

    2002-01-01

    The use of LiGaH sub 4 in combination with the S,O-chelate 2-hydroxy-2'-mercapto-1,1'-binaphthyl (monothiobinaphthol, MTBH sub 2), forms an active catalyst (2 mol %) for the asymmetric reduction of prochiral ketones, when using catecholborane as the hydride source. This catalyst has successfully been applied to the enantioselective reduction of aryl/n-alkyl ketones, providing the chiral sec-alcohols in yields of 82 - 96% and with enantiomeric excess values of 59 - 93%. Alkyl/methyl ketones are reduced in yields of 72 - 93% and in 46 - 79% enantiomeric excess. Enantioface differentiation is on the basis of the steric requirements of the ketone substituents. The X-ray structure of the pre-catalyst, Li(THF) sub 3 Ga(MTB) sub 2 has been determined and in solution is in equilibrium with a dimeric species of constitution Li sub 2 Ga sub 2 (MTB) sub 4. An indium analogue whose X-ray structure was determined as Li sub 2 (THF) sub 5 lnCI(MTB) sub 2 has also been prepared. The indium- based catalyst does not form an en...

  15. Enantioselective synthesis of fluorinated branched allylic compounds via Ir-catalyzed allylations of functionalized fluorinated methylene derivatives.

    Science.gov (United States)

    Zhang, Hongbo; Chen, Jiteng; Zhao, Xiao-Ming

    2016-08-14

    Enantioselective introduction of the functionalized monofluorinated methylenes into the allylic fragment under Ir catalysis has been realized, which gave the fluorinated branched allyl products in good to high yields with excellent regio- and enantioselectivities. PMID:27383920

  16. Tether-directed synthesis of highly substituted oxasilacycles via an intramolecular allylation employing allylsilanes

    Directory of Open Access Journals (Sweden)

    Cox Liam R

    2007-02-01

    Full Text Available Abstract Background Using a silyl tether to unite an aldehyde electrophile and allylsilane nucleophile into a single molecule allows a subsequent Lewis-acid-mediated allylation to proceed in an intramolecular sense and therefore receive all the benefits associated with such processes. However, with the ability to cleave the tether post allylation, a product that is the result of a net intermolecular reaction can be obtained. In the present study, four diastereoisomeric β-silyloxy-α-methyl aldehydes, which contain an allylsilane tethered through the β-carbinol centre, have been prepared, in order to probe how the relative configuration of the two stereogenic centres affects the efficiency and selectivity of the intramolecular allylation. Results Syn-aldehydes, syn-4a and syn-4b, both react poorly, affording all four possible diastereoisomeric oxasilacycle products. In contrast, the anti aldehydes anti-4a and anti-4b react analogously to substrates that lack substitution at the α-site, affording only two of the four possible allylation products. Conclusion The outcome of the reaction with anti-aldehydes is in accord with reaction proceeding through a chair-like transition state (T.S.. In these systems, the sense of 1,3-stereoinduction can be rationalised by the aldehyde electrophile adopting a pseudoaxial orientation, which will minimise dipole-dipole interactions in the T.S. The 1,4-stereoinduction in these substrates is modest and seems to be modulated by the R substituent in the starting material. In the case of the syn-substrates, cyclisation through a chair T.S. is unlikely as this would require the methyl substituent α to the reacting carbonyl group to adopt an unfavourable pseudoaxial position. It is therefore proposed that these substrates react through poorly-defined T.S.s and consequently exhibit essentially no stereoselectivity.

  17. Relationships of isomerization of the allylic type

    Energy Technology Data Exchange (ETDEWEB)

    Levanova, S.V.; Yanshevskaya, I.V.; Asatryan, E.M.; Saakyan, N.L.; Kostand' yan, V.A.; Malkhasyan, A.Ts.; Martirosyan, G.T.

    1986-10-10

    The authors report the results of thermodynamic and kinetic studies of allylic rearrangement of dichlorobutenes. Allylic rearrangements were studied in a thermo-stated glass flask fitted with a stirrer, with the use of various (with respect to total DCB) original mixtures of the three isomers. A solution of copper naphthenate in solvent naphtha, containing 5% Cu, was used as the catalyst. The reaction mixture was analyzed periodically with the aid of the LKhM-8MD chromatograph, using a column 3000 x 3 mm packed with 5% of Apiezone and 5% of polyethylene glycol on Chromosorb W. The operating temperature was 120/sup 0/.

  18. Allylic Nitro Compounds as Nitrite Donors

    OpenAIRE

    Chakrapani, Harinath; Gorczynski, Michael J.; King, S Bruce

    2006-01-01

    Allylic nitro compounds were synthesized and evaluated as organic sources of nitrite and nitric oxide. Unactivated allylic nitro compounds do not spontaneously release nitrite and nucleophile promoted nitrite release is slow. However, 2-(nitromethyl)-cyclohex-1-ene-3-one spontaneously dissociates in buffer (pH = 7.4) to release nitrite with a kobs = 1.6 × 10−5 s−1. In the presence of L-cysteine, this compound rapidly yields nitrite and reacts with hemoglobin similarly to sodium nitrite. Struc...

  19. Validation of protein carbonyl measurement

    DEFF Research Database (Denmark)

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina; Willetts, Rachel; Korkmaz, Ayhan; Atalay, Mustafa; Weber, Daniela; Grune, Tilman; Borsa, Claudia; Gradinaru, Daniela; Chand Bollineni, Ravi; Fedorova, Maria; Griffiths, Helen R

    Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial...... protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5min of UV irradiation irrespective of method used. After irradiation for 15min, less oxidation was detected by half of the laboratories than after 5min...

  20. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  1. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids

    Science.gov (United States)

    Sidera, Mireia; Fletcher, Stephen P.

    2015-11-01

    Csp2-Csp2 cross-coupling reactions between arylboronic acid and aryl halides are widely used in both academia and industry and are strategically important in the development of new agrochemicals and pharmaceuticals. Csp2-Csp3 cross-coupling reactions have been developed, but enantioselective variations are rare and simply retaining the stereochemistry is a problem. Here we report a highly enantioselective Csp2-Csp3 bond-forming method that couples arylboronic acids to racemic allyl chlorides. Both enantiomers of a cyclic chloride are converted into a single enantiomer of product via a dynamic kinetic asymmetric transformation. This Rh-catalysed method uses readily available and inexpensive building blocks and is mild and broadly applicable. For electron-deficient, electron-rich or ortho-substituted boronic acids better results are obtained with racemic allyl bromides. Oxygen substitution in the allyl halide is tolerated and the products can be functionalized to provide diverse building blocks. The approach fills a significant gap in the methods for catalytic asymmetric synthesis.

  2. SYNTHESIS OF ALLYL PHENYL ETHER AND CLAISEN REARRANGEMENT

    Directory of Open Access Journals (Sweden)

    Gagik Torosyan

    2011-12-01

    Full Text Available It has been established the possibility for phenol allylation on natural zeolites and them analogs. Here is demonstrated the synthesis of allyl phenol, which has wide industrial applications. The offered method in comparison with the traditional methods has more advantages – higher selectivity, smaller material and power resources consumption. It has been obtained the mixture of allylating phenols (30% in general with allyl phenyl ether (1 with 80% yields. At 600 K is obtained allylphenyl ether, at 700 K beginning the formation of allyl phenols, which is the result of direct C-allylation of the aromatic ring. It has been investigated the possibility of Claisen rearrangement in the same conditions. All of that are established by gas-liquid chromatography and liquid chromatography data.

  3. Mechanistic Investigation of Palladium–Catalyzed Allylic C–H Activation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Jensen, Thomas; Rodríguez-Rodríguez, Sergio;

    2013-01-01

    The mechanism for the palladium–catalyzed allylic C–H activation was investigated using a combination of experimental and theoretical methods. A Hammett study revealed a buildup of a partial negative charge in the rate-determining step, while determination of the kinetic isotope effect (KIE...... acetate acts as a base in an intramolecular fashion during the C–H activation step. The re-oxidation of palladium was found to reach a similar energy level as that of the C–H activation. Calculations of turnover frequencies (TOF) for the entire catalytic cycle for the C–H alkylation were used to acquire a...

  4. Iron(III)-catalysed carbonyl-olefin metathesis.

    Science.gov (United States)

    Ludwig, Jacob R; Zimmerman, Paul M; Gianino, Joseph B; Schindler, Corinna S

    2016-05-19

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis. PMID:27120158

  5. Silicon-directed rhenium-catalyzed allylic carbaminations and oxidative fragmentations of γ-silyl allylic alcohols.

    Science.gov (United States)

    Chavhan, Sanjay W; Cook, Matthew J

    2014-04-22

    A highly regioselective allylic substitution of β-silyl allylic alcohols has been achieved that provides the branched isomer as a single product. This high level of regiocontrol is achieved through the use of a vinyl silane group that can perform a Hiyama coupling providing 1,3-disubstituted allylic amines. An unusual oxidative fragmentation product was also observed at elevated temperature that appears to proceed by a Fleming-Tamao-type oxidation-elimination pathway. PMID:24677380

  6. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...

  7. Palladium-Catalyzed Decarbonylative Dehydration for the Synthesis of α-Vinyl Carbonyl Compounds and Total Synthesis of (-)-Aspewentins A, B, and C.

    Science.gov (United States)

    Liu, Yiyang; Virgil, Scott C; Grubbs, Robert H; Stoltz, Brian M

    2015-09-28

    The direct α-vinylation of carbonyl compounds to form a quaternary stereocenter is a challenging transformation. It was discovered that δ-oxocarboxylic acids can serve as masked vinyl compounds and be unveiled by palladium-catalyzed decarbonylative dehydration. The carboxylic acids are readily available through enantioselective acrylate addition or asymmetric allylic alkylation. A variety of α-vinyl quaternary carbonyl compounds are obtained in good yields, and an application in the first enantioselective total synthesis of (-)-aspewentins A, B, and C is demonstrated. PMID:26230413

  8. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.

    Science.gov (United States)

    Wu, Xiao-Feng; Fang, Xianjie; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2014-04-15

    Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal

  9. Catalytic Performance of Supported Liquid Phase Catalyst in Oxidative Gas Phase Carbonylation of Methanol to Dimethyl Carbonate%负载液膜催化剂催化甲醇气相氧化羰基化合成碳酸二甲酯反应的性能

    Institute of Scientific and Technical Information of China (English)

    丁晓墅; 岳川; 王淑芳; 赵新强; 王延吉

    2014-01-01

    制备了新型负载液膜催化剂 PdCl2‐CuCl2‐KOAc‐EG/AC ,并用于甲醇气相氧化羰基化直接合成碳酸二甲酯(DMC),考察了二甘醇、三甘醇和四甘醇及其混合物等不同液膜相,以及制备方法对所制备催化剂在合成DMC反应中催化性能的影响。结果表明,二甘醇作为液膜相,采用高温加压浸渍法制备的催化剂的DMC空时收率比固载型催化剂显著提高。在反应温度160℃、反应压力0.3 MPa、n(CH3 OH)∶ n(CO)∶ n(O2)=3.6∶2.3∶1、原料气体积空速7100 h-1条件下,DMC空时收率最高可达921 g/(Lcat・h),并且催化剂稳定性也有较大提高。高温加压浸渍法有利于液膜相分散于活性炭孔道中,并保持相对稳定。液膜相的黏度和分子大小是影响负载液膜催化剂反应性能的主要因素。%The supported liquid phase catalyst was prepared and used in catalytic synthesized dimethyl carbonate(DMC) from gas‐phase oxidative carbonylation of methanol .Diethylene glycol , triethylene glycol and tetraethylene glycol were used as the liquid phases for the supported liquid phase catalyst PdCl2‐CuCl2‐KOAc‐EG/AC ,and the influences of the catalyst preparation conditions on its catalytic performance in synthesis of DMC were investigated .The results showed that PdCl2‐CuCl2‐KOAc‐EG/AC catalyst had the higher yield of DMC than the supported catalyst when diethylene glycol was used as the liquid phase and prepared with high temperature and pressure impregnation .The yield of DMC was reached 921 g/(Lcat・h) at a reaction temperature of 160℃ , reaction pressure of 0.3 MPa ,n(CH3OH)∶ n(CO)∶ n(O2 )=3.6∶2.3∶1 and gas hourly space velocity of 7100 h-1 ,simultaneously ,the catalytic stability of the catalyst was enhanced .Because the viscosity of the liquid phase decreased and the pressure increased in high temperature and pressure impregnation ,the liquid phase was dispersed evenly in

  10. Direct Vapor Phase Carbonylation of Methanol over NiCl2/C Catalyst

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ Introduction The carbonylation of alcohols via homogenous catalysis is important in manufacturing acetic acid and higher carboxylic acids and their esters[1,2]. The main route to produce acetic acid is to make methanol carbonylated by means of the Monsanto and BP process in which a homogeneous rhodium catalyst is used. Although the homogeneous carbonylation of methanol is a highly selective process, it is affected by the disadvantages associated with a highly corrosive reaction medium due to the use of methyl iodide as the promoter, and the difficulty of the product separation[3]. The use of a heterogeneous catalyst seems very interesting and attractive to us[4], especially the direct vapor phase carbonylation of methanol without a halide promoter is of considerable importance and is strong incentive economically. There has, however, been very little success in finding either heterogeneous or homogeneous catalysts that can catalyze the reaction effectively without the addition of a promoter[5,6]. According to the known carbonylation mechanism[7,8], the methyl iodide directly carbonylates with CO to from MeCOI which interacts with methanol(MeOH) to produce methyl acetate(MeCOOMe) and HI, and then MeOH reacts with HI to from CH3I. In fact, this carbonylation reaction is the indirect catalytic carbonylation of methanol[9]. In this work, a novel catalyst for the direct vapor phase carbonylation of methanol without the addition of any halide in the feed as a promoter was investigated. Compared to the known liquid phase methanol carbonylation process, some advantages of this vapor phase reaction are as follows:

  11. Synthesis of an Epoxide Carbonylation Catalyst: Exploration of Contemporary Chemistry for Advanced Undergraduates

    Science.gov (United States)

    Getzler, Yutan D. Y. L.; Schmidt, Joseph A. R.; Coates, Geoffrey W.

    2005-01-01

    A class of highly active, well-defined compounds for the catalytic carbonylation of epoxides and aziridines to beta-lactones and beta-lactams are introduced. The synthesis of one of the catalysts involves a simple imine condensation to form the ligand followed by air-sensitive metalation and salt metathesis steps.

  12. Radical carbonylations using a continuous microflow system

    Directory of Open Access Journals (Sweden)

    Takahide Fukuyama

    2009-07-01

    Full Text Available Radical-based carbonylation reactions of alkyl halides were conducted in a microflow reactor under pressurized carbon monoxide gas. Good to excellent yields of carbonylated products were obtained via radical formylation, carbonylative cyclization and three-component coupling reactions, using tributyltin hydride or TTMSS as a radical mediator.

  13. Chiral allyl silane additions to chiral α-substituted aldehydes

    International Nuclear Information System (INIS)

    Chiral allyl silane 3 reacted with chiral α-methyl-β-siloxy-aldehydes to afford the corresponding 1,4-syn-products with good diastereo-selectivities independent of the absolute stereochemistry of these aldehydes. The best selectivities are observed when the reactions are carried out by trans metallation of the allyl silane 3 using Tin (IV) Chloride in CH2 CL2 at -78 deg C, before addition of the aldehydes. (author)

  14. Zinc Mediated Tandem Fragmentation-Allylation of Methyl 5-Iodopentofuranosides

    DEFF Research Database (Denmark)

    Hyldtoft, Lene; Madsen, Robert

    1999-01-01

    In the presence of zinc and allyl bromide methyl 5-iodopentofuranosides undergo a tandem fragmentation alkylation to give functionalized dienes. These can undergo ring-closing olefin metathesis to produce cyclohexenes which on dihydroxylation give quercitols.......In the presence of zinc and allyl bromide methyl 5-iodopentofuranosides undergo a tandem fragmentation alkylation to give functionalized dienes. These can undergo ring-closing olefin metathesis to produce cyclohexenes which on dihydroxylation give quercitols....

  15. Biotransformation of sesquiterpenoids having α,β-unsaturated carbonyl groups with cultured plant cells of Marchantia polymorpha

    OpenAIRE

    Hegazy, Mohamed-Elamir F.; Kuwata, Chika; Matsushima, Akihito; Ahmed, Ahmed A.; Hirata, Toshifumi

    2006-01-01

    The biotransformation of sesquiterpenoids having an α,β-unsaturated carbonyl group, such as -santonin (1), lancerodiol p-hydroxybenzoate (2), 8,9-dehydronootkatone (3) and nootkatone (4), with cultured suspension cells of Marchantia polymorpha was investigated. It was found that the C-C double bond of 1 and 2 was hydrogenated to give 1,2-dihydro--santonin (5) and 3,4-dihydrolancerodiol p-hydroxybenzoate (6), respectively, while the allylic position of the C-C double bond of 3 and 4 was hydr...

  16. A green synthesis of α,β-unsaturated carbonyl compounds from glyceraldehyde acetonide

    Directory of Open Access Journals (Sweden)

    Cláudia O. Veloso

    2011-01-01

    Full Text Available The catalytic behavior of Cs-exchanged and Cs-impregnated zeolites (X and Y was studied using the Knoevenagel condensation between glyceraldehyde acetonide and ethyl acetoacetate in order to produce the corresponding α,β-unsaturated carbonyl compound that is an important intermediate for fine chemicals. The influence of reaction temperature, type of zeolite, and basicity of the sites on the catalytic behavior of the samples was evaluated. All zeolites were active for the studied reaction. The formation of the main condensation product was favored at lower reaction temperatures. Products of further condensations were also observed especially for samples that were only dried before catalytic test.

  17. A Broadly Applicable NHC–Cu-Catalyzed Approach for Efficient, Site-, and Enantioselective Coupling of Readily Accessible (Pinacolato)alkenylboron Compounds to Allylic Phosphates and Applications to Natural Product Synthesis

    OpenAIRE

    Gao, Fang; Carr, James L.; Hoveyda, Amir H.

    2014-01-01

    A set of protocols for catalytic enantioselective allylic substitution (EAS) reactions that allow for additions of alkenyl units to readily accessible allylic electrophiles is disclosed. Transformations afford 1,4-dienes that contain a tertiary carbon stereogenic site and are promoted by 1.0–5.0 mol % of a copper complex of an N-heterocyclic carbene (NHC). Aryl- as well as alkyl-substituted electrophiles bearing a di- or trisubstituted alkene may be employed. Reactions can involve a variety o...

  18. Improvement on stability of square planar rhodium (Ⅰ) complexes for carbonylation of methanol to acetic acid

    Institute of Scientific and Technical Information of China (English)

    蒋华; 潘平来; 袁国卿; 陈新滋

    1999-01-01

    A series of square planar cis-dicarbonyl polymer coordinated rhodium complexes with uncoordinated donors near the central rhodium atoms for carbonylation of methanol to acetic acid are reported. Data of IR, XPS and thermal analysis show that these complexes are very stable. The intramolecular substitution reaction is proposed for their high stability. These complexes show excellent catalytic activity, selectivity and less erosion to the equipment for the methanol carbonylation to acetic acid. The distillation process may be used instead of flash vaporization in the manufacture of acetic acid, which reduces the investment on the equipment.

  19. Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Román-Leshkov, Yuriy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Chemical Engineering; Davis, Mark E. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Chemical Engineering

    2011-09-28

    Current interest in reacting carbonyl-containing molecules in aqueous media is primarily due to the growing emphasis on conversion of biomass to fuels and chemicals. Recently, solid Lewis acids have been shown to perform catalytic reactions with carbonyl-containing molecules such as sugars in aqueous media. Here, catalysis mediated by Lewis acids is briefly discussed, Lewis acid solids that perform catalysis in aqueous media are then described, and the review is concluded with a few comments on the outlook for the future.

  20. Allyl-silica Hybrid Monoliths For Chromatographic Application

    Science.gov (United States)

    Guo, Wenjuan

    Column technology continues to be the most investigated topics in the separation world, since the column is the place where the chromatographic separation happens, making it the heart of the separation system. Allyl-silica hybrid monolithic material has been exploited as support material and potential stationary phases for liquid chromatography; the stationary phase anchored to the silica surface by Si-C bond, which is more pH stable than traditional stationary phase. First, nuclear magnetic resonance spectroscopy has been used to study the sol in the synthesis of allyl-silica hybrid monoliths. Allyl-trimethoxysilane (allyl-TrMOS), dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) have been served as co-precursors in the sol-gel synthesis of organo-silica hybrid monolithic columns for liquid chromatography (LC). 29Si nuclear magnetic resonance (NMR) and 1H NMR spectroscopy were employed to monitor reaction profiles for the acid-catalyzed hydrolysis and initial condensation reactions of the individual precursor and the hybrid system. 29Si-NMR has also been used to identify different silane species formed during the reactions. The overall hydrolysis rate has been found to follow the trend DMDMOS > allyl-TrMOS > TMOS, if each precursor is reacted individually (homo-polymerization). Precursors show different hydrolysis rate when reacted together in the hybrid system than they are reacted individually. Cross-condensation products of TMOS and DMDMOS (QD) arise about 10 minutes of initiation of the reaction. The allyl-silica monolithic columns for capillary liquid chromatography can only be prepared in capillaries with 50 im internal diameter with acceptable performance. One of the most prominent problems related to the synthesis of silica monolithic structures is the volume shrinkage. The synthesis of allylfunctionalized silica hybrid monolithic structures has been studied in an attempt to reduce the volume shrinkage during aging, drying and heat treatment

  1. Scalable and sustainable electrochemical allylic C–H oxidation

    Science.gov (United States)

    Horn, Evan J.; Rosen, Brandon R.; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-05-01

    New methods and strategies for the direct functionalization of C–H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C–H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”. Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C–H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C–H oxidation (demonstrated on 100 grams), enabling the adoption of this C–H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  2. Scalable and sustainable electrochemical allylic C-H oxidation.

    Science.gov (United States)

    Horn, Evan J; Rosen, Brandon R; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D; Baran, Phil S

    2016-05-01

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as "classics". Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact. PMID:27096371

  3. Kinetics of the Double Carbonylation of Benzylchloride

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is a multi-phase-catalyzed reaction to produce calcium phenylpyruvate by double carbonylation of benzylchloride. Based on the analysis of the reaction mechanism, a kinetic model of the carbonylation reaction was obtained. The model was verified through experiments in which the diffusion effect was neglected with the appropriate operation manner. But it is inevitable that the carbonylation process is controlled by diffusion as the autoclave scaling up.

  4. A convenient procedure for the synthesis of allyl and benzyl ethers from alcohols and phenols

    Indian Academy of Sciences (India)

    H Surya Prakash Rao; S P Senthilkumar

    2001-06-01

    Allyl and benzyl ethers of alcohols can be prepared conveniently and in high yield with allyl and benzyl bromide in the presence of solid potassium hydroxide without use of any solvent. Phenols can be converted to allyl ethers but are inert to benzylation under above conditions.

  5. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  6. Direct activation of allylic alcohols in palladium catalyzed coupling reactions

    OpenAIRE

    Gümrükçü, Y.

    2014-01-01

    The direct use of allylic alcohols in substitution reactions without pre-activation of the hydroxyl-group into a better leaving group or the use of additional stoichiometric in situ activators remains challenging due to the poor leaving group ability of the hydroxyl-group. Hence, it is important to develop new methods to activate (bio-mass derived) allyl-alcohols, which allow ‘green’ chemical processes for a broad substrate range. This may have a considerable impact on the methodology for fin...

  7. Modular, Catalytic Enantioselective Construction of Quaternary Carbon Stereocenters by Sequential Cross-Coupling Reactions.

    Science.gov (United States)

    Potter, Bowman; Edelstein, Emma K; Morken, James P

    2016-07-01

    The catalytic Suzuki-Miyaura cross-coupling with chiral γ,γ-disubstituted allylboronates in the presence of RuPhos ligand occurs with high regioselectivity and enantiospecificity, furnishing nonracemic compounds with quaternary centers. Mechanistic experiments suggest that the reaction occurs by transmetalation with allyl migration, followed by rapid reductive elimination. PMID:27310927

  8. Highly Enantioselective Formation of α-Allyl-α-Arylcyclopentanones via Pd-Catalysed Decarboxylative Asymmetric Allylic Alkylation.

    Science.gov (United States)

    Akula, Ramulu; Doran, Robert; Guiry, Patrick J

    2016-07-11

    A highly enantioselective Pd-catalysed decarboxylative asymmetric allylic alkylation of cyclopentanone derived α-aryl-β-keto esters employing the (R,R)-ANDEN-phenyl Trost ligand has been developed. The product (S)-α-allyl-α-arylcyclopentanones were obtained in excellent yields and enantioselectivities (up to >99.9 % ee). This represents one of the most highly enantioselective formations of an all-carbon quaternary stereogenic center reported to date. This reaction was demonstrated on a 4.0 mmol scale without any deterioration of enantioselectivity and was exploited as the key enantioselective transformation in an asymmetric formal synthesis of the natural product (+)-tanikolide. PMID:27191198

  9. Surface decorated platinum carbonyl clusters

    Science.gov (United States)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  10. Contribution to radiation-chemically catalyzed hydroformylation of butenes in the presence of metal carbonyls

    International Nuclear Information System (INIS)

    In this paper a study is presented of the influence of gamma-radiation on the catalytic hydroformylation of olefines. As model olefines buten-1 and buten-2 as well as their mixtures have been used together with the catalysts di-cobalt octacarbonyle and rhodium (I) tristri phenyl-phosphine carbonyle hydride. In addition the catalytic activity of the VI. side group carbonyles Cr(CO)6, Mo(CO)6 and W(CO)6 has been studied under radiation chemical conditions. For this purpose a mixture of olefine, solvent (cyclo hexane) and calalyst has been pressurized and processed in a mixing autoklave together with a Co and H2 (1:1) mixture, variing the reaction variables within certain limits. (orig.)

  11. Iodine-catalyzed addition of 2-mercaptoethanol to chalcone derivatives: Synthesis of the novel β-mercapto carbonyl compounds

    OpenAIRE

    Gürkan Yerli; Hayreddin Gezegen; Mustafa Ceylan

    2012-01-01

    In this study, a series of novel β-mercapto carbonyl derivatives (3-(2-hydroxyethylthio)-1,3-diarylpropan-1-one) (5a-i) were prepared by addition of 2-mercaptoethanol (4) to chalcones (3a-i) in the presence of catalytic amount of iodine (10 mol %) in CH 2Cl 2.

  12. Iodine-catalyzed addition of 2-mercaptoethanol to chalcone derivatives: Synthesis of the novel β-mercapto carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Gürkan Yerli

    2012-01-01

    Full Text Available In this study, a series of novel β-mercapto carbonyl derivatives (3-(2-hydroxyethylthio-1,3-diarylpropan-1-one (5a-i were prepared by addition of 2-mercaptoethanol (4 to chalcones (3a-i in the presence of catalytic amount of iodine (10 mol % in CH 2Cl 2.

  13. Sulfonium-based Ionic Liquids Incorporating the Allyl Functionality

    Directory of Open Access Journals (Sweden)

    Paul J. Dyson

    2007-04-01

    Full Text Available A series of sulfonium halides bearing allyl groups have been prepared andcharacterized. Anion metathesis with Li[Tf2N] and Ag[N(CN2] resulted in sulfonium-basedionic liquids which exhibit low viscosities at room temperature. The solid state structure ofone of the halide salts was determined by single crystal X-ray diffraction.

  14. Trifluoromethylation of Carbonyl Compounds with Sodium Trifluoroacetate

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In the presence of copper (Ⅰ) halide as catalyst, a variety of carbonyl compounds could be trifluoromethylated with sodium trifluoroacetate to give the corresponding alcohols in moderate to high yields.

  15. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes.

    Science.gov (United States)

    Koschker, Philipp; Breit, Bernhard

    2016-08-16

    We present a new and efficient strategy for the atom-economic transformation of both alkynes and allenes to allylic functionalized structures via a Rh-catalyzed isomerization/addition reaction which has been developed in our working group. Our methodology thus grants access to an important structural class valued in modern organic chemistry for both its versatility for further functionalization and the potential for asymmetric synthesis with the construction of a new stereogenic center. This new methodology, inspired by mechanistic investigations by Werner in the late 1980s and based on preliminary work by Yamamoto and Trost, offers an attractive alternative to other established methods for allylic functionalization such as allylic substitution or allylic oxidation. The main advantage of our methodology consists of the inherent atom economy in comparison to allylic oxidation or substitution, which both produce stoichiometric amounts of waste and, in case of the substitution reaction, require prefunctionalization of the starting material. Starting out with the discovery of a highly branched-selective coupling reaction of carboxylic acids with terminal alkynes using a Rh(I)/DPEphos complex as the catalyst system, over the past 5 years we were able to continuously expand upon this chemistry, introducing various (pro)nucleophiles for the selective C-O, C-S, C-N, and C-C functionalization of both alkynes and the double-bond isomeric allenes by choosing the appropriate rhodium/bidentate phosphine catalyst. Thus, valuable compounds such as branched allylic ethers, sulfones, amines, or γ,δ-unsaturated ketones were successfully synthesized in high yields and with a broad substrate scope. Beyond the branched selectivity inherent to rhodium, many of the presented methodologies display additional degrees of selectivity in regard to regio-, diastereo-, and enantioselective transformations, with one example even proceeding via a dynamic kinetic resolution. Many advances

  16. Acrolein induces selective protein carbonylation in synaptosomes

    OpenAIRE

    C.F. Mello; R. Sultana; Piroddi, M.; J. Cai; PIERCE, W. M; Klein, J.B.; D. A. Butterfield

    2007-01-01

    Acrolein, the most reactive of the α,β-unsaturated aldehydes, is endogenously produced by lipid peroxidation, and has been found increased in the brain of patients with Alzheimer's disease. Although it is known that acrolein increases total protein carbonylation and impairs the function of selected proteins, no study has addressed which proteins are selectively carbonylated by this aldehyde. In this study we investigated the effect of increasing concentrations of acrolein (0, 0.005, 0.05, 0.5...

  17. Palladium-catalyzed oxidative carbonylation reactions.

    Science.gov (United States)

    Wu, Xiao-Feng; Neumann, Helfried; Beller, Matthias

    2013-02-01

    Palladium-catalyzed coupling reactions have become a powerful tool for advanced organic synthesis. This type of reaction is of significant value for the preparation of pharmaceuticals, agrochemicals, as well as advanced materials. Both, academic as well as industrial laboratories continuously investigate new applications of the different methodologies. Clearly, this area constitutes one of the major topics in homogeneous catalysis and organic synthesis. Among the different palladium-catalyzed coupling reactions, several carbonylations have been developed and widely used in organic syntheses and are even applied in the pharmaceutical industry on ton-scale. Furthermore, methodologies such as the carbonylative Suzuki and Sonogashira reactions allow for the preparation of interesting building blocks, which can be easily refined further on. Although carbonylative coupling reactions of aryl halides have been well established, palladium-catalyzed oxidative carbonylation reactions are also interesting. Compared with the reactions of aryl halides, oxidative carbonylation reactions offer an interesting pathway. The oxidative addition step could be potentially avoided in oxidative reactions, but only few reviews exist in this area. In this Minireview, we summarize the recent development in the oxidative carbonylation reactions. PMID:23307763

  18. SYNTHESIS, STRUCTURE AND BIOLOGICAL ACTIVITY OF N(4-ALLYL-3-THIOSEMICARBAZONES AND THEIR COORDINATION COMPOUNDS WITH SOME 3D METALS

    Directory of Open Access Journals (Sweden)

    Vasilii GRAUR

    2016-02-01

    Full Text Available The paper presents a review of different N(4-allyl-3-thiosemicarbazones and their coordination compounds described in literature. N(4-allyl-3-thiosemicarbazide can form corresponding thiosemicarbazones with aliphatic, aromatic and heteroaromatic carbonyl compounds. In the presence of transitional metal ions they can form coordination compounds of different structures. Both coordination compounds and proligands manifest antitumor, antibacterial, antiviral, and antimalarial activities. Copper(II coordination compounds with these ligands manifest better antitumor activity than corresponding proligands. SINTEZA, STRUCTURA ŞI ACTIVITATEA BIOLOGICĂ A N(4-ALIL-3-TIOSEMICARBAZONELOR ŞI A COMPUŞILOR COORDINATIVI AI UNOR METALE 3D CU ACEŞTI LIGANZILucrarea prezintă o revistă a N(4-alil-3-tiosemicarbazonelor şi a compuşilor coordinativi cu aceşti liganzi descrise în literatura de specialitate. N(4-alil-3-tiosemicarbazida formează tiosemicarbazone cu aldehide şi cetone alifatice, aro­matice şi heteroaromatice. În prezenţa ionilor de metale de tranziţie acestea pot forma compuşi coordinativi cu diferite structuri. N(4-alil-3-tiosemicarbazonele şi compuşii coordinativi manifestă activitate antitumorală, antibacterială, antivirală şi antimalarică. Compuşii coordinativi ai cuprului cu aceşti liganzi manifestă activitate antitumorală sporită în comparaţie cu N(4-alil-3-tiosemicarbazonele corespunzătoare. 

  19. Stratospheric carbonyl sulfide (OCS) burden

    Science.gov (United States)

    Kloss, Corinna; Walker, Kaley A.; Deshler, Terry; von Hobe, Marc

    2015-04-01

    An estimation of the global stratospheric burden of carbonyl sulfide (OCS) calculated using satellite based measurements from the Atmospheric Chemistry Experiment - Fourier Transform Spectrometer (ACE-FTS) will be presented. OCS is the most abundant sulfur containing gas in the atmosphere in the absence of volcanic eruptions. With a long lifetime of 2-6 years it reaches the stratosphere where it is photolyzed and the sulfur oxidized and condensed to aerosols, contributing to the stratospheric aerosol layer. The aerosol layer is the one factor of the middle-atmosphere with a direct impact on the Earth's climate by scattering incoming solar radiation back to space. Therefore it is crucial to understand and estimate the different processes and abundances of the species contributing to the aerosol layer. However, the exact amount of OCS in the stratosphere has not been quantified yet. A study on the OCS mixing ratio distribution based on ACE-FTS data has already been made by Barkley et al. (2008), also giving an estimation for the total atmospheric OCS mass. ACE-FTS is an infrared solar occultation spectrometer providing high- resolution profile observations since 2004. In the scope of this work the focus lies on the stratospheric OCS burden, calculated by integrating the ACE profiles. A global overview on the stratospheric OCS amount in the past and present based on the ACE data as well as a look at regional and seasonal variability will be given. Furthermore, the results of this work will be useful for further studies on OCS fluxes and lifetimes, and in quantifying the contribution of OCS to the global stratospheric sulfur burden. Barkley et al., 2008, Geophys. Res. Lett., 35, L14810.

  20. Rotational Spectroscopy of Isocyanic Molecules: Allyl Isocyanide and Diisocyanomethane

    Science.gov (United States)

    Motiyenko, R. A.; Margules, L.; Haykal, I.; Huet, T. R.; Cocinero, E. J.; Ecija, P.; Fernandez, J. A.; Castano, F.; Lesarri, A.; Guillemin, J.-C.

    2012-06-01

    Isocyanides are less stable isomers of nitriles and some of them have already been observed in the interstellar medium (HNC, CH_3NC, HCCNC). But still there exists a lack of experimental spectroscopic data on simple isocyanic molecules that can represent potential astrophysical interest. In this view we have performed high resolution studies of rotational spectra of allyl isocyanide (CH_2=CH--CH_2--NC) and diisocyanomethane (CN--CH_2--NC). The rotational spectra of allyl isocyanide have been measured in the frequency range 6 -- 18 GHz by means of FTMW spectrometer in Bilbao and in the frequency range 150 -- 945 GHz by means of classic absorption spectroscopy in Lille. Two stable confomers of allyl isocyanide have been observed in both series of measurements. In addition, all 13C-monosubstituted isotopologues and 15N isotopologues were detected in natural abundance. Due to much lower kinetic stability the rotational spectrum of diisocyanomethane has been measured only in absorption using the Lille spectrometer. The spectral assignments have been supported by high-level quantum chemical calculations. For both molecules accurate sets of rotational and centrifugal distortion constants (up to the octics) have been produced. As a result, reliable predictions of transitions frequencies suitable for astrophysical detection have been obtained for both molecules. Finally, the effective and substitution structures were determined for the two conformers of allyl isocyanide, comparing the result with ab initio data. This work is supported by Centre Nationale d'Etudes Spatiales (CNES), Action sur Projet Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) and by the contract ANR-08-BLAN-0054. Spanish part acknowledges funding from the MICINN and the MINECO.

  1. Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Hansen, E. Louise; Kane, John;

    2001-01-01

    A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed by...... asymmetric HWE reactions into mixtures of two major $alpha@,$beta@-unsaturated esters, possessing opposite configurations at their allylic stereocenters as well as opposite alkene geometry. Subsequently, these isomeric mixtures of alkenes could be subjected to palladium-catalyzed allylic substitution...

  2. Regiochemical Control in the Metal-Catalyzed Transposition of Allylic Silyl Ethers

    OpenAIRE

    Hansen, Eric C.; Lee, Daesung

    2006-01-01

    A novel mode of regiochemical control over the allylic [1,3]-transposition of silyloxy groups catalyzed by Re2O7 has been developed. This strategy relies on a cis-oriented vinyl boronate, generated from the Alder ene reaction of homoallylic silyl ethers and alkynyl boronates, to trap out the allylic hydroxyl group. The resulting cyclic boronic acids are excellent partners for cross coupling reactions. High chirality transfer is observed for the rearrangement of enantioenriched allylic silyl e...

  3. Pyrrolidine catalyzed reactions of cyclopentadiene with α,β-unsaturated carbonyl compounds: 1,2- versus 1,4-additions

    OpenAIRE

    Coskun, Necdet; Çetin, Meliha; Gronert, Scott; Ma, Jingxiang; Erden, Ihsan

    2015-01-01

    A systematic study of the reactions of cyclopentadiene with α,β-unsaturated carbonyl compounds in the presence of catalytic pyrrolidine-H2O revealed that the reactions can either proceed with a Michael attack at the β-carbon of enone, or 1,2-addition to the carbonyl, leadingeither to 4-cyclopentadienyl-2-butanones or 6-vinylfulvenes. The former can be isolated and/or converted to the corresponding 1,2-dihydropentalenes with base (or in one-pot at longer reaction times). Substitution pattern o...

  4. Fast photolysis of carbonyl nitrates from isoprene

    Science.gov (United States)

    Müller, Jean-Francois; Peeters, Jozef; Stavrakou, Trisevgeni

    2014-05-01

    We show that photolysis is, by far, the major atmospheric sink of isoprene-derived carbonyl nitrates. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications, as carbonyl nitrates constitute an important component of the total organic nitrate pool over vegetated areas: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  5. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls.

    Science.gov (United States)

    Bhan, Aditya; Allian, Ayman D; Sunley, Glenn J; Law, David J; Iglesia, Enrique

    2007-04-25

    The acid-catalyzed formation of carbon-carbon bonds from C1 precursors via CO insertion into chemisorbed methyl groups occurs selectively within eight-membered ring (8-MR) zeolite channels. This elementary step controls catalytic carbonylation rates of dimethyl ether (DME) to methyl acetate. The number of O-H groups within 8-MR channels was measured by rigorous deconvolution of the infrared bands for O-H groups in cation-exchanged and acid forms of mordenite (M,H-MOR) and ferrierite (H-FER) after adsorption of basic probe molecules of varying size. DME carbonylation rates are proportional to the number of O-H groups within 8-MR channels. Na+ cations selectively replaced protons within 8-MR channels and led to a disproportionate decrease in carbonylation turnover rates (per total H+). These conclusions are consistent with the low or undetectable rates of carbonylation on zeolites without 8-MR channels (H-BEA, H-FAU, H-MFI). Such specificity of methyl reactivity upon confinement within small channels appears to be unprecedented in catalysis by microporous solids, which typically select reactions by size exclusion of bulkier transition states. PMID:17397162

  6. Synthesis of carbonyl-14C labelled 'acetochlor'

    International Nuclear Information System (INIS)

    Carbonyl-14C labelled 'acetochlor' (2-chloro-N-ethoxymethyl-N-(2-ethyl-6-methylphenyl)acetamide) was prepared by chlorination of acetic-1-14C acid obtained from barium radiocarbonate to monochloroacetic-1-14C acid which was further chlorinated to monochloroacetyl-1-14C chloride. The addition reaction of this latter with 2-ethyl-6-methylene aniline gave a chloromethyl derivative the ethanolysis of which resulted in 'acetochlor' labelled in its carbonyl carbon. The overall radiochemical yield is 51%. (author)

  7. Catalyst-controlled switch of regioselectivity in the asymmetric allylic alkylation of oxazolones with MBHCs.

    Science.gov (United States)

    Zhu, Gongming; Yang, Junxian; Bao, Guangjun; Zhang, Ming; Li, Jing; Li, Yiping; Sun, Wangsheng; Hong, Liang; Wang, Rui

    2016-06-14

    A catalyst-controlled switch of regioselectivity in asymmetric allylic alkylation of oxazolones with MBHCs was described. The SN2'-SN2' reaction catalysed by a quinine-derived base produced γ-selective secondary allylic oxazolone derivatives, whereas the addition-elimination reaction catalysed by an amino acid-derived bifunctional urea catalyst provided β-selective primary adducts. PMID:27250517

  8. Memory effects in palladium-catalyzed allylic Alkylations of 2-cyclohexen-1-yl acetate

    DEFF Research Database (Denmark)

    Svensen, Nina; Fristrup, Peter; Tanner, David Ackland;

    2007-01-01

    The objective of this work was to characterize the enantiospecificity of the allylic alkylation of enantioenriched 2-cyclohexen-1-yl acetate with the enolate ion of dimethyl malonate catalyzed by unsymmetrical palladium catalysts. The precatalysts employed were (eta(3)-allyl)PdLCl, where L is a...

  9. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    Science.gov (United States)

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  10. Palladium(0)-Catalyzed Intermolecular Allylic Dearomatization of Indoles by a Formal [4+2] Cycloaddition Reaction.

    Science.gov (United States)

    Gao, Run-Duo; Xu, Qing-Long; Zhang, Bo; Gu, Yiting; Dai, Li-Xin; You, Shu-Li

    2016-08-01

    Bridged indoline derivatives were synthesized by an intermolecular Pd-catalyzed allylic dearomatization reaction of substituted indoles. The reaction between indoles and allyl carbonates bearing a nucleophilic alcohol side-chain proceeds in a cascade fashion, providing bridged indolines in excellent enantioselectivity. PMID:27321285

  11. Trifluoromethylallylation of Heterocyclic C-H Bonds with Allylic Carbonates under Rhodium Catalysis.

    Science.gov (United States)

    Choi, Miji; Park, Jihye; Sharma, Satyasheel; Jo, Hyeim; Han, Sangil; Jeon, Mijin; Mishra, Neeraj Kumar; Han, Sang Hoon; Lee, Jong Suk; Kim, In Su

    2016-06-01

    The rhodium(III)-catalyzed γ-trifluoromethylallylation of various heterocyclic C-H bonds with CF3-substituted allylic carbonates is described. These reactions provide direct access to linear CF3-containing allyl frameworks with complete trans-selectivity via C-H bond activation followed by a formal SN-type reaction pathway. PMID:27187625

  12. Z-Selective copper-catalyzed asymmetric allylic alkylation with Grignard reagents.

    Science.gov (United States)

    Giannerini, Massimo; Fañanás-Mastral, Martín; Feringa, Ben L

    2012-03-01

    Allylic gem-dichlorides undergo regio- and enanantioselective (er up to 99:1) copper-catalyzed allylic alkylation with Grignard reagents affording chiral Z-vinyl chlorides. This highly versatile class of synthons can be subjected to Suzuki cross coupling affording optically active Z-alkenes and 1,3-cis,trans dienes. PMID:22352853

  13. Z-Selective Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents

    OpenAIRE

    Giannerini, Massimo; Fananas-Mastral, Martin; Feringa, Ben L.; Fañanás-Mastral, Martín

    2012-01-01

    Allylic gem-dichlorides undergo regio- and enanantioselective (er up to 99:1) copper-catalyzed allylic alkylation with Grignard reagents affording chiral Z-vinyl chlorides. This highly versatile class of synthons can be subjected to Suzuki cross coupling affording optically active Z-alkenes and 1,3-cis,trans dienes.

  14. Construction of an Asymmetric Quaternary Carbon Center via Allylation of Hydrazones

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Bum; Satyender, Apuri; Jang, Doo Ok [Yonsei Univ., Wonju (Korea, Republic of)

    2013-11-15

    Asymmetric indium-mediated allylation of imine derivatives bearing a chiral auxiliary is a reliable strategy for the synthesis of chiral homoallylic amines. Various techniques for indium-mediated stereoselective allylation of imines bearing a chiral auxiliary have been reported. In 1997 Loh and co-workers reported indium-mediated allylation with imines derived from L-valine methyl ester. Since then, many forms of indium-mediated allylation bearing a chiral auxiliary have been reported, including imines derived from (S)-valinol, (R)-phenylglycinol, uracil, (R)-phenylglycinol methyl ester, N-tert-butanesufinamide, and (1R,2S)-1-amino-2-indanol. However, the synthesis of chiral auxiliaries often involves a laborious multi-step synthesis with expensive reagents. Therefore, the development of readily accessible chiral auxiliaries for asymmetric indium-mediated all-ylation is in high demand.

  15. Polyimides Containing Carbonyl and Ether Connecting Groups

    Science.gov (United States)

    Hergenrother, Paul M.; Havens, Stephen J.

    1987-01-01

    Semicrystallinity gives rise to tough, solvent-resistant polymers. New polyimides prepared from reaction of aromatic dianhydrides with new diamines containing carbonyl and ether connecting groups between aromatic rings. Damines prepared from reaction of 4-aminophenol with activated aromatic difluoro compounds in presence of potassium carbonate. These types of polymers have potential applications in molded products, films, adhesives, and composites.

  16. Pattern of occurrence and occupancy of carbonylation sites in proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2011-01-01

    Proteins are targets for modification by reactive oxygen species, and carbonylation is an important irreversible modification that increases during oxidative stress. While information on protein carbonylation is accumulating, its pattern is not yet understood. We have made a meta-analysis of the...... available literature data (456 carbonylation sites on 208 proteins) to appreciate the nature of carbonylation sites in proteins. Of the carbonylated (Arg, Lys, Pro, and Thr – RKPT) amino acids, Lys is the most abundant, whereas Pro is the most susceptible and Thr is the least susceptible. The incidence of...

  17. Synthesis and catalytic activities of porphyrin-based PCP pincer complexes.

    OpenAIRE

    Fujimoto, Keisuke; Yoneda, Tomoki; Yorimitsu, Hideki; Osuka, Atsuhiro

    2013-01-01

    2,18-Bis(diphenylphosphino)porphyrins undergo peripheral cyclometalation with group 10 transition-metal salts to afford the corresponding porphyrin-based PCP pincer complexes. The porphyrinic plane and the PCP-pincer unit are apparently coplanar, with small strain. The catalytic activities of the porphyrin-based pincer complexes at the periphery were investigated in the allylation of benzaldehyde with allylstannane and in the 1,4-reduction of chalcone to discover the electronic interplay betw...

  18. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis.

    Science.gov (United States)

    Huang, Daria L; Beltrán-Suito, Rodrigo; Thomsen, Julianne M; Hashmi, Sara M; Materna, Kelly L; Sheehan, Stafford W; Mercado, Brandon Q; Brudvig, Gary W; Crabtree, Robert H

    2016-03-01

    This paper introduces Ir(I)(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*Ir(III)(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue Ir(IV) species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting Ir(IV) species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By (1)H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3. PMID:26901517

  19. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts satisfact......A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts...... satisfactorily oxidation of OCS over a wide range of stoichiometric air–fuel ratios (0.5 ≤λ≤7.3), temperatures (450–1700 K), and pressures (0.02–3.0 atm) under dry conditions. The governing reaction mechanisms are outlined based on calculations with the kinetic model. The oxidation rate of OCS is controlled...

  20. Catalytic, enantioselective, vinylogous aldol reactions.

    Science.gov (United States)

    Denmark, Scott E; Heemstra, John R; Beutner, Gregory L

    2005-07-25

    In 1935, R. C. Fuson formulated the principle of vinylogy to explain how the influence of a functional group may be felt at a distant point in the molecule when this position is connected by conjugated double-bond linkages to the group. In polar reactions, this concept allows the extension of the electrophilic or nucleophilic character of a functional group through the pi system of a carbon-carbon double bond. This vinylogous extension has been applied to the aldol reaction by employing "extended" dienol ethers derived from gamma-enolizable alpha,beta-unsaturated carbonyl compounds. Since 1994, several methods for the catalytic, enantioselective, vinylogous aldol reaction have appeared, with which varying degrees of regio- (site), enantio-, and diastereoselectivity can be attained. In this Review, the current scope and limitations of this transformation, as well as its application in natural product synthesis, are discussed. PMID:15940727

  1. A Facile and Mild Synthesis of Trisubstituted Allylic Sulfones from Morita-Baylis-Hillman Carbonates

    Directory of Open Access Journals (Sweden)

    Lin Jiang

    2015-05-01

    Full Text Available An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%–99% with good to high selectivity (Z/E from 79:21 to >99:1. Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.

  2. Heterogeneous oxidation of carbonyl sulfide on mineral oxides

    Institute of Scientific and Technical Information of China (English)

    LIU YongChun; LIU JunFeng; HE Hong; YU YunBo; XUE Li

    2007-01-01

    Heterogeneous oxidation of carbonyl sulfide (OCS) on mineral oxides including SiO2, Fe2O3, CaO, MgO, ZnO and TiO2, which are the main components of atmospheric particles, were investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), ion chromatography (IC), temperature-programmed desorption (TPD), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) methods. The main products and intermediates of the heterogeneous oxidation of OCS on these oxides were identified with in situ DRIFTS and IC. The reaction mechanism and kinetics were also discussed. It is found that the reaction mechanism on these mineral oxides is the same as that on Al2O3 for the same final products and the intermediates at room temperature. Namely, OCS can be catalytically oxidized to produce surface SO42- species and gaseous CO2 through the surface hydrogen thiocarbonate (HSCO2-) and HSO3- species. The activity series for heterogeneous oxidation of OCS follows: Al2O3 ≈ CaO>MgO>TiO2 ≈ ZnO>Fe2O3>SiO2. The specific area, basic hydroxyl and surface basicity of these oxides have effect on the reactivity. This study suggests that heterogeneous reactions of OCS on mineral dust may be an unneglectable sink of OCS.

  3. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  4. Carbonyl Compounds Generated from Electronic Cigarettes

    Directory of Open Access Journals (Sweden)

    Kanae Bekki

    2014-10-01

    Full Text Available Electronic cigarettes (e-cigarettes are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  5. Magnetorheological characterisation of carbonyl iron based suspension

    Directory of Open Access Journals (Sweden)

    M. Kciuk

    2009-04-01

    Full Text Available Purpose: The main aim of this article was to present the investigation results of magnetorheological fluids (MR composed of carbonyl iron (CI particles and analyse their flow behaviour in terms of the internal structure formation by a control of applied external magnetic field. The morphology, magnetic properties, sedimentation stability, and magnetorheological properties of the examined MR fluids were studied.Design/methodology/approach: Model MR fluid was prepared using silicone oil OKS 1050 mixed with carbonyl iron powder CI. Furthermore, to reduce sedimentation Aerosil 200 was added as stabilizers. In the purpose to determine the properties of the analyzed fluids the sedimentation and dynamic viscosity were investigated.Findings: Dynamic viscosity of investigated magnetorheological fluids rapidly and reversibly change in response to the applied external magnetic field. Moreover added particles of fumed silica inhibited sedimentation of carbonyl iron particles.Research limitations/implications: MR fluids with excellent properties can be applied in various fields of civil engineering, safety engineering, transportation and life science. They offer an outstanding capability of active control of mechanical properties. But there are no systematic published studies of factors affecting the durability of MR fluids and devices. There is very little information on the effects of exposing different MR fluids to temperature, for this reasons further efforts are needed in order to obtain even better results.Originality/value: The investigation results are reliable and could be very useful both for designers and the practitioners of many branches of industry.

  6. Millimeter wave spectra of carbonyl cyanide

    Science.gov (United States)

    Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2016-07-01

    Context. More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152-308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. Results: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of

  7. Solid radiation curable polyene compositions containing liquid polythiols and solid styrene-allyl copolymer based polyenes

    International Nuclear Information System (INIS)

    Novel styrene-allyl alcohol copolymer based solid polyene compositions which when mixed with liquid polythiols can form solid curable polyene-polythiol systems are claimed. These solid polyenes, containing at least two reactive carbon-to-carbon unsaturated bonds, are urethane or ester derivatives of styrene-allyl alcohol copolymers. The solid polyenes are prepared by treating the hydroxyl groups of a styrene-allyl alcohol copolymer with a reactive unsaturated isocyanate, e.g., allyl isocyanate or a reactive unsaturated carboxylic acid, e.g., acrylic acid. Upon exposure to a free radical generator, e.g., actinic radiation, the solid polyene-polythiol compositions cure to solid, insoluble, chemically resistant, cross-linked polythioether products. Since the solid polyene-liquid polythiol composition can be cured in a solid state, such a curable system finds particular use in preparation of coatings, imaged surfaces such as photoresists, particularly solder-resistant photoresists, printing plates, etc

  8. Total Synthesis of Clavosolide A via Tandem Allylic Oxidation/Oxa-Conjugate Addition Reaction

    Science.gov (United States)

    Baker, Joseph B.; Kim, Hyoungsu; Hong, Jiyong

    2015-01-01

    The tandem allylic oxidation/oxa-conjugate addition reaction promoted by the gem-disubstituent effect in conjunction with the NHC-mediated oxidative esterification was explored for the facile synthesis of clavosolide A. PMID:26236051

  9. Facile synthesis of allyl resinate monomer in an aqueous solution under microwave irradiation

    Indian Academy of Sciences (India)

    Yanju Lu; Mixia Wang; Zhendong Zhao; Yuxiang Chen; Shichao Xu; Jing Wang; Liangwu Bi

    2015-07-01

    We have developed a facile method for production of allyl resinate monomer (allyl rosin ester) via a phase transfer reaction under microwave irradiation. The synthesis of allyl resinate was conducted using allyl chloride and sodium resinate as starting materials in aqueous solution at 50°C for 30 min with a yield of 94.7%, which is 20% higher than conventional heating method. The products precipitated spontaneously from the aqueous phase after reaction, which significantly facilitated the subsequent separation of monomer products. The synthesized monomer product appeared as a viscous liquid, with a viscosity of 460 mPa·s at 25°C and a density of 1.0469 g/cm3. The physical and chemical properties suggested that the synthesized monomer has great potential for free radical polymerization.

  10. Bradykinetic alcohol dehydrogenases make yeast fitter for growth in the presence of allyl alcohol

    OpenAIRE

    Plapp, Bryce V.; Lee, Ann Ting-I.; Khanna, Aditi; Pryor, John M.

    2012-01-01

    Previous studies showed that fitter yeast (Saccharomyces cerevisiae) that can grow by fermenting glucose in the presence of allyl alcohol, which is oxidized by alcohol dehydrogenase I (ADH1) to toxic acrolein, had mutations in the ADH1 gene that led to decreased ADH activity. These yeast may grow more slowly due to slower reduction of acetaldehyde and a higher NADH/NAD+ ratio, which should decrease the oxidation of allyl alcohol. We determined steady-state kinetic constants for three yeast AD...

  11. β-Elimination of an Aziridine to an Allylic Amine: A Mechanistic Study

    OpenAIRE

    Morgan, Kathleen M.; Brown, Garry; Pichon, Monique A.; Green, Geannette Y.

    2011-01-01

    The base-induced rearrangement of aziridines has been examined using a combination of calculations and experiment. The calculations show that the substituent on nitrogen is a critical feature that greatly affects the favorability of both α-deprotonation, and β-elimination to form an allylic amine. Experiments were carried out to determine whether E2-like rearrangement to the allylic amine with lithium diisopropyl amide (LDA) is possible. N-Tosyl aziridines were found to deprotonate on the tos...

  12. Selective epoxidation of allylic alcohols with a titania-silica aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Dusi, M.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    An amorphous mesoporous titania-silica aerogel (20 wt%TiO{sub 2} - 80 wt% SiO{sub 2}) and tert.-butylhydroperoxide (TBHP) have been used for the epoxidation of various allylic alcohols. Allylic alcohols possessing an internal double bond were more reactive than those with a terminal C=C bond. Epoxide selectivities could be improved by addition of (basic) zeolite 4 A and NaHCO{sub 3} to the reaction mixture. (orig.)

  13. Highly selective palladium–benzothiazole carbene-catalyzed allylation of active methylene compounds under neutral conditions

    OpenAIRE

    Antonio Monopoli; Pietro Cotugno; Zambonin, Carlo G.; Francesco Ciminale; Angelo Nacci

    2015-01-01

    The Pd–benzothiazol-2-ylidene complex I was found to be a chemoselective catalyst for the Tsuji–Trost allylation of active methylene compounds carried out under neutral conditions and using carbonates as allylating agents. The proposed protocol consists in a simplified procedure adopting an in situ prepared catalyst from Pd2dba3 and 3-methylbenzothiazolium salt V as precursors. A comparison of the performance of benzothiazole carbene with phosphanes and an analogous imidazolium carbene ligand...

  14. Infrared spectroscopy of mass-selected metal carbonyl cations

    Science.gov (United States)

    Ricks, A. M.; Reed, Z. E.; Duncan, M. A.

    2011-04-01

    Metal carbonyl cations of the form M(CO)n+ are produced in a molecular beam by laser vaporization in a pulsed nozzle source. These ions, and their corresponding rare gas atom "tagged" analogs, M(CO)n(RG)m+, are studied with mass-selected infrared photodissociation spectroscopy in the carbonyl stretching region and with density functional theory computations. The number of infrared-active bands, their frequency positions, and their relative intensities provide distinctive patterns allowing determination of the geometries and electronic structures of these complexes. Cobalt penta carbonyl and manganese hexacarbonyl cations are compared to isoelectronic iron pentacarbonyl and chromium hexacarbonyl neutrals. Gold and copper provide examples of "non-classical" carbonyls. Seven-coordinate carbonyls are explored for the vanadium group metal cations (V +, Nb + and Ta +), while uranium cations provide an example of an eight-coordinate carbonyl.

  15. Clinical Features of Schizophrenia With Enhanced Carbonyl Stress

    OpenAIRE

    Miyashita, Mitsuhiro; Arai, Makoto; Kobori, Akiko; Ichikawa, Tomoe; Toriumi, Kazuya; Niizato, Kazuhiro; Oshima, Kenichi; Okazaki, Yuji; Yoshikawa, Takeo; Amano, Naoji; Miyata, Toshio; Itokawa, Masanari

    2013-01-01

    Accumulating evidence suggests that advanced glycation end products, generated as a consequence of facilitated carbonyl stress, are implicated in the development of a variety of diseases. These diseases include neurodegenerative illnesses, such as Alzheimer disease. Pyridoxamine is one of the 3 forms of vitamin B6, and it acts by combating carbonyl stress and inhibiting the formation of AGEs. Depletion of pyridoxamine due to enhanced carbonyl stress eventually leads to a decrease in the other...

  16. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  17. Carbonyl emissions from gasoline and diesel motor vehicles.

    Science.gov (United States)

    Jakober, Chris A; Robert, Michael A; Riddle, Sarah G; Destaillats, Hugo; Charles, M Judith; Green, Peter G; Kleeman, Michael J

    2008-07-01

    Carbonyls from gasoline-powered light-duty vehicles (LDVs) and heavy-duty diesel-powered vehicles (HDDVs) operated on chassis dynamometers were measured by use of an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery: 4-fluorobenzaldehyde for or = C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 to 2000 microg/L of fuel for LDVs and from 1.8 to 27 000 microg/L of fuel for HDDVs. Gas-phase species accounted for 81-95% of the total carbonyls from LDVs and 86-88% from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19% of particulate organic carbon (POC) emissions from low-emission LDVs and 37% of POC emissions from three-way catalyst-equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9% depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas and particle phases under the dilution factors of 126-584 used in the present study. PMID:18677993

  18. Palladium-Catalyzed Dearomative Allylic Alkylation of Indoles with Alkynes To Synthesize Indolenines with C3-Quarternary Centers.

    Science.gov (United States)

    Gao, Shang; Wu, Zijun; Fang, Xinxin; Lin, Aijun; Yao, Hequan

    2016-08-01

    A palladium-catalyzed dearomative allylic alkylation of indoles with alkynes to construct indolenines with C3-quarternary centers was reported. The in situ formed arylallene intermediate omitted the need to install leaving groups on the allylic compounds and employ extra oxidants to oxidize the allylic C-H bonds. The reaction exhibited good functional group tolerance and high atom economy. Moreover, the reaction was further expanded to synthesize pyrroloindolines and furanoindolines. PMID:27442021

  19. α-Sulfonyl succinimides: versatile sulfinate donors in Fe-catalyzed, salt-free, neutral allylic substitution.

    Science.gov (United States)

    Jegelka, Markus; Plietker, Bernd

    2011-09-01

    Allyl sulfones are versatile intermediates in organic chemistry. The presence of two distinct functional groups sets the stage for a plethora of subsequent transformations. However, despite these advantages the preparation of regioisomerically enriched sulfones is not easy. The use of sulfinate salts as nucleophiles in substitutions is frequently accompanied by side reactions such as π-bond migration, β-elimination, and so on. Herein we present a preparatively simple way to synthesize a variety of different aryl or alkyl allyl sulfones starting from readily accessible allylic carbonates. By employing aryl or alkyl α-sulfonyl succinimides as sulfinate synthons, mild and regioselective ipso substitution of diverse allylic carbonates was realized. PMID:21818793

  20. Construction of quaternary stereogenic carbon centers through copper-catalyzed enantioselective allylic cross-coupling with alkylboranes.

    Science.gov (United States)

    Hojoh, Kentaro; Shido, Yoshinori; Ohmiya, Hirohisa; Sawamura, Masaya

    2014-05-01

    A combination of an in situ generated chiral Cu(I) /DTBM-MeO-BIPHEP catalyst system and EtOK enabled the enantioselective SN 2'-type allylic cross-coupling between alkylborane reagents and γ,γ-disubstituted primary allyl chlorides with enantiocontrol at a useful level. The reaction generates a stereogenic quaternary carbon center having three sp(3) -alkyl groups and a vinyl group. This protocol allowed the use of terminal alkenes as nucleophile precursors, thus representing a formal reductive allylic cross-coupling of terminal alkenes. A reaction pathway involving addition/elimination of a neutral alkylcopper(I) species with the allyl chloride substrate is proposed. PMID:24668885

  1. Allyl isothiocyanate enhances shelf life of minimally processed shredded cabbage.

    Science.gov (United States)

    Banerjee, Aparajita; Penna, Suprasanna; Variyar, Prasad S

    2015-09-15

    The effect of allyl isothiocyanate (AITC), in combination with low temperature (10°C) storage on post harvest quality of minimally processed shredded cabbage was investigated. An optimum concentration of 0.05μL/mL AITC was found to be effective in maintaining the microbial and sensory quality of the product for a period of 12days. Inhibition of browning was shown to result from a down-regulation (1.4-fold) of phenylalanine ammonia lyase (PAL) gene expression and a consequent decrease in PAL enzyme activity and o-quinone content. In the untreated control samples, PAL activity increased following up-regulation in PAL gene expression that could be linearly correlated with enhanced o-quinone formation and browning. The efficacy of AITC in extending the shelf life of minimally processed shredded cabbage and its role in down-regulation of PAL gene expression resulting in browning inhibition in the product is reported here for the first time. PMID:25863635

  2. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation.

    Science.gov (United States)

    Krügener, Sven; Krings, Ulrich; Zorn, Holger; Berger, Ralf G

    2010-01-01

    A selective and highly efficient allylic oxidation of the sesquiterpene (+)-valencene to the grapefruit flavour compound (+)-nootkatone was achieved with lyophilisate of the edible mushroom Pleurotus sapidus. The catalytic reaction sequence was elucidated through the identification of intermediate, (+)-valencene derived hydroperoxides. A specific staining of hydroperoxides allowed the semi-preparative isolation of two secondary (+)-valencene hydroperoxides, 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-4(S)-yl-hydroperoxide and 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-2(R)-yl-hydroperoxide. Chemical reduction of the biotransformation products yielded a tertiary alcohol identified as 2(R)-Isopropenyl-8(R),8a(S)-dimethyl-1,3,4,7,8,8a-hexahydro-2H-naphthalen-4a(R)-ol. This suggested a lipoxygenase-type oxidation of (+)-valencene via secondary and tertiary hydroperoxides and confirmed homology data of the key enzyme obtained previously from amino acid sequencing. PMID:19765983

  3. Carbonyl Emissions From Oil and Gas Production Facilities

    Science.gov (United States)

    Lyman, S. N.; O'Neil, T.; Tran, T.

    2015-12-01

    A number of recent studies have targeted emissions of methane and other hydrocarbons from oil and gas exploration and production activity. These measurements are greatly increasing understanding of the atmospheric impacts of oil and gas development. Very few measurements exist, however, of emissions of formaldehyde and other carbonyls from oil and gas equipment. Carbonyls are toxic and serve as important ozone precursors, especially during winter ozone episodes in places like Utah's Uintah Basin. Current air quality models are only able to reproduce observed high wintertime ozone if they incorporate emissions inventories with very high carbonyl emissions. We measured carbonyl emissions from oil and gas equipment and facilities—including glycol dehydrators, liquid storage tanks, raw gas leaks, raw gas-burning engines, and produced water surface impoundments—in Rocky Mountain oil and gas fields. Carbonyl emissions from raw gas were below detection, but emissions of formaldehyde, acetaldehyde, and other carbonyls were detected from liquid storage tanks, glycol dehydrators, and other oil and gas equipment. In some cases, carbonyls may be formed from the degradation of methanol and other chemicals used in oil and gas production, but the collected data provide evidence for other non-combustion formation pathways. Raw gas-burning engines also emitted carbonyls. Emissions from all measured sources were a small fraction of total volatile organic compound emissions. We incorporated our measurements into an emissions inventory, used that inventory in an air quality model (WRF-SMOKE-CAMx), and were unable to reproduce observed high wintertime ozone. This could be because (1) emission sources we have not yet measured, including compressors, gas processing plants, and others, are large; (2) non-carbonyl emissions, especially those that quickly degrade into carbonyls during photochemical processing, are underestimated in the inventory; or (3) the air quality model is unable

  4. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls.

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D; Krische, Michael J

    2015-10-14

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo-, and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k, and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k, and 6m, respectively. Primary alcohols 2a, 2l, and 2p were converted to the siloxy-crotylation products 3a, 3l, and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l, and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes. PMID:26418572

  5. Rapid formation of β-allyl substituted isotetronic acid derivatives via Claisen rearrangement using a microfludic device

    Institute of Scientific and Technical Information of China (English)

    Xia Ping Ma; Zhi Ming Li; Quan Rui Wang

    2011-01-01

    The thermal Claisen rearrangement of O-allyl substituted isotetronic acids 1 was successfully carried out within a glass microreactor operated with temperature at 150 ℃ and a flow rate of 1 mL/h. The strategy provides an efficient alternative way to β-allyl substituted isotetronic acid derivatives 2 in high yields with much accelerated reaction speed.

  6. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  7. Oxidative carbonylation of phenol to diphenyl carbonate by Pd/MFe2O4 magnetic catalyst

    Directory of Open Access Journals (Sweden)

    Zhang Linfeng

    2015-01-01

    Full Text Available In order to screen one suitable catalyst for magnetically stabilized fluidized bed (MSFB reactor in the process of oxidative carbonylation of phenol to diphenyl carbonate (DPC, Pd/MFe2O4 catalysts were chosen, then prepared and characterized by XRD, H2-TPR, XPS and VSM (Vibrating Sample Magnetometer. Compared to the other metal ion doped spinel ferrite catalysts, the catalytic activity of Pd/MnFe2O4 was much higher, which the single pass yield of DPC reached 33.12% with selectivity above 99%, and TOF (turnover frequency reached 70.56molDPC•(molPd•h-1.The result showed that the formation of the ferrite oxygen-deficient and ion transference in the ferrites was in favor of the catalytic activity. When the support MnFe2O4 was calcinated at 500ºC, the saturation magnetization of the obtained catalyst Pd/MnFe2O4 came up to 43.1 A•m2•kg-1. With good magnetic property and brilliant catalytic activity the catalyst Pd/MnFe2O4 may suite for industrial experiments in MSFB reactor in future.

  8. Synthesis of allyl dimethyl dehydroabietyl ammonium chloride and its surface activities

    International Nuclear Information System (INIS)

    Allyl dimethyl dehydroabietyl ammonium chloride (ADMDHAC) was synthesized from dehydroabietylamine (DHA) and allyl chloride. The synthesis was carried out in two steps. First, DHA was transformed into N,N-dimethyl dehydroabietyl amine (DMDHA) through Eschweiler-Clarke Reaction. Second, the ADMDHAC was obtained after the DMDHA had reacted with allyl chloride and recrystallized using a solvent composed of diethyl ether and ethanol. Critical micelle concentrations (cmc) of ADMDHAC at 25 degree C was found to be 2.851*10-4 mol.L-1, and its surface tension value at cmc (gamma cmc) was determined to be 30.6 mN.m-1, these data suggested that ADMDHAC could be used as a good alternative of benzalkonium chloride (BC). (author)

  9. How phenyl makes a difference: mechanistic insights into the ruthenium( ii )-catalysed isomerisation of allylic alcohols

    KAUST Repository

    Manzini, Simone

    2013-10-16

    [RuCl(η5-3-phenylindenyl)(PPh3)2] (1) has been shown to be a highly active catalyst for the isomerisation of allylic alcohols to the corresponding ketones. A variety of substrates undergo the transformation, typically with 0.25-0.5 mol% of catalyst at room temperature, outperforming commonly-used complexes such as [RuCl(Cp)(PPh3) 2] and [RuCl(η5-indenyl)(PPh3) 2]. Mechanistic experiments and density functional theory have been employed to investigate the mechanism and understand the effect of catalyst structure on reactivity. These investigations suggest a oxo-π-allyl mechanism is in operation, avoiding intermediate ruthenium hydride complexes and leading to a characteristic 1,3-deuterium shift. Important mechanistic insights from DFT and experiments also allowed for the design of a protocol that expands the scope of the transformation to include primary allylic alcohols. © 2013 The Royal Society of Chemistry.

  10. Asymmetric epoxidation of allylic alcohols catalyzed by vanadium-binaphthylbishydroxamic Acid complex.

    Science.gov (United States)

    Noji, Masahiro; Kobayashi, Toshihiro; Uechi, Yuria; Kikuchi, Asami; Kondo, Hisako; Sugiyama, Shigeo; Ishii, Keitaro

    2015-03-20

    A vanadium-binaphthylbishydroxamic acid (BBHA) complex-catalyzed asymmetric epoxidation of allylic alcohols is described. The optically active binaphthyl-based ligands BBHA 2a and 2b were synthesized from (S)-1,1'-binaphthyl-2,2'-dicarboxylic acid and N-substituted-O-trimethylsilyl (TMS)-protected hydroxylamines via a one-pot, three-step procedure. The epoxidations of 2,3,3-trisubstituted allylic alcohols using the vanadium complex of 2a were easily performed in toluene with a TBHP water solution to afford (2R)-epoxy alcohols in good to excellent enantioselectivities. PMID:25714329

  11. Highly selective palladium–benzothiazole carbene-catalyzed allylation of active methylene compounds under neutral conditions

    Directory of Open Access Journals (Sweden)

    Antonio Monopoli

    2015-06-01

    Full Text Available The Pd–benzothiazol-2-ylidene complex I was found to be a chemoselective catalyst for the Tsuji–Trost allylation of active methylene compounds carried out under neutral conditions and using carbonates as allylating agents. The proposed protocol consists in a simplified procedure adopting an in situ prepared catalyst from Pd2dba3 and 3-methylbenzothiazolium salt V as precursors. A comparison of the performance of benzothiazole carbene with phosphanes and an analogous imidazolium carbene ligand is also proposed.

  12. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    Science.gov (United States)

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  13. Synthesis of (-)-Piperitylmagnolol Featuring ortho-Selective Deiodination and Pd-Catalyzed Allylation.

    Science.gov (United States)

    Ikoma, Atsushi; Ogawa, Narihito; Kondo, Daiki; Kawada, Hiroki; Kobayashi, Yuichi

    2016-05-01

    A 1,4-addition strategy using an enone and a copper reagent was studied for the synthesis of (-)-piperitylmagnolol. A MOM-protected biphenol copper reagent was added to BF3·OEt2-activated 4-isopropylcyclohexenone, whereas 1,4-addition of protected monophenol reagents possessing an allyl group was found to be unsuccessful. The allyl group was later attached to the p-,p'-diiodo-biphenol ring by Pd-catalyzed coupling with allylborate. The aforementioned iodide was synthesized using a new method for ortho-selective deiodination of o-,p-diiodophenols. PMID:27109890

  14. A New HPLC Method to Determine Carbonyl Compounds in Air

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, a new HPLC method was established to determine the carbonyl compounds in air. As the absorbent, 2, 4-dinitrophenylhydrazine (2, 4-DNPH) reacted with carbonyls specifically, which form the corresponding 2,4-dinitrophenylhydrazones, then analyzed by HPLC. The chromatographic conditions, the recovery rate, stability of samples, reagent blank, sampling efficiency were all studied systematically. The results showed that this established method had high sensitivity and good selectivity compared with other analytical methods, and it can determine ten carbonyl compounds in air in 26 min simultaneously.

  15. 16th Carbonyl Metabolism Meeting: from enzymology to genomics

    Directory of Open Access Journals (Sweden)

    Maser Edmund

    2012-12-01

    Full Text Available Abstract The 16th International Meeting on the Enzymology and Molecular Biology of Carbonyl Metabolism, Castle of Ploen (Schleswig-Holstein, Germany, July 10–15, 2012, covered all aspects of NAD(P-dependent oxido-reductases that are involved in the general metabolism of xenobiotic and physiological carbonyl compounds. Starting 30 years ago with enzyme purification, structure elucidation and enzyme kinetics, the Carbonyl Society members have meanwhile established internationally recognized enzyme nomenclature systems and now consider aspects of enzyme genomics and enzyme evolution along with their roles in diseases. The 16th international meeting included lectures from international speakers from all over the world.

  16. Synthesis of Unsymmetric Ureas by Selenium-Catalyzed Oxidative-Reductive Carbonylation with CO

    Institute of Scientific and Technical Information of China (English)

    MEI Jian-Ting; LU Shi-Wei

    2003-01-01

    @@ Unsymmetric, substituted ureas that contain the peptide bond (NHCONH), many of which possess biological activities, are widely used as herbicides, agrochemicals and pharmaceuticals. [1,2] A series of unsymmetric ureascontaining substituted groups have been synthesized via selenium-catalyzed selective oxidative-reductive carbonylation of amines and nitro compounds with CO instead of phosgene in one-pot reaction. [3,4] These catalytic reactions are important from both synthetic and industrial points of view, because not only the reactions can be proceeded with high selectivity of higher than 99% towards desired unsymmetric ureas, but also there exists a phase-transfer process of the selenium catalyst in thereaction, so that the after-treatment of the catalysts and products from the reaction systems can be easily separated by simple phase separation.

  17. Gold/Iron Carbonyl Clusters for Tailored Au/FeOx Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Stefania Albonetti

    2011-12-01

    Full Text Available A novel preparation method was developed for the preparation of gold/iron oxide supported catalysts using the bimetallic carbonyl cluster salts [NEt4]4[Au4Fe4(CO16] and [NEt4][AuFe4(CO16] as precursors of highly dispersed nanoparticles over different supports. A series of catalysts with different metal loadings were prepared and tested in the complete oxidation of dichlorobenzene, toluene, methanol and in the preferential oxidation of CO in the presence of H2 (PROX as model reactions. The characterization by BET, XRD, TEM, H2-TPR, ICP-AES and XPS point out the way the nature of the precursors and the thermal treatment conditions affected the dispersion of the active phase and their catalytic activity in the studied reactions.

  18. Congested C-C Bonds by Pd-Catalyzed Enantioselective Allyl-Allyl Cross-Coupling, A Mechanism-Guided Solution

    OpenAIRE

    Ardolino, Michael J.; Morken, James P.

    2014-01-01

    Under the influence of a chiral bidentate diphosphine ligand, the Pd-catalyzed asymmetric cross-coupling of allylboron reagents and allylic electrophiles establishes 1,5-dienes with adjacent stereocenters in high regio- and stereoselectivity. . A mechanistic study of the coupling utilizing reaction calorimetry and density functional theory analysis suggests that the reaction operates through an inner-sphere 3,3'-reductive elimination pathway, which is both rate- and stereodefining. Coupled wi...

  19. Solvent-Controlled, Tunable β-OAc and β-H Elimination in Rh(III)-Catalyzed Allyl Acetate and Aryl Amide Coupling via C-H Activation.

    Science.gov (United States)

    Dai, Huimin; Yu, Chao; Wang, Zihao; Yan, Hong; Lu, Changsheng

    2016-07-15

    The Heck reaction between arenes and allyl acetate has led to cinnamyl derivatives and allyl products depending on the regioselectivity of β-elimination. The regioselectivity can be controlled by the solvent in the Rh(III)-catalyzed arene-allyl acetate coupling via C-H activation: (1) in THF, cinnamyl derivatives via β-H elimination were generated; (2) in MeOH, allyl products via β-OAc elimination were produced. Both routes have advantages such as excellent γ-selectivity toward allyl acetate, good to excellent yields, and broad substrate scope. PMID:27351917

  20. Targeting Reactive Carbonyl Species with Natural Sequestering Agents

    Directory of Open Access Journals (Sweden)

    Sung Won Hwang

    2016-02-01

    Full Text Available Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents for reactive carbonyl species, various analytical techniques such as spectrophotometry, high performance liquid chromatography, western blot, and mass spectrometry have been utilized. In particular, recent advances using a novel high resolution mass spectrometry approach allows screening of complex mixtures such as natural products for their sequestering ability of reactive carbonyl species. To overcome the limited bioavailability and bioefficacy of natural products, new techniques using nanoparticles and nanocarriers may offer a new attractive strategy for increased in vivo utilization and targeted delivery of bioactives.

  1. Targeting Reactive Carbonyl Species with Natural Sequestering Agents.

    Science.gov (United States)

    Hwang, Sung Won; Lee, Yoon-Mi; Aldini, Giancarlo; Yeum, Kyung-Jin

    2016-01-01

    Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents for reactive carbonyl species, various analytical techniques such as spectrophotometry, high performance liquid chromatography, western blot, and mass spectrometry have been utilized. In particular, recent advances using a novel high resolution mass spectrometry approach allows screening of complex mixtures such as natural products for their sequestering ability of reactive carbonyl species. To overcome the limited bioavailability and bioefficacy of natural products, new techniques using nanoparticles and nanocarriers may offer a new attractive strategy for increased in vivo utilization and targeted delivery of bioactives. PMID:26927058

  2. Theoretical Estimate of Hydride Affinities of Aromatic Carbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    AI Teng; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Aromatic carbonyl compounds are one type of the most important organic compounds, and the reductions ofthem by hydride agents such as LiAlH4 or NaBH4 are widely used in organic synthesis. The reactivity of carbonyl compounds generally increases in the following order: ketone < aldehyde, and amide < acid < ester < acid halide, which could be related to their hydride affinities (HA). In the previous paper, Robert[1] calculated the absolute HAof a series of small non-aromatic carbonyl compounds. In this paper, we use DFT method at B3LYP/6-311 + + G (2d, 2p)∥B3LYP/6-31 + G* level to estimate hydride affinities of five groups of aromatic carbonyl compounds. The detailed results are listed in Table 1.

  3. Targeting Reactive Carbonyl Species with Natural Sequestering Agents

    OpenAIRE

    Sung Won Hwang; Yoon-Mi Lee; Giancarlo Aldini; Kyung-Jin Yeum

    2016-01-01

    Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, including metabolic disorders and neurodegenerative diseases. In an effort to identify sequestering agents...

  4. Carbonyl species characteristics during the evaporation of essential oils

    Science.gov (United States)

    Chiang, Hsiu-Mei; Chiu, Hua-Hsien; Lai, Yen-Ming; Chen, Ching-Yen; Chiang, Hung-Lung

    2010-06-01

    Carbonyls emitted from essential oils can affect the air quality when they are used in indoors, especially under poor ventilation conditions. Lavender, lemon, rose, rosemary, and tea tree oils were selected as typical and popular essential oils to investigate in terms of composition, thermal characteristics and fifteen carbonyl constituents. Based on thermogravimetric (TG) analysis, the activation energy was 7.6-8.3 kcal mol -1, the reaction order was in the range of 0.6-0.7 and the frequency factor was 360-2838 min -1. Formaldehyde, acetaldehyde, acetone, and propionaldehyde were the dominant carbonyl compounds, and their concentrations were 0.034-0.170 ppm. The emission factors of carbonyl compounds were 2.10-3.70 mg g -1, and acetone, propionaldehyde, acetaldehyde, and formaldehyde accounted for a high portion of the emission factor of carbonyl compounds in essential oil exhaust. Some unhealthy carbonyl species such as formaldehyde and valeraldehyde, were measured at low-temperature during the vaporization of essential oils, indicating a potential effect on indoor air quality and human health.

  5. Synthesis of telechelic vinyl/allyl functional siloxane copolymers with structural control

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Javakhishvili, Irakli; Jensen, Rasmus Egekjær;

    2014-01-01

    Multifunctional siloxane copolymers with terminal vinyl or allyl functional groups are synthesised through the borane-catalysed polycondensation of hydrosilanes and alkoxysilanes. Copolymers of varying mole- cular weights ( M ̄ w =13200 – 70 300 g mol − 1 ), spatially well-distributed functional ...

  6. Polystyrene-supported Selenides and Selenoxide:Versatile Routes to Synthesize Allylic Alcohols

    Institute of Scientific and Technical Information of China (English)

    Wei Ming XU; You Chu ZHANG; Xian HUANG

    2003-01-01

    Several polystyrene-supported selenides and selenoxide have been prepared firstly. These novel reagents were treated with LDA to produce selenium stabilized carbanions, which reacted with aldehydes and alkyl halides, followed by selenoxide syn-elimination and [2,3] sigmatropic rearrangement respectively to give Z-allylic alcohols stereoselectively.

  7. Syntheses of a Flobufen Metabolite and Dapoxetine Based on Enantioselective Allylation of Aromatic Aldehydes

    Czech Academy of Sciences Publication Activity Database

    Hessler, F.; Korotvička, A.; Nečas, D.; Valterová, Irena; Kotora, M.

    2014-01-01

    Roč. 2014, č. 12 (2014), s. 2543-2548. ISSN 1434-193X Grant ostatní: GA ČR(CZ) GAP207/11/0587 Institutional support: RVO:61388963 Keywords : synthetic methods * asymmetric catalysis * organocatalysis * allylation * aldehydes * enantioselectivity Subject RIV: CC - Organic Chemistry Impact factor: 3.065, year: 2014

  8. Organocatalytic asymmetric allylic amination of Morita–Baylis–Hillman carbonates of isatins

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2012-08-01

    Full Text Available The investigation of a Lewis base catalyzed asymmetric allylic amination of Morita–Baylis–Hillman carbonates derived from isatins afforded an electrophilic pathway to access multifunctional oxindoles bearing a C3-quaternary stereocenter, provided with good to excellent enantioselectivity (up to 94% ee and in high yields (up to 97%.

  9. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  10. Rationalizing Ring-Size Selectivity in Intramolecular Pd-Catalyzed Allylations of Resonance-Stabilized Carbanions

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Mader, Mary M.; Vitale, Maxime; Prestat, Guillaume; Poli, Giovanni

    2003-01-01

    Computational methods were applied to the Pd-catalyzed intramolecular allylations of resonance-stabilized carbanions obtained from amide and ketone substrates, with the aim of rationalizing the endo- vs. exo-selectivity in the cyclizations. In addition, ester substrates were prepared and subjecte...

  11. Oxidative allylic rearrangement of cycloalkenols: Formal total synthesis of enantiomerically pure trisporic acid B

    Directory of Open Access Journals (Sweden)

    Bernhard Westermann

    2011-04-01

    Full Text Available Enantiomerically highly enriched unsaturated β-ketoesters bearing a quaternary stereocenter can be utilized as building blocks for the synthesis of natural occurring terpenes, i. a., trisporic acid and its derivatives. An advanced building block has been synthesized in a short reaction sequence, which involves an oxidative allylic rearrangement initiated by pyridinium dichromate (PDC as the key step.

  12. Enantioselective copper catalyzed allylic alkylation using Grignard reagents; Applications in synthesis

    NARCIS (Netherlands)

    Zijl, Anthoni Wouter van

    2009-01-01

    Enantioselective copper catalyzed allylic alkylation is a powerful carbon-carbon bond forming reaction. In this thesis the development of a new catalyst for the use of Grignard reagents in this reaction is described. This catalyst is based on copper and the ligand Taniaphos. The high regio- and enan

  13. Modeling the Complete Catalytic Cycle of Aspartoacylase.

    Science.gov (United States)

    Kots, Ekaterina D; Khrenova, Maria G; Lushchekina, Sofya V; Varfolomeev, Sergei D; Grigorenko, Bella L; Nemukhin, Alexander V

    2016-05-12

    The complete catalytic cycle of aspartoacylase (ASPA), a zinc-dependent enzyme responsible for cleavage of N-acetyl-l-aspartate, is characterized by the methods of molecular modeling. The reaction energy profile connecting the enzyme-substrate (ES) and the enzyme-product (EP) complexes is constructed by the quantum mechanics/molecular mechanics (QM/MM) method assisted by the molecular dynamics (MD) simulations with the QM/MM potentials. Starting from the crystal structure of ASPA complexed with the intermediate analogue, the minimum-energy geometry configurations and the corresponding transition states are located. The stages of substrate binding to the enzyme active site and release of the products are modeled by MD calculations with the replica-exchange umbrella sampling technique. It is shown that the first reaction steps, nucleophilic attack of a zinc-bound nucleophilic water molecule at the carbonyl carbon and the amide bond cleavage, are consistent with the glutamate-assisted mechanism hypothesized for the zinc-dependent hydrolases. The stages of formation of the products, acetate and l-aspartate, and regeneration of the enzyme are characterized for the first time. The constructed free energy diagram from the reactants to the products suggests that the enzyme regeneration, but not the nucleophilic attack of the catalytic water molecule, corresponds to the rate-determining stage of the full catalytic cycle of ASPA. PMID:27089954

  14. Traditional reactive carbonyl scavengers do not prevent the carbonylation of brain proteins induced by acute glutathione depletion

    OpenAIRE

    Zheng, J; Bizzozero, O. A.

    2010-01-01

    This study investigated the effect of reactive carbonyl species (RCS)-trapping agents on the formation of protein carbonyls during depletion of brain glutathione (GSH). To this end, rat brain slices were incubated with the GSH-depletor diethyl maleate in the absence or presence of chemically different RCS scavengers (hydralazine, methoxylamine, aminoguanidine, pyridoxamine, carnosine, taurine and z-histidine hydrazide). Despite their strong reactivity towards the most common RCS, none of the ...

  15. Structural evidence for a programmed general base in the active site of a catalytic antibody

    OpenAIRE

    Golinelli-Pimpaneau, Béatrice; Gonçalves, Olivier; Dintinger, Thierry; Blanchard, Dominique; Knossow, Marcel; Tellier, Charles

    2000-01-01

    The crystal structure of the complex of a catalytic antibody with its cationic hapten at 1.9-Å resolution demonstrates that the hapten amidinium group is stabilized through an ionic pair interaction with the carboxylate of a combining-site residue. The location of this carboxylate allows it to act as a general base in an allylic rearrangement. When compared with structures of other antibody complexes in which the positive moiety of the hapten is stabilized mostly by cation–π interactions, thi...

  16. Synthesis of Novel Chiral Dibenzo [ a, c ] cycloheptadiene Bis(oxazoline) and Catalytic Asymmetric Reactions

    Institute of Scientific and Technical Information of China (English)

    FU Bin; DU Da-Ming; WANG Jian-Bo

    2003-01-01

    @@ Over the last decade, C2-symmetric chiral oxazoline metal complexes have been recognized as an effective classof chiral catalyst in a variety of transition metal catalyzed asymmetric reactions. [1] High catalytic activities and enantiomeric excesses have been obtained using C2-symmetric chiral ligands in conjunction with suitable transition metal ion, for example, the hydrosilylation of ketone, allylic alkylation, Michael addition, Diels-Alder cycloaddition, and cyclopropanation. Thus, the design and synthesis of new chiral oxazoline ligands have inspired many scientists to work with great efforts.

  17. Efficient synthesis of ureas by direct palladium-catalyzed oxidative carbonylation of amines.

    Science.gov (United States)

    Gabriele, Bartolo; Salerno, Giuseppe; Mancuso, Raffaella; Costa, Mirco

    2004-07-01

    A general synthesis of symmetrically disubstituted ureas and trisubstituted ureas by direct Pd-catalyzed oxidative carbonylation of primary amines or of a mixture of a primary and a secondary amine, respectively, with unprecedented catalytic efficiencies for this kind of process, is reported. Reactions are carried out at 90-100 degrees C in DME as the solvent in the presence of PdI(2) in conjunction with an excess of KI as the catalytic system and under 20 atm of a 4:1 mixture of CO and air. In some cases, working in the presence of an excess of CO(2) (40 atm) in addition to CO and air (60 atm total) had a beneficial effect on substrate reactivity and product yield. Cyclic five-membered and six-membered ureas were easily formed from primary diamines. The methodology has been successfully applied to the synthesis of pharmacologically active ureas, such as those deriving from alpha-amino esters or urea NPY5RA-972, a potent antagonist of the neuropeptide Y5 receptor. PMID:15230597

  18. Stereochemistry of ring-opening/cross metathesis reactions of exo- and endo-7-oxabicyclo[2.2.1]hept-5-ene-2-carbonitriles with allyl alcohol and allyl acetate

    Directory of Open Access Journals (Sweden)

    Piotr Wałejko

    2015-10-01

    Full Text Available The ROCM reactions of exo- and endo-2-cyano-7-oxanorbornenes with allyl alcohol or allyl acetate promoted by different ruthenium alkylidene catalysts were studied. The stereochemical outcome of the reactions was established. The issues concerning chemo- (ROCM vs ROMP, regio- (1-2- vs 1-3-product formation, and stereo- (E/Z isomerism selectivity of reactions under various conditions are discussed. Surprisingly good yields of the ROCM products were obtained under neat conditions.

  19. Clinical features of schizophrenia with enhanced carbonyl stress.

    Science.gov (United States)

    Miyashita, Mitsuhiro; Arai, Makoto; Kobori, Akiko; Ichikawa, Tomoe; Toriumi, Kazuya; Niizato, Kazuhiro; Oshima, Kenichi; Okazaki, Yuji; Yoshikawa, Takeo; Amano, Naoji; Miyata, Toshio; Itokawa, Masanari

    2014-09-01

    Accumulating evidence suggests that advanced glycation end products, generated as a consequence of facilitated carbonyl stress, are implicated in the development of a variety of diseases. These diseases include neurodegenerative illnesses, such as Alzheimer disease. Pyridoxamine is one of the 3 forms of vitamin B6, and it acts by combating carbonyl stress and inhibiting the formation of AGEs. Depletion of pyridoxamine due to enhanced carbonyl stress eventually leads to a decrease in the other forms of vitamin B6, namely pyridoxal and pyridoxine. We previously reported that higher levels of plasma pentosidine, a well-known biomarker for advanced glycation end products, and decreased serum pyridoxal levels were found in a subpopulation of schizophrenic patients. However, there is as yet no clinical characterization of this subset of schizophrenia. In this study, we found that these patients shared many clinical features with treatment-resistant schizophrenia. These include a higher proportion of inpatients, low educational status, longer durations of hospitalization, and higher doses of antipsychotic medication, compared with patients without carbonyl stress. Interestingly, psychopathological symptoms showed a tendency towards negative association with serum vitamin B6 levels. Our results support the idea that treatment regimes reducing carbonyl stress, such as supplementation of pyridoxamine, could provide novel therapeutic benefits for this subgroup of patients. PMID:24062594

  20. Vibronic spectra of the allyl radical at 6-8 eV with resonance-enhanced multiphoton ionization technique

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The allyl radical was produced in molecular beam by pyrolysis of allyl iodide. The vibronic spectra from ground state to six new electronic states of the allyl radical at 6-8 eV, p?3dxz , p?3dxy, and p?ns (n=4, 6, 7, 8) were observed firstly with the aid of time-of-flight mass spectroscopy and resonance-enhanced multiphoton ionization technique. Vibrational progression of n7 (C3 bend) with gross spacing of about 430 cm-1 was observed in ns Rydberg states. The adiabatic ionization potential of the allyl radical was obtained to be (65641 ± 20) cm-1 ((8.138 ± 0.002) eV) by fitting the term values of ns (n=4,6,7,8) Rydberg states with Rydberg formula.

  1. Isolation determination of garlic allyl sulfides and their antioxidant activity%大蒜烯丙基硫化物的分离鉴定及抗氧化性

    Institute of Scientific and Technical Information of China (English)

    刘玲; 陈琭璐; 张瑶; 白冰; 纪淑娟

    2015-01-01

    through comparing the compounds of SAC, ACSO and GSAC with glutathione (GSH) to evaluate the antioxidation. SAC, ACSO and GSAC were isolated from garlic bulbs using ion-exchange chromatography and pre-HPLC (high performance liquid chromatography). Their molecular structures were identified by high performance liquid chromatography-electrospray ionization-mass/mass spectrometry (HPLC-ESI-MS/MS), proton nuclear magnetic resonance (1H NMR), carbon-13 nuclear magnetic resonance (13C NMR) and specific rotatory power. SAC and ACSO which yielded the expected [M+H]+ of m/z 162.1 and 177.8 by the measurement of mass spectrometry under positive ion mode were conferred asS-allyl-L-cysteine (C6H11O2NS) andS-allyl-L-cysteine sulfoxide (C6H11O3NS) respectively compared with the data of corresponding standard. GSAC, showing the corresponding [M-H]- of m/z 288.8, was identified asγ-glutamyl-S-allyl-L-cysteine (C11H18O5N2S) by HPLC-MS. The1H NMR spectrum of SAC and ACSOindicated the presence of the cysteinyl (δ 2.96 and 3.83, 3H) and (δ 3.26 and 4.13, 3H) moieties. The13C NMR spectrum of compound SAC and ACSO showed the presence of the cysteinyl carboxyl (δ 175.6 andδ 188.0) carbons. Similarly, the1H NMR spectrum of GSAC indicated the presence of the glutamyl (δ 2.32-2.43, 2.66 and 3.46, 5H) and cysteinyl (δ 2.75 and 4.76, 3H) moieties. The13C NMR spectrum of GSACrevealed the presence of 11 magnetically nonequivalent carbon atoms, with three of them being the glutamyl carboxyl, glutamyl carbonyl and cysteinyl carboxyl (δ 182.5, 183.2 and 184.4) carbons. Meanwhile, the scavenging activity of DPPH free radical and the chelating activity of iron ion by allyl-substituted sulfides (SAC, ACSO and GSAC) were determined with reference to cysteine derivative of GSH. The scavenging activity of DPPH free radical had no significant difference between GSH (71.14%) and both of SAC (73.55%) andGSAC (72.68%). Iron ion is one of the main oxidizing auxiliaries which can initiate free radical in

  2. Confirming the existence of π-allyl-palladium intermediates during the reaction of meta photocycloadducts with palladium(ii) compounds

    OpenAIRE

    Penkett, Clive S; Brann, Paul J; Woolford, Jason A.; Kahan, Rachel J

    2013-01-01

    The transient existence of π-allyl-palladium intermediates formed by the reaction of Pd(OAc)2 and anisole-derived meta photocycloadducts has been demonstrated using NMR techniques. The intermediates tended to be short-lived and underwent rapid reductive elimination of palladium metal to form allylic acetates, however this degradation process could be delayed by changing the reaction solvent from acetonitrile to chloroform.

  3. Anti-Markovnikov Hydroalkylation of Allylic Amine Derivatives via a Palladium–Catalyzed Reductive Cross-Coupling Reaction

    OpenAIRE

    DeLuca, Ryan J.; Sigman, Matthew S.

    2011-01-01

    A palladium-catalyzed hydroalkylation reaction of allylic amine derivatives by alkylzinc reagents is reported. This reductive cross-coupling yields anti-Markovnikov products using a variety of allylic amine protecting groups. Preliminary mechanistic studies suggest that a reversible β-hydride elimination/hydride insertion process furnishes the primary Pd-alkyl intermediate, which then undergoes transmetallation followed by reductive elimination to form a new sp3-sp3 carbon-carbon bond.

  4. Enantioselective Allylic C-H Oxidation of Terminal Olefins to Isochromans by Palladium(II)/Chiral Sulfoxide Catalysis.

    Science.gov (United States)

    Ammann, Stephen E; Liu, Wei; White, M Christina

    2016-08-01

    The enantioselective synthesis of isochroman motifs has been accomplished by palladium(II)-catalyzed allylic C-H oxidation from terminal olefin precursors. Critical to the success of this goal was the development and utilization of a novel chiral aryl sulfoxide-oxazoline (ArSOX) ligand. The allylic C-H oxidation reaction proceeds with the broadest scope and highest levels of asymmetric induction reported to date (avg. 92 % ee, 13 examples with greater than 90 % ee). PMID:27376625

  5. Traditional reactive carbonyl scavengers do not prevent the carbonylation of brain proteins induced by acute glutathione depletion.

    Science.gov (United States)

    Zheng, J; Bizzozero, O A

    2010-03-01

    This study investigated the effect of reactive carbonyl species (RCS)-trapping agents on the formation of protein carbonyls during depletion of brain glutathione (GSH). To this end, rat brain slices were incubated with the GSH-depletor diethyl maleate in the absence or presence of chemically different RCS scavengers (hydralazine, methoxylamine, aminoguanidine, pyridoxamine, carnosine, taurine and z-histidine hydrazide). Despite their strong reactivity towards the most common RCS, none of the scavengers tested, with the exception of hydralazine, prevented protein carbonylation. These findings suggest that the majority of protein-associated carbonyl groups in this oxidative stress paradigm do not derive from stable lipid peroxidation products like malondialdehyde (MDA), acrolein and 4-hydroxynonenal (4-HNE). This conclusion was confirmed by the observation that the amount of MDA-, acrolein- and 4-HNE-protein adducts does not increase upon GSH depletion. Additional studies revealed that the efficacy of hydralazine at preventing carbonylation was due to its ability to reduce oxidative stress, most likely by inhibiting mitochondrial production of superoxide and/or by scavenging lipid free radicals. PMID:20001647

  6. Infrared Photodissociation Spectroscopy of Metal Oxide Carbonyl Cations.

    Science.gov (United States)

    Brathwaite, Antonio D.; Duncan, Michael A.

    2013-06-01

    Mass selected metal oxide-carbonyl cations of the form MO_{m}(CO)_{n}^{+} are studied via infrared laser photodissociation spectroscopy, in the 600-2300cm^{1} region. Insight into the structure and bonding of these complexes is obtained from the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations are carried out in support of the experimental data. Insight into the bonding of CO ligands to metal oxides is obtained and the effect of oxidation on the carbonyl stretching frequency is revealed.

  7. Synthetic Studies on Tricyclic Diterpenoids: Direct Allylic Amination Reaction of Isopimaric Acid Derivatives.

    Science.gov (United States)

    Timoshenko, Mariya A; Kharitonov, Yurii V; Shakirov, Makhmut M; Bagryanskaya, Irina Yu; Shults, Elvira E

    2016-02-01

    A selective synthesis of 7- or 14-nitrogen containing tricyclic diterpenoids was completed according to a strategy in which the key step was the catalyzed direct allylic amination of methyl 14α-hydroxy-15,16-dihydroisopimarate with a wide variety of nitrogenated nucleophiles. It was revealed that the selectivity of the reaction depends on the nature of nucleophile. The catalyzed reaction of the mentioned diterpenoid allylic alcohol with 3-nitroaniline, 3-(trifluoromethyl)aniline, and 4-(trifluoromethyl)aniline yield the subsequent 7α-, 7β- and 14αnitrogen-containing diterpenoids. The reaction with 2-nitroaniline, 4-nitro-2-chloroaniline, 4-methoxy-2-nitroaniline, phenylsulfamide, or tert-butyl carbamate proceeds with the formation of 7α-nitrogen-substituted diterpenoids as the main products. PMID:27308214

  8. Crystal structure of (E-3-allyl-2-sulfanylidene-5-[(thiophen-2-ylmethylidene]thiazolidin-4-one

    Directory of Open Access Journals (Sweden)

    Rahhal El Ajlaoui

    2015-06-01

    Full Text Available Molecules of the title compound, C11H9NOS3, are built up by one thiophene and one 2-thioxathiazolidin-4-one ring which are connected by a methylene bridge. In addition, there is an allyl substituent attached to nitrogen. The two rings are almost coplanar, making a dihedral angle between them of 0.76 (11°. The allyl group is oriented perpendicular to the mean plane through both ring systems. The crystal structure exhibits inversion dimers in which molecules are linked by pairs of C—H...O hydrogen bonds. Additional π–π interactions between neighboring thiophene and 2-thioxathiazolidin-4-one rings [intercentroid distance = 3.694 (2 Å] lead to the formation of a three-dimensional network.

  9. Rheology and viscosity scaling of gelatin/1-allyl-3-methylimidazolium chloride solution

    Science.gov (United States)

    Qiao, Congde; Li, Tianduo; Zhang, Ling; Yang, Xiaodeng; Xu, Jing

    2014-05-01

    Gelatin/1-allyl-3-methylimidazolium chloride solutions are prepared by using the ionic liquid 1-allyl-3-methylimidazolium chloride as solvent. The rheological properties of the gelatin solutions have been investigated by steady shear and oscillatory shear measurements. In the steady shear measurements, the gelatin solutions with high concentration show a shear-thinning flow behavior at high shear rates, while another shear thinning region can be found in the dilute gelatin solutions at low shear rates. The overlap concentration of gelatin in [amim]Cl is 1.0 wt% and the entanglement concentration is a factor of 4 larger (4.0 wt%). The high intrinsic viscosity (295 mL/g) indicates that the gelatin chains dispersed freely in the ionic liquid and no aggregation phenomenon occurs in dilute gelatin solution. The frequency dependences of modulus changed obviously with an increase in gelatin concentration. The empirical time-temperature superposition principle holds true at the experimental temperatures.

  10. Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics.

    Science.gov (United States)

    Westbrook, Charles K; Pitz, William J; Mehl, Marco; Glaude, Pierre-Alexandre; Herbinet, Olivier; Bax, Sarah; Battin-Leclerc, Frederique; Mathieu, Olivier; Petersen, Eric L; Bugler, John; Curran, Henry J

    2015-07-16

    Two experimental studies have been carried out on the oxidation of 2-methyl-2-butene, one measuring ignition delay times behind reflected shock waves in a stainless steel shock tube, and the other measuring fuel, intermediate, and product species mole fractions in a jet-stirred reactor (JSR). The shock tube ignition experiments were carried out at three different pressures, approximately 1.7, 11.2, and 31 atm, and at each pressure, fuel-lean (ϕ = 0.5), stoichiometric (ϕ = 1.0), and fuel-rich (ϕ = 2.0) mixtures were examined, with each fuel/oxygen mixture diluted in 99% Ar, for initial postshock temperatures between 1330 and 1730 K. The JSR experiments were performed at nearly atmospheric pressure (800 Torr), with stoichiometric fuel/oxygen mixtures with 0.01 mole fraction of 2M2B fuel, a residence time in the reactor of 1.5 s, and mole fractions of 36 different chemical species were measured over a temperature range from 600 to 1150 K. These JSR experiments represent the first such study reporting detailed species measurements for an unsaturated, branched hydrocarbon fuel larger than iso-butene. A detailed chemical kinetic reaction mechanism was developed to study the important reaction pathways in these experiments, with particular attention on the role played by allylic C-H bonds and allylic pentenyl radicals. The results show that, at high temperatures, this olefinic fuel reacts rapidly, similar to related alkane fuels, but the pronounced thermal stability of the allylic pentenyl species inhibits low temperature reactivity, so 2M2B does not produce "cool flames" or negative temperature coefficient behavior. The connections between olefin hydrocarbon fuels, resulting allylic fuel radicals, the resulting lack of low-temperature reactivity, and the gasoline engine concept of octane sensitivity are discussed. PMID:25822578

  11. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    OpenAIRE

    Saini AkalRachna K; Tyler Robert T; Shim Youn; Reaney Martin JT

    2011-01-01

    Abstract Background Allyl isothiocyanate (AITC) from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP) 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard ...

  12. Iron(III) chloride catalyzed glycosylation of peracylated sugars with allyl/alkynyl alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Narayanaperumal, Senthil; Silva, Rodrigo Cesar da; Monteiro, Julia L.; Correa, Arlene G.; Paixao, Marcio W., E-mail: mwpaixao@ufscar.br [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica

    2012-11-15

    In this work, the use of ferric chloride as an efficient catalyst in glycosylation reactions of sugars in the presence of allyl and alkynyl alcohols is described. The corresponding glycosides were obtained with moderate to good yields. This new procedure presented greater selectivity when compared to classic methods found in the literature. Principal features of this simple method include non-hazardous reaction conditions, low-catalyst loading, good yields and high anomeric selectivity (author)

  13. Lewis base catalyzed enantioselective allylic hydroxylation of Morita-Baylis-Hillman carbonates with water

    KAUST Repository

    Zhu, Bo

    2011-08-19

    A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using 18O-labeling experiments. © 2011 American Chemical Society.

  14. On the key role of water in the allylic activation catalysed by Pd (II) bisphosphinite complexes

    Indian Academy of Sciences (India)

    Rakesh Kumar Sharma; Ashoka G Samuelson

    2006-11-01

    Palladium and platinum complexes of bisphosphinites and bisphosphines derived from mandelic acid have been prepared and characterized. Their ability to catalyze allylation of imines with allyltributylstannane has been studied. Bisphophinite complexes of Pd (II) are shown to be ideal and they work best in the presence of one equivalent of water. The near neutral conditions employed make the catalysts suitable for a wide variety of substrates.

  15. Iron(III) chloride catalyzed glycosylation of peracylated sugars with allyl/alkynyl alcohols

    International Nuclear Information System (INIS)

    In this work, the use of ferric chloride as an efficient catalyst in glycosylation reactions of sugars in the presence of allyl and alkynyl alcohols is described. The corresponding glycosides were obtained with moderate to good yields. This new procedure presented greater selectivity when compared to classic methods found in the literature. Principal features of this simple method include non-hazardous reaction conditions, low-catalyst loading, good yields and high anomeric selectivity (author)

  16. Promoting the Hydrosilylation of Benzaldehyde by Using a Dicationic Antimony-Based Lewis Acid: Evidence for the Double Electrophilic Activation of the Carbonyl Substrate.

    Science.gov (United States)

    Hirai, Masato; Cho, Junsang; Gabbaï, François P

    2016-05-01

    The concomitant activation of carbonyl substrates by two Lewis acids has been investigated by using [1,2-(Ph2 MeSb)2 C6 H4 ](2+) ([1](2+) ), an antimony-based bidentate Lewis acid obtained by methylation of the corresponding distibine. Unlike the simple stibonium cation [Ph3 MeSb](+) , dication [1](2+) efficiently catalyzes the hydrosilylation of benzaldehyde under mild conditions. The catalytic activity of this dication is correlated to its ability to doubly activate the carbonyl functionality of the organic substrate. This view is supported by the isolation of [1-μ2 -DMF][OTf]2 , an adduct, in which the DMF oxygen atom bridges the two antimony centers. PMID:26934491

  17. Iron-Carbonyl-Catalyzed Redox-Neutral [4+2] Annulation of N-H Imines and Internal Alkynes by C-H Bond Activation.

    Science.gov (United States)

    Jia, Teng; Zhao, Chongyang; He, Ruoyu; Chen, Hui; Wang, Congyang

    2016-04-18

    Stoichiometric C-H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C-H transformations have not been developed. Herein, an iron-catalyzed annulation of N-H imines and internal alkynes to furnish cis-3,4-dihydroisoquinolines is described, and represents the first iron-carbonyl-catalyzed C-H activation reaction of arenes. Remarkablely, this is also the first redox-neutral [4+2] annulation of imines and alkynes proceeding by C-H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C-H bond activation to afford a dinuclear ferracycle and a synergetic diiron-promoted H-transfer to the alkyne as the turnover-determining step. PMID:27002210

  18. An XPS study of pulsed plasma polymerised allyl alcohol film growth on polyurethane

    International Nuclear Information System (INIS)

    The growth of highly functionalised poly allyl alcohol films by pulsed plasma polymerisation of CH2 =CHCH2OH on biomedical grade polyurethane has been followed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Film thickness is observed to increase approximately linearly with plasma modification time, suggesting a layer-by-layer growth mode of poly allyl alcohol. Water contact angle measurements reveal the change in the surface free energy of wetting decreases linearly with plasma modification up to the monolayer point after which a constant limiting value of -24 mJ m-2 was attained. Films prepared at 20 W plasma power with a duty cycle of 10 μs:500 μs exhibit a high degree of hydroxyl (-OH) retention with minimal fragmentation of the monomer observed. Increasing the plasma power up to 125 W is found to improve -OH retention at the expense of ether formation generating films close to the monomer stoichiometry. Duty cycle plays an important role in controlling both film composition and thickness, with longer off times increasing -OH retention, while longer on times enhance allyl alcohol film growth

  19. The soft X-ray absorption spectrum of the allyl free radical.

    Science.gov (United States)

    Alagia, M; Bodo, E; Decleva, P; Falcinelli, S; Ponzi, A; Richter, R; Stranges, S

    2013-01-28

    The first experimental study of the X-ray absorption spectrum (XAS) of the allyl free radical, CH(2)CHCH(2), is reported. A supersonic He seeded beam of hyperthermal allyl radicals was crossed by a high resolution synchrotron radiation (SR) in the focus of a 3D ion momentum imaging time-of-flight (TOF) spectrometer to investigate the soft X-ray absorption and fragmentation processes. The XAS, recorded as Total-Ion-Yield (TIY), is dominated by C1s electron excitations from either the central carbon atom, C(C), or the two terminal carbon atoms, C(T), to the frontier orbitals, the semi-occupied-molecular-orbital (SOMO) and the lowest-unoccupied-molecular-orbital (LUMO). All of the intense features in the XAS could only be assigned with the aid of ab initio spectral simulation at the Multi-Configuration Self-Consistent-Field (MCSCF) level of theory, this level being required because of the multi-reference nature of the core-excited state wavefunctions of the open shell molecule. The ionization energies (IEs) of the singlet and triplet states of the C1s ionized allyl radical (XPS) were also calculated at the MCSCF level. PMID:23232557

  20. Nouvelles Réactions d'Allylation Radicalaire : Exploitation de la Rupture homolytique de Liaisons Carbone-Oxygène et Carbone-Carbone

    OpenAIRE

    Debien, Laurent

    2013-01-01

    This PhD thesis is divided in eight chapters. The first three bibliographic chapters present the general principles of radical chemistry, the possibility offered by the xanthate radical chemistry and a review of the radical allylation methods, main focus of this work. The three next chapters are dedicated to the exploitation of the radical allylation of allylic alcohols, recently discovered in our laboratory. The use of such a technology enabled the preparation of functionalized enol ethers, ...

  1. Formation of vesicles with an organometallic amphiphilic bilayer by supramolecular arrangement of metal carbonyl metallosurfactants

    OpenAIRE

    Parera Piella, Elisabet; Comelles, Francesc; Barnadas Rodríguez, Ramon; Suades Ortuño, Joan

    2011-01-01

    Metallo-vesicles are formed in water medium as a result of the supramolecular arrangement of molybdenum carbonyl metallosurfactants. These new kind of surfactants contain a hydrophobic metal carbonyl fragment and are easily prepared from surfactant phosphine ligands

  2. On the Nature of the Intermediates and the Role of Chloride Ions in Pd-Catalyzed Allylic Alkylations: Added Insight from Density Functional Theory

    DEFF Research Database (Denmark)

    Fristrup, Peter; Ahlquist, Mårten Sten Gösta; Tanner, David Ackland;

    2008-01-01

    The reactivity of intermediates in palladium-catalyzed allylic alkylation was investigated using DFT (B3LYP) calculations including a PB-SCRF solvation model. In the presence of both phosphine and chloride ligands, the allyl intermediate is in equilibrium between a cationic eta(3)-allylPd complex...... with two phosphine ligands, the corresponding neutral complex with one phosphine and one chloride ligand, and a neutral eta(1)-allylPd complex with one chloride and two phosphine ligands. The eta(1)-complex is unreactive toward nucleophiles. The cationic eta(3)-complex is the intermediate most...

  3. Iron-Sulfur-Carbonyl and -Nitrosyl Complexes: A Laboratory Experiment.

    Science.gov (United States)

    Glidewell, Christopher; And Others

    1985-01-01

    Background information, materials needed, procedures used, and typical results obtained, are provided for an experiment on iron-sulfur-carbonyl and -nitrosyl complexes. The experiment involved (1) use of inert atmospheric techniques and thin-layer and flexible-column chromatography and (2) interpretation of infrared, hydrogen and carbon-13 nuclear…

  4. Comparing Carbonyl Chemistry in Comprehensive Introductory Organic Chemistry Textbooks

    Science.gov (United States)

    Nelson, Donna J.; Kumar, Ravi; Ramasamy, Saravanan

    2015-01-01

    Learning the chemistry of compounds containing carbonyl groups is difficult for undergraduate students partly because of a convolution of multiple possible reaction sites, competitive reactions taking place at those sites, different criteria needed to discern between the mechanisms of these reactions, and no straightforward selection method…

  5. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    DEFF Research Database (Denmark)

    Marek, Ales; Pedersen, Martin Holst Friborg

    2015-01-01

    An alternative and robust method for the reduction of carbonyl groups by frustrated Lewis pairs (FLPs) is reported in this paper. With its very mild reaction conditions, good to excellent yields, absolute regioselectivity and the non-metallic character of the reagent, it provides an excellent too...

  6. High throughput assay for evaluation of reactive carbonyl scavenging capacity ☆

    OpenAIRE

    N. Vidal; J.P. Cavaille; Graziani, F.; M. Robin; Ouari, O; Pietri, S.; Stocker, P.

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or...

  7. Optimized biotin-hydrazide enrichment and mass spectrometry analysis of peptide carbonyls

    DEFF Research Database (Denmark)

    Havelund, Jesper F.; Wojdyla, K; Jensen, O. N.; Møller, Ian Max; Rogowska-Wrzesinska, A.

    Irreversible cell damage through protein carbonylation is the result of reaction with reactive oxygen species (ROS) and has been coupled to many diseases. The precise molecular consequences of protein carbonylation, however, are still not clear. The localization of the carbonylated amino acid is ...

  8. Catalytic cracking process

    Science.gov (United States)

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  9. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  10. A broadly applicable NHC-Cu-catalyzed approach for efficient, site-, and enantioselective coupling of readily accessible (pinacolato)alkenylboron compounds to allylic phosphates and applications to natural product synthesis.

    Science.gov (United States)

    Gao, Fang; Carr, James L; Hoveyda, Amir H

    2014-02-01

    A set of protocols for catalytic enantioselective allylic substitution (EAS) reactions that allow for additions of alkenyl units to readily accessible allylic electrophiles is disclosed. Transformations afford 1,4-dienes that contain a tertiary carbon stereogenic site and are promoted by 1.0-5.0 mol % of a copper complex of an N-heterocyclic carbene (NHC). Aryl- as well as alkyl-substituted electrophiles bearing a di- or trisubstituted alkene may be employed. Reactions can involve a variety of robust alkenyl-(pinacolatoboron) [alkenyl-B(pin)] compounds that can be either purchased or prepared by various efficient, site-, and/or stereoselective catalytic reactions, such as cross-metathesis or proto-boryl additions to terminal alkynes. Vinyl-, E-, or Z-disubstituted alkenyl-, 1,1-disubstituted alkenyl-, acyclic, or heterocyclic trisubstituted alkenyl groups may be added in up to >98% yield, >98:2 SN2':SN2, and 99:1 enantiomeric ratio (er). NHC-Cu-catalyzed EAS with alkenyl-B(pin) reagents containing a conjugated carboxylic ester or aldehyde group proceed to provide the desired 1,4-diene products in good yield and with high enantioselectivity despite the presence of a sensitive stereogenic tertiary carbon center that could be considered prone to epimerization. In most instances, the alternative approach of utilizing an alkenylmetal reagent (e.g., an Al-based species) represents an incompatible option. The utility of the approach is illustrated through applications to enantioselective synthesis of natural products such as santolina alcohol, semburin, nyasol, heliespirone A, and heliannuol E. PMID:24467274

  11. An efficient synthesis of 2-[carbonyl-11C]acetamido-2-deoxy-D-glucopyranose (N-[carbonyl-11C]acetyl-D-glucosamine)

    International Nuclear Information System (INIS)

    A rapid chemical synthesis of 2-[carbonyl-11C]acetamido-2-deoxy-D-glucopyranose (N-[carbonyl-11C]acetyl-D-glucosamine) starting from [11C]carbon dioxide is described. The total time required for the synthesis, the radiochemical yield, and purity of the titled sugar are ca. 60 min, 49.5% (based on [carbonyl-11C] acetic acid), and >98%, respectively. (author)

  12. Encapsulation of vanadium complexes in inorganic or hybrid matrices via the sol-gel method: application to the epoxidation of allylic alcohols

    International Nuclear Information System (INIS)

    Vanadium complexes have been encapsulated in inorganic (based on hydrolysis/condensation of tetramethyl orthosilicate - TMOS) and hybrid matrices (TMOS plus a co-condensation agent) using the sol-gel method. The resulting solids were tested in the epoxidation of allylic alcohols in the presence of tert-butyl hydroperoxide (TBHP) as the oxidant agent at 70 deg C. When the catalyst was based on [VO(salen)], the hybrid matrix led to higher initial turnover frequencies than the inorganic one for all tested alcohols (trans-3-phenyl-2-methyl-2-propen-1-ol, trans-2-hexen-1-ol, cis-2-hexen-1-ol, 1-octen-3-ol), which might be related to its higher pore diameter. Although no vanadium leaching was observed during the catalytic reactions, recycling experiments with the hybrid catalyst and trans-2-hexen-1-ol showed that some loss of vanadium took place at every Soxhlet washing (performed after every run, using CH2Cl2): a total of 1.5 wt.% after three reactions. In four successive runs, keeping the initial molar ratios, conversions decreased from 100% to 85%, 65% and 40% (in 5h). (author)

  13. A rapid microwave induced synthesis of [carboxyl-14C]-nicotinic acid (vitamin B3) and [carbonyl-14C]-nicotinamide using K14CN

    International Nuclear Information System (INIS)

    Microwave assisted direct aromatic substitution of 3-bromopyridine with K14CN as the cyanide source and catalytic amount of tetrabutylammonium bromide afforded [3-14C]-cyanopyridine 3 in 90% yield. Microwave assisted hydrolysis of 3 with a mixture of concentrated hydrochloric acid and propionic acid afforded [carboxyl-14C]-nicotinic acid in 95% yield whereas microwave assisted hydrolysis of 3 with a mixture of concentrated sulfuric acid and propionic acid afforded [carbonyl-14C]-nicotinamide in 85% yield. (author)

  14. Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products

    Science.gov (United States)

    Smith, Jeremy D.; Kinney, Haley; Anastasio, Cort

    2016-02-01

    We investigated the aqueous photochemistry of six phenolic carbonyls - vanillin, acetovanillone, guaiacyl acetone, syringaldehyde, acetosyringone, and coniferyl aldehyde - that are emitted from wood combustion. The phenolic carbonyls absorb significant amounts of solar radiation and decay rapidly via direct photodegradation, with lifetimes (τ) of 13-140 min under Davis, CA winter solstice sunlight at midday (solar zenith angle = 62°). The one exception is guaiacyl acetone, where the carbonyl group is not directly connected to the aromatic ring: This species absorbs very little sunlight and undergoes direct photodegradation very slowly (τ > 103 min). We also found that the triplet excited states (3C*) of the phenolic carbonyls rapidly oxidize syringol (a methoxyphenol without a carbonyl group), on timescales of 1-5 h for solutions containing 5 μM phenolic carbonyl. The direct photodegradation of the phenolic carbonyls, and the oxidation of syringol by 3C*, both efficiently produce low volatility products, with SOA mass yields ranging from 80 to 140%. Contrary to most aliphatic carbonyls, under typical fog conditions we find that the primary sink for the aromatic phenolic carbonyls is direct photodegradation in the aqueous phase. In areas of significant wood combustion, phenolic carbonyls appear to be small but significant sources of aqueous SOA: over the course of a few hours, nearly all of the phenolic carbonyls will be converted to SOA via direct photodegradation, enhancing the POA mass from wood combustion by approximately 3-5%.

  15. [Carbonyl stress and oxidatively modified proteins in chronic renal failure].

    Science.gov (United States)

    Bargnoux, A-S; Morena, M; Badiou, S; Dupuy, A-M; Canaud, B; Cristol, J-P

    2009-01-01

    Oxidative stress is commonly observed in chronic renal failure patients resulting from an unbalance between overproduction of reactive oxygen species and impairement of defense mechanisms. Proteins appear as potential targets of uremia-induced oxidative stress and may undergo qualitative modifications. Proteins could be directly modified by reactive oxygen species which leads to amino acid oxydation and cross-linking. Proteins could be indirectly modified by reactive carbonyl compounds produced by glycoxidation and lipo-peroxidation. The resulting post-traductional modifications are known as carbonyl stress. In addition, thiols could be oxidized or could react with homocystein leading to homocysteinylation. Finally, tyrosin could be oxidized by myeloperoxidase leading to advanced oxidative protein products (AOPP). Oxidatively modified proteins are increased in chronic renal failure patients and may contribute to exacerbate the oxidative stress/inflammation syndrome. They have been involved in long term complications of uremia such as amyloidosis and accelerated atherosclerosis. PMID:19297289

  16. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation

    Science.gov (United States)

    Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura

    2016-01-01

    Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis.

  17. Selective allylic hydroxylation of acyclic terpenoids by CYP154E1 from Thermobifida fusca YX

    Directory of Open Access Journals (Sweden)

    Anna M. Bogazkaya

    2014-06-01

    Full Text Available Allylic alcohols are valuable precursors in the synthesis of pharmaceutical intermediates, agrochemicals and natural products. Regioselective oxidation of parental alkenes is a challenging task for chemical catalysts and requires several steps including protection and deprotection. Many cytochrome P450 enzymes are known to catalyse selective allylic hydroxylation under mild conditions. Here, we describe CYP154E1 from Thermobifida fusca YX that enables this type of oxidation. Several acyclic terpenoids were tested as possible substrates for CYP154E1, and the regio- and chemoselectivity of their oxidation was investigated. Using a previously established bioinformatics approach we identified position 286 in the active site of CYP154E1 which is putatively involved in substrate binding and thereby might have an effect on enzyme selectivity. To tune regio- and chemoselectivity of the enzyme three mutants at position 286 were constructed and used for substrate oxidation. All formed products were analysed with GC–MS and identified using chemically synthesised authentic samples and known compounds as references. Best regioselectivity towards geraniol and nerol was observed with the wild type enzyme mainly leading to 8-hydroxy derivatives (8-hydroxygeraniol or 8-hydroxynerol with high selectivity (100% and 96% respectively. Highest selectivities during the oxidation of geranylacetone and nerylacetone were observed with the following variants: V286F led mainly to 7-hydroxygeranylacetone (60% of the total product and V286A produced predominantly 12-hydroxynerylacetone (75% of total product. Thus, CYP154E1 and its mutants expand the tool-box for allylic hydroxylation in synthetic chemistry.

  18. Carbonyl sulfide hydrolase from Thiobacillus thioparus strain THI115 is one of the β-carbonic anhydrase family enzymes.

    Science.gov (United States)

    Ogawa, Takahiro; Noguchi, Keiichi; Saito, Masahiko; Nagahata, Yoshiko; Kato, Hiromi; Ohtaki, Akashi; Nakayama, Hiroshi; Dohmae, Naoshi; Matsushita, Yasuhiko; Odaka, Masafumi; Yohda, Masafumi; Nyunoya, Hiroshi; Katayama, Yoko

    2013-03-13

    Carbonyl sulfide (COS) is an atmospheric trace gas leading to sulfate aerosol formation, thereby participating in the global radiation balance and ozone chemistry, but its biological sinks are not well understood. Thiobacillus thioparus strain THI115 can grow on thiocyanate (SCN(-)) as its sole energy source. Previously, we showed that SCN(-) is first converted to COS by thiocyanate hydrolase in T. thioparus strain THI115. In the present work, we purified, characterized, and determined the crystal structure of carbonyl sulfide hydrolase (COSase), which is responsible for the degradation of COS to H2S and CO2, the second step of SCN(-) assimilation. COSase is a homotetramer composed of a 23.4 kDa subunit containing a zinc ion in its catalytic site. The amino acid sequence of COSase is homologous to the β-class carbonic anhydrases (β-CAs). Although the crystal structure including the catalytic site resembles those of the β-CAs, CO2 hydration activity of COSase is negligible compared to those of the β-CAs. The α5 helix and the extra loop (Gly150-Pro158) near the N-terminus of the α6 helix narrow the substrate pathway, which could be responsible for the substrate specificity. The k(cat)/K(m) value, 9.6 × 10(5) s(-1) M(-1), is comparable to those of the β-CAs. COSase hydrolyzes COS over a wide concentration range, including the ambient level, in vitro and in vivo. COSase and its structurally related enzymes are distributed in the clade D in the phylogenetic tree of β-CAs, suggesting that COSase and its related enzymes are one of the catalysts responsible for the global sink of COS. PMID:23406161

  19. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism.

    Science.gov (United States)

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination. PMID:27283477

  20. Special Topic 3B: Acidity, Basicity, and Carbonyl Condensation Reactions

    OpenAIRE

    Christiansen, Mike A

    2012-01-01

    The purpose of this video is to help second-year organic chemistry students review the concepts and questions that most frequently appear on standardized entrance exams, like the MCAT, DAT, PCAT, and GRE. I'll here teach you how to sort molecules according to acidity and basicity. I'll also review the following carbonyl condensation and related reactions: the aldol reaction, the Claisen and intramolecular diketone condensations, and the malonic ester synthesis. --Dr. Mike Christiansen from Ut...

  1. Nucleophilic tetrafluoroethylation of carbonyl compounds with fluorinated sulfones

    Czech Academy of Sciences Publication Activity Database

    Václavík, Jiří; Chernykh, Yana; Jurásek, Bronislav; Beier, Petr

    2015-01-01

    Roč. 169, Jan (2015), s. 24-31. ISSN 0022-1139 R&D Projects: GA ČR GAP207/11/0421 Grant ostatní: GA MŠk(CZ) ED3.2.00/08.0144; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : fluorine * tetrafluoroethylation * sulfones * nucleophilic addition * carbonyl compounds Subject RIV: CC - Organic Chemistry Impact factor: 1.948, year: 2014

  2. Ruthenium(II) carbonyl complexes containing chalconates and triphenylphosphine/arsine

    Indian Academy of Sciences (India)

    P Viswanathamurthi; M Muthukumar

    2011-09-01

    A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L1−4)] (4-15) (E = P or As; B = PPh3, AsPh3 or Py; L = 2'-hydroxychalcone) were synthesized from the reaction of [RuHCl(CO)(EPh3)2(B)] (1-3) (E = P or As; B = PPh3, AsPh3 or Py) with equimolar chalcone in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (IR, electronic, 1H, 31P{1H}, and 13C NMR) methods. On the basis of data obtained, an octahedral structure has been assigned for all the complexes. The complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of -methylmorpholine--oxide (NMO) as co-oxidant and were also found to be efficient transfer hydrogenation catalysts. The antifungal properties of the ligands and their complexes have also been examined and compared with standard Bavistin.

  3. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  4. Combined experimental and theoretical mechanistic investigation of the Barbier allylation in aqueous media

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Fristrup, Peter; Madsen, Robert

    2008-01-01

    The Barbier allylation of a series of para-substituted benzaldehydes with allylbromide in the presence of Zn, In, Sn, Sb, Bi, and Mg was investigated using competition experiments. In all cases, the slope of the Hammett plots indicated a build-up of negative charge in the selectivity-determining ...... effect of solvent described by a polarized continuum model. The calculated secondary deuterium isotope effects based on this mechanism were found to be in good agreement with experimental values, thus adding further support to this mechanistic scenario....

  5. Synthesis of Aryl Allyl Ether in the Recyclable Ionic Liquid [bmim]PF6

    Institute of Scientific and Technical Information of China (English)

    Zhou Mei-Yun; Li Yi-Qun; Xu Xin-Ming

    2004-01-01

    Ionic liquids, especially imidazonium salts, have recently gained recognition as possible environmentally benign alternative chemical process solvents. This is mainly due to their nonvolatile nature, insolubility in some solvents as well as their ability to dissolve a wide range of organic and inorganic materials, allowing the ionic liquids easy recovery and recycling. Examples of their application in organic reactions have been summarized in a number of recent review articles.1Aryl allyl ether is very useful intermediate in organic synthesis. The Williamson reaction is a well knows method for the preparation ethers. However, the reaction of alkylating agents with the phenoxide ions was conventionally carried out in the organic solvents. The usual solvents for this type of reaction are DCM, 2 DMSO, 3 DMF, 4 CH3CN5 etc. With the current desire to avoid the use of organic molecular solvents in organic synthesis, we decide to investigate the use of the ionic liquid for the alternative solvent for the Williamson reaction to prepare the aryl allyl ethers. The ionic liquid employed here was the moisture stable 1-butyl-3-methylimidazolium hexafluorophosphate [bmim]PF6.6 The ionic liquid is non-volatile, thermally stable, and depending on the anion, can present low immiscible with water,alkanes and dialky ethers. We have now found that aryl allyl ethers can have been obtained from various phenols and allyl bromide in the presence of potassium hydroxide in [bmim]PF6 as a replacement for classical organic solvents in the ambient temperature. The results are shown in Scheme 1.The reaction were carried out by simple mixing the phenolwith the ally bromide and potassium hydroxide in [bmim]PF6 and stirred at room temperature for 4h. The results are summarized in Table 1.In conclusion, Williamson reaction can be successfully conducted in ionic liquid [bmim]PF6 with a number of advantages: the procedure is simple, the reaction condition is mild and the yields are excellent

  6. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    Science.gov (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  7. Thermophysical properties and reaction kinetics of γ-irradiated poly allyl diglycol carbonates nuclear track detector

    Science.gov (United States)

    Elmaghraby, Elsayed K.; Seddik, Usama

    2015-07-01

    Kinetic thermogravimetric technique was used to study the effect of gamma irradiation on the poly allyl diglycol carbonates (PADC) within the dose range from 50 to ? Gy. The approach of Coats-Redfern was used to analyze the data. Results showed that low doses around 50 Gy make the polymer slightly more resistive to heat treatment. Higher radiation doses cause severe effects in the samples accompanied by the formation of lower molecular mass species and consequent crosslinking. Results support the domination of re-polymerization and crosslinking for the γ radiation interaction PADC at dose below about ? Gy, while the situation is inverted above ? Gy in which chain secession dominates.

  8. N-(2-Allyl-4-ethoxy-2H-indazol-5-yl-4-methylbenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    Hakima Chicha

    2014-05-01

    Full Text Available The indazole ring system of the title compound, C19H21N3O3S, is almost planar (r.m.s. deviation = 0.0192 Å and forms dihedral angles of 77.99 (15 and 83.9 (3° with the benzene ring and allyl group, respectively. In the crystal, centrosymmetrically related molecules are connected by pairs of N—H...O hydrogen bonds into dimers, which are further linked by C—H...O hydrogen bonds, forming columns parallel to the b axis.

  9. N-(1-Allyl-3-chloro-4-ethoxy-1H-indazol-5-yl-4-methylbenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    Hakima Chicha

    2014-06-01

    Full Text Available In the title compound, C19H20ClN3O3S, the benzene ring is inclined to the indazole ring system by 51.23 (8°. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers which stack in columns parallel to [011]. The atoms in the allyl group are disordered over two sets of sites with an occupancy ratio of 0.624 (8:0.376 (8.

  10. Allyl Isothiocyanate Increases MRP1 Function and Expression in a Human Bronchial Epithelial Cell Line

    OpenAIRE

    Dian-lei Wang; Chen-yin Wang; Yin Cao; Xian Zhang; Xiu-hua Tao; Li-li Yang; Jin-pei Chen; Shan-shan Wang; Ze-geng Li

    2014-01-01

    Multidrug resistance-associated protein 1 (MRP1), a member of the ATP-binding cassette (ABC) superfamily of transporters, plays an important role in normal lung physiology by protecting cells against oxidative stress and toxic xenobiotics. The present study investigates the effects of allyl isothiocyanate (AITC) on MRP1 mRNA and MRP1 protein expression and transporter activity in the immortalised human bronchial epithelial cell line 16HBE14o-. MRP1 mRNA and MRP1 protein expression in 16HBE14o...

  11. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    International Nuclear Information System (INIS)

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation

  12. Unusual selectivity-determining factors in the phosphine-free Heck arylation of allyl ethers

    DEFF Research Database (Denmark)

    Ambrogio, I.; Fabrizi, G.; Cacchi, S.;

    2008-01-01

    tolerates a variety of functional groups, including ether, amide, alcohol, aldehyde, ketone, ester, cyano, carboxylic acid, and nitro groups. Ortho-substituted arylating agents afforded moderate yields in some cases, though good to high yields were obtained with o-iodotoluene, iodovanillin, and 1......The Heck reaction of aryl iodides and bromides with allyl ethers has been investigated. Using phosphinefree Pd(OAc)(2) in DNIF at 90 degrees C in the presence of Bu4NOAc, the reaction gave cinnamyl derivatives, usually in good to high yields, with a wide range of aryl halides. The reaction...

  13. Design of the passive personal dosimeter for miners using an allyl diglycol carbonate plastic. Phase 1

    International Nuclear Information System (INIS)

    The report summarizes the results of the feasibility study on the design and development of a passive personal dosimeter incorporating an allyl diglycol carbonate plastic (CR39) detector, for use by uranium miners. Based upon the feasibility study, a passive personal dosimeter using a capacitor-type electrostatic enhancement device has been designed. Preliminary tests indicate that the prototype could be used in the mine environment to differentiate radon and thoron daughters with a detection efficiency comparable to that of a typical active device. Further study is required, however, into the possible influence in the mine environment of local variations in charged fraction, upon the calibration of this dosimeter

  14. Direct asymmetric allylic alkenylation of N-itaconimides with Morita-Baylis-Hillman carbonates

    KAUST Repository

    Yang, Wenguo

    2012-08-03

    The asymmetric allylic alkenylation of Morita-Baylis-Hillman (MBH) carbonates with N-itaconimides as nucleophiles has been developed using a commercially available Cinchona alkaloid catalyst. A variety of multifunctional chiral α-methylene-β-maleimide esters were attained in moderate to excellent yields (up to 99%) and good to excellent enantioselectivities (up to 91% ee). The origin of the regio- and stereoselectivity was verified by DFT methods. Calculated geometries and relative energies of various transition states strongly support the observed regio- and enantioselectivity. © 2012 American Chemical Society.

  15. Lanthanum triflate triggered synthesis of tetrahydroquinazolinone derivatives of N-allyl quinolone and their biological assessment

    Directory of Open Access Journals (Sweden)

    Jardosh Hardik H.

    2012-01-01

    Full Text Available A series of 24 derivatives of tetrahydroquinazolinone has been synthesized by one-pot cyclocondensation reaction of N-allyl quinolones, cyclic β-diketones and (thiourea/N-phenylthiourea in presence of lanthanum triflate catalyst. This methodology allowed us to achieve the products in excellent yield by stirring at room temperature. All the synthesized compounds were investigated against a representative panel of pathogenic strains using broth microdilution MIC (minimum inhibitory concentration method for their in vitro antimicrobial activity. Amongst these sets of heterocyclic compounds 5h, 6b, 6h, 5f, 5l, 5n and 6g found to have admirable activity.

  16. Catalytic Synthesis Lactobionic Acid

    Directory of Open Access Journals (Sweden)

    V.G. Borodina

    2014-07-01

    Full Text Available Gold nanoparticles are obtained, characterized and deposited on the carrier. Conducted catalytic synthesis of lactobionic acid from lactose. Received lactobionic acid identify on the IR spectrum.

  17. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  18. Catalytic Coanda combustion

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.D.; Smith, A.G.; Kopmels, M.

    1992-09-16

    A catalytic reaction is enhanced by the use of the Coanda effect to maximise contact between reactant and catalyst. A device utilising this principle comprises a Coanda surface which directs the flow of fuel from a slot to form a primary jet which entrains the surrounding ambient air and forms a combustible mixture for reaction on a catalytic surface. The Coanda surface may have an internal or external nozzle which may be axi-symmetric or two-dimensional. (author)

  19. Iodine-Catalyzed Decarboxylative Amidation of β,γ-Unsaturated Carboxylic Acids with Chloramine Salts Leading to Allylic Amides.

    Science.gov (United States)

    Kiyokawa, Kensuke; Kojima, Takumi; Hishikawa, Yusuke; Minakata, Satoshi

    2015-10-26

    The iodine-catalyzed decarboxylative amidation of β,γ-unsaturated carboxylic acids with chloramine salts is described. This method enables the regioselective synthesis of allylic amides from various types of β,γ-unsaturated carboxylic acids containing substituents at the α- and β-positions. In the reaction, N-iodo-N-chloroamides, generated by the reaction of a chloramine salt with I2 , function as a key active species. The reaction provides an attractive alternative to existing methods for the synthesis of useful secondary allylic amine derivatives. PMID:26493878

  20. Beads,Necklaces, Chains and Strings in Capping Carbonyl Clusters

    Directory of Open Access Journals (Sweden)

    Enos Masheija Kiremire

    2015-09-01

    Full Text Available The paper attempts to explain at length the close relationship between transition metal carbonyl clusters with main group clusters especially the boranes using the 14n and 4n rules. When the ‘shielding’ electrons are removed from a transition metal carbonyl cluster and becomes ‘naked’, it resembles a corresponding one in the main group elements. A an expanded table of osmium carbonyl clusters was constructed using the capping fragment Os(CO2(14n-2 and the fragment Os(CO3 (14n+0. The table reveals the fact that the known series such closo, nido and arachno are part and parcel of a wide range of series especially the capping series 14n+q, where q takes up negative multiple integers of two including 0 such as such = 0, -2,-4, -6, and so on. The linkage between capping series in transition metal carbonyl clusters has also been identified. Apart from the capping series generated in the table, there is another type of series where the skeletal cluster elements remained the same but the number of carbonyl ligands successively decreased. These types of series are referred to as stripping series. Mapping generating functions were also derived which produces any cluster formula or series required. Also the table shows that many clusters form utilizing some of its atoms as closo nucleus around which the larger ones are built and thus forming clusters within larger clusters. The table may be used to categorize a given cluster formula that falls within its range. Otherwise, using the 14n rule or 4n rule can be used for cluster classification. Furthermore, the table indicated that atoms, fragments and molecules can be classified into series. Through this approach of using series, Hoffmann’s important isolobal relationship of chemical species can splendidly be explained.Using the 14n rule and 4n rules creates a framework under which chemical species such as atoms, fragments, molecules and ions some of which may appear unrelated from main group

  1. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  2. Carbonyl compounds in gas and particle phases of mainstream cigarette smoke

    International Nuclear Information System (INIS)

    Carbonyl compounds (carbonyls) are important constituents of cigarette smoke and some are toxic and may be carcinogenic or mutagenic to humans. In this study carbonyl emissions in the gas and particle phases of mainstream cigarette smoke were assessed by GC-MS with pentafluorophenyl hydrazine (PFPH) derivatization. Seven brands of cigarettes and one brand of cigar common in the UK market and having differing nicotine, tar and carbon monoxide yields were investigated. Sixteen carbonyl components were identified in gaseous emissions and twenty in the particle phase. In the gaseous emissions, acetaldehyde presented as the predominant species, followed by formaldehyde, 2-propenal, and pentanal. In the particulate emissions, 1-hydroxy-2-propanone was the most abundant followed by formaldehyde, benzaldehyde, and 2,5-dimethylbenzaldehyde. Significant differences were found in carbonyl emissions among the brands of cigarettes. The gaseous carbonyl emissions varied in the range of 216-405 μg cigarette-1 (μg cig-1) and the particulate carbonyl emissions varied in the range of 23-127 μg cig-1. Positive correlations were found between the total emission of carbonyls, tar yield and carbon monoxide yield. Similar gas/particle (G/P) partitioning ratios of carbonyls were found among all cigarettes, which implies that G/P partitions of carbonyls in smoke mainly depend on the physical properties of the carbonyls. The gaseous carbonyl emissions were enhanced by 40% to 130% when some of the water, accounting for 8-12% of cigarettes in mass, was removed from the tobacco. Non-filtered cigarettes showed significantly higher carbonyl emissions compared to their filtered equivalents. Carbonyl particulate accounted for 11-19% by mass of total particulate matter from tobacco smoke. The cigar generated 806 μg cig-1 gaseous and 141 μg cig-1 particulate carbonyls, which is 2-4 times greater than the cigarettes. - Highlights: → Carbonyl emission factors in both gas (16 species) and

  3. Carbonyl compounds in gas and particle phases of mainstream cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaobing, E-mail: pangxbyuanj@gmail.com [Department of Chemistry, University of York, Heslington, York, YO10 5DD (United Kingdom); Lewis, Alastair C., E-mail: ally.lewis@york.ac.uk [National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD (United Kingdom)

    2011-11-01

    Carbonyl compounds (carbonyls) are important constituents of cigarette smoke and some are toxic and may be carcinogenic or mutagenic to humans. In this study carbonyl emissions in the gas and particle phases of mainstream cigarette smoke were assessed by GC-MS with pentafluorophenyl hydrazine (PFPH) derivatization. Seven brands of cigarettes and one brand of cigar common in the UK market and having differing nicotine, tar and carbon monoxide yields were investigated. Sixteen carbonyl components were identified in gaseous emissions and twenty in the particle phase. In the gaseous emissions, acetaldehyde presented as the predominant species, followed by formaldehyde, 2-propenal, and pentanal. In the particulate emissions, 1-hydroxy-2-propanone was the most abundant followed by formaldehyde, benzaldehyde, and 2,5-dimethylbenzaldehyde. Significant differences were found in carbonyl emissions among the brands of cigarettes. The gaseous carbonyl emissions varied in the range of 216-405 {mu}g cigarette{sup -1} ({mu}g cig{sup -1}) and the particulate carbonyl emissions varied in the range of 23-127 {mu}g cig{sup -1}. Positive correlations were found between the total emission of carbonyls, tar yield and carbon monoxide yield. Similar gas/particle (G/P) partitioning ratios of carbonyls were found among all cigarettes, which implies that G/P partitions of carbonyls in smoke mainly depend on the physical properties of the carbonyls. The gaseous carbonyl emissions were enhanced by 40% to 130% when some of the water, accounting for 8-12% of cigarettes in mass, was removed from the tobacco. Non-filtered cigarettes showed significantly higher carbonyl emissions compared to their filtered equivalents. Carbonyl particulate accounted for 11-19% by mass of total particulate matter from tobacco smoke. The cigar generated 806 {mu}g cig{sup -1} gaseous and 141 {mu}g cig{sup -1} particulate carbonyls, which is 2-4 times greater than the cigarettes. - Highlights: {yields} Carbonyl

  4. Ambient levels of carbonyl compounds and their sources in Guangzhou, China

    Science.gov (United States)

    Feng, Yanli; Wen, Sheng; Chen, Yingjun; Wang, Xinming; Lü, Huixiong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    Ambient levels of carbonyl compounds and their possible sources, vehicular exhaust and cooking exhaust, were studied at seven places in Guangzhou, including five districts (a residential area, an industrial area, a botanical garden, a downtown area and a semi-rural area), a bus station and a restaurant during the period of June-September 2003. Nineteen carbonyl compounds were identified in the ambient air, of which acetone was the most abundant carbonyl, followed by formaldehyde and acetaldehyde. Only little changes were found in carbonyl concentration levels in the five different districts because of their dispersion and mixture in the atmosphere in summer. The lower correlations between the carbonyls' concentrations might result from the mixture of carbonyls derived from different sources, including strong photochemical reactions at noon in summer. Formaldehyde and acetaldehyde were the main carbonyls in bus station, while straight-chain carbonyls were comparatively abundant in cooking exhaust. Besides vehicular exhaust, cooking might be another major source of carbonyl compounds in Guangzhou City, especially for high molecular weight carbonyls.

  5. Indoor carbonyl compounds in an academic building in Beijing, China: concentrations and influencing factors

    Institute of Scientific and Technical Information of China (English)

    Chuanjia JIANG; Pengyi ZHANG

    2012-01-01

    Carbonyl compounds in indoor air are of great concern for their adverse health effects. Between February and May, 2009, concentrations of 13 carbonyl compounds were measured in an academic building in Beijing, China. Total concentration of the detected carbonyls ranged from 20.7 to 189.1 I.tg.m3, and among them acetone and formaldehyde were the most abundant, with mean concentrations of 26.4 and 22.6gg.m-3, respectively. Average indoor concentrations of other carbonyls were below I 0 gg. m~3. Principal component analysis identified a combined effect of common indoor carbonyl sources and ventilation on indoor carbonyl levels. Diurnal variations of the carbonyl compounds were investigated in one office room, and carbonyl concentrations tended to be lower in the daytime than at night, due to enhanced ventilation. Average concentrations of carbonyl compounds in the office room were generally higher in early May than in late February, indicating the influence of temperature. Carbo- nyl source emission rates from both the room and human occupants were estimated during two lectures, based on one-compartment mass balance model. The influence of human occupants on indoor carbonyl concentrations varies with environmental conditions, and may become signifi- cant in the case of a large human occupancy.

  6. Allyl thiourea as a corrosion inhibitor for cold rolled steel in H3PO4 solution

    International Nuclear Information System (INIS)

    Highlights: ► Allyl thiourea (ATU) acts as a good inhibitor for steel in 1.0 M H3PO4. ► Inhibition efficiency increases slightly with the temperature at 0.2–0.5 mM. ► The adsorption of ATU on steel surface obeys Langmuir adsorption isotherm. ► ATU behaves as a mixed-type inhibitor. - Abstract: The inhibition effect of allyl thiourea (ATU) on the corrosion of cold rolled steel (CRS) in 1.0 M H3PO4 solution at 20–50 °C was studied by weight loss, potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) methods. The results show that ATU is a good inhibitor, and the maximum inhibition efficiency of 0.5 mM inhibitor is higher than 95% at all studied temperatures. The adsorption of ATU obeys Langmuir adsorption isotherm. Polarisation curves show that ATU behaves as a mixed-type inhibitor. EIS spectra exhibit one capacitive loop. The inhibition action is also evidenced by SEM.

  7. Further exploration of the heterocyclic diversity accessible from the allylation chemistry of indigo

    Directory of Open Access Journals (Sweden)

    Alireza Shakoori

    2015-04-01

    Full Text Available Diversity-directed synthesis based on the cascade allylation chemistry of indigo, with its embedded 2,2’-diindolic core, has resulted in rapid access to new examples of the hydroxy-8a,13-dihydroazepino[1,2-a:3,4-b']diindol-14(8H-one skeleton in up to 51% yield. Additionally a derivative of the novel bridged heterocycle 7,8-dihydro-6H-6,8a-epoxyazepino[1,2-a:3,4-b']diindol-14(13H-one was produced when the olefin of the allylic substrate was terminally disubstituted. Further optimisation also produced viable one-pot syntheses of derivatives of the spiro(indoline-2,9'-pyrido[1,2-a]indol-3-one (65% and pyrido[1,2,3-s,t]indolo[1,2-a]azepino[3,4-b]indol-17-one (72% heterocyclic systems. Ring-closing metathesis of the N,O-diallylic spiro structure and subsequent Claisen rearrangement gave rise to the new (1R,8aS,17aS-rel-1,2-dihydro-1-vinyl-8H,17H,9H-benz[2',3']pyrrolizino[1',7a':2,3]pyrido[1,2-a]indole-8,17-(2H,9H-dione heterocyclic system.

  8. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

    Science.gov (United States)

    Porter, David; Poon, Belinda M-L

    2015-01-01

    Summary Iron(II) complexes of the tetradentate amines tris(2-pyridylmethyl)amine (TPA) and N,N′-bis(2-pyridylmethyl)-N,N′-dimethylethane-1,2-diamine (BPMEN) are established catalysts of C–O bond formation, oxidising hydrocarbon substrates via hydroxylation, epoxidation and dihydroxylation pathways. Herein we report the capacity of these catalysts to promote C–N bond formation, via allylic amination of alkenes. The combination of N-Boc-hydroxylamine with either FeTPA (1 mol %) or FeBPMEN (10 mol %) converts cyclohexene to the allylic hydroxylamine (tert-butyl cyclohex-2-en-1-yl(hydroxy)carbamate) in moderate yields. Spectroscopic studies and trapping experiments suggest the reaction proceeds via a nitroso–ene mechanism, with involvement of a free N-Boc-nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+)-(2R,2′R)-1,1′-bis(2-pyridylmethyl)-2,2′-bipyrrolidine ((R,R′)-PDP). PMID:26734101

  9. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

    Directory of Open Access Journals (Sweden)

    David Porter

    2015-12-01

    Full Text Available Iron(II complexes of the tetradentate amines tris(2-pyridylmethylamine (TPA and N,N′-bis(2-pyridylmethyl-N,N′-dimethylethane-1,2-diamine (BPMEN are established catalysts of C–O bond formation, oxidising hydrocarbon substrates via hydroxylation, epoxidation and dihydroxylation pathways. Herein we report the capacity of these catalysts to promote C–N bond formation, via allylic amination of alkenes. The combination of N-Boc-hydroxylamine with either FeTPA (1 mol % or FeBPMEN (10 mol % converts cyclohexene to the allylic hydroxylamine (tert-butyl cyclohex-2-en-1-yl(hydroxycarbamate in moderate yields. Spectroscopic studies and trapping experiments suggest the reaction proceeds via a nitroso–ene mechanism, with involvement of a free N-Boc-nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+-(2R,2′R-1,1′-bis(2-pyridylmethyl-2,2′-bipyrrolidine ((R,R′-PDP.

  10. Catalytic coherence transformations

    Science.gov (United States)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  11. Organoselenium-catalyzed, hydroxy-controlled regio- and stereoselective amination of terminal alkenes: efficient synthesis of 3-amino allylic alcohols.

    Science.gov (United States)

    Deng, Zhimin; Wei, Jialiang; Liao, Lihao; Huang, Haiyan; Zhao, Xiaodan

    2015-04-17

    An efficient route to prepare 3-amino allylic alcohols in excellent regio- and stereoselectivity in the presence of bases by orangoselenium catalysis has been developed. In the absence of bases α,β-unsaturated aldehydes were formed in up to 97% yield. Control experiments reveal that the hydroxy group is crucial for the direct amination. PMID:25849818

  12. Mechanistic Dichotomy in the Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes Catalyzed by Chiral Pyridine N-Oxides

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Stončius, S.; Bell, M.; Castelluzzo, F.; Ramírez-López, P.; Biedermannová, Lada; Langer, V.; Rulíšek, Lubomír; Kočovský, P.

    2013-01-01

    Roč. 19, č. 28 (2013), s. 9167-9185. ISSN 0947-6539 R&D Projects: GA MŠk LC512 Institutional support: RVO:61388963 ; RVO:86652036 Keywords : allylation * allylsilanes * calculations * organocatalysis * pyridine N-oxides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013

  13. Synthesis of novel chiral phosphine-triazine ligand derived from α-phenylethylamine for Pd-catalyzed asymmetric allylic alkylation

    Institute of Scientific and Technical Information of China (English)

    Jia Di Huang; Xiang Ping Hu; Zhuo Zheng

    2008-01-01

    A novel chiral phosphine-triazine ligand was synthesized from chiral model reaction of Pd-catalyzed allylic alkylation of rac-l,3-diphenylprop-2-en-l-yl pivalate with dimethyl malonate, good enantioselectivity (90% e.e.) was obtained by using this ligand.

  14. Growth behavior prediction of fresh catfish fillet with Pseudomonas aeruginosa under stresses of allyl isothiocyanate, temperature and modified atmosphere

    Science.gov (United States)

    Pseudomonas aeruginosa, a common spoilage microorganism in fish, grows rapidly when temperature rises above 4 degree C. The combination of allyl isothiocyanate (AIT) and modified atmosphere (MA) was applied and proved to be effective to retard the growth of P. aeruginosa. The objective of this resea...

  15. Carbonyl-twisted 6-acyl-2-dialkylaminonaphthalenes as solvent acidity sensors

    OpenAIRE

    Green, Amy M.; Naughton, Hannah R.; Nealy, Zachariah B.; Robert D. Pike; Abelt, Christopher J.

    2012-01-01

    Derivatives of 2-propionyl-6-dimethylaminonaphthalene (PRODAN) with twisted carbonyl groups were investigated as highly responsive sensors of H-bond donating ability. The PRODAN derivative bearing a pivaloyl group (4) was prepared. The torsion angle between the carbonyl and naphthalene is 26° in the crystal. It shows solvatochromism that is similar to five other PRODAN derivatives (1-3, 5-6). Twisted-carbonyl derivatives 3, 4 and 6 show strong fluorescence quenching in protic solvents. The or...

  16. Determination of carbonyl compounds in air by HPLC

    International Nuclear Information System (INIS)

    A method for the determination of seven carbonyl compounds in air is presented. The procedure involve sampling of air by a Sep-Pak cartridge impregnated with 2,4-dinitrophenylhydrazine. Elution was done with 3 mL of acetonitrile and the eluate was diluted to 5 mL. The analysis was done by HPLC with UV detection and external standard method quantification. It has been achieved relative standard deviations about 5% and detection limits of 80 ng/cartridge for formaldehyde, acetaldehyde and acetone+acrolein. Three different types of samples (rural, urban, petrol emission) were successfully analyzed

  17. Analysis of dynamic protein carbonylation in rice embryo during germination through AP-SWATH.

    Science.gov (United States)

    Zhang, Hui; He, Dongli; Yu, Jianlan; Li, Ming; Damaris, Rebecca Njeri; Gupta, Ravi; Kim, Sun Tae; Yang, Pingfang

    2016-03-01

    Seed germination is an important aspect of the plant life cycle, during which, reactive oxygen species (ROS) accumulate. The accumulation of ROS results in an increase in protein oxidation of which carbonylation is the most canonical one. However, there is insufficient information concerning protein oxidation, especially carbonylation and its contribution to seed germination. In this study, biotin hydrazide labeled chromatography combined with sequential window acquisition of all theoretical fragment ion spectra (SWATH) method was used to analyze the dynamic pattern of protein carbonylation in rice embryos during germination. A total of 1872 unique proteins were quantified, among which 288 carbonylated peptides corresponding to 144 proteins were determined based on the filtering through mass shifts of modified amino acids. In addition, 66 carbonylated proteins were further analyzed based on their carbonylation intensity in four stages of germination. These identified carbonylated proteins were mainly involved in maintaining the levels of ROS, abscisic acid and seed reserves. Remarkably, a peroxiredoxin was found with 23 unique carbonylated peptides, and the expression of which was consistent with its increased activity. This study describes the dynamic pattern of carbonylated proteins during seed germination, and may help to further understand the biochemical mechanisms on this process. PMID:26801057

  18. The carbonyl oxide-aldehyde complex: a new intermediate of the ozonolysis reaction

    Science.gov (United States)

    Cremer, Dieter; Kraka, Elfi; McKee, M. L.; Radharkrishnan, T. P.

    1991-12-01

    MP4(SDQ)/6-31G (d,p) calculations suggest that the ozonolysis of alkenes in solution phase does not proceed via carbonyl oxide, but via a dipole complex between aldehyde and carbonyl oxide, which is 9 kcal/mol more stable than the separated molecules. The dipole complex is probably formed in the solvent cage upon decomposition of primary ozonide to aldehyde and carbonyl oxide. Rotation of either aldehyde or carbonyl oxide in the solvent cage leads to an antiparallel alignment of molecular dipole moments and dipole-dipole attraction.

  19. Two-dimensional gel electrophoretic detection of protein carbonyls derivatized with biotin-hydrazide.

    Science.gov (United States)

    Wu, Jinzi; Luo, Xiaoting; Jing, Siqun; Yan, Liang-Jun

    2016-04-15

    Protein carbonyls are protein oxidation products that are often used to measure the magnitude of protein oxidative damage induced by reactive oxygen or reactive nitrogen species. Protein carbonyls have been found to be elevated during aging and in age-related diseases such as stroke, diabetes, and neurodegenerative diseases. In the present article, we provide detailed protocols for detection of mitochondrial protein carbonyls labeled with biotin-hydrazide followed by 2-dimensional isoelectric focusing (IEF)/SDS-PAGE and Western blotting probed with horse-radish peroxidase-conjugated streptavidin. The presented procedures can also be modified for detection of carbonylation of non-mitochondrial proteins. PMID:26590475

  20. Fluorescence labeling of carbonylated lipids and proteins in cells using coumarin-hydrazide

    Directory of Open Access Journals (Sweden)

    Venukumar Vemula

    2015-08-01

    Full Text Available Carbonylation is a generic term which refers to reactive carbonyl groups present in biomolecules due to oxidative reactions induced by reactive oxygen species. Carbonylated proteins, lipids and nucleic acids have been intensively studied and often associated with onset or progression of oxidative stress related disorders. In order to reveal underlying carbonylation pathways and biological relevance, it is crucial to study their intracellular formation and spatial distribution. Carbonylated species are usually identified and quantified in cell lysates and body fluids after derivatization using specific chemical probes. However, spatial cellular and tissue distribution have been less often investigated. Here, we report coumarin-hydrazide, a fluorescent chemical probe for time- and cost-efficient labeling of cellular carbonyls followed by fluorescence microscopy to evaluate their intracellular formation both in time and space. The specificity of coumarin-hydrazide was confirmed in time- and dose-dependent experiments using human primary fibroblasts stressed with paraquat and compared with conventional DNPH-based immunocytochemistry. Both techniques stained carbonylated species accumulated in cytoplasm with strong perinuclear clustering. Using a complimentary array of analytical methods specificity of coumarin-hydrazide probe towards both protein- and lipid-bound carbonyls has been shown. Additionally, co-distribution of carbonylated species and oxidized phospholipids was demonstrated.

  1. Structure of the catalytic domain of the Tannerella forsythia matrix metallopeptidase karilysin in complex with a tetrapeptidic inhibitor

    DEFF Research Database (Denmark)

    Guevara, Tibisay; Ksiazek, Miroslaw; Skottrup, Peter Durand;

    2013-01-01

    Karilysin is the only metallopeptidase identified as a virulence factor in the odontopathogen Tannerella forsythia owing to its deleterious effect on the host immune response during bacterial infection. The very close structural and sequence-based similarity of its catalytic domain (Kly18...... to the primed side of the active-site cleft in a substrate-like manner. The catalytic zinc ion is clamped by the α-amino group and the carbonyl O atom of the serine, thus distantly mimicking the general manner of binding of hydroxamate inhibitors to metallopeptidases and contributing, together with three zinc...

  2. trans-Di-μ-carbonyl-bis{carbonyl[η5-2,3,4,5-tetramethyl-1-(5-methyl-2-furylcyclopentadienyl]ruthenium(I}(Ru—Ru

    Directory of Open Access Journals (Sweden)

    Jin Lin

    2009-08-01

    Full Text Available In the crystal structure of the title compound, [Ru2(C14H17O2(CO4], each RuI atom is connected to one end-on and two bridging carbonyl groups and one cyclopentadienyl ring. The two Ru atoms are connected into binuclear complexes via two bridging carbonyl groups, forming four-membered rings which are located on centres of inversion. The Ru—Ru distance of 2.7483 (11 Å corresponds to a single bond. The two carbonyl groups in these binuclear complexes are trans-oriented.

  3. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  4. Catalytic Phosphination and Arsination

    Institute of Scientific and Technical Information of China (English)

    Kwong Fuk Yee; Chan Kin Shing

    2004-01-01

    The catalytic, user-friendly phosphination and arsination of aryl halides and triflates by triphenylphosphine and triphenylarsine using palladium catalysts have provided a facile synthesis of functionalized aryl phosphines and arsines in neutral media. Modification of the cynaoarisne yielded optically active N, As ligands which will be screened in various asymmetric catalysis.

  5. Monolithic catalytic igniters

    Science.gov (United States)

    La Ferla, R.; Tuffias, R. H.; Jang, Q.

    1993-01-01

    Catalytic igniters offer the potential for excellent reliability and simplicity for use with the diergolic bipropellant oxygen/hydrogen as well as with the monopropellant hydrazine. State-of-the-art catalyst beds - noble metal/granular pellet carriers - currently used in hydrazine engines are limited by carrier stability, which limits the hot-fire temperature, and by poor thermal response due to the large thermal mass. Moreover, questions remain with regard to longevity and reliability of these catalysts. In this work, Ultramet investigated the feasibility of fabricating monolithic catalyst beds that overcome the limitations of current catalytic igniters via a combination of chemical vapor deposition (CVD) iridium coatings and chemical vapor infiltration (CVI) refractory ceramic foams. It was found that under all flow conditions and O2:H2 mass ratios tested, a high surface area monolithic bed outperformed a Shell 405 bed. Additionally, it was found that monolithic catalytic igniters, specifically porous ceramic foams fabricated by CVD/CVI processing, can be fabricated whose catalytic performance is better than Shell 405 and with significantly lower flow restriction, from materials that can operate at 2000 C or higher.

  6. Prosthetic iodination methods for radiolabeling of carbonyl moieties

    International Nuclear Information System (INIS)

    The demonstrable need for an indirect, prosthetic-group, radioiodination of carbonyl-containing biomolecules such as ketosteroids, carbohydrates, gangliosides, glycoproteins and aldehydo- and keto-drugs. This need has been addressed by developing a route to iodinated (radioiodination) aryl hydrazides which are subsequently condensed with carbonyl-containing moieties. This dissertation is directed at improving the utility of this reaction and at comparing the hydrolytic stability of the resulting hydrazones to that of similar tyramine imines, a type presently employed in indirect radioiodinations. The aryl carboxylic acid hydrazones were virtually inert to hydrolysis under simulated physiological conditions which caused imine bond rupture. Further improvements to this new prosthetic labeling method were sought in simplifying its two-step, acid-catalyzed cleavage of triazenooxadiazoles (the protected, pre-labeling form of the aryl carboxylic acid hydrazides) to the iodinated hydrazide. Synthetic procedures were explored which might yield non-conjugated aryl oxadiazoles--bearing methylenes inserted between the phenyl and the heterocyclic ring--in the expectation that these substances would be less stable and would hydrolyze in a single-acid-catalyzed step. Four synthetic pathways to amino (or nitro) aryl-methyl oxadiazoles could not be advanced beyond the open-chain precursors of the heterocyclics. Pyrolysis, thermolysis, and catalyzed cyclization reagents could not effect ring closure. A method was developed, however, to an oxadiazolone which can serve as a protective functionality for the iodinated aryl acid hydrazides

  7. IRC analysis of methanol carbonylation reaction catalyzed by rhodium complex

    Institute of Scientific and Technical Information of China (English)

    HAO Maorong; FENG Wenlin; JI Yongqiang; LEI Ming

    2004-01-01

    In the reaction cycle for methanol carbonylation catalyzed by Rh complex, the structure geometries of the reactant, intermediates, transition states and product of each elemental reaction have been studied by using the energy gradient method at HF/LANL2DZ level, and the changes of their potential profiles have also been calculated. Through IRC analyses of the transition states for each elemental reaction, it is confirmed that the various structure geometries obtained are stationary points on the cycle reaction pathway of methanol carbonylation catalyzed by Rh complex, and the changes are given in energies and structure geometries of the reactant molecules along the reaction pathway of lowest energy. It has been proposed that the geometrical conversions of intermediates play an important role during the cycle reaction. Through analyses of structure geometries, it has been suggested that, in addition to cis- and trans- structure exchange linkage of catalysis reactive species, the two pathways, cis- and trans-cata- lyzed cycle reactions, can also be linked through geometrical conversion of intermediates, of which the activation energy is 49.79 kJ/mol. Moreover, the reductive elimination elemental reaction may be neither cis-cycle nor trans- one, showing that the cycle reaction can be achieved through various pathways. However different the pathway, the oxidative addition elemental reaction of CH3I is the rate-controlling step.

  8. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    KAUST Repository

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  9. Cutting thin sheets of allyl diglycol carbonate (CR-39) with a CW CO2, laser

    International Nuclear Information System (INIS)

    Recent studies have shown that Allyl Diglycol Carbonate, commercially known as CR-39 (the most sensitive among etch track detectors) can detect relativistic oxygen and other heavier nuclei. We are using large sheets of special grade CR-39 (DOP) in our experiment in Space Shuttle-Spacelab-3. As CR-39 is a highly brittle substance, special care is required to cut CR-39 shetts, especially in case of large sheets and circular cuts. A study of cutting of CR-39 sheets using laser light is described in this paper. It has been found that this method is sufficiently fast to handle large number of sheets and also equally safe for big sheets. A maximum speed up to 200 cm/min with a 5 x 104 W/cm2 laser is obtained during the present study. This study also shows that laser cutting does not affect the track properties of CR-39. (orig.)

  10. On the allylic hydroxylation of ent-kaurenic acid with SeO2

    Directory of Open Access Journals (Sweden)

    Alexis Peña

    2014-12-01

    Full Text Available Allylic hydroxylation of ent-kaur-16-en-19-oic acid (1a with SeO2 was tried using either dioxane or dichloro-methane as solvents as well as different reagent and reaction time conditions at room temperature. Oxidation of 1a in dioxane with H2O2 decreased reaction time but led to the formation of many by-products on addition to ent-15D-hydroxy-kaur-16-en-19-oic acid (2a, which was the main product. Using dichloromethane as solvent without addition of H2O2 made the reaction slower and yielded mainly 2a (70% at 24 h, 53% at 48 h and ent-17-oxo-kaur- 15,16-en-19-oic acid (3a,18% at 24 h, 43% at 48 h. The course of the reaction was followed by GC-MS, after methylation of the reaction mixtures.

  11. Theoretical study on the gas phase reaction of allyl chloride with hydroxyl radical.

    Science.gov (United States)

    Zhang, Yunju; Chao, Kai; Sun, Jingyu; Zhang, Wanqiao; Shi, Haijie; Yao, Cen; Su, Zhongmin; Pan, Xiumei; Zhang, Jingping; Wang, Rongshun

    2014-02-28

    The reaction of allyl chloride with the hydroxyl radical has been investigated on a sound theoretical basis. This is the first time to gain a conclusive insight into the reaction mechanism and kinetics for important pathways in detail. The reaction mechanism confirms that OH addition to the C=C double bond forms the chemically activated adducts, IM1 (CH2CHOHCH2Cl) and IM2 (CH2OHCHCH2Cl) via low barriers, and direct H-abstraction paths may also occur. Variational transition state model and multichannel RRKM theory are employed to calculate the temperature-, pressure-dependent rate constants. The calculated rate constants are in good agreement with the experimental data. At 100 Torr with He as bath gas, IM6 formed by collisional stabilization is the major products in the temperature range 200-600 K; the production of CH2CHCHCl via hydrogen abstractions becomes dominant at high temperatures (600-3000 K). PMID:24588171

  12. Low-temperature Electrodeposition of Aluminium from Lewis Acidic 1-Allyl-3-methylimidazolium Chloroaluminate Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    郑勇; 张锁江; 吕兴梅; 王倩; 左勇; 刘恋

    2012-01-01

    Lewis acidic 1-allyl-3-methylimidazolium chloroaluminate ionic liquids were used as promising electrolytes in the low-temperature electrodeposition of aluminium. Systematic studies on deposition process have been performed by cYClic voltammetry and chronoamperometry. The surface morphology and X-ray diffraction (XRD) patterns of deposits prepared at different experimental conditions were also investigated. It was shown that the nucleation density and growth rate of crystallites had a great effect on the structure of aluminium deposited. The crys- tallographic orientation of deposits was mainly influenced by temperature and current density. Smooth, dense and well adherent aluminium coatings were obtained on copper substrates at 10-25 mA.cm^-2 and 313.2-353.2 K. More- over, the current efficiency of deposition and purity of aluminium have been significantly improved, demonstrating that the ionic liquids tested have a prospectful potential in electroplating and electrorefining of aluminium.

  13. Analysis of allyl diglycol carbonate by laser induced-breakdown spectroscopy

    International Nuclear Information System (INIS)

    Laser-induced breakdown spectroscopy (LIBS) has been used to identify the impurities in the allyl diglycol carbonate, which is used as a charged particle track recording material in solid-state nuclear track detectors. Impurities of magnesium, calcium, sodium and silicon are detected. Plasma parameters such as temperature and electron density are also calculated at optimized conditions in air and argon atmosphere using the silicon lines. The temperature of the LIBS plasma produced in argon atmosphere was higher than the temperature of the LIBS plasma produced in air. Variation in the emission intensity of the carbon I line (247.8561 nm) with respect to acquisition delay and laser power is also studied. It is found that the intensities of Ca and Na lines from LIBS spectra were enhanced 30–40 times in an argon atmosphere as compared to air. Hence LIBS in an argon atmosphere can be used for better identification of impurities in plastics. (paper)

  14. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo

    2012-02-08

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  15. Catalytic N-sulfonyliminium ion-mediated cyclizations to alpha-vinyl-substituted isoquinolines and beta-carbolines and applications in metathesis.

    Science.gov (United States)

    Kinderman, Sape S; Wekking, Monique M T; van Maarseveen, Jan H; Schoemaker, Hans E; Hiemstra, Henk; Rutjes, Floris P J T

    2005-07-01

    [reaction: see text] Catalytic Sn(OTf)2-induced cyclization of linear, aryl-containing allylic N,O-acetals produced vinyl-substituted tetrahydroisoquinolines and tetrahydro-1H-beta-carbolines. The usefulness of the vinyl moiety in the resulting products was demonstrated via the synthesis of various key building blocks for alkaloid structures. The alpha-vinyl moiety was utilized in a [2,3] sigmatropic rearrangement, in ring-closing metathesis and a cross-metathesis-based synthesis of vincantril, an antianoxia agent, and a synthetic member of the vincamine type natural products. PMID:15989333

  16. Reaction Process Phase Transfer Catalysis for Selective Oxidative-Reductive Carbonylation to Monuron%反应过程相转移催化选择性氧化还原羰基化合成灭草隆除草剂

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ The basic problem of a homogeneous catalytic process is the separation of products from catalytic reaction system. Two main important developments, to immobilize the solid complex catalyst on the solid support and to use the two-phase (aqueous-organic solvent) catalysis, have achieved to solve this problem. However, some difficulties, such as the continuous loss of the catalyst and lower aqueous solubility of the ubstrate, still remain as before[1,2]. Recently, a complex catalyst of nonmetal selenium with triethylamine in the presence of CO, which possesses the reaction process phase transfer property, has been developed[3~7]. This catalytic system provides both advantages from homogeneous catalysis and heterogeneous catalysis, resulting in simple and complete separation of the product from the catalytic system. It differs from the two-phase catalysis, in our catalytic system no water was used as solvent, and the catalytic system is effective in selective oxidative-reductive carbonylation with nitroaromatic compounds and alkylamine as reagents at the same time[5~7]. Monuron is a kind of herbicide. The methods for its industrial synthesis use mainly the phosgene, but the phosgene has high toxicity and produces a lot of corrosive contaminants[8,9]. Our study is extended to the selective oxidative-reductive carbonylation of p-ClC6H4NO2 and 33%HN(CH3)2-67%H2O in one-pot reaction to give monuron.

  17. Novel PdCI 2 (RuCI 3)/ZrO2SO3 Catalysts for Synthesis of Carbamates by Oxidative Carbonylation of Amines%一种胺氧化羰化制氨基甲酸酯新催化剂体系

    Institute of Scientific and Technical Information of China (English)

    石峰; 司马天龙; 邓友全

    2000-01-01

    Novel combined PdC12 (RuCl3) with ZrO2-SO3 catalysts were developed for the synthesis of carbamates by oxidative carbonylation of aliphatic and aromatic amines. At 170 ℃ and 4.0 MPa, oxidative carbonylation of aromatic amines to the corresponding carbamates over this catalyst system could be proceeded with a high conversion and selectivity. Especially when β-naphthylamine was used as the substrate, 100% conversion and 95% selectivity were obtained in only 15 min. The catalytic performance of PdCl2/ZrO2-SO3 was better than that of RuCl3/ZrO2-SO3 for such oxidative carbonylation reaction.Possible role of ZrO2-SO3 as co-catalyst was also conjectured.

  18. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions

    Science.gov (United States)

    Lee, Kyunga; Silverio, Daniel L.; Torker, Sebastian; Robbins, Daniel W.; Haeffner, Fredrik; van der Mei, Farid W.; Hoveyda, Amir H.

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium–organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  19. Highly Chemical and Regio-selective Catalytic Oxidation with a Novel Manganese Catalyst

    Institute of Scientific and Technical Information of China (English)

    刘斌; 陈怡; 余成志; 沈征武

    2003-01-01

    The chemical selectivity of a novel active manganese compound [Mn2IVμ-O)3(TMTACN)2] (PF6)2 (1) in catalytic oxidation reactions depended on the structure of substrates and 1 was able to catalyze the oxidation of toluene into benzaldehyde and/or benzoic acid under very mild conditions. The following results were obtained: (1) The selectivity of the oxidation depended on the electronic density of double bonds. Reactivity was absent when strong electron-witherawing groups were conjugated with double bonds. (2) Allylic oxidation reactions mostly take place when double bond is present inside a ring system, whilst epoxiclarion reactions occur when the alkene moiety is part of linear chain. (3) In ring systems, the methylene group was more likely to be oxidized than the methyl group on ailylic position. As expected, the C--H bonds at the bridgeheads were unreactive.The secondary hydroxyl groups are more easily to be oxidized than the primary hydroxyl groups.

  20. Evaluation of carbonyl compounds formed during gamma irradiation of maize starch

    International Nuclear Information System (INIS)

    Changes in the levels of radionduced carbonyl compounds were analysed as a function of irradiation conditions (dose, dose rate, temperature, atmosphere), starch properties (water content) and post irradiation treatments (storage, autoclaving). The percentages of identified and unknown carbonyl fractions were respectively 40 and 60%. The half unknown fraction was linked on the radiodextrins (polysaccharides formed during irradiation of starch). (orig.)

  1. Protective mechanisms of Cucumis sativus in diabetes-related modelsof oxidative stress and carbonyl stress

    Science.gov (United States)

    Heidari, Himan; Kamalinejad, Mohammad; Noubarani, Maryam; Rahmati, Mokhtar; Jafarian, Iman; Adiban, Hasan; Eskandari, Mohammad Reza

    2016-01-01

    Introduction: Oxidative stress and carbonyl stress have essential mediatory roles in the development of diabetes and its related complications through increasing free radicals production and impairing antioxidant defense systems. Different chemical and natural compounds have been suggested for decreasing such disorders associated with diabetes. The objectives of the present study were to investigate the protective effects of Cucumis sativus (C. sativus) fruit (cucumber) in oxidative and carbonyl stress models. These diabetes-related models with overproduction of reactive oxygen species (ROS) and reactive carbonyl species (RCS) simulate conditions observed in chronic hyperglycemia. Methods: Cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonyl stress model) were measured and the protective effects of C. sativus were evaluated using freshly isolated rat hepatocytes. Results: Aqueous extract of C. sativus fruit (40 μg/mL) prevented all cytotoxicity markers in both the oxidative and carbonyl stress models including cell lysis, ROS formation, membrane lipid peroxidation, depletion of glutathione, mitochondrial membrane potential decline, lysosomal labialization, and proteolysis. The extract also protected hepatocytes from protein carbonylation induced by glyoxal. Our results indicated that C. sativus is able to prevent oxidative stress and carbonyl stress in the isolated hepatocytes. Conclusion: It can be concluded that C. sativus has protective effects in diabetes complications and can be considered a safe and suitable candidate for decreasing the oxidative stress and carbonyl stress that is typically observed in diabetes mellitus.

  2. Preparation and microwave shielding property of silver-coated carbonyl iron powder

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiao Guo, E-mail: xgcao@gdut.edu.cn [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong (China); Ren, Hao [Guangzhou Research Institute of O-M-E Technology, Guangzhou 510006, Guangdong (China); Zhang, Hai Yan [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong (China)

    2015-05-15

    Highlights: • The silver-coated carbonyl iron powder is prepared by the electroless plating process. • The silver-coated carbonyl iron powder is a new kind of conductive filler. • The reflection and absorption dominate the shielding mechanism of the prepared powder. • Increasing the thickness of electroconductive adhesive will increase the SE. - Abstract: Electroless silver coating of carbonyl iron powder is demonstrated in the present investigation. The carbonyl iron powders are characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD) before and after the coating process. The relatively uniform and continuous silver coating is obtained under the given coating conditions. In this paper, the electromagnetic interference (EMI) shielding mechanism of the silver-coated carbonyl iron powder is suggested. The reflection of silver coating and absorption of carbonyl iron powder dominate the shielding mechanism of the silver-coated carbonyl iron powder. The silver-coated carbonyl iron powders are used as conductive filler in electroconductive adhesive for electromagnetic interference shielding applications. The effect of the thickness of electroconductive adhesive on the shielding effectiveness (SE) is investigated. The results indicate that the SE increases obviously with the increase of the thickness of electroconductive adhesive. The SE of the electroconductive adhesive with 0.35 mm thickness is above 38 dB across the tested frequency range.

  3. AminoxyTMT: A novel multi-functional reagent for characterization of protein carbonylation.

    Science.gov (United States)

    Afiuni-Zadeh, Somaieh; Rogers, John C; Snovida, Sergei I; Bomgarden, Ryan D; Griffin, Timothy J

    2016-01-01

    Protein carbonylation is a common oxidative stress (OS)-driven post-translational modification (PTM). Proteome-wide carbonylation events can best be characterized using a combination of analytical approaches. Immunoblotting of carbonylated proteins provides data on the extent of modifications within complex samples, as well as a broad comparison of carbonylation profiles between different biological states (e.g., disease versus control), while mass spectrometry (MS)-based analysis provides information on proteins susceptible to carbonylation, as well as the potential for quantitative characterization of specific sites of amino acid modification. Here, we present a novel use for aminoxyTMT, a derivative of the Tandem Mass Tag (TMT) isobaric labeling reagent, which utilizes an aminooxy functional group for covalent labeling of reactive carbonyls in proteins. When coupled with anti-TMT antibody, we demonstrate the use of aminoxyTMT for immunoblot profiling of protein carbonylation in complex mixtures, as well as enrichment of modified peptides from these mixtures. Proof-of-principle experiments also show the amenability of aminoxyTMT-labeled carbonylated peptides enriched from complex mixtures to identification using tandem MS (MS/MS) and database searching, as well as quantitative analysis using TMT-based reporter ion intensity measurements. PMID:27071607

  4. Preparation and microwave shielding property of silver-coated carbonyl iron powder

    International Nuclear Information System (INIS)

    Highlights: • The silver-coated carbonyl iron powder is prepared by the electroless plating process. • The silver-coated carbonyl iron powder is a new kind of conductive filler. • The reflection and absorption dominate the shielding mechanism of the prepared powder. • Increasing the thickness of electroconductive adhesive will increase the SE. - Abstract: Electroless silver coating of carbonyl iron powder is demonstrated in the present investigation. The carbonyl iron powders are characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD) before and after the coating process. The relatively uniform and continuous silver coating is obtained under the given coating conditions. In this paper, the electromagnetic interference (EMI) shielding mechanism of the silver-coated carbonyl iron powder is suggested. The reflection of silver coating and absorption of carbonyl iron powder dominate the shielding mechanism of the silver-coated carbonyl iron powder. The silver-coated carbonyl iron powders are used as conductive filler in electroconductive adhesive for electromagnetic interference shielding applications. The effect of the thickness of electroconductive adhesive on the shielding effectiveness (SE) is investigated. The results indicate that the SE increases obviously with the increase of the thickness of electroconductive adhesive. The SE of the electroconductive adhesive with 0.35 mm thickness is above 38 dB across the tested frequency range

  5. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective

    DEFF Research Database (Denmark)

    Møller, Ian Max; Rogowska-Wrzesinska, Adelina; Rao, R S P

    2011-01-01

    be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO...

  6. Protein carbonylation after traumatic brain injury: cell specificity, regional susceptibility, and gender differences.

    Science.gov (United States)

    Lazarus, Rachel C; Buonora, John E; Jacobowitz, David M; Mueller, Gregory P

    2015-01-01

    Protein carbonylation is a well-documented and quantifiable consequence of oxidative stress in several neuropathologies, including multiple sclerosis, Alzheimer׳s disease, and Parkinson׳s disease. Although oxidative stress is a hallmark of traumatic brain injury (TBI), little work has explored the specific neural regions and cell types in which protein carbonylation occurs. Furthermore, the effect of gender on protein carbonylation after TBI has not been studied. The present investigation was designed to determine the regional and cell specificity of TBI-induced protein carbonylation and how this response to injury is affected by gender. Immunohistochemistry was used to visualize protein carbonylation in the brains of adult male and female Sprague-Dawley rats subjected to controlled cortical impact (CCI) as an injury model of TBI. Cell-specific markers were used to colocalize the presence of carbonylated proteins in specific cell types, including astrocytes, neurons, microglia, and oligodendrocytes. Results also indicated that the injury lesion site, ventral portion of the dorsal third ventricle, and ventricular lining above the median eminence showed dramatic increases in protein carbonylation after injury. Specifically, astrocytes and limited regions of ependymal cells adjacent to the dorsal third ventricle and the median eminence were most susceptible to postinjury protein carbonylation. However, these patterns of differential susceptibility to protein carbonylation were gender dependent, with males showing significantly greater protein carbonylation at sites distant from the lesion. Proteomic analyses were also conducted and determined that the proteins most affected by carbonylation in response to TBI include glial fibrillary acidic protein, dihydropyrimidase-related protein 2, fructose-bisphosphate aldolase C, and fructose-bisphosphate aldolase A. Many other proteins, however, were not carbonylated by CCI. These findings indicate that there is both regional

  7. Catalytic properties and dynamic behaviour of uranium complexes

    International Nuclear Information System (INIS)

    The catalytic properties of organometallic uranium III and IV compounds in solution as well as reaction mechanisms are studied. The structure in solution of CpUCl3L2 (L=THF, HMPA, OPPh3, OP(OR)3) is investigated. When L=HMPA, the complex exists in two isomers in equilibrium with the L ligands either in trans or mer-cis configuration. The isomerization (Ea=92 kJ mol-1) as well as the bimolecular exchange with an outer sphere ligand L are observable in 1H and 31P NMR, and quantified with the spin saturation transfer technique in several solvents and at different temperatures between 230 and 330 K. This property is extended to other ligands. The compound U(AlH4)3 is synthetized. This compound catalyses the hydroalumination of olefins by LiAlH4 with a very good anti-Markovnikov regioselectivity. A simple mechanism for this reaction is suggested. The reactions of the organoaluminates products with several reactants (D2O, I2, CH2O, Allyl-Br...) has been shown to be a powerful synthetic tool. Some specific alkenes and alkynes exhibit an interesting behaviour as dimerization or β-alkyl elimination which is easily interpreted by our mechanism

  8. The reaction mechanism of the enantioselective Tsuji allylation: inner-sphere and outer-sphere pathways, internal rearrangements, and asymmetric C–C bond formation

    OpenAIRE

    Keith, John A.; Behenna, Douglas C.; Sherden, Nathaniel; Mohr, Justin T.; Ma, Sandy; Marinescu, Smaranda C.; Nielsen, Robert J.; Oxgaard, Jonas; Stoltz, Brian M.; Goddard, William A.

    2012-01-01

    We use first principles quantum mechanics (density functional theory) to report a detailed reaction mechanism of the asymmetric Tsuji allylation involving prochiral nucleophiles and nonprochiral allyl fragments, which is consistent with experimental findings. The observed enantioselectivity is best explained with an inner-sphere mechanism involving the formation of a 5-coordinate Pd species that undergoes a ligand rearrangement, which is selective with regard to the prochiral faces of the int...

  9. Impact of HVAC filter on indoor air quality in terms of ozone removal and carbonyls generation

    Science.gov (United States)

    Lin, Chi-Chi; Chen, Hsuan-Yu

    2014-06-01

    This study aims at detecting ozone removal rates and corresponding carbonyls generated by ozone reaction with HVAC filters from various building, i.e., shopping mall, school, and office building. Studies were conducted in a small-scale environmental chamber. By examining dust properties including organic carbon proportion and specific surface area of dusts adsorbed on filters along with ozone removal rates and carbonyls generation rate, the relationship among dust properties, ozone removal rates, and carbonyls generation was identified. The results indicate a well-defined positive correlation between ozone removal efficiency and carbonyls generation on filters, as well as a positive correlation among the mass of organic carbon on filters, ozone removal efficiency and carbonyls generations.

  10. Development of an automatic sampling device for the continuous measurement of atmospheric carbonyls compounds

    International Nuclear Information System (INIS)

    Two sampling strategies were studied to develop an automatic instrument for the continuous measurement of atmospheric carbonyl compounds. Because of its specificity towards carbonyls compounds, sampling by using a transfer of gaseous phase in a liquid phase associated with a simultaneous chemical derivatization of the trapped compounds was first studied. However, this method do not allow a quantitative sampling of all studied carbonyl compounds, nor a continuous measurement in the field. To overcome the difficulties, a second strategy was investigated: the cryogenic adsorption onto solid adsorbent followed by thermodesorption and a direct analysis by GC/MS. Collection efficiency using different solid adsorbents was found greater than 95% for carbonyl compounds consisting of 1 to 7 carbons. This work is a successful first step towards the realization of the automatic sampling device for a continuous measurement of atmospheric carbonyls compounds. (author)

  11. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  12. Synthesis, characterization and bioactivities of N,O-carbonylated chitosan.

    Science.gov (United States)

    Liu, Hongli; Liu, Xiaoli; Yue, Lin; Jiang, Qixing; Xia, Wenshui

    2016-10-01

    N,O-Carbonylated chitosan derivative (NTCS) was synthesized via oxidation and substitution reaction, respectively. The carboxyethylation of the polysaccharide was identified by Fourier transform infrared (FTIR), (1)H nuclear magnetic resonance (NMR), X-ray diffraction analysis (XRD), Zeta potential measurement and Thermogravimetric analysis (TGA). It is revealed that compared with chitosan (CS), NTCS exhibited an excellent solubility in distilled water, high in vitro bile acid binding capacity, as well as a low viscosity. The in vitro bile acid binding capacity reached 17.21mg/g, which was 4.5-fold higher than that of CS. The results suggest that NTCS may be useful as a potential functional food supplement in food industry or a key ingredient in the pharmaceutical industry. These findings provide important supports for developing new food additive, and expand the scope of application of CS in the food industry. PMID:27189702

  13. SILP catalysis in gas-phase hydroformylation and carbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Riisager, A.; Fehrmann, R. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry; Haumann, M.; Wasserscheid, P. [Univ. Erlangen-Nuernberg (Germany). Lehrstuhl fuer Chemische Reaktionstechnik

    2006-07-01

    Supported ionic liquid phase (SILP) catalysts are new materials consisting of an ionic liquid-metal catalyst solution highly dispersed on a porous support. The use of a non-volatile, ionic liquid catalyst phase in SILP catalysts results in a stable heterogeneous-type material with selectivity and efficiency like homogeneous catalysts. The silica-supported SILP Rh-bisphosphine hydroformylation catalyst exhibited good activities and excellent selectivities in gas phase hydroformylation with stability exceeding 700 hours time-on-stream. Spectroscopic and kinetic data confirmed the homogeneous nature of the catalyst. In the Rh- SILP catalysed carbonylation of methanol the formation of undesired by-products could be suppressed by variation of residence time and gas pressure. (orig.)

  14. A chemical assessment of the suitability of allyl- iso-propyltelluride as a Te precursor for metal organic vapour phase epitaxy

    Science.gov (United States)

    Hails, Janet E.; Cole-Hamilton, David J.; Stevenson, John; Bell, William; Foster, Douglas F.; Ellis, David

    2001-04-01

    The chemical studies, which led to the testing of allyl- iso-propyltelluride (allylTePr i) as a Te precursor in metal organic vapour phase epitaxy are presented. The pyrolysis in hydrogen of allylTePr i gave products including 1,5-hexadiene, propane and propene. Co-pyrolysis of dimethylcadmium (Me 2Cd) and allylTePr i gave the hydrocarbons expected from the pyrolysis of the individual precursors plus additional hydrocarbons including 2-methylpropane and 1-butene. Plots of percentage decomposition versus temperature, which proved extremely useful in determining the likely growth temperatures for both CdTe and HgTe, showed that allylTePr i is less stable than both Pr 2iTe (di- iso-propyltelluride) and Me 2Cd. The possible role of Hg in the growth of CdTe is also discussed. The chemistry of allylTePr i is well suited for use as an efficient precursor for epitaxial growth of tellurium containing semiconductors since there is very little formation of other organotellurium compounds on pyrolysis.

  15. Crystal structure of (Z-3-allyl-5-(3-bromobenzylidene-2-sulfanylidene-1,3-thiazolidin-4-one

    Directory of Open Access Journals (Sweden)

    Rahhal El Ajlaoui

    2015-12-01

    Full Text Available In the title compound, C13H10BrNOS2, the rhodanine (systematic name: 2-sulfanylidene-1,3-thiazolidin-4-one and the 3-bromobenzylidene ring systems are inclined slightly, forming a dihedral angle of 5.86 (12°. The rhodanine moiety is linked to an allyl group at the N atom and to the 3-bromobenzylidene ring system. The allyl group, C=C—C, is nearly perpendicular to the mean plane through the rhodanine ring, maling a dihedral angle of 87.2 (5°. In the crystal, molecules are linked by pairs of C—H...O hydrogen bonds, forming inversion dimers with an R22(10 ring motif.

  16. The pure rotational spectrum of a Claisen rearrangement precursor Allyl Phenyl Ether using CP-FTMW spectroscopy

    Science.gov (United States)

    Grubbs, G. S.; Frank, Derek S.; Obenchain, Daniel A.; Cooke, S. A.; Novick, Stewart E.

    2016-06-01

    The pure rotational spectrum of a Claisen rearrangement precursor, Allyl Phenyl Ether (APE), has been measured on a chirped pulse Fourier transform microwave (CP-FTMW) spectrometer in the 8-14 GHz region. Rotational and centrifugal distortion constants for multiple conformations have been determined and are reported for the first time. This is the first study of a phenyl-containing ether where multiple conformers were experimentally observed all within their ground vibrational states. Quantum chemical calculations have been performed to isolate low energy geometries of APE and are implemented to aid in spectral assignment. Other structural parameters such as planar moments and inertial defects for the Allyl Phenyl Ether conformers are presented and compared to similar molecules.

  17. Preparation and reactivity of metal-containing monomers. Communication 2. Radiation graft polymerization of allyl alcohol complexed on polyethylene

    International Nuclear Information System (INIS)

    A study of the postradiation graft polymerization of complexed allyl alcohol was carried out for the first time. Copolymers were obtained containing up to 2.4 mass % polyallyl alcohol and 2.4 mass % metal. The grafting rate is constant for several hours and increases with an increase in the concentration of the complexing agent in the reaction mixture up to [CoCl2]:[AA] mole ratio equal to 1:5

  18. Antioxidant and Hypolipidemic Potential of Aged Garlic Extract and Its Constituent, S-Allyl Cysteine, in Rats

    OpenAIRE

    Syed Mohammed Basheeruddin Asdaq

    2015-01-01

    Aged garlic extract (AGE) is one of the unique preparations standardized with 100% bioavailable active ingredients found in the bloodstream. The current research was aimed at exploring the role of AGE and its chief active constituent, s-allyl cysteine (SAC) as antioxidant and hypolipidemic agent in rats. At the end of treatment of AGE and SAC, separated serum and freshly prepared liver tissue homogenate were analyzed for biochemical enzymes and biomarkers to evaluate and compare potencies of ...

  19. Statistic evaluation of cysteine and allyl alcohol as additives for Cu-Zn coatings from citrate baths

    OpenAIRE

    Julyana Ribeiro Garcia; Dalva Cristina Baptista do Lago; Fernando Lucas Gonçalves Silva; Eliane D'Elia; Aderval Severino Luna; Lilian Ferreira de Senna

    2013-01-01

    In the present work, cysteine and allyl alcohol were added to citrate baths as additives to Cu-Zn coatings on steel substrates. In order to verify the effects of the deposition parameters (current density, mechanical stirring speed, and additives) on the coating composition, electrochemical behavior, morphology, and microstructure properties of Cu-Zn coatings, the electrodeposition of the alloy was carried out using an experimental composite design 2³, in which these parameters were considere...

  20. Comparison of three microbial hosts for the expression of an active catalytic scFv.

    Science.gov (United States)

    Robin, Sylvain; Petrov, Kliment; Dintinger, Thierry; Kujumdzieva, Anna; Tellier, Charles; Dion, Michel

    2003-01-01

    Antibodies represent an interesting protein framework on which catalytic functions can be grafted. In previous studies, we have reported the characterization of the catalytic antibody 4B2 obtained on the basis of the "bait and switch" strategy which catalyzes two different chemical reactions: the allylic isomerization of beta,gamma-unsaturated ketones and the Kemp elimination. We have cloned the antibody 4B2 and expressed it as a single-chain Fv (scFv) fragment in different expression systems, Escherichia coli and two yeasts species, in order to elicit the most suitable system to study its catalytic activity. The scFv4B2 was secreted as an active form in the culture medium of Pichia pastoris and Kluyveromyces lactis, which led respectively to 4 and 1.3mg/l after purification. In E. coli, different strategies were investigated to increase the cytoplasmic soluble fraction, which resulted, in all cases, in the expression of a low amount of functional antibodies. By contrast, substantial amount of scFv4B2 could be purified when it was expressed as inclusion bodies (12mg/l) and submitted to an in vitro refolding process. Its catalytic activity was measured and proved to be comparable to that of the whole IgG. However, the instability of the scFv4B2 in solution prevented from an exhaustive characterization of its activity and stabilization of this protein appears to be essential before designing strategies to improve its catalytic activity. PMID:12531284

  1. IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers

    Institute of Scientific and Technical Information of China (English)

    Li-hua TENG; Tian-di TANG

    2008-01-01

    In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.

  2. Synchrotron Photoionization Mass Spectrometry Measurements of Kinetics and Product Formation in the Allyl Radical (H2CCHCH2)Self Reaction

    Science.gov (United States)

    Selby, Talitha M.; Melini, giovanni; Goulay, Fabien; Leone, Stephen R.; Fahr, Askar; Taatjes, Craig A.; Osborn, David L.

    2008-01-01

    Product channels for the self-reaction of the resonance-stabilized allyl radical, C3H5 + C3H5, have been studied with isomeric specificity at temperatures from 300-600 K and pressures from 1-6 Torr using time-resolved multiplexed photoionization mass spectrometry. Under these conditions 1,5-hexadiene was the only C6H10 product isomer detected. The lack of isomerization of the C6H10 product is in marked contrast to the C6H6 product in the related C3H3 + C3H3 reaction, and is due to the more saturated electronic structure of the C6H10 system. The disproportionation product channel, yielding allene + propene, was also detected, with an upper limit on the branching fraction relative to recombination of 0.03. Analysis of the allyl radical decay at 298 K yielded a total rate coefficient of (2.7 +/- 0.8) x 10(exp -11) cu cm/molecule/s, in good agreement with pre.vious experimental measurements using ultraviolet kinetic absorption spectroscopy and a recent theoretical determination using variable reaction coordinate transition state theory. This result provides independent indirect support for the literature value of the allyl radical ultraviolet absorption cross-section near 223 nm.

  3. Regioselective synthesis of novel 3-allyl-2-(substituted imino)-4-phenyl-3H-thiazole and 2,2‧-(1,3-phenylene)bis(3-substituted-2-imino-4-phenyl-3H-thiazole) derivatives as antibacterial agents

    Science.gov (United States)

    Abbasi Shiran, Jafar; Yahyazadeh, Asieh; Mamaghani, Manouchehr; Rassa, Mehdi

    2013-05-01

    Several novel 3-allyl-2-(substituted imino)-4-phenyl-3H-thiazole derivatives were synthesized by the reaction of allyl-thioureas and 2-bromoacetophenone. We also report the synthesis of bis-allyl-3H thiazoles using the reaction of various isothiocyanates and 1,3-phenylenediamine. The structures of all compounds were characterized by spectral and elemental analysis. Most of the synthesized compounds exhibited efficient antibacterial activities against Salmonella enterica, Micrococcus luteus, Bacillus subtilis and Pseudomonas aeruginosa.

  4. Glycation of the muscle-specific enolase by reactive carbonyls: effect of temperature and the protection role of carnosine, pyridoxamine and phosphatidylserine.

    Science.gov (United States)

    Pietkiewicz, Jadwiga; Bronowicka-Szydełko, Agnieszka; Dzierzba, Katarzyna; Danielewicz, Regina; Gamian, Andrzej

    2011-03-01

    Reactive carbonyls such as 4-hydroxy-2-nonenal (4-HNE), trans-2-nonenal (T2 N), acrolein (ACR) can react readily with nucleophilic protein sites forming of advanced glycation end-products (AGE). In this study, the human and pig muscle-specific enolase was used as a protein model for in vitro modification by 4-HNE, T2 N and ACR. While the human enolase interaction with reactive α-oxoaldehyde methylglyoxal (MOG) was demonstrated previously, the effect of 4-HNE, T2N and ACR has not been identified yet. Altering in catalytic function were observed after the enzyme incubation with these active compounds for 1-24 h at 25, 37 and 45 °C. The inhibition degree of enolase activity occurred in following order: 4-HNE > ACR > MOG > T2N and inactivation of pig muscle-specific enolase was more effective relatively to human enzyme. The efficiency of AGE formation depends on time and incubation temperature with glycating agent. More amounts of insoluble AGE were formed at 45 °C. We found that pyridoxamine and natural dipeptide carnosine counteracted AGE formation and protected enolase against the total loss of catalytic activity. Moreover, we demonstrated for the first time that phosphatidylserine may significantly protect enolase against decrease of catalytic activity in spite of AGE production. PMID:21347838

  5. Variation of ambient carbonyl levels in urban Beijing between 2005 and 2012

    Science.gov (United States)

    Chen, Wentai; Shao, Min; Wang, Ming; Lu, Sihua; Liu, Ying; Yuan, Bin; Yang, Yudong; Zeng, Limin; Chen, Zhongming; Chang, Chih-Chung; Zhang, Qian; Hu, Min

    2016-03-01

    Carbonyl compounds are important precursors of secondary air pollutants. With the rapid economic development and the implementation of stricter control measures in Beijing, the sources of carbonyls possibly changed. Based on measurement data obtained at an urban site in Beijing between 2005 and 2012, we investigated annual variations in carbonyl levels and sources during these years. In summer, formaldehyde and acetaldehyde levels decreased significantly at a rate of 9.1%/year and 7.2%/year, respectively, while acetone levels increased at a rate of 4.3%/year. In winter, formaldehyde levels increased and acetaldehyde levels decreased. We also investigated the factors driving the variation in carbonyls levels during summer by determination of emission ratios for carbonyls and their precursors, and calculation of photochemical formation of carbonyls. The relative declines for primary formaldehyde and acetaldehyde levels were larger than those for secondary formation. This is possibly due to the increasing usage of natural gas and liquefied petroleum gas which could result in the rise of carbonyl precursor emission ratios. The increase in acetone levels might be related to the rising solvent usage in Beijing during these years. The influences of these sources should be paid more attention in future research.

  6. Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/polyimide composite

    Science.gov (United States)

    Zhou, Yingying; Zhou, Wancheng; Li, Rong; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2016-03-01

    To solve the serious electromagnetic interference problems at elevated temperature, one thin microwave-absorbing sheet employing Co-coated carbonyl iron particles and polyimide was prepared. The Co-coated carbonyl iron particles were successfully prepared using an electroless plating method. The microstructure, composition, phase and static magnetic properties of Co-coated carbonyl iron particles were characterized by combination of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The electromagnetic parameters of Co-coated carbonyl iron particles/polyimide composite were measured in the frequency range of 2-18 GHz, and the electromagnetic loss mechanism of the material-obtained was discussed. The microwave absorption properties of composites before and after heat treatment at 300 °C for 100 h were characterized in 2-18 GHz frequency range. It was established that composites based on Co-coated carbonyl iron demonstrate thermomagnetic stability, indicating that Co coating reduces the oxidation of carbonyl iron. Thus, Co-coated carbonyl iron particles/polyimide composites are useful in the design of microwave absorbers operating at temperatures up to 300 °C.

  7. Catalytic reforming process

    Energy Technology Data Exchange (ETDEWEB)

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  8. 烯丙基酚醛树脂的固化动力学%Curing Kinetics of Allyl Phenolic Resin

    Institute of Scientific and Technical Information of China (English)

    刘洋; 刘诗薇; 李志强; 于景坤

    2012-01-01

    The curing behavior of allyl phenolic resin was analyzed at different heating rates using differential scanning calorimetry.The obtained kinetic data were treated by Kissinger and KAS(Kissinger-Akahira-Sunose) methods to obtain the curing reaction kinetic parameters.A curing kinetics model was established for allyl phenolic resin.Compared with phenolic resin,the curing temperature of allyl phenolic resin is higher,the reaction order is closer to 1,and the average activation energy of the curing reaction is lower,111.45 kJ/mol.The activation energy of allyl phenolic resin is almost constant and changes little with temperature in the curing process.The curing kinetics model of allyl phenolic resin provides a theoretical basis for the study of curing process parameters.%利用差示扫描量热法分析了烯丙基酚醛树脂在不同升温速率下的固化行为,用Kissinger法和KAS(Kissinger-Akahira-Sunose)法对获得的动力学数据进行处理,得到了固化反应动力学参数,并建立了烯丙基酚醛树脂的固化动力学模型.结果表明:与纯酚醛树脂相比,烯丙基酚醛树脂固化温度较高,反应级数更接近于1,固化反应所需的平均表观活化能较低,为111.45kJ/mol;在整个固化过程中,烯丙基酚醛树脂的活化能较为恒定,随温度变化不大;烯丙基酚醛树脂固化动力学模型为研究该体系固化工艺参数提供了理论依据.

  9. Michael Addition of Thiols to á,(a)-Unsaturated Carbonyl Compounds Catalyzed by Bifunctional Organocatalysts:Asymmetric Michael Addition and Asymmetric Protonation

    Institute of Scientific and Technical Information of China (English)

    LI Bang-Jing; JIANG Lin; LIU Min; DING Li-Sheng; CHEN Ying-Chun

    2004-01-01

    Recently the hydrogen-bond activated reactions have attracted much attention.1 Takemoto2 reported a highly enantioselective Michael addition of manolate to nitroolefins catalyzed by a bifunctional organocatalyst with tertiary amine and thiourea moiety. As we known,stereoselective conjugate additions of thiols are interesting due to the standpoint of biological and synthetic importance, however, only very limited good results have been obtained except for the works of Shibasaki3, Kanemasa4 and Deng5 et al.In this letter, we report an efficient catalytic asymmetric Michael reactions of thiols to a,a-unsaturated carbonyl compounds promoted by bifunctional organocatalysts. A series of organocatalysts with chiral amine and thiourea structures were designed and synthesized and have been successfully applied in the conjugated additions of thiols to a,a-unsaturated imides and enones.The reactions got quantitative yields and the ee values were up to 84%. It is noteworthy that the a-asymmetric protonation (up to 43% ee) also could be achieved.The Michael addition between aromatic thiols and a,a-unsaturated carbonyl compounds isdescribed as follows:Works to further increase the enantioselectivity is under investigation in our laboratory.

  10. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  11. Allyl m-Trifluoromethyldiazirine Mephobarbital: An Unusually Potent Enantioselective and Photoreactive Barbiturate General Anesthetic

    Energy Technology Data Exchange (ETDEWEB)

    Savechenkov, Pavel Y.; Zhang, Xi; Chiara, David C.; Stewart, Deirdre S.; Ge, Rile; Zhou, Xiaojuan; Raines, Douglas E.; Cohen, Jonathan B.; Forman, Stuart A.; Miller, Keith W.; Bruzik, Karol S. (Harvard-Med); (Mass. Gen. Hosp.); (UIC)

    2012-12-10

    We synthesized 5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (14), a trifluoromethyldiazirine-containing derivative of general anesthetic mephobarbital, separated the racemic mixture into enantiomers by chiral chromatography, and determined the configuration of the (+)-enantiomer as S by X-ray crystallography. Additionally, we obtained the {sup 3}H-labeled ligand with high specific radioactivity. R-(-)-14 is an order of magnitude more potent than the most potent clinically used barbiturate, thiopental, and its general anesthetic EC{sub 50} approaches those for propofol and etomidate, whereas S-(+)-14 is 10-fold less potent. Furthermore, at concentrations close to its anesthetic potency, R-(-)-14 both potentiated GABA-induced currents and increased the affinity for the agonist muscimol in human {alpha}1{beta}2/3{gamma}2L GABA{sub A} receptors. Finally, R-(-)-14 was found to be an exceptionally efficient photolabeling reagent, incorporating into both {alpha}1 and {beta}3 subunits of human {alpha}1{beta}3 GABAA receptors. These results indicate R-(-)-14 is a functional general anesthetic that is well-suited for identifying barbiturate binding sites on Cys-loop receptors.

  12. Enhanced biocompatibility and wound healing properties of biodegradable polymer-modified allyl 2-cyanoacrylate tissue adhesive.

    Science.gov (United States)

    Lee, Young Ju; Son, Ho Sung; Jung, Gyeong Bok; Kim, Ji Hye; Choi, Samjin; Lee, Gi-Ja; Park, Hun-Kuk

    2015-06-01

    As poly L-lactic acid (PLLA) is a polymer with good biocompatibility and biodegradability, we created a new tissue adhesive (TA), pre-polymerized allyl 2-cyanoacrylate (PACA) mixed with PLLA in an effort to improve biocompatibility and mechanical properties in healing dermal wound tissue. We determined optimal mixing ratios of PACA and PLLA based on their bond strengths and chemical structures analyzed by the thermal gravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. In vitro biocompatibility of the PACA/PLLA was evaluated using direct- and indirect-contact methods according to the ISO-10993 cytotoxicity test for medical devices. The PACA/PLLA have similar or even better biocompatibility than those of commercially available cyanoacrylate (CA)-based TAs such as Dermabond® and Histoacryl®. The PACA/PLLA were not different from those exposed to Dermabond® and Histoacryl® in Raman spectra when biochemical changes of protein and DNA/RNA underlying during cell death were compared utilizing Raman spectroscopy. Histological analysis revealed that incised dermal tissues of rats treated with PACA/PLLA showed less inflammatory signs and enhanced collagen formation compared to those treated with Dermabond® or Histoacryl®. Of note, tissues treated with PACA/PLLA were stronger in the tensile strength compared to those treated with the commercially available TAs. Therefore, taking all the results into consideration, the PACA/PLLA we created might be a clinically useful TA for treating dermal wounds. PMID:25842106

  13. Increased presevation of sliced mozzarella cheese by antimibrobial sachet incorporated with allyl isothiocyanate

    Directory of Open Access Journals (Sweden)

    Ana Clarissa dos Santos Pires

    2009-12-01

    Full Text Available There is an increasing tendency to add natural antimicrobials of plant origin into food. The objective of this work was to develop a microbial sachet incorporated with allyl isothiocyanate (AIT, a volatile compound of plant origin, and to test its efficiency against growth of yeasts and molds, Staphylococcus sp. and psychrotrophic bacteria on sliced mozzarella cheese. Another objective was to quantify the concentration of AIT in the headspace of cheese packaging. A reduction of 3.6 log cycles was observed in yeasts and molds counts in the mozzarella packed with the antimicrobial sachet over 15-day storage time. The sachet also showed an antibacterial effect on Staphylococcus sp., reducing 2.4 log cycles after 12-day storage. Psychrotrophic bacteria species were the most resistant to the antimicrobial action. The highest concentration of AIT (0.08µg.mL-1 inside the active packaging system was observed at the 6-day of storage at 12 ºC ± 2 ºC. At the end of the storage time, AIT concentration decreased to only 10% of the initial concentration. Active packaging containing antimicrobial sachet has a potential use for sliced mozzarella, with molds and yeasts being the most sensitive to the antimicrobial effects.

  14. Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats.

    Science.gov (United States)

    Yokoyama, Toru; Ohbuchi, Toyoaki; Saito, Takeshi; Sudo, Yuka; Fujihara, Hiroaki; Minami, Kouichiro; Nagatomo, Toshihisa; Uezono, Yasuhito; Ueta, Yoichi

    2011-03-25

    Allyl isothiocyanates (AITC) and cinnamaldehyde are pungent compounds present in mustard oil and cinnamon oil, respectively. These compounds are well known as transient receptor potential ankyrin 1 (TRPA1) agonists. TRPA1 is activated by low temperature stimuli, mechanosensation and pungent irritants such as AITC and cinnamaldehyde. TRPA1 is often co-expressed in TRPV1. Recent study showed that hypertonic solution activated TRPA1 as well as TRPV1. TRPV1 is involved in excitatory synaptic inputs to the magnocellular neurosecretory cells (MNCs) that produce vasopressin in the supraoptic nucleus (SON). However, it remains unclear whether TRPA1 may be involved in this activation. In the present study, we examined the role of TRPA1 on the synaptic inputs to the MNCs in in vitro rat brain slice preparations, using whole-cell patch-clamp recordings. In the presence of tetrodotoxin, AITC (50μM) and cinnamaldehyde (30μM) increased the frequency of miniature excitatory postsynaptic currents without affecting the amplitude. This effect was significantly attenuated by previous exposure to ruthenium red (10μM), non-specific TRP channels blocker, high concentration of menthol (300μM) and HC-030031 (10μM), which are known to antagonize the effects of TRPA1 agonists. These results suggest that TRPA1 may exist at presynaptic terminals to the MNCs and enhance glutamate release in the SON. PMID:21266172

  15. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  16. Allyl functionalized phosphinite and phosphonite ligands: Synthesis, transition metal chemistry and orthopalladation reactions

    Indian Academy of Sciences (India)

    Singappagudem Govindaraju; Guddekoppa S Ananthnag; Susmita Naik; Shaikh M Mobin; Maravanji S Balakrishn

    2012-07-01

    Allyl functionalized phosphinite PPh2(OAr) [Ar=C6H4(-C3H5)] (1) and phosphonite PPh(OAr)2 (2) ligands were prepared by the reactions of 2-allylphenol with PPh2Cl and PPhCl2, respectively. The ruthenium(II) complexes, [Ru(6--cymene)(PPh2(OAr))Cl2] (3) and [Ru(6--cymene)(PPh(OAr)2Cl2)] (4) were obtained by reacting 1 or 2 with [Ru(6--cymene)Cl2]2 in 2:1 molar ratios, respectively. Reactions of 1 or 2 with AuCl(SMe2) gave [Au{PPh2(OAr)}Cl] (5) or [Au{PPh(OAr)2}Cl] (6) in good yield. The palladium complex, [Pd{PPh(OAr)2}2Cl2] (7) was prepared by reacting Pd(COD)Cl2 with 2 in 1:2 molar ratio. The reaction between Pd(COD)Cl2 and 1 yielded a mixture of orthopalladated cis- and trans-[Pd(Ph2P(OAr))Cl]2 (8a and 8b). The treatment of 8 with PPh3 and Ph2PCH2PPh2 resulted in the cleavage of chloro bridge to give respectively, [Ph2(OAr)PPd(PPh3)Cl] (9) and [Ph2(ArO)PPd(2-dppm)]OTf (10). Single crystal X-ray structure of the ruthenium complex 3 is described.

  17. Catalytic conversion of waste low density polyethylene into valuable products

    International Nuclear Information System (INIS)

    Waste low density polyethylene (LDPE) from household and industries are recognized to be a major environmental problem. LDPE represent a source of energy and valuable chemical products. Waste LDPE were pyrolysed catalytically in a batch reactor under atmospheric pressure. Calcium carbide was used as a catalyst to explore its effect on pyrolysis product distribution. The effects of temperature, amount of catalyst and time on the yields of the pyrolysed products were investigated. The effect of catalyst on the liquid yield was also studied. The results demonstrate that the temperature has a promising effect on the yield; however, high temperature, as well as high catalyst loading, caused a decline in liquid yield. The liquid obtained from catalytic pyrolysis of polyethylene was characterized physically by Density, Specific gravity, API gravity, Viscosity, Kinematic viscosity, Aniline point, Flash point, Watson characterization constant, Freezing point, Diesel index, Refractive Index, Gross calorific value, Net calorific value and ASTM Distillation were determined according to IP and ASTM standard methods for determination of fuel values. Results from the physical analysis of the liquid fractions are comparable with the standards used (gasoline, kerosene and diesel fuel oil). Phenols and carbonyls were also quantitatively determined by spectrophotometric methods using folin-denis and phenyl hydrazine reagents, respectively. The components of different hydrocarbons in the oil mixture were separated by using column chromatography and fractional distillation. (author)

  18. Catalytic Mechanism of the Oxidative Demethylation of 4-(Methoxymethyl)phenol by Vanillyl-Alcohol Oxidase. Evidence for Formation of a p-Quinone Methide Intermediate

    OpenAIRE

    Fraaije, Marco W.; van Berkel, Willem J H

    1997-01-01

    The catalytic mechanism for the oxidative demethylation of 4-(methoxymethyl)phenol by the covalent flavoprotein vanillyl-alcohol oxidase was studied. Using H218O, it was found that the carbonylic oxygen atom from the product 4-hydroxybenzaldehyde originates from a water molecule. Oxidation of vanillyl alcohol did not result in any incorporation of 18O. Enzyme-monitored turnover experiments revealed that for both substrates a process involving flavin reduction is rate determining. During anaer...

  19. Versatile methodology to hydrate alkynes, in the presence of a wide variety of functional groups, with Mercury(II) p-Toluensulfonamidate, under catalytic, mild and neutral conditions

    OpenAIRE

    Corominas, Albert; Montaña Pedrero, Ángel-Manuel

    2013-01-01

    A method to generate carbonylic compounds from alkynes under mild and neutral conditions, with excellent functional group compatibility and high yields, is described. Hydration takes place under catalytic conditions by using from 0.1 to 0.2 equivalents of the easily available and inexpensive mercury(II) p-toluensulfonamidate in a hydroalcoholic solution. After use the catalyst is iner tized and/or recycled ...

  20. PREPARATION AND CATALYTIC BEHAVIOUR OF POLYMER-BOUND METALLOPORPHYRIN IN HYDROGENATION OF OLEFIN

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The meso-tetraarylporphyrin has been anchored to styrene-divinylbenzene copolymers by reaction of meso-tetra(4-hydroxylphenyl) porphyrin with chloromethylated resin under mild condition. A number of polymer transition metal complexes have been prepared with the polymer ligand and metal salts. The polymeric ligand and its complexes have been characterized by electronic spectra, and vibrational spectra. Cyclohexene can be hydrogenated with the polymeric porphyrin palladium complex(P-THPPPd) as catalyst, and its catalytic activity was influenced by the polarity of solvents, the contents of water in ethanol or reaction temperature. However, its catalytic activity was lower for nitro groups, carbonyl groups and olefins with steric hindrance substituents, and showed no activity for aromatic rings under these conditions.

  1. Carbonyl Sulfide for Tracing Carbon Fluxes Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. Elliott [Univ. of California, Merced, CA (United States); Berry, Joseph A. [Carnegie Inst. of Science, Stanford, CA (United States); Billesbach, Dave [Univ. of Nebraska, Lincoln, NE (United States); Torn, Margaret S [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zahniser, Mark [Aerodyne Research, Inc., Billerica, MA (United States); Seibt, Ulrike [Univ. of California, Los Angeles, CA (United States); Maseyk, Kadmiel [Pierre and Marie Curie Univ., Paris (France)

    2016-04-01

    The April-June 2012 campaign was located at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site Central Facility and had three purposes. One goal was to demonstrate the ability of current instrumentation to correctly measure fluxes of atmospheric carbonyl sulfide (COS). The approach has been describe previously as a critical approach to advancing carbon cycle science1,2, but requires further investigation at the canopy scale to resolve ecosystem processes. Previous canopy-scale efforts were limited to data rates of 1Hz. While 1 Hz measurements may work in a few ecosystems, it is widely accepted that data rates of 10 to 20 Hz are needed to fully capture the exchange of traces gases between the atmosphere and vegetative canopy. A second goal of this campaign was to determine if canopy observations could provide information to help interpret the seasonal double peak in airborne observations at SGP of CO2 and COS mixing ratios. A third goal was to detect potential sources and sinks of COS that must be resolved before using COS as a tracer of gross primary productivity (GPP).

  2. Behaviour of protein carbonyl groups in juvenile myocardial infarction.

    Science.gov (United States)

    Caimi, Gregorio; Canino, Baldassare; Incalcaterra, Egle; Ferrera, Eleonora; Montana, Maria; Lo Presti, Rosalia

    2013-01-01

    Acute myocardial infarction (AMI) is accompanied by oxidative stress, and protein oxidation is among the consequences of oxidative stress. We examined the plasma concentration of protein carbonyl groups (PC), a marker of protein oxidation, in a group of young subjects with AMI (45 men and 5 women; mean age 40.4 ± 4.8 yrs). We found a significant increase of PC (p < 0.001) in comparison with normal controls. No difference was observed between patients with AMI characterized by elevated ST segment and those without elevation of ST segment. There was no correlation between the ejection fraction and PC in the whole group nor in the subgroups of STEMI and non-STEMI patients. Subdividing the whole group of AMI patients according to the number of risk factors and the number of stenosed coronary vessels, the difference in PC level was not statistically significant among the subgroups. This study showed an increased protein oxidation in young subjects with recent AMI. Further investigation is needed to ascertain whether this can be a target of therapeutic intervention. PMID:22504219

  3. Characterization of aura tropospheric emissions spectrometer carbonyl sulfide retrievals

    Directory of Open Access Journals (Sweden)

    L. Kuai

    2013-07-01

    Full Text Available We present a description of the Tropospheric Emission Spectrometer (TES carbonyl sulfide (OCS retrieval algorithm, along with evaluation of the biases and uncertainties against aircraft profiles from the HIPPO campaign and data from the NOAA Mauna Loa site. In general, the OCS retrievals (1 have less than 1.0 degree of freedom for signals (DOFs, (2 are sensitive in the mid-troposphere with a peak sensitivity typically between 300 to 500 hPa, (3 but have much smaller systematic errors from temperature, CO2 and H2O calibrations relative to random errors from measurement noise. Here we estimate the monthly means from TES measurements averaged over multiple years so that random errors are reduced and useful information about OCS seasonal and latitudinal variability can be derived. With this averaging, TES OCS data are found to be consistent (within the calculated uncertainties with NOAA ground observations and HIPPO aircraft measurements. TES OCS data also captures the seasonal and latitudinal variations observed by these in situ data.

  4. Aldol Condensation of Volatile Carbonyl Compounds in Acidic Aerosols

    Science.gov (United States)

    Noziere, B.; Esteve, W.

    2003-12-01

    Reactions of volatile organic compounds in acidic aerosols have been shown recently to be potentially important for organic aerosol formation and growth. Aldol condensation, the acid-catalyzed polymerization of carbonyl compounds, is a likely candidate to enhance the flux of organic matter from the gas phase to the condensed phase in the atmosphere. Until now these reactions have only been characterized for conditions relevant to synthesis (high acidities and liquid phase systems) and remote from atmospheric ones. In this work, the uptake of gas-phase acetone and 2,4\\-pentanedione by sulfuric acid solutions has been measured at room temperature using a Rotated Wetted Wall Reactor coupled to a Mass Spectrometer. The aldol condensation rate constants for 2,4\\-pentanedione measured so far for sulfuric acid solutions between 96 and 70 % wt. display a variation with acidity in agreement with what predicted in the organic chemical literature. The values of these constants, however, are much lower than expected for this compound, and comparable to the ones of acetone. Experiments are underway to complete this study to lower acidities and understand the discrepancies with the predicted reactivity.

  5. Tropical sources and sinks of carbonyl sulfide observed from space

    Science.gov (United States)

    Glatthor, N.; Höpfner, M.; Baker, I. T.; Berry, J.; Campbell, J. E.; Kawa, S. R.; Krysztofiak, G.; Leyser, A.; Sinnhuber, B.-M.; Stiller, G. P.; Stinecipher, J.; Clarmann, T.

    2015-11-01

    According to current budget estimations the seasonal variation of carbonyl sulfide (COS) is governed by oceanic release and vegetation uptake. Its assimilation by plants is assumed to be similar to the photosynthetic uptake of CO2 but, contrary to the latter process, to be irreversible. Therefore, COS has been suggested as cotracer of the carbon cycle. Observations of COS, however, are sparse, especially in tropical regions. We use the comprehensive data set of spaceborne measurements of the Michelson Interferometer for Passive Atmospheric Sounding to analyze its global distribution. Two major features are observed in the tropical upper troposphere around 250 hPa: enhanced amounts over the western Pacific and the Maritime Continent, peaking around 550 parts per trillion by volume (pptv) in boreal summer, and a seasonally varying depletion of COS extending from tropical South America to Africa. The large-scale COS depletion, which in austral summer amounts up to -40 pptv as compared to the rest of the respective latitude band, has not been observed before and reveals the seasonality of COS uptake through tropical vegetation. The observations can only be reproduced by global models, when a large vegetation uptake and a corresponding increase in oceanic emissions as proposed in several recent publications are assumed.

  6. Teratogenicity and embryotoxicity of nickel carbonyl in Syrian hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Sunderman, F.W. Jr.; Shen, S.K.; Reid, M.C.; Allpass, P.R.

    1980-01-01

    Nickel carbonyl was administered to groups of pregnant hamsters by inhalation on days 4, 5, 6, 7, or 8 of gestation. The dams were killed on day 15 of gestation, and the fetuses were examined for malformations. Exposure to Ni(CO)/sub 4/ on days 4 or 5 of gestation resulted in malformation in 5.5% and 5.8% of the progeny, respectively. Progeny included 9 fetuses with cystic lungs, 7 fetuses with exencephaly, 1 fetus with exencephaly plus fused rib and 1 fetus with anophthalmia plus cleft palate. Hemorrhages into serious cavities were found. In progeny of dams exposed to Ni(CO)/sub 4/ on days 6 or 7 of gestation, there was 1 fetus with fused ribs and there were 2 fetuses with hydronephrosis. In another experiment, pregnant hamsters were exposed to inhalation of Ni(CO)/sub 4/ on day 5 of gestation; these dams were permitted to deliver their litters and to nurse their pups. There was no significant difference in the average number of live pups in the Ni(CO)/sub 4/-exposed litters compared to control litters. Neonatal mortality was increased in Ni(CO)/sub 4/-exposed litters. This study demonstrates that Ni(CO)/sub 4/ is teratogenic and embryotoxic in Syrian hamsters.

  7. Seasonal fluxes of carbonyl sulfide in a midlatitude forest

    Science.gov (United States)

    Commane, Róisín; Meredith, Laura K.; Baker, Ian T.; Berry, Joseph A.; Munger, J. William; Montzka, Stephen A.; Templer, Pamela H.; Juice, Stephanie M.; Zahniser, Mark S.; Wofsy, Steven C.

    2015-11-01

    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.

  8. Human TTR conformation altered by rhenium tris-carbonyl derivatives.

    Science.gov (United States)

    Ciccone, Lidia; Policar, Clotilde; Stura, Enrico A; Shepard, William

    2016-09-01

    Transthyretin (TTR) is a 54 kDa homotetrameric serum protein that transports thyroxine (T4) and retinol. TTR is potentially amyloidogenic due to homotetramer dissociation into monomeric intermediates that self-assemble as amyloid deposits and insoluble fibrils. Most crystallographic structures, including those of amyloidogenic variants show the same tetramer without major variations in the monomer-monomer interface nor in the volume of the interdimeric cavity. Soaking TTR crystals in a solution containing rhenium tris-carbonyl derivatives yields a TTR conformer never observed before. Only one of the two monomers of the crystallographic dimer is significantly altered, and the inner part of the T4 binding cavity is expanded at one end and shrunk at the other. The result redefines the mechanism of allosteric communication between the two sites, suggesting that negative cooperativity is a function of dimer asymmetry, which can be induced through internal or external binding. An aspect that remains unexplained is why the conformational changes are ubiquitous throughout the crystal although the heavy metal content of the derivatized crystals is relatively low. The conformational changes observed, which include Leu(82), may represent a form of TTR better at scavenging β-Amyloid. At a resolution of 1.69Å, with excellent refinement statistics and well defined electron density for all parts of the structure, it is possible to envisage answering important questions that range from protein cooperative behavior to heavy atom induced protein conformational modifications that can result in crystallographic non-isomorphism. PMID:27402536

  9. Nanostructured palladium tailored via carbonyl chemical route towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Graphical Abstract: Mass-depending morphologies of nanostructured Palladium obtained via the carbonyl chemical route. Display Omitted -- Highlights: •Mass-depending morphology was observed in nanostructured palladium supported on carbon prepared by the carbonyl chemical route. •The Morphological effect of carbon supported Pd was investigated towards ORR. -- Abstract: Carbon supported palladium nanostructures were synthesized via the carbonyl chemical route. Compared with nanostructured platinum, prepared via carbonyl chemical route, Pd nanomaterials showed mass-loading morphology, whereas particle size and morphology of Pt nanostructures was constant. The oxygen reduction reaction (ORR) on nanostructured Pd, with different morphology in both acid and alkaline medium was investigated. A relationship, based on X-ray diffraction structural analysis pattern, transmission electron microscope, with the Pd morphological effect on ORR activity was identified

  10. Structure and Bonding in Binuclear Metal Carbonyls. Classical Paradigms vs. Insights from Modern Theoretical Calculations

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert

    2015-01-01

    Roč. 1053, SI (2015), s. 195-213. ISSN 2210-271X Institutional support: RVO:67985858 Keywords : binuclear metal carbonyls * DAFH analysis * 18-electron rule Subject RIV: CC - Organic Chemistry Impact factor: 1.545, year: 2014

  11. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    Science.gov (United States)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  12. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    Science.gov (United States)

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  13. Synthesis of 2-Cyclopentenone Derivatives via Palladium-Catalyzed Intramolecular Carbonyl α-Alkenylation.

    Science.gov (United States)

    Chen, Panpan; Meng, Yinggao; Wang, Han; Han, Feipeng; Wang, Yulong; Song, Chuanjun; Chang, Junbiao

    2016-08-01

    2-Cyclopentenone derivatives have been efficiently synthesized from 5-bromo-5-hexen-2-ones via palladium-catalyzed intramolecular carbonyl α-alkenylation followed by double-bond migration under mild reaction conditions. PMID:27463262

  14. Efficient and selective α-bromination of carbonyl compounds with N-bromosuccinimide under microwave

    KAUST Repository

    Guan, Xiao-Yu

    2014-02-07

    A highly efficient method for the synthesis of α-halocarbonyl compounds has been achieved via selective monobromination of aromatic and aliphatic carbonyl compounds with N-bromosuccinimide catalyzed by p-toluenesulfonic acid under microwave irradiation within 30 min.

  15. CuCl-Catalyzed Aerobic Oxidation of Allylic and Propargylic Alcohols to Aldehydes or Ketones with 1 : 1 Combination of Phenanthroline and Bipyridine as the Ligandst%CuCl-Catalyzed Aerobic Oxidation of Allylic and Propargylic Alcohols to Aldehydes or Ketones with 1 : 1 Combination of Phenanthroline and Bipyridine as the Ligandst

    Institute of Scientific and Technical Information of China (English)

    刘宇; 麻生明

    2012-01-01

    We developed a modified protocol for the oxidation of 2,3-allenyl alcohols using CuCI with l : 1 combination of phenanthroline and bipyridine as the catalyst. To further investigate the applicability of this system, other types of alcohols such as allylic and propargylic alcohols have been tested: we found that both allylic and propargylic alcohols may be oxidized to the corresponding aldehydes or ketones using molecular oxygen in air as the oxidant with moderate to excellent yields.

  16. Protein carbonylation and aggregation precede neuronal apoptosis induced by partial glutathione depletion

    Directory of Open Access Journals (Sweden)

    Jianzheng Zheng

    2012-04-01

    Full Text Available While the build-up of oxidized proteins within cells is believed to be toxic, there is currently no evidence linking protein carbonylation and cell death. In the present study, we show that incubation of nPC12 (neuron-like PC12 cells with 50 μM DEM (diethyl maleate leads to a partial and transient depletion of glutathione (GSH. Concomitant with GSH disappearance there is increased accumulation of PCOs (protein carbonyls and cell death (both by necrosis and apoptosis. Immunocytochemical studies also revealed a temporal/spatial relationship between carbonylation and cellular apoptosis. In addition, the extent of all three, PCO accumulation, protein aggregation and cell death, augments if oxidized proteins are not removed by proteasomal degradation. Furthermore, the effectiveness of the carbonyl scavengers hydralazine, histidine hydrazide and methoxylamine at preventing cell death identifies PCOs as the toxic species. Experiments using well-characterized apoptosis inhibitors place protein carbonylation downstream of the mitochondrial transition pore opening and upstream of caspase activation. While the study focused mostly on nPC12 cells, experiments in primary neuronal cultures yielded the same results. The findings are also not restricted to DEM-induced cell death, since a similar relationship between carbonylation and apoptosis was found in staurosporine- and buthionine sulfoximine-treated nPC12 cells. In sum, the above results show for the first time a causal relationship between carbonylation, protein aggregation and apoptosis of neurons undergoing oxidative damage. To the best of our knowledge, this is the first study to place direct (oxidative protein carbonylation within the apoptotic pathway.

  17. Proteomic analysis and protein carbonylation profile in trained and untrained rat muscle

    OpenAIRE

    F.Magherini; P.M. Abruzzo; Puglia, M.; Bini, L.; T. Gamberi; Esposito, F; A. Veicsteinas; Marini, M.; Fiorillo, C; Gulisano, M; Modesti, A

    2012-01-01

    Understanding the relationship between physical exercise, reactive oxygen species and skeletal muscle modification is important in order to better identify the benefits or the damages that appropriate or inappropriate exercise can induce. Unbalanced ROS levels can lead to oxidation of cellular macromolecules and a major class of protein oxidative modification is carbonylation. The aim of this investigation was to study muscle protein expression and carbonylation patterns in tra...

  18. Proteomic and Carbonylation Profile Analysis of Rat Skeletal Muscles following Acute Swimming Exercise

    OpenAIRE

    F. Magherini; T. Gamberi; Pietrovito, L; T. Fiaschi; L. Bini; Esposito, F; M. Marini; P.M. Abruzzo; Gulisano, M; Modesti, A

    2013-01-01

    Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE) on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL) and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is ...

  19. Fabrication and electromagnetic characteristics of microwave absorbers containing PPY and carbonyl iron composite

    Energy Technology Data Exchange (ETDEWEB)

    Li Dengao, E-mail: lidengao123@163.com [College of Information Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang Hongbin; Zhao Jumin [College of Information Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yang Xiaoli [Department of Electrical and Computer Engineering, Purdue University Calumet, IN 46323-2094 (United States)

    2011-10-17

    Highlights: {yields} Polypyrrole powders are prepared by in situ polymerization method. {yields} Then PPY-carbonyl iron composite with different mixture ratios have been prepared. {yields} The effect of the mass ratio of PPY-carbonyl iron on the microwave loss properties of the composites is investigated. {yields} A possible microwave absorbing mechanism of PPY-carbonyl iron composite has been proposed. - Abstract: The objective of this study is to develop microwave absorbers using both dielectric and magnetic lossy materials. Polypyrrole (PPY) is used as dielectric lossy materials and carbonyl iron particles is used as magnetic lossy materials. Polypyrrole powders are prepared by in situ polymerization method. Then PPY-carbonyl iron composite with different mixture ratios have been prepared by as-prepared material. The structure, morphology and properties of the composites are characterized with IR, XRD, scanning electron microscope (SEM), Net-work Anlyzer. The complex permittivity ({epsilon}{sup '}{sub r}-j{epsilon}{sup ''}{sub r}) and reflection loss (dB) of the composites have been measured at different microwave frequencies in S-band and C-band (30-6000 MHz) employing vector network analyzer model HP 8722ET vector. The effect of the mass ratio of PPY-carbonyl iron on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of PPY-carbonyl iron composite has been proposed. The PPY-carbonyl iron composite can find applications in suppression of electromagnetic interference (EMI), and reduction of radar signature.

  20. Evolution of random catalytic networks

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.M. [Santa Fe Inst., NM (United States); Reidys, C.M. [Santa Fe Inst., NM (United States)]|[Los Alamos National Lab., NM (United States)

    1997-06-01

    In this paper the authors investigate the evolution of populations of sequences on a random catalytic network. Sequences are mapped into structures, between which are catalytic interactions that determine their instantaneous fitness. The catalytic network is constructed as a random directed graph. They prove that at certain parameter values, the probability of some relevant subgraphs of this graph, for example cycles without outgoing edges, is maximized. Populations evolving under point mutations realize a comparatively small induced subgraph of the complete catalytic network. They present results which show that populations reliably discover and persist on directed cycles in the catalytic graph, though these may be lost because of stochastic effects, and study the effect of population size on this behavior.

  1. Bifunctional catalytic electrode

    Science.gov (United States)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  2. Catalytic method for synthesizing hydrocarbons

    Science.gov (United States)

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1984-01-01

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  3. COMPARATIVE STUDY OF EFFICACY OF FERROUS SULPHATE AND CARBONYL IRON IN ANEMIA OF ANTENATAL WOMEN

    Directory of Open Access Journals (Sweden)

    Radhika

    2015-03-01

    Full Text Available Iron deficiency anemia is the most common and important public health problem all over the world in the risk group of antenatal women. Research is going on to improve the iron status of the pregnant women with different forms of iron available. In this regard, Carbonyl Iron is showing promising results in improving the red cell mass with better compliance. 120 antenatal women were recruited in this study. The study comprised of 6weeks for each patient. They were given Carbonyl Iron 100 mg/day and FeS04 100gm/day . Before and after treatment all the baseline and specific investigations were one. Results were tabulated, comparison and significance were tested by unpaired student ’s’ test and their 'p' value was calculated. Results were shown graphically also. Carbonyl Iron showed improvement in hemoglobin, PCV and better than ferrous Sulphate (P <0.001. Incidence of side effects were less with Carbonyl Iron than Ferrous Sulphate, better compliance was seen with Carbonyl Iron. In conclusion, the present study s howed that Carbonyl Iron had better efficacy and safety in the management of Iron deficiency anemia in antenatal women than ferrous Sulphate

  4. Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Zhiqi Wang

    2016-01-01

    Full Text Available Oxidative stress has long been known as a pathogenic factor of ulcerative colitis (UC and colitis-associated colorectal cancer (CAC, but the effects of secondary carbonyl lesions receive less emphasis. In inflammatory conditions, reactive oxygen species (ROS, such as superoxide anion free radical (O2∙-, hydrogen peroxide (H2O2, and hydroxyl radical (HO∙, are produced at high levels and accumulated to cause oxidative stress (OS. In oxidative status, accumulated ROS can cause protein dysfunction and DNA damage, leading to gene mutations and cell death. Accumulated ROS could also act as chemical messengers to activate signaling pathways, such as NF-κB and p38 MAPK, to affect cell proliferation, differentiation, and apoptosis. More importantly, electrophilic carbonyl compounds produced by lipid peroxidation may function as secondary pathogenic factors, causing further protein and membrane lesions. This may in turn exaggerate oxidative stress, forming a vicious cycle. Electrophilic carbonyls could also cause DNA mutations and breaks, driving malignant progression of UC. The secondary lesions caused by carbonyl compounds may be exceptionally important in the case of host carbonyl defensive system deficit, such as aldo-keto reductase 1B10 deficiency. This review article updates the current understanding of oxidative stress and carbonyl lesions in the development and progression of UC and CAC.

  5. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  6. Protein carbonylation, protein aggregation and neuronal cell death in a murine model of multiple sclerosis

    Science.gov (United States)

    Dasgupta, Anushka

    Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal

  7. Unsteady catalytic processes and sorption-catalytic technologies

    International Nuclear Information System (INIS)

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  8. Metabolism of bupropion by carbonyl reductases in liver and intestine.

    Science.gov (United States)

    Connarn, Jamie N; Zhang, Xinyuan; Babiskin, Andrew; Sun, Duxin

    2015-07-01

    Bupropion's metabolism and the formation of hydroxybupropion in the liver by cytochrome P450 2B6 (CYP2B6) has been extensively studied; however, the metabolism and formation of erythro/threohydrobupropion in the liver and intestine by carbonyl reductases (CR) has not been well characterized. The purpose of this investigation was to compare the relative contribution of the two metabolism pathways of bupropion (by CYP2B6 and CR) in the subcellular fractions of liver and intestine and to identify the CRs responsible for erythro/threohydrobupropion formation in the liver and the intestine. The results showed that the liver microsome generated the highest amount of hydroxybupropion (Vmax = 131 pmol/min per milligram, Km = 87 μM). In addition, liver microsome and S9 fractions formed similar levels of threohydrobupropion by CR (Vmax = 98-99 pmol/min per milligram and Km = 186-265 μM). Interestingly, the liver has similar capability to form hydroxybupropion (by CYP2B6) and threohydrobupropion (by CR). In contrast, none of the intestinal fractions generate hydroxybupropion, suggesting that the intestine does not have CYP2B6 available for metabolism of bupropion. However, intestinal S9 fraction formed threohydrobupropion to the extent of 25% of the amount of threohydrobupropion formed by liver S9 fraction. Enzyme inhibition and Western blots identified that 11β-dehydrogenase isozyme 1 in the liver microsome fraction is mainly responsible for the formation of threohydrobupropion, and in the intestine AKR7 may be responsible for the same metabolite formation. These quantitative comparisons of bupropion metabolism by CR in the liver and intestine may provide new insight into its efficacy and side effects with respect to these metabolites. PMID:25904761

  9. Proton conductive membranes based on poly (styrene-co-allyl alcohol semi-IPN

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Moro Loureiro

    2014-01-01

    Full Text Available The optimization of fuel cell materials, particularly polymer membranes, for PEMFC has driven the development of methods and alternatives to achieve systems with more adequate properties to this application. The sulfonation of poly (styrene-co-allyl alcohol (PSAA, using sulfonating agent:styrene ratios of 2:1, 1:1, 1:2, 1:4, 1:6, 1:8 and 1:10, was previously performed to obtain proton conductive polymer membranes. Most of those membranes exhibited solubility in water with increasing temperature and showed conductivity of approximately 10-5 S cm-1. In order to optimize the PSAA properties, especially decreasing its solubility, semi-IPN (SIPN membranes are proposed in the present study. These membranes were obtained from the diglycidyl ether of bisphenol A (DGEBA, curing reactions in presence of DDS (4,4-diaminodiphenyl sulfone and PSAA. Different DGEBA/PSAA weight ratios were employed, varying the PSAA concentration between 9 and 50% and keeping the mass ratio of DGEBA:DDS as 1:1. The samples were characterized by FTIR and by electrochemical impedance spectroscopy. Unperturbed bands of PSAA were observed in the FTIR spectra of membranes, suggesting that chemical integrity of the polymer is maintained during the synthesis. In particular, bands involving C-C stretching (1450 cm-1, C=C (aromatic, ~ 3030 cm-1 and C-H (2818 and 2928 cm-1 were observed, unchanged after the synthesis. The disappearance or reduction of the intensity of the band at 916 cm-1, attributed to the DGEBA epoxy ring, is evidenced for all samples, indicating the epoxy ring opening and the DGEBA crosslinking. Conductivity of H3PO4 doped membranes increases with temperature, reaching 10-4 S cm-1.

  10. N-allyl epiderpride: An extremely potent SPECT radioligand for the dopamine D2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, R.M.; Mason, N.S.; Ansari, M.S. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1994-05-01

    We have previously reported that epidepride is a potent (K{sub D} 24pM) and specific SPECT radioligand for the dopamine D2 receptor which can be used to study striatal and extrastriatal dopamine D2 receptors in man. We have synthesized and evaluated the N-allyl analogue of epiderpride (APID) as a potential SPECT radioligand for the dopamine D2 receptor. In comparison to epidepride it is even more potent at the dopamine D2 receptor, the K{sub D} for APID being 11 frontal cortical homogenate. The lipophilicity, evaluated using the log kw pH 7.5, was 2.9 versus 2.05 for epidepride. Competitive binding studies using rat striatal, hippocampal and frontal cortical homogenates showed high affinity for only dopamine D2 like cerebellar ratio of 275:1 at 320 minutes post injection-similar to that seen with epidepride, but with nearly four times higher brain uptake. Of interest was the off-rate from the dopamine D2 receptor; it was 0.0046 min{sup -1} in vitro at 25{degrees}C-corresponding to an t 1/2 of 150 minutes. Studies in rhesus monkeys show an in vivo off rate (following 2.5 mg/kg raclopride IV) of about 0.0082 min{sup -1} seen that with epidepride. SPECT studies in rhesus monkeys reveal APID is a promising SPECT radioligand that appears to be similar to epidepride, but with higher brain uptake due to its more optimal lipophilicity for entry into brain.

  11. Antibacterial activity of starch/acrylamide/allyl triphenyl phosphonium bromide copolymers synthesized by gamma irradiation

    International Nuclear Information System (INIS)

    Starch/acrylamide/allyl triphenyl phosphonium bromide (St/AM/TP) copolymers were synthesized by simultaneous gamma irradiation and characterized by FTIR and 1H NMR techniques, weight measurement and titration method. Moreover, their antibacterial activities against Staphylococcus aureus were explored by the viable cell counting method in sterile distilled water. At St/AM/TP 6:8.4:5.6 g, copolymers with higher graft ratio (G) and higher (AM+TP) graft efficiency (EAM+TP) were obtained at 3 and 6 kGy, while cationic degree (CD) and TP graft efficiency (ETP) continuously increased with absorbed dose from 1 to 6 kGy. All of the copolymers were capable of killing >99.75% of 107 CFU/ml S. aureus within 30 mins. Moreover, at 3 kGy, G, EAM+TP and ETP increased with AM/TP from 0:14 to 11.2:2.8 g at St/(AM+TP) 6:14 g, while the optimum CD and antibacterial activity were achieved at AM/TP 7:7 and 8.4:5.6 g. In addition, at 3 kGy, G, EAM+TP and CD increased with St/(AM+TP) from 6:3 to 6:18 g at AM/TP 8.4:5.6 g, while the optimum antibacterial activity was achieved at 6:10 to 6:18 g, and the optimum ETP was achieved at 6:14. - Highlights: • Cationic starch is prepared from AM and TP by Gamma irradiation. • Cationic starch is characterized by FTIR, NMR, weight method and titration method. • Grafting ratio and cationic degree depend on absorbed dose and composition. • Cationic starch shows good antibacterial activity against Staphylococcus aureus

  12. Does 1-Allyl-3-methylimidazolium chloride Act as a Biocompatible Solvent for Stem Bromelain?

    Science.gov (United States)

    Jha, Indrani; Bisht, Meena; Venkatesu, Pannuru

    2016-06-30

    The broader scope of ILs in chemical sciences particularly in pharmaceutical, bioanalytical and many more applications is increasing day by day. Hitherto, a very less amount of research is available in the depiction of conformational stability, activity, and thermal stability of enzymes in the presence of ILs. In the present study, the perturbation in the structure, stability, and activity of stem bromelain (BM) has been observed in the presence of 1-allyl-3-methylimidazolium chloride ([Amim][Cl]) using various techniques. This is the first report in which the influence of [Amim][Cl] has been studied on the enzyme BM. Fluorescence spectroscopy has been utilized to map out the changes in the environment around tryptophan (Trp) residues of BM and also to discuss the variations in the thermal stability of BM as an outcome of its interaction with the IL at different concentrations. Further, the work delineates the denaturing effect of high concentration of IL on enzyme structure and activity. It dictates the fact that low concentrations (0.01-0.10 M) of [Amim][Cl] are only changing the structural arrangement of the protein without having harsh consequences on its activity and stability. However, high concentrations of IL proved to be totally devastating for both activity and stability of BM. The observed decrease in the stability of BM at high concentration may be due to the combined effect of cation and anion interactions with the protein residues. The present work is successful in dictating the probable mechanism of interaction between BM and [Amim][Cl]. These results can prove to be fruitful in the studies of enzymes in aqueous IL systems since the used IL is thermally stable and nonvolatile in nature thereby providing a pathway of alteration in the activity of enzymes in potentially green systems. PMID:27268069

  13. New copolymer of acrylamide with allyl methacrylate and its capacity for the removal of azo dyes

    Directory of Open Access Journals (Sweden)

    Yeliz Yildirim

    2015-04-01

    Full Text Available The copolymerization reactions of Acrylamide (AA with the different mole ratios of allyl methacrylate (AMA such as 25/75, 50/50 and 75/25 were studied by radical polymerization under argon atmosphere using 2,2’-Azobis (isobutyronitri1e (AIBN as initiator. The copolymers were characterized with Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TG. FTIR spectra showed that the C=O, C-N and N-H groups in copolymers remained during the copolymerization. It is concluded from the thermograms that Poly(AA-co-AMA copolymers which contained different ratios of monomer and comonomer exhibit similar thermal behavior. Adsorption capacity, kinetic and isotherm studies of Direct Brown 2 onto the copolymers have been evaluated. Different factors such as the monomer ratio, pH, initial dye concentration, copolymer dosage and contact time affecting the removal process were studied. It was found that the adsorption process agreed with the Freundlich and Dubinin-Raduskevich model and the adsorption of Direct Brown 2 depended on the acrylamide content and pH of the solution. The standard Gibb’s free energy was determined as - 14.7 kJ/mol, which means that adsorption occurred spontaneously and the process is feasible. Increasing the acrylamide content led to increased adsorption of Direct Brown 2 on the copolymer. Moreover, adsorption kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. These results show that Poly(AA-co-AMA can be used as adsorbent for water pollutants such as Direct Brown 2 and has potential applications in related industrial and environmental areas.

  14. S-Allyl-Cysteines Reduce Amelioration of Aluminum Induced Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    Sadhana Shrivastava

    2011-01-01

    Full Text Available Problem statement: Aluminum (Al is a trivalent cation found in its ionic form in most kinds of animal tissues and in natural waters everywhere. Approach: It is a potent neurotoxin and has been associated in the pathogenesis of several clinical disorders including Alzheimer’s disease. Results: The aim of the study was to demonstrate the protective effect of S-Allyl-Cysteines (SAC against Al-induced toxicity in rat model on certain biochemical parameters, lipid peroxidation and oxidative stress enzymes of white albino rats. Six rats per group were divided into various treatment groups. Group one rats were given normal saline and served as control group. Group two animals received Al as aluminum nitrate 32.5 mg (i.p. for the induction of toxicity. Group three to five received different doses of SAC (25, 50 and 100 mg kg-1 for 3 days after 24 h of Al toxicity. Rats were orally administered their respective doses every day for 3 days. Evaluations were made in blood and tissues. The activity of Acetylcholinesterase (AchE was inhibited in all the parts of brain after Al intoxication. Significant rise were observed the Activities of Serum Transaminases (AST and ALT after toxicant exposure. The activity of â-Aminolevulinic acid Dehydratase (ALAD in blood and â-Aminolevulinic Acid Synthetase (ALAS in brain was decreased after Al exposure. Al significant increased cholesterol, triglyceride, creatinine and urea level in serum. TBARS level was significantly higher and GSH content were significantly lower during toxicity. Total and esterified cholesterol in liver, kidney and brain were increased after Al exposure. Histopathological changes in liver, kidney and brain were also recouped with the therapy. Conclusion/Recommendations: Our data proved that SAC which is a bioactive and bioavailable component of garlic has organosulfur compounds which regulates the thiol status of the cell and scavenges free radicals and work as an antioxidant. Thus SAC

  15. Organometallic and Bioorganometallic Chemistry - Ferrocene and Metal Carbonyls

    Directory of Open Access Journals (Sweden)

    Čakić Semenčić, M.

    2011-02-01

    Full Text Available Organometallic chemistry deals with compounds containing metal-carbon bonds. Basic organometallics derived from the s- and p-block metals (containing solely σ-bonds were understood earlier, while organometallic chemistry of the d- and f-block has developed much more recently. These compounds are characterized by three types of M-C bonds (σ, π and δand their structures are impossible to deduce by chemical means alone; fundamental advances had to await the development of X-ray diffraction, as well as IR- and NMR-spectroscopy. On the other hand, elucidation of the structure of e. g. vitamin B12 and ferrocene (discovered in 1951 contributed to progress in these instrumental analytical methods, influencing further phenomenal success of transition-metal organometallic chemistry in the second half of the twentieth century. The most thoroughly explored fields of application of organometallics were in the area of catalysis, asymmetric synthesis, olefin metathesis, as well as organic synthesis and access to new materials and polymers.The most usual ligands bound to d- and f-metals are carbon monoxide, phosphines, alkyls, carbenes and arenes, and in this review the bonding patterns in the metal carbonyls and ferrocene are elaborated. The common characteristics of these two classes are two-component bonds. The CO-M bonds include (i donation from ligand HOMO to vacant M d-orbitals (σ-bond, and (ii back-donation from the filled M d-orbitals in the ligand LUMO (π-bond. Similar (but much more complicated ferrocene contains delocalized bonds consisting of electron donation from Cp to Fe (σ-bonds- and π-bonding and δ-back-bonding from metal to Cp. In such a way ferrocene, i. e. (η5-Cp2Fe contains 18 bonding electrons giving to this compound "superaromatic" properties in the sense of stability and electrophilic substitution. In contrast to benzenoid aromatic compounds reactions in two Cp-rings can occur giving homo- and heteroannularly mono-, two-… per

  16. Nanosheet-enhanced asymmetric induction of chiral α-amino acids in catalytic aldol reaction.

    Science.gov (United States)

    Zhao, Li-Wei; Shi, Hui-Min; Wang, Jiu-Zhao; He, Jing

    2012-11-26

    An efficient ligand design strategy towards boosting asymmetric induction was proposed, which simply employed inorganic nanosheets to modify α-amino acids and has been demonstrated to be effective in vanadium-catalyzed epoxidation of allylic alcohols. Here, the strategy was first extended to zinc-catalyzed asymmetric aldol reaction, a versatile bottom-up route to make complex functional compounds. Zinc, the second-most abundant transition metal in humans, is an environment-friendly catalytic center. The strategy was then further proved valid for organocatalyzed metal-free asymmetric catalysis, that is, α-amino acid catalyzed asymmetric aldol reaction. Visible improvement of enantioselectivity was experimentally achieved irrespective of whether the nanosheet-attached α-amino acids were applied as chiral ligands together with catalytic Zn(II) centers or as chiral catalysts alone. The layered double hydroxide nanosheet was clearly found by theoretical calculations to boost ee through both steric and H-bonding effects; this resembles the role of a huge and rigid substituent. PMID:23074138

  17. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  18. Allyl- iso-propyltelluride, a new MOVPE precursor for CdTe, HgTe and (Hg,Cd)Te

    Science.gov (United States)

    Hails, Janet E.; Cole-Hamilton, David J.; Stevenson, John; Bell, William

    2000-06-01

    The use of allyl- iso-propyltelluride as the tellurium precursor for the growth of CdTe, HgTe and (Hg,Cd)Te by metal organic vapour-phase epitaxy has been investigated. It has proved to be an efficient source of tellurium with growth rates for HgTe and (Hg,Cd)Te of up to 10 μm h -1 at 300°C. The best CdTe was grown at 4.5 μm h -1 under Me 2Cd-rich conditions at 300°C in the presence of Hg vapour.

  19. Copper-catalysed asymmetric allylic alkylation of alkylzirconocenes to racemic 3,6-dihydro-2H-pyrans

    Science.gov (United States)

    Rideau, Emeline

    2015-01-01

    Summary Asymmetric allylic alkylation is a powerful reaction that allows the enantioselective formation of C–C bonds. Here we describe the asymmetric alkylation of alkylzirconium species to racemic 3,6-dihydro-2H-pyrans. Two systems were examined: 3-chloro-3,6-dihydro-2H-pyran using linear optimization (45–93% ee, up to 33% yield, 5 examples) and 3,6-dihydro-2H-pyran-3-yl diethyl phosphate with the assistance of a design of experiments statistical approach (83% ee, 12% yield). 1H NMR spectroscopy was used to gain insight into the reaction mechanisms. PMID:26734091

  20. The utilization of the mesoporous Ti-SBA-15 catalyst in the epoxidation of allyl alcohol to glycidol and diglycidyl ether in the water medium

    Directory of Open Access Journals (Sweden)

    Wróblewska Agnieszka

    2015-12-01

    Full Text Available This work presents the studies on the optimization the process of allyl alcohol epoxidation over the Ti-SBA-15 catalyst. The optimization was carried out in an aqueous medium, wherein water was introduced into the reaction medium with an oxidizing agent (30 wt% aqueous solution of hydrogen peroxide and it was formed in the reaction medium during the processes. The main investigated technological parameters were: the temperature, the molar ratio of allyl alcohol/hydrogen peroxide, the catalyst content and the reaction time. The main functions the process were: the selectivity of transformation to glycidol in relation to allyl alcohol consumed, the selectivity of transformation to diglycidyl ether in relation to allyl alcohol consumed, the conversion of allyl alcohol and the selectivity of transformation to organic compounds in relation to hydrogen peroxide consumed. The analysis of the layer drawings showed that in water solution it is best to conduct allyl alcohol epoxidation in direction of glycidol (selectivity of glycidol 54 mol% at: the temperature of 10–17°C, the molar ratio of reactants 0.5–1.9, the catalyst content 2.9–4.0 wt%, the reaction time 2.7–3.0 h and in direction of diglycidyl ether (selectivity of diglycidyl ether 16 mol% at: the temperature of 18–33°C, the molar ratio of reactants 0.9–1.65, the catalyst content 2.0–3.4 wt%, the reaction time 1.7–2.6 h. The presented method allows to obtain two very valuable intermediates for the organic industry.

  1. Proteomic identification of carbonylated proteins in F344 rat hippocampus after 1-bromopropane exposure

    International Nuclear Information System (INIS)

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and humans. Previous proteomic analysis of rat hippocampus implicated alteration of protein expression in oxidative stress, suggesting that oxidative stress plays a role in 1-BP-induced neurotoxicity. To understand this role at the protein level, we exposed male F344 rats to 1-BP at 0, 400, or 1000 ppm for 8 h/day for 1 week or 4 weeks by inhalation and quantitated changes in hippocampal protein carbonyl using a protein carbonyl assay, two-dimensional gel electrophoresis (2-DE), immunoblotting, and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). Hippocampal reactive oxygen species and protein carbonyl were significantly increased, demonstrating 1-BP-associated induction of oxidative stress and protein damage. MALDI-TOF-TOF/MS identified 10 individual proteins with increased carbonyl modification (p < 0.05; fold-change ≥ 1.5). The identified proteins were involved in diverse biological processes including glycolysis, ATP production, tyrosine catabolism, GTP binding, guanine degradation, and neuronal metabolism of dopamine. Hippocampal triosephosphate isomerase (TPI) activity was significantly reduced and negatively correlated with TPI carbonylation (p < 0.001; r = 0.83). Advanced glycation end-product (AGE) levels were significantly elevated both in the hippocampus and plasma, and hippocampal AGEs correlated negatively with TPI activity (p < 0.001; r = 0.71). In conclusion, 1-BP-induced neurotoxicity in the rat hippocampus seems to involve oxidative damage of cellular proteins, decreased TPI activity, and elevated AGEs. -- Highlights: ► 1-BP increases hippocampal ROS levels and hippocampal and plasma protein carbonyls. ► 1-BP increases TPI carbonylation and decreases TPI activity in the hippocampus. ► 1-BP increases hippocampal and plasma AGE levels.

  2. 甲醇氧化羰基化合成碳酸二甲酯催化剂研究进展%Advances in catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol

    Institute of Scientific and Technical Information of China (English)

    杜治平; 周彬; 熊剑; 黄丽明; 黄晨; 林志坤; 吴元欣

    2012-01-01

    碳酸二甲酯(DMC)是一种重要的绿色有机合成中间体.在合成DMC的方法中,甲醇氧化羰基化法对设备腐蚀小、原料易得、产物易分离,有着诱人的工业化前景.文中介绍了该反应中所使用的Co、Pd、Cu和Au这4类催化剂的结构特点和催化性能,比较了不同催化剂在氧化羰基化中的催化效果.为了进一步提高催化剂的活性、选择性、减少其腐蚀性,开发出性能更好的工业催化剂,可以通过研究催化反应机理,并通过添加助剂和载体来实现.其中无卤铜系催化剂是今后羰基化合成DMC的重要研究方向.%There are several methods for the synthesis of dimethyl carbonate, especially, the oxidative carbonylation of methanol has an attractive industrial prospects due to its features of low erosion, relatively easier separation of products, attainable raw materials, etc. The structural features and catalytic performances of Co, Pd, Cu and Au systems were introduced and compared in the oxidative carbonylation of methanol to dimethyl carbonate. In order to promote the catalytic performance and selectivity of the catalyst, extending its life and reducing its corrosion, the reaction mechanism should be further studied, and the effective catalyst promoters and catalyst carriers should be added. The halogen-free copper catalysts are the important research direction for the carbonylation synthesis of dimethyl carbonate.

  3. 烯丙基苯并恶嗪改性BT树脂的研究%Study on Bismaleimide-Triazine Resin Modiifed by Allyl Benzoxazine

    Institute of Scientific and Technical Information of China (English)

    陈虹; 寇开昌; 王益群; 张宇; 卓龙海

    2014-01-01

    采用熔融缩聚法合成了烯丙基苯并恶嗪(Boz-allyl),并利用傅立叶变换红外光谱,磁共振氢谱对其表征。用动态扫描量热与热重分析研究了其固化过程及热性能,随后用其对双马来酰亚胺-三嗪树脂(BT树脂)改性,并分析了改性树脂的力学性能。结果表明,Boz-allyl存在两种固化机理,固化物5%和10%热失重温度分别为325,385℃,在800℃时质量保持率仍可达34%,说明其具有优良的热稳定性和耐烧蚀性,用其改性后BT树脂韧性明显提高,当Boz-allyl质量分数为8%时冲击和弯曲强度达到最大值,分别为11.32 kJ/m2和127.11 MPa。%An allyl benzoxazine(Boz-allyl) was synthesized by melt polycondensation method and the structures of Boz-allyl was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Using differential scanning calorimetery and thermal gravimetric analysis,the curing behavior and thermal property of it were probed. Then the bismaleimide-triazine resin modified by Boz-allyl was prepared and its mechanical properties was investigated. The results show a dual cure pattern of Boz-allyl ,while the 5%and 10%weight loss temperatures of polybenzoxazine is 325℃and 385℃respectively,with quality retention rate up to 34%at 800℃,which reveals good heat resistance and ablation resistance. The addition of Boz-allyl into BT resin significantly improves toughness and strength,its impact strength and flexural strength is up to their maximums of 11.32 kJ/m2 and 127.11 MPa when the mass fraction of Boz-allyl is 8%.

  4. Synthesis of N-Aryl-2-allyl Pyrrolidines via Palladium-catalyzed Carboamination Reactions of γ-(N-Arylamino)alkenes with Vinyl Bromides

    OpenAIRE

    Ney, Joshua E.; Hay, Michael B.; Yang, Qifei; Wolfe, John P.

    2005-01-01

    A palladium-catalyzed carboamination reaction of γ-N-arylamino alkenes with vinyl bromides that affords N-aryl-2-allyl pyrrolidines is described. These reactions proceed with high diastereoselectivity for the formation of trans-2,3- and cis-2,5-disubstituted pyrrolidines. Conditions for a tandem N-arylation/carboamination sequence that leads to the formation of an N-aryl-2-allyl pyrrolidine or indoline via the coupling of a primary γ-amino alkene, an aryl bromide, and a vinyl bromide are also...

  5. Immigration process in catalytic medium

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The longtime behavior of the immigration process associated with a catalytic super-Brownian motion is studied. A large number law is proved in dimension d≤3 and a central limit theorem is proved for dimension d=3.

  6. Quantitative Proteomic Profiling of Muscle Type-Dependent and Age-Dependent Protein Carbonylation in Rat Skeletal Muscle Mitochondria

    OpenAIRE

    Feng, Juan; Xie, Hongwei; Meany, Danni L.; Thompson, LaDora V.; Arriaga, Edgar A.; Griffin, Timothy J.

    2008-01-01

    Carbonylation is a highly prevalent protein modification in skeletal muscle mitochondria, possibly contributing to its functional decline with age. Using quantitative proteomics, we identified mitochondrial proteins susceptible to carbonylation in a muscle type (slow- vs fast-twitch)-dependent and age-dependent manner from Fischer 344 rat skeletal muscle. Fast-twitch muscle contained twice as many carbonylated mitochondrial proteins than did slow-twitch muscle, with 22 proteins showing signif...

  7. Catalytic DNA with phosphatase activity

    OpenAIRE

    Chandrasekar, Jagadeeswaran; Silverman, Scott K.

    2013-01-01

    Catalytic DNA sequences (deoxyribozymes, DNA enzymes, or DNAzymes) have been identified by in vitro selection for various catalytic activities. Expanding the limits of DNA catalysis is an important fundamental objective and may facilitate practical utility of catalysts that can be obtained from entirely unbiased (random) sequence populations. In this study, we show that DNA can catalyze Zn2+-dependent phosphomonoester hydrolysis of tyrosine and serine side chains (i.e., exhibit phosphatase ac...

  8. Purification and characterization of a novel carbonyl reductase isolated from Rhodococcus erythropolis.

    Science.gov (United States)

    Zelinski, T; Peters, J; Kula, M R

    1994-04-15

    During growth on n-tetradecane a novel NADH-dependent carbonyl reductase is induced in the Gram-positive bacterium Rhodococcus erythropolis (Peters, P., Zelinski, T. and Kula, M.R. (1992) Appl. Microbiol. Biotechnol. 38, 334-340). The enzyme has been purified to homogeneity using fractional pH precipitation, anion exchange chromatography and affinity chromatography. The isoelectric point of the oxidoreductase is 4.4. The apparent molecular mass of the native enzyme is 161 kDa, that of the subunits 40 kDa as determined by SDS gel electrophoresis. A tetrameric structure of the carbonyl reductase is consistent with these results. Important biochemical data concerning the application of the reductase are: a broad pH-optimum, temperature optimum at 40 degrees C and stability at room temperature for more than 5 days. The oxidoreductase accepted as substrate aliphatic and aromatic ketones, keto esters (esters of keto carboxylic acids) and halogenated carbonyl compounds and reduced them to the corresponding hydroxyl compounds with (S)-configuration with more than 98% enantiomeric excess. The NAD(+)-dependent oxidation of primary alcohols was not catalyzed by the carbonyl reductase, whereas secondary alcohols and hydroxy acid esters were oxidized to the corresponding carbonyl compounds at about 10-fold slower reaction rates compared to the reduction. PMID:7764739

  9. A recyclable heavy fluorous tag carrying an allyl alcohol pendant group: design and evaluation toward applications in synthetic carbohydrate chemistry.

    Science.gov (United States)

    Fukuda, Kazuo; Tojino, Mami; Goto, Kohtaro; Dohi, Hirofumi; Nishida, Yoshihiro; Mizuno, Mamoru

    2015-04-30

    Toward applications in synthetic carbohydrate chemistry, we converted our previous acid-resistant heavy fluorous tag [(Rf)3C-CH2-OH, 1] to allyl alcohol derivatives [(Rf)3C-CH2-O-(CH2)n-CH=CH-CH2-OH, 3 (n=1) or 4 (n=3)] by means of olefin cross metathesis. They were then subjected to β-glycosylation reactions by using a series of glycosyl donors, including glycosyl bromide and trichloroacetimidates. The terminal OH group in 3 and 4 was found to be β-glycosylated in moderate yield when 2,3,4,6-tetra-O-benzoyl-D-galactosyl trichloroacetimidate was used as the glycosyl donor. Upon a detachment reaction using Pd(PPh3)4, the initial heavy fluorous tag 1 was recovered in high yield (>90%) together with 1-hydroxy sugar, indicating that not only the allyl ether linkage in the glycosides but also the internal di-alkyl ether linkage in 4 be cleaved by the action of the Pd-catalyst enabling long-range olefin transmigration. Potential utility was demonstrated by using the tetra-O-benzoyl-β-D-galactosylated derivative of 3 in a series of deprotection, protection and glycosylation reactions, which were conductible in high yields without using chromatographic purification process. These findings prompt us to propose a general scheme in which the acid-resistant heavy fluorous compound 1 is applied as a recyclable tag in synthetic carbohydrate chemistry. PMID:25753904

  10. Allyl thiourea as a corrosion inhibitor for cold rolled steel in H{sub 3}PO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Li Xianghong, E-mail: xianghong-li@163.com [Faculty of Science, Southwest Forestry University, Kunming 650224 (China) and Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224 (China); Deng Shuduan [Faculty of Materials Engineering, Southwest Forestry University, Kunming 650224 (China); Fu Hui [Faculty of Science, Southwest Forestry University, Kunming 650224 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Allyl thiourea (ATU) acts as a good inhibitor for steel in 1.0 M H{sub 3}PO{sub 4}. Black-Right-Pointing-Pointer Inhibition efficiency increases slightly with the temperature at 0.2-0.5 mM. Black-Right-Pointing-Pointer The adsorption of ATU on steel surface obeys Langmuir adsorption isotherm. Black-Right-Pointing-Pointer ATU behaves as a mixed-type inhibitor. - Abstract: The inhibition effect of allyl thiourea (ATU) on the corrosion of cold rolled steel (CRS) in 1.0 M H{sub 3}PO{sub 4} solution at 20-50 Degree-Sign C was studied by weight loss, potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) methods. The results show that ATU is a good inhibitor, and the maximum inhibition efficiency of 0.5 mM inhibitor is higher than 95% at all studied temperatures. The adsorption of ATU obeys Langmuir adsorption isotherm. Polarisation curves show that ATU behaves as a mixed-type inhibitor. EIS spectra exhibit one capacitive loop. The inhibition action is also evidenced by SEM.

  11. UV RADIATION INDUCED GRAFT COPOLYMERIZATION OF ALLYL ACETATE ONTO POLY(ETHYLENE TEREPHTHALATE) (PET) FILMS FOR FUEL CELL MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Mostak Ahmed; Mubarak A. Khan; Nazia Rahman; M. Anwar H. Khan

    2012-01-01

    Ultraviolet (UV)-induced graft copolymerization of allyl acetate (AA) monomer onto poly(ethylene terephthalate) (PET) films and the subsequent sulfonation on the monomer units in the grafting chain using chlorosulfonic acid (C1SO3H) were carried out to prepare proton exchange membranes (PEMs) for fuel cells.A maximum grafting value of 12.8% was found for 35 vol% allyl acetate after 3 h radiation time.Optimum concentration of ClSO3H was selected for the sulfonation reaction to be 0.05 mol/L based on the degree of sulfonation and the tensile strength studies of the membrane.The degree of sulfonation increased as the sulfonation reaction temperature and sulfonation time were increasing.The radiation grafting and the sulfonation have been confirmed by titrimetric and gravimetric analyses as well as FTIR spectroscopy.The maximum ion exchange capacity (IEC) of 0.04125 mmol g-1 was found at 12.1% degree of sulfonation and the maximum proton conductivity was found to be 0.035 S cm-1 at 30℃ and a relative humidity of 60%.The various physical and chemical properties of the PEMs such as water uptake,mechanical strength,thermal durability and oxidative stability were also studied.To investigate the suitability of the prepared membrane for fuel cell applications,its properties were compared with those of Nation 117.

  12. Molecular detection and in vitro antioxidant activity of S-allyl-L-cysteine (SAC) extracted from Allium sativum.

    Science.gov (United States)

    Sun, Y-E; Wang, W-D

    2016-01-01

    It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium sativum. The extracted SAC was reacted with 1-pyrenemethanol to obtain pyrene-labelled SAC (Py-SAC) to give SAC fluorescence properties. Molecular detection of Py-SAC was conducted by steady-state fluorescence spectroscopy and time-resolved fluorescence method to quantitatively measure concentrations of Py-SAC solutions. The ability of removing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical using Py-SAC was determined through oxygen radical absorbance capacity (ORAC). Results showed the activity of Py-SAC and Vitamin C (VC) with ORAC as index, the concentrations of Py-SAC and VC were 58.43 mg/L and 5.72 mg/L respectively to scavenge DPPH, and 8.16 mg/L and 1.67 mg/L to scavenge •OH respectively. Compared with VC, the clearance rates of Py-SAC to scavenge DPPH were much higher, Py-SAC could inhibit hydroxyl radical. The ability of removing radical showed a dose-dependent relationship within the scope of the drug concentration. PMID:27453278

  13. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil)

    Energy Technology Data Exchange (ETDEWEB)

    Sávio, André Luiz Ventura, E-mail: savio.alv@gmail.com [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil); Nicioli da Silva, Glenda [UFOP – Universidade Federal de Ouro Preto, Escola de Farmácia, Departamento de Análises Clínicas, Ouro Preto, MG (Brazil); Salvadori, Daisy Maria Fávero [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil)

    2015-01-15

    Highlights: • AITC inhibits mutant and wild-type TP53 cell proliferation. • Morphological changes and cells debris were observed after AITC treatment in both cells. • BAX and BCL2 expression modulation was observed in wild-type TP53 cells. • BCL2, BAX and ANLN increased and S100P decreased expression was detected in mutated TP53 cells. • AITC effects in gene modulation are dependent TP53 gene status. - Abstract: Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5 μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm

  14. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil)

    International Nuclear Information System (INIS)

    Highlights: • AITC inhibits mutant and wild-type TP53 cell proliferation. • Morphological changes and cells debris were observed after AITC treatment in both cells. • BAX and BCL2 expression modulation was observed in wild-type TP53 cells. • BCL2, BAX and ANLN increased and S100P decreased expression was detected in mutated TP53 cells. • AITC effects in gene modulation are dependent TP53 gene status. - Abstract: Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5 μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm

  15. Applications of the water--gas shift reaction. II. Catalytic exchange of deuterium for hydrogen at saturated carbon

    International Nuclear Information System (INIS)

    Previous studies on the homogeneous catalysis of the water-gas shift reaction by metal complexes of groups 6 and 8 had been carried out using aqueous alcoholic solutions of group 8 metal carbonyl complexes made basic with KOH. Substitution of triethylamine (Et3N) for KOH as base and alcohol for solvent led to the discovery that Et3N in the presence of D2O, CO, and Rh6(CO)16 at 1500C undergoes an unusual catalytic exchange of deuterium for hydrogen. A suggested mechanism for this reaction is given and includes activation of hydrogen at a saturated carbon

  16. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite.

    Science.gov (United States)

    Boronat, Mercedes; Martínez, Cristina; Corma, Avelino

    2011-02-21

    The activity and selectivity towards carbonylation presented by Brønsted acid sites located inside the 8MR pockets or in the main 12MR channels of mordenite is studied by means of quantum-chemical calculations, and the mechanistic differences between methanol and DME carbonylation are investigated. The selectivity towards carbonylation is higher inside the 8MR pockets, where the competitive formation of DME and hydrocarbons that finally leads to catalyst deactivation is sterically impeded. Moreover, inclusion of dispersion interactions in the calculations leads to agreement between the calculated activation barriers for the rate determining step and the experimentally observed higher reactivity of methoxy groups located inside the 8MR channels. PMID:21249237

  17. Increased carbonylation, protein aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Nora I. Perrone‑Bizzozero

    2013-04-01

    Full Text Available Previous work from our laboratory implicated protein carbonylation in the pathophysiology of both MS (multiple sclerosis and its animal model EAE (experimental autoimmune encephalomyelitis. Subsequent in vitro studies revealed that the accumulation of protein carbonyls, triggered by glutathione deficiency or proteasome inhibition, leads to protein aggregation and neuronal cell death. These findings prompted us to investigate whether their association can be also established in vivo. In the present study, we characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of MOG (myelin-oligodendrocyte glycoprotein35–55 peptide-induced EAE in C57BL/6 mice. The results show that protein carbonyls accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. We also show a temporal correlation between protein carbonylation (but not oxidative stress and apoptosis. Furthermore, carbonyl levels are significantly higher in apoptotic cells than in live cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are present during the course of EAE. The LC3 (microtubule-associated protein light chain 3-II/LC3-I ratio is significantly reduced in both acute and chronic EAE indicating reduced autophagy and explaining why aggresomes accumulate in this disorder. Taken together, the results of the present study suggest a link between protein oxidation and neuronal/glial cell death in vivo, and also demonstrate impaired proteostasis in this widely used murine model of MS.

  18. Synthesis of Oxacyclic Scaffolds via Dual Ruthenium Hydride/Brønsted Acid‐Catalyzed Isomerization/Cyclization of Allylic Ethers

    DEFF Research Database (Denmark)

    Ascic, Erhad; Ohm, Ragnhild Gaard; Petersen, Rico;

    2014-01-01

    A ruthenium hydride/Brønsted acid‐catalyzed tandem sequence is reported for the synthesis of 1,3,4,9‐tetrahydropyrano[3,4‐b]indoles (THPIs) and related oxacyclic scaffolds. The process was designed on the premise that readily available allylic ethers would undergo sequential isomerization, first to...

  19. Nickel-catalyzed enantioselective hydrovinylation of silyl-protected allylic alcohols:An efficient access to homoallylic alcohols with a chiral quaternary center

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Asymmetric hydrovinylation of silyl-protected allylic alcohols catalyzed by nickel complexes of chiral spiro phosphoramidite ligands was developed.A series of homoallylic alcohols with a chiral quaternary center were produced in high yields(up to 97%) and high enantioselectivities(up to 95% ee).The reaction provides an efficient method for preparing bifunctional compounds with a chiral quaternary carbon center.

  20. Titanocene Dichloride Complexes Bonded to Carbosilane Dendrimers Via a Spacer of Variable Length – Molecular Dynamics Calculations and Catalysis of Allylic Coupling Reactions

    Czech Academy of Sciences Publication Activity Database

    Strašák, Tomáš; Jaroschik, F.; Malý, M.; Čermák, Jan; Sýkora, Jan; Fajgar, Radek; Karban, Jindřich; Harakat, D.

    2014-01-01

    Roč. 409, SI (2014), s. 137-146. ISSN 0020-1693 R&D Projects: GA MŠk(CZ) LC06070 Grant ostatní: UJEP(CZ) GA13-06989S Institutional support: RVO:67985858 Keywords : metallodendrimers * titanocene dichloride * allylic homocoupling * molecular dynamics Subject RIV: CC - Organic Chemistry Impact factor: 2.046, year: 2014

  1. Chiral N-1-adamantyl-N-trans-cinnamylaniline type ligands: synthesis and application to palladium-catalyzed asymmetric allylic alkylation of indoles.

    Science.gov (United States)

    Mino, Takashi; Nishikawa, Kenji; Asano, Moeko; Shima, Yamato; Ebisawa, Toshibumi; Yoshida, Yasushi; Sakamoto, Masami

    2016-08-21

    Such chiral phosphine-internal olefin hybrid type ligands as N-1-adamantyl-N-cinnamylaniline derivatives 1 with C(aryl)-N(amine) bond axial chirality were synthesized and utilized for the palladium-catalyzed asymmetric allylic alkylation of indoles to afford the desired products in high enantioselectivities (up to 98% ee). PMID:27425209

  2. Exciton Coupling in Circular Dichroic Spectroscopy as a Tool for Establishing the Absolute Configuration of alpha,beta-Unsaturated Esters of Allylic Alcohols

    DEFF Research Database (Denmark)

    Lauridsen, A.; Cornett, Claus; Christensen, S. B.

    1991-01-01

    alpha-beta-Unsaturated esters of allylic alcohols have been shown to exhibit exciton coupling by circular dichroic spectroscopy. This coupling permits the establishment of the absolute configuration. The method was used to prove the absolute configuration at C-2 of archangelolide. Detailed NMR sp...... spectral studies of the prepared model structures may be used as a reference for stereoisomeric guaianolides....

  3. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation

    DEFF Research Database (Denmark)

    Riisager, Anders; Jørgensen, Betina; Wasserscheid, Peter

    2006-01-01

    A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)(2)I-2]-[BMIM]I -SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation.......A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)(2)I-2]-[BMIM]I -SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation....

  4. Synthesis of carbonyl-/sup 14/C labelled 'acetochlor'

    Energy Technology Data Exchange (ETDEWEB)

    Jablonkai, I.; Marton, A.F.; Dutka, F. (Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics)

    1982-09-20

    Carbonyl-/sup 14/C labelled 'acetochlor' (2-chloro-N-ethoxymethyl-N-(2-ethyl-6-methylphenyl)acetamide) was prepared by chlorination of acetic-1-/sup 14/C acid obtained from barium radiocarbonate to monochloroacetic-1-/sup 14/C acid which was further chlorinated to monochloroacetyl-1-/sup 14/C chloride. The addition reaction of this latter with 2-ethyl-6-methylene aniline gave a chloromethyl derivative the ethanolysis of which resulted in 'acetochlor' labelled in its carbonyl carbon. The overall radiochemical yield is 51%.

  5. Hydrolysis of Carbonyl Sulfide in Binary Mixture of Diethylene Glycol Diethyl Ether and Water

    Institute of Scientific and Technical Information of China (English)

    李新学; 刘迎新; 魏雄辉

    2005-01-01

    The solubility and hydrolysis of carbonyl sulfide in binary mixture of diethylene glycol diethyl ether and water are studied as a function of composition. The use of an aqueous solution of diethylene glycol diethyl ether enhances the solubility and hydrolysis rate of carbonyl sulfide compared with that in pure water. The composition of the mixture with maximum hydrolysis rate varies with temperature. The thermophysical properties including density, viscosity, and surface tension as a function of composition at 20℃ under atmospheric pressure as well as liquid-liquid equilibrium (LLE) data over the temperature range from 28℃ to 90℃ are also measured for the binary mixture.

  6. Kinetics of Vapor—Phase Carbonylation of Ethanol on Ni—Zn/C Catalyst

    Institute of Scientific and Technical Information of China (English)

    PENGFeng

    2002-01-01

    A novel heterogeneous Ni-Zn/C catalyst was used for vapor-phase carbonylation of ethanol under atmospheric pressure.Experiments were designed with the elimination of mass-transfer resistances.The data of primary reaction in the carbonylation were collected with a differential tubular reactor.Power law rate models were emplyed to express the conversion of ethanol and the yields of ethyl propionated and diethyl ether.The results obtained with the models were in agreement with the experimental data.

  7. Optimization and multigram scalability of a catalytic enantioselective borylative migration for the synthesis of functionalized chiral piperidines.

    Science.gov (United States)

    Kim, You-Ri; Hall, Dennis G

    2016-05-18

    The development of new, efficient and economical methods for the preparation of functionalized, optically enriched piperidines is important in the field of drug discovery where this class of heterocycles is often deemed a privileged structure. We have optimized a Pd-catalyzed enantioselective borylative migration of an alkenyl nonaflate derivative of the simple precursor, N-Boc-4-piperidone. This anomalous borylation reaction lends access to a chiral optically enriched piperidinyl allylic boronate that can be employed in carbonyl allylboration and stereoselective cross-coupling to produce substituted dehydropiperidines related to numerous pharmaceutical agents. A systematic fine-tuning of reaction conditions revealed that diethyl ether and the green solvent cyclopentyl methyl ether are suitable reaction solvents providing the highest enantioselectivity (up to 92% ee) under a low catalyst loading of 3 mol%. Optimization of the aldehyde allylboration step led to higher yields with further solvent economy. The multigram-scalability of the entire process was demonstrated under the reaction conditions that provide optimal atom-economy and efficiency. PMID:27143333

  8. DEVELOPMENT AND APPLICATION OF A SENSITIVE METHOD TO DETERMINE CONCENTRATIONS OF ACROLEIN AND OTHER CARBONYLS IN AMBIENT AIR

    Science.gov (United States)

    The sampler developed by Charles and Cahill, with Dr. Vincent Seaman, consists of a custom-built glass mist chamber in which air enters at a high flow rate and carbonyls are trapped in a solution of sodium bisulfite as carbonyl-bisulfite adducts. This reaction is rapid (on ...

  9. Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yingying, E-mail: zyzlchappy1989@163.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Zhou, Wancheng [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Li, Rong [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); No. 603 Faculty, Xi’an Institute of High Technology, Xi’an 710025 (China); Mu, Yang; Qing, Yuchang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2015-07-15

    Highlights: • Co-coated carbonyl iron particles were prepared by electroless plating method. • The obvious weight gain of carbonyl iron was deferred to 400 °C after Co-coated. • The permeability of the Co-coated particle composite kept almost invariable. • Co-coated carbonyl iron composite reserves a better absorption after heat treatment. - Abstract: Co was successfully coated on the surface of flaky carbonyl iron particles using an electroless plating method. The morphologies, composition, as well as magnetic, antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), vibrating sample magnetometer (VSM), thermogravimetric (TG) and microwave network analyzer. TG curve shows that the obvious weight gain of carbonyl iron was deferred from 300 to 400 °C after Co-coated. In contrast to raw carbonyl iron, the Co-coated carbonyl iron shows better stability on electromagnetic properties after 300 °C heat treatment for 10 h, demonstrating that the Co coating can act as the protection of carbonyl iron.

  10. Photopromoted carbonylation of olefins with carbon dioxide and labelling studies with 13CO2 and 13CH3OH

    Institute of Scientific and Technical Information of China (English)

    YIN Jingmei; GAO Dabin; HU Jiehan; ZHOU Guangyun; JIA Yingping; WANG Xiangsheng

    2003-01-01

    Photopromoted carbonylation of olefins with carbon dioxide can be completed in ambient conditions (room temperatures and atmospheric pressure) by Co(OAc)2 catalysis. It was found that in carbonyl carbons of methyl ester of aliphatic acid 50% is from CO2 and the other 50% from CH3OH by labelling experimental with 13CO2 and 13CH3OH.

  11. Hydrogen bonding to carbonyl oxygen of nitrogen-pyramidalized amide - detection of pyramidalization direction preference by vibrational circular dichroism spectroscopy.

    Science.gov (United States)

    Wang, Siyuan; Taniguchi, Tohru; Monde, Kenji; Kawahata, Masatoshi; Yamaguchi, Kentaro; Otani, Yuko; Ohwada, Tomohiko

    2016-03-01

    Nitrogen-pyramidalization of amide increases electron density on nitrogen and decreases that on carbonyl oxygen. We identified hydrogen-bonding to carbonyl of nitrogen-pyramidalized bicyclic β-proline derivatives by crystallography, and by NMR and vibrational circular dichroism (VCD) spectroscopy in solution. Such hydrogen-bonding can switch the preferred nitrogen-pyramidalization direction, as detected by VCD spectroscopy. PMID:26889607

  12. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne;

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  13. Catalytic distillation water recovery subsystem

    Science.gov (United States)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  14. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  15. Comparison of the catalytic activity for the Suzuki–Miyaura reaction of (η5-Cp)Pd(IPr)Cl with (η3-cinnamyl)Pd(IPr)(Cl) and (η3-1-t-Bu-indenyl)Pd(IPr)(Cl)

    Science.gov (United States)

    Melvin, Patrick R; Lant, Hannah M C; Peczak, Ian L; Shah, Hemali P

    2015-01-01

    Summary Complexes of the type (η3-allyl)Pd(L)(Cl) and (η3-indenyl)Pd(L)(Cl) are highly active precatalysts for the Suzuki–Miyaura reaction. Even though allyl and indenyl ligands are similar to cyclopentadienyl (Cp) ligands, there have been no detailed comparative studies exploring the activity of precatalysts of the type (η5-Cp)Pd(L)(Cl) for Suzuki–Miyaura reactions. Here, we compare the catalytic activity of (η5-Cp)Pd(IPr)(Cl) (IPr = 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene, Cp) with two commercially available catalysts (η3-cinnamyl)Pd(IPr)(Cl) (Cin) and (η3-1-t-Bu-indenyl)Pd(IPr)(Cl) (tBu Ind). We show that Cp gives slightly better catalytic activity than Cin, but significantly inferior activity than tBu Ind. This order of activity is rationalized by comparing the rates at which the precatalysts are activated to the monoligated Pd(0) active species along with the tendency of the starting precatalysts to comproportionate with monoligated Pd(0) to form inactive Pd(I) dimers. As part of this work the Cp supported Pd(I) dimer (μ-Cp)(μ-Cl)Pd2(IPr)2 (Cp Dim) was synthesized and crystallographically characterized. It does not readily disproportionate to form monoligated Pd(0) and consequently Cp Dim is a poor catalyst for the Suzuki–Miyaura reaction. PMID:26732227

  16. Catalytic Transfer Hydogenation Reactions for Undergraduate Practical Programs

    Science.gov (United States)

    Hanson, R. W.

    1997-04-01

    A brief review of catalytic transfer hydrogenation (CTH) reactions is given. Attention is drawn, particularly, to the utility of ammonium formate as the hydrogen donor in this type of reaction. The reduction of aryl carbonyl compounds to the corresponding methylene derivatives by ammonium formate in the presence of 10% Pd/C at 110°C is compared to their reductive ammonation which occurs at higher temperatures in the absence of the catalyst (the Leuckart reaction). It is suggested that the low cost and simplicity of CTH reactions using ammonium formate as the hydrogen donor, together with the high yields obtained in many cases, make them excellent candidates for inclusion in undergraduate practical programmes. Laboratory instructions are given for the reduction of nitrobenzene to aniline (isolated as benzanilide), benzophenone to diphenylmethanol and fluorenone to fluorene, in all cases using ammonium formate as the hydrogen donor and 10% Pd/C as the catalyst. Thin layer chromatography shows that in each case the product is homogeneous; the yields are essentially quantitative.

  17. Crystal structure of N-(1-allyl-3-chloro-4-ethoxy-1H-indazol-5-yl-4-methoxybenzenesulfonamide

    Directory of Open Access Journals (Sweden)

    Hakima Chicha

    2014-09-01

    Full Text Available In the title compound, C19H20ClN3O4S, the benzene ring is inclined to the indazole ring system (r.m.s. deviation = 0.014 Å by 65.07 (8°. The allyl and ethoxy groups are almost normal to the indazole ring, as indicated by the respective torsion angles [N—N—C—C = 111.6 (2 and C—C—O—C = −88.1 (2°]. In the crystal, molecules are connected by N—H...N hydrogen bonds, forming helical chains propagating along [010]. The chains are linked by C—H...O hydrogen bonds, forming a three-dimensional network.

  18. Crystal structure of (Z-3-allyl-5-(4-chlorobenzylidene-2-sulfanylidene-1,3-thiazolidin-4-one

    Directory of Open Access Journals (Sweden)

    Rahhal El Ajlaoui

    2015-12-01

    Full Text Available In the title compound, C13H10ClNOS2, the dihedral angle between the rhodanine (r.m.s. deviation = 0.008 Å and 4-chlorobenzylidene rings is 1.79 (11°. The allyl group attached to the N atom, which lies almost perpendicular to the rhodanine ring, is disordered over two orientations in a 0.519 (13:0.481 (13 ratio. A short intramolecular C—H...S interaction closes an S(6 ring. In the crystal, molecules are linked by π–π stacking interactions [centroid–centroid separation = 3.600 (15 Å], generating inversion dimers.

  19. The adsorption stability & inhibition by allyl-thiourea of bulk nanocrystalline ingot iron in dilute HCl solution

    Science.gov (United States)

    Shen, C. B.; Wang, S. G.; Yang, H. Y.; Long, K.; Wang, F. H.

    2006-12-01

    The inhibitive effect of thiourea's (TU) alkyl derivative—allyl-thiourea (ATU) on the corrosion behaviors of bulk nanocrystalline and conventional polycrystalline ingot iron (BNII & CPII) was tested. Results indicate that BNII is less prone to get corrosive than its coarse grain counterpart in blank 1 mol L -1 HCl at room temperature. When CPII and BNII were immersed for a very short time in the corrosive solution inhibited by ATU, namely, 5 min, no inductive loop appears at different concentrations. When time became prolonged, for BNII, a Warburg impedance appeared. Inhibited by ATU, the electrodes composed of the samples are polarized anodically during the potentiodynamic polarization tests, the phenomena of desorption happens at the concentration of 100 mg L -1, but the variation between potential Edes is obvious. The inhibition effect of ATU for BNII is very limited by comparison with CPII in dilute HCl.

  20. Crystal structure of (E-4-(acetoxyimino-N-allyl-3-isopropyl-2,6-diphenylpiperidine-1-carbothioamide

    Directory of Open Access Journals (Sweden)

    T. Mohandas

    2015-08-01

    Full Text Available The title compound, C26H31N3O2S, crystallizes with two molecules (A and B in the asymmetric unit. In each case, the piperidine ring exists in a twist-boat conformation. The dihedral angle between the phenyl rings is 46.16 (12° in molecule A and 44.95 (12° in molecule B. In both molecules, the allyl side chain is disordered over two orientations in a 0.649 (9:0.351 (9 ratio for molecule A and 0.826 (10:0.174 (10 ratio for molecule B. In the crystal, neither molecule forms a hydrogen bond from its N—H group, presumably due to steric hindrance. A+A and B+B inversion dimers are formed, linked by pairs of weak C—H...O hydrogen bonds enclosing R22(22 ring motifs.

  1. Crystal structure of (E)-4-(acetoxyimino)-N-allyl-3-isopropyl-2,6-diphenylpiperidine-1-carbothioamide

    OpenAIRE

    Mohandas, T; K. Gokula Krishnan; Balamurugan, S.; Harrison, William T. A.; Thanikachalam, V.; Sakthivel, P.

    2015-01-01

    The title compound, C26H31N3O2S, crystallizes with two molecules (A and B) in the asymmetric unit. In each case, the piperidine ring exists in a twist-boat conformation. The dihedral angle between the phenyl rings is 46.16 (12)° in molecule A and 44.95 (12)° in molecule B. In both molecules, the allyl side chain is disordered over two orientations in a 0.649 (9):0.351 (9) ratio for molecule A and 0.826 (10):0.174 (10) ratio for molecule B. In the crystal, neither molecule forms a hydrogen bon...

  2. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  3. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    Science.gov (United States)

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  4. An Eco-Friendly System for Oximation of Organic Carbonyl Compounds Under Microwave Irradiation

    OpenAIRE

    Hana Batmani; Davood Setamdideh

    2014-01-01

    The oximation of a variety of organic carbonyl compounds was efficiently carried out with NH2OH·HCl under microwave irradiation. The reactions were performed in water or water-ethanol as green solvents to give Z-aldoxime isomers from the corresponding aldehydes and E-ketoxime isomers from the corresponding ketones in a perfect selectively with excellent yields.

  5. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Hříbek, P.; Polívka, Tomáš

    2009-01-01

    Roč. 11, - (2009), s. 8795-8703. ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : excited-state dynamics * carbonyl carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.116, year: 2009

  6. Proteomic and carbonylation profile analysis of rat skeletal muscles following acute swimming exercise.

    Directory of Open Access Journals (Sweden)

    Francesca Magherini

    Full Text Available Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies.

  7. Ketene as a Reaction Intermediate in the Carbonylation of Dimethyl Ether to Methyl Acetate over Mordenite

    DEFF Research Database (Denmark)

    Rasmussen, Dominik Bjørn; Christensen, Jakob Munkholt; Temel, Burcin;

    2015-01-01

    Unprecedented insight into the carbonylation of dimethyl ether over Mordenite is provided through the identification of ketene (CH2CO) as a reaction intermediate. The formation of ketene is predicted by detailed DFT calculations and verified experimentally by the observation of doubly deuterated ...

  8. NMR Studies of Structure-Reactivity Relationships in Carbonyl Reduction: A Collaborative Advanced Laboratory Experiment

    Science.gov (United States)

    Marincean, Simona; Smith, Sheila R.; Fritz, Michael; Lee, Byung Joo; Rizk, Zeinab

    2012-01-01

    An upper-division laboratory project has been developed as a collaborative investigation of a reaction routinely taught in organic chemistry courses: the reduction of carbonyl compounds by borohydride reagents. Determination of several trends regarding structure-activity relationship was possible because each student contributed his or her results…

  9. [pi] Backbonding in Carbonyl Complexes and Carbon-Oxygen Stretching Frequencies: A Molecular Modeling Exercise

    Science.gov (United States)

    Montgomery, Craig D.

    2007-01-01

    An exercise is described that has illustrated the effect of various factors on [pi] backbonding to carbonyl ligands, where the students can view the molecular orbitals corresponding to the M-CO [pi] interaction as well as the competing interaction between the metal and co-ligands. The visual and hands-on nature of the modeling exercise has helped…

  10. Temporal variation of carbonyl compound concentrations at a semi-rural site in Denmark

    DEFF Research Database (Denmark)

    Christensen, C.S.; Skov, H.; Nielsen, T.; Lohse, C.

    2000-01-01

    for PAN and ozone during high-pressure episodes also indicated that photochemical production was a major controlling factor. Here the highest concentrations of carbonyl compounds were observed in air masses with the highest photochemical age (PCA) and a likely source was determined to be the oxidation...

  11. Heterogeneous Chemistry of Carbonyls and Alcohols With Sulfuric Acid: Implications for Secondary Organic Aerosol Formation

    Science.gov (United States)

    Zhao, J.; Levitt, N.; Zhang, R.

    2006-12-01

    Recent environmental chamber studies have suggested that acid-catalyzed particle-phase reactions of organic carbonyls lead to multifold increases in secondary organic aerosol (SOA) mass and acid-catalyzed reactions between alcohols and aldehydes in the condensed phase lead to the formation of hemiacetals and acetals, also enhancing secondary organic aerosol growth. The kinetics and mechanism of the heterogeneous chemistry of carbonyls and alcohols with sulfuric acid, however, remain largely uncertain. In this talk, we present measurements of heterogeneous uptake of several carbonyls and alcohols on liquid H2SO4 in a wide range of acid concentrations and temperatures. The results indicate that uptake of larger carbonyls is explained by aldol condensation. For small dicarbonyls, heterogeneous reactions are shown to decrease with acidity and involve negligible formation of sulfate esters. Hydration and polymerization likely explain the measured uptake of such small dicarbonyls on H2SO4 and the measurements do not support an acid- catalyzed uptake. Atmospheric implications from our findings will be discussed.

  12. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    Science.gov (United States)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  13. Carbonylative Heck Reactions Using CO Generated ex Situ in a Two-Chamber System

    DEFF Research Database (Denmark)

    Hermange, Philippe; Gøgsig, Thomas; Lindhardt, Anders Thyboe; Taaning, Rolf Hejle; Skrydstrup, Troels

    2011-01-01

    A carbonylative Heck reaction of aryl iodides and styrene derivatives employing a two-chamber system using a stable, crystalline, and nontransition metal based carbon monoxide source is reported. By applying near-stoichiometric amounts of the carbon monoxide precursor, an effective exploitation of...

  14. Palladium-catalyzed carbonylative sonogashira coupling of aryl bromides using near stoichiometric carbon monoxide

    DEFF Research Database (Denmark)

    Neumann, Karoline T.; Laursen, Simon R.; Lindhardt, Anders T.;

    2014-01-01

    A general procedure for the palladium-catalyzed carbonylative Sonogashira coupling of aryl bromides is reported, using near stoichiometric amounts of carbon monoxide. The method allows a broad substrate scope in moderate to excellent yields. The formed alkynone motive serves as a platform for...

  15. Direct photolysis of carbonyl compounds dissolved in cloud and fog~droplets

    Science.gov (United States)

    Epstein, S. A.; Tapavicza, E.; Furche, F.; Nizkorodov, S. A.

    2013-09-01

    Gas-phase photolysis is an important tropospheric sink for many carbonyl compounds; however the significance of direct photolysis of these compounds dissolved in cloud and fog droplets is uncertain. We develop a theoretical approach to assess the importance of aqueous photolysis for a series of carbonyls that possess carboxyl and hydroxyl functional groups by comparison with rates of other atmospheric processes. We use computationally and experimentally derived effective Henry's law constants, hydration equilibrium parameters, aqueous hydroxyl radical (OH) rate constants, and optical extinction coefficients to identify types of compounds that will (or will not) have competitive aqueous photolysis rates. We also present molecular dynamics simulations designed to estimate gas- and aqueous-phase extinction coefficients of unstudied atmospherically relevant compounds found in d-limonene and isoprene secondary organic aerosol. In addition, experiments designed to measure the photolysis rate of glyceraldehyde, an atmospherically relevant water-soluble organic compound, reveal that aqueous quantum yields are highly molecule-specific and cannot be extrapolated from measurements of structurally similar compounds. We find that only two out of the 92 carbonyl compounds investigated, pyruvic acid and acetoacetic acid, may have aqueous photolysis rates that exceed the rate of oxidation by dissolved OH. For almost all carbonyl compounds lacking α,β-conjugation that were investigated, atmospheric removal by direct photolysis in cloud and fog droplets can be neglected under typical atmospheric conditions.

  16. The Palladium-Catalyzed Vinylation and Carbonylation of Bromoindoles and N-Acety1-bromoindoline

    OpenAIRE

    Kasahara, Akira; Izumi, Taeko; Ogata, Hideaki

    1989-01-01

    Abstracts The palladium-catalyzed vinylic substitution reaction of alkenes has been shown to proceed in moderate yields with 5- and 6-bromoindols, and N-acetyl-5-bromoindoline. 4-, 5-, 6-, and 7-Bromoindoles also undergo facile palladium-assisted carbonylation with carbon monoxide in methanol to produce methoxycarbonylindoles in moderate yields.

  17. Palladium-Catalyzed Carbonylation of Primary Amines in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 江焕峰; 陈鸣才

    2001-01-01

    The chemoselectity of the palladimm-catalyzed carbonylation of amines was affected by the addition of MeOH in supercritical carbon dioxide. The results show different selectivity in supercritical carbon dioxide CO2(sc) from that in alcohol.Methyl carbamate and its derivatives were obtained in high yields in CO2(sc).

  18. Oxalyl chloride as a practical carbon monoxide source for carbonylation reactions

    DEFF Research Database (Denmark)

    Hansen, Steffen V F; Ulven, Trond

    2015-01-01

    A method for generation of high-quality carbon monoxide by decomposition of oxalyl chloride in an aqueous hydroxide solution is described. The usefulness of the method is demonstrated in the synthesis of heterocycles and for hydroxy-, alkoxy-, amino-, and reductive carbonylation reactions, in sev...

  19. Efficient and selective α-bromination of carbonyl compounds with N-bromosuccinimide under microwave

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Guan

    2015-11-01

    Full Text Available A highly efficient method for the synthesis of α-halocarbonyl compounds has been achieved via selective monobromination of aromatic and aliphatic carbonyl compounds with N-bromosuccinimide catalyzed by p-toluenesulfonic acid under microwave irradiation within 30 min.

  20. A selective palladium-catalyzed carbonylative arylation of aryl ketones to give vinylbenzoate compounds.

    Science.gov (United States)

    Schranck, Johannes; Tlili, Anis; Neumann, Helfried; Alsabeh, Pamela G; Stradiotto, Mark; Beller, Matthias

    2012-12-01

    Preparation of enols: when treated with [{Pd(cinnamyl)Cl}(2)]/cataCXium A (nBuPAd(2), Ad=adamantyl) under an atmosphere of CO, aryl ketones react with aryl halides in a carbonylative C-O coupling reaction to form (Z)-vinyl benzoates. PMID:23143936

  1. The Crystal Structures of the Open and Catalytically Competent Closed Conformation of Escherichia coli Glycogen Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Fang; Jia, Xiaofei; Yep, Alejandra; Preiss, Jack; Geiger, James H.; (MSU)

    2009-07-06

    Escherichia coli glycogen synthase (EcGS, EC 2.4.1.21) is a retaining glycosyltransferase (GT) that transfers glucose from adenosine diphosphate glucose to a glucan chain acceptor with retention of configuration at the anomeric carbon. EcGS belongs to the GT-B structural superfamily. Here we report several EcGS x-ray structures that together shed considerable light on the structure and function of these enzymes. The structure of the wild-type enzyme bound to ADP and glucose revealed a 15.2 degrees overall domain-domain closure and provided for the first time the structure of the catalytically active, closed conformation of a glycogen synthase. The main chain carbonyl group of His-161, Arg-300, and Lys-305 are suggested by the structure to act as critical catalytic residues in the transglycosylation. Glu-377, previously thought to be catalytic is found on the alpha-face of the glucose and plays an electrostatic role in the active site and as a glucose ring locator. This is also consistent with the structure of the EcGS(E377A)-ADP-HEPPSO complex where the glucose moiety is either absent or disordered in the active site

  2. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author)

  3. Oxi-DIGE: A novel proteomic approach for detecting and quantifying carbonylated proteins.

    Science.gov (United States)

    Baraibar, Martin; Ladouce, Romain; Friguet, Bertrand

    2014-10-01

    Proteins are involved in key cellular functions and our health and wellness depends on their quality. Accumulation of oxidatively damaged proteins is a hallmark of deleterious processes such increased oxidative stress, chronic inflammation, ageing and age-related diseases. Thus, quantifying and identifying oxidized proteins is a biomarker of choice for monitoring biological ageing and/or the efficiency of anti-oxidant, ant-inflammatory and anti-ageing therapies. However, the absence of reliable tools for analyses has inhibited its establishment as the gold standard for measuring the efficacy of anti-ageing and age related diseases interventions. Herein, we present a novel proteomics technology, named Oxi-DIGE?, which provides a significant improvement in terms of specificity, reproducibility and statistical support for proteomic analysis of carbonylated proteins. In Oxi-DIGE, protein carbonyls are labelled with fluorescent hydrazide probes that bind specifically to carbonyl groups in proteins. Experimental groups (e.g. control and experimental samples) are labelled with different flurophore-binded hydrazides that fluoresce light at different wavelengths, producing different colour fluorescence. Thus samples from different experimental groups are co-resolved on a single 2D gel. Increased accuracy is provided due to: (i) reduced false positives by using an exogenous synthetic fluorescent tag; (ii) multiplexing, that is the possibility to run multiple samples on the same gel, (iii) the use of an internal standard on each gel which eliminates inter-gel variations and provides an increased statistical confidence. In addition, the resolution of the carbonyl groups is improved, forming distinct spots that can be identified by mass spectrometry. ?Patent Application (M. Baraibar, R. Ladouce., B. Friguet, A method for detecting and/or quantifying carbonylated proteins (WO/2012/175519) filed by UPMC and referring to the technology described in this abstract. PMID:26461312

  4. Evaluation of hazardous airborne carbonyls on a university campus in southern China.

    Science.gov (United States)

    Ho, Steven Sai Hang; Ip, Ho Sai Simon; Ho, Kin Fai; Ng, Louisa Pan Ting; Dai, W T; Cao, Junji; Chan, Chi Sing; Ho, Legolas Baggio

    2014-08-01

    A comprehensive assessment of indoor carbonyl compounds for the academic staff workers, and students was conducted on a university campus in Xiamen, China. A total of 15 representative environment categories, including 12 indoor workplaces and three residential units, were selected. The potential indoor pollution sources were identified based on the variability in the molar compositions and correlation analyses for the target carbonyls. Furnishing materials, cooking emissions, and electronic equipment, such as photocopiers, can generate various carbonyls in the workplace. Comparison studies were conducted in the clerical offices, demonstrating that off-gases from wooden furniture and lacquer coatings, environmental tobacco smoke (ETS), and the use of cleaning reagents elevated the indoor carbonyl levels. The measured concentrations of formaldehyde and acetaldehyde in most locations surpassed the exposure limit levels. The lifetime cancer hazard risk (R) associated with formaldehyde was above the concern risk level (1 x 10(-6)) in all of the workplaces. The results indicate that formaldehyde exposure is a valid occupational health and safety concern. Wooden furniture and refurbishing materials can pose serious health threats to occupants. The information in this study could act as a basis for future indoor air quality monitoring in Mainland China. Implications: A university campus represents a microscale city environment consisting of all the working, living, and commercial needs of staff and students. The scope of this investigation covers 21 hazardous carbonyl species based on samples collected from 15 categories of workplaces and residential building in a university campus in southern China. Findings of the study provide a comprehensive assessment of indoor air quality with regards to workers' health and safety. No similar study has been carried out in China. PMID:25185393

  5. Identification, quantification, and functional aspects of skeletal muscle protein-carbonylation in vivo during acute oxidative stress.

    Science.gov (United States)

    Fedorova, Maria; Kuleva, Nadezhda; Hoffmann, Ralf

    2010-05-01

    Reactive oxidative species (ROS) play important roles in cellular signaling but can also modify and often functionally inactivate other biomolecules. Thus, cells have developed effective enzymatic and nonenzymatic strategies to scavenge ROS. However, under oxidative stress, ROS production is able to overwhelm the scavenging systems, increasing the levels of functionally impaired proteins. A major class of irreversible oxidative modifications is carbonylation, which refers to reactive carbonyl-groups. In this investigation, we have studied the production and clearance rates for skeletal muscle proteins in a rat model of acute oxidative stress over a time period of 24 h using a gel-based proteomics approach. Optimized ELISA and Western blots with 10-fold improved sensitivities showed that the carbonylation level was stable at 4 nmol per mg protein 3 h following ROS induction. The carbonylation level then increased 3-fold over 6 h and then remained stable. In total, the oxidative stress changed the steady state levels of 20 proteins and resulted in the carbonylation of 38 skeletal muscle proteins. Carbonylation of these proteins followed diverse kinetics with some proteins being highly carbonylated very quickly, whereas others peaked in the 9 h sample or continued to increase up to 24 h after oxidative stress was induced. PMID:20377239

  6. Study on Mechanism for Formation of Carbon Oxides During Catalytic Cracking of High Acidic Crude

    Institute of Scientific and Technical Information of China (English)

    Wei Xiaoli; Mao Anguo; Xie Chaogang

    2007-01-01

    Based on the basis of analysis and interpretation of the products distribution of catalytic cracking of high acidic crude,the mechanism for decarboxylation of petroleum acids during FCC process was discussed.The protons originated from the Br(o)nsted acid sites can combine with oxygen of the carbonyl groups with more negative charges to form reaction intermediates that Call be subjected to cleavage at the weak bonds,leading to breaking of carboxylic groups from the carboxylic acids followed by its decomposition to form alkyl three-coordinated carbenium ions,CO and H2O.The Lewis acid as an electrophilic reagent can abstract carboxylic groups from carboxylic acids to subsequently release CO2.

  7. Reações de Etanol com CO/H2 na Presença do Sistema Catalítico Ru(acac3/I- Ethanol, reactions with co/h2 in the presence of the ru(acac3/i- catalytic system

    Directory of Open Access Journals (Sweden)

    Elizeu Trabuco

    1997-06-01

    Full Text Available The hydrocarbonylation reaction of ethanol with a CO/H2 mixture assisted by Ru(acac3/iodide was investigated. Bronsted and Lewis acids and iodides salt were used as homogeneous promoters. The etherification reaction was the main reaction under typical acidic conditions of the catalytic system. When a hydrocarbon solvent (toluene was added to the initial reaction, the alcohol conversion and the carbonylation products were increased. The catalytic activity of the Bronsted acids (conv. EtOH = 71-92% was higher than that of the Lewis acids promoters (conv. EtOH = 65-85%. The salt present the lower catalytic activity among the promoters used. The long time reaction carried out with ethanol showed an increase of the product selectivity of the homologation and carbonylation reactions while the etherification reaction selectivity decreased. The recycled ether led to 60-65% ethanol conversion to C5 and C6 products. The main catalytic species are H+[Ru(CO3I3]-, [HRu3(CO11]- and [HRu(CO4]-. The first one is active in the carbonylation and homologation reactions of alcohols while the two others take part only in the homologation reaction.

  8. Efficient Catalytic Ozonation over Reduced Graphene Oxide for p-Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism.

    Science.gov (United States)

    Wang, Yuxian; Xie, Yongbing; Sun, Hongqi; Xiao, Jiadong; Cao, Hongbin; Wang, Shaobin

    2016-04-20

    Nanocarbons have been demonstrated as promising environmentally benign catalysts for advanced oxidation processes (AOPs) upgrading metal-based materials. In this study, reduced graphene oxide (rGO) with a low level of structural defects was synthesized via a scalable method for catalytic ozonation of p-hydroxylbenzoic acid (PHBA). Metal-free rGO materials were found to exhibit a superior activity in activating ozone for catalytic oxidation of organic phenolics. The electron-rich carbonyl groups were identified as the active sites for the catalytic reaction. Electron spin resonance (ESR) and radical competition tests revealed that superoxide radical ((•)O2(-)) and singlet oxygen ((1)O2) were the reactive oxygen species (ROS) for PHBA degradation. The intermediates and the degradation pathways were illustrated from mass spectroscopy. It was interesting to observe that addition of NaCl could enhance both ozonation and catalytic ozonation efficiencies and make ·O2(-) as the dominant ROS. Stability of the catalysts was also evaluated by the successive tests. Loss of specific surface area and changes in the surface chemistry were suggested to be responsible for catalyst deactivation. PMID:27007603

  9. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.; Saini, A.K.; Burgess, C.; Hatcher, P.G.; Schobert, H.H.

    1992-12-01

    During this quarterly period progress has been made in the following three subjects related to the effects of low-temperature thermal and catalytic pretreatments on coal structure and reactivity in liquefaction. First, the liquefaction behavior of three bituminous coals with a carbon content ranging from 77% to 85% was evaluated spectroscopically by [sup 13]C NMR and pyrolysis/gas chromatography/mass spectrometry to delineate the structural changes that occur in the coal during liquefaction. Complementary data includes ultimate and proximate analysis, along with optical microscopy for maceral determinations. Even though these are all bituminous coals they exhibit quite different physical and chemical characteristics. The coals vary in rank, ranging from HvC b to HvA b, in petrographic composition, different maceral percentages, and in chemical nature, percent of carbon and of volatiles. It is these variations that govern the products, their distribution, and conversion percentages. Some of the products formed can be traced to a specific maceral group. Second, pyrolysis-GC-MS and FTIR techniques were used to characterize Wyodak coal before and after drying in vacuum and in air and the residues from its thermal and catalytic liquefactions. The analysis of the air-dried coal shows a decrease in the phenolic type structures in the coal network and increase in the carbonyl structures as the oxidative drying proceeds. An enhanced decrease in the carbonyl structure is observed in the liquefaction residues from the raw coal as compared to that of the vacuum dried coal. The analyses of the liquefaction residues of the air-dried coal show an increase in the ether linkages which may have a negative impact on liquefaction. The extent of the solvent adduction also increases during liquefaction with the extent of oxidation of the coal. Finally, the effects of reaction conditions were investigated on conversion of low-rank coals using a Texas subbituminous coal.

  10. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  11. A Review on Mutagenicity Testing for Hazard Classification of Chemicals at Work: Focusing on in vivo Micronucleus Test for Allyl Chloride.

    Science.gov (United States)

    Rim, Kyung-Taek; Kim, Soo-Jin

    2015-09-01

    Chemical mutagenicity is a major hazard that is important to workers' health. Despite the use of large amounts of allyl chloride, the available mutagenicity data for this chemical remains controversial. To clarify the mutagenicity of allyl chloride and because a micronucleus (MN) test had not yet been conducted, we screened for MN induction by using male ICR mice bone marrow cells. The test results indicated that this chemical is not mutagenic under the test conditions. In this paper, the regulatory test battery and several assay combinations used to determine the genotoxic potential of chemicals in the workplace have been described. Further application of these assays may prove useful in future development strategies of hazard evaluations of industrial chemicals. This study also should help to improve the testing of this chemical by commonly used mutagenicity testing methods and investigations on the underlying mechanisms and could be applicable for workers' health. PMID:26929826

  12. Structure and stability of acrolein and allyl alcohol networks on Ag(111) from density functional theory based calculations with dispersion corrections

    Science.gov (United States)

    Ferullo, Ricardo M.; Branda, Maria Marta; Illas, Francesc

    2013-11-01

    The interaction of acrolein and allyl alcohol with the Ag(111) surface has been studied by means of periodic density functional theory based calculations including explicitly dispersion terms. Different coverage values have been explored going from isolated adsorbed molecules to isolated dimers, interacting dimers or ordered overlayers. The inclusion of the dispersion terms largely affects the calculated values of the adsorption energy and also the distance between adsorbed molecule and the metallic surface but much less the adsorbate-adsorbate interactions. Owing to the large dipole moment of acrolein, the present calculations predict that at high coverage this molecule forms a stable extensive two-dimensional network on the surface, caused by the alignment of the adsorbate dipoles. For the case of allyl alcohol, dimers and complex networks exhibit similar stability.

  13. Combined catalytic converter and afterburner

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-30

    This patent describes the combined use of a catalytic converter and afterburner. An afterburner chamber and a catalyst matrix are disposed in series within a casing. A combustible premixed charge is ignited in the afterburner chamber before it enters the catalyst matrix. This invention overcomes the problem encountered in previous designs of some of the premixed charge passing unreacted through the device unless a very long afterburner chamber is used. (UK)

  14. Investigations for designing catalytic recombiners

    International Nuclear Information System (INIS)

    In case of a severe accident in pressurised water reactors (PWR) a high amount of hydrogen up to about 20,000 m3 might be generated and released into the containments. The mixture consisting of hydrogen and oxygen may either burn or detonate, if ignited. In case of detonation the generated shock wave may endanger the components of the plant or the plant itself. Consequently, effective removal of hydrogen is required. The fact that hydrogen and oxygen react exo-thermally on catalytically acting surfaces already at low temperatures generating steam and heat is made use of in catalytic recombiners. They consist of substrates coated with catalyst (mainly platinum or palladium) which are arranged inside a casing. Being passively acting measures, recombiners do not need any additional energy supply. Experimental investigations on catalytic hydrogen recombination are conducted at FZJ (Forschungszentrum Juelich) using three test facilities. The results yield insight in the development potential of contemporary recombiner systems as well as of innovative systems. Detailed investigations on a recombiner section show strong temperature gradients over the surface of a catalytically coated sample. Dependent on the flow velocity, ignition temperature may be reached at the leading edge already at an inlet hydrogen concentration of about 5 vol.-%. The thermal strain of the substrate leads to considerable detachment of catalyst particles probably causing unintended ignition of the flammable mixture. Temperature peaks can be prevented effectively by leaving the first part of the plate uncoated. In order to avoid overheating of the catalyst elements of a recombiner even at high hydrogen concentrations a modular system of porous substrates is proposed. The metallic substrates are coated with platinum at low catalyst densities thus limiting the activity of the single specimen. A modular arrangement of these elements provides high recombination rates over a large hydrogen concentration

  15. Bis(allyl)-ruthenium(iv) complexes with phosphinous acid ligands as catalysts for nitrile hydration reactions.

    Science.gov (United States)

    Tomás-Mendivil, Eder; Francos, Javier; González-Fernández, Rebeca; González-Liste, Pedro J; Borge, Javier; Cadierno, Victorio

    2016-09-14

    Several mononuclear ruthenium(iv) complexes with phosphinous acid ligands [RuCl2(η(3):η(3)-C10H16)(PR2OH)] have been synthesized (78-86% yield) by treatment of the dimeric precursor [{RuCl(μ-Cl)(η(3):η(3)-C10H16)}2] (C10H16 = 2,7-dimethylocta-2,6-diene-1,8-diyl) with 2 equivalents of different aromatic, heteroaromatic and aliphatic secondary phosphine oxides R2P([double bond, length as m-dash]O)H. The compounds [RuCl2(η(3):η(3)-C10H16)(PR2OH)] could also be prepared, in similar yields, by hydrolysis of the P-Cl bond in the corresponding chlorophosphine-Ru(iv) derivatives [RuCl2(η(3):η(3)-C10H16)(PR2Cl)]. In addition to NMR and IR data, the X-ray crystal structures of representative examples are discussed. Moreover, the catalytic behaviour of complexes [RuCl2(η(3):η(3)-C10H16)(PR2OH)] has been investigated for the selective hydration of organonitriles in water. The best results were achieved with the complex [RuCl2(η(3):η(3)-C10H16)(PMe2OH)], which proved to be active under mild conditions (60 °C), with low metal loadings (1 mol%), and showing good functional group tolerance. PMID:27510460

  16. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation

    Science.gov (United States)

    You, Hengzhi; Rideau, Emeline; Sidera, Mireia; Fletcher, Stephen P.

    2015-01-01

    The development of new reactions forming asymmetric carbon-carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy--dynamic kinetic asymmetric transformation--involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield. The use of stabilized nucleophiles (pKa =50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.

  17. Interplay of carbonyl-carbonyl, Csbnd H⋯O and Csbnd H⋯π interactions in hierarchical supramolecular assembly of tartaric anhydrides - Tartaric acid and its O-acyl derivatives: Part 11

    Science.gov (United States)

    Madura, Izabela D.; Zachara, Janusz; Hajmowicz, Halina; Synoradzki, Ludwik

    2012-06-01

    The detailed analysis of molecular and crystal structure of the O-acyltartaric anhydrides is presented. The role of both intra- and intermolecular weak interactions is discussed. The Hirshfeld surfaces analysis in form of dnorm representation and decomposed finger print plots was used to find out the types of weak but directional carbonyl-carbonyl, Csbnd H⋯O and Csbnd H⋯π interactions. The major interactions at the subsequent levels of the crystal architecture were identified. The interplay between carbonyl-carbonyl interactions and Csbnd H⋯O hydrogen bonds both at the molecular level as well as in basic supramolecular motives was analyzed. In all cases the primary supramolecular motif was found to be the ribbon showing the p21 rod group symmetry. The key role of the ribbon motif is reflected in the hexagonal packing of rods.

  18. γ‐ and δ-Lactams through Palladium-Catalyzed Intramolecular Allylic Alkylation: Enantioselective Synthesis, NMR Investigation, and DFT Rationalization

    DEFF Research Database (Denmark)

    Bantreil, Xavier; Prestat, Guillaume; Moreno, Aitor;

    2011-01-01

    The Pd-catalyzed intramolecular allylic alkylation of unsaturated amides to give gamma- and delta-lactams has been studied in the presence of chiral ligands. Ligand (R)-3,5-tBu-MeOBIPHEP (MeOBIPHEP=6,6'-dimethoxybiphenyl-2,2-diyl)bis(diphenylphosphine)) afforded the best results and allowed the c...... reaction pathways. The calculated energy differences were in good agreement with the experimentally observed enantiomeric ratios....

  19. Palladium-Catalyzed C-H Arylation of α,β-Unsaturated Imines: Catalyst-Controlled Synthesis of Enamine and Allylic Amine Derivatives.

    Science.gov (United States)

    Li, Minyan; González-Esguevillas, María; Berritt, Simon; Yang, Xiaodong; Bellomo, Ana; Walsh, Patrick J

    2016-02-18

    A unique chemo- and regioselective α- and γ-arylation of palladium azapentadienyl intermediates is presented. Two distinct catalysts and sets of conditions successfully controlled the regioselectivity of the arylation. These methods provide the first umpolung C-H functionalization of azapentadienyl palladium intermediates and enable the divergent synthesis of allylic amine and enamine derivatives, which are of significant interest in the pharmaceutical industry. PMID:26846375

  20. Identifying Barbiturate Binding Sites in a Nicotinic Acetylcholine Receptor with [3H]Allyl m-Trifluoromethyldiazirine Mephobarbital, a Photoreactive Barbiturate

    OpenAIRE

    Hamouda, Ayman K.; Stewart, Deirdre S.; Chiara, David C.; Savechenkov, Pavel Y.; Bruzik, Karol S.; Cohen, Jonathan B.

    2014-01-01

    At concentrations that produce anesthesia, many barbituric acid derivatives act as positive allosteric modulators of inhibitory GABAA receptors (GABAARs) and inhibitors of excitatory nicotinic acetylcholine receptors (nAChRs). Recent research on [3H]R-mTFD-MPAB ([3H]R-5-allyl-1-methyl-5-(m-trifluoromethyldiazirinylphenyl)barbituric acid), a photoreactive barbiturate that is a potent and stereoselective anesthetic and GABAAR potentiator, has identified a second class of intersubunit binding si...

  1. Anti-inflammatory potential of allyl-isothiocyanate – role of Nrf2, NF-κB and microRNA-155

    OpenAIRE

    Wagner, Anika Eva; Boesch-Saadatmandi, Christine; Dose, Janina; Schultheiss, Gerhard; Rimbach, Gerald

    2012-01-01

    Abstract In this study, the underlying mechanisms of the potential anti-inflammatory properties of allyl-isothiocyanate (AITC) were analysed in vitro and in vivo. Murine RAW264.7 macrophages stimulated with lipopolysaccharide (LPS) were supplemented with increasing concentrations of AITC. In addition, C57BL/6 mice (n= 10 per group) were fed a pro-inflammatory high-fat diet and AITC was administered orally via gavage for 7 days. Biomarkers of inflammation were determined both in cultured cells...

  2. Intramolecular carbolithiation of N-allyl-ynamides: an efficient entry to 1,4-dihydropyridines and pyridines – application to a formal synthesis of sarizotan

    Directory of Open Access Journals (Sweden)

    Wafa Gati

    2012-12-01

    Full Text Available We have developed a general synthesis of polysubstituted 1,4-dihydropyridines and pyridines based on a highly regioselective lithiation/6-endo-dig intramolecular carbolithiation from readily available N-allyl-ynamides. This reaction, which has been successfully applied to the formal synthesis of the anti-dyskinesia agent sarizotan, further extends the use of ynamides in organic synthesis and further demonstrates the synthetic efficiency of carbometallation reactions.

  3. (Z)-Selective Enol Triflation of α-Alkoxyacetoaldehydes: Application to Synthesis of (Z)-Allylic Alcohols via Cross-Coupling Reaction and [1,2]-Wittig Rearrangement.

    Science.gov (United States)

    Kurosawa, Fumiya; Nakano, Takeo; Soeta, Takahiro; Endo, Kohei; Ukaji, Yutaka

    2015-06-01

    The stereoselective transformation of α-alkoxyacetoaldehydes to the corresponding (Z)-vinyl triflates was achieved by treatment with phenyl triflimide and DBU. The stereochemistry was explained by the "syn-effect," which was attributed primarily to an σ → π* interaction. The β-alkoxy vinyl triflates obtained were applied to the stereoselective synthesis of structurally diverse (Z)-allylic alcohols via transition metal-catalyzed cross-coupling reaction and [1,2]-Wittig rearrangement. PMID:25970239

  4. Recherches récentes sur le cobalt carbonyle et ses dérivés Recent Studies of Cobalt Carbonyl and Its Derivatives

    Directory of Open Access Journals (Sweden)

    Poilblanc R.

    2006-11-01

    Full Text Available Faisant le point sur l'ensemble de leurs résultats obtenus au cours des dernières années, les auteurs développent divers aspects relatifs aux synthèses, à la physico-chimie et aux structures des complexes dérivés des cobalt carbonyle. L'étude concerne essentiellement : - les dérivés de simple substitution de l'octacarbonyle dicobalt et la tautomérie des complexes dinucléaires; - les dérivés mononucléaires ioniques et leur relation avec les formes alkyle et acétyle du cobalt (I; - le bis (tétracarbonyle cobalt mercure et ses dérivés de substitution ; - les dérivés tétranucléaires et le phénomène de « migration intramoléculaire » des ligands. Les caractéristiques spectrographiques de quelque soixante-dix complexes sont fournies en annexe. The authors review their findings concerning the synthesis, physico-chemical properties and structural nature of cobalt carbonyl derivatives. The article deals with : - Normal substitution of Col (CO,, and tautomerism of binuclear complexes; - lonic mononuclear derivatives in relation with alkyl and acetylcobaltcarbonyls ; - Bis (tetracarbonylcobalt mercury and its substituted derivatives ; - Tetranuclear cobalt complexes exhibiting intramolecular scrambling. Spectrographic data of some 70 compounds are given.

  5. Catalytic rearrangement of the chloroallyl ethers of p-cresol

    International Nuclear Information System (INIS)

    The rearrangement of a series of p-cresol ethers (β- and γ-chloro-, βγ- and βγ,γ-trichloroallyl), catalyzed by boron trifluoride etherate, was studied. Increase in the number of chlorine atoms in the allyl unit of the ether hinders the rearrangement, and its mechanism changes in the investigated series of ethers from intramolecular [3,3]-sigmatropic (with inversion of the allyl unit) to intermolecular, which corresponds to electrophilic substitution in the aromatic ring (without inversion). The presence of the chlorine atom at the β position of the allyl unit promotes rearrangement by a concerted intramolecular mechanism, while a chlorine atom at the γ position promotes rearrangement by an intermolecular stage mechanism. Two chlorine atoms at the γ position give rise mainly to the intermolecular rearrangement path

  6. Analysis of protein carbonylation-pitfalls and promise in commonly used methods

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Wojdyla, K; Nedić, O;

    2014-01-01

    that research scientists are becoming more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases....... Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable, and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation...... in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods....

  7. Analysis of protein carbonylation - pitfalls and promise in commonly used methods

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, A.; Wojdyla, K.; Nedic, O.;

    2014-01-01

    that research scientists are becoming more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases....... Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable, and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation...... in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods....

  8. Crystallization and preliminary X-ray crystallographic studies of pig heart carbonyl reductase

    International Nuclear Information System (INIS)

    Pig heart carbonyl reductase has been crystallized in the presence of NADPH. Diffraction data have been collected using synchrotron radiation. Pig heart carbonyl reductase (PHCR), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been crystallized by the hanging-drop vapour-diffusion method. Two crystal forms (I and II) have been obtained in the presence of NADPH. Form I crystals belong to the tetragonal space group P42, with unit-cell parameters a = b = 109.61, c = 94.31 Å, and diffract to 1.5 Å resolution. Form II crystals belong to the tetragonal space group P41212, with unit-cell parameters a = b = 120.10, c = 147.00 Å, and diffract to 2.2 Å resolution. Both crystal forms are suitable for X-ray structure analysis at high resolution

  9. Polar [3 + 2] cycloaddition of ketones with electrophilically activated carbonyl ylides. Synthesis of spirocyclic dioxolane indolinones.

    Science.gov (United States)

    Bentabed-Ababsa, Ghenia; Derdour, Aicha; Roisnel, Thierry; Sáez, Jose A; Domingo, Luis R; Mongin, Florence

    2008-09-01

    The [3 + 2] cycloaddition reaction between carbonyl ylides generated from epoxides and ketones (ethyl pyruvate, ethyl phenylglyoxylate, isatin, N-methylisatin and 5-chloroisatin) to give substituted dioxolanes and spirocyclic dioxolane indolinones was investigated. The effect of microwave irradiation on the outcome of the reaction was studied. The thermal reaction between 2,2-dicyano-3-phenyloxirane and N-methylisatin was theoretically studied using DFT methods. This reaction is a domino process that comprises two steps. The first is the thermal ring opening of the epoxide to yield a carbonyl ylide intermediate, whereas the second step is a polar [3 + 2] cycloaddition to yield the final spiro cycloadducts. The cycloaddition presents a low stereoselectivity and a large regio- and chemoselectivity. Analysis of the electrophilicity values and the Fukui functions of the reagents involved in the cycloaddition step allowed the chemical outcome to be explained. PMID:18698474

  10. Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures.

    Science.gov (United States)

    Hidalgo, Francisco J; León, M Mercedes; Zamora, Rosario

    2016-10-15

    The formation of 2-phenylethylamine and phenylacetaldehyde in mixtures of phenylalanine, a lipid oxidation product, and a second amino acid was studied to determine the role of the second amino acid in the degradation of phenylalanine produced by lipid-derived reactive carbonyls. The presence of the second amino acid usually increased the formation of the amine and reduced the formation of the Strecker aldehyde. The reasons for this behaviour seem to be related to the α-amino group and the other functional groups (mainly amino or similar groups) present in the side-chain of the amino acid. These groups are suggested to modify the lipid-derived reactive carbonyl but not the reaction mechanism because the Ea of formation of both 2-phenylethylamine and phenylacetaldehyde remained unchanged in all studied systems. All these results suggest that the amine/aldehyde ratio obtained by amino acid degradation can be modified by adding free amino acids during food formulation. PMID:27173560

  11. Influence of gamma radiation reaction on the hydroesterification of butenes catalyzed by metal carbonyls

    International Nuclear Information System (INIS)

    In the hydro carboxylation reaction, which first has been studied by Reppe, olefine and acetylene compounds are processed with carbon monoxide and water at high pressures and high temperatures in the presence of metal carbonyls. This reaction can be enhanced considerably by application of ionizing radiation. Lower pressures and in particular lower temperatures can be used if gamma irradiation is performed during carboxylation. For the experiments a mixture of buten-1 and buten-2 as well as pure buten-1 and pure buten-2 has been used to study the behaviour of these olefines with respect to the isomerization of the reaction products and to the olefines not transformed in the reaction process. Replacing water, methanol has been used as a reaction component, thus obtaining directly the respective carbonyl acid esters, which can be analysed quantitatively and qualitatively with respect to their isomeric composition by gaschromatography. (orig./HK)

  12. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins

    DEFF Research Database (Denmark)

    Weber, Daniela; Davies, Michael J.; Grune, Tilman

    2015-01-01

    the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the...... different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in...... spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples....

  13. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane

    KAUST Repository

    Li, Jiaxing

    2010-10-12

    This paper introduces a carbonyl iron-PDMS (CI-PDMS) composite magnetic elastomer in which carbonyl iron (CI) particles are uniformly distributed in a PDMS matrix. The CI particles and the PDMS were mixed at different weight ratios and tested to determine the influence of CI concentration. The magnetic and mechanical properties of the magnetic elastomers were characterized, respectively, by vibrating-sample magnetometer and by tensile testing using a mechanical analyzer. The elastomer was found to exhibit high magnetization and good mechanical flexibility. The morphology and deformation of the CI-PDMS membrane also were observed. A magnetically actuated microfluidic mixer (that is, a micromixer) integrated with CI-PDMS elastomer membranes was successfully designed and fabricated. The high efficiency and quality of the mixing makes possible the impressive potential applications of this unique CI-PDMS material in microfluidic systems. © Springer-Verlag 2010.

  14. THE CM-, MM-, AND SUB-MM-WAVE SPECTRUM OF ALLYL ISOCYANIDE AND RADIOASTRONOMICAL OBSERVATIONS IN ORION KL AND THE SgrB2 LINE SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Haykal, I.; Margulès, L.; Huet, T. R.; Motyienko, R. A. [Laboratoire de Physique des Lasers, Atomes, et Molécules, UMR CNRS 8523, Université de Lille 1, F-59655 Villeneuve d' Ascq Cédex (France); Écija, P.; Cocinero, E. J.; Basterretxea, F.; Fernández, J. A.; Castaño, F. [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena s/n, E-48940 Leioa (Spain); Lesarri, A. [Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid (Spain); Guillemin, J. C. [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Allèe de Beaulieu, CS 50837, F-35708 Rennes Cedex 7 (France); Tercero, B.; Cernicharo, J., E-mail: laurent.margules@univ-lille1.fr [Centro de Astrobiología (CSIC-INTA), Laboratory of Molecular Astrophysics, Department of Astrophysics, Ctra. De Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain)

    2013-11-10

    Organic isocyanides have an interesting astrochemistry and some of these molecules have been detected in the interstellar medium (ISM). However, rotational spectral data for this class of compounds are still scarce. We provide laboratory spectra of the four-carbon allyl isocyanide covering the full microwave region, thus allowing a potential astrophysical identification in the ISM. We assigned the rotational spectrum of the two cis (synperiplanar) and gauche (anticlinal) conformations of allyl isocyanide in the centimeter-wave region (4-18 GHz), resolved its {sup 14}N nuclear quadrupole coupling (NQC) hyperfine structure, and extended the measurements into the millimeter and submillimeter-wave (150-900 GHz) ranges for the title compound. Rotational constants for all the monosubstituted {sup 13}C and {sup 15}N isotopologues are additionally provided. Laboratory observations are supplemented with initial radioastronomical observations. Following analysis of an extensive dataset (>11000 rotational transitions), accurate ground-state molecular parameters are reported for the cis and gauche conformations of the molecule, including rotational constants, NQC parameters, and centrifugal distortion terms up to octic contributions. Molecular parameters have also been obtained for the two first excited states of the cis conformation, with a dataset of more than 3300 lines. The isotopic data allowed determining substitution and effective structures for the title compound. We did not detect allyl isocyanide either in the IRAM 30 m line survey of Orion KL or in the PRIMOS survey toward SgrB2. Nevertheless, we provided an upper limit to its column density in Orion KL.

  15. The Pharmacological Activities of the Metabolites of N-[(Trimethylamineboryl)-Carbonyl]-L-Phenylalanine Methyl Ester

    OpenAIRE

    Miller, M. C.III; Sood, A.; Spielvogel, B. F.; Shrewsbury, R. P.; Hall, I. H.

    1996-01-01

    The metabolites of N-[(trimethylamineboryl)-carbonyl]-L-phenylalanine methyl ester 1 proved to be active in a number of pharmacological screens where the parent had previously demonstrated potent activity. The proposed metabolites demonstrated significant activity as cytotoxic, hypolipidemic, and anti-inflammatory agents. In cytotoxicity screens several of the proposed metabolites afforded better activity than the parent compound against the growth of suspended and solid tumor cell lines. Eva...

  16. Formation of Small Gas Phase Carbonyls from Heterogeneous Oxidation of Polyunsaturated Fatty Acids (PUFA)

    Science.gov (United States)

    Zhou, S.; Zhao, R.; Lee, A.; Gao, S.; Abbatt, J.

    2011-12-01

    Fatty acids (FAs) are emitted into the atmosphere from gas and diesel powered vehicles, cooking, plants, and marine biota. Field measurements have suggested that FAs, including polyunsaturated fatty acids (PUFA), could make up an important contribution to the organic fraction of atmospheric aerosols. Due to the existence of carbon-carbon double bonds in their molecules, PUFA are believed to be highly reactive towards atmospheric oxidants such as OH and NO3 radicals and ozone, which will contribute to aerosol hygroscopicity and cloud condensation nuclei activity. Previous work from our group has shown that small carbonyls formed from the heterogeneous reaction of linoleic acid (LA) thin films with gas-phase O3. It is known that the formation of small carbonyls in the atmosphere is not only relevant to the atmospheric budget of volatile organic compounds but also to secondary organic aerosol formation. In the present study, using an online proton transfer reaction mass spectrometry (PTR-MS) and off-line gas chromatography-mass spectrometry (GC-MS) we again investigated carbonyl formation from the same reaction system, i.e. the heterogeneous ozonolysis of LA film. In addition to the previously reported carbonyls, malondialdehyde (MDA), a source of reactive oxygen species that is mutagenic, has been identified as a product for the first time. Small dicarbonyls, e.g. glyoxal, are expected to be formed from the further oxidation of MDA. In this presentation, the gas-phase chemistry of MDA with OH radicals using a newly built Teflon chamber in our group will also be presented.

  17. Synthesis and Insecticidal Activity of Novel N-Pyridylpyrazole Carbonyl Thioureas

    Institute of Scientific and Technical Information of China (English)

    王宝雷; 马翼; 熊丽霞; 李正名

    2012-01-01

    A series of novel N-pyridylpyrazole carbonyl thioureas were designed and synthesized. Their structures were characterized by melting points, 1H NMR, IR and elemental analysis or HRMS. The bioassay tests indicated that some of these compounds exhibited moderate insecticidal activity against Mythirnna separata Walker and Culex pipiens pallens. Among 17 compounds, 5n and 5p showed 100% larvicidal activity against Mythimna separata Walker at the test concentration of 100 mg/L.

  18. Influence of carbonyl stress on rheological alterations of blood materials and decarbonylation effect of glutathione

    Institute of Scientific and Technical Information of China (English)

    彭密军; 蔡建光; 贺洪; 龚萍; 李国林; 汤婷; 朱泽瑞; 印大中

    2008-01-01

    The effects of various toxic carbonyls such as malondialdehyde(MDA),a secondary product of lipid peroxidation,and other aldehydes on rheological parameters and their relationship with aging-associated alterations were studied.Both MDA and glutaraldehyde(Glu) in different concentrations significantly increase viscosity,plastic viscosity and yield stress of human plasma and erythrocyte suspensions.MDA(20 mmol/L) reduces sharply the typical fluorescence of proteins(excitation 280 nm/emission 350 nm),and produces age pigment-like fluorescence with a strong emission peak at 460 nm when excites at 395 nm by only being incubated for some hours.In contrast,Glu decreases merely the fluorescence of proteins without producing age pigment-like fluorescence.These data suggest interestingly that the MDA-induced gradual protein cross linking seems to form from different mechanisms compared to the fast rheological changes of blood materials which may take place either in acute and chronic diseases or during aging.On the other hand,MDA induces various deleterious alterations of erythrocytes whereas glutathione(GSH) inhibits the MDA-related carbonyl stress in a concentration-dependent manner.The results indicate that carbonyl-amino reaction exists in the blood widely and GSH has the ability to interrupt or reverse this reaction in a certain way.It implies that carbonyl stress may be one of the important factors in blood stasis and suggests a theoretical and practical approach in anti-stresses and anti-aging.

  19. Polar [3 + 2] cycloaddition of ketones with electrophilically activated carbonyl ylides. Synthesis of spirocyclic dioxolane indolinones.

    OpenAIRE

    Bentabed-Ababsa, Ghenia; Derdour, Aicha; Roisnel, Thierry; Sáez, Jose A.; Luis R. Domingo; Mongin, Florence

    2008-01-01

    The [3 + 2] cycloaddition reaction between carbonyl ylides generated from epoxides and ketones (ethyl pyruvate, ethyl phenylglyoxylate, isatin, N-methylisatin and 5-chloroisatin) to give substituted dioxolanes and spirocyclic dioxolane indolinones was investigated. The effect of microwave irradiation on the outcome of the reaction was studied. The thermal reaction between 2,2-dicyano-3-phenyloxirane and N-methylisatin was theoretically studied using DFT methods. This reaction is a domino proc...

  20. COMPARATIVE STUDY OF EFFICACY OF FERROUS SULPHATE AND CARBONYL IRON IN ANEMIA OF ANTENATAL WOMEN

    OpenAIRE

    Radhika; Souris

    2015-01-01

    Iron deficiency anemia is the most common and important public health problem all over the world in the risk group of antenatal women. Research is going on to improve the iron status of the pregnant women with different forms of iron available. In this regard, Carbonyl Iron is showing promising results in improving the red cell mass with better compliance. 120 antenatal women were recruited in this study. The study comprised of 6weeks fo...

  1. Proteomic identification of carbonylated proteins in the kidney of trichloroethene-exposed MRL+/+ mice

    OpenAIRE

    Fan, Xiuzhen; WANG, GANGDUO; English, Robert D.; Khan, M. Firoze

    2013-01-01

    Trichloroethene (TCE), a common environmental and occupational pollutant, is associated with multi-organ toxicity. Kidney is one of major target organs affected as a result of TCE exposure. Our previous studies have shown that exposure to TCE causes increased protein oxidation (protein carbonylation) in the kidneys of autoimmune-prone MRL +/+ mice, and suggested a potential role of protein oxidation in TCE-mediated nephrotoxicity. To assess the impact of chronic TCE exposure on protein oxidat...

  2. Influence of shape anisotropy on microwave complex permeability in carbonyl iron flakes/epoxy resin composites

    Institute of Scientific and Technical Information of China (English)

    Wen Fu-Sheng; Qiao Liang; Zhou Dong; Zuo Wen-Liang; Yi Hai-Bo; Li Fa-Shen

    2008-01-01

    To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization hysteresis loops and the Mossbauer spectra. Furthermore, the shape anisotropy was used to explain the origin of composite microwave performance, and the calculated results agree with the experiment. It is believed that the shape anisotropy dominates microwave complex permeability, and the natural resonance plays main role in flake.

  3. Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer

    OpenAIRE

    Zhiqi Wang; Sai Li; Yu Cao; Xuefei Tian; Rong Zeng; Duan-Fang Liao; Deliang Cao

    2016-01-01

    Oxidative stress has long been known as a pathogenic factor of ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), but the effects of secondary carbonyl lesions receive less emphasis. In inflammatory conditions, reactive oxygen species (ROS), such as superoxide anion free radical (O2 ∙−), hydrogen peroxide (H2O2), and hydroxyl radical (HO∙), are produced at high levels and accumulated to cause oxidative stress (OS). In oxidative status, accumulated ROS can cause protein dy...

  4. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    OpenAIRE

    Whelan, Mary E.; Hilton, Timothy W.; Berry, Joseph A; Berkelhammer, Max; Desai, Ankur R; Campbell, J. Elliott

    2016-01-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil–COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show smal...

  5. Exchange of carbonyl sulfide (COS) between the atmosphere and various soils in China

    OpenAIRE

    Liu, J; C. Geng; Mu, Y; Zhang, Y.; Z. Xu; Wu, H

    2010-01-01

    Using a dynamic enclosure, the exchange rates of carbonyl sulfide (COS) between the atmosphere and 18 soils from 12 provinces in China were investigated. The emission or uptake of COS from the soils was highly dependent on the soil type, soil temperature, soil moisture, and atmospheric COS mixing ratio. In general, with the only exception being paddy soils, the soils in this investigation acted as sinks for atmospheric COS under wide ranges of soil temperature and soil moisture. Two intensive...

  6. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    OpenAIRE

    M. E. Whelan; T. W. Hilton; J. A. Berry; M. Berkelhammer; A. R. Desai; Campbell, J. E.

    2015-01-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil-COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been ...

  7. Exchange of carbonyl sulfide (COS) between the atmosphere and various soils in China

    OpenAIRE

    Liu, J; C. Geng; Mu, Y; Zhang, Y.; Wu, H

    2009-01-01

    Using a dynamic enclosure, the exchange fluxes of carbonyl sulfide (COS) between the atmosphere and 18 soils from 10 provinces in China were investigated. The emission or uptake of COS from the soils was highly dependent on the soil type, soil temperature, soil moisture, and atmospheric COS mixing ratio. In general, with the only exception being paddy soils, the soils in this investigation acted as sinks for atmospheric COS under wide ranges of soil temperature and soil moisture. Two i...

  8. Novel Routes to Ethylene Glycol Synthesis via Acid-Catalyzed Carbonylation of Formaldehyde and Dimethoxymethane

    OpenAIRE

    Celik, Fuat Emin

    2010-01-01

    Carbon-carbon bond forming carbonylation reactions were investigated as candidates to replace ethene epoxidation as the major source of ethylene glycol production. This work was motivated by the potentially lower cost of carbon derived from synthesis gas as compared to ethylene. Synthesis gas can be produced from relatively abundant and cheap natural gas, coal, and biomass resources whereas ethylene is derived from increasingly scarce and expensive crude oil. From synthesis gas, a range of...

  9. DETERMINATION OF PROTEIN CARBONYL LEVELS IN PATIENTS WITH CHRONIC ALCOHOLICS AND EVALUATION TOGETHER WITH OTHER PARAMETERS

    OpenAIRE

    YALCIN, Serap

    2011-01-01

    Investigation of the impact of oxidative stress, of which chronic alcohol consumption is an important indicator, on proteins and lipids. In this study, in order to evaluate oxidative damage, blood samples of 40 alcoholic patients, lying in the psychiatry clinic of Ankara University with the diagnosis of alcoholism, and 20 healthy people have been worked with spectrophotometric method. Malondialdehyde (MDA), lipid peroxidation product, and protein carbonyl (PCO) levels observed as statisticall...

  10. The interaction of metal carbonyl compounds with organic polymers and monomers

    OpenAIRE

    Lyons, Michael P.

    1993-01-01

    The photochemistry of W(CO)6, Mo(CO)6, and Cr(CO)6 in the presence of monomeric and polymeric triphenylphosphine ligands was investigated in toluene solution, using laser flash photolysis with 355nm excitation. The mechanism and kinetics of interaction of the primary photoproducts M(CO)5(toluene) (M = W, Mo, or Cr) with the various monomeric ligands were investigated. Interaction of the metal carbonyl photofragments with various homopolymers is also discussed. The polymerisation methods used ...

  11. Doxorubicin-induced carbonylation and degradation of cardiac myosin binding protein C promote cardiotoxicity

    OpenAIRE

    Aryal, Baikuntha; Jeong, Jinsook; Rao, V. Ashutosh

    2014-01-01

    Doxorubicin is one of the most successful anticancer agents. However, 10–30% of all treated patients experience a dose-limiting cardiac adverse event. Oxidative stress is partly responsible for the cardiotoxicity because the heart does not possess required antioxidant mechanisms. Protein oxidation by carbonylation is irreversible and marks proteins for loss of function and degradation. Using proteomics and MS, we identified and investigated cardiac myosin binding protein (MyBPC) as being sele...

  12. Density functional theory study of electroreductive hydrocoupling of alpha,beta-unsaturated carbonyl compounds.

    Science.gov (United States)

    Kise, Naoki

    2006-11-24

    [reaction: see text] The electroreductive hydrocoupling of methyl cinnamate, methyl crotonate, cumarin, and benzalacetone was studied by DFT (B3LYP/6-311++ G**) calculations. The computational outcomes for the transition states in the hydrocoupling of anion radicals generated by a one-electron transfer to the alpha,beta-unsaturated carbonyl compounds well agree with the diastereoselectivities in the experimental results previously reported. PMID:17109548

  13. Synthesis and complexing properties of carbonyl-containing thiacalyx[4]arenes

    International Nuclear Information System (INIS)

    Stereoisomers of unsubstituted by upper rim of thiacalyx(4)arenes containing four carbonyl fragments have been prepared for the first time, their structure has been investigated by one- and two-dimensional spectroscopy, NMR, IR-spectroscopy and mass-spectrometry. Complexing properties of macrocycles concerning alkali metal cations (Li+, Na+, K+, Cs+) is evaluated by picrate extraction. Lack of the preorganization in the case of unsubstituted by upper rim thiacalyxarenes accounts for sudden decreasing extraction ability

  14. A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect

    OpenAIRE

    Luca Regazzoni; Barbora de Courten; Davide Garzon; Alessandra Altomare; Cristina Marinello; Michaela Jakubova; Silvia Vallova; Patrik Krumpolec; Marina Carini; Jozef Ukropec; Barbara Ukropcova; Giancarlo Aldini

    2016-01-01

    Carnosine is a natural dipeptide able to react with reactive carbonyl species, which have been recently associated with the onset and progression of several human diseases. Herein, we report an intervention study in overweight individuals. Carnosine (2 g/day) was orally administered for twelve weeks in order to evaluate its bioavailability and metabolic fate. Two carnosine adducts were detected in the urine samples of all subjects. Such adducts are generated from a reaction with acrolein, whi...

  15. Mitochondrial uncoupler carbonyl cyanide M-chlorophenylhydrazone induces the multimer assembly and activity of repair enzyme protein L-isoaspartyl methyltransferase.

    Science.gov (United States)

    Fanélus, Irvens; Desrosiers, Richard R

    2013-07-01

    The protein L-isoaspartyl methyltransferase (PIMT) repairs damaged aspartyl residues in proteins. It is commonly described as a cytosolic protein highly expressed in brain tissues. Here, we report that PIMT is an active monomeric as well as a multimeric protein in mitochondria isolated from neuroblastoma cells. Upon treatments with mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), PIMT monomers level decreased by half while that of PIMT multimers was higher. Gel electrophoresis under reducing conditions of CCCP-induced PIMT multimers led to PIMT monomers accumulation, indicating that multimers resulted from disulfide-linked PIMT monomers. The antioxidant ascorbic acid significantly lowered CCCP-induced formation of PIMT multimers, suggesting that reactive oxygen species contributed to PIMT multimerization. In addition, the elevation of PIMT multimers catalytic activity upon treatments with CCCP was severely inhibited by the reducing agent dithiothreitol. This indicated that PIMT monomers have lower enzymatic activity following CCCP treatments and that activation of PIMT multimers is essentially dependent on the formation of disulfide-linked monomers of PIMT. Furthermore, the perturbation of mitochondrial function by CCCP promoted the accumulation of damaged aspartyl residues in proteins with high molecular weights. Thus, this study demonstrates the formation of active PIMT multimers associated with mitochondria that could play a key role in repairing damaged proteins accumulating during mitochondrial dysfunction. PMID:23319267

  16. Mitochondrial ascorbate-glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripening.

    Science.gov (United States)

    López-Vidal, O; Camejo, D; Rivera-Cabrera, F; Konigsberg, M; Villa-Hernández, J M; Mendoza-Espinoza, J A; Pérez-Flores, L J; Sevilla, F; Jiménez, A; Díaz de León-Sánchez, F

    2016-03-01

    In non-photosynthetic tissues, mitochondria are the main source of energy and of reactive oxygen species. Accumulation of high levels of these species in the cell causes damage to macromolecules including several proteins and induces changes in different metabolic processes. Fruit ripening has been characterized as an oxidative phenomenon; therefore, control of reactive oxygen species levels by mitochondrial antioxidants plays a crucial role on this process. In this work, ascorbate-glutathione cycle components, hydrogen peroxide levels and the proteomic profile of carbonylated proteins were analyzed in mitochondria isolated from tomato (Solanum lycopersicum) fruit at two ripening stages. A significant increase on most ascorbate-glutathione cycle components and on carbonylated proteins was observed in mitochondria from breaker to light red stage. Enzymes and proteins involved in diverse cellular and mitochondrial metabolic pathways were identified among the carbonylated proteins. These results suggest that protein carbonylation is a post-translational modification involved in tomato fruit ripening regulation. PMID:26471654

  17. Hydrogen bond and protonation during interaction of transition metal carbonyl complexes with HCl and perfluoro-tert-butanol

    International Nuclear Information System (INIS)

    Using the method of IR-spectrometry HCl interaction with some carbonyl complexes of transition metals: (Et5C5)Re(CO)3, (η6 - Me3C6H3)M(CO)3, where M = Cr, Mo, W at low temperatures in solution of liquid xenon, as well as interaction of certain complexes of Arene M (CO)L2 type with perfluoro-tert-butanol, have been investigated. It is ascertained that HCl is able to form H-bond with carbonyl Π-complexes by transition metals via oxygen atom of carbonyl group at metal atom in xenon solution. The protonation of carbonyl complexes of transition metals to metal atom can proceed via the stage of hydrogen bond formation to oxygen atom of CO group

  18. An efficient catalytic method for fulvene synthesis

    OpenAIRE

    Coşkun, Necdet; Erden, Ihsan

    2011-01-01

    The effects of the nature and amount of base, substrate structure, amount of added water and solvent on the condensation of carbonyl compounds with cyclopentadiene in the presence of secondary amines were investigated. Based on these studies, a new efficient and green synthesis of fulvenes was developed.

  19. Effect of carbonyl inhibitors and their H₂O₂ detoxification on lactic acid fermentation.

    Science.gov (United States)

    Li, Jing; Zhu, Caiqing; Tu, Maobing; Han, Pingping; Wu, Yonnie

    2015-04-01

    Biomass degradation compounds significantly inhibit biochemical conversion of biomass prehydrolysates to biofuels and chemicals, such as lactic acid. To characterize the structure-activity relationship of carbonyl inhibition on lactic acid fermentation, we examined effects of eight carbonyl compounds (furfural, 5-hydroxymethyl furfural, vanillin, syringaldehyde, 4-hydroxybenzaldehyde, phthalaldehyde, benzoic acid, and pyrogallol aldehyde) and creosol on lactic acid production by Lactobacillus delbrueckii. Pyrogallol aldehyde reduced the cell growth rate by 35 % at 1.0 mM and inhibited lactic acid production completely at 2.0 mM. By correlating the molecular descriptors to the inhibition constants in lactic acid fermentation, we found a good relationship between the hydrophobicity (Log P) of aldehydes and their inhibition constants in fermentation. The inhibitory effect of carbonyl inhibitors appeared to correlate with their thiol reactivity as well. In addition, we found that H2O2 detoxified pyrogallol aldehyde and phthalaldehyde inhibitory activity. H2O2 detoxification was applied to real biomass prehydrolysates in lactic acid fermentation. PMID:25666370

  20. Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation

    International Nuclear Information System (INIS)

    Peroxidation of lipids produces carbonyl compounds; some of these, e.g., malonaldehyde and 4-hydroxynonenal, are genotoxic because of their reactivity with biological nucleophiles. Analysis of the reactive carbonyl compounds is often difficult. The methylhydrazine method developed for malonaldehyde analysis was applied to simultaneously measure the products formed from linoleic acid, linolenic acid, arachidonic acid, and squalene upon ultraviolet-irradiation (UV-irradiation). The photoreaction products, saturated monocarbonyl, alpha,beta-unsaturated carbonyls, and beta-dicarbonyls, were derivatized with methylhydrazine to give hydrazones, pyrazolines, and pyrazoles, respectively. The derivatives were analyzed by gas chromatography and gas chromatography-mass spectrometry. Lipid peroxidation products identified included formaldehyde, acetaldehyde, acrolein, malonaldehyde, n-hexanal, and 4-hydroxy-2-nonenal. Malonaldehyde levels formed upon 4 hr of irradiation were 0.06 micrograms/mg from squalene, 2.4 micrograms/mg from linolenic acid, and 5.7 micrograms/mg from arachidonic acid. Significant levels of acrolein (2.5 micrograms/mg) and 4-hydroxy-2-nonenal (0.17 micrograms/mg) were also produced from arachidonic acid upon 4 hr irradiation

  1. Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions

    Directory of Open Access Journals (Sweden)

    Esther Barreiro

    2016-05-01

    Full Text Available Muscle dysfunction, characterized by a reductive remodeling of muscle fibers, is a common systemic manifestation in highly prevalent conditions such as chronic heart failure (CHF, chronic obstructive pulmonary disease (COPD, cancer cachexia, and critically ill patients. Skeletal muscle dysfunction and impaired muscle mass may predict morbidity and mortality in patients with chronic diseases, regardless of the underlying condition. High levels of oxidants may alter function and structure of key cellular molecules such as proteins, DNA, and lipids, leading to cellular injury and death. Protein oxidation including protein carbonylation was demonstrated to modify enzyme activity and DNA binding of transcription factors, while also rendering proteins more prone to proteolytic degradation. Given the relevance of protein oxidation in the pathophysiology of many chronic conditions and their comorbidities, the current review focuses on the analysis of different studies in which the biological and clinical significance of the modifications induced by reactive carbonyls on proteins have been explored so far in skeletal muscles of patients and animal models of chronic conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and physiological aging. Future research will elucidate the specific impact and sites of reactive carbonyls on muscle protein content and function in human conditions.

  2. Uncertainties of polynuclear aromatic hydrocarbon and carbonyl measurements in heavy-duty diesel emission.

    Science.gov (United States)

    Mabilia, Rosanna; Cecinato, Angelo; Guerriero, Ettore; Possanzini, Massimiliano

    2006-02-01

    In this note we describe the speciated particle-phase PM2.5 polynuclear aromatic hydrocarbon (PAH) and gas-phase carbonyl emissions as collected from a heavy-duty diesel bus outfitted with an oxidation catalyst for exhaust after-treatment. The vehicle was run on a chassis dynamometer during a transient cycle test reproducing a typical city bus route (Azienda Tramviaria Municipalizzata cycle). The diluted tailpipe emissions were sampled for PAH using a 2.5 microm cut size cyclone glass fiber filter assembly, while carbonyls were absorbed onto dinitrophenyl hydrazine-coated silica cartridges. The former compounds were analysed by CGC-MS, the latter by HPLC-UV. Combining the two sets of speciation data resulting from 15 identical dynamometer tests provided a profile of both unregulated organic emissions. PAH emission rates decreased with the number of benzene fused rings. Fluoranthene and pyrene amounted to 90% of total PAHs quantified; six-ring PAHs accounted only for 0.5%. Similarly, formaldehyde and acetaldehyde accounted for approximately 80% of the total carbonyl emissions. Uncertainties of the method in the determination of individual emission factors were calculated. Statistical data processing revealed that all the measurements were quite unaffected by systematic errors and repeatability percentages did not exceed 50% for the majority of components of both groups. PMID:16524107

  3. Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, K.J.; Shibamoto, T. (Univ. of California, Davis (USA))

    1990-08-01

    Peroxidation of lipids produces carbonyl compounds; some of these, e.g., malonaldehyde and 4-hydroxynonenal, are genotoxic because of their reactivity with biological nucleophiles. Analysis of the reactive carbonyl compounds is often difficult. The methylhydrazine method developed for malonaldehyde analysis was applied to simultaneously measure the products formed from linoleic acid, linolenic acid, arachidonic acid, and squalene upon ultraviolet-irradiation (UV-irradiation). The photoreaction products, saturated monocarbonyl, alpha,beta-unsaturated carbonyls, and beta-dicarbonyls, were derivatized with methylhydrazine to give hydrazones, pyrazolines, and pyrazoles, respectively. The derivatives were analyzed by gas chromatography and gas chromatography-mass spectrometry. Lipid peroxidation products identified included formaldehyde, acetaldehyde, acrolein, malonaldehyde, n-hexanal, and 4-hydroxy-2-nonenal. Malonaldehyde levels formed upon 4 hr of irradiation were 0.06 micrograms/mg from squalene, 2.4 micrograms/mg from linolenic acid, and 5.7 micrograms/mg from arachidonic acid. Significant levels of acrolein (2.5 micrograms/mg) and 4-hydroxy-2-nonenal (0.17 micrograms/mg) were also produced from arachidonic acid upon 4 hr irradiation.

  4. Vapor phase carbonylation of dimethyl ether and methyl acetate with supported transition metal catalysts

    International Nuclear Information System (INIS)

    The synthesis of acetic acid (AcOH) from methanol (MeOH) and carbon monoxide has been performed industrially in the liquid phase using a rhodium complex catalyst and an iodide promoter. The selectivity to AcOH is more than 99% under mild conditions (1750C, 28 atm). The homogeneous rhodium catalyst has been also effective for the synthesis of acetic anhydride (Ac2O) by carbonylation of dimethyl ether (DME) or methyl acetate (AcOMe). However, rhodium is one of the most expensive metals and its proved reserves are quite limited. It is highly desired, therefore, to develop a new catalyst as a substitute for rhodium. The authors have already reported that nickel supported on active carbon exhibits an excellent activity for the vapor phase carbonylation of MeOh in the presence of iodide promoter and under moderately pressurized conditions. In addition, corrosive attack on reactors by iodide compounds is expected to be negligible in the vapor phase system. In the present work, vapor phase carbonylation of DME and AcOMe on nickel-active carbon (Ni/A.C.) and molybdenum-active carbon (Mo/A.C.) catalysts was studied

  5. Synthesis, structural and vibrational properties of 1-(adamantane-1-carbonyl)-3-halophenyl thioureas

    Science.gov (United States)

    Saeed, Aamer; Erben, Mauricio F.; Bolte, Michael

    2013-02-01

    1-(Adamantane-1-carbonyl)-3-(2,4-dichlorophenyl)thiourea (1) and 1-(adamantane-1-carbonyl)-3-(2-bromo-4,6-difluorophenyl)thiourea (2) were synthesized by the reaction of adamantane-1-carbonyl chloride with ammonium thiocyanate to afford the adamantane-1-carbonylisothiocyanate in situ followed by treatment with suitable halogenated anilines. The structures of the products were established by elemental analyses, Fourier transform infrared spectroscopy (FTIR), 1H, 13C nuclear magnetic resonance (NMR), mass spectroscopy and single crystal X-ray diffraction study. Bond lengths and angles show the usual values. All of three condensed cyclohexane rings of the adamantane residues adopt the usual chair conformation. The molecular conformation of 1 and 2 is stabilized by an intramolecular (Nsbnd H⋯Odbnd C) hydrogen bond which forms a pseudo-six-membered ring. Structural features have been complemented with the joint analysis of the FTIR and FT-Raman spectra along with quantum chemical calculations at the B3LYP/6-311++G** level.

  6. A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect

    Science.gov (United States)

    Regazzoni, Luca; de Courten, Barbora; Garzon, Davide; Altomare, Alessandra; Marinello, Cristina; Jakubova, Michaela; Vallova, Silvia; Krumpolec, Patrik; Carini, Marina; Ukropec, Jozef; Ukropcova, Barbara; Aldini, Giancarlo

    2016-06-01

    Carnosine is a natural dipeptide able to react with reactive carbonyl species, which have been recently associated with the onset and progression of several human diseases. Herein, we report an intervention study in overweight individuals. Carnosine (2 g/day) was orally administered for twelve weeks in order to evaluate its bioavailability and metabolic fate. Two carnosine adducts were detected in the urine samples of all subjects. Such adducts are generated from a reaction with acrolein, which is one of the most toxic and reactive compounds among reactive carbonyl species. However, neither carnosine nor adducts have been detected in plasma. Urinary excretion of adducts and carnosine showed a positive correlation although a high variability of individual response to carnosine supplementation was observed. Interestingly, treated subjects showed a significant decrease in the percentage of excreted adducts in reduced form, accompanied by a significant increase of the urinary excretion of both carnosine and carnosine-acrolein adducts. Altogether, data suggest that acrolein is entrapped in vivo by carnosine although the response to its supplementation is possibly influenced by individual diversities in terms of carnosine dietary intake, metabolism and basal production of reactive carbonyl species.

  7. Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems

    International Nuclear Information System (INIS)

    confirmed by Bromine number tests. The values of which lie in the range of 0.1-12.8 g/ml, which fall in the range for olefin mixture. Phenol and carbonyl contents were quantified using UV/Visible spectroscopy and the values lie in the range of 1-8920 μg/ml and 5-169 μg/ml for both phenols and carbonyls respectively. The components of different hydrocarbons in the oil mixture were separated by using column chromatography and fractional distillation followed by characterization with FT-IR spectroscopy. The interpretation of FT-IR spectra shows that catalytic pyrolysis of LDPE leads to the formation of a complex mixture of alkanes, alkenes, carbonyl group containing compounds like aldehydes, ketones, aromatic compounds and substituted aromatic compounds like phenols. It could be concluded, that catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problem.

  8. Facile synthesis and intraparticle self-catalytic oxidation of dextran-coated hollow Au-Ag nanoshell and its application for chemo-thermotherapy.

    Science.gov (United States)

    Jang, Hongje; Kim, Young-Kwan; Huh, Hyun; Min, Dal-Hee

    2014-01-28

    Galvanic replacement reaction is a useful method to prepare various hollow nanostructures. We developed fast and facile preparation of biocompatible and structurally robust hollow Au-Ag nanostructures by using dextran-coated Ag nanoparticles. Oxidation of the surface dextran alcohols was enabled by catalytic activity of the core Au-Ag nanostructure, introducing carbonyl groups that are useful for further bioconjugation. Subsequent doxorubicin (Dox) conjugation via Schiff base formation was achieved, giving high payload of approximately 35 000 Dox per particle. Near-infrared-mediated photothermal conversion showed high efficacy of the Dox-loaded Au-Ag nanoshell as a combinational chemo-thermotherapy to treat cancer cells. PMID:24383549

  9. Cytoprotective Effects of Hydrophilic and Lipophilic Extracts of Pistacia vera against Oxidative Versus Carbonyl Stress in Rat Hepatocytes

    OpenAIRE

    Shahraki, Jafar; Zareh, Mona; Kamalinejad, Mohammad; Pourahmad, Jalal

    2014-01-01

    This study was conducted to evaluate the cytoprotection of various extracts and bioactive compounds found in Pistacia vera againts cytotoxicity, ROS formation, lipid peroxidation, protein carbonylation, mitochondrial and lysosomal membrane damages in cell toxicity models of diabetes related carbonyl (glyoxal) and oxidative stress (hydroperoxide). Methanol, water and ethyl acetate were used to prepare crude pistachios extracts, which were then used to screen for in-vitro cytoprotection of fres...

  10. Asymmetric Conjugate Alkynylation of Cyclic α,β-Unsaturated Carbonyl Compounds with a Chiral Diene Rhodium Catalyst.

    Science.gov (United States)

    Dou, Xiaowei; Huang, Yinhua; Hayashi, Tamio

    2016-01-18

    Asymmetric conjugate alkynylation of cyclic α,β-unsaturated carbonyl compounds (ketones, esters, and amides) was realized by use of diphenyl[(triisopropylsilyl)ethynyl]methanol as an alkynylating reagent in the presence of a rhodium catalyst coordinated with a new chiral diene ligand (Fc-bod; bod=bicyclo[2.2.2]octa-2,5-diene, Fc=ferrocenyl) to give high yields of the corresponding β-alkynyl-substituted carbonyl compounds with 95-98% ee. PMID:26636764

  11. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    International Nuclear Information System (INIS)

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area

  12. Synthesis of beta-lactones by the regioselective, cobalt and Lewis acid catalyzed carbonylation of simple and functionalized epoxides.

    Science.gov (United States)

    Lee, J T; Thomas, P J; Alper, H

    2001-08-10

    The PPNCo(CO)(4) and BF(3) x Et(2)O catalyzed carbonylation of simple and functionalized epoxides in DME gives the corresponding beta-lactones regioselectively in good to high yields. The carbonylation occurred selectively at the unsubstituted C-O bond of the epoxide ring, and this reaction tolerates various functional groups such as alkenyl, halide, hydroxy, and alkyl ether. PMID:11485465

  13. Cocatalyzed oxidation of carbon monoxide and triphenylphosphine using complexes derived from hexarhodium hexadecacarbonyl as homogeneous catalyst. Characterization of rhodium carbonyl intermediates, oxygen-18 labeling to identify oxygen atom sources, and observation of catalyzed oxygen atom exchange between carbon dioxide and water

    International Nuclear Information System (INIS)

    Hexarhodium hexadecacarbonyl, Rh6(CO)16, will cocatalyze a reaction with molecular oxygen involving the conversion both of carbon monoxide to carbon dioxide and of triphenylphosphine (PPh3) to triphenylphosphine oxide (OPPh3). Solution infrared spectroscopy in the carbonyl region in benzene solvent shows that the catalytic cycle passes through the red Rh2(CO)2-(PPh3)4(C6H6)2, the yellow Rh2(CO)6(PPh3)2, and the red Rh4(CO)10(PPh3)2. Final return to Rh6(CO)16 does not occur under the ambient temperature and pressure conditions used but can be achieved by elevating these conditions. Addition of carbon dioxide to a mixture of Rh6(CO)16, CO, and PPh3 in the presence of added 18OH2 shows that the rhodium compounds will catalyze oxygen exchange between carbon dioxide and the oxygen atom of water. A pathway for equilibration of oxygen isotope in the catalyzed conversion of coordinated carbonyl to carbon dioxide via metallocarboxylate intermediates is proposed. The equilibration of oxygen isotope from water into carbon dioxide catalyzed by rhodium carbonyl clusters is suggested to proceed via hydroxyrhodium intermediates. 3 figures, 3 tables

  14. Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation

    Science.gov (United States)

    Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.

    2014-09-01

    Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls

  15. A monotonic increase of formal metal–metal bond orders from one to five upon loss of carbonyl groups from binuclear benzene chromium carbonyls

    International Nuclear Information System (INIS)

    Highlights: • Density functional theory studies on (C6H6)2Cr2(CO)n (n = 5, 4, 3, 2, 1) are reported. • The predicted Cr–Cr distances in (C6H6)2Cr2(CO)n (n = 5, 4, 3, 2, 1) decrease monotonically as CO groups are lost. • The formal Cr–Cr bond orders in (C6H6)2Cr2(CO)n (n = 5, 4, 3, 2, 1) increase monotonically from 1 to 5 as CO groups are lost. • Comparison of the (C6H6)2Cr2(CO)n and (C5H5)2Mn2(CO)n systems are made. - Abstract: Benzene forms a binuclear chromium carbonyl derivative (η6-C6H6)2Cr2(μ-CO)3, shown by X-ray crystallography to have a very short Cr≡Cr distance, suggesting the formal triple bond required to give each chromium atom the favored 18-electron configuration. We now describe theoretical studies on the entire series of binuclear benzene chromium carbonyls (C6H6)2Cr2(CO)n (n = 5, 4, 3, 2, 1). The predicted Cr–Cr distances in the lowest energy singlet structures determined by the BP86 method decrease monotonically as carbonyl groups are lost starting from 2.95 Å in (C6H6)2Cr2(CO)5 to 1.95 Å in (C6H6)2Cr2(CO) corresponding to a steady increase in the formal bond order from one to five. This increase in formal Cr–Cr bond order is also supported by a monotonic increase in the Wiberg bond indices ranging from 0.29 for the single bond in (C6H6)2Cr2(CO)5 to ∼2 for the formal quintuple bond in (C6H6)2Cr2(CO)

  16. Structure formation of soil dispersions in the presence of polyelectrolytes on the basis of allyl alcohol and acryl acid derivatives

    Directory of Open Access Journals (Sweden)

    Amankait Asanov

    2015-09-01

    Full Text Available Some changes of structural composition and surface properties of soil dispersions in the presence of polyelectrolytes, based on allyl alcohol and acryl acid derivatives, have been studied. The results show, that the changes in the structure of soil dispersions composition are connected with the added concentration and pH value, that depend on mole ratio and nature of functional groups, as well as on the nature of counterions and concomitant electrolytes, changing with the conditions of polymer analogous conversion and neutralization reaction. Experimental data show, that the change in the conformational state and the length of the macromolecule has a significant impact on the structure-forming effect and the amount of polyelectrolyte, needed to achieve the same degree of structure-forming effect of soil dispersions. The causes for the revealed reasons are shown on the basis of the results of the experiment. Along with this, it was found that particular changes of structural composition and surface properties of the soil dispersions depend on the type and concentration of the added polyelectrolyte.

  17. Allyl isothiocyanate that induces GST and UGT expression confers oxidative stress resistance on C. elegans, as demonstrated by nematode biosensor.

    Directory of Open Access Journals (Sweden)

    Koichi Hasegawa

    Full Text Available BACKGROUND: Electrophilic xenobiotics and endogenous products from oxidative stresses induce the glutathione S-transferases (GSTs, which form a large family within the phase II enzymes over both animal and plant kingdoms. The GSTs thus induced in turn detoxify these external as well as internal stresses. Because these stresses are often linked to ageing and damage to health, the induction of phase II enzymes without causing adverse effects would be beneficial in slowing down ageing and keeping healthy conditions. METHODOLOGY/PRINCIPAL FINDINGS: We have tested this hypothesis by choosing allyl isothiocyanate (AITC, a functional ingredient in wasabi, as a candidate food ingredient that induces GSTs without causing adverse effects on animals' lives. To monitor the GST induction, we constructed a gst::gfp fusion gene and used it to transform Caenorhabditis elegans for use as a nematode biosensor. With the nematode biosensor, we found that AITC induced GST expression and conferred tolerance on the nematode against various oxidative stresses. We also present evidence that the transcription factor SKN-1 is involved in regulating the GST expression induced by AITC. CONCLUSIONS/SIGNIFICANCE: We show the applicability of the nematode biosensor for discovering and evaluating functional food substances and chemicals that would provide anti-ageing or healthful benefits.

  18. Statistic evaluation of cysteine and allyl alcohol as additives for Cu-Zn coatings from citrate baths

    Directory of Open Access Journals (Sweden)

    Julyana Ribeiro Garcia

    2013-04-01

    Full Text Available In the present work, cysteine and allyl alcohol were added to citrate baths as additives to Cu-Zn coatings on steel substrates. In order to verify the effects of the deposition parameters (current density, mechanical stirring speed, and additives on the coating composition, electrochemical behavior, morphology, and microstructure properties of Cu-Zn coatings, the electrodeposition of the alloy was carried out using an experimental composite design 2³, in which these parameters were considered the entry variables and the measured properties were the response variables. The confidence level was 95% and the results were shown as response surface diagrams. It was possible to verify that the current density affected the zinc content in the coating, while the coating produced from cysteine-contained bath presented the worse anticorrosive performance. In a general way, it was possible to observe that the studied parameters affected the morphology, grain size, and the electrochemical behavior of these coatings, although only a few response variables were statistically influenced by them.

  19. Statistic evaluation of cysteine and allyl alcohol as additives for Cu-Zn coatings from citrate baths

    Directory of Open Access Journals (Sweden)

    Julyana Ribeiro Garcia

    2012-01-01

    Full Text Available In the present work, cysteine and allyl alcohol were added to citrate baths as additives to Cu-Zn coatings on steel substrates. In order to verify the effects of the deposition parameters (current density, mechanical stirring speed, and additives on the coating composition, electrochemical behavior, morphology, and microstructure properties of Cu-Zn coatings, the electrodeposition of the alloy was carried out using an experimental composite design 2³, in which these parameters were considered the entry variables and the measured properties were the response variables. The confidence level was 95% and the results were shown as response surface diagrams. It was possible to verify that the current density affected the zinc content in the coating, while the coating produced from cysteine-contained bath presented the worse anticorrosive performance. In a general way, it was possible to observe that the studied parameters affected the morphology, grain size, and the electrochemical behavior of these coatings, although only a few response variables were statistically influenced by them.

  20. Synthesis, structural characterization and biological activities of organotin(IV) complexes with 5-allyl-2-hydroxy-3-methoxybenzaldehyde-4-thiosemicarbazone

    Indian Academy of Sciences (India)

    Rosenani A Haque; M A Salam

    2015-09-01

    The organotin(IV) complexes [MeSnCl(L)] (2), [BuSnCl(L)] (3), [PhSnCl(L)] (4) and [Me2Sn(L)] (5) were synthesized by reacting organotin(IV) chloride(s) with 5-allyl-2-hydroxy-3-methoxybenzaldehyde- 4-thiosemicarbazone [H2L], (1)] in presence of KOH in 1:2:1 molar ratio (metal salt: base:ligand). All the complexes have been characterized by elemental analyses, UV-Vis, FT-IR, 1H, 13C and 119Sn NMR spectral studies. The molecular structure of complex 5 has been confirmed by single crystal X-ray diffraction analysis. The ligand, H2L coordinates to Sn(IV) in thiolate form through phenoxide-O, azomethine-N and thiolate-S atoms. The C-Sn-C angle measured from coupling constant 1 (119Sn, 13C) for dimethyltin(IV) complex 5 is 123.4°. The 2 (119Sn, 1H) coupling constant values for complex 2 and 5 are 72.4 and 76.3 Hz, respectively. Proposed geometry for five coordinated Sn(IV) atom is a strongly distorted trigonal bipyramid. Biological studies were preformed in vitro against four bacterial strains which have shown better activities and potential as antibacterial agents.