WorldWideScience

Sample records for catalytic c-h bond

  1. Synthesis of a tricyclic mescaline analogue by catalytic C-H bond activation.

    Science.gov (United States)

    Ahrendt, Kateri A; Bergman, Robert G; Ellman, Jonathan A

    2003-04-17

    [reaction: see text] A tetrahydrobis(benzofuran) mescaline analogue has been prepared in six steps and 38% overall yield from (4'-O-methyl)methyl gallate. The key step in this synthesis is a tandem cyclization reaction via directed C[bond]H activation followed by olefin insertion.

  2. C-H bond activation by f-block complexes.

    Science.gov (United States)

    Arnold, Polly L; McMullon, Max W; Rieb, Julia; Kühn, Fritz E

    2015-01-01

    Most homogeneous catalysis relies on the design of metal complexes to trap and convert substrates or small molecules to value-added products. Organometallic lanthanide compounds first gave a tantalizing glimpse of their potential for catalytic C-H bond transformations with the selective cleavage of one C-H bond in methane by bis(permethylcyclopentadienyl)lanthanide methyl [(η(5) -C5 Me5 )2 Ln(CH3 )] complexes some 25 years ago. Since then, numerous metal complexes from across the periodic table have been shown to selectively activate hydrocarbon C-H bonds, but the challenges of closing catalytic cycles still remain; many f-block complexes show great potential in this important area of chemistry. PMID:25384554

  3. C-H fluorination: U can fluorinate unactivated bonds

    Science.gov (United States)

    Neumann, Constanze N.; Ritter, Tobias

    2016-09-01

    Introducing C-F bonds into organic molecules is a challenging task, particularly through C-H activation methods. Now, a uranium-based photocatalyst turns traditional selectivity rules on their heads and fluorinates unfunctionalized alkane Csp3-H bonds, even in the presence of C-H bonds that are typically more reactive.

  4. Bipodal surface organometallic complexes with surface N-donor ligands and application to the catalytic cleavage of C-H and C-C bonds in n -Butane

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2013-11-27

    We present a new generation of "true vicinal" functions well-distributed on the inner surface of SBA15: [(Sî - Si-NH 2)(≡Si-OH)] (1) and [(≡Si-NH2)2] (2). From these amine-modified SBA15s, two new well-defined surface organometallic species [(≡Si-NH-)(≡Si-O-)]Zr(CH2tBu) 2 (3) and [(≡Si-NH-)2]Zr(CH2tBu) 2 (4) have been obtained by reaction with Zr(CH2tBu) 4. The surfaces were characterized with 2D multiple-quantum 1H-1H NMR and infrared spectroscopies. Energy-filtered transmission electron microscopy (EFTEM), mass balance, and elemental analysis unambiguously proved that Zr(CH2tBu)4 reacts with these vicinal amine-modified surfaces to give mainly bipodal bis(neopentyl)zirconium complexes (3) and (4), uniformly distributed in the channels of SBA15. (3) and (4) react with hydrogen to give the homologous hydrides (5) and (6). Hydrogenolysis of n-butane catalyzed by these hydrides was carried out at low temperature (100 C) and low pressure (1 atm). While (6) exhibits a bis(silylamido)zirconium bishydride, [(≡Si-NH-)2]Zr(H) 2 (6a) (60%), and a bis(silylamido)silyloxozirconium monohydride, [(≡Si-NH-)2(≡Si-O-)]ZrH (6b) (40%), (5) displays a new surface organometallic complex characterized by an 1H NMR signal at 14.46 ppm. The latter is assigned to a (silylimido)(silyloxo)zirconium monohydride, [(≡Si-Nî)(≡Si-O-)]ZrH (5b) (30%), coexistent with a (silylamido)(silyloxo)zirconium bishydride, [(≡Si-NH-)(≡Si-O-)] Zr(H)2 (5a) (45%), and a silylamidobis(silyloxo)zirconium monohydride, [(≡Si-NH-)(≡Si-O-)2]ZrH (5c) (25%). Surprisingly, nitrogen surface ligands possess catalytic properties already encountered with silicon oxide surfaces, but interestingly, catalyst (5) with chelating [N,O] shows better activity than (6) with chelating [N,N]. © 2013 American Chemical Society.

  5. Advances in the development of catalytic tethering directing groups for C-H functionalization reactions.

    Science.gov (United States)

    Sun, Huan; Guimond, Nicolas; Huang, Yong

    2016-09-28

    Transition metal-catalyzed C-H bond insertion is one of the most straightforward strategies to introduce functionalities within a hydrocarbon microenvironment. For the past two decades, selective activation and functionalization of certain inert C-H bonds have been made possible with the help of directing groups (DGs). Despite the enormous advances in the field, an overwhelming majority of systems require two extra steps from their simple precursors: installation and removal of the DGs. Recently, traceless and multitasking groups were invented as a partial solution to DG release. However, installation remains largely unsolved. Ideally, a transient, catalytic DG would circumvent this problem and increase the step- and atom-economy of C-H functionalization processes. In this review, we summarize the recent development of the transient tethering strategy for C-H activation reactions. PMID:27506568

  6. Boron-Catalyzed Aromatic C-H Bond Silylation with Hydrosilanes.

    Science.gov (United States)

    Ma, Yuanhong; Wang, Baoli; Zhang, Liang; Hou, Zhaomin

    2016-03-23

    Metal-free catalytic C-H silylation of a series of aromatic compounds such as N,N-disubstituted anilines with various hydrosilanes has been achieved for the first time using commercially available B(C6F5)3 as a catalyst. This protocol features simple and neutral reaction conditions, high regioselectivity, wide substrate scope (up to 40 examples), Si-Cl bond compatibility, and no requirement for a hydrogen acceptor. PMID:26959863

  7. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    Science.gov (United States)

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  8. Homolytic Bond Dissociation Enthalpies of C C and C-H Bonds in Highly Crowded Alkanes

    Institute of Scientific and Technical Information of China (English)

    ZHU Chen; RUI Lei; FU Yao

    2008-01-01

    The homolytic C-C and C--H bond dissociation enthalpyies (BDE) of highly crowded alkanes were calcu- lated by using an ONIOM-G3B3 method. Geometric parameters such as bond length, bond angle and molecular volume were carefully investigated, as most of the acyclic alkanes in this study were not yet synthesized. These pa-rameters reflect the influence of steric effect on BDE. Good correlations were found between the rapid decrease of BDE and the increase of molecular volumes. The correlations can be applied to the prediction of the possible exis-tence of many highly strained compounds.

  9. Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yongjun; Tang, Pei; Zhou, Hu; Zhang, Wei; Yang, Hanjun; Yan, Ning; Hu, Gang; Mei, Donghai; Wang, Jianguo; Ma, Ding

    2016-02-24

    A heterogeneous, inexpensive and environment-friendly carbon catalytic system was developed for the C-H bond arylation of benzene resulting in the subsequent formation of biaryl compounds. The oxygen-containing groups on these graphene oxide sheets play an essential role in the observed catalytic activity. The catalytic results of model compounds and DFT calculations show that these functional groups promote this reaction by stabilization and activation of K ions at the same time of facilitating the leaving of I. And further mechanisms studies show that it is the charge induced capabilities of oxygen groups connected to specific carbon skeleton together with the giant π-reaction platform provided by the π-domain of graphene that played the vital roles in the observed excellent catalytic activity. D. Mei acknowledges the support from the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory.

  10. Surface-Controlled Mono/Diselective ortho C-H Bond Activation.

    Science.gov (United States)

    Li, Qing; Yang, Biao; Lin, Haiping; Aghdassi, Nabi; Miao, Kangjian; Zhang, Junjie; Zhang, Haiming; Li, Youyong; Duhm, Steffen; Fan, Jian; Chi, Lifeng

    2016-03-01

    One of the most charming and challenging topics in organic chemistry is the selective C-H bond activation. The difficulty arises not only from the relatively large bond-dissociation enthalpy, but also from the poor reaction selectivity. In this work, Au(111) and Ag(111) surfaces were used to address ortho C-H functionalization and ortho-ortho couplings of phenol derivatives. More importantly, the competition between dehydrogenation and deoxygenation drove the diversity of reaction pathways of phenols on surfaces, that is, diselective ortho C-H bond activation on Au(111) surfaces and monoselective ortho C-H bond activation on Ag(111) surfaces. The mechanism of this unprecedented phenomenon was extensively explored by scanning tunneling microscopy, density function theory, and X-ray photoelectron spectroscopy. Our findings provide new pathways for surface-assisted organic synthesis via the mono/diselective C-H bond activation. PMID:26853936

  11. Silylation of C-H bonds in aromatic heterocycles by an Earth-abundant metal catalyst

    Science.gov (United States)

    Toutov, Anton A.; Liu, Wen-Bo; Betz, Kerry N.; Fedorov, Alexey; Stoltz, Brian M.; Grubbs, Robert H.

    2015-02-01

    Heteroaromatic compounds containing carbon-silicon (C-Si) bonds are of great interest in the fields of organic electronics and photonics, drug discovery, nuclear medicine and complex molecule synthesis, because these compounds have very useful physicochemical properties. Many of the methods now used to construct heteroaromatic C-Si bonds involve stoichiometric reactions between heteroaryl organometallic species and silicon electrophiles or direct, transition-metal-catalysed intermolecular carbon-hydrogen (C-H) silylation using rhodium or iridium complexes in the presence of excess hydrogen acceptors. Both approaches are useful, but their limitations include functional group incompatibility, narrow scope of application, high cost and low availability of the catalysts, and unproven scalability. For this reason, a new and general catalytic approach to heteroaromatic C-Si bond construction that avoids such limitations is highly desirable. Here we report an example of cross-dehydrogenative heteroaromatic C-H functionalization catalysed by an Earth-abundant alkali metal species. We found that readily available and inexpensive potassium tert-butoxide catalyses the direct silylation of aromatic heterocycles with hydrosilanes, furnishing heteroarylsilanes in a single step. The silylation proceeds under mild conditions, in the absence of hydrogen acceptors, ligands or additives, and is scalable to greater than 100 grams under optionally solvent-free conditions. Substrate classes that are difficult to activate with precious metal catalysts are silylated in good yield and with excellent regioselectivity. The derived heteroarylsilane products readily engage in versatile transformations enabling new synthetic strategies for heteroaromatic elaboration, and are useful in their own right in pharmaceutical and materials science applications.

  12. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of

  13. Iron-Carbonyl-Catalyzed Redox-Neutral [4+2] Annulation of N-H Imines and Internal Alkynes by C-H Bond Activation.

    Science.gov (United States)

    Jia, Teng; Zhao, Chongyang; He, Ruoyu; Chen, Hui; Wang, Congyang

    2016-04-18

    Stoichiometric C-H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C-H transformations have not been developed. Herein, an iron-catalyzed annulation of N-H imines and internal alkynes to furnish cis-3,4-dihydroisoquinolines is described, and represents the first iron-carbonyl-catalyzed C-H activation reaction of arenes. Remarkablely, this is also the first redox-neutral [4+2] annulation of imines and alkynes proceeding by C-H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C-H bond activation to afford a dinuclear ferracycle and a synergetic diiron-promoted H-transfer to the alkyne as the turnover-determining step.

  14. C-H and N-H bond dissociation energies of small aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Barckholtz, C.; Barckholtz, T.A.; Hadad, C.M.

    1999-01-27

    A survey of computational methods was undertaken to calculate the homolytic bond dissociation energies (BDEs) of the C-H and N-H bonds in monocyclic aromatic molecules that are representative of the functionalities present in coal. These include six-membered rings (benzene, pyridine, pyridazine, pyrimidine, pyrazine) and five-membered rings (furan, thiophene, pyrrole, oxazole). By comparison of the calculated C-H BDEs with the available experimental values for these aromatic molecules, the B3LYP/6-31G(d) level of theory was selected to calculate the BDEs of polycyclic aromatic hydrocarbons (PAHs), including carbonaceous PAHs (naphthalene, anthracene, pyrene, coronene) and heteroatomic PAHs (benzofuran, benzothiophene, indole, benzoxazole, quinoline, isoquinoline, dibenzofuran, carbazole). The cleavage of a C-H or a N-H bond generates a {sigma} radical that is, in general, localized at the site from which the hydrogen atom was removed. However, delocalization of the unpaired electron results in {approximately} 7 kcal {center{underscore}dot} mol{sup {minus}1} stabilization of the radical with respect to the formation of phenyl when the C-H bond is adjacent to a nitrogen atom in the azabenzenes. Radicals from five-membered rings are {approximately} 6 kcal {center{underscore}dot} mol{sup {minus}1} less stable than those formed from six-membered rings due to both localization of the spin density and geometric factors. The location of the heteroatoms in the aromatic ring affects the C-H bond strengths more significantly than does the size of the aromatic network. Therefore, in general, the monocyclic aromatic molecules can be used to predict the C-H BDE of the large PAHs within 1 kcal {center{underscore}dot} mol{sup {minus}1}.

  15. Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.

    2008-01-30

    The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.

  16. Aliphatic C-H---Anion Hydrogen Bonds: Weak Contacts or Strong Interactions?

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Benjamin [ORNL; Pedzisa, Lee [ORNL

    2009-01-01

    Electronic structure calculations, MP2/aug-cc-pVDZ, are used to determine C H---Cl hydrogen bond energies for a series of XCH3 donor groups in which the electron-withdrawing ability of X is varied over a wide range of values. When attached to polarizing substituents, aliphatic CH groups are moderate to strong hydrogen bond donors, exhibiting interaction energies comparable to those obtained with O H and N H groups. The results explain why aliphatic C H donors are observed to function as competitive binding sites in solution and suggest that such C H---anion contacts should be considered as possible contributors when evaluating the denticity of an anion receptor.

  17. Facile P-C/C-H Bond Cleavage Reactivity of Nickel Bis(diphosphine) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M.; Hall, Michael B.; Bullock, R. Morris

    2016-07-04

    Unusual cleavage of P-C and C-H bonds of the P2N2 ligand in heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode.

  18. Efficient photolytic C-H bond functionalization of alkylbenzene with hypervalent iodine(iii) reagent.

    Science.gov (United States)

    Sakamoto, Ryu; Inada, Tsubasa; Selvakumar, Sermadurai; Moteki, Shin A; Maruoka, Keiji

    2016-03-01

    A practical approach to radical C-H bond functionalization by the photolysis of a hypervalent iodine(iii) reagent is presented. The photolysis of [bis(trifluoroacetoxy)iodo]benzene (PIFA) leads to the generation of trifluoroacetoxy radicals, which allows the smooth transformation of various alkylbenzenes to the corresponding benzyl ester compounds under mild reaction conditions. PMID:26686276

  19. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach

  20. C-H bond activation by metal-superoxo species: what drives high reactivity?

    Science.gov (United States)

    Ansari, Azaj; Jayapal, Prabha; Rajaraman, Gopalan

    2015-01-01

    Metal-superoxo species are ubiquitous in metalloenzymes and bioinorganic chemistry and are known for their high reactivity and their ability to activate inert C-H bonds. The comparative oxidative abilities of M-O2(.-) species (M = Cr(III), Mn(III), Fe(III), and Cu(II)) towards C-H bond activation reaction are presented. These superoxo species generated by oxygen activation are found to be aggressive oxidants compared to their high-valent metal-oxo counterparts generated by O⋅⋅⋅O bond cleavage. Our calculations illustrate the superior oxidative abilities of Fe(III)- and Mn(III)-superoxo species compared to the others and suggest that the reactivity may be correlated to the magnetic exchange parameter.

  1. Time resolved infrared studies of C-H bond activation by organometallics

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, M.C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

    1998-06-01

    This work describes how step-scan Fourier Transform Infrared spectroscopy and visible and near infrared ultrafast lasers have been applied to the study of the photochemical activation of C-H bonds in organometallic systems, which allow for the selective breaking of C-H bonds in alkanes. The author has established the photochemical mechanism of C-H activation by Tp{sup *}Rh(CO){sub 2}(Tp{sup *} = HB-Pz{sup *}{sub 3}, Pz = 3,5-dimethylpyrazolyl) in alkane solution. The initially formed monocarbonyl forms a weak solvent complex, which undergoes a change in Tp{sup *} ligand connectivity. The final C-H bond breaking step occurs at different time scales depending on the structure of the alkane. In linear solvents, the time scale is <50 ns and cyclic alkanes is {approximately}200 ps. The reactivity of the Tp{sup *}Rh(CO){sub 2} system has also been studied in aromatic solvents. Here the reaction proceeds through two different pathways, with very different time scales. The first proceeds in a manner analogous to alkanes and takes <50 ns. The second proceeds through a Rh-C-C complex, and takes place on a time scale of 1.8 {micro}s.

  2. Rh(III)-Catalyzed C-H Bond Addition/Amine-Mediated Cyclization of Bis-Michael Acceptors.

    Science.gov (United States)

    Potter, Tyler J; Ellman, Jonathan A

    2016-08-01

    A Rh(III)-catalyzed C-H bond addition/primary amine-promoted cyclization of bis-Michael acceptors is reported. The C-H bond addition step occurs with high chemoselectivity, and the subsequent intramolecular Michael addition, mediated by a primary amine catalyst, sets three contiguous stereocenters with high diastereoselectivity. A broad range of directing groups and both aromatic and alkenyl C-H bonds were shown to be effective in this transformation, affording functionalized piperidines, tetrahydropyrans, and cyclohexanes.

  3. Activation of C-H and B-H bonds through agostic bonding: an ELF/QTAIM insight.

    Science.gov (United States)

    Zins, Emilie-Laure; Silvi, Bernard; Alikhani, M Esmaïl

    2015-04-14

    Agostic bonding is of paramount importance in C-H bond activation processes. The reactivity of the σ C-H bond thus activated will depend on the nature of the metallic center, the nature of the ligand involved in the interaction and co-ligands, as well as on geometric parameters. Because of their importance in organometallic chemistry, a qualitative classification of agostic bonding could be very much helpful. Herein we propose descriptors of the agostic character of bonding based on the electron localization function (ELF) and Quantum Theory of Atoms in Molecules (QTAIM) topological analysis. A set of 31 metallic complexes taken, or derived, from the literature was chosen to illustrate our methodology. First, some criteria should prove that an interaction between a metallic center and a σ X-H bond can indeed be described as "agostic" bonding. Then, the contribution of the metallic center in the protonated agostic basin, in the ELF topological description, may be used to evaluate the agostic character of bonding. A σ X-H bond is in agostic interaction with a metal center when the protonated X-H basin is a trisynaptic basin with a metal contribution strictly larger than the numerical uncertainty, i.e. 0.01 e. In addition, it was shown that the weakening of the electron density at the X-Hagostic bond critical point with respect to that of X-Hfree well correlates with the lengthening of the agostic X-H bond distance as well as with the shift of the vibrational frequency associated with the νX-H stretching mode. Furthermore, the use of a normalized parameter that takes into account the total population of the protonated basin, allows the comparison of the agostic character of bonding involved in different complexes. PMID:25760795

  4. Titanium-Thiolate-Aluminum-Carbide Complexes by Multiple C-H Bond Activation.

    Science.gov (United States)

    Guérin; Stephan

    1999-12-16

    All three C-H bonds of a methyl group are activated in the reaction of [Cp(iPr(3)PN)Ti(SR)(2)] with AlMe(3) [Eq. (1)]. The Ti-Al-carbide clusters formed contain a severely distorted tetrahedral carbide carbon atom with a relatively short bond to Ti, which is attributed to a relative increase in the Lewis acidity of the Ti center as a result of the interaction of the S and N donors with Al. PMID:10649329

  5. Direct Oxidation of Aliphatic C-H Bonds in Amino-Containing Molecules under Transition-Metal-Free Conditions.

    Science.gov (United States)

    Li, Xin; Che, Xing; Chen, Gui-Hua; Zhang, Jun; Yan, Jia-Lei; Zhang, Yun-Fei; Zhang, Li-Sheng; Hsu, Chao-Ping; Gao, Yi Qin; Shi, Zhang-Jie

    2016-03-18

    By employing a simple, inexpensive, and transition-metal-free oxidation system, secondary C-H bonds in a series of phthaloyl protected primary amines and amino acid derivatives were oxidized to carbonyls with good regioselectivities. This method could also be applied to oxidize tertiary C-H bonds and modify synthetic dipeptides. PMID:26949833

  6. The C-H bond dissociation enthalpies in fused N-heterocyclic compounds

    Science.gov (United States)

    Wang, Ying-Xing; Zheng, Wen-Rui; Ding, Lan-Lan

    2016-03-01

    The C-H bond dissociation enthalpies (BDEs) of the 26 N, O, S-containing mono-heterocyclic compounds were evaluated using the composite high-level ab initio methods G3 and G4. The C-H BDEs for 32 heterocyclic compounds were calculated using 8 types of density functional theory (DFT) methods. Comparing with the experimental values, the BMK method gave the lowest root mean square error (RMSE) of 7.2 kJ/mol. Therefore, the C-H BDEs of N-fused-heterocyclic compounds at different positions were investigated by the BMK method. By NBO analysis two linear relationships between the C-H BDEs of quinoline and isoquinoline with natural charges qC/ e in molecules and with natural charges qC/ e in radicals were found. The substituent effects on C(α)-H BDEs in N-fused-heterocyclic compounds were also discussed. It was found that there are two linear relationships between the C(α)-H BDEs of quinoline and isoquinoline derivatives with natural charges qC(α)/ e for the EDGs and CEGs substituents.

  7. A direct experimental evidence for an aromatic C-H⋯O hydrogen bond by fluorescence-detected infrared spectroscopy

    Science.gov (United States)

    Venkatesan, V.; Fujii, A.; Ebata, T.; Mikami, N.

    2004-08-01

    Formation of a weak aromatic C-H⋯O hydrogen bond has been discerned both experimentally and computationally in the 1,2,4,5-tetrafluorobenzene (TFB)-water system. The intermolecular structure of the isolated TFB-water cluster in a supersonic jet was characterized using fluorescence-detected infrared spectroscopy. The formation of a weak hydrogen bond in the cluster was directly evidenced by a low-frequency shift and intensity enhancement of the hydrogen-bonded aromatic C-H stretch in the TFB moiety. This is the first direct observation of an aromatic C-H⋯O hydrogen bond in isolated gas phase clusters.

  8. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation ofAcetylene

    Energy Technology Data Exchange (ETDEWEB)

    Domin, D.; Braida, Benoit; Lester Jr., William A.

    2008-05-30

    This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 {+-} 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 {+-} 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 {+-} 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 {+-} 0.5 kcal/mol).

  9. Inserting CO2 into Aryl C-H Bonds of Metal-Organic Frameworks: CO2 Utilization for Direct Heterogeneous C-H Activation.

    Science.gov (United States)

    Gao, Wen-Yang; Wu, Haifan; Leng, Kunyue; Sun, Yinyong; Ma, Shengqian

    2016-04-25

    Described for the first time is that carbon dioxide (CO2 ) can be successfully inserted into aryl C-H bonds of the backbone of a metal-organic framework (MOF) to generate free carboxylate groups, which serve as Brønsted acid sites for efficiently catalyzing the methanolysis of epoxides. The work delineates the very first example of utilizing CO2 for heterogeneous C-H activation and carboxylation reactions on MOFs, and opens a new avenue for CO2 chemical transformations under mild reaction conditions.

  10. Modification of Purine and Pyrimidine Nucleosides by Direct C-H Bond Activation

    Directory of Open Access Journals (Sweden)

    Yong Liang

    2015-03-01

    Full Text Available Transition metal-catalyzed modifications of the activated heterocyclic bases of nucleosides as well as DNA or RNA fragments employing traditional cross-coupling methods have been well-established in nucleic acid chemistry. This review covers advances in the area of cross-coupling reactions in which nucleosides are functionalized via direct activation of the C8-H bond in purine and the C5-H or C6-H bond in uracil bases. The review focuses on Pd/Cu-catalyzed couplings between unactivated nucleoside bases with aryl halides. It also discusses cross-dehydrogenative arylations and alkenylations as well as other reactions used for modification of nucleoside bases that avoid the use of organometallic precursors and involve direct C-H bond activation in at least one substrate. The scope and efficiency of these coupling reactions along with some mechanistic considerations are discussed.

  11. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  12. Insertion of singlet chlorocarbenes across C-H bonds in alkanes: Evidence for two phase mechanism

    Indian Academy of Sciences (India)

    M Ramalingam; K Ramasami; P Venuvanalingam

    2007-09-01

    Transition states for the insertion reactions of singlet mono and dichlorocarbenes (1CHCl and 1CCl2) into C-H bonds of alkanes (methane, ethane, propane and -butane) have been investigated at MP2 and DFT levels with 6-31g ( , ) basis set. The of 1CHCl and 1CCl2 may interact with alkane’s filled fragment orbital of either or symmetry. So chlorocarbenes insertion reactions have been investigated for both (/) approaches. The approach has been adjudicated to be the minimum energy path over the approach both at the MP2 and DFT levels. Mulliken, NPA and ESP derived charge analyses have been carried out along the minimal energy reaction path using the IRC method for 1CHCl and 1CCl2 insertions into the primary and secondary C-H bonds of propane. The occurrence of TSs either in the electrophilic or nucleophilic phase has been identified through NBO charge analyses in addition to the net charge flow from alkane to the carbene moiety.

  13. C-H Bond Oxidation Catalyzed by an Imine-Based Iron Complex: A Mechanistic Insight.

    Science.gov (United States)

    Olivo, Giorgio; Nardi, Martina; Vìdal, Diego; Barbieri, Alessia; Lapi, Andrea; Gómez, Laura; Lanzalunga, Osvaldo; Costas, Miquel; Di Stefano, Stefano

    2015-11-01

    A family of imine-based nonheme iron(II) complexes (LX)2Fe(OTf)2 has been prepared, characterized, and employed as C-H oxidation catalysts. Ligands LX (X = 1, 2, 3, and 4) stand for tridentate imine ligands resulting from spontaneous condensation of 2-pycolyl-amine and 4-substituted-2-picolyl aldehydes. Fast and quantitative formation of the complex occurs just upon mixing aldehyde, amine, and Fe(OTf)2 in a 2:2:1 ratio in acetonitrile solution. The solid-state structures of (L1)2Fe(OTf)(ClO4) and (L3)2Fe(OTf)2 are reported, showing a low-spin octahedral iron center, with the ligands arranged in a meridional fashion. (1)H NMR analyses indicate that the solid-state structure and spin state is retained in solution. These analyses also show the presence of an amine-imine tautomeric equilibrium. (LX)2Fe(OTf)2 efficiently catalyze the oxidation of alkyl C-H bonds employing H2O2 as a terminal oxidant. Manipulation of the electronic properties of the imine ligand has only a minor impact on efficiency and selectivity of the oxidative process. A mechanistic study is presented, providing evidence that C-H oxidations are metal-based. Reactions occur with stereoretention at the hydroxylated carbon and selectively at tertiary over secondary C-H bonds. Isotopic labeling analyses show that H2O2 is the dominant origin of the oxygen atoms inserted in the oxygenated product. Experimental evidence is provided that reactions involve initial oxidation of the complexes to the ferric state, and it is proposed that a ligand arm dissociates to enable hydrogen peroxide binding and activation. Selectivity patterns and isotopic labeling studies strongly suggest that activation of hydrogen peroxide occurs by heterolytic O-O cleavage, without the assistance of a cis-binding water or alkyl carboxylic acid. The sum of these observations provides sound evidence that controlled activation of H2O2 at (LX)2Fe(OTf)2 differs from that occurring in biomimetic iron catalysts described to date. PMID

  14. Enzymatic hydroxylation of an unactivated methylene C-H bond guided by molecular dynamics simulations

    Science.gov (United States)

    Narayan, Alison R. H.; Jiménez-Osés, Gonzalo; Liu, Peng; Negretti, Solymar; Zhao, Wanxiang; Gilbert, Michael M.; Ramabhadran, Raghunath O.; Yang, Yun-Fang; Furan, Lawrence R.; Li, Zhe; Podust, Larissa M.; Montgomery, John; Houk, K. N.; Sherman, David H.

    2015-08-01

    The hallmark of enzymes from secondary metabolic pathways is the pairing of powerful reactivity with exquisite site selectivity. The application of these biocatalytic tools in organic synthesis, however, remains under-utilized due to limitations in substrate scope and scalability. Here, we report how the reactivity of a monooxygenase (PikC) from the pikromycin pathway is modified through computationally guided protein and substrate engineering, and applied to the oxidation of unactivated methylene C-H bonds. Molecular dynamics and quantum mechanical calculations were used to develop a predictive model for substrate scope, site selectivity and stereoselectivity of PikC-mediated C-H oxidation. A suite of menthol derivatives was screened computationally and evaluated through in vitro reactions, where each substrate adhered to the predicted models for selectivity and conversion to product. This platform was also expanded beyond menthol-based substrates to the selective hydroxylation of a variety of substrate cores ranging from cyclic to fused bicyclic and bridged bicyclic compounds.

  15. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts.

    Science.gov (United States)

    Chin, Ya-Huei Cathy; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2013-10-16

    Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cation-lattice oxygen pairs (Pd(2+)-O(2-)) in PdO. The charges in the CH3 and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*-covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd(2+)-O(2-) pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H3C···Pd···H)(‡) transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3(•)···*OH)(‡) that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd(2+) and vicinal O(2-), Pd(ox)-O(ox), cleave C-H bonds heterolytically via σ-bond metathesis, with Pd(2+) adding to the C-H bond, while O(2-) abstracts the H-atom to form a four-center (H3C(δ-)···Pd(ox)···H(δ+)···O(ox))(‡) transition state without detectable Pd(ox) reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH4 oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory

  16. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.

    Science.gov (United States)

    Shin, Kwangmin; Kim, Hyunwoo; Chang, Sukbok

    2015-04-21

    Owing to the prevalence of nitrogen-containing compounds in functional materials, natural products and important pharmaceutical agents, chemists have actively searched for the development of efficient and selective methodologies allowing for the facile construction of carbon-nitrogen bonds. While metal-catalyzed C-N cross-coupling reactions have been established as one of the most general protocols for C-N bond formation, these methods require starting materials equipped with functional groups such as (hetero)aryl halides or their equivalents, thus generating stoichiometric amounts of halide salts as byproducts. To address this aspect, a transition-metal-catalyzed direct C-H amination approach has emerged as a step- and atom-economical alternative to the conventional C-N cross-coupling reactions. However, despite the significant recent advances in metal-mediated direct C-H amination reactions, most available procedures need harsh conditions requiring stoichiometric external oxidants. In this context, we were curious to see whether a transition-metal-catalyzed mild C-H amination protocol could be achieved using organic azides as the amino source. We envisaged that a dual role of organic azides as an environmentally benign amino source and also as an internal oxidant via N-N2 bond cleavage would be key to develop efficient C-H amination reactions employing azides. An additional advantage of this approach was anticipated: that a sole byproduct is molecular nitrogen (N2) under the perspective catalytic conditions. This Account mainly describes our research efforts on the development of rhodium- and iridium-catalyzed direct C-H amination reactions with organic azides. Under our initially optimized Rh(III)-catalyzed amination conditions, not only sulfonyl azides but also aryl- and alkyl azides could be utilized as facile amino sources in reaction with various types of C(sp(2))-H bonds bearing such directing groups as pyridine, amide, or ketoxime. More recently, a new

  17. Synthesis of Indole-2-carboxylate Derivatives via Palladium-Catalyzed Aerobic Amination of Aryl C-H Bonds.

    Science.gov (United States)

    Clagg, Kyle; Hou, Haiyun; Weinstein, Adam B; Russell, David; Stahl, Shannon S; Koenig, Stefan G

    2016-08-01

    A direct oxidative C-H amination affording 1-acetyl indolecarboxylates starting from 2-acetamido-3-arylacrylates has been achieved. Indole-2-carboxylates can be targeted with a straightforward deacetylation of the initial reaction products. The C-H amination reaction is carried out using a catalytic Pd(II) source with oxygen as the terminal oxidant. The scope and application of this chemistry is demonstrated with good to high yields for numerous electron-rich and electron-poor substrates. Further reaction of selected products via Suzuki arylation and deacetylation provides access to highly functionalized indole structures. PMID:27404018

  18. Asymmetric Synthesis of (-)-Incarvillateine Employing an Intramolecular Alkylation via Rh-Catalyzed Olefinic C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Andy; Bergman, Robert; Ellman, Jonathan

    2008-02-18

    An asymmetric total synthesis of (-)-incarvillateine, a natural product having potent analgesic properties, has been achieved in 11 steps and 15.4% overall yield. The key step is a rhodium-catalyzed intramolecular alkylation of an olefinic C-H bond to set two stereocenters. Additionally, this transformation produces an exocyclic, tetrasubstituted alkene through which the bicyclic piperidine moiety can readily be accessed.

  19. Lactamization of sp(2) C-H Bonds with CO2 : Transition-Metal-Free and Redox-Neutral.

    Science.gov (United States)

    Zhang, Zhen; Liao, Li-Li; Yan, Si-Shun; Wang, Lei; He, Yun-Qi; Ye, Jian-Heng; Li, Jing; Zhi, Yong-Gang; Yu, Da-Gang

    2016-06-13

    The first direct use of carbon dioxide in the lactamization of alkenyl and heteroaryl C-H bonds to synthesize important 2-quinolinones and polyheterocycles in moderate to excellent yields is reported. Carbon dioxide, a nontoxic, inexpensive, and readily available greenhouse gas, acts as an ideal carbonyl source. Importantly, this transition-metal-free and redox-neutral process is eco-friendly and desirable for the pharmaceutical industry. Moreover, these reactions feature a broad substrate scope, good functional group tolerance, facile scalability, and easy product derivatization. PMID:27095584

  20. Enantioselective Intramolecular Hydroarylation of Alkenes via Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Hitoshi; Thalji, Reema; Bergman, Robert; Ellman, Jonathan

    2008-05-22

    Highly enantioselective catalytic intramolecular ortho-alkylation of aromatic imines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using [RhCl(coe){sub 2}]{sub 2} and chiral phosphoramidite ligands. Cyclization of substrates containing 1,1- and 1,2-disubstituted as well as trisubstituted alkenes were achieved with enantioselectivities >90% ee for each substrate class. Cyclization of substrates with Z-alkene isomers proceeded much more efficiently than substrates with E-alkene isomers. This further enabled the highly stereoselective intramolecular alkylation of certain substrates containing Z/E-alkene mixtures via a Rh-catalyzed alkene isomerization with preferential cyclization of the Z-isomer.

  1. Copper-Catalyzed Redox-Triggered Remote C-H Functionalization: Highly Selective Formation of C-CF3 and C-O Bonds

    Institute of Scientific and Technical Information of China (English)

    Taotao Li; Peng Yu; Jin-Shun Lin; Yonggang Zhi; Xin-Yuan Liu

    2016-01-01

    A Cu-catalyzed remote sp3 C-H/unactivated alkenes functionalization reaction for the concomitant construction ofC-CF3 and C-O bonds was described.An 1,5-H radical transfer involving an sp3 C-H bond adjacent to a nitrogen atom and an α-CF3-alkyl radical intermediate derived from unactivated alkenes was observed and demonstrated to proceed via the radical process.

  2. Palladium Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Fristrup, Peter

    2011-01-01

    The atom-efficiency of one of the most widely used catalytic reactions for forging C-C bonds, the Tsuji-Trost reaction, is limited by the need of preoxidized reagents. This limitation can be overcome by utilization of the recently discovered palladium-catalyzed C-H activation, the allylic C...

  3. Oxygen activation and intramolecular C-H bond activation by an amidate-bridged diiron(II) complex.

    Science.gov (United States)

    Jones, Matthew B; Hardcastle, Kenneth I; Hagen, Karl S; MacBeth, Cora E

    2011-07-18

    A diiron(II) complex containing two μ-1,3-(κN:κO)-amidate linkages has been synthesized using the 2,2',2''-tris(isobutyrylamido)triphenylamine (H(3)L(iPr)) ligand. The resulting diiron complex, 1, reacts with dioxygen (or iodosylbenzene) to effect intramolecular C-H bond activation at the methine position of the ligand isopropyl group. The ligand-activated product, 2, has been isolated and characterized by a variety of methods including X-ray crystallography. Electrospray ionization mass spectroscopy of 2 prepared from(18)O(2) was used to confirm that the oxygen atom incorporated into the ligand framework is derived from molecular oxygen.

  4. Catalytic C-H imidation of aromatic cores of functional molecules: ligand-accelerated Cu catalysis and application to materials- and biology-oriented aromatics.

    Science.gov (United States)

    Kawakami, Takahiro; Murakami, Kei; Itami, Kenichiro

    2015-02-25

    Versatile imidation of aromatic C-H bonds was accomplished. In the presence of copper bromide and 6,6'-dimethyl-2,2'-bipyridyl, a range of aromatics, such as polycyclic aromatic hydrocarbons, aromatic bowls, porphyrins, heteroaromatics, and natural products, can be imidated by N-fluorobenzenesulfonimide. A dramatic ligand-accelerated copper catalysis and an interesting kinetic profile were uncovered.

  5. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  6. Manganese-Substituted Myoglobin: Characterization and Reactivity of an Oxidizing Intermediate towards a Weak C-H Bond

    Directory of Open Access Journals (Sweden)

    Kari L. Stone

    2015-05-01

    Full Text Available Metal-substituted hemoproteins have been examined by biochemists for decades, but their potential for diverse functionalities has not been thoroughly investigated. By replacing hemoproteins with non-native metals, heme-containing proteins could be capable of performing a range of chemistries not allowed for in the native protein. The metal within the heme of the oxygen-carrying hemoprotein, myoglobin, can readily be replaced with other first row transition metals such as cobalt, chromium and manganese. Upon oxidation with two-electron oxidants (ex. meta-chloroperbenzoic acid, an oxidizing intermediate is produced in manganese-substituted myoglobin. Electron paramagnetic resonance analyses confirm the oxidation of Mn(III to Mn(IV. With the addition of weak C-H bonds of 1,4 cyclohexadiene, hydrogen atom abstraction is exhibited by the oxidizing intermediate that displays a second-order rate constant of 2.79 +/− 0.22 M−1 s−1 by the metal-oxo species. The replacement of the iron ion with a manganese ion at the active site of myoglobin displays oxidative capabilities that are not shown in native myoglobin.

  7. AgNO2-mediated direct nitration of the quinoxaline tertiary benzylic C-H bond and direct conversion of 2-methyl quinoxalines into related nitriles.

    Science.gov (United States)

    Wu, Degui; Zhang, Jian; Cui, Jianhai; Zhang, Wei; Liu, Yunkui

    2014-09-25

    A unique method for AgNO2-mediated direct nitration of the quinoxaline tertiary C-H bond and direct conversion of 2-methyl quinoxalines into 2-quinoxaline nitriles under oxidative conditions has been developed. This protocol provides an efficient way to access quinoxaline containing nitroalkanes and nitriles depending on different substrate selection.

  8. Nickel-Catalyzed Aromatic C-H Functionalization.

    Science.gov (United States)

    Yamaguchi, Junichiro; Muto, Kei; Itami, Kenichiro

    2016-08-01

    Catalytic C-H functionalization using transition metals has received significant interest from organic chemists because it provides a new strategy to construct carbon-carbon bonds and carbon-heteroatom bonds in highly functionalized, complex molecules without pre-functionalization. Recently, inexpensive catalysts based on transition metals such as copper, iron, cobalt, and nickel have seen more use in the laboratory. This review describes recent progress in nickel-catalyzed aromatic C-H functionalization reactions classified by reaction types and reaction partners. Furthermore, some reaction mechanisms are described and cutting-edge syntheses of natural products and pharmaceuticals using nickel-catalyzed aromatic C-H functionalization are presented. PMID:27573407

  9. Intramolecular C-H bond activation and redox isomerization across two-electron mixed valence diiridium cores.

    Energy Technology Data Exchange (ETDEWEB)

    Esswein, A. J.; Veige, A. S.; Piccoli, P. M. B.; Schultz, A. J.; Nocera, D. G.; MIT

    2008-03-24

    Metal-metal cooperativity enables the reaction of carbon-based substrates at diiridium two-electron mixed valence centers. Arylation of Ir{sub 2}{sup 0,II}(tfepma){sub 3}Cl{sub 2} (1) (tfepma = bis[(bistrifluoroethoxy)phosphino]methylamine) with RMgBr (R = C{sub 6}H{sub 5} and C{sub 6}D{sub 5}) is followed by C-H bond activation to furnish the bridging benzyne complex Ir{sub 2}II,II(tfepma){sub 3}({mu}-C{sub 6}H4)(C{sub 6}H{sub 5})H (2), as the kinetic product. At ambient temperature, 2 isomerizes to Ir{sub 2}{sup I,III}(tfepma){sub 3}({mu}-C{sub 6}H4)(C{sub 6}H{sub 5})H (3) (k{sub obs} = 9.57 {+-} 0.10 x 10{sup -5} s{sup -1} at 31.8 C, {Delta}H{sup {+-}} = 21.7 {+-} 0.3 kcal/mol, {Delta}S{sup {+-}} = -7.4 {+-} 0.9 eu), in which the benzyne moiety is conserved and the Ir{sup III} center is ligated by terminal hydride and phenyl groups. The same reaction course is observed for arylation of 1 with C{sub 6}D{sub 5}MgBr to produce 2-d{sub 10} and 3-d{sub 10} accompanied by an inverse isotope effect, k{sub h}/k{sub d} = 0.44 (k{sub obs} = 2.17 {+-} 0.10 x 10{sup -4} s{sup -1} in C{sub 6}D{sub 6} solution at 31.8 C, {Delta}H{sup {+-}} = 24.9 {+-} 0.7 kcal/mol, {Delta}S{sup {+-}} = -6.4 {+-} 2.4 eu). 2 reacts swiftly with hydrogen to provide Ir{sub 2}{sup II,II}(tfepma){sub 3}H{sub 4} as both the syn and anti isomers (4-syn and 4-anti, respectively). The hydrides of 4-syn were directly located by neutron diffraction analysis. X-ray crystallographic examination of 2, 2-d{sub 10}, 3, and 4-syn indicates that cooperative reactivity at the bimetallic diiridium core is facilitated by the ability of the two-electron mixed valence framework to accommodate the oxidation state changes and ligand rearrangements attendant to the reaction of the substrate.

  10. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C H⋯O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate

    Science.gov (United States)

    Sato, Harumi; Dybal, Jiří; Murakami, Rumi; Noda, Isao; Ozaki, Yukihiro

    2005-06-01

    This review paper reports infrared (IR) and Raman spectroscopy and quantum chemistry calculation studies of C-H⋯O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoates. IR and Raman spectra were measured for poly(3-hydroxybutyrate) (PHB) and a new type of bacterial copolyester, poly(3-hydroxybutyrate- co-3-hydroxyhexanoate), P(HB- co-HHx) (HHx=12 mol%) over a temperature range of 20 °C to higher temperatures (PHB, 200 °C; HHx=12 mol%, 140 °C) to explore their structure and thermal behavior. One of bands due to the CH 3 asymmetric stretching modes appears near 3010 cm -1 in the IR and Raman spectra of PHB and P(HB- co-HHx) at 20 °C. These frequencies of IR and Raman CH 3 asymmetric stretching bands are much higher than usual. These anomalous frequencies of the CH 3 asymmetric stretching bands together with the X-ray crystallographic structure of PHB have suggested that there is an inter- or intra-molecular C-H⋯O hydrogen bond between the C dbnd6 O group in one helical structure and the CH 3 group in the other helical structure in PHB and P(HB- co-HHx). The quantum chemical calculation of model compounds of PHB also has suggested the existence of C-H⋯O hydrogen bonds in PHB and P(HB- co-HHx). It is very likely that a chain of C-H⋯O hydrogen bond pairs link two parallel helical structures in the crystalline parts. The temperature-dependent IR and Raman spectral variations have revealed that the crystallinity of P(HB- co-HHx) (HHx=12 mol%) decreases gradually from a fairly low temperature (about 60 °C), while the crystallinity of PHB remains almost unchanged until just below its melting temperature. It has also been found from the IR and Raman studies that for both PHB and P(HB- co-HHx) the weakening of the C-H⋯O hydrogen bonds starts from just above room temperature, but the deformation of helical structures occurs after the weakening of the C-H⋯O hydrogen bonds advances to some extent.

  11. Activation of C-H Bonds in Pt(+) + x CH4 Reactions, where x = 1-4: Identification of the Platinum Dimethyl Cation.

    Science.gov (United States)

    Wheeler, Oscar W; Salem, Michelle; Gao, Amanda; Bakker, Joost M; Armentrout, P B

    2016-08-11

    Activation of C-H bonds in the sequential reactions of Pt(+) + x(CH4/CD4), where x = 1-4, have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and theoretical calculations. Pt(+) cations are formed by laser ablation and exposed to controlled amounts of CH4/CD4 leading to [Pt,xC,(4x-2)H/D](+) dehydrogenation products. Irradiation of these products in the 400-2100 cm(-1) range leads to CH4/CD4 loss from the x = 3 and 4 products, whereas PtCH2(+)/PtCD2(+) products do not decompose at all, and x = 2 products dissociate only when formed from a higher order product. The structures of these complexes were explored theoretically at several levels of theory with three different basis sets. Comparison of the experimental and theoretical results indicate that the species formed have a Pt(CH3)2(+)(CH4)x-2/Pt(CD3)2(+)(CD4)x-2 binding motif for x = 2-4. Thus, reaction of Pt(+) with methane occurs by C-H bond activation to form PtCH2(+), which reacts with an additional methane molecule by C-H bond activation to form the platinum dimethyl cation. This proposed reaction mechanism is consistent with theoretical explorations of the potential energy surface for reactions of Pt(+) with one and two methane molecules.

  12. Promotional effects of chemisorbed oxygen and hydroxide in the activation of C-H and O-H bonds over transition metal surfaces

    Science.gov (United States)

    Hibbitts, David; Neurock, Matthew

    2016-08-01

    Electronegative coadsorbates such as atomic oxygen (O*) and hydroxide (OH*) can act as Brønsted bases when bound to Group 11 as well as particular Group 8-10 metal surfaces and aid in the activation of X-H bonds. First-principle density functional theory calculations were carried out to systematically explore the reactivity of the C-H bonds of methane and surface methyl intermediates as well as the O-H bond of methanol directly and with the assistance of coadsorbed O* and OH* intermediates over Group 11 (Cu, Ag, and Au) and Group 8-10 transition metal (Ru, Rh, Pd, Os, Ir, and Pt) surfaces. C-H as well as O-H bond activation over the metal proceeds via a classic oxidative addition type mechanism involving the insertion of the metal center into the C-H or O-H bond. O* and OH* assist C-H and O-H activation over particular Group 11 and Group 8-10 metal surfaces via a σ-bond metathesis type mechanism involving the oxidative addition of the C-H or O-H bond to the metal along with a reductive deprotonation of the acidic C-H and O-H bond over the M-O* or M-OH* site pair. The O*- and OH*-assisted C-H activation paths are energetically preferred over the direct metal catalyzed C-H scission for all Group 11 metals (Cu, Ag, and Au) with barriers that are 0.4-1.5 eV lower than those for the unassisted routes. The barriers for O*- and OH*-assisted C-H activation of CH4 on the Group 8-10 transition metals, however, are higher than those over the bare transition metal surfaces by as much as 1.4 eV. The C-H activation of adsorbed methyl species show very similar trends to those for CH4 despite the differences in structure between the weakly bound methane and the covalently adsorbed methyl intermediates. The activation of the O-H bond of methanol is significantly promoted by O* as well as OH* intermediates over both the Group 11 metals (Cu, Ag, and Au) as well as on all Group 8-10 metals studied (Ru, Rh, Pd, Os, Ir, and Pt). The O*- and OH*-assisted CH3O-H barriers are 0.6 to 2

  13. Unified view of oxidative C-H bond cleavage and sulfoxidation by a nonheme iron(IV)-oxo complex via Lewis acid-promoted electron transfer.

    Science.gov (United States)

    Park, Jiyun; Morimoto, Yuma; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2014-04-01

    Oxidative C-H bond cleavage of toluene derivatives and sulfoxidation of thioanisole derivatives by a nonheme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), were remarkably enhanced by the presence of triflic acid (HOTf) and Sc(OTf)3 in acetonitrile at 298 K. All the logarithms of the observed second-order rate constants of both the oxidative C-H bond cleavage and sulfoxidation reactions exhibit remarkably unified correlations with the driving forces of proton-coupled electron transfer (PCET) and metal ion-coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes between PCET and MCET were taken into account, respectively. Thus, the mechanisms of both the oxidative C-H bond cleavage of toluene derivatives and sulfoxidation of thioanisole derivatives by [(N4Py)Fe(IV)(O)](2+) in the presence of HOTf and Sc(OTf)3 have been unified as the rate-determining electron transfer, which is coupled with binding of [(N4Py)Fe(IV)(O)](2+) by proton (PCET) and Sc(OTf)3 (MCET). There was no deuterium kinetic isotope effect (KIE) on the oxidative C-H bond cleavage of toluene via the PCET pathway, whereas a large KIE value was observed with Sc(OTf)3, which exhibited no acceleration of the oxidative C-H bond cleavage of toluene. When HOTf was replaced by DOTf, an inverse KIE (0.4) was observed for PCET from both toluene and [Ru(II)(bpy)3](2+) (bpy =2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+). The PCET and MCET reactivities of [(N4Py)Fe(IV)(O)](2+) with Brønsted acids and various metal triflates have also been unified as a single correlation with a quantitative measure of the Lewis acidity. PMID:24605985

  14. Initial Stages in the Rhodium(III)-Catalyzed C-H Bond Activation of Primary Alcohols in Aqueous Solution

    DEFF Research Database (Denmark)

    Eriksen, J.; Monsted, L.; Monsted, O.;

    2010-01-01

    The mechanism of the catalytic HID exchange in primary alcohol substrates derived from aldopentoses, promoted by a macrocyclic rhodium(III) complex, has been shown to occur by a reversible redox reaction that gives aldehyde and a rhodium hydride complex. Hydride exchange in the latter complex pro...

  15. Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Step.

    Science.gov (United States)

    Jayakumar, Jayachandran; Cheng, Chien-Hong

    2016-01-26

    A one-pot reaction of substituted benzaldehydes with alkyne-amines by a Rh-catalyzed C-H activation and annulation to afford various natural and unnatural protoberberine alkaloids is reported. This reaction provides a convenient route for the generation of a compound library of protoberberine salts, which recently have attracted great attention because of their diverse biological activities. In addition, pyridinium salt derivatives can also be formed in good yields from α,β-unsaturated aldehydes and amino-alkynes. This reaction proceeds with excellent regioselectivity and good functional group compatibility under mild reaction conditions by using O2 as the oxidant. PMID:26689172

  16. Iridium(iii)-catalyzed regioselective direct arylation of sp(2) C-H bonds with diaryliodonium salts.

    Science.gov (United States)

    Gao, Pan; Liu, Li; Shi, Zhuangzhi; Yuan, Yu

    2016-08-01

    A regioselective direct arylation of arenes and olefins at the ortho position is reported. The key to the high selectivity is the appropriate choice of diaryliodonium salts as the arylating reagent in the presence of a cationic iridium(iii) catalyst. The coordination of the metal with an oxygen atom or a nitrogen atom and subsequent C-H activation allows for direct arylation with coupling partners. This reaction proceeds under mild reaction conditions and with a high tolerance of various functional groups including many halide functional groups. PMID:27381238

  17. Olefin cis-Dihydroxylation and Aliphatic C-H Bond Oxygenation by a Dioxygen-Derived Electrophilic Iron-Oxygen Oxidant.

    Science.gov (United States)

    Chatterjee, Sayanti; Paine, Tapan Kanti

    2015-08-01

    Many iron-containing enzymes involve metal-oxygen oxidants to carry out O2-dependent transformation reactions. However, the selective oxidation of C-H and C=C bonds by biomimetic complexes using O2 remains a major challenge in bioinspired catalysis. The reactivity of iron-oxygen oxidants generated from an Fe(II)-benzilate complex of a facial N3 ligand were thus investigated. The complex reacted with O2 to form a nucleophilic oxidant, whereas an electrophilic oxidant, intercepted by external substrates, was generated in the presence of a Lewis acid. Based on the mechanistic studies, a nucleophilic Fe(II)-hydroperoxo species is proposed to form from the benzilate complex, which undergoes heterolytic O-O bond cleavage in the presence of a Lewis acid to generate an Fe(IV)-oxo-hydroxo oxidant. The electrophilic iron-oxygen oxidant selectively oxidizes sulfides to sulfoxides, alkenes to cis-diols, and it hydroxylates the C-H bonds of alkanes, including that of cyclohexane.

  18. Ruthenium(II)-catalyzed synthesis of pyrrole- and indole-fused isocoumarins by C-H bond activation in DMF and water

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Sawant, S.G.; Dixneuf, P.H.

    : ChemCatChem, vol.8(6); 2016; 1046-1050 Ruthenium(II) catalysed synthesis of pyrrole and indole fused isocoumarins via C-H bond activation in DMF and water† Keisham S. Singh*,a Sneha G. Sawanta, Pierre H. Dixneuf*,b Abstract: Pyrrole and indole... isocoumarins from simple 1-methyl pyrrole-2- carboxylic acid and 1-methylindole-3-carboxylic acid via annulation with alkyne in the presence ruthenium(II) catalyst based on [RuCl2(p-cymene)]2 and Cu(OAc)2.H2O as oxidant in DMF. This ruthenium(II) catalysed...

  19. A Cobalt(I) Pincer Complex with an η(2) -C(aryl)-H Agostic Bond: Facile C-H Bond Cleavage through Deprotonation, Radical Abstraction, and Oxidative Addition.

    Science.gov (United States)

    Murugesan, Sathiyamoorthy; Stöger, Berthold; Pittenauer, Ernst; Allmaier, Günter; Veiros, Luis F; Kirchner, Karl

    2016-02-24

    The synthesis and reactivity of a Co(I) pincer complex [Co(ϰ(3) P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) featuring an η(2)-C(aryl)-H agostic bond is described. This complex was obtained by protonation of the Co(I) complex [Co(PCP(NMe) -iPr)(CO)2]. The Co(III) hydride complex [Co(PCP(NMe) -iPr)(CNtBu)2(H)](+) was obtained upon protonation of [Co(PCP(NMe) -iPr)(CNtBu)2]. Three ways to cleave the agostic C-H bond are presented. First, owing to the acidity of the agostic proton, treatment with pyridine results in facile deprotonation (C-H bond cleavage) and reformation of [Co(PCP(NMe) -iPr)(CO)2]. Second, C-H bond cleavage is achieved upon exposure of [Co(ϰ(3)P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) to oxygen or TEMPO to yield the paramagnetic Co(II) PCP complex [Co(PCP(NMe) -iPr)(CO)2](+). Finally, replacement of one CO ligand in [Co(ϰ(3) P,CH,P-P(CH)P(NMe) -iPr)(CO)2](+) by CNtBu promotes the rapid oxidative addition of the agostic η(2) -C(aryl)-H bond to give two isomeric hydride complexes of the type [Co(PCP(NMe) -iPr)(CNtBu)(CO)(H)](+).

  20. Exceptional sensitivity of metal-aryl bond energies to ortho-fluorine substituents: influence of the metal, the coordination sphere, and the spectator ligands on M-C/H-C bond energy correlations.

    Science.gov (United States)

    Clot, Eric; Mégret, Claire; Eisenstein, Odile; Perutz, Robin N

    2009-06-10

    DFT calculations are reported of the energetics of C-H oxidative addition of benzene and fluorinated benzenes, Ar(F)H (Ar(F) = C(6)F(n)H(5-n), n = 0-5) at ZrCp(2) (Cp = eta(5)-C(5)H(5)), TaCp(2)H, TaCp(2)Cl, WCp(2), ReCp(CO)(2), ReCp(CO)(PH(3)), ReCp(PH(3))(2), RhCp(PH(3)), RhCp(CO), IrCp(PH(3)), IrCp(CO), Ni(H(2)PCH(2)CH(2)PH(2)), Pt(H(2)PCH(2)CH(2)PH(2)). The change in M-C bond energy of the products fits a linear function of the number of fluorine substituents, with different coefficients corresponding to ortho-, meta-, and para-fluorine. The values of the ortho-coefficient range from 20 to 32 kJ mol(-1), greatly exceeding the values for the meta- and para-coefficients (2.0-4.5 kJ mol(-1)). Similarly, the H-C bond energies of Ar(F)H yield ortho- and para-coefficients of 10.4 and 3.4 kJ mol(-1), respectively, and a negligible meta-coefficient. These results indicate a large increase in the M-C bond energy with ortho-fluorine substitution on the aryl ring. Plots of D(M-C) vs D(H-C) yield slopes R(M-C/H-C) that vary from 1.93 to 3.05 with metal fragment, all in excess of values of 1.1-1.3 reported with other hydrocarbyl groups. Replacement of PH(3) by CO decreases R(M-C/H-C) significantly. For a given ligand set and metals in the same group of the periodic table, the value of R(M-C/H-C) does not increase with the strength of the M-C bond. Calculations of the charge on the aryl ring show that variations in ionicity of the M-C bonds correlate with variations in M-C bond energy. This strengthening of metal-aryl bonds accounts for numerous experimental results that indicate a preference for ortho-fluorine substituents. PMID:19453181

  1. INTRODUCING NH2 ONTO POLYMERIC FILMS VIA PHOTO-INDUCED C-H BOND TRANSFORMATION WITH PHENOL DERIVATIVES AS BUILDING BLOCKS

    Institute of Scientific and Technical Information of China (English)

    Jing Xu; Yu-hong Ma; Jing-yi Xie; Wan-tai Yang

    2012-01-01

    A one-step process to introduce both the aromatic and aliphatic primary amino groups with high chemoselectivity was developed.Triplet state acetone abstracts the hydrogen atoms from both the C--H bond of the polymeric film substrate and the OH bond of phenol which is the building block and the amino group carrier.As a result,two kinds of free radicals,confined carbon-centered chain radicals of the polymer substrate and mobile oxygen-centered phenoxy radicals,were generated.Then the C-O bonds were formed by the coupling reaction between these two kinds of free radicals,p-Tyramine and p-aminophenol were used as amino carriers.The successful introduction of amino groups onto LDPE,BOPP and PET film substrates was demonstrated by measurements of water contract angle (CA),ultraviolet spectra (UV),X-ray photoelectron spectroscopy (XPS) and fluorescent microscopy.The processing factors,such as the UV-light intensity and irradiation time,concentrations of p-tyramine and p-aminophenol,and the ratio of acetone/water were investigated.The optimized process parameters are as follows:UV light intensity 9500 μW/cm2; irradiation time 18 min for BOPP and LDPE,22 rmin for PET; the ratio of acetone/water =1; and concentration ofp-tyramine and p-aminophenol 15% for BOPP and LDPE,1% for PET.Based on the UV absorbance,the amino groups on the polymeric substrates were estimated to be in the range of 6.3 x 10-6-9.5 x 10-6 mmol/mm2.

  2. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    Science.gov (United States)

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  3. Air/Water-Stable Tridentate NHC-PdII Complex; Catalytic C-H Activation of Hydrocarbons via H/D Exchange Process in D2O

    OpenAIRE

    Lee, Joo Ho; Yoo, Kyung Soo; Park, Chan Pil; Olsen, Janet M.; Sakaguchi, Satoshi; Surya Prakash, G. K.; Mathew, Thomas; Jung, Kyung Woon

    2009-01-01

    While developing novel catalysts for carbon-carbon or carbon-heteroatom coupling (N, O, or F), we were able to introduce tridentate NHC-amidate-alkoxide palladium(II) complexes. In aqueous solution, these NHC-Pd(II) complexes showed high ability for C-H activation of various hydrocarbons (cyclohexane, cyclopentane, dimethyl ether, THF, acetone, and toluene) under mild conditions.

  4. Brønsted Acid-Promoted Formation of Stabilized Silylium Ions for Catalytic Friedel-Crafts C-H Silylation.

    Science.gov (United States)

    Chen, Qing-An; Klare, Hendrik F T; Oestreich, Martin

    2016-06-29

    A counterintuitive approach to electrophilic aromatic substitution with silicon electrophiles is disclosed. A strong Brønsted acid that would usually promote the reverse reaction, i.e., protodesilylation, was found to initiate the C-H silylation of electron-rich (hetero)arenes with hydrosilanes. Protonation of the hydrosilane followed by liberation of dihydrogen is key to success, fulfilling two purposes: to generate the stabilized silylium ion and to remove the proton released from the Wheland intermediate. PMID:27303857

  5. Strength of C-H Bonds at Nitrogen a-Position: Implication for Metabolic Stability of Nitrogen-containing Drug Molecules

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-Ming; ZOU Lu-Feng; XIE Miao; FU Yao

    2008-01-01

    The available experimental αC-H BDEs of a variety of amine-containing molecules were examined by using the G3B3 and CBS-Q methods. The verified values were employed to benchmark and calibrate the density functional theory methods. It was found that the (U)BHandH/6-311++G(2df, 2p)//(U)B3LYP/6-31G(d) method was a fast and accurate method for calculating C-H BDEs at nitrogen a-positions. By using the newly benchmarked BHandH method, the aC-H BDEs in a number of nitrogen-containing drug molecules were calculated, where a dramatic variation of the αC-H BDEs was discovered. To understand this variation, the effects of mono- and double-substitution at both carbon and nitrogen atoms on the aC-H BDEs were systematically studied. The origin of the substitution effects was thoroughly discussed in terms of four categories of substituents.

  6. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols

    Science.gov (United States)

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W.; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J.

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  7. A study on aromatic C-H⋯X (X = N, O) hydrogen bonds in 1,2,4,5-tetrafluorobenzene clusters using infrared spectroscopy and ab initio calculations

    Science.gov (United States)

    Venkatesan, V.; Fujii, A.; Mikami, N.

    2005-06-01

    The (1:1) clusters of 1,2,4,5-tetrafluorobenzene (TFB) with CH 3CN, CH 3OCH 3, and NH 3 were studied both experimentally and computationally. Using fluorescence-detected infrared (FDIR) spectroscopy, the aromatic C-H⋯X (X = N, O) hydrogen bond formation in the clusters was directly evidenced by a low-frequency shift and intensity enhancement of the aromatic C-H stretching vibration in the TFB moiety. The molecular structures, stabilization energies, and vibrational frequencies of the clusters were computed at the MP2/6-31+G* level. The observed low-frequency shifts of the aromatic C-H stretch in the clusters correlate with the proton affinities of the acceptor molecules.

  8. A regioselective synthesis of benzopinacolones through aerobic dehydrogenative α-arylation of the tertiary sp3 C-H bond of 1,1-diphenylketones with aromatic and heteroaromatic compounds.

    Science.gov (United States)

    More, Nagnath Yadav; Jeganmohan, Masilamani

    2015-01-12

    A regioselective synthesis of symmetrical and unsymmetrical benzopinacolones through aerobic dehydrogenative α-arylation at the tertiary sp(3) C-H bond of substituted 1,1-diphenylketones with aromatic and heteroaromatic compounds, in the presence of K2S2O8 in CF3COOH at room temperature, is described. The reaction is proposed to go via a carbocation intermediate, which could be generated directly from cleavage of the sp(3) C-H bond of 1,1-diphenylketone. Subsequent α-arylation was achieved at the methene sp(3) carbon atom of the substituted ketone. A variety of substituted aromatic and heteroaromatic compounds were compatible with this reaction. In addition, benzopinacolones were converted into sterically hindered, tetrasubstituted alkenes and polycyclic aromatic compounds.

  9. C8-Selective Acylation of Quinoline N-Oxides with α-Oxocarboxylic Acids via Palladium-Catalyzed Regioselective C-H Bond Activation.

    Science.gov (United States)

    Chen, Xiaopei; Cui, Xiuling; Wu, Yangjie

    2016-08-01

    A facile and efficient protocol for palladium-catalyzed C8-selective acylation of quinoline N-oxides with α-oxocarboxylic acids has been developed. In this approach, N-oxide was utilized as a stepping stone for the remote C-H functionalization. The reactions proceeded efficiently under mild reaction conditions with excellent regioselectivity and broad functional group tolerance. PMID:27441527

  10. Fundamental reactivity of the Metal-Carbon bond in cyclometalated PNC-complexes

    NARCIS (Netherlands)

    L.S. Jongbloed

    2016-01-01

    The activation of C-H bonds by transition metals and the reactivity of the corresponding metal-carbon bond are interesting research topics form different point of views. Catalytic C-H bond functionalization has emerged as a highly active research area for the development of green construction of Car

  11. Synthesis and reactivity of silyl ruthenium complexes: the importance of trans effects in C-H activation, Si-C bond formation, and dehydrogenative coupling of silanes.

    Science.gov (United States)

    Dioumaev, Vladimir K; Procopio, Leo J; Carroll, Patrick J; Berry, Donald H

    2003-07-01

    with PMe(3) or PMe(3)-d(9) - is also regioselective (1a-d(9)() is predominantly produced with PMe(3)-d(9) trans to Si), but is very unfavorable. At 70 degrees C, a slower but irreversible SiH elimination also occurs and furnishes (PMe(3))(4)RuH(2). The structure of 4a exhibits a tetrahedral P(3)Si environment around the metal with the three hydrides adjacent to silicon and capping the P(2)Si faces. Although strong Si...HRu interactions are not indicated in the structure or by IR, the HSi distances (2.13-2.23(5) A) suggest some degree of nonclassical SiH bonding in the H(3)SiR(3) fragment. Thermolysis of 1a in C(6)D(6) at 45-55 degrees C leads to an intermolecular CD activation of C(6)D(6). Extensive H/D exchange into the hydride, SiMe(3), and PMe(3) ligands is observed, followed by much slower formation of cis-(PMe(3))(4)Ru(D)(Ph-d(5)). In an even slower intramolecular CH activation process, (PMe(3))(3)Ru(eta(2)-CH(2)PMe(2))H (5) is also produced. The structure of intermediates, mechanisms, and aptitudes for PMe(3) dissociation and addition/elimination of H-H, Si-H, C-Si, and C-H bonds in these systems are discussed with a special emphasis on the trans effect and trans influence of silicon and ramifications for SiC coupling catalysis. PMID:12823028

  12. Conserved water-mediated H-bonding dynamics of catalytic Asn 175 in plant thiol protease

    Indian Academy of Sciences (India)

    Tapas K Nandi; Hridoy R Bairagya; Bishnu P Mukhopadhyay; K Sekar; Dipankar Sukul; Asim K Bera

    2009-03-01

    The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.

  13. An elusive hydridoaluminum(I) complex for facile C-H and C-O bond activation of ethers and access to its isolable hydridogallium(I) analogue: syntheses, structures, and theoretical studies.

    Science.gov (United States)

    Tan, Gengwen; Szilvási, Tibor; Inoue, Shigeyoshi; Blom, Burgert; Driess, Matthias

    2014-07-01

    The reaction of AlBr3 with 1 molar equiv of the chelating bis(N-heterocyclic carbene) ligand bis(N-Dipp-imidazole-2-ylidene)methylene (bisNHC, 1) affords [(bisNHC)AlBr2](+)Br(-) (2) as an ion pair in high yield, representing the first example of a bisNHC-Al(III) complex. Debromination of the latter with 1 molar equiv of K2Fe(CO)4 in tetrahydrofuran (THF) furnishes smoothly, in a redox reaction, the (bisNHC)(Br)Al[Fe(CO)4] complex 3, in which the Al(I) center is stabilized by the Fe(CO)4 moiety through Al(I):→Fe(0) coordination. Strikingly, the Br/H ligand exchange reactions of 3 using potassium hydride as a hydride source in THF or tetrahydropyran (THP) do not yield the anticipated hydridoaluminum(I) complex (bisNHC)Al(H)[Fe(CO)4] (4a) but instead lead to (bisNHC)Al(2-cyclo-OC4H7)[Fe(CO)4] (4) and (bisNHC)Al(2-cyclo-OC5H9)[Fe(CO)4] (5), respectively. The latter are generated via C-H bond activation at the α-carbon positions of THF and THP, respectively, in good yields with concomitant elimination of dihydrogen. This is the first example whereby a low-valent main-group hydrido complex facilitates metalation of sp(3) C-H bonds. Interestingly, when K[BHR3] (R = Et, sBu) is employed as a hydride source to react with 3 in THF, the reaction affords (bisNHC)Al(OnBu)[Fe(CO)4] (6) as the sole product through C-O bond activation and ring opening of THF. The mechanisms for these novel C-H and C-O bond activations mediated by the elusive hydridoaluminum(I) complex 4a were elucidated by density functional theory (DFT) calculations. In contrast, the analogous hydridogallium(I) complex (bisNHC)Ga(H)[Fe(CO)4] (9) can be obtained directly in high yield by the reaction of the (bisNHC)Ga(Cl)[Fe(CO)4] precursor 8 with 1 molar equiv of K[BHR3] (R = Et, sBu) in THF at room temperature. The isolation of 9 and its inertness toward cyclic ethers might be attributed to the higher electronegativity of gallium versus aluminum. The stronger Ga(I)-H bond, in turn, hampers α-C-H metalation

  14. Metal-Free sp(2)-C-H Borylation as a Common Reactivity Pattern of Frustrated 2-Aminophenylboranes.

    Science.gov (United States)

    Chernichenko, Konstantin; Lindqvist, Markus; Kótai, Bianka; Nieger, Martin; Sorochkina, Kristina; Pápai, Imre; Repo, Timo

    2016-04-13

    C-H borylation is a powerful and atom-efficient method for converting affordable and abundant chemicals into versatile organic reagents used in the production of fine chemicals and functional materials. Herein we report a facile C-H borylation of aromatic and olefinic C-H bonds with 2-aminophenylboranes. Computational and experimental studies reveal that the metal-free C-H insertion proceeds via a frustrated Lewis pair mechanism involving heterolytic splitting of the C-H bond by cooperative action of the amine and boryl groups. The adapted geometry of the reactive B and N centers results in an unprecedentently low kinetic barrier for both insertion into the sp(2)-C-H bond and intramolecular protonation of the sp(2)-C-B bond in 2-ammoniophenyl(aryl)- or -(alkenyl)borates. This common reactivity pattern serves as a platform for various catalytic reactions such as C-H borylation and hydrogenation of alkynes. In particular, we demonstrate that simple 2-aminopyridinium salts efficiently catalyze the C-H borylation of hetarenes with catecholborane. This reaction is presumably mediated by a borenium species isoelectronic to 2-aminophenylboranes.

  15. Moving to Sustainable Metals. Multifunctional Ligands in Catalytic, Outer Sphere C-H, N-H and O-H Activation

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, Robert [Yale Univ., New Haven, CT (United States)

    2015-03-03

    Much of our work during this grant period has emphasized green chemistry and sustainability. For example, we were able to convert glycerine, a waste byproduct of biodiesel production, into lactic acid, a compound with numerous applications, notably in the food and cosmetics industry, as well as being a source material for a biodegradable plastic. This work required a catalyst, that ceases to work after a certain lapse of time. We were able to identify the way in which this deactivation occurs by identifying some of the metal catalyst deactivation products. These proved to be multimetallic clusters containing up to six metals and up to 14 hydrogen atoms. Both the catalytic reaction itself and the deactivation structures are novel and unexpected. We have previously proposed that nitrogen heterocycles could be good energy carriers in a low CO2 future world. In another part of our study, we found catalysts for introduction of hydrogen, an energy carrier that is hard to store, into nitrogen heterocycles. The mechanism of this process proved to be unusual in that the catalyst transfers the H2 to the heterocycle in the form of H+ and H-, first transferring the H+ and only then the H-. In a third area of study, some of our compounds, originally prepared for DOE catalysis purposes, also proved useful in hydrocarbon oxidation and in water oxidation. The latter is important in solar-to-fuel work, because, by analogy with natural photosynthesis, the goal of the Yale Solar Group of four PIs is to convert sunlight to hydrogen and oxygen, which requires water splitting catalysts. The catalysts that proved useful mediate the latter reaction: water oxidation to oxygen. In a more technical study, we developed methods for distinguishing the case where catalysis is mediated by a soluble catalyst from cases where catalysis arises from a deposit of finely divided solid. One particular application involved electrocatalysis

  16. Production of an ion-exchange membrane-catalytic electrode bonded material for electrolytic cells

    Science.gov (United States)

    Takenaka, H.; Torikai, E.

    1986-01-01

    A good bond is achieved by placing a metal salt in solution on one side of a membrane and a reducing agent on the other side so that the reducing agent penetrates the membrane and reduces the metal. Thus, a solution containing Pt, Rh, etc., is placed on one side of the membrane and a reducing agent such as NaBH, is placed on the other side. The bonded metal layer obtained is superior in catalytic activity and is suitable as an electrode in a cell such as for solid polymer electrolyte water electrolysis.

  17. Water as a green solvent for efficient synthesis of isocoumarins through microwave-accelerated and Rh/Cu-catalyzed C-H/O-H bond functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiu; Yan, Yunnan; Wang, Xiaowei; Gong, Binwei; Tang, Xiaobo; Shi, JingJing; Xu, H. Eric; Yi, Wei [Shenyang; (Gannan); (Van Andel); (UST - China); (Chinese Aca. Sci.)

    2014-08-14

    Green chemistry that uses water as a solvent has recently received great attention in organic synthesis. Here we report an efficient synthesis of biologically important isocoumarins through direct cleavage of C–H/O–H bonds by microwave-accelerated and Rh/Cu-catalyzed oxidative annulation of various substituted benzoic acids, where water is used as the only solvent in the reactions. The remarkable features of this “green” methodology include high product yields, wide tolerance of various functional groups as substrates, and excellent region-/site-specificities, thus rendering this methodology a highly versatile and eco-friendly alternative to the existing methods for synthesizing isocoumarins and other biologically important derivatives such as isoquinolones.

  18. Importance of the oxygen bond strength for catalytic activity in soot oxidation

    DEFF Research Database (Denmark)

    Christensen, Jakob M.; Grunwaldt, Jan-Dierk; Jensen, Anker D.

    2016-01-01

    (loose contact) the rate constants for a number of catalytic materials outline a volcano curve when plotted against their heats of oxygen chemisorption. However, the optima of the volcanoes correspond to different heats of chemisorption for the two contact situations. In both cases the activation...... oxidation. The optimum of the volcano curve in loose contact is estimated to occur between the bond strengths of α-Fe2O3 and α-Cr2O3. Guided by an interpolation principle FeaCrbOx binary oxides were tested, and the activity of these oxides was observed to pass through an optimum for an FeCr2Ox binary oxide...

  19. Characterization of two alkyl hydroperoxide reductase C homologs alkyl hydroperoxide reductase C_H1 and alkyl hydroperoxide reductase C_H2 in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Mee-Kyung; Cha; Yoo-Jeen; Bae; Kyu-Jeong; Kim; Byung-Joon; Park; Il-Han; Kim

    2015-01-01

    AIM: To identify alkyl hydroperoxide reductase subunit C(AhpC) homologs in Bacillus subtilis(B. subtilis) and to characterize their structural and biochemical properties. AhpC is responsible for the detoxification of reactive oxygen species in bacteria.METHODS: Two AhpC homologs(AhpC_H1 and AhpC_H2) were identified by searching the B. subtilis database; these were then cloned and expressed in Escherichia coli. AhpC mutants carrying substitutions of catalytically important Cys residues(C37S, C47 S, C166 S, C37/47 S, C37/166 S, C47/166 S, and C37/47/166 S for AhpC_H1; C52 S, C169 S, and C52/169 S for AhpC_H2) were obtained by site-directed mutagenesis and purified, and their structure-function relationship was analyzed. The B. subtilis ahp C genes were disrupted by the short flanking homology method, and the phenotypes of the resulting AhpC-deficient bacteria were examined.RESULTS: Comparative characterization of AhpC homologs indicates that AhpC_H1 contains an extra C37, which forms a disulfide bond with the peroxidatic C47, and behaves like an atypical 2-Cys AhpC, while AhpC_H2 functions like a typical 2-Cys AhpC. Tryptic digestion analysis demonstrated the presence of intramolecular Cys37-Cys47 linkage, which could be reduced by thioredoxin, resulting in the association of the dimer into higher-molecular-mass complexes. Peroxidase activity analysis of Cys→Ser mutants indicated that three Cys residues were involved in the catalysis. AhpC_H1 was resistant to inactivation by peroxide substrates, but had lower activity at physiological H2O2 concentrations compared to AhpC_H2, suggesting that in B. subtilis, the enzymes may be physiologically functional at different substrate concentrations. The exposure to organic peroxides induced AhpC_H1 expression, while AhpC_H1-deficient mutants exhibited growth retardation in the stationary phase, suggesting the role of AhpC_H1 as an antioxidant scavenger of lipid hydroperoxides and a stress-response factor in B. subtilis

  20. Seven organic salts assembled from hydrogen-bonds of N-H⋯O, O-H⋯O, and C-H⋯O between acidic compounds and bis(benzimidazole)

    Science.gov (United States)

    Jin, Shouwen; Liu, Hui; Gao, Xin Jun; Lin, Zhanghui; Chen, Guqing; Wang, Daqi

    2014-10-01

    Seven crystalline organic acid-base adducts derived from 1,4-bis(benzimidazol-2-yl)butane/1,2-bis(2-benzimidazolyl)-1,2-ethanediol and acidic components (picric acid, 2-hydroxy-5-(phenyldiazenyl)benzoic acid, 5-sulfosalicylic acid, oxalic acid, and 1,5-naphthalenedisulfonic acid) were prepared and characterized by the single crystal X-ray diffraction analysis, IR, mp, and elemental analysis. All of the seven compounds are organic salts involving proton transfer from the acidic components to the bis(benzimidazole). For the salt 3, although a competing carboxyl group is present, it has been observed that only the proton at the -SO3H group is deprotonized rather than the H at the COOH. While in the salt 7, both COOH and SO3H were ionized to exhibit a valence number of -2. For 4, the oxalic acid existed as unionized molecule, monoanion, and dianion simultaneously in one compound. All supramolecular architectures of the organic salts 1-7 involve extensive intermolecular N-H⋯O, O-H⋯O, and C-H⋯O hydrogen bonds as well as other noncovalent interactions. Since the potentially hydrogen bonding phenol group is present in the ortho position to the carboxyl group in 2, 3, and 7, it forms the more facile intramolecular O-H⋯O hydrogen bonding. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure.

  1. Aromatic Cyanoalkylation through Double C-H Activation Mediated by Ni(III).

    Science.gov (United States)

    Zhou, Wen; Zheng, Shuai; Schultz, Jason W; Rath, Nigam P; Mirica, Liviu M

    2016-05-11

    Herein we report an atom- and step-economic aromatic cyanoalkylation reaction that employs nitriles as building blocks and proceeds through Csp(2)-H and Csp(3)-H bond activation steps mediated by Ni(III). In addition to cyanomethylation with MeCN, regioselective α-cyanoalkylation was observed with various nitrile substrates to generate secondary and tertiary nitriles. Importantly, to the best of our knowledge these are the first examples of C-H bond activation reactions occurring at a Ni(III) center, which may exhibit different reactivity and selectivity profiles than those corresponding to analogous Ni(II) centers. These studies provide guiding principles to design catalytic C-H activation and functionalization reactions involving high-valent Ni species. PMID:27120207

  2. Ethenolysis: A Green Catalytic Tool to Cleave Carbon-Carbon Double Bonds.

    Science.gov (United States)

    Bidange, Johan; Fischmeister, Cédric; Bruneau, Christian

    2016-08-22

    Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross-metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon-carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications. PMID:27359344

  3. Catalytic performance and molecular dynamic simulation of immobilized CC bond hydrolase based on carbon nanotube matrix.

    Science.gov (United States)

    Zhou, Hao; Qu, Yuanyuan; Kong, Chunlei; Li, Duanxing; Shen, E; Ma, Qiao; Zhang, Xuwang; Wang, Jingwei; Zhou, Jiti

    2014-04-01

    Carbon nanotube (CNT) has been proved to be a kind of novel support for enzyme immobilization. In this study, we tried to find the relationship between conformation and catalytic performance of immobilized enzyme. Two CC bond hydrolases BphD and MfphA were immobilized on CNTs (SWCNT and MWCNT) via physical adsorption and covalent attachment. Among the conjugates, the immobilized BphD on chemically functionalized SWCNT (BphD-CSWCNT) retained the highest catalytic efficiency (kcat/Km value) compared to free BphD (92.9%). On the other hand, when MfphA bound to pristine SWCNT (MfphA-SWCNT), it was completely inactive. Time-resolved fluorescence spectrum indicated the formation of static ground complexes during the immobilization processes. Circular dichroism (CD) showed that the secondary structures of immobilized enzymes changed in varying degrees. In order to investigate the inhibition mechanism of MfphA by SWCNT, molecular dynamics simulation was employed to analyze the adsorption process, binding sites and time evolution of substrate tunnels. The results showed that the preferred binding sites (Trp201 and Met81) of MfphA for SWCNT blocked the main substrate access tunnel, thus making the enzyme inactive. The "tunnel-block" should be a novel possible inhibition mechanism for enzyme-nanotube conjugate.

  4. Gas-phase chemistry of Sc(CH{sub 3}){sub 2}{sup +} with alkenes: Activation of allylic C-H bonds by a d{sup 0} system and the migratory insertion of C=C bonds into Sc{sup +}-CH{sub 3} bonds

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongqing; Hill, Y.D.; Freiser, B.S. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1992-11-04

    The gas-phase chemistry of Sc(CH{sub 3}){sub 2}{sup +} with alkenes was studied by Fourier transform mass spectrometry. The metal center on Sc(CH{sub 3}){sub 2}{sup +} is d{sup 0}, providing an opportunity to study alternative mechanisms of C-C or C-H activation other than the most common one involving oxidative addition. The elimination of H{sub 2} is observed in the reaction of Sc(CH{sub 3}){sub 2}{sup +} with ethylene, and the product ScC{sub 4}H{sub 8}{sup +} and ScC{sub 6}H{sub 10}{sup +} ions have a metal(methyl)(allyl) and metal-bisallyl structure, respectively, consistent with a proposed reaction mechanism involving the consecutive migratory insertion of ethylenes into the scandium-methyl bonds. In addition, theoretical calculations indicate that the metal(methyl)(allyl) structure is between 10 and 20 kcal/mol more stable than the metal(1-butene) isomer. Sc(CH{sub 3}){sub 2}{sup +} reacts with propene to form predominantly ScC{sub 4}H{sub 8}{sup +} by loss of CH{sub 4}, with minor amounts of ScC{sub 3}H{sub 4}{sup +} and ScC{sub 4}H{sub 6}{sup +} also observed. ScC{sub 4}H{sub 6}{sup +} is formed as either the exclusive or the predominant product ion in the reactions of Sc(CH{sub 3}){sub 2}{sup +} with butenes. Sc(CH{sub 3}){sub 2} reacts with cyclopentene to form predominantly ScC{sub 6}H{sub 8}{sup +} by losing CH{sub 4} and H{sub 2}. Isotope labeling studies with Sc(CD{sub 3}){sub 2}{sup +} and other structure studies indicate that all of the alkenes studied, with the exception of ethylene, react with Sc(CH{sub 3}){sub 2}{sup +} via a multicentered {sigma}-bond metathesis mechanism to activate allylic C-H bonds. Finally, the dehydrogenation reactions of Sc{sup +} with n-butane and neopentane were revisited, and a new mechanism is proposed for such chemistry in light of the new results from this study. 34 refs., 5 figs., 2 tabs.

  5. Aromatic C-H Bond Functionalization Induced by Electrochemically in Situ Generated Tris(p-bromophenyl)aminium Radical Cation: Cationic Chain Reactions of Electron-Rich Aromatics with Enamides.

    Science.gov (United States)

    Li, Long-Ji; Jiang, Yang-Ye; Lam, Chiu Marco; Zeng, Cheng-Chu; Hu, Li-Ming; Little, R Daniel

    2015-11-01

    An effective Friedel-Crafts alkylation reaction of electron-rich aromatics with N-vinylamides, induced by electrochemically in situ-generated TBPA radical cation, has been developed; the resulting adducts are produced in good to excellent yields. In the "ex-cell" type electrolysis, TBPA is transformed to its oxidized form in situ and subsequently employed as an electron transfer reagent to initiate a cationic chain reaction. An easily recoverable and reusable polymeric ionic liquid-carbon black (PIL-CB) composite was also utilized as a supporting electrolyte for the electrochemical generation of TBPA cation radical, without sacrificing efficiency or stability after four electrolyses. Cyclic voltammetry analysis and the results of control experiments demonstrate that the reaction of electron-rich aromatics and N-vinylamides occurs via a cationic chain reaction, which takes place though an oxidative activation of a C-H bond of electron-rich aromatics instead of oxidation of the N-vinylamide as previously assumed.

  6. Iron-Catalyzed C-H Functionalization Processes.

    Science.gov (United States)

    Cera, Gianpiero; Ackermann, Lutz

    2016-10-01

    Iron-catalyzed C-H activation has recently emerged as an increasingly powerful tool for the step-economical transformation of unreactive C-H bonds. Particularly, the recent development of low-valent iron catalysis has set the stage for novel C-H activation strategies via chelation assistance. The low-cost, natural abundance, and low toxicity of iron prompted its very recent application in organometallic C-H activation catalysis. An overview of the use of iron catalysis in C-H activation processes is summarized herein up to May 2016. PMID:27573499

  7. C-H 键活化反应的密度泛函理论模拟对简化模型的评估%Density Functional Theoritical Studies on Catalytic C-H Activation Reaction:Problem of Truncated Model

    Institute of Scientific and Technical Information of China (English)

    张磊; 徐增平; 于皓宇; 方德彩

    2014-01-01

    Density functional theory method was employed to simulate a Rh(PPh3 ) 3 Cl catalyzed C-H activa-tion / C-C cross-coupling reaction, in which three typical processes, namely, C-H activation, migratory in-sertion and reductive elimination, were characterized. The obtained results show that the rate-determining step is migratory insertion with the free-energy barrier of 108. 3 kJ/ mol. In order to test the validation of truncated models, two small catalysts Rh(PMe3 ) 3 Cl and Rh(PH3 ) 3 Cl were also used to study the same coupling reac-tion. Our calculations suggested that truncated models led to misunderstanding of reaction mechanism and free-energy changes, especially for migratory insertion process, since the steric effect and entropic contribution play a great role on these types of reactions.%采用密度泛函理论方法,模拟了 Rh(PPh3)3 Cl 催化的 C-H 键活化/ C-C 键偶联反应.将反应机理分为 C-H 键活化、迁移插入和还原消除3个过程进行讨论.计算结果表明,势能面的最高点为迁移插入的过渡态,相对于初始原料的自由能为108.3 kJ/ mol.为了探索简化计算模型对模拟反应机理的影响,使用2种模型催化剂 Rh(PMe3)3 Cl 和 Rh(PH3)3 Cl 表征相同的反应过程,结果表明配体简化模型不合理,主要是因为 PPh3配体的空间效应和熵效应非常明显.

  8. Cobalt-Catalyzed Oxidative C-H/C-H Cross-Coupling between Two Heteroarenes.

    Science.gov (United States)

    Tan, Guangying; He, Shuang; Huang, Xiaolei; Liao, Xingrong; Cheng, Yangyang; You, Jingsong

    2016-08-22

    The first example of cobalt-catalyzed oxidative C-H/C-H cross-coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2 ⋅4 H2 O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2 CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C-H bond activation pathway that the well-described oxidative C-H/C-H cross-coupling reactions between two heteroarenes typically undergo.

  9. Cobalt-Catalyzed Oxidative C-H/C-H Cross-Coupling between Two Heteroarenes.

    Science.gov (United States)

    Tan, Guangying; He, Shuang; Huang, Xiaolei; Liao, Xingrong; Cheng, Yangyang; You, Jingsong

    2016-08-22

    The first example of cobalt-catalyzed oxidative C-H/C-H cross-coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2 ⋅4 H2 O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2 CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C-H bond activation pathway that the well-described oxidative C-H/C-H cross-coupling reactions between two heteroarenes typically undergo. PMID:27460406

  10. Free-Radical Triggered Ordered Domino Reaction: An Approach to C-C Bond Formation via Selective Functionalization of α-Hydroxyl-(sp(3))C-H in Fluorinated Alcohols.

    Science.gov (United States)

    Xu, Zhengbao; Hang, Zhaojia; Liu, Zhong-Quan

    2016-09-16

    A free-radical mediated highly ordered radical addition/cyclization/(sp(3))C-C(sp(3)) formation domino reaction is developed. Three new C-C bonds are formed one by one in a mixed system. Furthermore, it represents the first example of cascade C-C bond formation via selective functionalization of α-hydroxyl-C(sp(3))-H in fluorinated alcohols.

  11. Mapping the Hydrogen Bond Networks in the Catalytic Subunit of Protein Kinase A Using H/D Fractionation Factors.

    Science.gov (United States)

    Li, Geoffrey C; Srivastava, Atul K; Kim, Jonggul; Taylor, Susan S; Veglia, Gianluigi

    2015-07-01

    Protein kinase A is a prototypical phosphoryl transferase, sharing its catalytic core (PKA-C) with the entire kinase family. PKA-C substrate recognition, active site organization, and product release depend on the enzyme's conformational transitions from the open to the closed state, which regulate its allosteric cooperativity. Here, we used equilibrium nuclear magnetic resonance hydrogen/deuterium (H/D) fractionation factors (φ) to probe the changes in the strength of hydrogen bonds within the kinase upon binding the nucleotide and a pseudosubstrate peptide (PKI5-24). We found that the φ values decrease upon binding both ligands, suggesting that the overall hydrogen bond networks in both the small and large lobes of PKA-C become stronger. However, we observed several important exceptions, with residues displaying higher φ values upon ligand binding. Notably, the changes in φ values are not localized near the ligand binding pockets; rather, they are radiated throughout the entire enzyme. We conclude that, upon ligand and pseudosubstrate binding, the hydrogen bond networks undergo extensive reorganization, revealing that the open-to-closed transitions require global rearrangements of the internal forces that stabilize the enzyme's fold. PMID:26030372

  12. Enzyme catalysis: C-H activation is a Reiske business

    Science.gov (United States)

    Bruner, Steven D.

    2011-05-01

    Enzymes that selectively oxidize unactivated C-H bonds are capable of constructing complex molecules with high efficiency. A new member of this enzyme family is RedG, a Reiske-type oxygenase that catalyses chemically challenging cyclizations in the biosynthesis of prodiginine natural products.

  13. Advances and perspectives in catalytic oxidation of hydrocarbons in liquid phase

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This review article summarizes recent advances in catalytic oxidation of hydrocarbons, especially presents two strategies for activation of C-H bonds or molecular oxygen. Based on our own research results, the applications of the two methods in the oxidation of cyclohexane, toluene and ethyl benzene, etc. are introduced, and the perspectives of the two methods are also discussed.

  14. Scalable and sustainable electrochemical allylic C-H oxidation

    Science.gov (United States)

    Horn, Evan J.; Rosen, Brandon R.; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-05-01

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”. Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  15. Bond dissociation mechanism of ethanol during carbon nanotube synthesis via alcohol catalytic CVD technique: Ab initio molecular dynamics simulation

    Science.gov (United States)

    Oguri, Tomoya; Shimamura, Kohei; Shibuta, Yasushi; Shimojo, Fuyuki; Yamaguchi, Shu

    2014-03-01

    Dissociation of ethanol on a nickel cluster is investigated by ab initio molecular dynamics simulation to reveal the bond dissociation mechanism of carbon source molecules during carbon nanotube synthesis. C-C bonds in only CHxCO fragments are dissociated on the nickel cluster, whereas there is no preferential structure among the fragments for C-O bond dissociation. The dissociation preference is uncorrelated with the bond dissociation energy of corresponding bonds in freestanding molecules but is correlated with the energy difference between fragment molecules before and after dissociation on the nickel surface. Moreover, carbon-chain formation occurs after C-C bond dissociation in a continuous simulation. What determines the chirality of CNTs? What happens at the dissociation stage of carbon source molecules? Regarding the former question, many researchers have pointed out the good epitaxial relationship between a graphite network and a close-packed facet (i.e., fcc(1 1 1) or hcp(0 0 0 1)) of transition metals [17-19]. Therefore, the correlation between the chirality of CNTs and the angle of the step edge on metal (or metal carbide) surfaces has been closely investigated [20-22]. In association with this geometric matching, the epitaxial growth of graphene on Cu(1 1 1) and Ni(1 1 1) surfaces has recently been achieved via CCVD technique [23-25], which is a promising technique for the synthesis of large-area and monolayer graphene.Regarding the latter question, it is empirically known that the yield and quality of CNT products strongly depend on the choice of carbon source molecules and additives. For example, it is well known that the use of ethanol as carbon source molecules yields a large amount of SWNTs without amorphous carbons (called the alcohol CCVD (ACCVD) technique) compared with the CCVD process using hydrocarbons [4]. Moreover, the addition of a small amount of water dramatically enhances the activity and lifetime of the catalytic metal (called the

  16. Réactions de cycloisomérisation d'ènynes en présence de complexes d'or, de platine et d'ions halogéniums - Approche combinatoire en présence de complexes de platine. Réactions d'acyloxylation par activation C-H d'aromatiques en présence de complexes d'or.

    OpenAIRE

    Pradal, Alexandre

    2012-01-01

    This manuscript concerns the development of electrophilic systems, involving gold and platinum π-Lewis acids or halogenium ions and their involvement in C-C triple bond (stereoselective enyne cycloisomerization reactions in the presence or in the absence of an external nucleophile and halocarbocyclization reactions) and C-H bond (acyloxylation reactions of hindered arenes) activation processes. The use of a catalytic system which consists in a binuclear gold (I) complex possessing the diphosp...

  17. Tetra-substituted olefin synthesis using palladium-catalysed C-H activation

    OpenAIRE

    Lopez Suarez, Laura; Suarez, Laura Lopez

    2012-01-01

    In an effort to obtain more efficient and greener chemical transformations, a substantial amount of research interest has been directed towards the use of arene C-H bonds as functional groups. Hydroarylation of alkynes through direct functionalisation of C-H bonds has been studied in recent years leading to the development of high-yielding metal-mediated processes. The main aim of the current work is the addition of a third component in the hydroarylation of alkynes trough C-H activation, in ...

  18. Heterogeneously porous γ-MnO₂-catalyzed direct oxidative amination of benzoxazole through C-H activation in the presence of O₂.

    Science.gov (United States)

    Pal, Provas; Giri, Arnab Kanti; Singh, Harshvardhan; Ghosh, Subhash Chandra; Panda, Asit Baran

    2014-09-01

    Oxidative amination of azoles through catalytic C-H bond activation is a very important reaction due to the presence of 2-aminoazoles in several biologically active compounds. However, most of the reported methods are performed under homogeneous reaction conditions using excess reagents and additives. Herein, we report the heterogeneous, porous γ-MnO2-catalyzed direct amination of benzoxazole with wide range of primary and secondary amines. The amination was carried under mild reaction conditions and using molecular oxygen as a green oxidant, without any additives. The catalyst can easily be separated by filtration and reused several times without a significant loss of its catalytic performance. Of note, the reaction tolerates a functional group such as alcohol, thus indicating the broad applicability of this reaction.

  19. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo

    2012-02-08

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  20. Silver(I) NHC mediated C-C bond activation of alkyl nitriles and catalytic efficiency in oxazoline synthesis.

    Science.gov (United States)

    Heath, Rachael; Müller-Bunz, Helge; Albrecht, Martin

    2015-05-21

    Preparation of silver triazolylidene (trz) species from triazolium salts and Ag2O in refluxing MeCN leads to a selective C-C bond cleavage and the formation of complexes of general formula [(trz)Ag(CN)] from Calkyl-CN bond activation. Moreover, these silver carbene complexes are precursors of highly active catalysts for oxazoline formation via aldol condensation. PMID:25913007

  1. Synthetic Transformations through Alkynoxy-Palladium Interactions and C-H Activation.

    Science.gov (United States)

    Minami, Yasunori; Hiyama, Tamejiro

    2016-01-19

    Organic synthesis based on straightforward transformations is essential for environmentally benign manufacturing for the invention of novel pharmaceuticals, agrochemicals, and organoelectronic materials in order to ultimately realize a sustainable society. Metal-catalyzed C-H bond-cleaving functionalization has become a promising method for achieving the above goal. For site-selective C-H bond cleavage, so-called directing groups, i.e., ligands attached to substrates, are employed. Commonly utilized directing groups are carbonyls, imines, carboxyls, amides, and pyridyls, which σ-donate electron pairs to metals. On the other hand, unsaturated substrates such as alkenes and alkynes, which participate largely as reactants in organic synthesis, are prepared readily by a wide variety of synthetic transformations and are also employed as reactants in organometallic chemistry. Moreover, such unsaturated groups form complexes with some metals by ligation of their p orbitals via donation and back-donation. However, the use of unsaturated bonds as directing groups has not been studied extensively. We have been involved in the development of methods for the cleavage of C-H bonds by means of transition-metal catalysts to achieve new carbon-carbon bond-forming reactions and incidentally came to focus on the alkynoxy group (-OC≡C-), which shows a ketene-like resonance structure. We expected the alkynoxy group to interact electrophilically with a low-valent transition-metal complex in order to cleave adjacent C-H bonds. In this Account, we summarize our recent achievements on C-H activation based on interactions of palladium with the alkynoxy group in alkynyl aryl ethers. The alkynoxy group plays two roles in the transformation: as a directing group for adjacent C-H bond activation and as an acceptor for the carbon and hydrogen fragments. A typical example is palladium-catalyzed ortho-C-H bond activation in alkynoxyarenes followed by sequential insertion/annulation with

  2. Constructing a Catalytic Cycle for C-F to C-X (X = O, S, N) Bond Transformation Based on Gold-Mediated Ligand Nucleophilic Attack.

    Science.gov (United States)

    Hu, Ji-Yun; Zhang, Jing; Wang, Gao-Xiang; Sun, Hao-Ling; Zhang, Jun-Long

    2016-03-01

    A tricoordinated gold(I) chloride complex, tBuXantphosAuCl, supported by a sterically bulky 9,9-dimethyl-4,5-bis(di-tert-butylphosphino)xanthene ligand (tBuXantphos) was synthesized. This complex features a remarkably longer Au-Cl bond length [2.632(1) Å] than bicoordinated linear gold complexes (2.27-2.30 Å) and tricoordinated XantphosAuCl [2.462(1) Å]. Single-crystal X-ray diffraction analysis of a cocrystal of tBuXantphosAuCl and pentafluoronitrobenzene (PFNB) and UV-vis spectroscopic titration experiments revealed the existence of an anion-π interaction between the Cl anion ligand and PFNB. Stoichiometric reaction between PFNB and tBuXantphosAuOtBu, after replacement of Cl by a more nucleophilic tBuO anion ligand, showed higher reactivity and para selectivity in the transformation of C-F to C-OtBu bond, distinctively different from that when only KOtBu was used (ortho selectivity) under the identical condition. Mechanistic studies including density functional theory calculations suggested a gold-mediated nucleophilic ligand attack of the C-F bond pathway via an SNAr process. On the basis of these results, using trimethylsilyl derivatives TMS-X (X = OMe, SEt, NEt2) as the nucleophilic ligand source and the fluorine acceptor, catalytic transformation of the C-F bond of aromatic substrates to the C-X (X = O, S, N) bond was achieved with tBuXantphosAuCl as the catalyst (up to 20 turnover numbers). PMID:26872251

  3. Effects of lithium-implantation on the hydrogen retention in both a-C:H and a-Si C:H materials submitted to deuterium bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, G.; Chevarier, N.; Chevarier, A. [Lyon-1 Univ., 69 -Villeurbanne (France). Inst. de Physique Nucleaire; Ross, G.G.; El Khakani, M.A. [INRS-Energie et Materiaux, Varennes, PQ (Canada)

    1996-09-01

    The hydrogen release in plasma facing materials is a challenging problem for the hydrogen recycling. The hydrogen desorption from a-C:H and a-SiC:H materials induced by deuterium bombardment has been investigated. Prior to the deuterium bombardment, both materials were implanted with different fluences of lithium ions. Before and after each irradiation, depth profiles of H, Li and deuterium were determined by nuclear microanalysis. After deuterium bombardment, il is shown that the retention of the initial hydrogen in both materials was enhanced by increasing the total dose of the implanted Li. For the a-C:H samples, the hydrogen desorption under deuterium bombardment was strongly reduced by lithium implantation. This effect was also evidenced in a-SiC:H samples, even though it is less spectacular that in a-C:H. Also, nuclear analyses showed that the retained dose of deuterium decreases when the lithium concentration increases. This could be a result of the formation of Li-H bonds which occurs to the detriment of deuterium retention in both a-C:H and a-SiC:H materials. Preliminary results of both materials exposed to TdeV tokamak discharges confirms the role of Li in hydrogen retention, already observed in deuterium bombardment exposure. (author).

  4. Allylic and benzylic sp3 C-H oxidation in water.

    Science.gov (United States)

    Ang, Wei Jie; Lam, Yulin

    2015-01-28

    A copper-catalyzed method for the oxidation of allylic and benzylic sp(3) C-H by aqueous tert-butyl hydroperoxide (T-Hydro) in water using a recyclable fluorous ligand has been developed. The reaction procedure is tolerant to additional functional groups and the fluorous ligand could be reused with little loss of catalytic activity. PMID:25412371

  5. Effects of hydrogen bonds in association with flavin and substrate in flavoenzyme d-amino acid oxidase. The catalytic and structural roles of Gly313 and Thr317.

    Science.gov (United States)

    Setoyama, Chiaki; Nishina, Yasuzo; Tamaoki, Haruhiko; Mizutani, Hisashi; Miyahara, Ikuko; Hirotsu, Ken; Shiga, Kiyoshi; Miura, Retsu

    2002-01-01

    According to the three-dimensional structure of a porcine kidney D-amino acid oxidase-substrate (D-leucine) complex model, the G313 backbone carbonyl recognizes the substrate amino group by hydrogen bonding and the side-chain hydroxyl of T317 forms a hydrogen bond with C(2)=O of the flavin moiety of FAD [Miura et al. (1997) J. Biochem. 122, 825-833]. We have designed and expressed the G313A and T317A mutants and compared their enzymatic and spectroscopic properties with those of the wild type. The G313A mutant shows decreased activities to various D-amino acids, but the pattern of substrate specificity is different from that of the wild type. The results imply that the hydrogen bond between the G313 backbone carbonyl and the substrate amino group plays important roles in substrate recognition and in defining the substrate specificity of D-amino acid oxidase. The T317A mutant shows a decreased affinity for FAD. The steady-state kinetic measurements indicate diminished activities of T317A to substrate D-amino acids. The transient kinetic parameters measured by stopped-flow spectroscopy revealed that T317 plays key roles in stabilizing the purple intermediate, a requisite intermediate in the oxidative half-reaction, and in enhancing the release of the product from the active site, thereby optimizing the overall catalytic process of D-amino acid oxidase. PMID:11754736

  6. Design and Synthesis of Chiral Zn2+ Complexes Mimicking Natural Aldolases for Catalytic C–C Bond Forming Reactions in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Susumu Itoh

    2014-01-01

    Full Text Available Extending carbon frameworks via a series of C–C bond forming reactions is essential for the synthesis of natural products, pharmaceutically active compounds, active agrochemical ingredients, and a variety of functional materials. The application of stereoselective C–C bond forming reactions to the one-pot synthesis of biorelevant compounds is now emerging as a challenging and powerful strategy for improving the efficiency of a chemical reaction, in which some of the reactants are subjected to successive chemical reactions in just one reactor. However, organic reactions are generally conducted in organic solvents, as many organic molecules, reagents, and intermediates are not stable or soluble in water. In contrast, enzymatic reactions in living systems proceed in aqueous solvents, as most of enzymes generally function only within a narrow range of temperature and pH and are not so stable in less polar organic environments, which makes it difficult to conduct chemoenzymatic reactions in organic solvents. In this review, we describe the design and synthesis of chiral metal complexes with Zn2+ ions as a catalytic factor that mimic aldolases in stereoselective C–C bond forming reactions, especially for enantioselective aldol reactions. Their application to chemoenzymatic reactions in aqueous solution is also presented.

  7. Cp*Co(III)-Catalyzed Dehydrative C-H Allylation of 6-Arylpurines and Aromatic Amides Using Allyl Alcohols in Fluorinated Alcohols.

    Science.gov (United States)

    Bunno, Youka; Murakami, Nanami; Suzuki, Yudai; Kanai, Motomu; Yoshino, Tatsuhiko; Matsunaga, Shigeki

    2016-05-01

    Cp*Co(III)-catalyzed C-H allylation of various aromatic C-H bonds using allyl alcohols as allylating reagents is described. Improved reaction conditions using fluorinated alcohol solvents afforded efficient directed C-H allylation of 6-arylpurines, benzamides, and a synthetically useful Weinreb amide with good functional group compatibility.

  8. Palladium-catalysed transannular C-H functionalization of alicyclic amines

    Science.gov (United States)

    Topczewski, Joseph J.; Cabrera, Pablo J.; Saper, Noam I.; Sanford, Melanie S.

    2016-03-01

    Discovering pharmaceutical candidates is a resource-intensive enterprise that frequently requires the parallel synthesis of hundreds or even thousands of molecules. C-H bonds are present in almost all pharmaceutical agents. Consequently, the development of selective, rapid and efficient methods for converting these bonds into new chemical entities has the potential to streamline pharmaceutical development. Saturated nitrogen-containing heterocycles (alicyclic amines) feature prominently in pharmaceuticals, such as treatments for depression (paroxetine, amitifadine), diabetes (gliclazide), leukaemia (alvocidib), schizophrenia (risperidone, belaperidone), malaria (mefloquine) and nicotine addiction (cytisine, varenicline). However, existing methods for the C-H functionalization of saturated nitrogen heterocycles, particularly at sites remote to nitrogen, remain extremely limited. Here we report a transannular approach to selectively manipulate the C-H bonds of alicyclic amines at sites remote to nitrogen. Our reaction uses the boat conformation of the substrates to achieve palladium-catalysed amine-directed conversion of C-H bonds to C-C bonds on various alicyclic amine scaffolds. We demonstrate this approach by synthesizing new derivatives of several bioactive molecules, including varenicline.

  9. Organic chemistry. Functionalization of C(sp3)-H bonds using a transient directing group.

    Science.gov (United States)

    Zhang, Fang-Lin; Hong, Kai; Li, Tuan-Jie; Park, Hojoon; Yu, Jin-Quan

    2016-01-15

    Proximity-driven metalation has been extensively exploited to achieve reactivity and selectivity in carbon-hydrogen (C-H) bond activation. Despite the substantial improvement in developing more efficient and practical directing groups, their stoichiometric installation and removal limit efficiency and, often, applicability as well. Here we report the development of an amino acid reagent that reversibly reacts with aldehydes and ketones in situ via imine formation to serve as a transient directing group for activation of inert C-H bonds. Arylation of a wide range of aldehydes and ketones at the β or γ positions proceeds in the presence of a palladium catalyst and a catalytic amount of amino acid. The feasibility of achieving enantioselective C-H activation reactions using a chiral amino acid as the transient directing group is also demonstrated.

  10. Theoretical studies of the proton transfer behaviors in molecular complexes analogous to catalytic triad of serine protease: Toward understanding the existence and significance of the low-barrier hydrogen-bond in enzymatic catalysis

    Institute of Scientific and Technical Information of China (English)

    LI Ping; WANG WeiHua; BI SiWei; SONG Rui; BU YuXiang

    2009-01-01

    A representative acetate-(5-methylimidazole)-methanol system has been employed as a model of cata-lytic triad in serine protease to validate the formation processes of low-barrier H-bonds (LBHB) at the B3LYP/6-311++G** level of theory, and variable H-bonding characters from conventional ones to LBHBs have been represented along with the proceedings of proton transfer. Solvent effect is an important factor in modulation of the existence of an LBHB, where an LBHB (or a conventional H-bond) in the gas phase can be changed into a non-LBHB (an LBHB) upon solvation. The origin of the additional stabili-zation energy arising from the LBHB may be attributed to the H-bonding energy difference before and after proton transfer because the shared proton can freely move between the proton donor and proton acceptor. Most importantly, the order of magnitude of the stabilization energy depends on the studied systems. Furthermore, the nonexistence of LBHBs in the catalytic triad of serine proteases has been verified in a more sophisticated model treated using the ONIOM method. As a result, only the single proton transfer mechanism in the catalytic triad has been confirmed and the origin of the powerful catalytic efficiency of serine proteases should be attributed to other factors rather than the LBHB.

  11. Theoretical studies of the proton transfer behaviors in molecular complexes analogous to catalytic triad of serine protease:Toward understanding the existence and significance of the low-barrier hydrogen-bond in enzymatic catalysis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A representative acetate-(5-methylimidazole)-methanol system has been employed as a model of catalytic triad in serine protease to validate the formation processes of lowbarrier H-bonds(LBHB) at the B3LYP/6-311++G level of theory,and variable H-bonding characters from conventional ones to LBHBs have been represented along with the proceedings of proton transfer.Solvent effect is an important factor in modulation of the existence of an LBHB,where an LBHB(or a conventional H-bond) in the gas phase can be changed into a non-LBHB(an LBHB) upon solvation.The origin of the additional stabili-zation energy arising from the LBHB may be attributed to the H-bonding energy difference before and after proton transfer because the shared proton can freely move between the proton donor and proton acceptor.Most importantly,the order of magnitude of the stabilization energy depends on the studied systems.Furthermore,the nonexistence of LBHBs in the catalytic triad of serine proteases has been verified in a more sophisticated model treated using the ONIOM method.As a result,only the single proton transfer mechanism in the catalytic triad has been confirmed and the origin of the powerful catalytic efficiency of serine proteases should be attributed to other factors rather than the LBHB.

  12. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly technical progress report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, C.P.

    1992-08-01

    The deoxygenation of phenols is a conceptually simple, but unusually difficult chemical transformation to achieve. The phenolic C-O bond energy of 103 kcal/mol is as strong as a benzene C-H bond and over a 10 kcal/mol stronger than the C-O bonds of methanol and ethanol. The consequence of this is that the hydrogenation/deoxygenation methods in current use require severe conditions and give low selectivities. The ongoing research described herein is based on the unprecedented, but thermodynamically promising, use of carbon monoxide as the oxygen atom acceptor for the catalytic deoxygenation of phenols.

  13. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly technial progress report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, C.P.

    1992-08-01

    The deoxygenation of phenols is a conceptually simple, but unusually difficult chemical transformation to achieve. The phenolic C-O bond energy of 103 kcal/mol is as strong as a benzene C-H bond and over 10 kcal/mol stronger than the C-O bonds of methanol and ethanol. The consequence of this is that the hydrogenation/deoxygenation methods in current use require severe conditions and give low selectivities. The ongoing research described herein is based on the unprecedented, but thermodynamically promising, use of carbon monoxide as the oxygen atom acceptor for the catalytic deoxygenation of phenols.

  14. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.

    Science.gov (United States)

    Hibbitts, David; Iglesia, Enrique

    2015-05-19

    Dissociation of the strong bonds in O2, NO, CO, and N2 often involves large activation barriers on low-index planes of metal particles used as catalysts. These kinetic hurdles reflect the noble nature of some metals (O2 activation on Au), the high coverages of co-reactants (O2 activation during CO oxidation on Pt), or the strength of the chemical bonds (NO on Pt, CO and N2 on Ru). High barriers for direct dissociations from density functional theory (DFT) have led to a consensus that "defects", consisting of low-coordination exposed atoms, are required to cleave such bonds, as calculated by theory and experiments for model surfaces at low coverages. Such sites, however, bind intermediates strongly, rendering them unreactive at the high coverages prevalent during catalysis. Such site requirements are also at odds with turnover rates that often depend weakly on cluster size or are actually higher on larger clusters, even though defects, such as corners and edges, are most abundant on small clusters. This Account illustrates how these apparent inconsistencies are resolved through activations of strong bonds assisted by co-adsorbates on crowded low-index surfaces. Catalytic oxidations occur on Au clusters at low temperatures in spite of large activation barriers for O2 dissociation on Au(111) surfaces, leading to proposals that O2 activation requires low-coordination Au atoms or Au-support interfaces. When H2O is present, however, O2 dissociation proceeds with low barriers on Au(111) because chemisorbed peroxides (*OOH* and *HOOH*) form and weaken O-O bonds before cleavage, thus allowing activation on low-index planes. DFT-derived O2 dissociation barriers are much lower on bare Pt surfaces, but such surfaces are nearly saturated with CO* during CO oxidation. A dearth of vacant sites causes O2* to react with CO* to form *OOCO* intermediates that undergo O-O cleavage. NO-H2 reactions occur on Pt clusters saturated with NO* and H*; direct NO* dissociation requires vacant

  15. Charge-transfer-directed radical substitution enables para-selective C-H functionalization

    Science.gov (United States)

    Boursalian, Gregory B.; Ham, Won Seok; Mazzotti, Anthony R.; Ritter, Tobias

    2016-08-01

    Efficient C-H functionalization requires selectivity for specific C-H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho and meta selectivity, but a general strategy for para-selective C-H functionalization has remained elusive. Herein we introduce a previously unappreciated concept that enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit arene-to-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate with a simple theoretical tool that the selectivity is predictable and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of radical substitution directed by charge transfer could serve as the basis for the development of new, highly selective C-H functionalization reactions.

  16. Molybdenum(VI) network polymers based on anion-π interaction and hydrogen bonding: Synthesis, crystal structures and oxidation catalytic application

    Science.gov (United States)

    Li, Jia; Wang, Ge; Shi, Zhan; Yang, Mu; Luck, Rudy L.

    2009-11-01

    A crystallographic investigation of anion-π interactions and hydrogen bonds on the preferred structural motifs of molybdenum(VI) complexes has been carried out. Two molybdenum(VI) network polymers MoO 2F 4·(Hinca) 2 ( 1) and MoO 2F 3(H 2O)·(Hinpa) ( 2), where inca = isonicotinamide and inpa = isonipecotamide, have been synthesized, crystallographically characterized and successfully applied to alcohol oxidation reaction. Complex 1 crystallizes in the monoclinic space C2/ c: a = 16.832(3) Å, b = 8.8189(15) Å, c = 12.568(2) Å, β = 118.929(3)°, V = 1560.1(5) Å 3, Z = 4. Complex 2 crystallizes in the triclinic space P-1: a = 5.459(2) Å, b = 9.189(4) Å, c = 12.204(5) Å, α = 71.341(6)°, β = 81.712(7)°, γ = 77.705(7)°, V = 564.8(4) Å 3, Z = 2. Complex 1 consists of hydrogen bonding and anion-π interactions, both of which are considered as important factors for controlling the geometric features and packing characteristics of the crystal structure. The geometry of the sandwich complex of [MoO 2F 4] 2- with two pyridine rings indicates that the anion-π interaction is an additive and provides a base for the design and synthesis of new complexes. For complex 2, the anions and the protonated inpa ligands form a 2D supramolecular network by four different types of hydrogen contacts (N-H⋯F, N-H⋯O, O-H⋯F and O-H⋯O). The catalytic ability of complexes 1 and 2 has also been evaluated by applying them to the oxidation of benzyl alcohol with TBHP as oxidant.

  17. Mild metal-catalyzed C-H activation: examples and concepts.

    Science.gov (United States)

    Gensch, T; Hopkinson, M N; Glorius, F; Wencel-Delord, J

    2016-05-21

    Organic reactions that involve the direct functionalization of non-activated C-H bonds represent an attractive class of transformations which maximize atom- and step-economy, and simplify chemical synthesis. Due to the high stability of C-H bonds, these processes, however, have most often required harsh reaction conditions, which has drastically limited their use as tools for the synthesis of complex organic molecules. Following the increased understanding of mechanistic aspects of C-H activation gained over recent years, great strides have been taken to design and develop new protocols that proceed efficiently under mild conditions and duly benefit from improved functional group tolerance and selectivity. In this review, we present the current state of the art in this field and detail C-H activation transformations reported since 2011 that proceed either at or below ambient temperature, in the absence of strongly acidic or basic additives or without strong oxidants. Furthermore, by identifying and discussing the major strategies that have led to these improvements, we hope that this review will serve as a useful conceptual overview and inspire the next generation of mild C-H transformations. PMID:27072661

  18. Tandem Rh(III)-Catalyzed C-H Amination/Annulation Reactions: Synthesis of Indoloquinoline Derivatives in Water.

    Science.gov (United States)

    Shi, Liangliang; Wang, Baiquan

    2016-06-17

    An efficient Rh(III)-catalyzed synthetic method for indoloquinoline derivatives from readily available indoles and isoxazoles was developed. This annulation procedure undergoes tandem C-H activation, cyclization, and condensation steps. In this domino cyclization reaction, water is an efficient solvent. A catalytically competent five-membered rhodacycle has been isolated and characterized, thus revealing a key intermediate in the catalytic cycle. PMID:27266834

  19. Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus nidulans Isopenicillin N Synthase.

    Science.gov (United States)

    Tamanaha, Esta; Zhang, Bo; Guo, Yisong; Chang, Wei-Chen; Barr, Eric W; Xing, Gang; St Clair, Jennifer; Ye, Shengfa; Neese, Frank; Bollinger, J Martin; Krebs, Carsten

    2016-07-20

    The enzyme isopenicillin N synthase (IPNS) installs the β-lactam and thiazolidine rings of the penicillin core into the linear tripeptide l-δ-aminoadipoyl-l-Cys-d-Val (ACV) on the pathways to a number of important antibacterial drugs. A classic set of enzymological and crystallographic studies by Baldwin and co-workers established that this overall four-electron oxidation occurs by a sequence of two oxidative cyclizations, with the β-lactam ring being installed first and the thiazolidine ring second. Each phase requires cleavage of an aliphatic C-H bond of the substrate: the pro-S-CCys,β-H bond for closure of the β-lactam ring, and the CVal,β-H bond for installation of the thiazolidine ring. IPNS uses a mononuclear non-heme-iron(II) cofactor and dioxygen as cosubstrate to cleave these C-H bonds and direct the ring closures. Despite the intense scrutiny to which the enzyme has been subjected, the identities of the oxidized iron intermediates that cleave the C-H bonds have been addressed only computationally; no experimental insight into their geometric or electronic structures has been reported. In this work, we have employed a combination of transient-state-kinetic and spectroscopic methods, together with the specifically deuterium-labeled substrates, A[d2-C]V and AC[d8-V], to identify both C-H-cleaving intermediates. The results show that they are high-spin Fe(III)-superoxo and high-spin Fe(IV)-oxo complexes, respectively, in agreement with published mechanistic proposals derived computationally from Baldwin's founding work.

  20. Direct sp(3)C-H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis.

    Science.gov (United States)

    Feng, Zhu-Jia; Xuan, Jun; Xia, Xu-Dong; Ding, Wei; Guo, Wei; Chen, Jia-Rong; Zou, You-Quan; Lu, Liang-Qiu; Xiao, Wen-Jing

    2014-04-01

    Sequence catalysis merging photoredox catalysis (PC) and nucleophilic catalysis (NC) has been realized for the direct sp(3) C-H acroleination of N-aryl-tetrahydroisoquinoline (THIQ). The reaction was performed under very mild conditions and afforded products in 50-91% yields. A catalytic asymmetric variant was proved to be successful with moderate enantioselectivities (up to 83 : 17 er).

  1. Highly Chemical and Regio-selective Catalytic Oxidation with a Novel Manganese Catalyst

    Institute of Scientific and Technical Information of China (English)

    刘斌; 陈怡; 余成志; 沈征武

    2003-01-01

    The chemical selectivity of a novel active manganese compound [Mn2IVμ-O)3(TMTACN)2] (PF6)2 (1) in catalytic oxidation reactions depended on the structure of substrates and 1 was able to catalyze the oxidation of toluene into benzaldehyde and/or benzoic acid under very mild conditions. The following results were obtained: (1) The selectivity of the oxidation depended on the electronic density of double bonds. Reactivity was absent when strong electron-witherawing groups were conjugated with double bonds. (2) Allylic oxidation reactions mostly take place when double bond is present inside a ring system, whilst epoxiclarion reactions occur when the alkene moiety is part of linear chain. (3) In ring systems, the methylene group was more likely to be oxidized than the methyl group on ailylic position. As expected, the C--H bonds at the bridgeheads were unreactive.The secondary hydroxyl groups are more easily to be oxidized than the primary hydroxyl groups.

  2. Carbon dioxide utilization via carbonate-promoted C-H carboxylation

    Science.gov (United States)

    Banerjee, Aanindeeta; Dick, Graham R.; Yoshino, Tatsuhiko; Kanan, Matthew W.

    2016-03-01

    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO32-) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)—a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO32--promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  3. Carbon dioxide utilization via carbonate-promoted C-H carboxylation.

    Science.gov (United States)

    Banerjee, Aanindeeta; Dick, Graham R; Yoshino, Tatsuhiko; Kanan, Matthew W

    2016-03-10

    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO3(2-)) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)--a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO3(2-)-promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  4. Polyketide Construction via Hydrohydroxyalkylation and Related Alcohol C-H Functionalizations: Reinventing the Chemistry of Carbonyl Addition

    OpenAIRE

    Dechert-Schmitt, Anne-Marie R.; Schmitt, Daniel C.; Xin GAO; Itoh, Takahiko; Krische, Michael J.

    2014-01-01

    Despite the longstanding importance of polyketide natural products in human medicine, nearly all commercial polyketide-based drugs are prepared through fermentation or semi-synthesis. The paucity of manufacturing routes involving de novo chemical synthesis reflects the inability of current methods to concisely address the preparation of these complex structures. Direct alcohol C-H bond functionalization via “C-C bond forming transfer hydrogenation” provides a powerful, new means of constructi...

  5. Amidines for Versatile Cobalt(III)-Catalyzed Synthesis of Isoquinolines through C-H Functionalization with Diazo Compounds.

    Science.gov (United States)

    Li, Jie; Tang, Mengyao; Zang, Lei; Zhang, Xiaolei; Zhang, Zhao; Ackermann, Lutz

    2016-06-01

    A cobalt(III)-catalyzed C-H/N-H bond functionalization for the synthesis of 1-aminoisoquinolines from aryl amidines and diazo compounds has been developed. The reaction proceeds under mild reaction conditions, obviates the need for oxidants, produces only N2 and H2O as the byproducts, and features a broad substrate scope. PMID:27219713

  6. Selective Synthesis of Isoquinolines by Rhodium(III)-Catalyzed C-H/N-H Functionalization with α-Substituted Ketones.

    Science.gov (United States)

    Li, Jie; Zhang, Zhao; Tang, Mengyao; Zhang, Xiaolei; Jin, Jian

    2016-08-01

    A rhodium(III)-catalyzed C-H/N-H bond functionalization for the synthesis of 1-aminoisoquinolines from aryl amidines and α-MsO/TsO/Cl ketones was achieved under mild reaction conditions. Thus, this approach provides a practical method for the site-selective synthesis of various synthetically valuable isoquinolines with wide functional group tolerance. PMID:27441726

  7. Binding of hydrocarbons and other extremely weak ligands to transition metal complexes that coordinate hydrogen: Investigation of cis-interactions and delocalized bonding involving sigma bonds

    Energy Technology Data Exchange (ETDEWEB)

    Kubas, G.J.; Eckert, J.; Luo, X.L. [and others

    1997-07-01

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). At the forefront of chemistry are efforts to catalytically transform the inert C-H bonds in alkanes to more useful products using metal compounds. The goal is to observe binding and cleavage of alkane C-H bonds on metals or to use related silane Si-H bonding as models, analogous to the discovery of hydrogen (H{sub 2}) binding to metals. Studies of these unique sigma complexes (M{hor_ellipsis}H-Y; Y{double_bond}H, Si, C) will aid in developing new catalysts or technologies relevant to DOE interest, e.g., new methods for tritium isotope separation. Several transition metals (Mo, W, Mn, and Pt) were found to reversibly bind and cleave H{sub 2}, silanes, and halocarbons. The first metal-SiH{sub 4} complexes, thus serving as a model for methane reactions. A second goal is to study the dynamics and energetics of H-Y bonds on metals by neutron scattering, and evidence for interactions between bound H-Y and nearby H atoms on metal complexes has been found.

  8. Spontaneous reduction and C-H borylation of arenes mediated by uranium(III) disproportionation.

    Science.gov (United States)

    Arnold, Polly L; Mansell, Stephen M; Maron, Laurent; McKay, David

    2012-07-15

    Transition-metal-arene complexes such as bis(benzene)chromium Cr(η(6)-C(6)H(6))(2) are historically important to d-orbital bonding theory and have modern importance in organic synthesis, catalysis and organic spintronics. In investigations of f-block chemistry, however, arenes are invariably used as solvents rather than ligands. Here, we show that simple uranium complexes UX(3) (X = aryloxide, amide) spontaneously disproportionate, transferring an electron and X-ligand, allowing the resulting UX(2) to bind and reduce arenes, forming inverse sandwich molecules [X(2)U(µ-η(6):η(6)-arene)UX(2)] and a UX(4) by-product. Calculations and kinetic studies suggest a 'cooperative small-molecule activation' mechanism involving spontaneous arene reduction as an X-ligand is transferred. These mild reaction conditions allow functionalized arenes such as arylsilanes to be incorporated. The bulky UX(3) are also inert to reagents such as boranes that would react with the traditional harsh reaction conditions, allowing the development of a new in situ arene C-H bond functionalization methodology converting C-H to C-B bonds.

  9. Conformational preferences of heterochiral peptides. Crystal structures of heterochiral peptides Boc-(D) Val-(D) Ala-Leu-Ala-OMe and Boc-Val-Ala-Leu-(D) Ala-OMe--enhanced stability of beta-sheet through C-H...O hydrogen bonds.

    Science.gov (United States)

    Fabiola, G F; Bobde, V; Damodharan, L; Pattabhi, V; Durani, S

    2001-02-01

    The crystal structures of Boc-(D) Val-(D) Ala-Leu-Ala-OMe (vaLA) and Boc-Val-Ala-Leu-(D) Ala-OMe (VALa) have been determined. vaLA crystallises in space group P2(1),2(1),2(1), with a = 9.401 (4), b = 17.253 (5), c = 36.276 (9)A. V = 5,884 (3) A3, Z = 8, R = 0.086. VALa crystallises in space group P2(1) with a = 9.683 (9), b = 17.355 (7), c = 18.187 (9) A, beta = 95.84 (8) degrees , V = 3,040(4) A3, Z = 4, R = 0.125. There are two molecules in the asymmetric unit in antiparallel beta-sheet arrangement in both the structures. Several of the Calpha hydrogens are in hydrogen bonding contact with the carbonyl oxygen in the adjacent strand. An analysis of the observed conformational feature of D-chiral amino acid residues in oligopeptides, using coordinates of 123 crystal structures selected from the 1998 release of CSD has been carried out. This shows that all the residues except D-isoleucine prefer both extended and alphaL conformation though the frequence of occurence may not be equal. In addition to this, D-leucine, valine, proline and phenylalanine have assumed alphaR conformations in solid state. D-leucine has a strong preference for helical conformation in linear peptides whereas they prefer an extended conformation in cyclic peptides. PMID:11245253

  10. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...

  11. Properties of a-C:H:O plasma polymer films deposited from acetone vapors

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, M., E-mail: martin.drabik@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Celma, C. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Kousal, J.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Hegemann, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland)

    2014-12-31

    To gain insight into the deposition and stability of oxygen-containing plasma polymer films, the properties of amorphous oxygenated hydrocarbon (a-C:H:O) plasma polymer coatings deposited from acetone vapors under various experimental conditions are investigated. Apart from the discharge power, the influence of the reactive carbon dioxide (CO{sub 2}) gas on the structure of the resulting films is studied. It is found by characterization using X-ray Photoelectron Spectroscopy and Fourier-Transform Infrared Spectroscopy that the experimental conditions particularly influence the amount of oxygen in the deposited a-C:H:O plasma polymer films. The O/C elemental ratio increases with increasing amount of CO{sub 2} in the working gas mixture (up to 0.2 for 24 sccm of CO{sub 2} at 30 W) and decreases with increasing RF discharge power (down to 0.17 for 50 W). Furthermore, the nature of bonds between the oxygen and carbon atoms has been examined. Only low amounts of double and triple bonded carbon are observed. This has a particular influence on the aging of the plasma polymer films which is studied both in ambient air and in distilled water for up to 4 months. Overall, stable a-C:H:O plasma polymer films are deposited comprising low amounts (up to about 5%) of ester/carboxyl groups. - Highlights: • Hydrocarbon plasma polymer films with variable oxygen content can be prepared. • Stable oxygenated hydrocarbon plasma polymers contain max 5% of ester/carboxyl groups. • Acetone-derived plasma polymer films can be used as permanent hydrophilic surfaces.

  12. Synthesis of isoquinolines via Rh-catalyzed C-H activation/C-N cyclization with diazodiesters or diazoketoesters as a C2 source.

    Science.gov (United States)

    Wang, Jie; Zha, Shanke; Chen, Kehao; Zhang, Feifei; Zhu, Jin

    2016-06-01

    Synthesis of isoquinolines based on efficient C-C and C-N bond formation through Rh(iii)-catalyzed C-H activation and subsequent intramolecular cyclization is reported. Diazodiesters serving as a C2 source in the newly formed heterocycles are first demonstrated. Additionally, the Rh(iii)-catalyzed direct C-H activation/cyclization of benzimidates with diazoketoesters is also described. PMID:27146107

  13. High growth rate of a-SiC:H films using ethane carbon source by HW-CVD method

    Indian Academy of Sciences (India)

    Mahesh M Kamble; Vaishali S Waman; Sanjay S Ghosh; Azam Mayabadi; Vasant G Sathe; T Shripathi; Habib M Pathan; Sandesh R Jadkar

    2013-12-01

    Hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared using pure silane (SiH4) and ethane (C2H6), a novel carbon source, without hydrogen dilution using hot wire chemical vapour deposition (HW-CVD) method at low substrate temperature (200 °C) and at reasonably higher deposition rate (19.5 Å/s < d < 35.2 Å/s). Formation of a-SiC:H films has been confirmed from FTIR, Raman and XPS analysis. Influence of deposition pressure on compositional, structural, optical and electrical properties has been investigated. FTIR spectroscopy analysis revealed that there is decrease in C–H and Si–H bond densities while, Si–C bond density increases with increase in deposition pressure. Total hydrogen content drops from 22.6 to 14.4 at.% when deposition pressure is increased. Raman spectra show increase in structural disorder with increase in deposition pressure. It also confirms the formation of nearly stoichiometric a-SiC:H films. Bandgap calculated using both Tauc’s formulation and absorption at 104 cm-1 shows decreasing trend with increase in deposition pressure. Decrease in refractive index and increase in Urbach energy suggests increase in structural disorder and microvoid density in the films. Finally, it has been concluded that C2H6 can be used as an effective carbon source in HW-CVD method to prepare stoichiometric a-SiC:H films.

  14. Iron-Catalyzed Ortho C-H Methylation of Aromatics Bearing a Simple Carbonyl Group with Methylaluminum and Tridentate Phosphine Ligand.

    Science.gov (United States)

    Shang, Rui; Ilies, Laurean; Nakamura, Eiichi

    2016-08-17

    Iron-catalyzed C-H functionalization of aromatics has attracted widespread attention from chemists in recent years, while the requirement of an elaborate directing group on the substrate has so far hampered the use of simple aromatic carbonyl compounds such as benzoic acid and ketones, much reducing its synthetic utility. We describe here a combination of a mildly reactive methylaluminum reagent and a new tridentate phosphine ligand for metal catalysis, 4-(bis(2-(diphenylphosphanyl)phenyl)phosphanyl)-N,N-dimethylaniline (Me2N-TP), that allows us to convert an ortho C-H bond to a C-CH3 bond in aromatics and heteroaromatics bearing simple carbonyl groups under mild oxidative conditions. The reaction is powerful enough to methylate all four ortho C-H bonds in benzophenone. The reaction tolerates a variety of functional groups, such as boronic ester, halide, sulfide, heterocycles, and enolizable ketones.

  15. Thermodynamic assessement of the Fe-C-H-O system

    Energy Technology Data Exchange (ETDEWEB)

    Conejo, A.N.; Estrada, R.S.; Rodriguez, R.A. [Instituto Tecnologico Morelia (Mexico)

    2003-04-01

    The computation of phase stability diagrams to represent the formation of iron oxides, iron carbides and metallic iron involving the simultaneous effect of pressure (101.3 mbar to 101.3 bar), temperature (477 - 727 C) and reactant gas composition (C-H-O-based gas mixtures), has been carried out. It is proposed to employ ternary diagrams to include all process variables to represent the Fe-C-H-O system. The results can be used in a practical way to define operational conditions to reduce iron oxides into metallic iron as well as to carbidise the solid reactant to produce iron carbide, however, in this case, it has been found that the phase field for iron carbide is located in a region supersaturated with respect to carbon in the gas phase, consequently, if equilibrium prevails, the final solid products will include both iron carbide and free carbon. (orig.)

  16. Iron catalyzed oxidation chemistry: from C-H bond activation to DNA cleavag

    OpenAIRE

    Berg, Tieme Adriaan van den

    2008-01-01

    The synthetic iron complex Fe(N4Py) can be employed as a catalyst in the aerobic oxidation of DNA. The resulting oxidized DNA strand is rather unstable and results in cleavage of the DNA strand into two pieces. As for now, it was only possible with Fe(N4Py) or other synthetic iron complexes as catalyst to cut only one DNA strand at the same time. The covalent linking of two Fe(N4Py) complexes together results in a new dinuclear complex, which is capable of addressing both DNA stands at the sa...

  17. Iron catalyzed oxidation chemistry : from C-H bond activation to DNA cleavag

    NARCIS (Netherlands)

    Berg, Tieme Adriaan van den

    2008-01-01

    The synthetic iron complex Fe(N4Py) can be employed as a catalyst in the aerobic oxidation of DNA. The resulting oxidized DNA strand is rather unstable and results in cleavage of the DNA strand into two pieces. As for now, it was only possible with Fe(N4Py) or other synthetic iron complexes as catal

  18. Ruthenium-catalyzed C-H/N-O bond functionalization: green isoquinolone syntheses in water.

    OpenAIRE

    Ackermann, Lutz; Fenner, Sabine

    2011-01-01

    Ruthenium-catalyzed isoquinolone syntheses with ample scope were accomplished through carboxylate assistance in environmentally benign water as a reaction medium. The high chemoselectivity of the ruthenium(II) carboxylate complex also set the stage for the direct use of free hydroxamic acids for annulations of alkynes.

  19. Crystal Structure of Reduced and of Oxidized Peroxiredoxin IV Enzyme Reveals a Stable Oxidized Decamer and a Non-disulfide-bonded Intermediate in the Catalytic Cycle*

    Science.gov (United States)

    Cao, Zhenbo; Tavender, Timothy J.; Roszak, Aleksander W.; Cogdell, Richard J.; Bulleid, Neil J.

    2011-01-01

    Peroxiredoxin IV (PrxIV) is an endoplasmic reticulum-localized enzyme that metabolizes the hydrogen peroxide produced by endoplasmic reticulum oxidase 1 (Ero1). It has been shown to play a role in de novo disulfide formation, oxidizing members of the protein disulfide isomerase family of enzymes, and is a member of the typical 2-Cys peroxiredoxin family. We have determined the crystal structure of both reduced and disulfide-bonded, as well as a resolving cysteine mutant of human PrxIV. We show that PrxIV has a similar structure to other typical 2-Cys peroxiredoxins and undergoes a conformational change from a fully folded to a locally unfolded form following the formation of a disulfide between the peroxidatic and resolving cysteine residues. Unlike other mammalian typical 2-Cys peroxiredoxins, we show that human PrxIV forms a stable decameric structure even in its disulfide-bonded state. In addition, the structure of a resolving cysteine mutant reveals an intermediate in the reaction cycle that adopts the locally unfolded conformation. Interestingly the peroxidatic cysteine in the crystal structure is sulfenylated rather than sulfinylated or sulfonylated. In addition, the peroxidatic cysteine in the resolving cysteine mutant is resistant to hyper-oxidation following incubation with high concentrations of hydrogen peroxide. These results highlight some unique properties of PrxIV and suggest that the equilibrium between the fully folded and locally unfolded forms favors the locally unfolded conformation upon sulfenylation of the peroxidatic cysteine residue. PMID:21994946

  20. Iridium-bipyridine periodic mesoporous organosilica catalyzed direct C-H borylation using a pinacolborane.

    Science.gov (United States)

    Maegawa, Yoshifumi; Inagaki, Shinji

    2015-08-01

    Heterogeneous catalysis for direct C-H borylation of arenes and heteroarenes in the combination of iridium (Ir) complex fixed on periodic mesoporous organosilica containing bipyridine ligands within the framework (Ir-BPy-PMO) and pinacolborane (HBpin) is reported. Ir-BPy-PMO showed higher catalytic activity toward the borylation of benzene with inexpensive HBpin compared to expensive bis(pinacolato)diboron (B2pin2). The precatalyst could be handled without the use of a glove box. The catalyst was easily recovered from reaction mixtures by simple filtration under air. The recovered catalyst still showed good catalytic activity for at least three more times for the borylation of benzene. A variety of arenes and heteroarenes were successfully borylated with high boron efficiency by Ir-BPy-PMO using HBpin, whereas almost no activity was observed for borylation of some heteroarenes with B2pin2. The system using Ir-BPy-PMO and HBpin was also utilized in syntheses of multi-boronated thiophene-based building blocks containing ladder-, acenefused-, and fused-thiophene skeletons. The combination of a stable and reusable solid catalyst and inexpensive HBpin is expected to be superior to conventional approaches for the development of industrial applications. PMID:25748945

  1. Isomerization of Internal Alkynes to Iridium(III Allene Complexes via C–H Bond Activation: Expanded Substrate Scope, and Progress towards a Catalytic Methodology

    Directory of Open Access Journals (Sweden)

    Neha Phadke

    2015-11-01

    Full Text Available The synthesis of a series of allene complexes (POCOPIr(η2-RC=.=CR’ 1b–4b (POCOP = 2,6-bis(di-tert-butylphosphonitobenzene via isomerization of internal alkynes is reported. We have demonstrated that the application of this methodology is viable for the isomerization of a wide variety of alkyne substrates. Deuterium labeling experiments support our proposed mechanism. The structures of the allene complexes 1b–4b were determined using spectroscopic data analysis. Additionally, the solid-state molecular structure of complex 2b was determined using single crystal X-ray diffraction studies and it confirmed the assignment of an iridium-bound allene isomerization product. The rates of isomerization were measured using NMR techniques over a range of temperatures to allow determination of thermodynamic parameters. Finally, we report a preliminary step towards developing a catalytic methodology; the allene may be liberated from the metal center by exposure of the complex to an atmosphere of carbon monoxide.

  2. A potential role of substrate as a base for deprotonation pathway in Rh-catalysed C-H amination of heteroArenes: DFT insights

    KAUST Repository

    Ajitha, Manjaly John

    2016-03-29

    The possibility of direct introduction of a new functionality through C–H bond activation is an attractive strategy in covalent synthesis. Here, we investigated the mechanism of Rh-catalysed C-H amination of the hetero-aryl substrate (2-phenylpyridine) using phenyl azide as nitrogen source by density functional theory (DFT). For the deprotocyclometallation and protodecyclometallation processes of the title reaction, we propose a stepwise base-assisted mechanism (pathway I) instead of previously reported concerted mechanism (pathway II). In the new mechanism proposed here, 2-phenylpyridine acts as a base in the initial deprotonation step (C-H bond cleavage) and transports the proton towards the final protonation step. In fact, the N-H bond of the strong conjugate acid (formed during initial C-H bond cleavage) considered in pathway I (via TS4) is more acidic than the C-H bond of the neutral substrate considered in pathway II (via TS5). The higher activation barrier of TS5 mainly originates from the ring strain of the four membered cyclic transition state. The vital role of base, as disclosed here, can potentially have broader mechanistic implications for the development of reaction conditions of transition metal catalysed reactions.

  3. Crystal Structures of Two Bacterial 3-Hydroxy-3-methylglutaryl-CoA Lyases Suggest a Common Catalytic Mechanism among a Family of TIM Barrel Metalloenzymes Cleaving Carbon-Carbon Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Forouhar,F.; Hussain, M.; Farid, R.; Benach, J.; Abashidze, M.; Edstrom, W.; Vorobiev, S.; Montelione, G.; Hunt, J.; et al.

    2006-01-01

    The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the terminal steps in ketone body generation and leucine degradation. Mutations in this enzyme cause a human autosomal recessive disorder called primary metabolic aciduria, which typically kills victims because of an inability to tolerate hypoglycemia. Here we present crystal structures of the HMG-CoA lyases from Bacillus subtilis and Brucella melitensis at 2.7 and 2.3 {angstrom} resolution, respectively. These enzymes share greater than 45% sequence identity with the human orthologue. Although the enzyme has the anticipated triose-phosphate isomerase (TIM) barrel fold, the catalytic center contains a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel, contrary to the predictions of homology models. Surprisingly, the residues forming this cation-binding site and most of their interaction partners are shared with three other TIM barrel enzymes that catalyze diverse carbon-carbon bond cleavage reactions believed to proceed through enolate intermediates (4-hydroxy-2-ketovalerate aldolase, 2-isopropylmalate synthase, and transcarboxylase 5S). We propose the name 'DRE-TIM metallolyases' for this newly identified enzyme family likely to employ a common catalytic reaction mechanism involving an invariant Asp-Arg-Glu (DRE) triplet. The Asp ligates the divalent cation, while the Arg probably stabilizes charge accumulation in the enolate intermediate, and the Glu maintains the precise structural alignment of the Asp and Arg. We propose a detailed model for the catalytic reaction mechanism of HMG-CoA lyase based on the examination of previously reported product complexes of other DRE-TIM metallolyases and induced fit substrate docking studies conducted using the crystal structure of human HMG-CoA lyase (reported in the accompanying paper by Fu, et al. (2006) J. Biol. Chem. 281, 7526-7532). Our model is consistent with extensive mutagenesis

  4. Chromoselective Photocatalysis: Controlled Bond Activation through Light-Color Regulation of Redox Potentials.

    Science.gov (United States)

    Ghosh, Indrajit; König, Burkhard

    2016-06-27

    Catalysts that can be regulated in terms of activity and selectivity by external stimuli may allow the efficient multistep synthesis of complex molecules and pharmaceuticals. Herein, we report the light-color regulation of the redox potential of a photocatalyst to control the activation of chemical bonds. Light-color control of the redox power of a photocatalyst introduces a new selectivity parameter to photoredox catalysis: Instead of changing the catalyst or ligand, alteration of the color of the visible-light irradiation adjusts the selectivity in catalytic transformations. By using this principle, the selective activation of aryl-halide bonds for C-H arylation and the sequential conversion of functional groups with different reduction potentials is possible by simply applying different colors of light for excitation of the photocatalyst.

  5. Investigation of the structure and properties of a-C:H coatings with metal and silicon containing interlayers

    Science.gov (United States)

    Nöthe, M.; Breuer, U.; Koch, F.; Penkalla, H. J.; Rehbach, W. P.; Bolt, H.

    2001-07-01

    The structure of the interface of a-C:H coatings deposited with metal and Si-containing interlayers has been studied. Carbide forming metals (Al, Ti, Cr) can improve the chemical bonding compared with a substrate material which does not form carbides extensively by itself. In addition, a graded transition zone enlarges the interface between the carbon layer and the interlayer metal. In the present work the metal atoms were evaporated and ionized into a dense Ar plasma and deposited onto Si (100) substrates. A graded interface between the metal interlayer and the a-C:H coating was produced by introducing C 2H 2 with increasing amount into the Ar/He plasma during the PAPVD metal deposition process. The PACVD a-C:H deposition process was continued after the termination of metal evaporation to produce the pure a-C:H top layer. Further to Al-, Cr-, Ti- and Cu-interlayers, Si-containing interlayers were investigated. The Si-containing interlayers were deposited by a PACVD process using tetraethoxysilane Si(OC 2H 5) 4 (TEOS) and tetramethylsilane Si(CH 3) 4 (TMS). The characterization of the deposited layer systems was performed by SIMS, SNMS and XPS analyses as well as SEM and analytical TEM methods.

  6. C-H activation reactions by yttrium and lutetium hydride complexes : H/D exchange vs metalation of hydrocarbons. Importance of the hybridization state at the α carbon

    NARCIS (Netherlands)

    Deelman, Berth-Jan; Teuben, Jan H.; Macgregor, Stuart A.; Eisenstein, Odile

    1995-01-01

    Extended Hückel (EHT) calculations have been used to discuss the two alternative σ-bond C-H metathesis reactions which occur with organo-lanthanide (Ln = Y, Lu) compounds. The two reactions lead either to H/H (H/D) exchange or to metalation and have been modelled by studying the interaction of a Cp2

  7. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    Energy Technology Data Exchange (ETDEWEB)

    T. Brent Gunnoe

    2011-02-17

    Catalysts provide foundational technology for the development of new materials and can enhance the efficiency of routes to known materials. New catalyst technologies offer the possibility of reducing energy and raw material consumption as well as enabling chemical processes with a lower environmental impact. The rising demand and expense of fossil resources has strained national and global economies and has increased the importance of accessing more efficient catalytic processes for the conversion of hydrocarbons to useful products. The goals of the research are to develop and understand single-site homogeneous catalysts for the conversion of readily available hydrocarbons into useful materials. A detailed understanding of these catalytic reactions could lead to the development of catalysts with improved activity, longevity and selectivity. Such transformations could reduce the environmental impact of hydrocarbon functionalization, conserve energy and valuable fossil resources and provide new technologies for the production of liquid fuels. This project is a collaborative effort that incorporates both experimental and computational studies to understand the details of transition metal catalyzed C-H activation and C-C bond forming reactions with olefins. Accomplishments of the current funding period include: (1) We have completed and published studies of C-H activation and catalytic olefin hydroarylation by TpRu{l_brace}P(pyr){sub 3}{r_brace}(NCMe)R (pyr = N-pyrrolyl) complexes. While these systems efficiently initiate stoichiometric benzene C-H activation, catalytic olefin hydroarylation is hindered by inhibition of olefin coordination, which is a result of the steric bulk of the P(pyr){sub 3} ligand. (2) We have extended our studies of catalytic olefin hydroarylation by TpRu(L)(NCMe)Ph systems to L = P(OCH{sub 2}){sub 3}CEt. Thus, we have now completed detailed mechanistic studies of four systems with L = CO, PMe{sub 3}, P(pyr){sub 3} and P(OCH{sub 2}){sub 3}CEt

  8. Some Aspects of the Catalytic Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Anil; K.Saikia

    2007-01-01

    1 Results Catalytic reactions are gaining importance due to its low cost, operational simplicity, high efficiency and selectivity. It is also getting much attention in green synthesis. Many useful organic reactions, including the acylation of alcohols and aldehydes, carbon-carbon, carbon-nitrogen, carbon-sulfur bond forming and oxidation reactions are carried out by catalyst. We are exploring the catalytic acylation of alcohols and aldehydes in a simple and efficient manner. Catalytic activation of unr...

  9. Ortho-Functionalized Aryltetrazines by Direct Palladium-Catalyzed C-H Halogenation: Application to Fast Electrophilic Fluorination Reactions.

    Science.gov (United States)

    Testa, Christelle; Gigot, Élodie; Genc, Semra; Decréau, Richard; Roger, Julien; Hierso, Jean-Cyrille

    2016-04-25

    A general catalyzed direct C-H functionalization of s-tetrazines is reported. Under mild reaction conditions, N-directed ortho-C-H activation of tetrazines allows the introduction of various functional groups, thus forming carbon-heteroatom bonds: C-X (X=I, Br, Cl) and C-O. Based on this methodology, we developed electrophilic mono- and poly-ortho-fluorination of tetrazines. Microwave irradiation was optimized to afford fluorinated s-aryltetrazines, with satisfactory selectivity, within only ten minutes. This work provides an efficient and practical entry for further accessing highly substituted tetrazine derivatives (iodo, bromo, chloro, fluoro, and acetate precursors). It gives access to ortho-functionalized aryltetrazines which are difficult to obtain by classical Pinner-like syntheses. PMID:27010438

  10. Two-State Reactivity in Low-Valent Iron-Mediated C-H Activation and the Implications for Other First-Row Transition Metals.

    Science.gov (United States)

    Sun, Yihua; Tang, Hao; Chen, Kejuan; Hu, Lianrui; Yao, Jiannian; Shaik, Sason; Chen, Hui

    2016-03-23

    C-H bond activation/functionalization promoted by low-valent iron complexes has recently emerged as a promising approach for the utilization of earth-abundant first-row transition metals to carry out this difficult transformation. Herein we use extensive density functional theory and high-level ab initio coupled cluster calculations to shed light on the mechanism of these intriguing reactions. Our key mechanistic discovery for C-H arylation reactions reveals a two-state reactivity (TSR) scenario in which the low-spin Fe(II) singlet state, which is initially an excited state, crosses over the high-spin ground state and promotes C-H bond cleavage. Subsequently, aryl transmetalation occurs, followed by oxidation of Fe(II) to Fe(III) in a single-electron transfer (SET) step in which dichloroalkane serves as an oxidant, thus promoting the final C-C coupling and finalizing the C-H functionalization. Regeneration of the Fe(II) catalyst for the next round of C-H activation involves SET oxidation of the Fe(I) species generated after the C-C bond coupling. The ligand sphere of iron is found to play a crucial role in the TSR mechanism by stabilization of the reactive low-spin state that mediates the C-H activation. This is the first time that the successful TSR concept conceived for high-valent iron chemistry is shown to successfully rationalize the reactivity for a reaction promoted by low-valent iron complexes. A comparative study involving other divalent middle and late first-row transition metals implicates iron as the optimum metal in this TSR mechanism for C-H activation. It is predicted that stabilization of low-spin Mn(II) using an appropriate ligand sphere should produce another promising candidate for efficient C-H bond activation. This new TSR scenario therefore emerges as a new strategy for using low-valent first-row transition metals for C-H activation reactions.

  11. Rapid Construction of a Benzo-Fused Indoxamycin Core Enabled by Site-Selective C-H Functionalizations.

    Science.gov (United States)

    Bedell, T Aaron; Hone, Graham A B; Valette, Damien; Yu, Jin-Quan; Davies, Huw M L; Sorensen, Erik J

    2016-07-11

    Methods for functionalizing carbon-hydrogen bonds are featured in a new synthesis of the tricyclic core architecture that characterizes the indoxamycin family of secondary metabolites. A unique collaboration between three laboratories has engendered a design for synthesis featuring two sequential C-H functionalization reactions, namely a diastereoselective dirhodium carbene insertion followed by an ester-directed oxidative Heck cyclization, to rapidly assemble the congested tricyclic core of the indoxamycins. This project exemplifies how multi-laboratory collaborations can foster conceptually novel approaches to challenging problems in chemical synthesis. PMID:27206223

  12. Catalytic hydrocarbon reactions over supported metal oxides. Final report, August 1, 1986--July 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1995-10-20

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. The approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. The current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. During the course of these studies the author has: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by metathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  13. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study.

    Science.gov (United States)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-14

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader's quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ((1)Σ) and hydrideisocyanidezinc HZnNC ((1)Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn](+) composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn(+) ((2)Σ) and HCNZn(+) ((2)Σ).

  14. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen, E-mail: cbb@qf.uva.es [Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)

    2015-05-14

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ({sup 1}Σ) and hydrideisocyanidezinc HZnNC ({sup 1}Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]{sup +} composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn{sup +} ({sup 2}Σ) and HCNZn{sup +} ({sup 2}Σ)

  15. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    International Nuclear Information System (INIS)

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN (1Σ) and hydrideisocyanidezinc HZnNC (1Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]+ composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn+ (2Σ) and HCNZn+ (2Σ)

  16. Adsorption-parallel catalytic waves of cinnamic acid in hydrogen peroxide-tetra-n-butylammonium bromide-acetate system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mechanism of the adsorption-parallel catalytic wave of cinnamic acid (C6H5-CH == CH-COOH) in acetate buffer (pH = 4.0)-H2O2-tetra-n-butylammonium bromide (Bu4N.Br) solution was studied by the linear-sweep polarography, cyclic voltammetry and digital simulation approach. Experimental results indicate that the reduction mechanism of cinnamic acid is ECdimE'process, in which the C == C double bond of cinnamic acid first undergoes 1e, 1H+ reduction to produce an intermediate free radical C6H5-C.H-CH2-COOH(E'), then the further reduction of the free radical in 1e,1H+ addition (E') occurs simultaneously with a dimerization reaction between two free radicals (Cdim). Bu4N.Br enhances the polarographic current of cinnamic acid and shifts the peak potential to positive direction. The enhancement action of Bu4N.Br is due to the adsorption of cinnamic acid induced by Bu4N+ species. In addition, H2O2 causes the parallel catalytic wave of cinnamic acid. The mechanism of the catalytic wave is EC'process because H2O2 oxidizes the free radical of cinnamic acid to regenerate the original C == C bond(C'), preventing both the further reduction and the dimerization of the free radicals. The apparent rate constant kf of the oxidation reaction is 1.35×102 mol.L-1.s-1. A new class of catalytic waves for organic compounds, the adsorption-parallel catalytic waves upon the dual enhancement action of both the surfactant and oxidant, has been presented.

  17. Significant Cooperativity Between Ruthenium and Silicon in Catalytic Transformations of an Isocyanide.

    Science.gov (United States)

    Lipke, Mark C; Liberman-Martin, Allegra L; Tilley, T Don

    2016-08-01

    Complexes [PhBP3]RuH(η(3)-H2SiRR') (RR' = Me,Ph, 1a; RR' = Ph2, 1b; RR' = Et2, 1c) react with XylNC to form carbene complexes [PhBP3]Ru(H)═[C(H)(N(Xyl)(η(2)-H-SiRR'))] (2a-c; previously reported for 2a,b). Reactions of 1a-c with XylNC were further investigated to assess how metal complexes with multiple M-H-Si bonds can mediate transformations of unsaturated substrates. Complex 2a eliminates an N-methylsilacycloindoline product (3a) that results from hydrosilylation, hydrogenation, and benzylic C-H activation of XylNC. Turnover was achieved in a pseudocatalytic manner by careful control of the reaction conditions. Complex 1c mediates a catalytic isocyanide reductive coupling to furnish an alkene product (4) in a transformation that has precedent only in stoichiometric processes. The formations of 3a and 4 were investigated with deuterium labeling experiments, KIE and other kinetic studies, and by examining the reactivity of XylNC with an η(3)-H2SiMeMes complex (1d) to form a C-H activated complex (6). Complex 6 serves as a model for an intermediate in the formation of 3a, and NMR investigations at -30 °C reveal that 6 forms via a carbene complex (1d) that isomerizes to aminomethyl complex 7d. These investigations reveal that the formations of 3a and 4 involve multiple 4-, 5-, and 6-coordinate silicon species with 0, 1, 2, or 3 Ru-H-Si bonds. These mechanisms demonstrate exceptionally intricate roles for silicon in transition-metal-catalyzed reactions with a silane reagent. PMID:27384746

  18. Proposal of an Amide-Directed Carbocupration Mechanism for Copper-Catalyzed meta-Selective C-H Arylation of Acetanilides by Diaryliodonium Salts

    Institute of Scientific and Technical Information of China (English)

    Song-lin Zhang; Yu-qiang Ding

    2011-01-01

    We examined the puzzling mechanism for Cu-catalyzed meta-C-H arylation reaction of anilides by diaryliodonium salts through systematic theoretical analysis.The previously proposed anti-oxy-cupration mechanism featuring anti- 1,2- or anti- 1,4-addition of cuprate and oxygen to the phenyl ring generating a meta-cuprated intermediate was excluded due to the large activation barriers.Alternatively,a new amide-directed carbocupration mechanism was proposed which involves a critical rate- and regio-determining step of amide-directed addition of the Cu(III)-aryl bond across the phenyl C2=C3 double bond to form an orthocuprated,meta-arylated intermediate.This mechanism is kinetically the most favored among several possible mechanisms such as ortho- or para-cupration/migration mechanism,direct meta C-H bond cleavage mediated by Cu(III) or Cu(I),and Cu(III)-catalyzed ortho-directed C-H bond activation mechanism.Furthermore,the predicted regioselectivity based on this mechanism has been shown to favor the meta-arylation that is consistent with the experimental observations.

  19. Interatomic potentials for the Be-C-H system.

    Science.gov (United States)

    Björkas, C; Juslin, N; Timko, H; Vörtler, K; Nordlund, K; Henriksson, K; Erhart, P

    2009-11-01

    Analytical bond-order potentials for beryllium, beryllium carbide and beryllium hydride are presented. The reactive nature of the formalism makes the potentials suitable for simulations of non-equilibrium processes such as plasma-wall interactions in fusion reactors. The Be and Be-C potentials were fitted to ab initio calculations as well as to experimental data of several different atomic configurations and Be-H molecule and defect data were used in determining the Be-H parameter set. Among other tests, sputtering, melting and quenching simulations were performed in order to check the transferability of the potentials. The antifluorite Be(2)C structure is well described by the Be-C potential and the hydrocarbon interactions are modelled by the established Brenner potentials. PMID:21832461

  20. Interatomic potentials for the Be-C-H system

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkas, C; Juslin, N; Timko, H; Voertler, K; Nordlund, K [EURATOM-Tekes, Department of Physics, University of Helsinki, PO Box 43, FI-00014 (Finland); Henriksson, K [Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 (Finland); Erhart, P, E-mail: carolina.bjorkas@helsinki.f [Lawrence Livermore National Laboratory, Chemistry, Materials, Environmental, and Life Sciences Directorate, L-367, Livermore, CA 94550 (United States)

    2009-11-04

    Analytical bond-order potentials for beryllium, beryllium carbide and beryllium hydride are presented. The reactive nature of the formalism makes the potentials suitable for simulations of non-equilibrium processes such as plasma-wall interactions in fusion reactors. The Be and Be-C potentials were fitted to ab initio calculations as well as to experimental data of several different atomic configurations and Be-H molecule and defect data were used in determining the Be-H parameter set. Among other tests, sputtering, melting and quenching simulations were performed in order to check the transferability of the potentials. The antifluorite Be{sub 2}C structure is well described by the Be-C potential and the hydrocarbon interactions are modelled by the established Brenner potentials.

  1. Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes.

    Science.gov (United States)

    Archambeau, Alexis; Miege, Frédéric; Meyer, Christophe; Cossy, Janine

    2015-04-21

    Activation of unsaturated carbon-carbon bonds by means of transition metal catalysts is an exceptionally active research field in organic synthesis. In this context, due to their high ring strain, cyclopropenes constitute an interesting class of substrates that displays a versatile reactivity in the presence of transition metal catalysts. Metal complexes of vinyl carbenes are involved as key intermediates in a wide variety of transition metal-catalyzed ring-opening reactions of cyclopropenes. Most of the reported transformations rely on intermolecular or intramolecular addition of nucleophiles to these latter reactive species. This Account focuses specifically on the reactivity of carbenoids resulting from the ring-opening of cyclopropenes in cyclopropanation and C-H insertion reactions, which are arguably two of the most representative transformations of metal complexes of carbenes. Compared with the more conventional α-diazo carbonyl compounds, the use of cyclopropenes as precursors of metal carbenoids in intramolecular cyclopropanation or C-H insertion reactions has been largely underexploited. One of the challenges is to devise appropriately substituted and readily available cyclopropenes that would not only undergo regioselective ring-opening under mild conditions but also trigger the subsequent desired transformations with a high level of chemoselectivity and stereoselectivity. These goals were met by considering several substrates derived from the readily available 3,3-dimethylcyclopropenylcarbinols or 3,3-dimethylcyclopropenylcarbinyl amines. In the case of 1,6-cyclopropene-enes, highly efficient and diastereoselective gold(I)-catalyzed ring-opening/intramolecular cyclopropanations were developed as a route to diversely substituted heterocycles and carbocycles possessing a bicyclo[4.1.0]heptane framework. The use of rhodium(II) catalysts enabled us to widen the scope of this transformation for the synthesis of medium-sized heterocyclic scaffolds

  2. The rate of intramolecular vibrational energy relaxation of the fundamental C-H stretch in (CF3)3C-C [equivalent] C-H

    Science.gov (United States)

    Gambogi, Joan E.; Lehmann, Kevin K.; Pate, Brooks H.; Scoles, Giacinto; Yang, Xueming

    1993-01-01

    The high resolution spectrum of the fundamental C-H stretch in (CF3)3C-C≡C-H has been measured using optothermal detection of a collimated molecular beam. Only the Q branch was resolvable and was fit to a Lorentzian with a full width at half maximum of 2.76 GHz, corresponding to an IVR lifetime of 60 ps. The decrease in lifetime in comparison to (CH3)3C-C≡C-H is thought to be due to strong mixing between the C-F stretches and bends and the backbone C-C stretches and bends.

  3. Properties of a-C:H:Si thin films deposited by middle-frequency magnetron sputtering

    Science.gov (United States)

    Jiang, Jinlong; Wang, Yubao; Du, Jinfang; Yang, Hua; Hao, Junying

    2016-08-01

    The silicon doped hydrogenated amorphous carbon (a-C:H:Si) films were prepared on silicon substrates by middle-frequency magnetron sputtering silicon target in an argon and methane gas mixture atmosphere. The deposition rate, chemical composition, structure, surface properties, stress, hardness and tribological properties in the ambient air of the films were systemically investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), nanoindentation and tribological tester. The results show that doped silicon content in the films is controlled in the wide range from 39.7 at.% to 0.2 at.% by various methane gas flow rate, and methane flow rate affects not only the silicon content but also its chemical bonding structure in the films due to the transformation of sputtering modes. Meanwhile, the sp3 carbon component in the films linearly increases with increasing of methane flow rate. The film deposited at moderate methane flow rate of 40-60 sccm exhibits the very smooth surface (RMS roughness 0.4 nm), low stress (0.42 GPa), high hardness (21.1 GPa), as well as low friction coefficient (0.038) and wear rate (1.6 × 10-7 mm3/Nm). The superior tribological performance of the films could be attributed to the formation and integral covering of the transfer materials on the sliding surface and their high hardness.

  4. Impacts of hydrogen dilution on growth and optical properties of a-SiC:H films

    Institute of Scientific and Technical Information of China (English)

    HU; Zhihua; LIAO; Xianbo; DIAO; Hongwei; KONG; Guanglin; Z

    2004-01-01

    Hydrogenated amorphous silicon-carbon (a-SiC:H) films were deposited by plasma enhanced chemical vapor deposition (PECVD) with a fixed methane to silane ratio ([CH4]/[SiH4]) of 1.2 and a wide range of hydrogen dilution (RH=[H2]/[SiH4 + CH4]) values of 12, 22, 33, 102 and 135. The impacts of RH on the structural and optical properties of the films were investigated by using UV-VIS transmission, Fourier transform infrared (FTIR) absorption, Raman scattering and photoluminescence (PL) measur- ements. The effects of high temperature annealing on the films were also probed. It is found that with increasing hydrogen dilution, the optical band gap increases, and the PL peak blueshifts from ~1.43 to 1.62 Ev. In annealed state, the room temperature PL peak for the low RH samples disappears, while the PL peak for the high RH samples appears at ~2.08 Ev, which is attributed to nanocrystalline Si particles confined by Si-C and Si-O bonds.

  5. Metal-catalyzed C-C bond cleavage in alkanes: effects of methyl substitution on transition-state structures and stability.

    Science.gov (United States)

    Flaherty, David W; Hibbitts, David D; Iglesia, Enrique

    2014-07-01

    Methyl substituents at C-C bonds influence hydrogenolysis rates and selectivities of acyclic and cyclic C2-C8 alkanes on Ir, Rh, Ru, and Pt catalysts. C-C cleavage transition states form via equilibrated dehydrogenation steps that replace several C-H bonds with C-metal bonds, desorb H atoms (H*) from saturated surfaces, and form λ H2(g) molecules. Activation enthalpies (ΔH(‡)) and entropies (ΔS(‡)) and λ values for (3)C-(x)C cleavage are larger than for (2)C-(2)C or (2)C-(1)C bonds, irrespective of the composition of metal clusters or the cyclic/acyclic structure of the reactants. (3)C-(x)C bonds cleave through α,β,γ- or α,β,γ,δ-bound transition states, as indicated by the agreement between measured activation entropies and those estimated for such structures using statistical mechanics. In contrast, less substituted C-C bonds involve α,β-bound species with each C atom bound to several surface atoms. These α,β configurations weaken C-C bonds through back-donation to antibonding orbitals, but such configurations cannot form with (3)C atoms, which have one C-H bond and thus can form only one C-M bond. (3)C-(x)C cleavage involves attachment of other C atoms, which requires endothermic C-H activation and H* desorption steps that lead to larger ΔH(‡) values but also larger ΔS(‡) values (by forming more H2(g)) than for (2)C-(2)C and (2)C-(1)C bonds, irrespective of alkane size (C2-C8) or cyclic/acyclic structure. These data and their mechanistic interpretation indicate that low temperatures and high H2 pressures favor cleavage of less substituted C-C bonds and form more highly branched products from cyclic and acyclic alkanes. Such interpretations and catalytic consequences of substitution seem also relevant to C-X cleavage (X = S, N, O) in desulfurization, denitrogenation, and deoxygenation reactions.

  6. The Stabilized Cation Pool Method: Metal- and Oxidant-Free Benzylic C-H/Aromatic C-H Cross-Coupling.

    Science.gov (United States)

    Hayashi, Ryutaro; Shimizu, Akihiro; Yoshida, Jun-Ichi

    2016-07-13

    Electrochemical oxidation of toluene derivatives in the presence of a sulfilimine gave benzylaminosulfonium ions as stabilized benzyl cation pools, which reacted with subsequently added aromatic nucleophiles to give the corresponding cross-coupling products. The transformation serves as a powerful metal- and chemical-oxidant-free method for benzylic C-H/aromatic C-H cross-coupling. The method has been successfully applied to synthesis of TP27, an inhibitor of PTPase. PMID:27341676

  7. Reaction Pathways and Energetics of Etheric C–O Bond Cleavage Catalyzed by Lanthanide Triflates

    Energy Technology Data Exchange (ETDEWEB)

    Assary, Rajeev S.; Atesin, Abdurrahman C.; Li, Zhi; Curtiss, Larry A.; Marks, Tobin J.

    2013-09-06

    Efficient and selective cleavage of etheric C-O bonds is crucial for converting biomass into platform chemicals and liquid transportation fuels. In this contribution, computational methods at the DFT B3LYP level of theory are employed to understand the efficacy of lanthanide triflate catalysts (Ln(OTf)3, Ln = La, Ce, Sm, Gd, Yb, and Lu) in cleaving etheric C-O bonds. In agreement with experiment, the calculations indicate that the reaction pathway for C-O cleavage occurs via a C-H → O-H proton transfer in concert with weakening of the C-O bond of the coordinated ether substrate to ultimately yield a coordinated alkenol. The activation energy for this process falls as the lanthanide ionic radius decreases, reflecting enhanced metal ion electrophilicity. Details of the reaction mechanism for Yb(OTf)3-catalyzed ring opening are explored in depth, and for 1-methyl-d3-butyl phenyl ether, the computed primary kinetic isotope effect of 2.4 is in excellent agreement with experiment (2.7), confirming that etheric ring-opening pathway involves proton transfer from the methyl group alpha to the etheric oxygen atom, which is activated by the electrophilic lanthanide ion. Calculations of the catalytic pathway using eight different ether substrates indicate that the more rapid cleavage of acyclic versus cyclic ethers is largely due to entropic effects, with the former C-O bond scission processes increasing the degrees of freedom/particles as the transition state is approached.

  8. Effect of deposition temperature and thermal annealing on the dry etch rate of a-C: H films for the dry etch hard process of semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Moo [Department of Materials Science and Engineering, Korea University, Anam-Dong, Sungbook-Ku, Seoul, 136-701 (Korea, Republic of); TC Technology Team, Samsung Electronics Co. Ltd., Nongseo-Dong, Kiheung-Ku, Yongin-Si, Gyeounggi-Do, 446-711 (Korea, Republic of); Won, Jaihyung [TC Technology Team, Samsung Electronics Co. Ltd., Nongseo-Dong, Kiheung-Ku, Yongin-Si, Gyeounggi-Do, 446-711 (Korea, Republic of); Yim, Soyoung [Department of Materials Science and Engineering, Korea University, Anam-Dong, Sungbook-Ku, Seoul, 136-701 (Korea, Republic of); Park, Se Jun; Choi, Jongsik; Kim, Jeongtae; Lee, Hyeondeok [TC Technology Team, Samsung Electronics Co. Ltd., Nongseo-Dong, Kiheung-Ku, Yongin-Si, Gyeounggi-Do, 446-711 (Korea, Republic of); Byun, Dongjin, E-mail: dbyun@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-Dong, Sungbook-Ku, Seoul, 136-701 (Korea, Republic of)

    2012-06-01

    The effect of deposition and thermal annealing temperatures on the dry etch rate of a-C:H films was investigated to increase our fundamental understanding of the relationship between thermal annealing and dry etch rate and to obtain a low dry etch rate hard mask. The hydrocarbon contents and hydrogen concentration were decreased with increasing deposition and annealing temperatures. The I(D)/I(G) intensity ratio and extinction coefficient of the a-C:H films were increased with increasing deposition and annealing temperatures because of the increase of sp{sup 2} bonds in the a-C:H films. There was no relationship between the density of the unpaired electrons and the deposition temperature, or between the density of the unpaired electrons and the annealing temperature. However, the thermally annealed a-C:H films had fewer unpaired electrons compared with the as-deposited ones. Transmission electron microscopy analysis showed the absence of any crystallographic change after thermal annealing. The density of the as-deposited films was increased with increasing deposition temperature. The density of the 600 Degree-Sign C annealed a-C:H films deposited under 450 Degree-Sign C was decreased but at 550 Degree-Sign C was increased, and the density of all 800 Degree-Sign C annealed films was increased. The dry etch rate of the as-deposited a-C:H films was negatively correlated with the deposition temperature. The dry etch rate of the 600 Degree-Sign C annealed a-C:H films deposited at 350 Degree-Sign C and 450 Degree-Sign C was faster than that of the as-deposited film and that of the 800 Degree-Sign C annealed a-C:H films deposited at 350 Degree-Sign C and 450 Degree-Sign C was 17% faster than that of the as-deposited film. However, the dry etch rate of the 550 Degree-Sign C deposited a-C:H film was decreased after annealing at 600 Degree-Sign C and 800 Degree-Sign C. The dry etch rate of the as-deposited films was decreased with increasing density but that of the annealed

  9. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma; Peliculas delgadas de carbono amorfo hidrogenado (a-C:H) obtenidas mediante deposito quimico de vapores asistido por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Muhl S, S. [IIM-UNAM, 04510 Mexico D.F. (Mexico)

    2004-07-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H{sub 2}/CH{sub 4} in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10{sup -4} to 6x10{sup -4} Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  10. Self-lubrication and wear behavior of TiC/a-C : H nanocomposite coatings

    NARCIS (Netherlands)

    Pei, Y. T.; Huizenga, P.; Galvan, D.; De Hosson, J. Th. M.; Chandra, T; Tsuzaki, K; Militzer, M; Ravindran, C

    2007-01-01

    Advanced TiC/a-C:H nanocomposite coatings have been produced via reactive deposition in a closed-field unbalanced magnetron sputtering system. In this paper, we report on the tribological behavior of TiC/a-C:H nanocomposite coatings in which ultra-low friction is tailored with superior wear resistan

  11. Advanced TiC/a-C : H nanocomposite coatings deposited by magnetron sputtering

    NARCIS (Netherlands)

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De; Strondl, C.

    2006-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron Sputtering. They consist of 2-5 nm TiC nanocrystallites embedded in the amorphous hydrocarbon (a-C:H) matrix. A transition from a Columnar to a glassy microstructure has been observed in the nanocomposite coatings with increasing subs

  12. Aging of oxygen and hydrogen plasma discharge treated a-C:H and ta-C coatings

    Science.gov (United States)

    Bachmann, Svenja; Schulze, Marcus; Morasch, Jan; Hesse, Sabine; Hussein, Laith; Krell, Lisa; Schnagl, Johann; Stark, Robert W.; Narayan, Suman

    2016-05-01

    Surface modification with gas plasma is an efficient and easy way to improve the surface energy and the tribological behavior of diamond-like carbon (DLC) coatings, e.g., in biomedical implants or as protective coatings. However, the long-term performance of the plasma treated DLC coatings is not fully clear. We thus studied the long-term stability of two kinds of DLC coatings, namely (a) hydrogenated amorphous carbon (a-C:H) and (b) tetrahedral amorphous carbon (ta-C) treated at different radio frequency (RF) power and time of oxygen (O2) and hydrogen (H2) plasma. Their surface properties, e.g. surface wettability, structure and tribological behavior, were studied at regular intervals for a period of two months using contact angle goniometer, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), lateral force microscopy (LFM) and ball on disc apparatus. The surface energy of both the coatings decreased upon aging. The higher the RF power and time of treatment, the higher was the hydrophobicity upon aging. XPS analysis showed that the increase in hydrophobicity could be due to adsorption of unavoidable volatile organic components in the atmosphere. The H2 plasma treated ta-C was capable of rearranging its structural bonds upon aging. The nano-friction measurements by LFM showed that the coefficient of friction of plasma treated a-C:H and ta-C decreased upon aging. The results indicate that the surface properties of plasma treated a-C:H and ta-C are not stable on long-term and are influenced by the environmental conditions.

  13. Catalytic hydrocarbon reactions over supported metal oxides. Progress report, April 1, 1994--January 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1995-01-31

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. Our approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. Our current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. Oxide catalysis can be a complex process with both metal cation and oxygen anions participating in the chemical reactions. From an energy perspective carbon-carbon bond formation is particularly relevant to CO hydrogenation in isosynthesis. Hydrogenolysis and hydrogenation form the basis for heteroatom removal in fuels processing. Understanding the catalysis of these processes (and others) requires isolating reaction steps in the overall cycle and determining how structure and composition influence the individual reaction steps. Specially designed oxides, such as we use, permit one to study some of the steps in oxidation, carbon-carbon coupling and heteroatom removal catalysis. During the course of our studies we have: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by methathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  14. Anti-inflammatory activity of Arnica montana 6cH: preclinical study in animals.

    Science.gov (United States)

    Macêdo, S B; Ferreira, L R; Perazzo, F F; Carvalho, J C

    2004-04-01

    The anti-inflammatory effect of Arnica montana 6cH was evaluated using acute and chronic inflammation models. In the acute, model, carrageenin-induced rat paw oedema, the group treated with Arnica montana 6cH showed 30% inhibition compared to control (P < 0.05). Treatment with Arnica 6cH, 30 min prior to carrageenin, did not produce any inhibition of the inflammatory process. In the chronic model, Nystatin-induced oedema, the group treated 3 days previously with Arnica montana 6cH had reduced inflammation 6 h after the inflammatory agent was applied (P < 0.05). When treatment was given 6 h after Nystatin treatment, there was no significant inhibitory effect. In a model based on histamine-induced increase of vascular permeability, pretreatment with Arnica montana 6cH blocked the action of histamine in increasing vascular permeability.

  15. Bifunctional catalytic electrode

    Science.gov (United States)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  16. Tagging the Untaggable: A Difluoroalkyl-Sulfinate Ketone-Based Reagent for Direct C-H Functionalization of Bioactive Heteroarenes.

    Science.gov (United States)

    Gnaim, Samer; Scomparin, Anna; Li, Xiuling; Baran, Phil S; Rader, Christoph; Satchi-Fainaro, Ronit; Shabat, Doron

    2016-09-21

    We have developed a new difluoroalkyl ketal sulfinate salt reagent suitable for direct derivatization of heteroarene C-H bonds. The reagent is capable of introducing a ketone functional group on heteroarene bioactive compounds via a one-pot reaction. Remarkably, in three examples the ketone analog and its parent drug had almost identical cytotoxicity. In a representative example, the ketone analog was bioconjugated with a delivery vehicle via an acid-labile semicarbazone linkage and with a photolabile protecting group to produce the corresponding prodrug. Controlled release of the drug-ketone analog was demonstrated in vitro for both systems. This study provides a general approach to obtain taggable ketone analogs directly from bioactive heteroarene compounds with limited options for conjugation. We anticipate that this sodium ketal-sulfinate reagent will be useful for derivatization of other heteroarene-based drugs to obtain ketone-taggable analogs with retained efficacy. PMID:27494153

  17. Bond Issues.

    Science.gov (United States)

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  18. Study of the hydrogen behavior in amorphous hydrogenated materials of type a - C:H and a - SiC:H facing fusion reactor plasma; Etude du comportament de l`hydrogene dans des materiaux amorphes hydrogenes de type a - C:H et a - SiC:H devant faire face au plasma des reacteurs a fusion

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-04-10

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. First, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce these interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a - SiC:H substrate can be beneficial in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a-SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a - C:H and a - SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modelling of hydrogen diffusion under irradiation has been also proposed. (author) 176 refs.

  19. Infrared spectroscopy and Density Functional Theory of crystalline β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β CL-20) in the region of its C-H stretching vibrations

    Science.gov (United States)

    Behler, K. D.; Pesce-Rodriguez, R.; Cabalo, J.; Sausa, R.

    2013-10-01

    Molecular vibrational spectroscopy provides a useful tool for material characterization and model verification. We examine the CH stretching fundamental and overtones of energetic material β-2,4,6,8,10,12-hexanitrohexaaziosowurtzitane (β-CL-20) by Raman spectroscopy, Fourier Transform Infrared Spectroscopy, and Laser Photoacoustic Overtone Spectroscopy, and utilize Density Functional Theory to calculate the C-H bond energy of β-CL-20 in a crystal. The spectra reveal four intense and distinct features, whose analysis yields C-H stretching fundamental frequencies and anharmonicity values that range from 3137 to 3170 cm-1 and 53.8 to 58.8 cm-1, respectively. From these data, we estimate an average value of 42,700 cm-1 (5.29 eV) for the C-H bond energy, a value that agrees with our quantum mechanical calculations.

  20. Opportunities and challenges for direct C-H functionalization of piperazines.

    Science.gov (United States)

    Ye, Zhishi; Gettys, Kristen E; Dai, Mingji

    2016-01-01

    Piperazine ranks within the top three most utilized N-heterocyclic moieties in FDA-approved small-molecule pharmaceuticals. Herein we summarize the current synthetic methods available to perform C-H functionalization on piperazines in order to lend structural diversity to this privileged drug scaffold. Multiple approaches such as those involving α-lithiation trapping, transition-metal-catalyzed α-C-H functionalizations, and photoredox catalysis are discussed. We also highlight the difficulties experienced when successful methods for α-C-H functionalization of acyclic amines and saturated mono-nitrogen heterocyclic compounds (such as piperidines and pyrrolidines) were applied to piperazine substrates. PMID:27340462

  1. C-H ACTIVATION REACTIONS BY YTTRIUM AND LUTETIUM HYDRIDE COMPLEXES - H/D EXCHANGE VS METALATION OF HYDROCARBONS - IMPORTANCE OF THE HYBRIDIZATION STATE AT THE ALPHA-CARBON

    NARCIS (Netherlands)

    DEELMAN, BJ; TEUBEN, JH; MACGREGOR, SA; EISENSTEN, O

    1995-01-01

    Extended Huckel (EHT) calculations have been used to discuss the two alternative sigma-bond C-H metathesis reactions which occur with organo-lanthanide (Ln = Y, Lu) compounds. The two reactions lead either to H/H (H/D) exchange or to metalation and have been modelled by studying the interaction of a

  2. Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.

    Science.gov (United States)

    Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong

    2016-05-01

    Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes. PMID:27074500

  3. On the catalytic gas phase oxidation of butadiene to furan

    Energy Technology Data Exchange (ETDEWEB)

    Kubias, B.; Rodemerck, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Ritschl, F.; Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    Applying the thermochemical selectivity criterion of Hadnett et al. It is shown that the selectivity of the furan formation is not limited by a too low strength of the C-H bonds in furan when compared with the C-H bond dissociation energy in the educt molecule butadiene. In the oxidation of butadiene on a CsH{sub 2}PMo{sub 12}O{sub 40} catalyst a maximum yield of 22 mol% furan has been obtained. To improve this comparatively low furan yield oxidation activity of the catalyst must be lowered to prevent the consecutive reaction to maleic anhydride. (orig.)

  4. Synthesis of Dihydropyridines and Pyridines from Imines and Alkynes via C-H Activation

    Energy Technology Data Exchange (ETDEWEB)

    Ellman, Jonathan A.; Colby, Denise; Bergman, Robert

    2007-11-20

    A convenient one-pot C-H alkenylation/electrocyclization/aromatization sequence has been developed for the synthesis of highly substituted pyridine derivatives from alkynes and {alpha},{beta}-unsaturated N-benzyl aldimines and ketimines that proceeds through dihydropyridine intermediates. A new class of ligands for C-H activation was developed, providing broader scope for the alkenylation step than could be achieved with previously reported ligands. Substantial information was obtained about the mechanism of the reaction. This included the isolation of a C-H activated complex and its structure determination by X-ray analysis; in addition, kinetic simulations using the Copasi software were employed to determine rate constants for this transformation, implicating facile C-H oxidative addition and slow reductive elimination steps.

  5. Elemental (C, H, N) composition of zooplankton from north Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Bhat, K.L.; Ansari, Z.A.; Parulekar, A.H.

    Zooplankton samples collected from north Arabian Sea during March 1992 were analysed for elemental (C,H,N) composition. Estimated carbon, hydrogen and nitrogen concentrations displayed variations among different groups but their ratios were nearly...

  6. Short Synthesis of Sulfur Analogues of Polyaromatic Hydrocarbons through Three Palladium-Catalyzed C-H Bond Arylations.

    Science.gov (United States)

    Hagui, Wided; Besbes, Néji; Srasra, Ezzeddine; Roisnel, Thierry; Soulé, Jean-François; Doucet, Henri

    2016-09-01

    An expeditious synthesis of a wide range of phenanthro[9,10-b]thiophene derivatives, which are a class of polyaromatic hydrocarbon (PAH) containing a sulfur atom, is reported. The synthetic scheme involves only two operations from commercially available thiophenes, 2-bromobenzenesulfonyl chlorides and aryl bromides. In the first step, palladium-catalyzed desulfitative arylation using 2-bromobenzenesulfonyl chlorides allows the synthesis of thiophene derivatives, which are substituted at the C4 position by an aryl group containing an ortho-bromo substituent. Then, a palladium-catalyzed one-pot cascade intermolecular C5-arylation of thiophene using aryl bromides followed by intramolecular arylation led to the corresponding phenanthro[9,10-b]thiophenes in a single operation. In addition, PAHs containing two or three sulfur atoms, as well as both sulfur and nitrogen atoms, were also designed by this strategy. PMID:27550151

  7. Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jared; Berman, Ashley; Bergman, Robert; Ellman, Jonathan

    2007-07-18

    A practical, functional group tolerant method for the Rh-catalyzed direct arylation of a variety of pharmaceutically important azoles with aryl bromides is described. Many of the successful azole and aryl bromide coupling partners are not compatible with methods for the direct arylation of heterocycles using Pd(0) or Cu(I) catalysts. The readily prepared, low molecular weight ligand, Z-1-tert-butyl-2,3,6,7-tetrahydrophosphepine, which coordinates to Rh in a bidentate P-olefin fashion to provide a highly active yet thermally stable arylation catalyst, is essential to the success of this method. By using the tetrafluoroborate salt of the corresponding phosphonium, the reactions can be assembled outside of a glove box without purification of reagents or solvent. The reactions are also conducted in THF or dioxane, which greatly simplifies product isolation relative to most other methods for direct arylation of azoles employing high-boiling amide solvents. The reactions are performed with heating in a microwave reactor to obtain excellent product yields in two hours.

  8. Tuning the reactivity of an actor ligand for tandem CO2 and C-H activations: from spectator metals to metal-free.

    Science.gov (United States)

    Annibale, Vincent T; Dalessandro, Daniel A; Song, Datong

    2013-10-30

    The 4,5-diazafluorenide ligand (L(-)) serves as an actor ligand in the formal insertion of CO2 into a C-H bond remote from the metal center. With the Ru(II) complex of L(-) as the starting point, Rh(III), Rh(I), and Cu(I) were used as spectator metal centers to tune the reactivity of the actor ligand toward CO2. In the case of Rh(III)-diazafluorenide a room temperature reversible activation of CO2 was observed, similar to the isoelectronic Ru(II) analogue. In the case of Rh(I)- and Cu(I)-diazafluorenide CO2 is trapped by the formation of dinuclear carboxylate complexes and diazafluorene (LH). The spectator metal center could even be replaced entirely with an organic group allowing for the first metal-free reversible tandem CO2 and C-H activation.

  9. J.C.H. de Meijere (1866-1947), een voorzichtig geneticus en evolutiebioloog

    OpenAIRE

    Schoor, W.J. van der

    1991-01-01

    J.C.H. de Meijere (1866-1947), a cautious geneticist and evolutionary biologist

    After the success of Hugo de Vries' 'mutationism' during the socalled 'Eclipse of Darwinism' (see Bowler, 1983), Dutch biologists in the 20's and 30's had little interest in evolutionary theory. A remarkable exception was the entomologist J.C.H. de Meijere, who thought technical zoology and (1921-1936) genetics at Amsterdam...

  10. Copper-Catalyzed Oxidative C-H Amination of Tetrahydrofuran with Indole/Carbazole Derivatives.

    Science.gov (United States)

    Yang, Qingjing; Choy, Pui Ying; Fu, Wai Chung; Fan, Baomin; Kwong, Fuk Yee

    2015-11-01

    A simple α-C-H amination of cyclic ether with indole/carbazole derivatives has been accomplished by employing copper(II) chloride/bipy as the catalyst system. In the presence of the di-tert-butyl peroxide oxidant, cyclic ethers such as tetrahydrofuran, 1,4-dioxane, and tetrahydropyran successfully undergo C-H/N-H cross dehydrogenative coupling (CDC) with various carbazole or indole derivatives in good-to-excellent yields. PMID:26485515

  11. Structure and Friction Behavior of CrNx/a-C:H Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Lunlin Shang

    2014-01-01

    Full Text Available CrN and CrNx/a-C:H nanocomposite films were deposited on Si substrates by the magnetron sputtering technique. The structure, chemical state, and friction behavior of the CrNx/a-C:H films prepared at various CH4 content were studied systematically. The CrN film shows strong (111 and (220 orientation, while the CrNx/a-C:H films consist of the nanocrystalline CrNx or Cr particles embedded in an amorphous hydrocarbon (a-C:H matrix and show weak diffraction peaks, which is in accordance with the XPS analysis results. The typical Raman D and G peaks are observed, indicating that the separated amorphous carbon or CNx phase appears in the CrNx/a-C:H films. However, no chromium carbide was observed in all the as-deposited samples. From the SEM graphs, all the deposited films depicted a dense and compact microstructure with well-attached interface with the substrate. The average friction coefficient of the CrNx/a-C:H films largely decreased with increasing CH4 content.

  12. Copper-mediated C-H activation/C-S cross-coupling of heterocycles with thiols

    KAUST Repository

    Ranjit, Sadananda

    2011-11-04

    We report the synthesis of a series of aryl- or alkyl-substituted 2-mercaptobenzothiazoles by direct thiolation of benzothiazoles with aryl or alkyl thiols via copper-mediated aerobic C-H bond activation in the presence of stoichiometric CuI, 2,2′-bipyridine and Na 2CO 3. We also show that the approach can be extended to thiazole, benzimidazole, and indole substrates. In addition, we present detailed mechanistic investigations on the Cu(I)-mediated direct thiolation reactions. Both computational studies and experimental results reveal that the copper-thiolate complex [(L)Cu(SR)] (L: nitrogen-based bidentate ligand such as 2,2′-bipyridine; R: aryl or alkyl group) is the first reactive intermediate responsible for the observed organic transformation. Furthermore, our computational studies suggest a stepwise reaction mechanism based on a hydrogen atom abstraction pathway, which is more energetically feasible than many other possible pathways including β-hydride elimination, single electron transfer, hydrogen atom transfer, oxidative addition/reductive elimination, and σ-bond metathesis. © 2011 American Chemical Society.

  13. Catalytic defluorination of perfluorinated aromatics under oxidative conditions using N-bridged diiron phthalocyanine.

    Science.gov (United States)

    Colomban, Cédric; Kudrik, Evgenij V; Afanasiev, Pavel; Sorokin, Alexander B

    2014-08-13

    Carbon-fluorine bonds are the strongest single bonds in organic chemistry, making activation and cleavage usually associated with organometallic and reductive approaches particularly difficult. We describe here an efficient defluorination of poly- and perfluorinated aromatics under oxidative conditions catalyzed by the μ-nitrido diiron phthalocyanine complex [(Pc)Fe(III)(μ-N)Fe(IV)(Pc)] under mild conditions (hydrogen peroxide as the oxidant, near-ambient temperatures). The reaction proceeds via the formation of a high-valent diiron phthalocyanine radical cation complex with fluoride axial ligands, [(Pc)(F)Fe(IV)(μ-N)Fe(IV)(F)(Pc(+•))], which was isolated and characterized by UV-vis, EPR, (19)F NMR, Fe K-edge EXAFS, XANES, and Kβ X-ray emission spectroscopy, ESI-MS, and electrochemical techniques. A wide range of per- and polyfluorinated aromatics (21 examples), including C6F6, C6F5CF3, C6F5CN, and C6F5NO2, were defluorinated with high conversions and high turnover numbers. [(Pc)Fe(III)(μ-N)Fe(IV)(Pc)] immobilized on a carbon support showed increased catalytic activity in heterogeneous defluorination in water, providing up to 4825 C-F cleavages per catalyst molecule. The μ-nitrido diiron structure is essential for the oxidative defluorination. Intramolecular competitive reactions using C6F3Cl3 and C6F3H3 probes indicated preferential transformation of C-F bonds with respect to C-Cl and C-H bonds. On the basis of the available data, mechanistic issues of this unusual reactivity are discussed and a tentative mechanism of defluorination under oxidative conditions is proposed.

  14. Thermal Modification of a-SiC:H Films Deposited by Plasma Enhanced Chemical Vapour Deposition from CH4+SiH4 Mixtures

    Institute of Scientific and Technical Information of China (English)

    刘玉学; 王宁会; 刘益春; 申德振; 范希武; 李灵燮

    2001-01-01

    The effects of thermal annealing on photoluminescence (PL) and structural properties of a-Si1-xCx :H films deposited by plasma enhanced chemical vapour deposition from CH4+SiH4 mixtures are studied by using infrared, PL and transmittance-reflectance spectra. In a-SiC:H network, high-temperature annealing gives rise to the effusion of hydrogen from strongly bonded hydrogen in SiH, SiH2, (SiH2)n, SiCHn and CHn configurations and the break of weak C-C, Si-Si and C-Si bonds. A structural rearrangement will occur, which causes a significant correlation of the position and intensity of the PL signal with the annealing temperature. The redshift of the PL peak is related to the destruction of the confining power of barriers. However, the PL intensity does not have a significant correlation with the annealing temperature for a C-rich a-SiC:H network, which refers to the formation of π-bond cluster as increasing carbon content. It is indicated that the thermal stability of C-rich a-Si1-xCx:H films is better than that of Si-like a-Si1-xCx :H films.

  15. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  16. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (10(-3) Torr) to liquid interfaces.

    Science.gov (United States)

    Somorjai, Gabor A; York, Roger L; Butcher, Derek; Park, Jeong Y

    2007-07-21

    The material and pressure gap has been a long standing challenge in the field of heterogeneous catalysis and have transformed surface science and biointerfacial research. In heterogeneous catalysis, the material gap refers to the discontinuity between well-characterized model systems and industrially relevant catalysts. Single crystal metal surfaces have been useful model systems to elucidate the role of surface defects and the mobility of reaction intermediates in catalytic reactivity and selectivity. As nanoscience advances, we have developed nanoparticle catalysts with lithographic techniques and colloidal syntheses. Nanoparticle catalysts on oxide supports allow us to investigate several important ingredients of heterogeneous catalysis such as the metal-oxide interface and the influence of noble metal particle size and surface structure on catalytic selectivity. Monodispersed nanoparticle and nanowire arrays were fabricated for use as model catalysts by lithographic techniques. Platinum and rhodium nanoparticles in the 1-10 nm range were synthesized in colloidal solutions in the presence of polymer capping agents. The most catalytically active systems are employed at high pressure or at solid-liquid interfaces. In order to study the high pressure and liquid interfaces on the molecular level, experimental techniques with which we bridged the pressure gap in catalysis have been developed. These techniques include the ultrahigh vacuum system equipped with high pressure reaction cell, high pressure Sum Frequency Generation (SFG) vibration spectroscopy, High Pressure Scanning Tunneling Microscopy (HP-STM), and High Pressure X-ray Photoemission Spectroscopy (HP-XPS), and Quartz Crystal Microbalance (QCM). In this article, we overview the development of experimental techniques and evolution of the model systems for the research of heterogeneous catalysis and biointerfacial studies that can shed light on the long-standing issues of materials and pressure gaps.

  17. Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex

    Energy Technology Data Exchange (ETDEWEB)

    Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Department of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Bazarganipour, Mehdi [Department of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2009-06-15

    Hydroxyl functionalized copper(II) Schiff-base, N,N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH){sub 2}-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH){sub 2}-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the 'neat' complexes than over the encapsulated complexes.

  18. Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex

    International Nuclear Information System (INIS)

    Hydroxyl functionalized copper(II) Schiff-base, N,N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH)2-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH)2-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the 'neat' complexes than over the encapsulated complexes.

  19. C-H activation reactions by yttrium and lutetium hydride complexes: H/D exchange vs metalation of hydrocarbons. Importance of the hybridization state at the α carbon

    OpenAIRE

    Deelman, Berth-Jan; Teuben, Jan H.; Macgregor, Stuart A.; Eisenstein, Odile

    1995-01-01

    Extended Hückel (EHT) calculations have been used to discuss the two alternative σ-bond C-H metathesis reactions which occur with organo-lanthanide (Ln = Y, Lu) compounds. The two reactions lead either to H/H (H/D) exchange or to metalation and have been modelled by studying the interaction of a Cp2Ln+ fragment with [H-R-H]- and [R-H-H]- respectively. It is shown that the metallic fragment interacts in a similar way with the two organic fragments and that the preference for one of the two pat...

  20. Regioselective and Stepwise Syntheses of Functionalized BODIPY Dyes through Palladium-Catalyzed Cross-Coupling Reactions and Direct C-H Arylations.

    Science.gov (United States)

    Feng, Zeya; Jiao, Lijuan; Feng, Yuanmei; Yu, Changjiang; Chen, Na; Wei, Yun; Mu, Xiaolong; Hao, Erhong

    2016-08-01

    Regioselective and stepwise syntheses of a series of functionalized BODIPY dyes through palladium-catalyzed cross-coupling reactions and direct C-H arylations have been developed. In particular, this method allows the straightforward synthesis of 2,6-dibromo-3,5-diarylBODIPYs and 2-bromo-3-arylBODIPYs from polybrominated BODIPYs. The X-ray structure of intermediates 5a-c indicated that the palladium was first inserted into the C-Br bonds at 3,5-positions of brominated BODIPYs. The resulting 2,6-dibromo-substituted BODIPYs are potential long wavelength photosensitizers which are not easily accessible using previous methods. PMID:27362954

  1. Compositional, structural and mechanical characteristics of nc-TiC/a-C:H nanocomposite films

    International Nuclear Information System (INIS)

    Nanocomposite nc-TiC/a-C:H films, with an unusual combination of superhardness, high elastic modulus and high elastic recovery, are prepared by filtered cathodic vacuum arc technique using the C2H2 gas as the precursor. The effects of filter coil current on compositional, structural and mechanical properties of the nc-TiC/a-C:H films have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy disperse spectroscopy (EDS), microindentation and tribotester measurements. XPS and Raman analyses show that composition and nanostructure of the nc-TiC/a-C:H films can be changed by varying the filter coil current. By selecting the proper value of filter coil current, 2.5 A, one can remarkably enhance the mechanical properties of films such as superhardness (43.6 GPa). The superhardness can be ascribed to the phase variation and the nanostructure.

  2. FINAL TECHNICAL REPORT for grant DE-FG02-93ER14353 "Carbon-Hydrogen Bond Functionalization Catalyzed by Transition Metal Systems"

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Alan S

    2012-05-21

    Alkanes are our most abundant organic resource but are highly resistant to selective chemical transformations. Alkenes (olefins) by contrast are the single most versatile class of molecules for selective transformations, and are intermediates in virtually every petrochemical process as well as a vast range of commodity and fine chemical processes. Over the course of this project we have developed the most efficient catalysts to date for the selective conversion of alkanes to give olefins, and have applied these catalysts to other dehydrogenation reactions. We have also developed some of the first efficient catalysts for carbonylation of alkanes and arenes to give aldehydes. The development of these catalysts has been accompanied by elucidation of the mechanism of their operation and the factors controlling the kinetics and thermodynamics of C-H bond activation and other individual steps of the catalytic cycles. This fundamental understanding will allow the further improvement of these catalysts, as well as the development of the next generation of catalysts for the functionalization of alkanes and other molecules containing C-H bonds.

  3. Modeling study of oxygenated fuels on diesel combustion: Effects of oxygen concentration, cetane number and C/H ratio

    International Nuclear Information System (INIS)

    Highlights: • The effects of oxygenated fuels on diesel combustion are extensively investigated. • CO and soot emissions are reduced with the increase of oxygen concentration. • The C–O bond in the oxygenated fuels inhibits the formation of soot precursor C2H2. • Small intermediates such as C2H4 and C2H6 are significantly reduced. • Oxygen concentration seems to be the dominating factor affecting the emissions. - Abstract: The present modeling study aims to gain better insights on the effects of oxygenated fuels on the diesel oxidation and emission formation processes under realistic engine operating conditions. To do that, various blend fuels formulated from diesel, biodiesel, ethanol and DMC fuels were obtained with different oxygen concentrations, cetane numbers and C/H ratios. Simulations were conducted using the coupled KIVA–CHEMKIN code on a light duty diesel engine at a fixed engine speed of 2400 rpm under full load conditions. Constructed numerical simulation models integrated with detailed chemical kinetics were validated against the experimental results with reliable accuracies. Simulation results revealed that as the overall oxygen concentration of the blend fuel increased, significant beneficial effects were shown with reduced NOx, CO and soot emissions. Particularly, with the increase of oxygen concentration, the peak CO concentration and its final emission level were found to be remarkably reduced due to the fuel borne oxygen, reduced carbon influx as well as the possibility accelerated CO oxidation rate. More tangible reductions were shown on the soot emissions probably because the C–O bond in the oxygenated blend fuels had played an important role in inhibiting the carbon atoms from soot formation. Furthermore, as oxygenated fuels were added, the peak concentration of the soot precursor C2H2 species and small hydrocarbon intermediates such as C2H4 and C2H6 were also significantly reduced. In general, it was found that compared to the

  4. Development of a Direct Photocatalytic C-H Fluorination for the Preparative Synthesis of Odanacatib.

    Science.gov (United States)

    Halperin, Shira D; Kwon, Daniel; Holmes, Michael; Regalado, Erik L; Campeau, Louis-Charles; DiRocco, Daniel A; Britton, Robert

    2015-11-01

    Late-stage C-H fluorination is an appealing reaction for medicinal chemistry. However, the application of this strategy to process research appears less attractive due to the formation and necessary purification of mixtures of organofluorines. Here we demonstrate that γ-fluoroleucine methyl ester, an intermediate critical to the large-scale synthesis of odanacatib, can be accessed directly from leucine methyl ester using a combination of the decatungstate photocatalyst and N-fluorobenzenesulfonimide in flow. This efficient C-H fluorination reaction compares favorably with several generations of classical γ-fluoroleucine process syntheses. PMID:26484983

  5. Simultaneous structure-activity studies and arming of natural products by C-H amination reveal cellular targets of eupalmerin acetate

    Science.gov (United States)

    Li, Jing; Cisar, Justin S.; Zhou, Cong-Ying; Vera, Brunilda; Williams, Howard; Rodríguez, Abimael D.; Cravatt, Benjamin F.; Romo, Daniel

    2013-06-01

    Natural products have a venerable history of, and enduring potential for the discovery of useful biological activity. To fully exploit this, the development of chemical methodology that can functionalize unique sites within these complex structures is highly desirable. Here, we describe the use of rhodium(II)-catalysed C-H amination reactions developed by Du Bois to carry out simultaneous structure-activity relationship studies and arming (alkynylation) of natural products at ‘unfunctionalized’ positions. Allylic and benzylic C-H bonds in the natural products undergo amination while olefins undergo aziridination, and tertiary amine-containing natural products are converted to amidines by a C-H amination-oxidation sequence or to hydrazine sulfamate zwitterions by an unusual N-amination. The alkynylated derivatives are ready for conversion into cellular probes that can be used for mechanism-of-action studies. Chemo- and site-selectivity was studied with a diverse library of natural products. For one of these—the marine-derived anticancer diterpene, eupalmerin acetate—quantitative proteome profiling led to the identification of several protein targets in HL-60 cells, suggesting a polypharmacological mode of action.

  6. Catalyst performance and mechanism of catalytic combustion of dichloromethane (CH2Cl2) over Ce doped TiO2.

    Science.gov (United States)

    Cao, Shuang; Wang, Haiqiang; Yu, Feixiang; Shi, Mengpa; Chen, Shuang; Weng, Xiaole; Liu, Yue; Wu, Zhongbiao

    2016-02-01

    TiO2 and Ce/TiO2 were synthesized and subsequently used for the catalytic combustion of DCM. TiO2 had abundant Lewis acid sites and was responsible for the adsorption and the rupture of C-Cl bonds. However, TiO2 tended to be inactivated because of chloride poisoning due to the adsorption and accumulation of Cl species over the surface. While, Ce/TiO2 obtained total oxidation of CH2Cl2 at 335°C and exhibited stable DCM removal activity on 100h long-time stability tests at 330°C without any catalyst deactivation. The doped cerium generated Ce(3+) chemical states and surface active oxygen, and therefore played important roles from two aspects as follows. First of all, the poisoning of Cl for Ce/TiO2 was inhibited to some extent by CeO2 due to the rapid removal of Cl on the surface of CeO2, which has been verified by NH3-IR characterization. In the other hand, CeO2 enhanced the further deep oxidation of C-H from byproducts and retained the certain oxidation of CO to CO2. Based on the DRIFT characterization and the catalysts activity tests, a two-step reaction pathway for the catalytic combustion of DCM on Ce/TiO2 catalyst was proposed. PMID:26550781

  7. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen, and Zhejiang and Guangdong provinces to issue bonds for the first time. How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the ShanghaiSecuritiesJournal. Edited excerpts follow:

  8. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen,and Zhejiang and Guangdong provinces to issue bonds for the first time.How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the Shanghai Securities Journal.Edited excerpts follow.

  9. a-C(:H) and a-C(:H){sub Z}r coatings deposited on biomedical Ti-based substrates: Tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Escudeiro, A., E-mail: ana.escudeiro@dem.uc.pt [SEG-CEMUC, Department of Mechanical Engineering, University of Coimbra, 3030-788 Coimbra (Portugal); Polcar, T. [National Centre for Advanced Tribology (nCATS), School of Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Department of Control Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Cavaleiro, A. [SEG-CEMUC, Department of Mechanical Engineering, University of Coimbra, 3030-788 Coimbra (Portugal)

    2013-07-01

    Amorphous carbon (a-C) based coatings are possible candidates as a surface treatment for various biocompatible materials used in medicine. In this study, the carbon coatings co-sputtered with Zr, deposited by dc unbalanced magnetron sputtering in Ar (non-hydrogenated, i.e. a-C/Zr) and Ar + CH{sub 4} (hydrogenated, i.e. a-C:H/Zr) discharges, were investigated and compared with pure carbon films. Polished pure commercial Ti grade 2 and Ti grade 5 ELI (Ti6Al4V) discs were used as substrates. To improve the coating/substrate adhesion, a gradient Ti-based interlayer was deposited (∼ 450 nm). The coating structure was characterized by X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy; the chemical composition was measured by electron probe microanalysis. The adhesion was evaluated by scratch-test and the hardness was measured by nanoindentation. Tribological testing of the coatings was carried out using unidirectional pin-on-disc experiments; pure titanium balls were used as counterparts. The wear rate of the coatings was negligible except for the films with the highest Zr content deposited on Ti grade 2 substrates. - Highlights: ► The incorporation of Zr led to formation of nanocrystalline ZrC embedded into C-matrix. ► a-C:(H)-Zr coatings significantly improved the wear resistance of Ti-based alloys. ► Substrate plastic deformation led to lower coating adhesion on Ti grade 2.

  10. Mechanistic Insights into C-H Oxidations by Ruthenium(III)-Pterin Complexes: Impact of Basicity of the Pterin Ligand and Electron Acceptability of the Metal Center on the Transition States.

    Science.gov (United States)

    Mitome, Hiroumi; Ishizuka, Tomoya; Kotani, Hiroaki; Shiota, Yoshihito; Yoshizawa, Kazunari; Kojima, Takahiko

    2016-08-01

    A ruthenium(II) complex, [Ru(dmdmp)Cl(MeBPA)] (2) (Hdmdmp = N,N-dimethyl-6,7-dimethylpterin, MeBPA = N-methyl-N,N-bis(pyridylmethyl)amine), having a pterin derivative as a proton-accepting ligand, was synthesized and characterized. Complex 2 shows higher basicity than that of a previously reported Ru(II)-pterin complex, [Ru(dmdmp) (TPA)](+) (1) (TPA = tris(2-pyridylmethyl)amine). On the other hand, 1e(-)-oxidized species of 1 (1OX) exhibits higher electron-acceptability than that of 1e(-)-oxidized 2 (2OX). Bond dissociation enthalpies (BDE) of the two Ru(II) complexes having Hdmdmp as a ligand in proton-coupled electron transfer (PCET) to generate 1OX and 2OX were calculated to be 85 kcal mol(-1) for 1OX and 78 kcal mol(-1) for 2OX. The BDE values are large enough to perform H atom transfer from C-H bonds of organic molecules to the 1e(-)-oxidized complexes through PCET. The second-order rate constants (k) of PCET oxidation reactions were determined for 1OX and 2OX. The logarithms of normalized k values were proportional to the BDE values of C-H bonds of the substrates with slopes of -0.27 for 1OX and -0.44 for 2OX. The difference between 1OX and 2OX in the slopes suggests that the transition states in PCET oxidations of substrates by the two complexes bear different polarization, as reflection of difference in the electron acceptability and basicity of 1OX and 2OX. The more basic 2OX attracts a proton from a C-H bond via a more polarized transition state than that of 1OX; on the contrary, the more electron-deficient 1OX forms less polarized transition states in PCET oxidation reactions of C-H bonds.

  11. Mechanistic Insights into C-H Oxidations by Ruthenium(III)-Pterin Complexes: Impact of Basicity of the Pterin Ligand and Electron Acceptability of the Metal Center on the Transition States.

    Science.gov (United States)

    Mitome, Hiroumi; Ishizuka, Tomoya; Kotani, Hiroaki; Shiota, Yoshihito; Yoshizawa, Kazunari; Kojima, Takahiko

    2016-08-01

    A ruthenium(II) complex, [Ru(dmdmp)Cl(MeBPA)] (2) (Hdmdmp = N,N-dimethyl-6,7-dimethylpterin, MeBPA = N-methyl-N,N-bis(pyridylmethyl)amine), having a pterin derivative as a proton-accepting ligand, was synthesized and characterized. Complex 2 shows higher basicity than that of a previously reported Ru(II)-pterin complex, [Ru(dmdmp) (TPA)](+) (1) (TPA = tris(2-pyridylmethyl)amine). On the other hand, 1e(-)-oxidized species of 1 (1OX) exhibits higher electron-acceptability than that of 1e(-)-oxidized 2 (2OX). Bond dissociation enthalpies (BDE) of the two Ru(II) complexes having Hdmdmp as a ligand in proton-coupled electron transfer (PCET) to generate 1OX and 2OX were calculated to be 85 kcal mol(-1) for 1OX and 78 kcal mol(-1) for 2OX. The BDE values are large enough to perform H atom transfer from C-H bonds of organic molecules to the 1e(-)-oxidized complexes through PCET. The second-order rate constants (k) of PCET oxidation reactions were determined for 1OX and 2OX. The logarithms of normalized k values were proportional to the BDE values of C-H bonds of the substrates with slopes of -0.27 for 1OX and -0.44 for 2OX. The difference between 1OX and 2OX in the slopes suggests that the transition states in PCET oxidations of substrates by the two complexes bear different polarization, as reflection of difference in the electron acceptability and basicity of 1OX and 2OX. The more basic 2OX attracts a proton from a C-H bond via a more polarized transition state than that of 1OX; on the contrary, the more electron-deficient 1OX forms less polarized transition states in PCET oxidation reactions of C-H bonds. PMID:27403587

  12. Red- and blue-shifted hydrogen bonds in the cis-trans noncyclic formic acid dimer.

    Science.gov (United States)

    Zhou, Pan-Pan; Qiu, Wen-Yuan

    2009-08-01

    The cis-trans noncyclic formic acid dimer was studied by means of MP2 method with 6-31G(d,p), 6-31+G(d,p) and 6-311+G(d,p) basis sets. It exhibits simultaneously red-shifted O-H...O and blue-shifted C-H...O hydrogen bonds. AIM and NBO analyses are performed at the MP2/6-31+G(d,p) level to explore their properties and origins. AIM analysis provides the evidence that the O-H bond becomes weaker and the C-H bond becomes stronger upon the hydrogen bond formations. Intermolecular and intramolecular hyperconjugations have important influence on the electron densities in the X-H (X = O, C) sigma bonding orbital and its sigma* antibonding orbital. The electron densities in the two orbitals are closely connected with the X-H (X = O, C) bond length, and they are used to quantitatively estimate the bond length variation. The larger amount of charge transfer in the red-shifted O-H...O hydrogen bond is due to its favorable H...O electron channel, whereas the H...O electron channel in the blue-shifted C-H...O hydrogen bond is weaker. Structural reorganization effects shorten the C-H bond by approximately 30% when compared to the C-H bond contraction upon the dimerization. Strikingly, it leads to a small elongation and a slight red shift of the O-H bond. Both rehybridization and repolarization result in the X-H (X = O, C) bond contraction, but their effects on the O-H bond do not hold a dominant position. The hydrogen-bonding processes go through the electrostatic attractions, van der Waals interactions, charge-transfer interactions, hydrogen-bonding interactions and electrostatic repulsions. Electrostatic attractions are of great importance on the origin of the red-shifted O-H...O hydrogen bond, especially the strong H(delta+)...O(delta-) attraction. For the blue-shifted C-H...O hydrogen bond, the considerable nucleus-nucleus repulsion between H and O atoms caused by the strong electrostatic attraction between C and O atoms is a possible reason for the C-H bond contraction and

  13. Late-stage diversification of biologically active pyridazinones via a direct C-H functionalization strategy.

    Science.gov (United States)

    Li, Wei; Fan, Zhoulong; Geng, Kaijun; Xu, Youjun; Zhang, Ao

    2015-01-14

    Divergent C-H functionalization reactions (arylation, carboxylation, olefination, thiolation, acetoxylation, halogenation, naphthylation) using a pyridazinone moiety as an internal directing group were successfully established. This approach offers a late-stage, ortho-selective diversification of a biologically active pyridazinone scaffold. Seven series of novel pyridazinone analogues were synthesized conveniently as the synthetic precursors of potential sortase A (SrtA) inhibitors.

  14. C$^+$/H$_2$ Gas in Star-Forming Clouds and Galaxies

    CERN Document Server

    Nordon, Raanan

    2016-01-01

    We present analytic theory for the total column density of singly ionized carbon (C$^+$) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C$^+$ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C$^+$ column is mixed with hydrogen that is primarily molecular (H$_2$), and this "C$^+$/H$_2$" gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C$^+$/H$_2$ column density is limited by dust shielding and is inversely proportional to the metallicity down to $\\sim$0.1 solar. At lower metallicities, H$_2$ line blocking dominates and the C$^+$/H$_2$ column saturates. Applying our theory to CO surveys in low redshift spirals we estimate the fraction of C$^+$/H$_2$ gas out of the total molecular gas to be typic...

  15. Preparation and comparison of a-C:H coatings using reactive sputter techniques

    Energy Technology Data Exchange (ETDEWEB)

    Keunecke, M., E-mail: martin.keunecke@ist.fraunhofer.d [Fraunhofer Institute for Surface Engineering and Thin Films (IST), Braunschweig (Germany); Weigel, K.; Bewilogua, K. [Fraunhofer Institute for Surface Engineering and Thin Films (IST), Braunschweig (Germany); Cremer, R.; Fuss, H.-G. [CemeCon AG, Wuerselen (Germany)

    2009-12-31

    Amorphous hydrogenated carbon (a-C:H) coatings are widely used in several industrial applications. These coatings commonly will be prepared by plasma activated chemical vapor deposition (PACVD). The main method used to prepare a-C:H coating in industrial scale is based on a glow discharge in a hydrocarbon gas like acetylene or methane using a substrate electrode powered with medium frequency (m.f. - some 10 to 300 kHz). Some aims of further development are adhesion improvement, increase of hardness and high coating quality on complex geometries. A relatively new and promising technique to fulfil these requirements is the deposition of a-C:H coatings by a reactive d.c. magnetron sputter deposition from a graphite target with acetylene as reactive gas. An advancement of this technique is the deposition in a pulsed magnetron sputter process. Using these three mentioned techniques a-C:H coatings were prepared in the same deposition machine. For adhesion improvement different interlayer systems were applied. The effect of different substrate bias voltages (d.c. and d.c. pulse) was investigated. By applying the magnetron sputter technique in the d.c. pulse mode, plastic hardness values up to 40 GPa could be reached. Besides hardness other mechanical properties like resistance against abrasive wear were measured and compared. Cross sectional SEM images showed the growth structure of the coatings.

  16. Cobalt-catalyzed C-H olefination of aromatics with unactivated alkenes.

    Science.gov (United States)

    Manoharan, Ramasamy; Sivakumar, Ganesan; Jeganmohan, Masilamani

    2016-08-18

    A cobalt-catalyzed C-H olefination of aromatic and heteroaromatic amides with unactivated alkenes, allyl acetates and allyl alcohols is described. This method offers an efficient route for the synthesis of vinyl and allyl benzamides in a highly stereoselective manner. It is observed that the ortho substituent on the benzamide moiety is crucial for the observation of allylated products in unactivated alkenes.

  17. C+/H2 gas in star-forming clouds and galaxies

    Science.gov (United States)

    Nordon, Raanan; Sternberg, Amiel

    2016-11-01

    We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.

  18. Deposition of a-C:H films on a nanotrench pattern by bipolar PBII&D

    Science.gov (United States)

    Hirata, Yuki; Nakahara, Yuya; Nagato, Keisuke; Choi, Junho

    2016-06-01

    In this study, hydrogenated amorphous carbon (a-C:H) films were deposited on a nanotrench pattern (300 nm pitch, aspect ratio: 2.0) by bipolar-type plasma based ion implantation and deposition technique (bipolar PBII&D), and the effects of bipolar pulse on the film properties were investigated. Moreover, the behaviour of ions and radicals surrounding the nanotrench was analyzed to clarify the coating mechanism and properties of the a-C:H films on the nanotrench. Further, thermal nanoimprint lithography was carried out using the nanotrench pattern coated with a-C:H films as the mold, and the mold release properties were evaluated. All nanotrench surfaces were successfully coated with the a-C:H films, but the film thickness on the top, sidewall, and bottom surfaces of the trench were not uniform. The surface roughness of the a-C:H films was found to decrease at a higher positive voltage; this happens due to the higher electron temperature around the nanotrench because of the surface migration of plasma particles arrived on the trench. The effects of the negative voltage on the behaviour of ions and radicals near the sidewall of the nanotrench are quite similar to those near the microtrench reported previously (Park et al 2014 J. Phys. D: Appl. Phys. 47 335306). However, the positive pulse voltage was also found to affect the behaviour of ions and radicals near the sidewall surface. The incident angles of ions on the sidewall surface increased with the positive pulse voltage because the energy of incoming ions on the trench decreases with increasing positive voltage. Moreover, the incident ion flux on the sidewall is affected by the positive voltage history. Further, the radical flux decreases with increasing positive voltage. It can be concluded that a higher positive voltage at a lower negative voltage condition is good to obtain better film properties and higher film thickness on the sidewall surface. Pattern transfer properties for the nanoimprint formed by

  19. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  20. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing

    2011-05-15

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  1. Silver- and gold-mediated nucleobase bonding.

    Science.gov (United States)

    Acioli, Paulo H; Srinivas, Sudha

    2014-08-01

    We report the results of a density functional theory investigation of the bonding of nucleobases mediated by silver and gold atoms in the gas phase. Our calculations use the Becke exchange and Perdew-Wang correlation functional (BPW91) combined with the Stuttgart effective core potentials to represent the valence electrons of gold, silver, and platinum, and the all-electron DGTZVP basis set for C, H, N, and O. This combination was chosen based on tests on the metal atoms and tautomers of adenine, cytosine, and guanine. To establish a benchmark to understand the metal-mediated bonding, we calculated the binding energy of each of the base pairs in their canonical forms. Our calculations show rather strong bonds between the Watson-Crick base pairs when compared with typical values for N-H-N and N-H-O hydrogen bonds. The neutral metal atoms tend to bond near the nitrogen atoms. The effect of the metal atoms on the bonding of nucleobases differs depending on whether or not the metal atoms bond to one of the hydrogen-bonding sites. When the silver or gold atoms bond to a non-hydrogen-bonding site, the effect is a slight enhancement of the cytosine-guanine bonding, but there is almost no effect on the adenine-thymine pairing. The metal atoms can block one of the hydrogen-bonding sites, thus preventing the normal cytosine-guanine and adenine-thymine pairings. We also find that both silver and gold can bond to consecutive guanines in a similar fashion to platinum, albeit with a significantly lower binding energy.

  2. Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) thin films as selective solar absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Yung-Hsiang; Brahma, Sanjaya [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Tzeng, Y.H. [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Ting, Jyh-Ming, E-mail: jting@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-10-15

    We have investigated a double-cermet structured thin film in which an a-C:H thin film was used as an anti-reflective (AR) layer and two platinum-containing amorphous hydrogenated carbon (a-C:H/Pt) thin films were used as the double cermet layers. A reactive co-sputter deposition method was used to prepare both the anti-reflective and cermet layers. Effects of the target power and heat treatment were studied. The obtained films were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy. The optical absorptance and emittance of the as deposited and annealed films were determined using UV–vis-NIR spectroscopy. We show that the optical absorptance of the resulting double-cermet structured thin film is as high as 96% and remains to be 91% after heat treatment at 400 °C, indicating the thermal stability of the film.

  3. Top Quark Flavor Changing Decay t → cH0 in Little Higgs Model

    Institute of Scientific and Technical Information of China (English)

    Farshid Tabbakh; LIU Jing-Jing; MA Wen-Gan; ZHANG Ren-You; HOU Hong-Sheng

    2005-01-01

    We study theoretically the quantum effects of the littlest Higgs model (LH) mediated by flavor changing one-loop Feynman diagrams on the rare decay process t → cH0. The comparison of the decay width in the LH model with that in the standard model (SM) is made. We find that the decay branch ratio of t → cH0 in the LH model is at most of the order ~ 10-12, which is two order larger than in the SM. The numerical results show that the difference between the branch ratios in the LH model and the SM is generally sensitive to the LH model parameters, such as symmetry breaking scale f, Higgs boson mass mH0, and x = v'4f /v2 in our chosen parameter space, but relatively insensitive to the value choice of the cosine of the mixing angle c and the ratio λ1/λ2.

  4. Deposition of a-C:H films on UHMWPE substrate and its wear-resistance

    Science.gov (United States)

    Xie, Dong; Liu, Hengjun; Deng, Xingrui; Leng, Y. X.; Huang, Nan

    2009-10-01

    In prosthetic hip replacements, ultrahigh molecular weight polyethylene (UHMWPE) wear debris is identified as the main factor limiting the lifetime of the artificial joints. Especially UHMWPE debris from the joint can induce tissue reactions and bone resorption that may lead to the joint loosening. The diamond like carbon (DLC) film has attracted a great deal of interest in recent years mainly because of its excellent tribological property, biocompatibility and chemically inert property. In order to improve the wear-resistance of UHMWPE, a-C:H films were deposited on UHMWPE substrate by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-PECVD) technology. During deposition, the working gases were argon and acetylene, the microwave power was set to 800 W, the biased pulsed voltage was set to -200 V (frequency 15 kHz, duty ratio 20%), the pressure in vacuum chamber was set to 0.5 Pa, and the process time was 60 min. The films were analysed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, nano-indentation, anti-scratch and wear test. The results showed that a typical amorphous hydrogenated carbon (a-C:H) film was successfully deposited on UHMWPE with thickness up to 2 μm. The nano-hardness of the UHMWPE coated with a-C:H films, measured at an applied load of 200 μN, was increased from 10 MPa (untreated UHMWPE) to 139 MPa. The wear test was carried out using a ball (Ø 6 mm, SiC) on disk tribometer with an applied load of 1 N for 10000 cycles, and the results showed a reduction of worn cross-sectional area from 193 μm 2 of untreated UHMWPE to 26 μm 2 of DLC coated sample. In addition the influence of argon/acetylene gas flow ratio on the growth of a-C:H films was studied.

  5. Iodine(III)-Mediated Selective Intermolecular C-H Amination for the Chemical Diversification of Tryptamines.

    Science.gov (United States)

    Bosnidou, Alexandra E; Millán, Alba; Ceballos, Javier; Martínez, Claudio; Muñiz, Kilian

    2016-08-01

    Defined hypervalent iodine reagents of the general structure PhI[N(SO2R)(SO2R')]2 promote the selective direct C-H-amination of the indole core of various tryptamines. Starting from a general C2-amination strategy, subsequent transformations enable a variety of site-selective functionalizations, which proceed with noteworthy high chemoselectivity and provide an overall access to structurally diversified products.

  6. Microstructure characterization of advanced protective Cr/CrN+a-C:H/a-C:H:Cr multilayer coatings on carbon fibre composite (CFC).

    Science.gov (United States)

    Major, L; Janusz, M; Lackner, J M; Kot, M; Major, B

    2016-06-01

    Studies of advanced protective chromium-based coatings on the carbon fibre composite (CFC) were performed. Multidisciplinary examinations were carried out comprising: microstructure transmission electron microscopy (TEM, HREM) studies, micromechanical analysis and wear resistance. Coatings were prepared using a magnetron sputtering technique with application of high-purity chromium and carbon (graphite) targets deposited on the CFC substrate. Selection of the CFC for surface modification in respect to irregularities on the surface making the CFC surface more smooth was performed. Deposited coatings consisted of two parts. The inner part was responsible for the residual stress compensation and cracking initiation as well as resistance at elevated temperatures occurring namely during surgical tools sterilization process. The outer part was responsible for wear resistance properties and biocompatibility. Experimental studies revealed that irregularities on the substrate surface had a negative influence on the crystallites growth direction. Chromium implanted into the a-C:H structure reacted with carbon forming the cubic nanocrystal chromium carbides of the Cr23 C6 type. The cracking was initiated at the coating/substrate interface and the energy of brittle cracking was reduced because of the plastic deformation at each Cr interlayer interface. The wear mechanism and cracking process was described in micro- and nanoscale by means of transmission electron microscope studies. Examined materials of coated CFC type would find applications in advanced surgical tools.

  7. Diffusion bonding

    Science.gov (United States)

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  8. The azomethine ylide route to amine C-H functionalization: redox-versions of classic reactions and a pathway to new transformations.

    Science.gov (United States)

    Seidel, Daniel

    2015-02-17

    Conspectus Redox-neutral methods for the functionalization of amine α-C-H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C-H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts. Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet-Spengler, and Kabachnik-Fields reactions, Friedel-Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C-H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct. Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic processes, have been

  9. Palladium(ii)-catalyzed C-C and C-O bond formation for the synthesis of C1-benzoyl isoquinolines from isoquinoline N-oxides and nitroalkenes.

    Science.gov (United States)

    Li, Jiu-Ling; Li, Wei-Ze; Wang, Ying-Chun; Ren, Qiu; Wang, Heng-Shan; Pan, Ying-Ming

    2016-08-01

    C1-Benzoyl isoquinolines can be generated via a palladium(ii)-catalyzed C-C and C-O coupling of isoquinoline N-oxides with aromatic nitroalkenes. The reaction proceeds through remote C-H bond activation and subsequent intramolecular oxygen atom transfer (OAT). In this reaction, the N-O bond was designed as a directing group in the C-H bond activation as well as the source of an oxygen atom. PMID:27443150

  10. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  11. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  12. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  13. Diarylindenotetracenes via a selective cross-coupling/C-H functionalization: electron donors for organic photovoltaic cells.

    Science.gov (United States)

    Gu, Xingxian; Luhman, Wade A; Yagodkin, Elisey; Holmes, Russell J; Douglas, Christopher J

    2012-03-16

    A direct synthesis of new donor materials for organic photovoltaic cells is reported. Diaryindenotetracenes were synthesized utilizing a Kumada-Tamao-Corriu cross-coupling of peri-substituted tetrachlorotetracene with spontaneous indene annulation via C-H activation. Vacuum deposited planar heterojunction organic photovoltaic cells incorporating these molecules as electron donors exhibit power conversion efficiencies exceeding 1.5% with open-circuit voltages ranging from 0.7 to 1.1 V when coupled with C(60) as an electron acceptor.

  14. Copper-Catalyzed Intramolecular Benzylic C-H Amination for the Synthesis of Isoindolinones.

    Science.gov (United States)

    Yamamoto, Chiaki; Takamatsu, Kazutaka; Hirano, Koji; Miura, Masahiro

    2016-09-01

    A copper-catalyzed intramolecular amination occurs at the benzylic C-H of 2-methylbenzamides to deliver the corresponding isoindolinones of great interest in medicinal chemistry. The mild and abundant MnO2 works well as a terminal oxidant, and the reaction proceeds smoothly under potentially explosive organic peroxide-free conditions. Additionally, the directing-group-dependent divergent mechanisms are proposed: 8-aminoquinoline-containing benzamides include a Cu-mediated organometallic pathway whereas an aminyl radical-promoted Hofmann-Loffler-Freytag (HLF)-type mechanism can be operative in the case of N-naphthyl-substituted substrates. PMID:27504671

  15. Effect of the charge localization in the C+-H+ fragmentation pathway of the ethyne dication

    International Nuclear Information System (INIS)

    The C+-H+ channel in the fragmentation of the ethyne dication following inner-shell ionization has been studied by Auger electron-ion-ion coincidence spectroscopy. The ion-ion coincidence map shows a peculiar feature which corresponds to the emission of both the H+ and C+ ions in the same direction. The analysis of the data, complemented by ab initio calculations, suggests an interpretation in terms of a two-step, asynchronous concerted reaction, in which the charge of the ethynyl intermediate ion localizes on the terminal carbon atom.

  16. Production of iron carbide using the metastable Fe-C-H-O system

    Energy Technology Data Exchange (ETDEWEB)

    Conejo, A.N.; Estrada, R.S.; Rodriguez, R.A. [Instituto Tecnologico Morelia (Mexico)

    2003-04-01

    The production of iron carbide without the formation of free carbon was explored using a metastable thermodynamic approach. Phase stability diagrams, at constant pressure and constant temperature, indicating the phase fields for the condensed phases in total equilibrium with a reactant gas phase were employed as the initial point analysis of the present study. With the aid of this information it was possible to identify the phase fields corresponding to metastable iron carbide in a ternary diagram (C-H-O). Experimental evidence confirms the validity of this information. The metastable diagrams are proposed to be used as a method to control the production of iron carbide in the industrial practice. (orig.)

  17. Kinetics of Hydrocarbon formation in a- C:H Film deposition plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cal, E. de la; Tabares, F. L.

    1993-07-01

    The formation of C2 and Cp hydrocarbons during the PACVD of a-C:H films from admixtures of methane with H2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanisms of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene formation was found to be directly related to the formation of the film on top of the carburized metal. (Author) 12 refs.

  18. C-H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation

    Energy Technology Data Exchange (ETDEWEB)

    Kawarada, H., E-mail: kawarada@waseda.jp [Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Institute of Nano-Science and Nano-Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Shinjuku, Tokyo 169-0051 (Japan); Tsuboi, H.; Naruo, T.; Yamada, T.; Xu, D.; Daicho, A.; Saito, T. [Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Hiraiwa, A. [Institute of Nano-Science and Nano-Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)

    2014-07-07

    By forming a highly stable Al{sub 2}O{sub 3} gate oxide on a C-H bonded channel of diamond, high-temperature, and high-voltage metal-oxide-semiconductor field-effect transistor (MOSFET) has been realized. From room temperature to 400 °C (673 K), the variation of maximum drain-current is within 30% at a given gate bias. The maximum breakdown voltage (V{sub B}) of the MOSFET without a field plate is 600 V at a gate-drain distance (L{sub GD}) of 7 μm. We fabricated some MOSFETs for which V{sub B}/L{sub GD} > 100 V/μm. These values are comparable to those of lateral SiC or GaN FETs. The Al{sub 2}O{sub 3} was deposited on the C-H surface by atomic layer deposition (ALD) at 450 °C using H{sub 2}O as an oxidant. The ALD at relatively high temperature results in stable p-type conduction and FET operation at 400 °C in vacuum. The drain current density and transconductance normalized by the gate width are almost constant from room temperature to 400 °C in vacuum and are about 10 times higher than those of boron-doped diamond FETs.

  19. Sub-micro a-C:H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Boileau, Alexis; Gries, Thomas; Noël, Cédric; Perito Cardoso, Rodrigo; Belmonte, Thierry

    2016-11-01

    Micro and nano-patterning of surfaces is an increasingly popular challenge in the field of the miniaturization of devices assembled via top-down approaches. This study demonstrates the possibility of depositing sub-micrometric localized coatings—spots, lines or even more complex shapes—made of amorphous hydrogenated carbon (a-C:H) thanks to a moving XY stage. Deposition was performed on silicon substrates using chemical vapor deposition assisted by an argon atmospheric-pressure plasma jet. Acetylene was injected into the post-discharge region as a precursor by means of a glass capillary with a sub-micrometric diameter. A parametric study was carried out to study the influence of the geometric configurations (capillary diameter and capillary-plasma distance) on the deposited coating. Thus, the patterns formed were investigated by scanning electron microscopy and atomic force microscopy. Furthermore, the chemical composition of large coated areas was investigated by Fourier transform infrared spectroscopy according to the chosen atmospheric environment. The observed chemical bonds show that reactions of the gaseous precursor in the discharge region and both chemical and morphological stability of the patterns after treatment are strongly dependent on the surrounding gas. Various sub-micrometric a-C:H shapes were successfully deposited under controlled atmospheric conditions using argon as inerting gas. Overall, this new process of micro-scale additive manufacturing by atmospheric plasma offers unusually high-resolution at low cost.

  20. Rhodium mediated bond activation: from synthesis to catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Hung-An [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Recently, our lab has developed monoanionic tridentate ligand, ToR, showing the corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic reactivity of the ToR-supported rhodium compounds. Tl[ToR] has been proved to be a superior ligand transfer agent for synthesizing rhodium complexes. The salt metathesis route of Tl[ToM] with [Rh(μ-Cl)(CO)]2 and [Rh(μ- Cl)(COE)]2 gives ToMRh(CO)2 (2.2) and ToMRhH(β3-C8H13) (3.1) respectively while Tl[ToM] with [Rh(μ-Cl)(CO)]2 affords ToPRh(CO)2 (2.3). 2.2 reacts with both strong and weak electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated to give high diastereoselectivity. Parallel to COE allylic C-H activation complex 3.1, the propene and allylbenzene allylic C-H activation products have also been synthesized. The subsequent functionalization attempts have been examined by treating with Brønsted acids, Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing multiple bonds able to be inserted. Various related complexes have been obtained under these conditions, in which one of the azide insertion compounds reductively eliminates to give an allylic functionalization product stoichiometrically. 3.1 reacts with various primary alcohols to give the decarbonylation dihydride complex ToMRh(H)2CO (4.1). 4.1 shows catalytic reactivity for primary alcohol decarbonylation under a photolytic condition. Meanwhile, 2.2 has been found to be more reactive than 4.1 for catalytic alcohol decarbonylation under the same condition. Various complexes and primary

  1. Two lanthanum(III) complexes containing η2-pyrazolate and η2-1,2,4-triazolate ligands: intramolecular C-H...N/O interactions and coordination geometries.

    Science.gov (United States)

    Wang, Yu-Long; Feng, Meng; Tao, Xian; Tang, Qing-Yun; Shen, Ying-Zhong

    2013-01-01

    The lanthanum(III) complexes tris(3,5-diphenylpyrazolato-κ(2)N,N')tris(tetrahydrofuran-κO)lanthanum(III) tetrahydrofuran monosolvate, [La(C(15)H(11)N(2))(3)(C(4)H(8)O)(3)]·C(4)H(8)O, (I), and tris(3,5-diphenyl-1,2,4-triazolato-κ(2)N(1),N(2))tris(tetrahydrofuran-κO)lanthanum(III), [La(C(14)H(10)N(3))(3)(C(4)H(8)O)(3)], (II), both contain La(III) atoms coordinated by three heterocyclic ligands and three tetrahydrofuran ligands, but their coordination geometries differ. Complex (I) has a mer-distorted octahedral geometry, while complex (II) has a fac-distorted configuration. The difference in the coordination geometries and the existence of asymmetric La-N bonding in the two complexes is associated with intramolecular C-H...N/O interactions between the ligands.

  2. The role of C-H$\\ldots$ interaction in the stabilization of benzene and adamantane clusters

    Indian Academy of Sciences (India)

    R Mahesh Kumar; M Elango; R Parthasarathi; Dolly Vijay; V Subramanian

    2012-01-01

    In this investigation, a systematic attempt has been made to understand the interaction between adamantane and benzene using both ab initio and density functional theory methods. C-H$\\ldots$ type of interaction between C-H groups of adamantane and cloud of benzene is found as the important attraction for complex formation. The study also reveals that the methylene (-CH2) and methine (-CH) groups of adamantane interact with benzene resulting in different geometrical structures. And it is found that the former complex is stronger than the later. The diamondoid structure of adamantane enables it to interact with a maximum of four benzene molecules, each one along the four faces. The stability of the complex increases with increase in the number of benzene molecules. The energy decomposition analysis of adamantane-benzene complexes using DMA approach shows that the origin of the stability primarily arises from the dispersive interaction. The theory of atoms in molecules (AIM) supports the existence of weak interaction between the two systems. The electrostatic topography features provide clues for the mode of interaction of adamantane with benzene.

  3. C-H-Activated Direct Arylation of Strong Benzothiadiazole and Quinoxaline-Based Electron Acceptors.

    Science.gov (United States)

    Zhang, Junxiang; Parker, Timothy C; Chen, Wayne; Williams, LaRita; Khrustalev, Victor N; Jucov, Evgheni V; Barlow, Stephen; Timofeeva, Tatiana V; Marder, Seth R

    2016-01-15

    Electron acceptors are important components of π-conjugated materials, but the strong electron-withdrawing properties of the required synthetic intermediates often make them poor substrates in synthetic schemes designed around conventional organometallic cross-coupling. Here, strong benzodiimine-based acceptors, including 5,6-difluoro[2,1,3]benzothiadiazole, 5,6-dicyano[2,1,3]benzothiadiazole, 5,6-dicyanobenzo[d][1,2,3]triazole, 6,7-dicyanoquinoxaline, and 6,7-dinitroquinoxaline, are shown to undergo facile palladium-catalyzed C-H direct arylation with a variety of bromoarenes in moderate to high yields. The electrochemical characteristics of di-2-thienyl derivatives synthesized using this methodology are compared and suggest that, in an electron-transfer sense, 5,6-dicyano[2,1,3]benzothiadiazole is a comparably strong acceptor to benzo[1,2-c:4,5-c']bis[1,2,5]thiadiazole. The synthetic results suggest that high electron-withdrawing ability, which has traditionally limited reaction yields and structural variety in organic electronic materials, may be advantageous when employing C-H activated direct arylation in certain circumstances.

  4. Novel Stable Compounds in the C-H-O Ternary System at High Pressure.

    Science.gov (United States)

    Saleh, Gabriele; Oganov, Artem R

    2016-01-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed. PMID:27580525

  5. Composite Ag/C:H:N films prepared by planar magnetron deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hlidek, P. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic)], E-mail: hlidek@karlov.mff.cuni.cz; Hanus, J.; Biederman, H.; Slavinska, D.; Pesicka, J. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic)

    2008-05-30

    Composite Ag/C:H:N films were deposited by means of an unbalanced magnetron operated in a gas mixture of nitrogen and n-hexane. Composition of the films was controlled by electric power delivered to the magnetron and by ratio of nitrogen and n-hexane in the working gas mixture. The films were characterized using transmission electron microscopy, by the absorption spectra in visible and near infrared regions and by Fourier transform infrared spectroscopy. Immediately after film deposition and without breaking vacuum (in situ) corresponding vibration infrared spectra were scanned and their evolution during ageing of the films was monitored. Wettability as determined from water contact angle was improved with raising nitrogen contents, i.e. with increasing the electric power and the ratio of nitrogen/n-hexane in the working gas mixture. The increased wettability is likely caused by presence of NH{sub x} groups in Ag/C:H:N films. The incorporation of nitrogen effectively prevents the formation of carboxylate groups on the silver inclusions surfaces during the aging in the open air. In addition, the oxidation mechanism of the polymer matrix is modified.

  6. Surface-Wave Plasma Deposition of a-C:H Films for Field Emission

    Science.gov (United States)

    Sano, Toru; Nagatsu, Masaaki; Takada, Noriharu; Toyoda, Hirotaka; Sugai, Hideo; Guang, W. X.; Hirao, Takashi; Toyoda, Naoki

    2000-10-01

    Recently crystalline diamond or diamondlike carbon (DLC) thin films prepared by the plasma enhanced CVD techniques have been widely studied as a new material of electron emitter for the next generation large-area field emission display. Among them, DLC films grown at low temperature are more attractive from an aspect of industrial manufacturing. In this study, we have carried out the deposition of hydrogenated amorphous carbon(a-C:H) films using a high density, low pressure surface-wave plasma (SWP). The SWP was produced in a 40cm-diameter vacuum chamber by introducing 2.45 GHz microwave through a quartz window via slot antennas. The a-C:H films were deposited on a silicon substrate immersed in He/CH4 plasma, under discharge conditions of 700 W microwave power and 200 mTorr total pressure. Excellent field emission characteristics were obtained: the threshold electric field defined at an emission current density of 1 μA/cm^2 was obtained to be 4 V/μm. Other film characteristics measured with the XPS and FT-IR are also presented. This work was supported by a Grant-in-Aid for Science Research from the Ministry of Education, Science, Sports and Culture in Japan.

  7. Novel Stable Compounds in the C-H-O Ternary System at High Pressure

    Science.gov (United States)

    Saleh, Gabriele; Oganov, Artem R.

    2016-09-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed.

  8. Excess C/O and C/H in outer protoplanetary disk gas

    CERN Document Server

    Oberg, Karin I

    2016-01-01

    The compositions of nascent planets depend on the compositions of their birth disks. In particular, the elemental compositions of Gas Giant gaseous envelopes depend on the elemental composition of the disk gas from which the envelope is accreted. Previous models demonstrated that sequential freeze-out of O and C-bearing volatiles in disks will result in an supersolar C/O ratios and subsolar C/H ratios in the gas between water and CO snowlines. This result does not take into account, however, the expected grain growth and radial drift of pebbles in disks, and the accompanying re-distribution of volatiles from the outer to the inner disk. Using a toy model we demonstrate that when drift is considered, CO is enhanced between the water and CO snowline, resulting in both supersolar C/O and C/H ratios in the disk gas in the Gas Giant formation zone. This result appears robust to the details of the disk model as long as there is substantial pebble drift across the CO snowline, and the efficiency of CO vapor diffusio...

  9. Chelation-assisted Pd-catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and intramolecular Friedel-Crafts acylation: one-pot formation of fluorenones.

    Science.gov (United States)

    Sun, Denan; Li, Bijin; Lan, Jingbo; Huang, Quan; You, Jingsong

    2016-03-01

    Pd-Catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and subsequent intramolecular Friedel-Crafts acylation has been accomplished for the first time through a chelation-assisted C-H activation strategy. Starting from the readily available substrates, a variety of fluorenone derivatives are obtained in one pot. The direct use of naturally occurring carboxylic acid functionalities as directing groups avoids unnecessary steps for installation and removal of an extra directing group. PMID:26861768

  10. On the Importance of C-H/π and C-H⋅⋅⋅H-C Interactions in the Solid State Structure of 15-Lipoxygenase Inhibitors Based on Eugenol Derivatives.

    Science.gov (United States)

    Mirzaei, Masoud; Nikpour, Mohsen; Bauzá, Antonio; Frontera, Antonio

    2015-07-20

    In this manuscript the X-ray structures of two potent and known inhibitors of 15-lipoxygenase, that is, 4-allyl-2-methoxyphenyl-1-admantanecarboxylate (1) and allyl-2-methoxyphenyl-1-cyclohexanecarboxylate (2), are reported. Their solid-state architectures show that they have a strong ability to establish C-H/π and C-H⋅⋅⋅H-C interactions. For the former interaction, the adamantane or cyclohexane moieties are the C-H donors and the electron-rich methoxyphenyl ring is the π system. For the latter, the C-H bonds belong to the aliphatic rings of the inhibitors. Interestingly, the active site of lipoxygenase enzyme family is rich in isoleucine and leucine amino acids that participate in the binding of the unsaturated fatty acid substrate by means of multiple hydrophobic C-H⋅⋅⋅H-C interactions. By means of theoretical calculations, we analyze the ability of compounds 1 and 2 to establish C-H/π and C-H⋅⋅⋅H-C interactions in the solid state.

  11. Direct catalytic cross-coupling of organolithium compounds

    NARCIS (Netherlands)

    Giannerini, Massimo; Fananas Mastral, Martin; Feringa, Ben L.

    2013-01-01

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern sy

  12. Catalytic Deoxygenation of Fatty Acids: Elucidation of the Inhibition Process

    NARCIS (Netherlands)

    Hollak, S.A.W.; Jong, de K.P.; Es, van D.S.

    2014-01-01

    Catalytic deoxygenation of unsaturated fatty acids in the absence of H2 is known to suffer from significant catalyst inhibition. Thus far, no conclusive results have been reported on the cause of deactivation. Here we show that CC double bonds present in the feed or the products dramatically reduce

  13. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  14. Catalytic Functions of Standards

    NARCIS (Netherlands)

    K. Blind (Knut)

    2009-01-01

    textabstractThe three different areas and the examples have illustrated several catalytic functions of standards for innovation. First, the standardisation process reduces the time to market of inventions, research results and innovative technologies. Second, standards themselves promote the diffusi

  15. 2008 C. H. McCloy lecture. Social psychology and physical activity: back to the future.

    Science.gov (United States)

    Gill, Diane L

    2009-12-01

    In the early 1970s, both my academic career and the psychology subdiscipline within kinesiology began as "social psychology and physical activity. "Since then, sport and exercise psychology research has shifted away from the social to a narrower biopsycho-(no social) approach, and professional practice has focused on the elite rather than the larger public. Psychology can contribute to an integrative and relevant professional discipline by going back to the future as social psychology and physical activity and by incorporating three of C. H. McCloy's themes (a) evidence-based practice, (b) beyond dualisms, and (c) commitment to public service. Our scholarship must move beyond dualisms to recognize complexities and connections and be truly scholarship for practice. Social psychology and physical activity can serve the public by advocating for inclusive, empowering physical activity programs that promote health and well being for all.

  16. Rapid thermal annealing of Amorphous Hydrogenated Carbon (a-C:H) films

    Science.gov (United States)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1987-01-01

    Amorphous hydrogenated carbon (a-C:H) films were deposited on silicon and quartz substrates by a 30 kHz plasma discharge technique using methane. Rapid thermal processing of the films was accomplished in nitrogen gas using tungsten halogen light. The rapid thermal processing was done at several fixed temperatures (up to 600 C), as a function of time (up to 1800 sec). The films were characterized by optical absorption and by ellipsometry in the near UV and the visible. The bandgap, estimated from extrapolation of the linear part of a Tauc plot, decreases both with the annealing temperature and the annealing time, with the temperature dependence being the dominating factor. The density of states parameter increases up to 25 percent and the refractive index changes up to 20 percent with temperature increase. Possible explanations of the mechanisms involved in these processes are discussed.

  17. R.E.A.C.H. to Teach: Making Patient and Family Education "Stick".

    Science.gov (United States)

    Cutilli, Carolyn Crane

    2016-01-01

    Healthcare professionals teach patients and families about their health every day. Regulatory and accreditation organizations mandate patient and family education to promote better health outcomes. And recently, financial rewards for healthcare organizations are being tied to patient satisfaction (Hospital Consumer Assessment of Healthcare Providers and Systems-HCAHPS). A University of Pennsylvania Health System group of staff and patients, devoted to excellence in patient and family education, developed the graphic "R.E.A.C.H. to Teach." The purpose of the graphic is to make evidence-based practice (EBP) for patient and family education "stick" with staff. The group used concepts from the marketing book, Made to Stick, to demonstrate how to develop effective staff and patient and family education. Ideas (education) that survive ("stick") have the following attributes: simple, unexpected, concrete, credible, emotional, and narrative (story). This article demonstrates how to apply these principles and EBP to patient and family education. PMID:27441879

  18. Studies of beauty baryon decays to $D^0 ph^-$ and $\\Lambda_c^+ h^-$ final states

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Adrover, Cosme; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bonis, Isabelle; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Dogaru, Marius; Donleavy, Stephanie; Dordei, Francesca; Dorosz, Piotr; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; van Eijk, Daan; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Fitzpatrick, Conor; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garosi, Paola; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Hafkenscheid, Tom; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hicks, Emma; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Huse, Torkjell; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Iakovenko, Viktor; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Wallaa; Karacson, Matthias; Karbach, Moritz; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Klaver, Suzanne; Kochebina, Olga; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Li Gioi, Luigi; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Ian; Lopes, Jose; Lopez-March, Neus; Lu, Haiting; Lucchesi, Donatella; Luisier, Johan; Luo, Haofei; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Maratas, Jan; Marconi, Umberto; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martins Tostes, Danielle; Martynov, Aleksandr; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Maurice, Emilie; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Mountain, Raymond; Mous, Ivan; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Muryn, Bogdan; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neubert, Sebastian; Neufeld, Niko; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nomerotski, Andrey; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pavel-Nicorescu, Carmen; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Pérez-Calero Yzquierdo, Antonio; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Polok, Grzegorz; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redford, Sophie; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Roberts, Douglas; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Oksana; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teodorescu, Eliza; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Webber, Adam Dane; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiechczynski, Jaroslaw; Wiedner, Dirk; Wiggers, Leo; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    Decays of beauty baryons to the $D^0 p h^-$ and $\\Lambda_c^+ h^-$ final states (where $h$ indicates a pion or a kaon) are studied using a data sample of $pp$ collisions, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by the LHCb detector. The Cabibbo-suppressed decays $\\Lambda_b^0\\to D^0 p K^-$ and $\\Lambda_b^0\\to \\Lambda_c^+ K^-$ are observed and their branching fractions are measured with respect to the decays $\\Lambda_b^0\\to D^0 p \\pi^-$ and $\\Lambda_b^0\\to \\Lambda_c^+ \\pi^-$. In addition, the first observation is reported of the decay of the neutral beauty-strange baryon $\\Xi_b^0$ to the $D^0 p K^-$ final state, and a measurement of the $\\Xi_b^0$ mass is performed. Evidence of the $\\Xi_b^0\\to \\Lambda_c^+ K^-$ decay is also reported.

  19. Drift mobility measurements in a-C:H films by time-resolved electroluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Foulani, A

    2002-12-30

    Carrier transport mechanism has been studied in thin insulating hydrogenated amorphous carbon (a-C:H) films. The layers were prepared by plasma polymerization of methane (CH{sub 4}) at a frequency of 20 kHz. Electron mobility was derived from time-resolved luminescence experiments. Between the application of a rectangular voltage pulse and the first appearance of electroluminescence (EL) a time lag exists, which depends on the pulse height. Transit times are in the order of 10{sup -3} to {approx}10{sup -6} s in a voltage rabetween 10 and 25 V. And the estimated electron mobility varies accordingly from 8x10{sup -8} to {approx}10{sup -6} cm{sup 2}/(V s). The field dependence of the carriers mobility is characteristic of Poole-Frenkel-detrapping conduction model, and thus confirms the results obtained by dc experimental data.

  20. Manganese-Mediated C-H Alkylation of Unbiased Arenes Using Alkylboronic Acids.

    Science.gov (United States)

    Castro, Susana; Fernández, Juan J; Fañanás, Francisco J; Vicente, Rubén; Rodríguez, Félix

    2016-06-27

    The alkylation of arenes is an essential synthetic step of interest not only from the academic point of view but also in the bulk chemical industry. Despite its limitations, the Friedel-Crafts reaction is still the method of choice for most of the arene alkylation processes. Thus, the development of new strategies to synthesize alkyl arenes is a highly desirable goal, and herein, we present an alternative method to those conventional reactions. Particularly, a simple protocol for the direct C-H alkylation of unbiased arenes with alkylboronic acids in the presence of Mn(OAc)3 ⋅2H2 O is reported. Primary or secondary unactivated alkylboronic acids served as alkylating agents for the direct functionalization of representative polyaromatic hydrocarbons (PAHs) or benzene. The results are consistent with a free-radical mechanism. PMID:27124250

  1. 5-Position-selective C-H trifluoromethylation of 8-aminoquinoline derivatives.

    Science.gov (United States)

    Kuninobu, Yoichiro; Nishi, Mitsumi; Kanai, Motomu

    2016-09-14

    We developed a copper-catalyzed 5-position-selective C-H trifluoromethylation of 8-aminoquinoline derivatives. The reaction proceeded with high functional group tolerance under mild conditions. In the case of quinolines with an amide, carbamate, urea, or sulfonamide group at the 8-position of quinoline moieties, a radical scavenger experiment indicated that the reaction proceeded via a radical pathway. The protecting group of an 8-amidoquinoline derivative could be removed by hydrolysis. On the other hand, the trifluoromethylation of 8-aminoquinolines was also promoted by other Lewis acids as well as a copper catalyst and proceeded even in the presence of a radical scavenger. These results indicated that the trifluoromethylation of 8-aminoquinolines proceeded via a Friedel-Crafts-type reaction. Interestingly, the copper salt works as either a catalyst for the formation of a CF3 radical or a Lewis acid to promote a Friedel-Crafts-type reaction, depending on the substrate. PMID:27506919

  2. Recommended Thermal Rate Coefficients for the C + H$_3^+$ Reaction and Some Astrochemical Implications

    CERN Document Server

    Vissapragada, S; Miller, K A; O'Connor, A P; de Ruette, N; Urbain, X; Savin, D W

    2016-01-01

    We have incorporated our experimentally derived thermal rate coefficients for C + H$_3^+$ forming CH$^+$ and CH$_2^+$ into a commonly used astrochemical model. We find that the Arrhenius-Kooij equation typically used in chemical models does not accurately fit our data and use instead a more versatile fitting formula. At a temperature of 10 K and a density of 10$^4$ cm$^{-3}$, we find no significant differences in the predicted chemical abundances, but at higher temperatures of 50, 100, and 300 K we find up to factor of 2 changes. Additionally, we find that the relatively small error on our thermal rate coefficients, $\\sim15\\%$, significantly reduces the uncertainties on the predicted abundances compared to those obtained using the currently implemented Langevin rate coefficient with its estimated factor of 2 uncertainty.

  3. Erosion of a-C:H in the afterglow of ammonia plasma

    Science.gov (United States)

    Drenik, Aleksander; Mourkas, Angelos; Zaplotnik, Rok; Primc, Gregor; Mozetič, Miran; Panjan, Peter; Alegre, Daniel; Tabarés, Francisco L.

    2016-07-01

    Amorphous hydrogenated carbon (a-C:H) deposits were eroded in the afterglow of a NH3 plasma, created with an inductively coupled RF generator in pure NH3 at the gas pressure of 50 Pa. The plasma system was characterised by optical emission spectroscopy and mass spectrometry, and the erosion process was monitored in-situ with a laser interferometry system. Based on the mass spectrometry measurements, the degree of dissociation of the NH3 molecules was estimated at 90% at the highest generator forward power in the discharge region, however the densities of N and H atoms were significantly smaller at the location of the sample holder. The erosion rates were found to increase with surface temperature and forward generator power. In the high dissociation regime, the composition of the afterglow and the reaction products highlight the role of N atoms in the erosion process.

  4. Accurate NMR determination of C-H or N-H distances for unlabeled molecules.

    Science.gov (United States)

    Nishiyama, Y; Malon, M; Potrzebowski, M J; Paluch, P; Amoureux, J P

    2016-02-01

    Cross-Polarization with Variable Contact-time (CP-VC) is very efficient at ultra-fast MAS (νR ≥ 60 kHz) to measure accurately the dipolar interactions corresponding to C-H or N-H short distances, which are very useful for resonance assignment and for analysis of dynamics. Here, we demonstrate the CP-VC experiment with (1)H detection. In the case of C-H distances, we compare the CP-VC signals with direct ((13)C) and indirect ((1)H) detection and find that the latter allows a S/N gain of ca. 2.5, which means a gain of ca. 6 in experimental time. The main powerful characteristics of CP-VC methods are related to the ultra-fast spinning speed and to the fact that most of the time only the value of the dipolar peak separation has to be used to obtain the information. As a result, CP-VC methods are: (i) easy to set up and to use, and robust with respect to (ii) rf-inhomogeneity thus allowing the use of full rotor samples, (iii) rf mismatch, and (iv) offsets and chemical shift anisotropies. It must be noted that the CP-VC 2D method with indirect (1)H detection requires the proton resolution and is thus mainly applicable to small or perdeuterated molecules. We also show that an analysis of the dynamics can even be performed, with a reasonable experimental time, on unlabeled samples with (13)C or even (15)N natural abundance. PMID:26169913

  5. Deposition of a-C:H films on inner surface of high-aspect-ratio microchannel

    Science.gov (United States)

    Hirata, Yuki; Choi, Junho

    2016-08-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared on inner surface of 100-μm-width microchannel by using a bipolar-type plasma based ion implantation and deposition. The microchannel was fabricated using a silicon plate, and two kinds of microchannels were prepared, namely, with a bottom layer (open at one end) and without a bottom layer (open at both ends). The distribution of thickness and hardness of films was evaluated by SEM and nanoindentation measurements, respectively, and the microstructures of films were evaluated by Raman spectroscopy. Furthermore, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision and Direct Simulation Monte Carlo to investigate the coating mechanism for the microchannel. It was found that the film thickness decreased as the depth of the coating position increased in the microchannels where it is open at one end. The uniformity of the film thickness improved by increasing the negative pulse voltage because ions can arrive at the deeper part of the microchannel. In addition, the hardness increased as the depth of the coating position increased. This is because the radicals do not arrive at the deeper part of the microchannel, and the incident proportion of ions relative to that of radicals increases, resulting in a high hardness due to the amorphization of the film. The opening area of the microchannel where the aspect ratio is very small, radicals dominate the incident flux, whereas ions prevail over radicals above an aspect ratio of about 7.5. On the other hand, in the microchannels that are open at both ends, there were great improvements in uniformity of the film thickness, hardness, and the film structure. The a-C:H films were successfully deposited on the entire inner surface of a microchannel with an aspect ratio of 20.

  6. Ru-catalysed C-H silylation of unprotected gramines, tryptamines and their congeners.

    Science.gov (United States)

    Devaraj, K; Sollert, C; Juds, C; Gates, P J; Pilarski, L T

    2016-04-30

    Selective Ru-catalysed C2-H silylation of heteroarenes is presented. The transformation works with or without directing group assistance and requires no protecting groups. Gramines and tryptamines may be converted efficiently whilst avoiding deleterious elimination side-reactions. Mechanistic studies reveal an unusual activation of the indole C4-H bond by an electron-rich metal. PMID:27050747

  7. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  8. Convergent Synthesis of Diverse Nitrogen Heterocycles via Rh(III)-Catalyzed C-H Conjugate Addition/Cyclization Reactions.

    Science.gov (United States)

    Weinstein, Adam B; Ellman, Jonathan A

    2016-07-01

    The development of Rh(III)-catalyzed C-H conjugate addition/cyclization reactions that provide access to synthetically useful fused bi- and tricyclic nitrogen heterocycles is reported. A broad scope of C-H functionalization substrates and electrophilic olefin coupling partners is effective, and depending on the nature of the directing group, cyclic imide, amide, or heteroaromatic products are obtained. An efficient synthesis of a pyrrolophenanthridine alkaloid natural product, oxoassoanine, highlights the utility of this method. PMID:27337641

  9. Enantioselective Allylic C-H Oxidation of Terminal Olefins to Isochromans by Palladium(II)/Chiral Sulfoxide Catalysis.

    Science.gov (United States)

    Ammann, Stephen E; Liu, Wei; White, M Christina

    2016-08-01

    The enantioselective synthesis of isochroman motifs has been accomplished by palladium(II)-catalyzed allylic C-H oxidation from terminal olefin precursors. Critical to the success of this goal was the development and utilization of a novel chiral aryl sulfoxide-oxazoline (ArSOX) ligand. The allylic C-H oxidation reaction proceeds with the broadest scope and highest levels of asymmetric induction reported to date (avg. 92 % ee, 13 examples with greater than 90 % ee). PMID:27376625

  10. The C--H Stretching Features at 3.2--3.5 Micrometer of Polycyclic Aromatic Hydrocarbons with Aliphatic Sidegroups

    CERN Document Server

    Yang, Xuejuan; Glaser, Rainer; Zhong, Jianxin

    2016-01-01

    The so-called unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometer are ubiquitously seen in a wide variety of astrophysical regions. The UIE features are characteristic of the stretching and bending vibrations of aromatic hydrocarbon materials, e.g., polycyclic aromatic hydrocarbon (PAH) molecules. The 3.3 micrometer aromatic C--H stretching feature is often accompanied by a weaker feature at 3.4 micrometer. The latter is often thought to result from the C--H stretch of aliphatic groups attached to the aromatic systems. The ratio of the observed intensity of the 3.3 micrometer aromatic C--H feature to that of the 3.4 micrometer aliphatic C--H feature allows one to estimate the aliphatic fraction of the UIE carriers, provided that the intrinsic oscillator strengths of the 3.3 micrometer aromatic C--H stretch (A3.3) and the 3.4 micrometer aliphatic C--H stretch (A3.4) are known. While previous studies on the aliphatic fraction of the UIE carriers were mostly based on the A3.4...

  11. Catalytic coherence transformations

    Science.gov (United States)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  12. Catalytic arylation methods from the academic lab to industrial processes

    CERN Document Server

    Burke, Anthony J

    2014-01-01

    A current view of the challenging field of catalytic arylation reactions. Clearly structured, the chapters in this one-stop resource are arranged according to the reaction type, and focus on novel, efficient and sustainable processes, rather than the well-known and established cross-coupling methods.The entire contents are written by two authors with academic and industrial expertise to ensure consistent coverage of the latest developments in the field, as well as industrial applications, such as C-H activation, iron and gold-catalyzed coupling reactions, cycloadditions or novel methodologies

  13. Effects of metal elements in catalytic growth of carbon nanotubes/graphene: A first principles DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingde; Croiset, Eric; Ricardez-Sandoval, Luis, E-mail: laricard@uwaterloo.ca

    2014-10-30

    Graphical abstract: - Highlights: • Role of metals in the catalytic growth of CNTs or graphene was studied using DFT. • The results explain why Ni-based catalyst is suitable for growing CNTs. • Cu based alloys, e.g. Cu{sub 8}Ni, are found appropriate catalyst for graphene synthesis. - Abstract: Role of metals in the catalytic Chemical Vapor Deposition (CVD) growth of carbon nanotubes (CNTs) or graphene was investigated using DFT. Crucial processes involved in the growth of CNTs/graphene: methane dissociation to produce C, C diffusion and nucleation kinetics were studied on the (1 1 1) surface of different transition metals, i.e., Fe, Co, Ni, and Cu. Based on the DFT calculation results, the present study explains why Ni-based catalyst is a suitable CVD substrate for growing CNTs: it has a moderate reactivity towards methane dissociation; low energy barrier for C atom surface diffusion, which makes C to diffuse easily to the metal/CNTs edges and contribute to CNTs growth; relatively high nucleation barriers, making it more resistant for deactivation caused by the cover of carbon clusters. Meanwhile, this study also shows that Cu may be an appropriate catalyst for graphene synthesis due to the particularly low diffusion and nucleation barriers of C atoms on Cu, which suggest that C atoms tend to be more uniformly distributed and nucleate easily on the Cu surface. Key limitation of Cu is the low reactivity of this metal towards methane dissociation. Since Fe and Ni are very reactive towards C-H bond breaking, Cu based alloys, e.g. Cu{sub 8}Ni, were proposed as a suitable catalyst for graphene production.

  14. Stoichiometric and Catalytic Synthesis of Alkynylphosphines

    Directory of Open Access Journals (Sweden)

    Annie-Claude Gaumont

    2012-12-01

    Full Text Available Alkynylphosphines or their borane complexes are available either through C–P bond forming reactions or through modification of the phosphorus or the alkynyl function of various alkynyl phosphorus derivatives. The latter strategy, and in particular the one involving phosphoryl reduction by alanes or silanes, is the method of choice for preparing primary and secondary alkynylphosphines, while the former strategy is usually employed for the synthesis of tertiary alkynylphosphines or their borane complexes. The classical C–P bond forming methods rely on the reaction between halophosphines or their borane complexes with terminal acetylenes in the presence of a stoichiometric amount of organometallic bases, which precludes the access to alkynylphosphines bearing sensitive functional groups. In less than a decade, efficient catalytic procedures, mostly involving copper complexes and either an electrophilic or a nucleophilic phosphorus reagent, have emerged. By proceeding under mild conditions, these new methods have allowed a significant broadening of the substituent scope and structure complexity.

  15. Studies of beauty baryon decays to D0ph- and Λc+h- final states

    Science.gov (United States)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Dogaru, M.; Donleavy, S.; Dordei, F.; Dorosz, P.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Hafkenscheid, T. W.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hicks, E.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Klaver, S.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marconi, U.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martins Tostes, D.; Martynov, A.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurice, E.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mordà, A.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neubert, S.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Pessina, G.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Roberts, D. A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration

    2014-02-01

    Decays of beauty baryons to the D0ph- and Λc+h- final states (where h indicates a pion or a kaon) are studied using a data sample of pp collisions, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb detector. The Cabibbo-suppressed decays Λb0→D0pK- and Λb0→Λc+K- are observed, and their branching fractions are measured with respect to the decays Λb0→D0pπ- and Λb0→Λc+π-. In addition, the first observation is reported of the decay of the neutral beauty-strange baryon Ξb0 to the D0pK- final state, and a measurement of the Ξb0 mass is performed. Evidence of the Ξb0→Λc+K- decay is also reported.

  16. Cross Shear Roll Bonding

    DEFF Research Database (Denmark)

    Bay, Niels; Bjerregaard, Henrik; Petersen, Søren. B;

    1994-01-01

    The present paper describes an investigation of roll bonding an AlZn alloy to mild steel. Application of cross shear roll bonding, where the two equal sized rolls run with different peripheral speed, is shown to give better bond strength than conventional roll bonding. Improvements of up to 20......-23% in bond strength are found and full bond strength is obtained at a reduction of 50% whereas 65% is required in case of conventional roll bonding. Pseudo cross shear roll bonding, where the cross shear effect is obtained by running two equal sized rolls with different speed, gives the same results....

  17. Carbon dioxide as a carbon source in organic transformation: carbon-carbon bond forming reactions by transition-metal catalysts.

    OpenAIRE

    Tsuji, Yasushi; Fujihara, Tetsuaki

    2012-01-01

    Recent carbon-carbon bond forming reactions of carbon dioxide with alkenes, alkynes, dienes, aryl zinc compounds, aryl boronic esters, aryl halides, and arenes having acidic C-H bonds are reviewed in which transition-metal catalysts play an important role.

  18. H2 formation via the UV photo-processing of a-C:H nano-particles

    CERN Document Server

    Jones, A P

    2015-01-01

    Context. The photolysis of hydrogenated amorphous carbon, a-C(:H), dust by UV photon-irradiation in the laboratory leads to the release of H2 as well as other molecules and radicals. This same process is also likely to be important in the interstellar medium. Aims. To investigate molecule formation arising from the photo-dissociatively-driven, regenerative processing of a-C(:H) dust. Methods. We explore the mechanism of a-C(:H) grain photolysis leading to the formation of H2 and other molecules/radicals. Results. The rate constant for the photon-driven formation of H2 from a-C(:H) grains is estimated to be 2x10^-17 cm^3 s^-1. In intense radiation fields photon-driven grain decomposition will lead to fragmentation into daughter species rather than H2 formation. Conclusions. The cyclic re-structuring of arophatic a-C(:H) nano-particles appears to be a viable route to formation of H2 for low to moderate radiation field intensities (1 < G_0 < 10^2), even when the dust is warm (T ~ 50 - 100 K).

  19. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  20. First principles DFT study of weak C-H…O bonds in crystalline amino acids under pressure-alanine

    Science.gov (United States)

    Ramaniah, Lavanya M.; Kamal, C.; Sikka, S. K.

    2013-02-01

    Many crystalline solids containing C-H…O hydrogen bonds display blue shifting of the C-H stretching frequency under pressure. No agreed explanation is available for this. Here, we use first principles density functional theory, to determine the hydrogen atom positions to understand the cause of this blue shift. No neutron diffraction is feasible due to flux limitations for this purpose. As a first case, we have taken up the study of the amino acid, alanine. We find that the C_H_…O bond in it no longer remain isolated under compression as is case at ambient pressure. The hydrogen atom in the bond has now repulsive contacts with other atoms. This results in contraction of the C-H bond length and consequently to blue shifting as is found experimentally.

  1. Effects of 200cH medications on mice bone marrow cells and macrophages

    Directory of Open Access Journals (Sweden)

    Dorly de F. Buchi

    2011-07-01

    Full Text Available Paracelsus once wrote: "All things are poison and nothing is without poison, only the dose permits something not to be poisonous." Latter Hahnemann formulated the law of similars, preparations which cause certain symptoms in healthy individuals if given in diluted form to patients exhibiting similar symptoms will cure it. Highly diluted natural complexes prepared according to Hahnemann’s ancient techniques may represent a new form of immunomodulatory therapy. The lack of scientific research with highly diluted products led us to investigate the in vivo and in vitro actions of commonly used medications. Here we describe the results of experimental studies aimed at verifying the effects of Mercurius solubilis, Atropa Belladonna, Lachesis muta and Bryonia alba. All medications were at 200cH dilution. Animals were maintained for 7 days and were allowed to drink the medications, which were prepared in a way that the final dilution and agitation (200cH was performed in drinking water. The medication bottle was changed and sucussed every afternoon. Co-culture of non treated mice bone marrow cells and in vitro treated peritoneal macrophages were also performed. After animal treatment the bone marrow cells were immunophenotyped with hematopoietic lineage markers on a flow cytometer. We have determined CD11b levels on bone marrow cells after culture and co-culture with treated macrophages and these macrophages were processed to scanning electron microscopy. We have observed by morphological changes that macrophages were activated after all treatments. Mercurius solubilis treated mice showed an increase in CD3 expression and in CD11b on nonadherent bone marrow cells after co-culture with in vitro treatment. Atropa Belladonna increased CD45R and decreased Ly-6G expression on bone marrow cells after animal treatment. Lachesis muta increased CD3, CD45R and, CD11c expression and decreased CD11b ex vivo and in nonadherent cells from co

  2. Ruthenium-Catalyzed Direct and Selective C-H Cyanation of N-(Hetero)aryl-7-azaindoles.

    Science.gov (United States)

    Mishra, Aniket; Vats, Tripta Kumari; Deb, Indubhusan

    2016-08-01

    An efficient, highly regioselective, and scalable ruthenium-catalyzed o-aryl C-H mono-cyanation of N-aryl-7-azaindoles to form N-(2-cyanoaryl)-7-azaindoles has been developed through N-directed ortho C-H activation using N-cyano-N-phenyl-p-toluenesulfonamide as cyanating reagent in the presence of AgOTf and NaOAc in DCE. A range of substrates has furnished cyanated azaindoles in good to excellent yields under the simple reaction conditions. Involvement of C-H metalation has been supported by a kinetic study. This methodology provides easy access to a class of pharmaceutically significant molecules and their precursors. PMID:27408980

  3. Nickel-Catalyzed Oxidative C-H/N-H Isocyanide Insertion: An Efficient Synthesis of Iminoisoindolinone Derivatives.

    Science.gov (United States)

    Hao, Wenyan; Tian, Jun; Li, Wu; Shi, Renyi; Huang, Zhiliang; Lei, Aiwen

    2016-06-01

    Transition metal-catalyzed isocyanide insertion has served as a fundamental and important chemical transformation. Classical isocyanide insertion usually occurs between organohalides and nucleophiles, which normally involves tedious and non-atom-economical prefunctionalization processes. However, oxidative C-H/N-H isocyanide insertion offers an efficient and green alternative. Herein, a nickel-catayzed oxidative C-H/N-H isocyanide insertion of aminoquinoline benzamides has been developed. Different kinds of iminoisoindolinone derivatives could be synthesized in good yields by utilizing Ni(acac)2 as the catalyst. In this transformation, isocyanide serves as an efficient C1 connector, which further inserted into two simple nucleophiles (C-H/N-H), representing an effective way to construct heterocycles.

  4. Structural and mechanical properties of nc-TiC/a-C:H nanocomposite film prepared by dual plasma technique

    International Nuclear Information System (INIS)

    Nanocomposite nc-TiC/a-C:H film, with an unusual combination of superhardness, high elastic modulus and high elastic recovery, are prepared by using the dual plasma technique. The effects of the filter coil current on the compositional, structural and mechanical properties of the nc-TiC/a-C:H films have been investigated. X-ray photoelectron spectroscopy (XPS) and Raman analyses show that deposition rate, composition and nanostructure of the nc-TiC/a-C:H films could be changed by varying the filter coil current. Fortunately, by selecting the proper value for the filter coil current, 2.5 A, one could remarkably enhance mechanical properties of films such as the superhardness (66.4 GPa), the high elastic modulus (510 GPa) and the high elastic recovery (83.3%)

  5. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  6. Catalytic Phosphination and Arsination

    Institute of Scientific and Technical Information of China (English)

    Kwong Fuk Yee; Chan Kin Shing

    2004-01-01

    The catalytic, user-friendly phosphination and arsination of aryl halides and triflates by triphenylphosphine and triphenylarsine using palladium catalysts have provided a facile synthesis of functionalized aryl phosphines and arsines in neutral media. Modification of the cynaoarisne yielded optically active N, As ligands which will be screened in various asymmetric catalysis.

  7. Catalytic efficiency of designed catalytic proteins.

    Science.gov (United States)

    Korendovych, Ivan V; DeGrado, William F

    2014-08-01

    The de novo design of catalysts that mimic the affinity and specificity of natural enzymes remains one of the Holy Grails of chemistry. Despite decades of concerted effort we are still unable to design catalysts as efficient as enzymes. Here we critically evaluate approaches to (re)design of novel catalytic function in proteins using two test cases: Kemp elimination and ester hydrolysis. We show that the degree of success thus far has been modest when the rate enhancements seen for the designed proteins are compared with the rate enhancements by small molecule catalysts in solvents with properties similar to the active site. Nevertheless, there are reasons for optimism: the design methods are ever improving and the resulting catalyst can be efficiently improved using directed evolution.

  8. Study on the HPHT synthetic diamond crystal from Fe-C(H)system and its significance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Investigations of crystal habit,micro-topographic imaging,micro-composition and micro-structural analysis of HPHT synthetic diamonds from the Fe-C(H)system indicate that most of them have an octahedral habit.The crystals grow mainly layer-to-layer from center to periphery.HPHT synthetic diamond is smaller in size than naturel diamond because it only goes through nucleation and growth in the early stage.In the middle and late stages,due to the coalescence of diamond grains related to differences of surface energy,the growth of HPHT synthetic diamond iS limited.The active energy (E) of transforming single nitrogen into a nitrogen-pair is lowered and the time of transforming single nitrogen into a nitrogen-pair is shortened because of the existence of hydrogen.Therefore,aggregate nitrogen(A-centers)may exist in synthetic diamond from HPHT and explosive detonation processes.It needs further discussion on a worldwide view that the time of natural diamond formation extrectad from nitrogen aggregation is some hundred million years.Consideration of the way in which Surface energy influences the growth of diamond can help to understand some of the remaining issues(e.g.growth mechanism,etc.)in the HPHT synthetic process and effectively explain the formation of naturel diamond in terms of HPHT thermodynamic theory.Especially,it is important to pay more attention to the influence of hydrogen on surface energy in that hydrogen may be a"bridge"for explaining the formation of HPHT synthetic and natural diamond.

  9. Influence of energetic ion bombardment on W-C: H coatings deposited with W and WC targets

    OpenAIRE

    Strondl, C.; Carvalho, NM; de Hosson, JTM; Krug, TG

    2005-01-01

    Tungsten containing diamond-like carbon (W-C:H) coatings have been produced by unbalanced magnetron sputtering using two different target materials. In the first series of coatings, W has been used as target material, and in the second series, WC has been used as target material. In both series of W-C:H coatings, the deposition energy has been varied by changing the ion current density and the bias voltage on the substrate. The aim of the investigation has been to study the changes in the mic...

  10. Gold-catalysed facile access to indene scaffolds via sequential C-H functionalization and 5-endo-dig carbocyclization.

    Science.gov (United States)

    Ma, Ben; Wu, Ziang; Huang, Ben; Liu, Lu; Zhang, Junliang

    2016-08-01

    A concise synthesis of functionalized indene derivatives via the gold(i)-catalysed cascade C-H functionalization/conia-ene type reaction of electron-rich aromatics with o-alkynylaryl α-diazoesters has been developed. In this transformation, the gold catalyst not only catalysed the formation of the zwitterionic intermediate via intermolecular C-H functionalization but promoted the subsequent intramolecular 5-endo-dig cyclization via activation of alkynes. The reaction is characterized by high chemo- and site-selectivity, readily available starting materials, nice functional-group tolerance and mild reaction conditions. PMID:27373228

  11. On Bond Portfolio Management

    OpenAIRE

    Vladislav Kargin

    2002-01-01

    This paper describes a new method of bond portfolio optimization based on stochastic string models of correlation structure in bond returns. The paper shows how to approximate correlation function of bond returns, compute the optimal portfolio allocation using Wiener-Hopf factorization, and check whether a collection of bonds presents arbitrage opportunities.

  12. NUV/VIS sensitive multicolor thin film detector based on a-SiC:H/a-Si:H/{mu}c-SiGeC:H alloys with an in-situ structured transparent conductive oxide front contact without etching

    Energy Technology Data Exchange (ETDEWEB)

    Bablich, A., E-mail: andreas.bablich@uni-siegen.de; Boehm, M., E-mail: m.boehm@t-online.de

    2012-10-01

    An innovative family of hydrogenated amorphous silicon (a-Si:H) multicolor p-i-n photo sensors, sensitive in the VIS and the near UV spectrum, is presented. Typical values of the quantum efficiency at 350 nm and 580 nm are 5.4% and 54.7%, respectively, with - 0.4 V and - 12 V bias. Electro-optical studies were performed to explore the effect of combining linearly graded a-SiGe:H/{mu}c-SiGeC:H layers with linearly graded a-SiC:H-layers. The devices presented additionally contain a buried a-Si:H region. Low-reflective aluminum doped zinc oxide (ZnO:Al) back contacts improve the spectral color separation. {mu}{tau}-products and absorption coefficients of graded absorbers were determined. Discrete absorbers were substituted by a linear graded a-SiC:H absorption zone in the top structure, an interior a-Si:H region and a graded a-SiGe:H/a-SiC:H alloy combination. In this paper we demonstrate a reduction of interference fringes and operation at low bias voltages, combined with a highly precise adjustment of the spectral sensitivity, even in the near UV-spectrum. The device dynamic range exceeds 50 dB at 1000 lx white-light illumination. As the deposited upper layers adopt the roughness of {mu}c-SiGeC:H clusters in the rear absorber, we present an in-situ structured front contact without etching ZnO:Al. - Highlights: Black-Right-Pointing-Pointer Structuring zinc oxide anode without etching Black-Right-Pointing-Pointer UV/VIS amorphous silicon sensor Black-Right-Pointing-Pointer Microcrystalline narrow gap absorber Black-Right-Pointing-Pointer Significant color separation improvement.

  13. Catalytic reduction of NO by methane using a Pt/C/polybenzimidazole/Pt/C fuel cell

    DEFF Research Database (Denmark)

    Petrushina, Irina; Cleemann, Lars Nilausen; Refshauge, Rasmus;

    2007-01-01

    The catalytic NO reduction by methane was studied using a (NO,CH4,Ar),Pt|polybenzimidazole(PBI)–H3PO4|Pt,(H2,Ar) fuel cell at 135 and 165°C. It has been found that, without any reducing agent (like CH4), NO can be electrochemically reduced in the (NO, Ar), Pt/C|PBI–H3PO4|Pt/C, (H2,Ar) fuel cell...

  14. Tribological Performance of Hydrogenated Amorphous Carbon (a-C: H DLC Coating when Lubricated with Biodegradable Vegetal Canola Oil

    Directory of Open Access Journals (Sweden)

    H.M. Mobarak

    2014-06-01

    Full Text Available Increasing environmental awareness and demands for lowering energy consumptions are strong driving forces behind the development of the vehicles of tomorrow. Without the advances of lubricant chemistry and adequate lubricant formulation, expansion of modern engines would not have been possible. Considering environmental awareness factors as compared to mineral oils, vegetal oil based biolubricants are renewable, biodegradable, non-toxic and have a least amount of greenhouse gases. Furthermore, improvement in engine performance and transmission components, which were impossible to achieve by applying only lubricants design, is now possible through diamond like carbon (DLC coatings. DLC coatings exhibit brilliant tribological properties, such as good wear resistance and low friction. In this regard, tribological performance of a-C: H DLC coating when lubricated with Canola vegetal oil has been investigated by the help of a ball-on-flat geometry. Experimental results demonstrated that the a-C: H DLC coating exhibited better performance with Canola oil in terms of friction and wear as compared to the uncoated materials. Large amount of polar components in the Canola oil significantly improved the tribological properties of the a-C:H coating. Thus, usage of a-C: H DLC coating with Canola oil in the long run may have a positive impact on engine life.

  15. An overview on the applications of `Doyle catalysts’ in asymmetric cyclopropanation, cyclopropenation and C-H insertion reactions

    Indian Academy of Sciences (India)

    Thomas J Colacot

    2000-06-01

    The chiral dirhodium(II) carboxamidates are a unique class of chiral catalysts useful for asymmetric inter- and intramolecular cyclopropanation, cyclopropenation and C-H insertion reactions with excellent enantioselectivities. The broad applications of these catalysts in organic syntheses are briefly reviewed.

  16. Rh(iii)-catalyzed C-H activation/cyclization of oximes with alkenes for regioselective synthesis of isoquinolines.

    Science.gov (United States)

    Chen, Renjie; Qi, Jifeng; Mao, Zhenjun; Cui, Sunliang

    2016-07-14

    A Rh(iii)-catalyzed C-H activation/cyclization of oximes and alkenes for facile and regioselective access to isoquinolines has been developed. This protocol features mild reaction conditions and easily accessible starting materials, and has been applied to the concise synthesis of moxaverine. A kinetic isotope effect study was conducted and a plausible mechanism was proposed. PMID:27273816

  17. C-H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant.

    Science.gov (United States)

    Fabry, David C; Ronge, Meria A; Zoller, Jochen; Rueping, Magnus

    2015-02-23

    A combination of ruthenium and photoredox catalysis allowed the ortho olefination of phenols. Using visible light, the direct C-H functionalization of o-(2-pyridyl)phenols occurred, and diverse phenol ethers were obtained in good yields. The regeneration of the ruthenium catalyst was accomplished by a photoredox-catalyzed oxidative process.

  18. Simulation of the Efficiency of a-SiC:H/a-Si:H Tandem Multilayer Solar Cells

    CERN Document Server

    Muminov, Khikmat Kh

    2016-01-01

    In this paper we carried out theoretical study of the general issues related to the efficiency of SiC:H/a-Si:H single- and multi-junction tandem solar cells. Implementation of numerical simulations by the use of AMPS-1D program of one-dimensional analysis of microelectronic and photonic structures for the analysis of hydrogenated silicon solar cells allowed us to formulate the optimal design of new kind of multi-junction tandem solar cells, providing its most efficient operation. The numerical analysis of SiC:H/a-Si:H single-junction solar cell whith doped i-layer used as the intermediate absorbing layer (a -Si: H) placed between layers of p-type (a-SiC: H) and n-type (a-Si: H) has been conducted. It has been established that after optimizing the solar cell parameters its highest efficiency of 19.62% is achieved at 500 nm thickness of i-layer. The optimization of the newly developed multi-junction structure of a-SiC:H/a-Si:H tandem solar cell has been conducted. It has been shown numerically that its highest ...

  19. 2-Chlorovinyl tellurium dihalides, (p-tol)Te[C(H)=C(Cl)Ph]X{sub 2} for X = Cl, Br and I: variable coordination environments, supramolecular structures and docking studies in cathepsin B

    Energy Technology Data Exchange (ETDEWEB)

    Caracelli, Ignez, E-mail: ignez@ufscar.b [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Fisica; Zukerman-Schpector, Julio; Maganhi, Stella H., E-mail: julio@power.ufscar.b [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Quimica. Lab. de Cristalografia, Estereodinamica e Modelagem Molecular; Stefani, Helio A. [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Farmacia; Guadagnin, Rafael [Universidade Federal de Sao Paulo (Unifesp/EPM), Sao Paulo, SP (Brazil). Dept. de Quimica; Tiekink, Edward R.T., E-mail: edward.tiekink@gmail.co [University of Malaya, Kuala Lumpur (Malaysia). Dept. of Chemistry

    2010-07-01

    Crystallography shows that the Te atom in each of (p-tol)Te[C(H)=C(Cl)Ph]X{sub 2}, for X = Cl (1), Br (2) and I (3), is within a distorted {Psi}-pentagonal bipyramidal geometry. An E configuration for the vinyl group in (1) precludes the formation of an intramolecular Te...Cl interaction so that an intramolecular Te{pi} interaction is found instead. The coordination environment features a linear Cl-Te-Cl arrangement with the pentagonal plane defined by the two C atoms of the organic substituents, an intermolecular TeCl contact, a Te{pi} interaction and a stereochemically active lone pair of electrons. In the X = Br (2) and I (3) structures, similar coordination geometries are found but the Te{pi} contact is replaced by an intramolecular TeCl contact owing to the adoption of a Z configuration about the vinyl bond. The differences in structure are readily explained in terms of electronic effects. Docking studies of cathepsin B with (1')-(3'), i.e. 1-3 less one Te-bound halide, show efficient binding through the agency of covalent Te-S{sub Cys29} bonds with stabilization afforded by a combination of N-H{pi}, C-H{pi} and Cl{sub vinyl} H interactions. These results comparable favorably with known inhibitors of cathepsin B suggesting the title compounds have potential biological activity. (author)

  20. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  1. A HYDROGEN BONDING ASSISTED CATALYST SCREENED OUT VIA COMBINATORIAL CHEMISTRY STRATEGY

    Institute of Scientific and Technical Information of China (English)

    XUMancai; OUZhize; 等

    2000-01-01

    Possibilities for enhancement of catalytic reaction rate by combining phase transfer catalysis and hydrogen bonding of the catalyst with the substrate and reagent were studied.A phase transfer catalyst library with sixty polystyrene-supported quaternary ammonium salt catalysts was synthesized.The reduction of acetophenone by NaBH4 was used as the probing reaction to select out the ost active catalyst in the library by using iterative method.which was the gel-type triethanolamine aminsating strongly asic anion exchange resin with the crosslinking degeree of 2% A hydrogen bonding assisted catalytic mechanism was proposed to explain the high catalytic activity of the catalyst.

  2. A catalytic cracking process

    Energy Technology Data Exchange (ETDEWEB)

    Degnan, T.F.; Helton, T.E.

    1995-07-20

    Heavy oils are subjected to catalytic cracking in the absence of added hydrogen using a catalyst containing a zeolite having the structure of ZSM-12 and a large-pore crystalline zeolite having a Constraint Index less than about 1. The process is able to effect a bulk conversion of the oil at the same time yielding a higher octane gasoline and increased light olefin content. (author)

  3. Theoretical study of the mechanism for C-H bond activation in spin-forbidden reaction between Ti+ and C2H4

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The mechanism of the spin-forbidden reaction Ti+(4F, 3d24s1) + C2H4 → TiC2H2+ (2A2) + H2 on both doublet and quartet potential energy surfaces has been investigated at the B3LYP level of theory. Crossing points between the potential energy surfaces and the possible spin inversion process are discussed by means of spin-orbit coupling (SOC) calculations. The strength of the SOC between the low-lying quartet state and the doublet state is 59.3 cm-1 in the intermediate complex IM1-4B2. Thus, the changes of its spin multiplicity may occur from the quartet to the doublet surface to form IM1- 2A1, leading to a sig-nificant decrease in the barrier height on the quartet PES. After the insertion intermediate IM2, two dis-tinct reaction paths on the doublet PES have been found, i.e., a stepwise path and a concerted path. The latter is found to be the lowest energy path on the doublet PES to exothermic TiC2H2+ (2A2) + H2 products, with the active barrier of 4.52 kcal/mol. In other words, this reaction proceeds in the following way: Ti++C2H4 →4IC→IM1-4B2→4,2ISC→IM1- 2A1→[2TSins]→IM2→[2TSMCTS]→IM5→TiC2H2+(2A2)+H2.

  4. Indole cyanation via C-H bond activation under catalysis of Ru(Ⅲ)-exchanged NaY zeolite (RuY) as a recyclable catalyst

    Institute of Scientific and Technical Information of China (English)

    Alireza Khorshidi

    2012-01-01

    Selective 3-cyanation of indoles was achieved under heterogeneous catalysis of Ru(Ⅲ)-exchanged NaY zeolite (RuY) as a recyclable catalyst,in combination with K4[Fe(CN)6] as a nontoxic,slow cyanide releasing agent.Under the aforementioned conditions,good yields of the desired products were obtained.

  5. A brief review of para-xylene oxidation to terephthalic acid as a model of primary C-H bond activation

    Institute of Scientific and Technical Information of China (English)

    Nor Aqilah Mohd Fadzil; Mohd Hasbi Ab Rahim; Gaanty Pragas Maniam

    2014-01-01

    The oxidation of para-xylene to terephthalic acid has been commercialised as the AMOCO process (Co/Mn/Br) that uses a homogeneous catalyst of cobalt and manganese together with a corrosive bromide compound as a promoter. This process is conducted in acidic medium at a high tempera-ture (175-225 °C). Concerns over environmental and safety issues have driven studies to find mild-er oxidation reactions of para-xylene. This review discussed past and current progress in the oxida-tion of para-xylene process. The discussion concentrates on the approach of green chemistry in-cluding (1) using heterogeneous catalysts with promising high selectivity and mild reaction condi-tion, (2) application of carbon dioxide as a co-oxidant, and (3) application of alternative promoters. The optimisation of para-xylene oxidation was also outlined.

  6. Control of the intermolecular coupling of dibromotetracene on Cu(110) by the sequential activation of C-Br and C-H bonds.

    Science.gov (United States)

    Ferrighi, Lara; Píš, Igor; Nguyen, Thanh Hai; Cattelan, Mattia; Nappini, Silvia; Basagni, Andrea; Parravicini, Matteo; Papagni, Antonio; Sedona, Francesco; Magnano, Elena; Bondino, Federica; Di Valentin, Cristiana; Agnoli, Stefano

    2015-04-01

    Dibromotetracene molecules are deposited on the Cu(110) surface at room temperature. The complex evolution of this system has been monitored at different temperatures (i.e., 298, 523, 673, and 723 K) by means of a variety of complementary techniques that range from STM and temperature-programmed desorption (TPD) to high-resolution X-ray spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). State-of-the-art density-functional calculations were used to determine the chemical processes that take place on the surface. After deposition at room temperature, the organic molecules are transformed into organometallic monomers through debromination and carbon-radical binding to copper adatoms. Organometallic dimers, trimers, or small oligomers, which present copper-bridged molecules, are formed by increasing the temperature. Surprisingly, further heating to 673 K causes the formation of elongated chains along the Cu(110) close-packed rows as a consequence of radical-site migration to the thermodynamically more stable molecule heads. Finally, massive dehydrogenation occurs at the highest temperature followed by ring condensation to nanographenic patches. This study is a paradigmatic example of how intermolecular coupling can be modulated by the stepwise control of a simple parameter, such as temperature, through a sequence of domino reactions. PMID:25711882

  7. Cobalt-Catalyzed Cyclization of N-Methoxy Benzamides with Alkynes using an Internal Oxidant through C-H/N-O Bond Activation.

    Science.gov (United States)

    Sivakumar, Ganesan; Vijeta, Arjun; Jeganmohan, Masilamani

    2016-04-18

    The cyclization of substituted N-methoxy benzamides with alkynes in the presence of an easily affordable cobalt complex and NaOAc provides isoquinolone derivatives in good to excellent yields. The cyclization reaction is compatible with a range of functional group-substituted benzamides, as well as ester- and alcohol-substituted alkynes. The cobalt complex [Co(III) Cp*(OR)2 ] (R=Me or Ac) serves as an efficient catalyst for the cyclization reaction. Later, isoquinolone derivatives were converted into 1-chloro and 1-bromo substituted isoquinoline derivatives in excellent yields in the presence of POCl3 or PBr3 . PMID:26951887

  8. Active groups for oxidative activation of C-H bond in C{sub 2}-C{sub 5} paraffins on V-P-O catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zazhigalov, V.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    For the first time in scientific literature, in our joint work with Dr. G. Ladwig in 1978 it was established phase portraite of the oxide vanadium-phosphorus system within wide range of P/V ratios from 0.5 to 3.2. Some later those data were confirmed. By investigation of the properties of individual vanadium-phosphorus phases it was also shown that the active component of such catalysts in n-butane oxidation was vanadyl pyrophosphate phase (VO){sub 2}Pr{sub 2}O{sub 7}. From then the conclusion has been evidenced by numerous publications and at present it has been out of doubt practically all over the world. It was hypothized that the unique properties of (VO){sub 2}P{sub 2}O{sub 7} in the reaction of n-butane oxidation could be explained by the presence of paired vanadyl groups and nearness of the distances between neighbouring vanadyl pairs and that between the first and fourth carbon atoms in n-butane molecule. The molecule activation occured at the latter atoms by proton abstraction. A comparison of the results on n-butane and butenes oxidation over vanadyl pyrophosphate allowed to conclude that the paraffin oxidation did not take place due to the molecule dehydrogenation process at the first stage of its conversion. Up to now, more than 100 papers related to paraffins oxidation over vanadyl pyrophosphate and the physico-chemical properties of the catalyst have been published. The process of n-butane oxidation is realized in practice. But still, the question about the nature of active sites of the catalyst and the reaction mechanism remains open and provokes further investigations. The present paper deals with our opinion about the problem and the experimental results supporting it. (orig.)

  9. C-H and H-H bond activation via ligand dearomatization/rearomatization of a PN³P-rhodium(I) complex.

    Science.gov (United States)

    Wang, Yuan; Zheng, Bin; Pan, Yupeng; Pan, Chengling; He, Lipeng; Huang, Kuo-Wei

    2015-09-14

    A neutral complex PN(3)P-Rh(I)Cl (2) was prepared from a reaction of the PN(3)P pincer ligand (1) with [Rh(COD)Cl]2 (COD = 1,5-cyclooctadiene). Upon treatment with a suitable base, H-H and C(sp(2))-H activation reactions can be achieved through the deprotonation/reprotonation of one of the N-H arms and dearomatization/rearomatization of the central pyridine ring with the oxidation state of Rh remaining I.

  10. C-H and H-H Bond Activation via Ligand Dearomatization/Rearomatization of a PN3P-Rhodium(I) Complex

    KAUST Repository

    Huang, Kuo-Wei

    2015-04-13

    A neutral complex PN3P-Rh(I)Cl (2) was prepared from a reaction of the PN3P pincer ligand (1) with [Rh(COD)Cl]2 (COD = 1,5-cyclooctadiene). Upon treatment with a suitable base, H–H and Csp2–H activation reactions can be achieved through the deprotonation/reprotonation of one of the N–H arms and dearomatization/rearomatization of the central pyridine ring with the oxidation state of Rh remaining I.

  11. Density functional theory study of O-H and C-H bond scission of methanol catalyzed by a chemisorbed oxygen layer on Cu(111)

    Science.gov (United States)

    Li, Jonathan; Zhou, Guangwen

    2016-04-01

    Using the density-functional theory within the generalized gradient approximation, we have studied the partial oxidation of methanol on a Cu(111) surface covered with a chemisorbed oxygen layer that resembles a Cu2O layer. Adsorption energies and geometries were computed for methanol, methoxy, hydroxymethyl and formaldehyde on both clean Cu(111) and Cu2O/Cu(111) and electronic structures were computed for the reaction intermediates on Cu2O/Cu(111). We also calculated the energy barrier for partial oxidation of methanol to formaldehyde on Cu2O/Cu(111). These results show that the Cu2O monolayer slightly lowers the stability of each of the surface adsorbates and the oxygen strongly promotes hydrogen dissociation by lowering the energy barrier of methanol decomposition and causing the spontaneous dissociation of methanol into methoxy.

  12. Recoupled long-range C-H dipolar dephasing in solid-state NMR, and its use for spectral selection of fused aromatic rings

    Science.gov (United States)

    Mao, J.-D.; Schmidt-Rohr, K.

    2003-05-01

    This work introduces a simple new solid-state 13C NMR method for distinguishing various types of aromatic residues, e.g. those of lignin from fused rings of charcoal. It is based on long-range dipolar dephasing, which is achieved by recoupling of long-range C-H dipolar interactions, using two 1H 180° pulses per rotation period. This speeds up dephasing of unprotonated carbon signals approximately threefold compared to standard dipolar dephasing without recoupling and thus provides much more efficient differential dephasing. It also reduces the effects of spinning-speed dependent effective proton-proton dipolar couplings on the heteronuclear dephasing. Signals of unprotonated carbons with two or more protons at a two-bond distance dephase to wood charcoal, and even slower for inorganic carbonate. Direct 13C polarization is used on these structurally complex samples to prevent loss of the signals of interest, which by design originate from carbons that are distant from protons and therefore crosspolarize poorly. In natural organic matter such as humic acids, this combination of recoupled dipolar dephasing and direct polarization at 7-kHz MAS enables selective observation of signals from fused rings that are characteristic of charcoal.

  13. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.

    2013-01-09

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  14. Hydrogen bonded supramolecular structures

    CERN Document Server

    Li, Zhanting

    2015-01-01

    This book covers the advances in the studies of hydrogen-bonding-driven supramolecular systems  made over the past decade. It is divided into four parts, with the first introducing the basics of hydrogen bonding and important hydrogen bonding patterns in solution as well as in the solid state. The second part covers molecular recognition and supramolecular structures driven by hydrogen bonding. The third part introduces the formation of hollow and giant macrocycles directed by hydrogen bonding, while the last part summarizes hydrogen bonded supramolecular polymers. This book is designed to b

  15. Glass-aluminium bonded joints ; testing, comparing and designing for the ATP

    NARCIS (Netherlands)

    Richemont, S.A.J. de; Veer, F.A.

    2007-01-01

    This article presents the research to the bonded joints of the All Transparent Pavilion (ATP), an experimental project built in November 2004 at the faculty of Architecture in Delft. The pavilion is designed to use structural glass elements, bonded with Delo Photobond GB 368, a photo-catalytic trans

  16. Consequences of Metal–Oxide Interconversion for C–H Bond Activation during CH₄ Reactions on Pd Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Ya-Huei; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2013-10-01

    Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH₄ react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to Habstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cationlattice oxygen pairs (Pd2+-O2-) in PdO. The charges in the CH₃ and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*- covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd2+-O2- pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H₃C···Pd···H)‡ transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3 •···*OH)‡ that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd2+ and vicinal O2-, Pdox-Oox, cleave C-H bonds heterolytically via σ-bond metathesis, with Pd2+ adding to the C-H bond, while O2- abstracts the H-atom to form a four-center (H3Cδ-···Pdox···Hδ+···Oox) transition state without detectable Pdox reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH₄ oxidation turnover rates at oxygen chemical

  17. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    International Nuclear Information System (INIS)

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from −1.0 to −15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a

  18. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    International Nuclear Information System (INIS)

    Highlights: •The energetic ions and electron beams are used to synthesize TiCx/SiC/a-C:H films. •As-deposited crystalline and hard nanocomposite TiCx/SiC/a-C:H films are synthesized. •Very high average deposition rates of 68 nm/shot are achieved using dense plasma focus. •The maximum hardness of 22 GPa is achieved at the surface of the film. -- Abstract: Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings

  19. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yuki; Choi, Junho, E-mail: choi@mech.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-08-28

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from −1.0 to −15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a

  20. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  1. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions.

    Science.gov (United States)

    Gounder, Rajamani; Iglesia, Enrique

    2013-05-01

    The ability of molecular sieves to control the access and egress of certain reactants and products and to preferentially contain certain transition states while excluding others based on size were captured as shape selectivity concepts early in the history of zeolite catalysis. The marked consequences for reactivity and selectivity, specifically in acid catalysis, have since inspired and sustained many discoveries of novel silicate frameworks and driven the engineering of hierarchical structures and void size to influence catalysis. The catalytic diversity of microporous voids is explored and extended here in the context of their solvating environments, wherein voids act as hosts and stabilize guests, whether reactive intermediates or transition states, by van der Waals forces. We use specific examples from acid catalysis, including activation of C-C and C-H bonds in alkanes, alkylation and hydrogenation of alkenes, carbonylation of dimethyl ether, and elimination and homologation reactions of alkanols and ethers, which involve transition states and adsorbed precursors of varying size and composition. Mechanistic interpretations of measured turnover rates enable us to assign precise chemical origins to kinetic and thermodynamic constants in rate equations and, in turn, to identify specific steps and intermediates that determine the free energy differences responsible for chemical reactivity and selectivity. These free energy differences reflect the stabilization of transition states and their relevant precursors via electrostatic interactions that depend on acid strength and van der Waals interactions that depend on confinement within voids. Their respective contributions to activation free energies are examined by Born-Haber thermochemical cycles by considering plausible transition states and the relevant precursors. These examples show that zeolite voids solvate transition states and precursors differently, and markedly so for guest moieties of different size and

  2. Deposition and characterisation of multilayer hard coatings. Ti/TiN delta/TiC sub x N sub y /(TiC) a-C H/(Ti) a-C H

    CERN Document Server

    Burinprakhon, T

    2001-01-01

    mixture. The top layer (Ti) a-C:H was found to contain approximately 10 atomic % nitrogen, due to N sub 2 contamination during deposition caused by low conductance of N sub 2 through the nominally closed valve of the mass flow controller. The change of the CH sub 4 concentration during deposition of the top layer (Ti) a-C:H, however, showed a strong influence on the hydrogen content. The comparison of the fluorescence background of the Raman spectra revealed that hydrogen-less (Ti) a-C:H was deposited at a CH sub 4 concentration of less than 50 % flow rate in Ar. The hardness and adhesion of the multilayer coated titanium substrates were assessed by using microindentation hardness and scratch tests, respectively. A simple hardness model containing parameters that assess the contributions from the coating and the substrate to the measured hardness was developed to describe hardness variation as a function of indentation size. This model allowed the determination of a coating hardness and an effective substrate...

  3. Australia's Bond Home Bias

    OpenAIRE

    Mishra, Anil V; Umaru B. Conteh

    2014-01-01

    This paper constructs the float adjusted measure of home bias and explores the determinants of bond home bias by employing the International Monetary Fund's high quality dataset (2001 to 2009) on cross-border bond investment. The paper finds that Australian investors' prefer investing in countries with higher economic development and more developed bond markets. Exchange rate volatility appears to be an impediment for cross-border bond investment. Investors prefer investing in countries with ...

  4. Bond percolation in films

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1988-04-01

    Bond percolation in films with simple cubic structure is considered. It is assumed that the probability of a bond being present between nearest-neighbor sites depends on the distances to surfaces. Based on the relation between the Potts model and the bond percolation model, and using the mean-field approximation, the phase diagram and profiles of the percolation probability have been obtained.

  5. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    to think in alternative ways such as issuing corporate bonds. A market for corporate bonds exists in countries such as Norway, Germany, France, the United Kingdom and the United States, while Denmark is still behind in this trend. Some large Danish corporations have instead used foreign corporate bonds...

  6. Hot reactions in the systems 11C/H2O(l), 11C/H2O-NH3(l) and 13N/H2O(g)

    International Nuclear Information System (INIS)

    The chemical reactions of hot 11C with liquid water and a water ammonia mixture of mass ratio 3:1 and of 13N with water vapour were studied at T = 295 K. 11C was generated by the nuclear processes 16O(p,α,pn)11C and 14N(p,α)11C. 13N was produced via the 16O(p,α)13N nuclear reaction. The proton radiation dose was varied from D* = 2.8x10-3 to 0.28 eV per target molecule for the system 11C/H2O(l), from D* = 2.2 to 32 eV for the system 11C/H2O-NH3(l) and from D* = 0.13 to 6.2 eV for the system 13N/H2O(g), in order to follow radiolytic changes of the reaction products. Products of the system 11C/H2O(l) were 11CO2 (98-100% radiochemical yield) and 11CO (max. 1.5%). For the system 11C/H2O-NH3(l) six products (11CO2, 11CO, H11COOH, 11CH2O, 11CH3OH and 11CH4) were observed at radiation doses up to D* = 32 eV. In the system 13N/H2O(g) five products were detected: 13NO2, 13NO, 13NN, 13NNO and some 13NH3. 13NO is the main product at lowest doses with radiochemical yields exceeding 45%. With increasing radiolysis 13NO is changed to 13NO2. At higher doses 13NN becomes the main product. The system 11C/H2O-NH3(l) seems to bear some importance for the production of labelled precursors for the synthesis of radiopharmaceuticals. The interesting products 11CH2O and 11CH3OH are still formed under intensive irradiation which is necessary for the production of high radioactivities for nuclear medical application. (orig./RB)

  7. Performance of microstrip gas chambers with conductive surface coating of doped amorphous silicon carbide (a-Si:C:H)

    International Nuclear Information System (INIS)

    A new technique involves the use of doped amorphous silicon carbide (a-Si:C:H) as a conductive surface coating in the fabrication of microstrip gas chambers, to eliminate the effect of charge accumulation on the substrate surface. The performance of these detectors made in this way has been tested, measuring gas gains with respect to several operating parameters such as time, anode voltage (Va), backplane voltage (Vb), and drift voltage (Vd). Doped a-Si:C:H film is a conductive surface coating that works well, and is an attractive alternative to other surface treatments of the substrate, because its resistivity can be easily controlled over a wide range by doping, it has a naturally good radiation hardness, and large areas can be coated at relatively low cost. (orig.)

  8. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  9. Carboxylate-Assisted Iridium-Catalyzed C-H Amination of Arenes with Biologically Relevant Alkyl Azides.

    Science.gov (United States)

    Zhang, Tao; Hu, Xuejiao; Wang, Zhen; Yang, Tiantian; Sun, Hao; Li, Guigen; Lu, Hongjian

    2016-02-24

    An iridium-catalyzed C-H amination of arenes with a wide substrate scope is reported. Benzamides with electron-donating and -withdrawing groups and linear, branched, and cyclic alkyl azides are all applicable. Cesium carboxylate is crucial for both reactivity and regioselectivity of the reactions. Many biologically relevant molecules, such as amino acid, peptide, steroid, sugar, and thymidine derivatives can be introduced to arenes with high yields and 100 % chiral retention. PMID:26712274

  10. Study of CaSO4-C-H2O System: Simulation Experiments and Thermodynamic Assessment%CaSO4-C-H2O体系研究:模拟实验与热力学探讨

    Institute of Scientific and Technical Information of China (English)

    丁康乐; 罗跃; 单敬福; 关富佳; 王莎莎

    2013-01-01

    It has been traditionally believed that the TSR solid bitumens (pyrobitumen) are the direct product of thermochemical process and has less effect over the process of thermochemical sulfate reduction (TSR) compared with hydrogen sulfide (H2S). In this study, thermochemical simulation experiment of the CaSO4-C-H2O system was conducted to investigate thermodynamic characteristics of STR in the CaSo4-C-H2O system using activated carbon (C) as a model compound of solid bitumen. The results show that CaSO4-C-H2O system initiated TSR process at the temperature of 300°C , generating products like CaCO3, H2S and CO2. The threshold temperature (300°C) is much lower than temperature range of the TSR simulation tests using hydrocarbons in both gaseous and aqueous states, and consistent with the result through thermodynamic calculations. Process simulation of TSR was conducted using the software of HSC Chemistry 5. 0. It was found that TSR in the CaSOf-C-H2O system initiated at reservoir temperatures of 25~200°C was completely controlled by kinetic factors and increasing pressure is unfavorable to initiation of TSR under a constant temperature. The intensity of TSR is likely associated with saturation concentration of CaSO4 in water: a small amount of water may contribute to better oxidizing conditions while excessive water likely restrains the process of TSR. Under the conditions of pH≤2 and certain temperature, amount of sulfate decreased with decreasing pH. However, for pH range (pH>4) formation water in sedimentary basins, effect of pH on TSR can be negligible. TSR in the system of CaSO4-C-H2O is an exothermic process, and the reaction heat increases with the increasing temperatures. It was established that reaction heat of TSR is about 12. 9-133 J/mol CaSO4 at 25~200°C. Thermodynamic studies and experimental results imply that solid bitumens (pyrobitumen) are much easily involved in TSR than gaseous or aqueous hydrocarbons.%传统认为TSR成因的固态沥青(焦

  11. C-H arylations of 1,2,3-triazoles by reusable heterogeneous palladium catalysts in biomass-derived γ-valerolactone.

    Science.gov (United States)

    Tian, Xu; Yang, Fanzhi; Rasina, Dace; Bauer, Michaela; Warratz, Svenja; Ferlin, Francesco; Vaccaro, Luigi; Ackermann, Lutz

    2016-07-28

    C-H arylations were accomplished with a user-friendly heterogeneous palladium catalyst in the biomass-derived γ-valerolactone (GVL) as an environmentally-benign reaction medium. The user-friendly protocol was characterized by ample substrate scope and high functional group tolerance in the C-H arylation of 1,2,3-triazoles, and the palladium catalyst could be recycled and reused in the C-H activation process. PMID:27419251

  12. Hydrogen bonds in 1-indanone: Charge density analysis and simulation of the inelastic neutron scattering spectrum in solid phase

    International Nuclear Information System (INIS)

    The influence of the intermolecular interactions on the vibrational dynamics of 1-indanone has been checked by simulating the INS spectrum from molecular and DFT periodic calculations, showing that, even in the case of weak hydrogen bonds, those modes associated with lower energy transfer are affected in the solid state. The electron charge distribution of solid 1-indanone has also been studied from a DFT periodic calculation. In order to obtain some insight into the intermolecular interactions Bader's atoms in molecules theory has been used. After a careful analysis of the topological properties of the calculated electron density, bond paths, critical points and other related properties, most of the C-H...π and C-H...O weak hydrogen bonds predicted in the experimental X-ray structure are confirmed. In addition some new H?H interactions were found. Furthermore, a natural bond orbital analysis was performed describing each hydrogen bond as donor-acceptor interactions

  13. Superhard nanocomposite nc-TiC/a-C:H film fabricated by filtered cathodic vacuum arc technique

    International Nuclear Information System (INIS)

    Superhard nanocomposite nc-TiC/a-C:H films, with an excellent combination of high elastic recovery, low friction coefficient and good H/E ratio, were prepared by filtered cathodic vacuum arc technique using the C2H2 gas as the precursor. The effect of C2H2 flow rate on the microstructure, phase composition, mechanical and tribological properties of nanocomposite nc-TiC/a-C:H films have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy disperse spectroscopy (EDS), microindentation and tribotester measurements. It was observed that the C2H2 flow rate significantly affected the Ti content and hardness of films. Furthermore, by selecting the proper value for C2H2 flow rate, 20 sccm, one can deposit the nanocomposite film nc-TiC/a-C:H with excellent properties such as superhardness (66.4 GPa), high elastic recovery (83.3%) and high H/E ratio (0.13)

  14. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  15. Bonding thermoplastic polymers

    Science.gov (United States)

    Wallow, Thomas I.; Hunter, Marion C.; Krafcik, Karen Lee; Morales, Alfredo M.; Simmons, Blake A.; Domeier, Linda A.

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  16. Computational and Physical Analysis of Catalytic Compounds

    Science.gov (United States)

    Wu, Richard; Sohn, Jung Jae; Kyung, Richard

    2015-03-01

    Nanoparticles exhibit unique physical and chemical properties depending on their geometrical properties. For this reason, synthesis of nanoparticles with controlled shape and size is important to use their unique properties. Catalyst supports are usually made of high-surface-area porous oxides or carbon nanomaterials. These support materials stabilize metal catalysts against sintering at high reaction temperatures. Many studies have demonstrated large enhancements of catalytic behavior due to the role of the oxide-metal interface. In this paper, the catalyzing ability of supported nano metal oxides, such as silicon oxide and titanium oxide compounds as catalysts have been analyzed using computational chemistry method. Computational programs such as Gamess and Chemcraft has been used in an effort to compute the efficiencies of catalytic compounds, and bonding energy changes during the optimization convergence. The result illustrates how the metal oxides stabilize and the steps that it takes. The graph of the energy computation step(N) versus energy(kcal/mol) curve shows that the energy of the titania converges faster at the 7th iteration calculation, whereas the silica converges at the 9th iteration calculation.

  17. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature.

    Science.gov (United States)

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-06-22

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C-H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483-498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  18. HYDROGEN TRANSFER IN CATALYTIC CRACKING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen transfer is an important secondary reaction of catalytic cracking reactions, which affects product yield distribution and product quality. It is an exothermic reaction with low activation energy around 43.3 kJ/mol. Catalyst properties and operation parameters in catalytic cracking greatly influence the hydrogen transfer reaction. Satisfactory results are expected through careful selection of proper catalysts and operation conditions.

  19. Molecular Simulation of Naphthenic Acid Removal on Acidic Catalyst (Ⅰ) Mechanism of Catalytic Decarboxylation

    Institute of Scientific and Technical Information of China (English)

    Fu Xiaoqin; Dai Zhenyu; Tian Songbai; Hou Suandi; Wang Xieqing

    2008-01-01

    In this paper, the charge distribution, the chemical bond order and the reactive performance of carboxylic acid model compounds on acidic catalyst were investigated by using molecular simulation technology. The simulation results showed that the bond order of C-O was higher than that of C-C,and C-C bond connected to the carbon atom in the carboxyl radical had the lowest bond order. The charge distributions of model naphthenic acids were similar in characteristics that the negative charges were concentrated on carboxyls. According to the simulation results, the mechanisms of catalytic decarboxylation over acidic solid catalyst were proposed, and a new route was put forward regarding removal of the naphthenic acid from crude oil through catalytic decarboxylation.

  20. Weak bond screening system

    Science.gov (United States)

    Chuang, S. Y.; Chang, F. H.; Bell, J. R.

    Consideration is given to the development of a weak bond screening system which is based on the utilization of a high power ultrasonic (HPU) technique. The instrumentation of the prototype bond strength screening system is described, and the adhesively bonded specimens used in the system developmental effort are detailed. Test results obtained from these specimens are presented in terms of bond strength and level of high power ultrasound irradiation. The following observations were made: (1) for Al/Al specimens, 2.6 sec of HPU irradiation will screen weak bond conditions due to improper preparation of bonding surfaces; (2) for composite/composite specimens, 2.0 sec of HPU irradiation will disrupt weak bonds due to under-cured conditions; (3) for Al honeycomb core with composite skin structure, 3.5 sec of HPU irradiation will disrupt weak bonds due to bad adhesive or oils contamination of bonding surfaces; and (4) for Nomex honeycomb with Al skin structure, 1.3 sec of HPU irradiation will disrupt weak bonds due to bad adhesive.

  1. Catalytic quantum error correction

    CERN Document Server

    Brun, T; Hsieh, M H; Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-01-01

    We develop the theory of entanglement-assisted quantum error correcting (EAQEC) codes, a generalization of the stabilizer formalism to the setting in which the sender and receiver have access to pre-shared entanglement. Conventional stabilizer codes are equivalent to dual-containing symplectic codes. In contrast, EAQEC codes do not require the dual-containing condition, which greatly simplifies their construction. We show how any quaternary classical code can be made into a EAQEC code. In particular, efficient modern codes, like LDPC codes, which attain the Shannon capacity, can be made into EAQEC codes attaining the hashing bound. In a quantum computation setting, EAQEC codes give rise to catalytic quantum codes which maintain a region of inherited noiseless qubits. We also give an alternative construction of EAQEC codes by making classical entanglement assisted codes coherent.

  2. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  3. XPS study of target poisoning during the plasma assisted deposition of a-C:H/Au thin films

    International Nuclear Information System (INIS)

    The X-ray photoelectron spectroscopic (XPS) study of the target poisoning during the deposition of a-C:H/Au using combined radio frequency (RF) powered magnetron sputtering at 100 W and plasma-assisted chemical vapor deposition (PACVD) with a mass flow ratio of 0.5 between CH4 and at is made by Gampp. In this paper we extend this study to both RF and bipolar pulsed (BPP) powered magnetron sputtering in gas mixtures of different values of CH4/Ar mass flow ratio. Elemental compositions of deposited a-C:H/Au layers have been determined by in situ X-ray photoelectron spectroscopy. To determine the elemental content of a sample, the integration over Au 4f7/2, C 1s and 0 1s core level signals (oxygen shows up as an impurity of max. 1 at.%) was used. One may generally conclude that the character of target poisoning process is steep and step-like in time regardless of the type of magnetron power supply, i.e. that it is inherent to the deposition of a-C:H/Au using present deposition setup. Therefore, in the attempts to obtain stable and reproducible deposition conditions and homogeneous coatings, the target had to be driven to the certain degree of poisoning. This is done by conditioning in pure CH4 (covering) and in pure Ar plasma (cleaning) subsequently and alternatively, until the desired Au content is reached. Then, for deposition purposes, a CH4/Ar gas mixture was selected so that steady state of target covering and cleaning is sustained

  4. Carbene vs olefin products of C-H activation on ruthenium via competing alpha- and beta-H elimination.

    Science.gov (United States)

    Kuznetsov, Vladimir F; Abdur-Rashid, Kamaluddin; Lough, Alan J; Gusev, Dmitry G

    2006-11-01

    Bulky pincer complexes of ruthenium are capable of C-H activation and H-elimination from the pincer ligand backbone to produce mixtures of olefin and carbene products. To characterize the products and determine the mechanisms of the C-H cleavage, reactions of [RuCl(2)(p-cymene)](2) with N,N'-bis(di-tert-butylphosphino)-1,3-diaminopropane (L1) and 1,3-bis(di-tert-butylphosphinomethyl)cyclohexane (L2) were studied using a combination of X-ray crystallography, NMR spectroscopy, and DFT computational techniques. The reaction of L1 afforded a mixture of an alkylidene, a Fischer carbene, and two olefin isomers of the 16-e monohydride RuHCl[(t)Bu(2)PNHC(3)H(4)NHPBu(t)(2)] (2), whereas the reaction of L2 gave two olefin and two alkylidene isomers of 16-e RuHCl[2,6-(CH(2)PBu(t)(2))(2)C(6)H(8)] (3), all resulting from dehydrogenations of the ligand backbone of L1 and L2. The key intermediates implicated in the C-H activation reactions were identified as 14-electron paramagnetic species RuCl(PCP), where PCP = cyclometalated L1 or L2. Thus the alpha- and beta-H elimination reactions of RuCl(PCP) involved spin change and were formally spin-forbidden. Hydrogenation of 2 and 3 afforded 16-electron dihydrides RuH(2)Cl(PCP) distinguished by a large quantum exchange coupling between the hydrides. PMID:17076513

  5. Unsteady catalytic processes and sorption-catalytic technologies

    International Nuclear Information System (INIS)

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  6. Unsteady catalytic processes and sorption-catalytic technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zagoruiko, A N [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-07-31

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  7. C H Rautenbach, P S Dreyer en C K Oberholzer: Hulle nalatenskap en die pad vorentoe1

    Directory of Open Access Journals (Sweden)

    Johann Beukes

    2000-01-01

    Full Text Available C H Rautenbach, P S Dreyer and C K Oberholzer: Their legacy and the way ahead. This article explores the legacy of three early philosophers at the University of Pretoria (1939-1987, who contributed substantially to the Nederduitsch Hervormde Kerk's perspectives on the relation between (modern theology and (modern philosophy. The authors consider their legacy to be an essentially Kantian stabilisation of the complex and problematic relationship between reason and faith, church and society, and theology and philosophy. The article then proceeds to interpret the changes in these relationships that were brought about by the postmodern discourse.

  8. Non-Pincer-Type Mononuclear Scandium Alkylidene Complexes: Synthesis, Bonding, and Reactivity.

    Science.gov (United States)

    Wang, Chen; Zhou, Jiliang; Zhao, Xuefei; Maron, Laurent; Leng, Xuebing; Chen, Yaofeng

    2016-01-22

    The first non-pincer-type mononuclear scandium alkylidene complexes were synthesized and structurally characterized. These complexes exhibited short Sc-C bond lengths and even one of the shortest reported to date (2.1134(18) Å). The multiple character of the Sc-C bond was highlighted by a DFT calculation. This was confirmed by experimental reactivity study where the complex underwent [2+1] cycloaddition with elemental selenium and [2+2] cycloaddition with imine. DFT calculation also revealed a strong nucleophilic behavior of the alkylidene complex that was experimentally demonstrated by the C-H bond activation of phenylacetylene. PMID:26617412

  9. Ligand-Promoted Borylation of C(sp(3))-H Bonds with Palladium(II) Catalysts.

    Science.gov (United States)

    He, Jian; Jiang, Heng; Takise, Ryosuke; Zhu, Ru-Yi; Chen, Gang; Dai, Hui-Xiong; Dhar, T G Murali; Shi, Jun; Zhang, Hao; Cheng, Peter T W; Yu, Jin-Quan

    2016-01-11

    A quinoline-based ligand effectively promotes the palladium-catalyzed borylation of C(sp(3))-H bonds. Primary β-C(sp(3))-H bonds in carboxylic acid derivatives as well as secondary C(sp(3))-H bonds in a variety of carbocyclic rings, including cyclopropanes, cyclobutanes, cyclopentanes, cyclohexanes, and cycloheptanes, can thus be borylated. This directed borylation method complements existing iridium(I)- and rhodium(I)-catalyzed C-H borylation reactions in terms of scope and operational conditions. PMID:26611496

  10. Ruthenium-Immobilized Periodic Mesoporous Organosilica: Synthesis, Characterization, and Catalytic Application for Selective Oxidation of Alkanes.

    Science.gov (United States)

    Ishito, Nobuhiro; Kobayashi, Hirokazu; Nakajima, Kiyotaka; Maegawa, Yoshifumi; Inagaki, Shinji; Hara, Kenji; Fukuoka, Atsushi

    2015-10-26

    Periodic mesoporous organosilica (PMO) is a unique material that has a crystal-like wall structure with coordination sites for metal complexes. A Ru complex, [RuCl2 (CO)3 ]2 , is successfully immobilized onto 2,2'-bipyridine (BPy) units of PMO to form a single-site catalyst, which has been confirmed by various physicochemical analyses. Using NaClO as an oxidant, the Ru-immobilized PMO oxidizes the tertiary C-H bonds of adamantane to the corresponding alcohols at 57 times faster than the secondary C-H bonds, thereby exhibiting remarkably high regioselectivity. Moreover, the catalyst converts cis-decalin to cis-9-decalol in a 63 % yield with complete retention of the substrate stereochemistry. The Ru catalyst can be separated by simple filtration and reused without loss of the original activity and selectivity for the oxidation reactions. PMID:26330333

  11. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  12. Equilibrium CO bond lengths

    Science.gov (United States)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  13. The Bond Market's q

    OpenAIRE

    Thomas Philippon

    2006-01-01

    I propose an implementation of the q-theory of investment using bond prices instead of equity prices. Credit risk makes corporate bond prices sensitive to future asset values, and q can be inferred from bond prices. The bond market's q performs much better than the usual measure in standard investment equations. With aggregate data, the fit is three times better, cash flows are driven out and the implied adjustment costs are reduced by more than an order of magnitude. The new measure also imp...

  14. Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment.

    Science.gov (United States)

    Dhoke, Gaurao V; Loderer, Christoph; Davari, Mehdi D; Ansorge-Schumacher, Marion; Schwaneberg, Ulrich; Bocola, Marco

    2015-11-01

    Molecular docking of substrates is more challenging compared to inhibitors as the reaction mechanism has to be considered. This becomes more pronounced for zinc-dependent enzymes since the coordination state of the catalytic zinc ion is of greater importance. In order to develop a predictive substrate docking protocol, we have performed molecular docking studies of diketone substrates using the catalytic state of carbonyl reductase 2 from Candida parapsilosis (CPCR2). Different docking protocols using two docking methods (AutoDock Vina and AutoDock4.2) with two different sets of atomic charges (AM1-BCC and HF-RESP) for catalytic zinc environment and substrates as well as two sets of vdW parameters for zinc ion were examined. We have selected the catalytic binding pose of each substrate by applying mechanism based distance criteria. To compare the performance of the docking protocols, the correlation plots for the binding energies of these catalytic poses were obtained against experimental Vmax values of the 11 diketone substrates for CPCR2. The best correlation of 0.73 was achieved with AutoDock4.2 while treating catalytic zinc ion in optimized non-bonded (NBopt) state with +1.01 charge on the zinc ion, compared to 0.36 in non-bonded (+2.00 charge on the zinc ion) state. These results indicate the importance of catalytic constraints and charge parameterization of catalytic zinc environment for the prediction of substrate activity in zinc-dependent enzymes by molecular docking. The developed predictive docking protocol described here is in principle generally applicable for the efficient in silico substrate spectra characterization of zinc-dependent ADH.

  15. Two-dimensional supramolecular networks via C-H$\\cdots$Cl and N-H$\\cdots$Cl interactions utilizing bidentate neutral pyridine amide coordinated MnIICl2 tectons

    Indian Academy of Sciences (India)

    Wilson Jacob; Rabindranath Mukherjee

    2008-09-01

    Reaction of -(phenyl)-2-pyridinecarboxamide (HL1) and -(-tolyl)-2-pyridinecarboxamide (HL2) ligands with MnCl2.4H2O affords complexes [(HL1)2MnCl2] 1 and [(HL2)2MnCl2] 2. The structures of 1 and 2 were determined by three-dimensional X-ray crystallography revealing that the MnII ions assume distorted octahedral geometry with coordination by two HL1/HL2 ligands providing two pyridine N and two amide O and two chloride ions. Notably, secondary interactions [C-H$\\cdots$Cl (pyridine 3-H hydrogen) and N-H$\\cdots$Cl (amide NH hydrogen)] triggered by MnII-coordinated chloride ions acting as hydrogen bonding acceptors generate self-complementary dimeric tectons, which lead to 2D supramolecular architectures.

  16. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  17. Comparison of Gold Bonding with Mercury Bonding

    NARCIS (Netherlands)

    Kraka, Elfi; Filatov, Michael; Cremer, Dieter

    2009-01-01

    Nine AuX molecules (X = H, O, S, Se, Te, F, Cl, Br, I), their isoelectronic HgX(+) analogues, and the corresponding neutral HgX diatomics have been investigated using NESC (Normalized Elimination of the Small Component) and B3LYP theory to determine relativistic effects for bond dissociation energie

  18. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  19. Catalytic Membrane Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  20. Catalytic gasification of biomass

    Science.gov (United States)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  1. Coupled valence bond theory

    NARCIS (Netherlands)

    Havenith, R.W.A.

    2005-01-01

    In this Letter, the formulation and implementation of a parallel response property code for non-orthogonal, valence bond wave-functions are described. Test calculations on benzene and cyclobutadiene show that the polarisability and magnetisability tensors obtained using valence bond theory are compa

  2. Bonded labour in Pakistan

    OpenAIRE

    Ercelawn, Aly; Nauman, Muhammad

    2001-01-01

    Examines the continuing prevalence of debt bondage in the 1990s despite the introduction of national legislation banning the practice. Makes recommendations to the Government and the international community for actions to be taken to eliminate bonded labour and provide rehabilitation for freed workers. Includes texts of Land Reforms Regulations, 1972, the Sindh Tenancy Act, 1950 and the Bonded Labour System (Abolition) Act, 1992.

  3. Hydrogen bonding in polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Bahceci, S. (Department of Chemistry, Middle East Technical University, Ankara 06531 (Turkey)); Toppare, L. (Department of Chemistry, Middle East Technical University, Ankara 06531 (Turkey)); Yurtsever, E. (Department of Chemistry, Middle East Technical University, Ankara 06531 (Turkey))

    1994-11-29

    Hydrogen bonding between poly(bisphenol A carbonate) (PC) and polyaniline (PAn) is analyzed using semi-empirical quantum methodology. Fully optimized AM1 molecular orbital calculations are reported for various aniline structures (monomer, dimer and trimer), the monomer of the PC and the hydrogen-bonded model of PAn-PC oligomer. ((orig.))

  4. The dissociative bond.

    Science.gov (United States)

    Gordon, Nirit

    2013-01-01

    Dissociation leaves a psychic void and a lingering sense of psychic absence. How do 2 people bond while they are both suffering from dissociation? The author explores the notion of a dissociative bond that occurs in the aftermath of trauma--a bond that holds at its core an understanding and shared detachment from the self. Such a bond is confined to unspoken terms that are established in the relational unconscious. The author proposes understanding the dissociative bond as a transitional space that may not lead to full integration of dissociated knowledge yet offers some healing. This is exemplified by R. Prince's (2009) clinical case study. A relational perspective is adopted, focusing on the intersubjective aspects of a dyadic relationship. In the dissociative bond, recognition of the need to experience mutual dissociation can accommodate a psychic state that yearns for relationship when the psyche cannot fully confront past wounds. Such a bond speaks to the need to reestablish a sense of human relatedness and connection when both parties in the relationship suffer from disconnection. This bond is bound to a silence that becomes both a means of protection against the horror of traumatic memory and a way to convey unspoken gestures toward the other.

  5. The samurai bond market

    OpenAIRE

    Frank Packer; Elizabeth Reynolds

    1997-01-01

    Issuance in the samurai bond market has more than tripled over the past several years. Some observers have attributed this growth to a systematic underestimation of credit risk in the market. A detailed review of credit quality, ratings differences, and initial issue pricing in the samurai bond market, however, turns up little evidence to support this concern.

  6. Aerobic C-H Acetoxylation of 8-Methylquinoline in PdII-Pyridinecarboxylic Acid Systems: Some Structure-Reactivity Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daoyong; Zavalij, Peter Y.; Vedernikov, Andrei N.

    2013-09-09

    Catalytic oxidative C–H acetoxylation of 8-methylquinoline as a model substrate with O2 as oxidant was performed using palladium(II) carboxylate catalysts derived from four different pyridinecarboxylic acids able to form palladium(II) chelates of different size. A comparison of the rates of the substrate C–H activation and the O2 activation steps shows that the C–H activation step is rate-limiting, whereas the O2 activation occurs at a much faster rate already at 20 °C. The chelate ring size and the chelate ring strain of the catalytically active species are proposed to be the key factors affecting the rate of the C–H activation.

  7. (±)Methanodibenzodiazocine tethered [C-H]+ functional site: Study towards benzoin condensation and Baylis-Hillman reactions

    Indian Academy of Sciences (India)

    Arruri Sathyanarayana; Ganesan Prabusankar

    2015-05-01

    New heterocyclic ring systems consisting of (±) methanodibenzodiazocine and imidazolium/benzimidazolium salts were synthesized in very good yield. Subsequently, these halide salts were subjected to the anion exchange reaction with KPF6 to yield the corresponding azolium salts in excellent yield. The possible applications of these newly prepared salts were investigated in homogeneous catalysis. Remarkable changes in the catalytic activity were observed by varying the bulkiness of N-substituent at imidazole. Catalytic activity of these newly prepared salts was tested for the benzoin condensation reaction. Exclusive formation of benzoin products were observed in good yield. Similarly, the dimerization of cyclohexen-1-one to Baylis-Hillman type product, 2-(3-oxocyclohexyl)-2-cyclohexen-1-one was studied.

  8. Weak C-H$\\cdots$F-C interactions in carboxylate anion binding: Synthesis, spectroscopic and X-ray structural studies of [Co(phen)2CO3]2 (C7H3O2FCl)Cl$\\cdots$11H2O and [Co(phen)2CO3](C7H3NO4Cl)$\\cdot$6H2O

    Indian Academy of Sciences (India)

    A Singh; R P Sharma; T Aree; P Venugopalan

    2010-09-01

    Two new complex salts containing 2,5-substituted benzoate ions, [Co(phen)2CO3]2 (C7H3O2FCl)Cl$\\cdot$11H2O (1) and [Co(phen)2CO3](C7H3NO4Cl)$\\cdot$6H2O (2) (where phen = 1,10-phenanthroline, C7H3O2FCl = 2-chloro-5-fluorobenzoate (cfbz) and C7H3NO4Cl = 2-chloro-5-nitrobenzoate(cnbz)) were synthesized by reacting carbonatobis(1,10-phenanthroline)cobalt(III) chloride with appropriate salts in aqueous medium. A detailed packing analysis has been undertaken to delineate the role of second sphere C-H$\\cdots$F and C-H$\\cdots$O interactions amid other heteroatom interactions. The complex salts have been characterized by elemental analyses, spectroscopic studies (IR, UV/Visible, multinuclear NMR), conductance and solubility product measurements. Single crystal X-ray structure determination revealed ionic structures of both the complex salts having discrete ions along with lattice water molecules. Crystal lattice is stabilized by a variety of hydrogen bonding interactions, i.e. O-H$\\cdots$O, C-H$\\cdots$O and C-H$\\cdots$F involving second sphere coordination besides - interaction. Furthermore, packing analyses reveal that C-H…F interactions can manifest even in the presence of a large number of heteroatom interactions.

  9. Wood Bond Testing

    Science.gov (United States)

    1989-01-01

    A joint development program between Hartford Steam Boiler Inspection Technologies and The Weyerhaeuser Company resulted in an internal bond analyzer (IBA), a device which combines ultrasonics with acoustic emission testing techniques. It is actually a spinoff from a spinoff, stemming from a NASA Lewis invented acousto-ultrasonic technique that became a system for testing bond strength of composite materials. Hartford's parent company, Acoustic Emission Technology Corporation (AET) refined and commercialized the technology. The IBA builds on the original system and incorporates on-line process control systems. The IBA determines bond strength by measuring changes in pulsar ultrasonic waves injected into a board. Analysis of the wave determines the average internal bond strength for the panel. Results are displayed immediately. Using the system, a mill operator can adjust resin/wood proportion, reduce setup time and waste, produce internal bonds of a consistent quality and automatically mark deficient products.

  10. Water's Hydrogen Bond Strength

    CERN Document Server

    Chaplin, Martin

    2007-01-01

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperature...

  11. The problem of dose in homeopaty: evaluation of the effect of high dilutions of Arsenicum album 30cH on rats intoxicasted with arsenic

    Directory of Open Access Journals (Sweden)

    Maria Imaculada Lima Montebelo

    2011-09-01

    Full Text Available Background: Although scientific studies have confirmed the action of homeopathic high dilutions in living organisms an endless debate on the choice of the most fitting dilution, the frequency of administration and the dose (amount of medicine still remains. Aims: This study sought to assess the in vivo effect of 2 different concentrations of Arsenicum album 30cH in order to elucidate some problems in the homeopathic notion of dose. Methods: Male Wistar rats previously intoxicated with sodium arsenate by peritoneal injection were treated with undiluted Ars 30cH and Ars 30cH in 1% solution administered by oral route. Atomic absorption spectroscopy was employed to measure the levels of arsenic retained in the animals as well as the amounts eliminated through urine. Urine samples were collected before and after and during treatment. A positive control group (intoxicated animals and negative control group (non-intoxicated animals were administered only the vehicle used to prepare the medicine (ethanol. Results: The groups treated with undiluted Ars 30cH and Ars 30cH in 1% solution eliminated significant amounts of arsenic through urine when compared to the control groups. The group treated with undiluted Ars 30cH eliminated significantly higher amounts of arsenic than the group treated with the same medicine in 1% solution. Conclusion: These results suggest that undiluted Ars 30cH was more effective than in 1% solution in this experimental model.

  12. CATALYTIC AND ADSORPTION PROPERTIES OF Al- AND Ti-MCM-41 SYNTHESIZED AT ROOM TEMPERATURE

    OpenAIRE

    Silva, Tiago N.; Lopes, José Madeira; Ribeiro, Fernando Ramôa; Carrott, Manuela Ribeiro; Galacho, Cristina; Sousa, Maria José; Carrott, Peter

    2002-01-01

    Aluminosilicate and titanosilicate MCM-41 were synthesized using a room temperature method. A preliminary catalytic evaluation was performed in the promotion of the 1-butene double bond isomerization, which was successful in probing differences in the acidity of the samples prepared.

  13. A Dynamic Supramolecular System Exhibiting Substrate Selectivity in the Catalytic Epoxidation of Olefins

    DEFF Research Database (Denmark)

    Jonsson, Stefan; Odille, Fabrice G. J.; Norrby, Per-Ola;

    2005-01-01

    A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction....

  14. Conceptual chemistry approach towards the support effect in supported vanadium oxides : Valence bond calculations on the ionicity of vanadium catalysts

    NARCIS (Netherlands)

    Fievez, Tim; De Proft, Frank; Geerlings, Paul; Weckhuysen, Bert M.; Havenith, Remco W. A.

    2011-01-01

    The concept of bond ionicity, obtained via a valence bond analysis, is invoked in the interpretation of the catalytic activity of supported vanadium oxides, in analogy with previous work conducted within the framework of conceptual DFT. For a set of model clusters representing the vanadium oxide sup

  15. Immigration process in catalytic medium

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The longtime behavior of the immigration process associated with a catalytic super-Brownian motion is studied. A large number law is proved in dimension d≤3 and a central limit theorem is proved for dimension d=3.

  16. Immigration process in catalytic medium

    Institute of Scientific and Technical Information of China (English)

    洪文明; 王梓坤

    2000-01-01

    The longtime behavior of the immigration process associated with a catalytic super-Brown-ian motion is studied. A large number law is proved in dimension d≤3 and a central limit theorem is proved for dimension d = 3.

  17. Opto-electronic properties of P-doped nc-Si-QD/a-SiC:H thin films as foundation layer for all-Si solar cells in superstrate configuration

    Science.gov (United States)

    Kar, Debjit; Das, Debajyoti

    2016-07-01

    With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si-QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si-C bonds in the amorphous matrix and the embedded high density tiny nc-Si-QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si-QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si-QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si-QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si-QD/a-SiC:H films grown at ˜300 °C, demonstrating wide optical gap ˜1.86-1.96 eV and corresponding high electrical conductivity ˜4.5 × 10-1-1.4 × 10-2 S cm-1, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.

  18. POLYMER-SUPPORTED LEWIS ACID CATALYSTS. VI. POLYSTYRENE-BONDED STANNIC CHLORIDE CATALYST

    Institute of Scientific and Technical Information of China (English)

    RAN Ruicheng; FU Diankui

    1991-01-01

    A polystyrene-bonded stannic chloride catalyst was synthesized by the method of lithium polystyryl combined with stannic chloride. This catalyst is a polymeric organometallic compound containing 0.25 mmol Sn(IV)/g catalyst. The catalyst showed sufficient stability and catalytic activity in organic reaction such as esterification, acetalation and ketal formation, and it could be reused many times without losing its catalytic activity.

  19. Some aspects of catalytic activity of pyrolyzed coals

    Energy Technology Data Exchange (ETDEWEB)

    Zubkova, Valentina [Institute of Chemistry, Jan Kochanowski University, Swietokrzyska Str.15G, 25-406 Kielce (Poland); Grigoreva, Evgenija [Institute of High Temperature, The Russian Academy of Science, 13/19 Izhorskaja Street, Moscow (Russian Federation); Strojwas, Andrzej, E-mail: andrzej.strojwas@wp.pl [Institute of Chemistry, Jan Kochanowski University, Swietokrzyska Str.15G, 25-406 Kielce (Poland); Czaplicka, Marianna [Institute of Non-Ferrous Metals, J. Sowińskiego Str. 5, 44-100 Gliwice (Poland); Prezhdo, Victor; Pruszkowska, Jolanta [Institute of Chemistry, Jan Kochanowski University, Swietokrzyska Str.15G, 25-406 Kielce (Poland)

    2013-10-10

    Graphical abstract: - Highlights: • The pyrolysates of coal were investigated using XRD, SEM, FT–IR and GC–MS. • The pyrolyzed coal in the m.s.g. increases the destruction rate constant by 16.7 times. • In the m.s.g. some substances have catalytic influence on breakage of ether bonding. - Abstract: The influence of additives of initial coal and selected pyrolysates of this coal on the reaction rate constant was investigated during the test reaction of breakage of ether bonding. It was stated that pyrolyzed coal at the stage of maximally swollen grains increases the destruction rate constant by 16.7 times. The pyrolysates were investigated using X-ray diffraction, electron scanning microscopy (SEM), and FT–IR spectroscopy. The resistivity values were measured for the coal and its pyrolysates. Dichloromethane extracts of the pyrolyzed coals were analyzed by gas chromatography. It was proved that the composition and structure of substances in the layer of maximally swollen grains differ substantially from those of substances in the nearby layers. The authors suggest that in the maximally swollen grains some substances can be formed which have catalytic influence on the reaction of breakage of ether bonding.

  20. The mechanism of catalytic methylation of 2-phenylpyridine using di-tert-butyl peroxide.

    Science.gov (United States)

    Sharma, Akhilesh K; Roy, Dipankar; Sunoj, Raghavan B

    2014-07-14

    The mechanism of palladium chloride-catalyzed direct methylation of arenes with peroxides is elucidated by using the energetics computed at the M06 density functional theory. The introduction of a methyl group by tert-butyl peroxides at the ortho-position of a prototypical 2-phenyl pyridine, a commonly used substrate in directed C-H functionalization reactions, is examined in detail by identifying the key intermediates and transition states involved in the reaction sequence. Different possibilities that differ in terms of the site of catalyst coordination with the substrate and the ensuing mechanism are presented. The important mechanistic events involved are (a) an oxidative or a homolytic cleavage of the peroxide O-O bond, (b) C-H bond activation, (c) C-C bond activation, and (d) reductive elimination involving methyl transfer to the aromatic ring. We have examined both radical and non-radical pathways. In the non-radical pathway, the lowest energy pathway involves C-H bond activation prior to the coordination of the peroxide to palladium, which is subsequently followed by the O-O bond cleavage of the peroxide and the C-C bond activation. Reductive elimination in the resulting intermediate leads to the vital C-C bond formation between methyl and aryl carbon atoms. In the non-radical pathway, the C-C bond activation is higher in energy and has been identified as the rate-limiting step of this reaction. In the radical pathway, however, the activation barrier for the C-C bond cleavage is lower than for the peroxide O-O bond cleavage. A combination of a radical pathway up to the formation of a palladium methyl intermediate and a subsequent non-radical pathway has been identified as the most favored pathway for the title reaction. The predicted mechanism is in good agreement with the experimental observations on PdCl2 catalyzed methylation of 2-phenyl pyridine using tert-butyl peroxide. PMID:24875675

  1. Direct catalytic cross-coupling of organolithium compounds

    Science.gov (United States)

    Giannerini, Massimo; Fañanás-Mastral, Martín; Feringa, Ben L.

    2013-08-01

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern synthetic chemistry. However, the high reactivity and poor selectivity of common organolithium reagents have largely prohibited their use as a viable partner in direct catalytic cross-coupling. Here we report that in the presence of a Pd-phosphine catalyst, a wide range of alkyl-, aryl- and heteroaryl-lithium reagents undergo selective cross-coupling with aryl- and alkenyl-bromides. The process proceeds quickly under mild conditions (room temperature) and avoids the notorious lithium halogen exchange and homocoupling. The preparation of key alkyl-, aryl- and heterobiaryl intermediates reported here highlights the potential of these cross-coupling reactions for medicinal chemistry and material science.

  2. KINETIC ANALYSIS OF THE CATALYTIC DECOMPOSITION OF HYDRAZINE

    Directory of Open Access Journals (Sweden)

    J.E. de MEDEIROS

    1998-06-01

    Full Text Available The bond-order conservation method was used to study the catalytic decomposition of N2H4. Variation in the activation energy, E, of the most relevant steps was calculated as a function of the enthalpy of adsorption of N, QN, between 0 and 1250 kJmol-1. Results suggest that below QN = 520 kJmol-1 the catalytic decomposition of N2H4 produces mostly N2 and H2. Above QN = 520 kJmol-1, NH3 and N2 are the main products. Near QN = 520 kJmol-1 N2, H2 and NH3 are obtained, in agreement with experimental results on different metals.

  3. Carbon–heteroatom bond formation catalysed by organometallic complexes

    OpenAIRE

    Hartwig, John F.

    2008-01-01

    At one time the synthetic chemist’s last resort, reactions catalysed by transition metals are now the preferred method for synthesizing many types of organic molecule. A recent success in this type of catalysis is the discovery of reactions that form bonds between carbon and heteroatoms (such as nitrogen, oxygen, sulphur, silicon and boron) via complexes of transition metals with amides, alkoxides, thiolates, silyl groups or boryl groups. The development of these catalytic processes has been ...

  4. FT-IR Spectra Of The C=O And C-H Stretching Vibration Of Lauric Acid

    Science.gov (United States)

    Shifu, Weng; Jinguang, Wu; Guangxian, Xu

    1989-12-01

    FT-IR spectra of lauric acid in different media were examined. In very dilute solution of lauric acid in CC14, the two bands at 1711 and 1760 cm-1 the region 1650 to 1800 cm-1 were observed for the C=0 stretching modes of dimer and monomer of lauric acid, respectively. In n-butanol KBr pellet and fluorinated hydrocarbon media, the three bands at 1712, 1701 and 1687 cm-1 after deconvolution and curve analysis for the C=0 stretching mode can be observed. In the region of C-H stretching vibration, the wavenumber shifts of the CH2 symmetric and antisymmetric stretching bands of lauric acid in different media show that the packings of acyl chains of lauric acid in different media are not the same.

  5. Modeling the absorption behavior of solar thermal collector coatings utilizing graded alpha-C:H/TiC layers.

    Science.gov (United States)

    Gruber, D P; Engel, G; Sormann, H; Schüler, A; Papousek, W

    2009-03-10

    Wavelength selective coatings are of common use in order to enhance the efficiency of devices heated by radiation such as solar thermal collectors. The use of suitable materials and the optimization of coating layer thicknesses are advisable ways to maximize the absorption. Further improvement is achievable by embedding particles in certain layers in order to modify material properties. We focus on optimizing the absorption behavior of a solar collector setup using copper as substrate, a layer of amorphous hydrogenated carbon with embedded titanium carbide particles (a-C:H/TiC), and an antireflection coating of amorphous silicon dioxide (aSiO(2)). For the setup utilizing homogeneous particle distribution, a relative absorption of 90.98% was found, while inhomogeneous particle embedding yielded 98.29%. These results are particularly interesting since until now, absorption of more than 95% was found only by using embedded Cr but not by using the more biocompatible Ti.

  6. A concise synthesis of (±)-pregabalin via intramolecular C-H insertion of N-cumyl á-diazoacetamide

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhen-liang; LIU Wei-jun; CHEN Zhi-yong; Jiang Yao-zhong; HU Wen-hao

    2004-01-01

    Pregabalin 1 (3-aminomethyl-5-methyl hexanoic acid) is a potent anticonvulsant related to the inhibitory neurotransmitter a-aminobutyric acid (GABA).1 In preclinical trials of anticonvulsant activity, pregabalin is three to ten times more potent than gabapentin. Therefore,pregabalin can be used for the potential treatment of several central nervous system (CNS) disorders including epilepsy, neuropathic pain, anxiety and social phobia. Many synthetic routes have been developed to prepare pregabalin.2-3 However, there is a need to explore novel, practical and better synthetic approaches to pregabalin. Herein we report a concise synthesis of (±)-pregabalin from hydrolysis of corresponding (a)-lactam, which was obtained from the intramolecular C-H insertion of N-cumyl a-diazoacetamide 4.

  7. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  8. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function.

    Science.gov (United States)

    Schmiedekamp, Ann; Nanda, Vikas

    2009-07-01

    Carbon donor hydrogen bonds are typically weak interactions that contribute less than 2 kcal/mol, and provide only modest stabilization in proteins. One exception is the class of hydrogen bonds donated by heterocyclic side chain carbons. Histidine is capable of particularly strong interactions through the Cepsilon(1) and Cdelta(2) carbons when the imidazole is protonated or bound to metal. Given the frequent occurrence of metal-bound histidines in metalloproteins, we characterized the energies of these interactions through DFT calculations on model compounds. Imidazole-water hydrogen bonding could vary from -11.0 to -17.0 kcal/mol, depending on the metal identity and oxidation state. A geometric search of metalloprotein structures in the PDB identified a number of candidate His C-H...O hydrogen bonds which may be important for folding or function. DFT calculations on model complexes of superoxide reductase show a carbon donor hydrogen bond positioning a water molecule above the active site.

  9. Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry.

    Science.gov (United States)

    Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem; Leitner, Walter

    2016-06-20

    The present Review highlights the challenges and opportunities when using the combination CO2 /H2 as a C1 synthon in catalytic reactions and processes. The transformations are classified according to the reduction level and the bond-forming processes, covering the value chain from high volume basic chemicals to complex molecules, including biologically active substances. Whereas some of these concepts can facilitate the transition of the energy system by harvesting renewable energy into chemical products, others provide options to reduce the environmental impact of chemical production already in today's petrochemical-based industry. Interdisciplinary fundamental research from chemists and chemical engineers can make important contributions to sustainable development at the interface of the energetic and chemical value chain. The present Review invites the reader to enjoy this exciting area of "catalytic chess" and maybe even to start playing some games in her or his laboratory. PMID:27237963

  10. Iridium-catalyzed [3 + 2] annulation of cyclic N-sulfonyl ketimines with 1,3-dienes via C-H activation.

    Science.gov (United States)

    Nishimura, Takahiro; Ebe, Yusuke; Hayashi, Tamio

    2013-02-13

    Ir-catalyzed [3 + 2] annulation of cyclic N-sulfonyl ketimines with 1,3-dienes, in which an aryliridium intermediate is formed via C-H activation, gives aminoindane derivatives in high yields with high regio- and diastereoselectivity.

  11. Enantioselective S - H and C - H insertions with optically active Rh(II) and Cu(II) catalysts. Asymmetric catalysis, 58

    International Nuclear Information System (INIS)

    The substrates for the S - H insertion reaction were azibutanone 2 and thiophenol 3. Methyl 2-diazo-3-oxo-heptane-carboxylate 26 was used as the substrate in an intramolecular C - H insertion. Both reactions were carried out enantioselectively in the presence of optically active rhodium(II) and copper(II) catalysts. For the S - H insertion optical inductions up to 13,8 %ee and for the C - H insertion up to 14 %ee were achieved. (Authors)

  12. Catalytic functionalization of indoles in a new dimension.

    Science.gov (United States)

    Bandini, Marco; Eichholzer, Astrid

    2009-01-01

    140 years ago Adolf von Baeyer proposed the structure of a heteroaromatic compound which revolutionized organic and medical chemistry: indole. After more than a century, indole itself and the complexity of naturally occurring indole derivatives continue to inspire and influence developments in synthetic chemistry. In particular, the ubiquitous presence of indole rings in pharmaceuticals, agrochemicals, and functional materials are testament to the ever increasing interest in the design of mild and efficient synthetic routes to functionalized indole derivatives. This Review emphasizes the achievements in the selective catalytic functionalization of indoles (C-C bond-forming processes) over the last four years.

  13. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V

    2011-01-01

    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  14. Structural basis for the discrepancy of spectral behavior in C-H stretching band between steroids and long chain hydrocarbon compounds

    Institute of Scientific and Technical Information of China (English)

    徐怡庄; 陶靖; 许振华; 翁诗甫; 徐建平; 吴瑾光; 徐端夫; 徐光宪

    1999-01-01

    The discrepancies of the spectral behavior for the C-H stretching band between some long chain hydrocarbon compounds and steroids were investigated. At low temperature, the C-H stretching bands exhibit complex fine structure in steroids but remain simple in long chain hydrocarbon compounds. MM3 molecular mechanics calculation indicates that, for long chain hydrocarbon compounds, the C-H groups vibrate with large scale coupling. There exist a few bands where the C-H groups vibrate in synchronous and inphase mode. Thus the variations of dipole moment for these bands are enhanced and the intensities are obviously stronger than others and cover other band in the spectra. This is just the reason why the C-H stretching bands are simple even at low temperature environment. Nevertheless, for the steroids, the C-H stretching bands vibrate with local coupling mode. The synchronous enhancement effect does not occur, the differences of intensities for various modes are not as large as those in long chain hydrocarbo

  15. Catalytic reduction of NO by methane using a Pt/C/polybenzimidazole/Pt/C fuel cell

    OpenAIRE

    Petrushina, Irina; Cleemann, Lars Nilausen; Refshauge, Rasmus; Bjerrum, Niels; Bandur, Viktor

    2007-01-01

    The catalytic NO reduction by methane was studied using a (NO,CH4,Ar),Pt|polybenzimidazole(PBI)–H3PO4|Pt,(H2,Ar) fuel cell at 135 and 165°C. It has been found that, without any reducing agent (like CH4), NO can be electrochemically reduced in the (NO, Ar), Pt/C|PBI–H3PO4|Pt/C, (H2,Ar) fuel cell with participation of H+ or electrochemically produced hydrogen. When added, methane partially suppresses the electrochemical reduction of NO. Methane outlet concentration monitoring has shown the CH4 ...

  16. Catalytic properties of LaBO3 perovskite catalysts in VOCs combustion%LaBO3钙钛矿催化剂的VOCs催化燃烧特性

    Institute of Scientific and Technical Information of China (English)

    周瑛; 卢晗锋; 张宏华; 陈银飞

    2012-01-01

    采用共沉淀法制备了LaBO3(B=Cr、Fe、Mn、Co、Ni)钙钛矿催化剂,并用XRD、BET、H2-TPR、O2-TPD等手段对其进行了表征,考察了催化剂对苯、甲苯、乙酸乙酯和丙酮的催化燃烧性能.结果表明,Cr、Fe钙钛矿晶相中存在少量的La2CrO6和La2O3杂晶相,破坏了其活性结构.Mn、Co、Ni则能与La形成完善的钙钛矿晶相,且表现出优良的催化性能,其中LaMnO3为阳离子缺陷结构,存在较丰富的晶格氧,更适合催化燃烧C-H键键能较高和难以活化的有机分子(如苯);LaCoO3、LaNiO3属于阴离子缺陷钙钛矿结构,存在更丰富的表面氧,更适合催化燃烧易在低温下活化的含氧类有机分子(如乙酸乙酯、丙酮).%Perovskite-type catalysts of LaBO3 (B = Cr, Mn, Fe, Co, Ni) were prepared by copercipitation method and characterized by XRD, BET, H2-TPR and O2-TPD techniques. The catalytic performance of catalysts was evaluated for combustion of benzene, toluene, ethyl acetate, and acetone. Except for perovskite structure, I^CrO^ and La2O3 also would be formed in LaCrO3 and LaFeO3 catalysts, which led to destruction of active structure. But LaMnO3, LaCoO3 and LaNiO3 catalysts showed the perfect perovskite structure that resulted in high catalytic activity. Among these catalysts, LaMnO3 has richer lattice oxygen, and more favorably be used in catalytic combustion of VOCs with high C-H bond (such as benzene). In contrast, LaCoO3 and LaNiO3 presented richer surface oxygen because of its structures of anion defects, and were good catalysts for catalytic combustion of oxygenated VOCs (such as ethyl acetate and acetone).

  17. Catalytic distillation water recovery subsystem

    Science.gov (United States)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  18. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  19. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne;

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  20. Synthesis, spectral, structural and computational studies on NiS4 and NiS2NP chromophores: Anagostic and C-H⋯π (chelate) interactions in [Ni(dtc)(PPh3)(NCS)] (dtc = N-(2-phenylethyl)-N-(4-methoxybenzyl)- dithiocarbamate and N-(2-phenylethyl)-N-(4-chlorobenzyl)dithiocarbamate)

    Science.gov (United States)

    Sathiyaraj, E.; Selvaganapathi, P.; Thirumaran, S.; Ciattini, Samuele

    2016-09-01

    Bis(N-(2-phenylethyl)-N-substituted benzyldithiocarbamato-S,S‧)nickel(II) (1-6) and (N-(2-phenylethyl)-N-substituted benzyldithiocarbamato-S,S‧)(thiocyanato-N) (triphenylphosphine)nickel(II) (7-12) [substituted benzyl = 2HO-C6H4-CH2- (1,7), 3HO-C6H4-CH2- (2,8), 4HO-C6H4-CH2- (3,9), 4CH3O-C6H4-CH2- (4,10), 4F-C6H4-CH2- (5,11), 4Cl-C6H4-CH2- (6,12)] complexes have been synthesized and characterized by elemental analysis, IR, UV-Vis and NMR (1H and 13C) spectroscopy. In the case of heteroleptic complexes 7-12, the shift in vC-N values to higher wavenumber and the NCS2 carbon signals are shifted to downfield compared to the homoleptic complexes indicating the increasing strength of thioureide vC-N bond due to the presence of π-accepting triphenylphosphine ligand in heteroleptic complexes. Electronic spectral studies on all the complexes (1-12) suggest square planar geometry around the nickel(II). Structures of 10 and 12 have been elucidated by X-ray crystallography. The dithiocarbamate anions in 10 and 12 chelate to the nickel atom. Both the structures reveal C-H⋯Ni intramolecular anagostic interaction. C-H⋯π (chelate) is observed in complexes 10. Supramolecular frame works are stabilised by C-H⋯S, C-H⋯π and C-H⋯Cl non-covalent interaction. The molecular geometry, HOMO-LUMO in the ground state and MEP have been calculated for 10 and 12 using Hartree-Fock (HF) method with LANL2DZ basic set. Molecular electrostatic potential diagram of complexes 10 and 12 support the partial double bond character of C-N (thioureide) bond in dithiocarbamate ligands.

  1. Romanian government bond market

    Directory of Open Access Journals (Sweden)

    Cornelia POP

    2012-12-01

    Full Text Available The present paper aims to present the level of development reached by Romanian government bond market segment, as part of the country financial market. The analysis will be descriptive (the data series available for Romania are short, based on the secondary data offered by the official bodies involved in the process of issuing and trading the Romanian government bonds (Romanian Ministry of Public Finance, Romanian National Bank and Bucharest Stock Exchange, and also on secondary data provided by the Federation of European Stock Exchanges.To enhance the market credibility as a benchmark, a various combination of measures is necessary; among these measures are mentioned: the extension of the yield curve; the issuance calendars in order to improve transparency; increasing the disclosure of information on public debt issuance and statistics; holding regular meetings with dealers, institutional investors and rating agencies; introducing a system of primary dealers; establishing a repurchase (repo market in the government bond market. These measures will be discussed based on the evolution presented inside the paper.The paper conclude with the fact that, until now, the Romanian government bond market did not provide a benchmark for the domestic financial market and that further efforts are needed in order to increase the government bond market transparency and liquidity.

  2. Anti-thrombotic activity and chemical characterization of steroidal saponins from Dioscorea zingiberensis C.H. Wright.

    Science.gov (United States)

    Li, Hua; Huang, Wen; Wen, Yanqing; Gong, Guohua; Zhao, Qingbing; Yu, Gang

    2010-12-01

    Steroidal saponins have long attracted scientific attention, due to their structural diversity and significant biological activities. Total steroidal saponins (TSS) extracted from the rhizomes of Dioscorea zingiberensis C.H. Wright (DZW) constitute an effective treatment for cardiovascular disease. However, the active constituents contained in DZW rhizomes and their pharmacological properties are not fully understood. The aim of this work is to determine and quantify the active constituents in DZW rhizomes using fingerprint technique, and evaluate its anti-thrombotic activity using inferior vena cava ligation thrombosis rat model and pulmonary thrombosis mice model after being gavaged with TSS for 1 or 2weeks. In the study, a chemical fingerprint method was firstly established and validated to quantify and standardize TSS from DZW rhizomes including parvifloside, protodeltonin, protodioscin, protogracillin, zingiberensis saponin, deltonin, dioscin and trillin. TSS extracted from DZW rhizomes were showed to have the inhibitions on platelet aggregation (PAG) and thrombosis, and prolong activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) in a dose-dependent manner in rats. TSS also prolonged the bleeding time and clotting time in a dose-dependent manner in mice. The results indicate that TSS could inhibit thrombosis by both improving the anticoagulation activity and inhibiting PAG action, suggesting that TSS from DZW rhizomes have the potential to reduce the risk of cardiovascular diseases by anti-thrombotic action. PMID:20659537

  3. A novel β-glucosidase from Aspergillus fumigates releases diosgenin from spirostanosides of Dioscorea zingiberensis C. H. Wright (DZW).

    Science.gov (United States)

    Lei, Jing; Niu, Hai; Li, Tianhong; Huang, Wen

    2012-03-01

    A β-glucosidase effectively releasing diosgenin from spirostanosides of Dioscorea zingiberensis C. H. Wright (DZW), named AfG, was purified from a strain of Aspergillus fumigates. The molecular weight of AfG was 113 kDa. Analysis of protein fragments by ESI-Q-TOF indicated that AfG was a β-glucosidase. The circular dichroism spectrum suggested that the main secondary structure of AfG in Milli-Q water was α-helixes. Atomic force microscopy revealed that it was a globular protein. AfG maintained high activity from pH 3.6 to 5.0 and from 50 to 90°C. With the strong heat stability, AfG retained 55% of its original activity at 65°C for 120 h. AfG utilized muti-3-O-glycosides of various steroidal saponins from DZW as substrate, such as trillin, diosgenin diglucoside, dioscin, deltonin and gracillin, to yield diosgenin, suggesting the possibility of producing diosgenin from total saponins of DZW using a single enzyme. PMID:22805852

  4. Synthesis of dihydrophenanthridines by a sequence of Ugi-4CR and palladium-catalyzed intramolecular C-H functionalization

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available BackgroundSmall polyfunctionalized heterocyclic compounds play important roles in the drug discovery process and in the isolation and structural identification of biological macromolecules. It is expected that ready access to diverse sets of heterocycles can not only help improving the known biological and pharmacokinetic properties of drugs, but also assist the discovery of molecules that exhibit biological effects beyond those associated with previously known macromolecules. By virtue of their inherent convergence, high productivity, their exploratory and complexity-generating power, multicomponent reactions (MCRs are undoubtedly well suited for creating molecular diversity. The combination of MCRs with an efficient post-functionalization reaction has proven to be an efficient strategy to increase the skeleton diversity.ResultsThe Ugi reaction of an o-iodobenzaldehyde (2, an aniline (3, an isocyanide (4, and a carboxylic acid (5 afforded α-acetamido-α-phenylacetamide (6 in good to excellent yields. The palladium-catalyzed intramolecular C-H functionalization of these adducts under ligandless conditions provided the functionalized dihydrophenanthridines (1.ConclusionHighly functionalized dihydrophenanthridines are synthesized in only two steps from readily accessible starting materials in good to excellent overall yields.

  5. Light-Induced C-H Arylation of (Hetero)arenes by In Situ Generated Diazo Anhydrides.

    Science.gov (United States)

    Cantillo, David; Mateos, Carlos; Rincon, Juan A; de Frutos, Oscar; Kappe, C Oliver

    2015-09-01

    Diazo anhydrides (Ar-N=N-O-N=N-Ar) have been known since 1896 but have rarely been used in synthesis. This communication describes the development of a photochemical catalyst-free C-H arylation methodology for the preparation of bi(hetero)aryls by the one-pot reaction of anilines with tert-butyl nitrite and (hetero)arenes under neutral conditions. The key step in this procedure is the in situ formation and subsequent photochemical (>300 nm) homolytic cleavage of a transient diazo anhydride intermediate. The generated aryl radical then efficiently reacts with a (hetero)arene to form the desired bi(hetero)aryls producing only nitrogen, water, and tert-butanol as byproducts. The scope of the reaction for several substituted anilines and (hetero)arenes was investigated. A continuous-flow protocol increasing selectivity and safety has been developed enabling the experimentally straightforward preparation of a variety of substituted bi(hetero)aryls within 45 min of reaction time. PMID:26239967

  6. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells

    Institute of Scientific and Technical Information of China (English)

    Muhammad Nawaz; Ashfaq Ahmad

    2012-01-01

    This work deals with the design evaluation and influence of absorber doping for a-Si:H/a-SiC:H/a-SiGe:H based thin-film solar cells using a two-dimensional computer aided design (TCAD) tool.Various physical parameters of the layered structure,such as doping and thickness of the absorber layer,have been studied.For reliable device simulation with realistic predictability,the device performance is evaluated by implementing necessary models (e.g.,surface recombinations,thermionic field emission tunneling model for carrier transport at the heterojunction,Schokley-Read Hall recombination model,Auger recombination model,bandgap narrowing effects,doping and temperature dependent mobility model and using Fermi-Dirac statistics).A single absorber with a graded design gives an efficiency of 10.1% for 800 nm thick multiband absorption.Similarly,a tandem design shows an efficiency of 10.4% with a total absorber of thickness of 800 nm at a bandgap of 1.75 eV and 1.0 eV for the top a-Si and bottom a-SiGe component cells.A moderate n-doping in the absorber helps to improve the efficiency while p doping in the absorber degrades efficiency due to a decrease in the Voc (and fill factor) of the device.

  7. Insulation bonding test system

    Science.gov (United States)

    Beggs, J. M.; Johnston, G. D.; Coleman, A. D.; Portwood, J. N.; Saunders, J. M.; Redmon, J. W.; Porter, A. C. (Inventor)

    1984-01-01

    A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact.

  8. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author)

  9. Simple, chemoselective, catalytic olefin isomerization.

    Science.gov (United States)

    Crossley, Steven W M; Barabé, Francis; Shenvi, Ryan A

    2014-12-01

    Catalytic amounts of Co(Sal(tBu,tBu))Cl and organosilane irreversibly isomerize terminal alkenes by one position. The same catalysts effect cycloisomerization of dienes and retrocycloisomerization of strained rings. Strong Lewis bases like amines and imidazoles, and labile functionalities like epoxides, are tolerated.

  10. The Illiquidity of Corporate Bonds

    OpenAIRE

    Bao, Jack; Pan, Jun; Wang, Jiang

    2011-01-01

    This paper examines the illiquidity of corporate bonds and its asset-pricing implications. Using transactions data from 2003 to 2009, we show that the illiquidity in corporate bonds is substantial, significantly greater than what can be explained by bid–ask spreads. We establish a strong link between bond illiquidity and bond prices. In aggregate, changes in market-level illiquidity explain a substantial part of the time variation in yield spreads of high-rated (AAA through A) bonds, overshad...

  11. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.; Mifflin, Amanda L.; Hess, Wayne P.; Wang, Hongfei; Cramer, Christopher J.; Govind, Niranjan

    2016-03-03

    Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical iden- tication of hydrocarbons and in vibrational sum-frequency generation (SFG) spec- *troscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a chal- lenge from a theoretical viewpoint. In this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide (DMSO) using a new Gaussian basis set- based ab initio molecular dynamics (AIMD) module that we have implemented in the NWChem computational chemistry program. By combining AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effects in this system. Our anharmonic normal mode analysis of the in-phase and out-of-phase symmetric C-H stretching modes chal- lenges the previous experimental assignment of the shoulder in the symmetric C-H stretching peak as an overtone or Fermi resonance. In addition, our AIMD simulations also show signicant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.

  12. The Trouble With Bonds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In early June,global financial markets gyrated downwards in the wake of central banks'tough language on inflation.At one point bond prices reflected expectations of four rate hikes by the US Federal Reserve (Fed) in the next 12 months.As a result,the dollar firmed,oil prices stabilized,and yield curves flattened around the world.If all these inflation-fighting measures are real,the situation bodes well for bonds.But,I think otherwise.

  13. Catalytic Transfer Hydrogenation with a Methandiide-Based Carbene Complex: An Experimental and Computational Study.

    Science.gov (United States)

    Weismann, Julia; Gessner, Viktoria H

    2015-11-01

    The transfer hydrogenation (TH) reaction of ketones with catalytic systems based on a methandiide-derived ruthenium carbene complex was investigated and optimised. The complex itself makes use of the noninnocent behaviour of the carbene ligand (M=CR2 →MH-C(H)R2 ), but showed only moderate activity, thus requiring long reaction times to achieve sufficient conversion. DFT studies on the reaction mechanism revealed high reaction barriers for both the dehydrogenation of iPrOH and the hydrogen transfer. A considerable improvement of the catalytic activity could be achieved by employing triphenylphosphine as additive. Mechanistic studies on the role of PPh3 in the catalytic cycle revealed the formation of a cyclometalated complex upon phosphine coordination. This ruthenacycle was revealed to be the active species under the reaction conditions. The use of the isolated complex resulted in high catalytic activities in the TH of aromatic as well as aliphatic ketones. The complex was also found to be active under base-free conditions, suggesting that the cyclometalation is crucial for the enhanced activity. PMID:26403918

  14. Formation of H3+ due to Intramolecular Bond Rearrangement in Doubly Charged Methanol

    Science.gov (United States)

    de, Sankar; Rajput, Jyoti; Roy, A.; Ghosh, P. N.; Safvan, C. P.

    2006-11-01

    We report the formation of H3+ by proton coagulation in methanol under the impact of low energy Ar8+ projectiles. Our time-of-flight coincidence measurements with CH3OD establish that the H3+ formation arises from intramolecular bond rearrangement of the methyl group. We have performed ab initio quantum chemical calculations that show the preferred pathway for C-H3 bond cleavage. Fragmentation of organic molecules like methanol under impact of highly charged ions is suggested as an alternative mechanism of H3+ formation in outer space.

  15. Isolation and Characterization of Well-Defined Silica-Supported Azametallacyclopentane: A Key Intermediate in Catalytic Hydroaminoalkylation Reactions

    KAUST Repository

    Hamzaoui, Bilel

    2015-09-25

    Intermolecular catalytic hydroaminoalkylation of unactivated alkene occurs with silica-supported azazirconacyclopropane [[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)(η2-NMeCH2)(NMe2)]. Mechanistic studies were conducted using surface organometallic chemistry (SOMC) concepts to identify the key surface intermediates. The azametallacyclopentene intermediate {[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)[η2-NMeCH2CH(Me)CH2](NMe2)} was isolated after treating with 1-propylene and characterized by FT-IR spectroscopy, elemental analysis, 1H 13C HETCOR, DARR SS-NMR and DQ TQ SS-NMR. The regeneration of the catalyst was conducted by dimethylamine protonolysis to yield the pure amine.

  16. Transition metal and rare earth quad-doped photovoltaic phosphate glasses toward raising a-SiC:H solar cell performance

    International Nuclear Information System (INIS)

    Efficiency enhancement of a hydrogenated amorphous-silicon carbide (a-SiC:H) solar cell using downshifting and upconversion of photovoltaic (PV) glasses doped with transition metal (TM) ions and rare earth (RE) ions are investigated. P2O5-Li2O-Al2O3-Sb2O3-MnO-Yb2O3-Er2O3 glass doped with Sb3+-Mn2+-Yb3+-Er3+ ions is prepared and the PV glass is placed on an a-SiC:H solar cell. The performance of the cell in combination with the PV glass is simulated and measured, and the results show that the theoretical and experimental efficiencies are both enhanced compared to the bare one. The potential of TM-RE quad-doped glasses for improving the efficiency of a-SiC:H PV modules are explored. (paper)

  17. Photochemical tissue bonding

    Science.gov (United States)

    Redmond, Robert W.; Kochevar, Irene E.

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  18. Thread bonds in molecules

    CERN Document Server

    Ivlev, B

    2015-01-01

    Unusual chemical bonds are proposed. Each bond is almost covalent but is characterized by the thread of a small radius $\\sim 0.6\\times 10^{-11}$cm, between two nuclei in a molecule. The main electron density is concentrated outside the thread as in a covalent bond. The thread is formed by the electron wave function which has a tendency to be singular on it. The singularity along the thread is cut off by electron "vibrations" due to the interaction with zero point electromagnetic oscillations. The electron energy has its typical value of (1-10)eV. Due to the small tread radius the uncertainty of the electron momentum inside the thread is large resulting in a large electron kinetic energy $\\sim 1 MeV$. This energy is compensated by formation of a potential well due to the reduction of the energy of electromagnetic zero point oscillations. This is similar to formation of a negative van der Waals potential. Thread bonds are stable and cannot be created or destructed in chemical or optical processes.

  19. Bonds Between Atoms.

    Science.gov (United States)

    Holden, Alan

    The field of inquiry into how atoms are bonded together to form molecules and solids crosses the borderlines between physics and chemistry encompassing methods characteristic of both sciences. At one extreme, the inquiry is pursued with care and rigor into the simplest cases; at the other extreme, suggestions derived from the more careful inquiry…

  20. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-{mu}c-Si solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Deng Qingwen; Wang Xiaoliang; Xiao Hongling; Ma Zeyu; Zhang Xiaobin; Hou Qifeng; Li Jinmin [Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Wang Zhanguo, E-mail: daven@semi.ac.c [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2010-10-15

    A solar cell with a novel structure is investigated by means of the analysis of microelectronic and photonic structure (AMPS). The power conversion efficiency is investigated with the variations in interface recombination velocity, thicknesses of p-type layer, intrinsic layer, n-type layer, and doping density. Results show that it is available and preferable in theory to employ a-SiC:H as a window layer in p-a-SiC:H/i-a-Si:H/n-{mu}c-Si solar cells, and provide a new approach to improving the power conversion efficiency of amorphous silicon solar cells. (semiconductor materials)

  1. cis-Dichloroplatinum(II) complexes tethered to dibenzo[c,h][1,6]naphthyridin-6-ones: synthesis and cytotoxicity in human cancer cell lines in vitro.

    Science.gov (United States)

    Desbois, Nicolas; Pertuit, David; Moretto, Johnny; Cachia, Claire; Chauffert, Bruno; Bouyer, Florence

    2013-11-01

    A novel family of cisplatin-type complexes tethered to dibenzo[c,h][1,6]naphthyridin-6-one topoisomerase inhibitor via a polymethylene chain and their nonplatinated counterparts were prepared. Their potential cytotoxicity was assessed in three human colorectal cancer cell lines HCT 116, SW480 and HT-29 and compared to the reference molecules cisplatin and oxaliplatin. Platinated compounds were poorly active whilst nonplatinated dibenzo[c,h][1,6]naphthyridin-6-one moieties exhibited higher cytotoxic properties than cisplatin and oxaliplatin whatever the length of the polymethylene chain; molecules containing the tri- and hexamethylene chain length were the most cytotoxic. PMID:24095763

  2. Pd-Catalyzed C-H Alkylation of Arenes Using PyrDipSi, a Transformable and Removable Silicon-Tethered Directing Group.

    Science.gov (United States)

    Sarkar, Dhruba; Gevorgyan, Vladimir

    2016-08-01

    An efficient Pd-catalyzed ortho-C-H alkylation reaction of arenes using a transformable and removable Si-tethered pyridyldiisopropylsilyl (PyrDipSi) directing group has been developed. In addition, the PyrDipSi directing group allows for an efficient sequential double-fold C-H alkylation/oxygenation of arenes to produce meta-alkylated phenols. This directing group can easily be removed or converted into valuable functionalities, such as aryl, iodo, boronic ester, or phenol. PMID:27272930

  3. Catalytic production of conjugated fatty acids and oils.

    Science.gov (United States)

    Philippaerts, An; Goossens, Steven; Jacobs, Pierre A; Sels, Bert F

    2011-06-20

    The reactive double bonds in conjugated vegetable oils are of high interest in industry. Traditionally, conjugated vegetable oils are added to paints, varnishes, and inks to improve their drying properties, while recently there is an increased interest in their use in the production of bioplastics. Besides the industrial applications, also food manufactures are interested in conjugated vegetable oils due to their various positive health effects. While the isomer type is less important for their industrial purposes, the beneficial health effects are mainly associated with the c9,t11, t10,c12 and t9,t11 CLA isomers. The production of CLA-enriched oils as additives in functional foods thus requires a high CLA isomer selectivity. Currently, CLAs are produced by conjugation of oils high in linoleic acid, for example soybean and safflower oil, using homogeneous bases. Although high CLA productivities and very high isomer selectivities are obtained, this process faces many ecological drawbacks. Moreover, CLA-enriched oils can not be produced directly with the homogeneous bases. Literature reports describe many catalytic processes to conjugate linoleic acid, linoleic acid methyl ester, and vegetable oils rich in linoleic acid: biocatalysts, for example enzymes and cells; metal catalysts, for example homogeneous metal complexes and heterogeneous catalysts; and photocatalysts. This Review discusses state-of-the-art catalytic processes in comparison with some new catalytic production routes. For each category of catalytic process, the CLA productivities and the CLA isomer selectivity are compared. Heterogeneous catalysis seems the most attractive approach for CLA production due to its easy recovery process, provided that the competing hydrogenation reaction is limited and the CLA production rate competes with the current homogeneous base catalysis. The most important criteria to obtain high CLA productivity and isomer selectivity are (1) absence of a hydrogen donor, (2

  4. Catalytic strategy used by the myosin motor to hydrolyze ATP.

    Science.gov (United States)

    Kiani, Farooq Ahmad; Fischer, Stefan

    2014-07-22

    Myosin is a molecular motor responsible for biological motions such as muscle contraction and intracellular cargo transport, for which it hydrolyzes adenosine 5'-triphosphate (ATP). Early steps of the mechanism by which myosin catalyzes ATP hydrolysis have been investigated, but still missing are the structure of the final ADP·inorganic phosphate (Pi) product and the complete pathway leading to it. Here, a comprehensive description of the catalytic strategy of myosin is formulated, based on combined quantum-classical molecular mechanics calculations. A full exploration of catalytic pathways was performed and a final product structure was found that is consistent with all experiments. Molecular movies of the relevant pathways show the different reorganizations of the H-bond network that lead to the final product, whose γ-phosphate is not in the previously reported HPγO4(2-) state, but in the H2PγO4(-) state. The simulations reveal that the catalytic strategy of myosin employs a three-pronged tactic: (i) Stabilization of the γ-phosphate of ATP in a dissociated metaphosphate (PγO3(-)) state. (ii) Polarization of the attacking water molecule, to abstract a proton from that water. (iii) Formation of multiple proton wires in the active site, for efficient transfer of the abstracted proton to various product precursors. The specific role played in this strategy by each of the three loops enclosing ATP is identified unambiguously. It explains how the precise timing of the ATPase activation during the force generating cycle is achieved in myosin. The catalytic strategy described here for myosin is likely to be very similar in most nucleotide hydrolyzing enzymes.

  5. Convertible bond valuation focusing on Chinese convertible bond market

    OpenAIRE

    Yang, Ke

    2010-01-01

    This paper mainly discusses the methods of valuation of convertible bonds in Chinese market. Different from common convertible bonds in European market, considering the complicate features of Chinese convertible bond, this paper represents specific pricing approaches for pricing convertible bonds with different provisions along with the increment of complexity of these provisions. More specifically, this paper represents the decomposing method and binomial tree method for pricing both of Non-...

  6. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  7. Indirect bonding technique in orthodontics

    Directory of Open Access Journals (Sweden)

    Kübra Yıldırım

    2016-08-01

    Full Text Available ‘Direct Bonding Technique’ which allows the fixed orthodontic appliances to be directly bonded to teeth without using bands decreased the clinic time for bracket bonding and increased esthetics and oral hygiene during orthodontic treatment. However, mistakes in bracket positioning were observed due to decreased direct visual sight and access to posterior teeth. ‘Indirect Bonding Technique’ was developed for eliminating these problems. Initially, decreased bond strength, higher bond failure rate, periodontal tissue irritation, compromised oral hygiene and increased laboratory time were the main disadvantages of this technique when compared to direct bonding. The newly developed materials and modified techniques help to eliminate these negative consequences. Today, the brackets bonded with indirect technique have similar bond strength with brackets bonded directly. Moreover, indirect and direct bonding techniques have similar effects on periodontal tissues. However, indirect bonding technique requires more attention and precision in laboratory and clinical stage, and has higher cost. Orthodontist's preference between these two bonding techniques may differ according to time spent in laboratory and clinic, cost, patient comfort and personal opinion.

  8. Combined catalytic converter and afterburner

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-30

    This patent describes the combined use of a catalytic converter and afterburner. An afterburner chamber and a catalyst matrix are disposed in series within a casing. A combustible premixed charge is ignited in the afterburner chamber before it enters the catalyst matrix. This invention overcomes the problem encountered in previous designs of some of the premixed charge passing unreacted through the device unless a very long afterburner chamber is used. (UK)

  9. Thermodynamics of catalytic nanoparticle morphology

    Science.gov (United States)

    Zwolak, Michael; Sharma, Renu; Lin, Pin Ann

    Metallic nanoparticles are an important class of industrial catalysts. The variability of their properties and the environment in which they act, from their chemical nature & surface modification to their dispersion and support, allows their performance to be optimized for many chemical processes useful in, e.g., energy applications and other areas. Their large surface area to volume ratio, as well as varying sizes and faceting, in particular, makes them an efficient source for catalytically active sites. These characteristics of nanoparticles - i.e., their morphology - can often display intriguing behavior as a catalytic process progresses. We develop a thermodynamic model of nanoparticle morphology, one that captures the competition of surface energy with other interactions, to predict structural changes during catalytic processes. Comparing the model to environmental transmission electron microscope images of nickel nanoparticles during carbon nanotube (and other product) growth demonstrates that nickel deformation in response to the nanotube growth is due to a favorable interaction with carbon. Moreover, this deformation is halted due to insufficient volume of the particles. We will discuss the factors that influence morphology and also how the model can be used to extract interaction strengths from experimental observations.

  10. China-Russia Bond

    Institute of Scientific and Technical Information of China (English)

    Ji Zhiye; Ma Zongshi

    2007-01-01

    @@ Thanks to China's successful launching of the Year of Russia, 2006 will surely go down as a milestone in the history of the China-Russia bond. Furthermore, a still-warmer climate will continue to prevail in 2007 when Moscow, in its turn, hosts the Year of China, trying to outshine its next-door neighbor in this regard, as Russian President Vladimir Putin promised in the exchange of new year greetings with his Chinese counterpart, President Hu Jintao.

  11. Optical properties of the organic-inorganic hybrid perovskite C H3N H3Pb I3 : Theory and experiment

    Science.gov (United States)

    Demchenko, D. O.; Izyumskaya, N.; Feneberg, M.; Avrutin, V.; Özgür, Ü.; Goldhahn, R.; Morkoç, H.

    2016-08-01

    We perform a theoretical and experimental study of the optical properties of a C H3N H3Pb I3 perovskite prepared by a vapor-assisted solution process, motivated in part by very high photovoltaic cell efficiencies. Several widespread theoretical approaches are used in an attempt to determine the most appropriate approach which would reproduce the experimental electronic structure and optical properties of the C H3N H3Pb I3 perovskite. We compare a semilocal approximation to the density functional theory with hybrid functionals and time-dependent hybrid functional calculations, evaluating the effects of exchange tuning and spin-orbit coupling. Using these methods we calculate the electronic structure, optical absorption spectrum, and frequency-dependent dielectric function of the C H3N H3Pb I3 perovskite. The results are compared to the experimentally obtained dielectric functions acquired from ellipsometry measurements. We demonstrate that inclusion of spin-orbit coupling in theoretical calculations is critical in describing the electronic and optical properties of the C H3N H3Pb I3 perovskite. Good agreement with experimental data is achieved when the optical spectra are computed using time-dependent hybrid density functional theory with spin-orbit coupling.

  12. Optimization of the contact resistance in the interface structure of n-type Al/a-SiC:H by thermal annealing for optoelectronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Roberto; Mireles, Jose Jr. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, 32310, Chihuahua (Mexico); Torres, Alfonso; Zuniga, Carlos; Moreno, Mario [National Institute for Astrophysics Optics and Electronics INAOE, Luis E. Erro 1, PO Box 51 and 216, 7200, Puebla (Mexico)

    2010-07-15

    The presented work meets the requirements for integration of amorphous silicon carbon films with silicon technology in order to obtain a complete optoelectronic system such as light emitting diodes and its electronic readout circuits. The key enabler for this integration scheme is the low temperature of deposition of a-SiC:H films and an ohmic behavior in the interface metal/a-SiC:H. In this work, the optimization of the interface Al/a-SiC:H films are performed by means of thermal annealing timing. The a-SiC:H films were deposited by enhanced chemical vapor deposition from CH{sub 4}/SiH{sub 4} and C{sub 2}H{sub 2}/SiH{sub 4} mixtures. The structural and optical properties of the deposited films are presented. An implantation phosphorous dose was used for doping before fabrication of patterned aluminum contacts. The implanted films were electrically characterized by the transfer length method (TLM) measuring a sheet resistance value as low as 171 M{omega}/square. The Schottky behavior was improved to ohmic behavior after several hours in thermal annealing treatments at 350 C, which allows to obtain a reasonable contact resistance values in the range from 8.6 to 26.8 k{omega}. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Follow-up of radiopharmaceuticals out of globally harmonized system (G.H.S.) at the C.H.U. of Grenoble

    International Nuclear Information System (INIS)

    The improvement and the secure of the radiopharmaceutical circuit in the service of nuclear medicine of the Grenoble C.H.U. are a permanent concern and a true team work between the doctors and the pharmacists. The implementation of cards allowed to optimize the radiopharmaceuticals management by avoiding expenses in relation with the non given drugs. (N.C.)

  14. Synthesis of organozinc enolates of N,N-disubstituted glycine esters. Crystal structure of [EtZnOC(OMe)=C(H)N(t-Bu)Me]4

    NARCIS (Netherlands)

    Koten, G. van; Steen, F.H. van der; Boersma, J.; Spek, A.L.

    1990-01-01

    Pure ethylzinc @a-amino ester enolates have been prepared from N, N-disubstituted glycine esters and N-(ethylzinc)diisopropylamine. An X-ray diffraction study of EtZnOC(OMe)@?C(H)N(t-Bu)Me (2b) has shown it to be a tetrameric species, in which the four crystallographically independent zinc enolate u

  15. TEM characterization of a Cr/Ti/TiC graded interlayer for magnetron-sputtered TiC/a-C : H nanocomposite coatings

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; Hosson, J.Th.M. De

    2005-01-01

    A TiC/a-C:H nanocomposite coating is deposited on top of a Cr/Ti/TiC graded interlayer. Cross-section transmission electron microscopy is employed to investigate the detailed structure of the interlayer and the coating. Five different phases are formed as a consequence of the compositional gradient

  16. Tribological Behavior of TiC/a-C : H-Coated and Uncoated Steels Sliding Against Phenol-Formaldehyde Composite Reinforced with PTFE and Glass Fibers

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    2013-01-01

    Tribological experiments on phenol-formaldehyde composite reinforced with polytetrafluoroethylene (PTFE) and glass fibers were performed against 100Cr6 steel and TiC/a-C:H thin film-coated 100Cr6 steel. In both cases, the coefficient of friction increases with increasing sliding distance until a ste

  17. Direct bonded space maintainers.

    Science.gov (United States)

    Santos, V L; Almeida, M A; Mello, H S; Keith, O

    1993-01-01

    The aim of this study was to evaluate clinically a bonded space maintainer, which would reduce chair-side time and cost. Sixty appliances were fabricated from 0.7 mm stainless steel round wire and bonded using light-cured composite to the two teeth adjacent to the site of extraction of a posterior primary tooth. Twenty males and sixteen females (age range 5-9-years-old) were selected from the Pedodontic clinic of the State University of Rio de Janeiro. The sixty space maintainers were divided into two groups according to the site in which they were placed: a) absent first primary molar and b) absent second primary molar. Impressions and study models were obtained prior to and 6 months after bonding the appliances. During this period only 8.3% of failures were observed, most of them from occlusal or facial trauma. Student t-test did not show statistically significant alterations in the sizes of the maintained spaces during the trial period.

  18. Nature of the N-H...S hydrogen bond.

    Science.gov (United States)

    Biswal, Himansu S; Wategaonkar, Sanjay

    2009-11-19

    simultaneous influence of both the dispersion and electrostatic forces. For the sake of comparison, it is pointed out that the red shifts in the O-H stretch for O-H...S and O-H...O hydrogen-bonded complexes were almost the same in the case of para-cresol.Me(2)S and para-cresol.H(2)O complexes ( J. Chem. Phys. 2008 , 128 , 184311. and J. Phys. Chem. A 2009 , 113 , 5633 - 5643 ). This suggests that the strength of the N-H...S hydrogen bonding is stronger than the N-H...O hydrogen bonding. The N-H...S hydrogen bonding was observed for the first time using jet-cooled conditions, and the most interesting feature of this study is that N-H...S "sigma-type" hydrogen bonding behaves more like C-H...Phi or N-H...Phi "pi-type" hydrogen bonding in regard to the dispersion domination in the total interaction energy.

  19. Elongated Silicon-Carbon Bonds at Graphene Edges.

    Science.gov (United States)

    Chen, Qu; Robertson, Alex W; He, Kuang; Gong, Chuncheng; Yoon, Euijoon; Kirkland, Angus I; Lee, Gun-Do; Warner, Jamie H

    2016-01-26

    We study the bond lengths of silicon (Si) atoms attached to both armchair and zigzag edges using aberration corrected transmission electron microscopy with monochromation of the electron beam. An in situ heating holder is used to perform imaging of samples at 800 °C in order to reduce chemical etching effects that cause rapid structure changes of graphene edges at room temperature under the electron beam. We provide detailed bond length measurements for Si atoms both attached to edges and also as near edge substitutional dopants. Edge reconstruction is also involved with the addition of Si dopants. Si atoms bonded to the edge of graphene are compared to substitutional dopants in the bulk lattice and reveal reduced out-of-plane distortion and bond elongation. An extended linear array of Si atoms at the edge is found to be energy-favorable due to inter-Si interactions. These results provide detailed structural information about the Si-C bonds in graphene, which may have importance in future catalytic and electronic applications.

  20. Coulombic Models in Chemical Bonding.

    Science.gov (United States)

    Sacks, Lawrence J.

    1986-01-01

    Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)

  1. Mittal bonded tongue thrusting appliance

    Directory of Open Access Journals (Sweden)

    Rekha Mittal

    2014-01-01

    Full Text Available These days majority of orthodontist includes bonded molar attachment in their inventory to eliminate the discomfort of molar separation during initial appointment and band spaces left at the end of treatment. This article describes a innovative and economical method of attachment of bonded tongue crib if required during the initial or later stages of treatment along with bonded molar tubes.

  2. Hamiltonian formulation of bond graphs

    NARCIS (Netherlands)

    Golo, Goran; Schaft, van der Arjan; Breedveld, Peter C.; Maschke, Bernhard M.; Johansson, R.; Rantzer, A.

    2003-01-01

    This paper deals with the mathematical formulation of bond graphs. It is proven that the power continuous part of bond graphs, the junction structure, can be associated with a Dirac structure and that the equations describing a bond graph model correspond to a port Hamiltonian system. The conditions

  3. Synthesis and properties of epoxydized cooligomers obtained from petroleum resins synthesized by heterogeneous catalytic oligomerization

    OpenAIRE

    Voronchak, Taras; Nykulyshyn, Irena; Pikh, Zorian; Rypka, Anna

    2012-01-01

    Synthesis of cooligomers with epoxy groups was studied. They were synthesized by epoxidation of unsaturated petroleum resins obtained by heterogeneous catalytic oligomerization of liquid pyrolysis products С9 fraction. The degree of unsaturated bonds conversion and the selectivity of epoxidation process were calculated. The properties of epoxydized cooligomers were determined and analyzed. The structurization of synthesized products in the composition of composites with epoxy resin ED-20 ...

  4. catena-Poly[[(pentaaqua)(4-nitrobenzoato-O,O')barium(II)] (-4-nitrobenzoato-O,O')]: A barium(II) coordination polymer showing O-H$\\cdots$O and C-H$\\cdots$O interactions

    Indian Academy of Sciences (India)

    Bikshandarkoil R Srinivasan; Jyoti V Sawant; Sarvesh C Sawant; Pallepogu Raghavaiah

    2007-11-01

    The reaction of barium carbonate with 4-nitrobenzoic acid (4-nbaH) results in the formation of a Ba(II) coordination polymer, catena-poly[[(pentaaqua)(4-nitrobenzoato-O,O')barium(II)](-4-nitrobenzoato-O,O')] 1. The polymeric compound [[Ba(H2O)5(4-nba-O,O')](-4-nba-O,O')] 1 was characterized by elemental analysis, IR and UV-Vis spectra, weight loss studies, X-ray powder diffraction and its structure determined. In 1 five water molecules are coordinated to the central metal and one of the 4-nba ligands is bonded to Ba(II) in a bidentate manner (4-nba-O,O') through the carboxylate O atoms. The [(pentaaqua)(4-nitrobenzoato-O,O')barium(II)] units are linked into an infinite one-dimensional chain along -axis with the aid of the second 4-nba anion, which functions as a bridging bidentate (-4-nba-O,O') ligand. This results in nine coordination around each Ba(II) ion in the coordination polymer. A long Ba$\\cdots$Ba distance of 6.750(1) Å is observed between adjacent Ba(II) ions in the chain and the oxygen atoms of the carboxylate group and the nitro functionalities of the 4-nba ligand are involved in several O-H$\\cdots$O and C-H$\\cdots$O interactions.

  5. DuraFoil{sup TM} ICR-a new material for catalytic converter substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sukonnik, I.M.; Chang, S.; Jha, B. [Texas Instruments, Inc., Attleboro, MA (United States)

    1997-12-31

    A new type of FeCrAl material for catalytic converter substrate applications, DuraFoil{sup TM} ICR, has been developed by solid state bonding of strip layers of steel and aluminum. Such clad material is further rolled to intermediate gauge and then subjected to a thermal in situ reaction to form a solid solution material. Such monolithic material is subsequently thermomechanically processed to foil gauges. The combination of roll bonding followed by thermo-mechanical processing to produce FeCrAl foil for metallic catalytic converter substrate offers many metallurgical and economic advantages over conventional ingot metallurgy practice. The fact that thermal diffusion was performed at the intermediate gauge prior to reaching the final foil thickness gives material properties for use in the wider design range of catalytic converters. In its simplest form, the requirements for a catalytic converter substrate (foil material) are dictated by four major factors: oxidation resistance; shape stability; formability (applicable ductility); and compatibility with typical substrate processing technologies such as brazing and washcoating. To this end, the microstructures, mechanical properties, chemical homogeneity, surface chemistry and morphology of two DuraFoil{sup TM} new grades foil materials, i.e., ICR-H (hard) and ICR-F (soft), were characterized. This study has shown those superior properties, desirable formability can be achieved from diffusion-made material. (orig.)

  6. Tunable Molecular MoS2 Edge-Site Mimics for Catalytic Hydrogen Production.

    Science.gov (United States)

    Garrett, Benjamin R; Polen, Shane M; Click, Kevin A; He, Mingfu; Huang, Zhongjie; Hadad, Christopher M; Wu, Yiying

    2016-04-18

    Molybdenum sulfides represent state-of-the-art, non-platinum electrocatalysts for the hydrogen evolution reaction (HER). According to the Sabatier principle, the hydrogen binding strength to the edge active sites should be neither too strong nor too weak. Therefore, it is of interest to develop a molecular motif that mimics the catalytic sites structurally and possesses tunable electronic properties that influence the hydrogen binding strength. Furthermore, molecular mimics will be important for providing mechanistic insight toward the HER with molybdenum sulfide catalysts. In this work, a modular method to tune the catalytic properties of the S-S bond in MoO(S2)2L2 complexes is described. We studied the homogeneous electrocatalytic hydrogen production performance metrics of three catalysts with different bipyridine substitutions. By varying the electron-donating abilities, we present the first demonstration of using the ligand to tune the catalytic properties of the S-S bond in molecular MoS2 edge-site mimics. This work can shed light on the relationship between the structure and electrocatalytic activity of molecular MoS2 catalysts and thus is of broad importance from catalytic hydrogen production to biological enzyme functions. PMID:27022836

  7. O-H···C hydrogen bond in the methane-water complex

    Science.gov (United States)

    Isaev, A. N.

    2016-10-01

    Quantum chemical calculations were performed at different levels of theory (SCF, DFT, MP2, and CCSD(T)) to determine the geometry and electronic structure of the HOH···CH4 complex formed by water and methane molecules, in which water is a proton donor and methane carbon ( sp 3) is an acceptor. The charge distribution on the atoms of the complex was analyzed by the CHelpG method and Hirshfeld population analysis; both methods revealed the transfer of electron charge from methane to water. According to the natural bond orbital (NBO) analysis data, the charge transfer upon complexation is caused by the interaction between the σ orbital of the axial C-H bond of methane directed along the line of the O-H···C hydrogen bridge and the antibonding σ* orbital of the O-H bond of the water molecule. Topological analysis of electron density in the HOH···CH4 complex by the AIM method showed that the parameters of the critical point of the bond between hydrogen and acceptor (carbon atom) for the O-H···C interaction are typical for H-bonded systems (the magnitude of electron density at the critical point of the bond, the sign and value of the Laplacian). It was concluded that the intermolecular interaction in the complex can be defined as an H bond of O-H···σ(C-H) type, whose energy was found to be 0.9 kcal/mol in MP2/aug-cc-pVQZ calculations including the basis set superposition error (BSSE).

  8. ASEAN+3 Bond Market Guides

    OpenAIRE

    Asian Development Bank (ADB)

    2012-01-01

    The ASEAN+3 Bond Market Guide contains the comprehensive reports of the ASEAN+3 Bond Market Forum Sub-Forum 1 (SF1) and Sub-Forum 2 (SF2). The SF1 report (Volume 1) analyzes the harmonization and standardization of the existing bond markets in the ASEAN+3. It also contains the individual market guides of 11 economies under the ASEAN+3 Bond Market Forum (ABMF). The SF2 report (Volume 2) provides an overview of the ASEAN+3 bond markets and their infrastructures, as well as issues confronted by ...

  9. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    The paper examines the role of structured bonds in the optimal portfolio of a small retail investor. We consider the typical structured bond essentially repacking an exotic option and a zero coupon bond, i.e. an investment with portfolio insurance. The optimal portfolio is found when the investment...... opportunities consist of a risky reference fund, a risk-free asset and a structured bond. Key model elements are the trading strategy and utility function of the investor. Our numerical results indicate structured bonds do have basis for consideration in the optimal portfolio. The product holdings...

  10. Hydrogen bonding in ionic liquids.

    Science.gov (United States)

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-01

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  11. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    Science.gov (United States)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  12. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper;

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  13. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  14. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  15. Computational Introduction of Catalytic Activity into Proteins.

    Science.gov (United States)

    Bertolani, Steve J; Carlin, Dylan Alexander; Siegel, Justin B

    2016-01-01

    Recently, there have been several successful cases of introducing catalytic activity into proteins. One method that has been used successfully to achieve this is the theozyme placement and enzyme design algorithms implemented in Rosetta Molecular Modeling Suite. Here, we illustrate how to use this software to recapitulate the placement of catalytic residues and ligand into a protein using a theozyme, protein scaffold, and catalytic constraints as input. PMID:27094294

  16. Estimating the temperature of a catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-02

    A method is described for estimating the temperature in a catalytic converter used in the exhaust system of an internal combustion engine. Pressure sensors monitor the flow resistance across the catalytic converter to provide an indication of the temperature inside. This feedback system allows heating devices to be switched off and thus avoid overheating, while maintaining the catalytic converter's efficiency by assuring that it does not operate below its light off temperature. (UK)

  17. Estimating the temperature of a catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-02

    A method of estimating the temperature of a catalytic converter used in the exhaust system of an internal combustion engine is described. Heated exhaust gas oxygen (HEGO) sensors are placed upstream and downstream of the catalytic converter. The temperature of the catalytic converter shortly after start-up is measured by monitoring the resistance of the HEGO sensor's heating element. The downstream sensor is used for mixture control and to double check results of the upstream sensor. (UK)

  18. Intermolecular C-H activation with an Ir-METAMORPhos piano-stool complex--multiple reaction steps at a reactive ligand.

    Science.gov (United States)

    Oldenhof, S; Lutz, M; van der Vlugt, J I; Reek, J N H

    2015-10-21

    Substrate activation by means of a reactive ligand is a topic of much interest. Herein we describe a stoichiometric anti-Markovnikov C-N bond formation involving ligand reactivity in multiple steps along the reaction coordinate, including ligand assisted substrate (de)protonation and C-N bond formation, as illustrated by a combined experimental, spectroscopic and computational study. This affords a highly unusual four-membered iridacycle bearing an exo-cyclic C=C double bond. PMID:26329519

  19. Intermolecular C-H activation with an Ir-METAMORPhos piano-stool complex--multiple reaction steps at a reactive ligand.

    Science.gov (United States)

    Oldenhof, S; Lutz, M; van der Vlugt, J I; Reek, J N H

    2015-10-21

    Substrate activation by means of a reactive ligand is a topic of much interest. Herein we describe a stoichiometric anti-Markovnikov C-N bond formation involving ligand reactivity in multiple steps along the reaction coordinate, including ligand assisted substrate (de)protonation and C-N bond formation, as illustrated by a combined experimental, spectroscopic and computational study. This affords a highly unusual four-membered iridacycle bearing an exo-cyclic C=C double bond.

  20. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (η5-C5H4X)Rh(CO)2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs

  1. Theoretical study of bifurcated bent blue-shifted hydrogen bonds CH2…Y

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Ab initio quantum chemistry methods were applied to study the bifurcated bent hydrogen bonds Y… H2CZ (Z = O, S, Se) and Y…H2CZ2 (Z = F, Cl, Br) (Y = Cl-, Br-) at the MP2/6-311++G(d,p) and MP2/6-311++G(2df,2p) levels. The results show that in each complex there are two equivalent blue-shifted H-bonds Y…H—C, and that the interaction energies and blue shifts are large, the energy of each Y…H—C H-bond is 15-27 kJ/mol, and Δr(CH) = -0.1 - -0.5 pm and Δv(CH) = 30 - 80 cm-1. The natural bond orbital analysis shows that these blue-shifted H-bonds are caused by three factors: large rehybridization; small direct intermolecular hyperconjugation and larger indirect intermolecular hy- perconjugation; large decrease of intramolecular hyperconjugation. The topological analysis of elec- tron density shows that in each complex there are three intermolecular critical points: there is one bond critical point between the acceptor atom Y and each hydrogen, and there is a ring critical point inside the tetragon YHCH, so these interactions are exactly H-bonding.

  2. Sepia 200cH at 1:1000 dilution ameliorates salt stress in cowpea seedlings but its medium 90% ethanol proves ineffective at the same dilution

    Directory of Open Access Journals (Sweden)

    Sandhimita Mondal

    2012-12-01

    Full Text Available Soil salinity severely affects crop yield all over the world. In a recent study we observed that Natrum mur 200cH, a homeopathic remedy, improved growth in germinating cowpea seeds. In the present study we have tested another remedy Sepia, which is complementary to Natrum mur, on cowpea seedlings under salt stress. Cowpea seedlings grown over moist filter paper in petridishes were divided into 4 groups: (1 control in sterile water, (2 in 50mM NaCl solution, (3 seeds pretreated with 90% ethanol diluted with water 1:100 and then transferred to 50mM NaCl solution, (4 seeds pretreated with Sepia 200cH diluted with water 1:100 and transferred to 50mM NaCl solution. In another experiment the groups were same, but the dilution of 90% ethanol and Sepia 200cH was 1:1000 instead of 1:100. The purpose was to further reduce the ethanol content in both the drug and its vehicle 90% ethanol, so that the alcohol effect is minimized or abolished. The data were analysed by ANOVA followed by t-test. Sepia 200cH at both 1:100 and 1:1000 dilutions significantly increased growth, sugar, chlorophyll, protein and water content in seedlings as compared to the untreated salt-stressed group. The effect with the1000th dilution of Sepia 200cH was more pronounced than with its 100th dilution. The vehicle 90% ethanol at 1:100 dilution produced some positive effect on the seedlings, but the 1000th dilution of the vehicle produced no such effect. It is, therefore, concluded that Sepia 200cH could ameliorate salt stress in cowpea seedlings and that the 1000th dilution is more effective than its 100th dilution. The alcohol effect is totally eliminated with the 1000th dilution of 90% ethanol. Thus the 1000th dilution could retain the drug effect and eliminate the vehicle effect.

  3. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  4. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  5. A new type of polarographic catalytic wave of organic compound——Studies on the polarographic catalytic wave of medroprogesterone acetate in the presence of KIO3

    Institute of Scientific and Technical Information of China (English)

    亢晓峰; 宋俊峰

    1999-01-01

    The polarographic behavior and catalytic wave mechanism of medroprogesterone acetate (MPA) were studied in both aqueous and DMF media. In 0.2 mol/L acetic acid-sodium acetate (pH 5.0) buffer solution, the C=C bond of MPA first undergoes le, lH+ reduction to form protonated free radical HMPA(?), the further reduction of HMPA(?) in le, 1H+ process is simultaneous with the dimerization reaction between HMPA(?) and neutral molecular MPA. In DMF media containing 0.1 mol/L tetrabutylammonium tetrafluoborate (TBA·BF4), the C=C bond of MPA shows two le, 1H+ reduction waves, which are ascribed to the reduction of MPA and free radical MPA, respectively. Here, no dimerization reaction occurs. These processes produce the reduction wave of MPA. In the presence of oxidant KIO3, a polarographic catalytic wave of MPA is observable due to a chemical reaction between HMPA(?) or MPA(?) and KIO3 as well as its intermediate species to regenerate MPA. The catalytic wave, which is caused by the reduction of organic com

  6. Catalytic reforming feed characterisation technique

    Energy Technology Data Exchange (ETDEWEB)

    Larraz Mora, R.; Arvelo Alvarez, R. [Univ. of La Laguna, Chemical Engineering Dept., La Laguna (Spain)

    2002-09-01

    The catalytic reforming of naphtha is one of the major refinery processes, designed to increase the octane number of naphtha or to produce aromatics. The naphtha used as catalytic reformer feedstock usually contains a mixture of paraffins, naphthenes, and aromatics in the carbon number range C{sub 6} to C{sub 10}. The detailed chemical composition of the feed is necessary to predict the aromatics and hydrogen production as well as the operation severity. The analysis of feed naphtha is usually reported in terms of its ASTM distillation curve and API or specific gravity. Since reforming reactions are described in terms of lumped chemical species (paraffins, naphthenes and aromatics), a feed characterisation technique should be useful in order to predict reforming operating conditions and detect feed quality changes. Unfortunately online analyzer applications as cromatography or recently introduced naphtha NMR [1] are scarce in most of refineries. This work proposes an algorithmic characterisation method focusing on its main steps description. The method could help on the subjects previously described, finally a calculation example is shown. (orig.)

  7. Credit default swaps, bond spreads and the bond market

    OpenAIRE

    Zhu, Meicheng

    2014-01-01

    With the rapid development of the credit default swap (CDS) market, the issue of how the introduction of CDSs affects the corporate bond market has been of particular interest to researchers and policy makers. This has been investigated in the literature from two perspectives. One is to examine the relationship between the CDS and the bond markets in price discovery, and the other is concerned with researching the CDS trading effects on bond spreads. Referring to the former approach, most rel...

  8. Methane Flow Rate Effects On The Optical Properties of Amorphous Silicon Carbon (a-SiC:H Films Deposited By DC Sputtering Methods

    Directory of Open Access Journals (Sweden)

    Rosari Saleh

    2002-04-01

    Full Text Available We have investigated the refractive index (n and the optical absorption coeffi cient (α from refl ection and transmission measurements on hydrogenated amorphous silicon carbon (a-SiC:H fi lms. The a-SiC:H fi lms were prepared by dc sputtering method using silicon target in argon and methane gas mixtures. The refractive index (n decreases as the methane fl ow rate increase. The optical absorption coeffi cient (α shifts to higher energy with increasing methane fl ow rate. At higher methane fl ow rate, the fi lms tend to be more disorder and have wider optical gap. The relation of the optical properties and the disorder amorphous network with the compositional properties will be discussed.

  9. Solder extrusion pressure bonding process and bonded products produced thereby

    Science.gov (United States)

    Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.

    1992-01-01

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  10. Avoiding silicon/glass bonding damage with fusion bonding method

    Institute of Scientific and Technical Information of China (English)

    Daohong Yang(杨道虹); Chen Xu(徐晨); Guangdi Shen(沈光地)

    2004-01-01

    A novel fusion bonding method between silicon and glass with Nd:YAG laser is described.This method overcomes the movable mechanical parts damage caused by the electrostatics force in micro-electronic machine-system(MEMS)device during the anodic bonding. The diameter of laser spot is 300 μm,the power of laser is 100 W,the laser velocity for bonding is 0.05 m/s,the average bonding tension is 6.3 MPa.It could distinctly reduce and eliminate the defects and damage,especially in movable sensitive mechanical parts of MEMS device.

  11. Surface and catalytic properties of doped tin oxide nanoparticles

    Science.gov (United States)

    Wang, Chien-Tsung; Lai, De-Lun; Chen, Miao-Ting

    2010-10-01

    Mixed oxides composed of Zn-Sn, Ti-Sn and V-Sn were prepared by a co-precipitation method and evaluated as catalysts for methanol oxidation in an ambient fixed-bed reactor. Surface analysis by X-ray photoelectron spectroscopy (XPS) revealed an electronic interaction between dopant and Sn atoms in the oxide structure and showed the formation of surface states associated with the dopants. Oxygen vacancies were present on the Zn-doped oxide, and the oxidation of methanol to carbon oxides was favored. The Ti-doped oxide exhibited a favorable selectivity to dimethyl ether, related to the oxygen anions near Ti centers. Vanadium dopants not only dramatically increased the catalytic activity but also promoted the partial oxidation of methanol to formaldehyde. Results demonstrate that the bridging dopant-O-Sn bond acts as active sites and influences product distribution.

  12. Palladium-Catalyzed C-H Arylation of α,β-Unsaturated Imines: Catalyst-Controlled Synthesis of Enamine and Allylic Amine Derivatives.

    Science.gov (United States)

    Li, Minyan; González-Esguevillas, María; Berritt, Simon; Yang, Xiaodong; Bellomo, Ana; Walsh, Patrick J

    2016-02-18

    A unique chemo- and regioselective α- and γ-arylation of palladium azapentadienyl intermediates is presented. Two distinct catalysts and sets of conditions successfully controlled the regioselectivity of the arylation. These methods provide the first umpolung C-H functionalization of azapentadienyl palladium intermediates and enable the divergent synthesis of allylic amine and enamine derivatives, which are of significant interest in the pharmaceutical industry. PMID:26846375

  13. The problem of dose in homeopaty: evaluation of the effect of high dilutions of Arsenicum album 30cH on rats intoxicasted with arsenic

    OpenAIRE

    Maria Imaculada de Lima Montebelo; Marilisa Guimarães Lara; Amarilys de Toledo Cesar; Fátima Cristiane Lopes Goularte Farhat; Gabriela Cristina Gomes Rodrigues; Olney Leite Fontes; Marco Vinícius Chaud

    2011-01-01

    Background: Although scientific studies have confirmed the action of homeopathic high dilutions in living organisms an endless debate on the choice of the most fitting dilution, the frequency of administration and the dose (amount of medicine) still remains. Aims: This study sought to assess the in vivo effect of 2 different concentrations of Arsenicum album 30cH in order to elucidate some problems in the homeopathic notion of dose. Methods: Male Wistar rats previously intoxicated with sodium...

  14. On the Correlation between the Blue Shift of Hydrogen Bonding and the Proton Donor-Proton Acceptor Distance

    Institute of Scientific and Technical Information of China (English)

    WANG,Jin-Ti(王金姼); FENG,Yong(封勇); LIU,Lei(刘磊); LI,Xiao-Song(李晓松); GUO,Qing-Xiang(郭庆祥)

    2004-01-01

    It is demonstrated that in all types of hydrogen bonds (X-H…Y) there is a balance between the long-range attractive orbital interactions and short-range Pauli/nucleus repulsions. When the proton acceptor approaches the proton donor from distance, the hydrogen bonding energy becomes more negative at relatively large distance, goes through a minimum, and then starts to become less negative when the short-range repulsive forces come into effect.Meanwhile, the X-H bond length increases at relatively large distances, goes through a maximum and starts to shorten when the short-range repulsive forces come into effect. Whether the hydrogen bond is red or blue shifted is dictated by the energy minimum position. If at the energy minimum position the X-H bond length is shorter than that for the free monomer, the hydrogen bond is blue shifted and vice versa. Further studies demonstrate that the recent report about the correlation of C-H bond lengths with proton donor-acceptor distance in F3C-H…OH2 and F3C-H…Cl- is not fully correct because the authors conducted an inappropriate comparison. Furthermore, it is shown for the first time that the Pauli/nucleus repulsion theory is applicable to the blue-shifted hydrogen bonds in the X-H…π complexes and the blue-shifted lithium bonds in the X-Li…Y complexes.

  15. Catalytic hydrolysis for the degradation of organophosphorus pesticides in water

    International Nuclear Information System (INIS)

    The kinetic studies of catalytic hydrolysis revealed that the concentration of two kinds of organophosphorus pesticides (omethoate and methidathion) in solution apparently decays according to the second order reaction. It was found that the rate constant value was highest at strong acidic conditions and it continued to decrease as the pH of the solution was increased. At basic conditions the rate constant value decreased to minimum. Manganese dioxide under acidic conditions converted into Mn/sup 2+/ ions and then these ions in water form hexaaquomanganese (II) ion. This hexaaquomanganese (II ion then adsorbed itself on the S or O atom of the organophosphorus compound and thus weakens the bond between P-S. This reaction facilitated the attack of H/sub 2/O or OH/sup -/ ion and thus enhanced the efficiency of hydrolysis. It was studied that methidathion hydrolyzed more efficiently than omethoate The rate constants of catalytic hydrolysis were increased with increasing the amount of MnO/sub 2/. It was found that the pesticides had undergone adsorption on catalyst in the first few minutes and there was the rapid drop of total phosphorus concentration. The decrease of total phosphorus adsorption with increasing pH was also observed. After the addition of alkaline earth metal cations (Ca/sup 2+/ and Mg/sup 2+/) along with magnesium, the enhancement in the efficiency of hydrolysis at near neutral conditions occurred. (author)

  16. Supersymmetric Valence Bond Solid States

    OpenAIRE

    Arovas, Daniel P.; Hasebe, Kazuki; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2009-01-01

    In this work we investigate the supersymmetric version of the valence bond solid (SVBS) state. In one dimension, the SVBS states continuously interpolate between the valence bond states for integer and half-integer spin chains, and they generally describe superconducting valence bond liquid states. Spin and superconducting correlation functions can be computed exactly for these states, and their correlation lengths are equal at the supersymmetric point. In higher dimensions, the wave function...

  17. Mezzanine finance and corporate bonds

    OpenAIRE

    Libena TETREVOVA

    2009-01-01

    The article deals with the problems of mezzanine finance in relation to corporate bonds. Firstly, attention is paid to definition of mezzanine finance. The term mezzanine finance is used as a term for hybrid forms of financing that combine elements of debt and equity financing. Mezzanine finance represents an alternative form of financing corporate activities. Secondly, possible forms of mezzanine finance are characterized. We can say that special types of corporate bonds (convertible bonds a...

  18. Hydrogen Bonds Involving Metal Centers

    OpenAIRE

    Pavlović, G.; Raos, N.

    2006-01-01

    Hydrogen bonds involving metal center as a hydrogen donor or hydrogen acceptor are only a specific type of metal-hydrogen interactions; it is therefore not easy to differentiate hydrogen bond from other metal-hydrogen interactions, especially agostic ones. The first part of the review is therefore devoted to the results of structural chemistry and molecular spectroscopy (NMR, IR), as a tool for differentiating hydrogen bondings from other hydrogen interactions. The classical examples of Pt···...

  19. Acoustics of automotive catalytic converter assemblies

    Science.gov (United States)

    Dickey, Nolan S.; Selamet, Ahmet; Parks, Steve J.; Tallio, Kevin V.; Miazgowicz, Keith D.; Radavich, Paul M.

    2003-10-01

    In an automotive exhaust system, the purpose of the catalytic converter is to reduce pollutant emissions. However, catalytic converters also affect the engine and exhaust system breathing characteristics; they increase backpressure, affect exhaust system acoustic characteristics, and contribute to exhaust manifold tuning. Thus, radiated sound models should include catalytic converters since they can affect both the source characteristics and the exhaust system acoustic behavior. A typical catalytic converter assembly employs a ceramic substrate to carry the catalytically active noble metals. The substrate has numerous parallel tubes and is mounted in a housing with swelling mat or wire mesh around its periphery. Seals at the ends of the substrate can be used to help force flow through the substrate and/or protect the mat material. Typically, catalytic converter studies only consider sound propagation in the small capillary tubes of the substrate. Investigations of the acoustic characteristics of entire catalytic converter assemblies (housing, substrate, seals, and mat) do not appear to be available. This work experimentally investigates the acoustic behavior of catalytic converter assemblies and the contributions of the separate components to sound attenuation. Experimental findings are interpreted with respect to available techniques for modeling sound propagation in ceramic substrates.

  20. Understanding catalytic biomass conversion through data mining

    NARCIS (Netherlands)

    E.J. Ras; B. McKay; G. Rothenberg

    2010-01-01

    Catalytic conversion of biomass is a key challenge that we chemists face in the twenty-first century. Worldwide, research is conducted into obtaining bulk chemicals, polymers and fuels. Our project centres on glucose valorisation via furfural derivatives using catalytic hydrogenation. We present her

  1. Bond failure patterns in vivo.

    Science.gov (United States)

    Linklater, Rognvald A; Gordon, Peter H

    2003-05-01

    The aim of this study was to identify the presence and pattern of differences in bond failure between tooth types in vivo when bonding orthodontic brackets with the no-mix orthodontic composite adhesive Right-On. In vivo bond failure for a single operator was recorded for 108 consecutive patients undergoing fixed-appliance orthodontic treatment. The bond failure data were analyzed by survival analysis. Time to first failure or censorship was recorded for each bonded attachment. Overall failure in the sample matched previous clinical studies but conflicted with previous ex vivo bond strength data. Mandibular and posterior teeth had significantly higher rates of failure than did maxillary and anterior teeth. The type of attachment used had a significant effect on bond survival. The results of this study confirm that in vivo bond survival is not uniform for all teeth. Comparisons between the findings of this study and those of a previous ex vivo study by the same authors failed to validate ex vivo bond strength testing as clinically relevant.

  2. Wafer bonding applications and technology

    CERN Document Server

    Gösele, Ulrich

    2004-01-01

    During the past decade direct wafer bonding has developed into a mature materials integration technology. This book presents state-of-the-art reviews of the most important applications of wafer bonding written by experts from industry and academia. The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

  3. Photoinduced hydrogen-bonding dynamics.

    Science.gov (United States)

    Chu, Tian-Shu; Xu, Jinmei

    2016-09-01

    Hydrogen bonding dynamics has received extensive research attention in recent years due to the significant advances in femtolaser spectroscopy experiments and quantum chemistry calculations. Usually, photoexcitation would cause changes in the hydrogen bonding formed through the interaction between hydrogen donor and acceptor molecules on their ground electronic states, and such transient strengthening or weakening of hydrogen bonding could be crucial for the photophysical transformations and the subsequent photochemical reactions that occurred on a time scale from tens of femtosecond to a few nanoseconds. In this article, we review the combined experimental and theoretical studies focusing on the ultrafast electronic and vibrational hydrogen bonding dynamics. Through these studies, new mechanisms and proposals and common rules have been put forward to advance our understanding of the hydrogen bondings dynamics in a variety of important photoinduced phenomena like photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer processes, chemosensor fluorescence sensing, rearrangements of the hydrogen-bond network including forming and breaking hydrogen bond in water. Graphical Abstract We review the recent advances on exploring the photoinduced hydrogen bonding dynamics in solutions through a joint approach of laser spectroscopy and theoretical calculation. The reviewed studies have put forward a new mechanism, new proposal, and new rule for a variety of photoinduced phenomena such as photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer, chemosensor fluorescence sensing, and rearrangements of the hydrogen-bond network in water. PMID:27491849

  4. Bond Growth under Temperature Gradient.

    Directory of Open Access Journals (Sweden)

    P.K. Satyawali

    1999-12-01

    Full Text Available Grain and bond growth for dry snow are determined by the distribution of temperature andtemperature gradient in the snow matrix. From the standpoint of particle approach and based oncubic packing structure, a bond growth model has been developed for TG metamorphism. The paper.highlights the importance of bond formation and its effect on snow viscosity and finally on the rateof settlement. This is very important for developing a numerical snow pack model if microstructureis considered to be a basic parameter. A few experiments have been carried out to validate bond formation under temperature gradient.

  5. A simplified indirect bonding technique

    Directory of Open Access Journals (Sweden)

    Radha Katiyar

    2014-01-01

    Full Text Available With the advent of lingual orthodontics, indirect bonding technique has become an integral part of practice. It involves placement of brackets initially on the models and then their transfer to teeth with the help of transfer trays. Problems encountered with current indirect bonding techniques used are (1 the possibility of adhesive flash remaining around the base of the brackets which requires removal (2 longer time required for the adhesive to gain enough bond strength for secure tray removal. The new simplified indirect bonding technique presented here overcomes both these problems.

  6. Silver nanocluster catalytic microreactors for water purification

    Science.gov (United States)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  7. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  8. Reducing catalytic converter pressure loss

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This article examines why approximately 30--40% of total exhaust-system pressure loss occurs in the catalytic converter and what can be done to reduce pressure loss. High exhaust-system backpressure is of concern in the design of power trains for passenger cars and trucks because it penalizes fuel economy and limits peak power. Pressure losses occur due to fluid shear and turning during turbulent flow in the converter headers and in entry separation and developing laminar-flow boundary layers within the substrate flow passages. Some of the loss mechanisms are coupled. For example, losses in the inlet header are influenced by the presence of the flow resistance of a downstream substrate. Conversely, the flow maldistribution and pressure loss of the substrate(s) depend on the design of the inlet header.

  9. Non-catalytic recuperative reformer

    Energy Technology Data Exchange (ETDEWEB)

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  10. Catalytic Graphitization of Phenolic Resin

    Institute of Scientific and Technical Information of China (English)

    Mu Zhao; Huaihe Song

    2011-01-01

    The catalytic graphitization of thermal plastic phenolic-formaldehyde resin with the aid of ferric nitrate (FN) was studied in detail. The morphologies and structural features of the products including onion-like carbon nanoparticles and bamboo-shaped carbon nanotubes were investigated by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy measurements. It was found that with the changes of loading content of FN and residence time at 1000℃, the products exhibited various morphologies. The TEM images showed that bamboo-shaped carbon nanotube consisted of tens of bamboo sticks and onion-like carbon nanoparticle was made up of quasi-spherically concentrically closed carbon nanocages.

  11. Reactive Bonding Film for Bonding Carbon Foam Through Metal Extrusion

    CERN Document Server

    Chertok, Maxwell; Irving, Michael; Neher, Christian; Tripathi, Mani; Wang, Ruby; Zheng, Gayle

    2016-01-01

    Future tracking detectors, such as those under development for the High Luminosity LHC, will require mechanical structures employing novel materials to reduce mass while providing excellent strength, thermal conductivity, and radiation tolerance. Adhesion methods for such materials are under study at present. This paper demonstrates the use of reactive bonding film as an adhesion method for bonding carbon foam.

  12. Digital Control of Bonding Force for Gold Wire Bonding Machine

    Directory of Open Access Journals (Sweden)

    Xiaochu Wang

    2013-01-01

    Full Text Available In order to digitally control the bonding force of a wire bonder precisely, this paper uses a DC solenoid as a force source, and by controlling the solenoid’s current, which causes the electromagnetic force, we can control the bonding force that capillary applies. The bonding force control system in this paper is composed of PC (Personal Computer and hypogyny MCU (Micro Controller Unit, which communicate using a RS485 interface. The digital value of a given bonding force is given by the PC to the MCU. By comparing the sampling current of the solenoid, and through PID regulation, D/A converter of the digital potentiometer and the solenoid driver circuit, the half-closed loop control system of bonding force is accomplished. Tuning of the PID parameters is accomplished with fuzzy adaptive control theory and simulated by Matlab simulink. The control system is tested by comparing the desired bonding force and the force actually applied and examming the relationship between bonding quality and bonding force.

  13. Catalytic converter with thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  14. 29 CFR 2580.412-19 - Term of the bond, discovery period, other bond clauses.

    Science.gov (United States)

    2010-07-01

    ... SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules § 2580.412-19 Term of the bond, discovery... 29 Labor 9 2010-07-01 2010-07-01 false Term of the bond, discovery period, other bond clauses... new bond must be obtained each year. There is nothing in the Act that prohibits a bond for a...

  15. Synthesis of naphthoxazinone derivatives using silica-bonded -sulfonic acid as catalyst under solvent-free conditions

    Indian Academy of Sciences (India)

    Khodabakhsh Niknam; Parisa Abolpour

    2015-07-01

    Silica-bonded -sulfonic acid is employed as a recyclable catalyst for the synthesis of naphthoxazinone derivatives from the reaction of -naphthol, aromatic aldehydes and urea at 150°C under solvent-free conditions. The heterogeneous catalyst was recycled for five runs after the reaction of -naphthol, benzaldehyde and urea without losing its catalytic activity.

  16. Mechanism of -O-O- bond activation and catalysis by RuIII-pac complexes (pac = polyaminocarboxylate)

    Indian Academy of Sciences (India)

    Debabrata Chatterjee

    2012-11-01

    This paper presents the mechanistic aspects of the -O-O- bond activation by the Ru-pac (pac = polyaminocarboxylate) complex leading to the formation of various catalytic active species, viz. [RuIII(pac)(OOH)]2−, [RuIV(pac)(OH)]− and [RuV(pac)(O)]−, and their reactivity towards oxidation of a few organic compounds.

  17. Impact of Mercury(II) on proteinase K catalytic center: investigations via classical and Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Panek, Jarosław J; Mazzarello, Riccardo; Novič, Marjana; Jezierska-Mazzarello, Aneta

    2011-02-01

    Mercury(II) has a strong affinity for the thiol groups in proteins often resulting in the disruption of their biological functions. In this study we present classical and first-principles, DFT-based molecular dynamics (MD) simulations of a complex of Hg(II) and proteinase K, a well-known serine protease with a very broad and diverse enzymatic activity. It contains a catalytic triad formed by Asp39, His69, and Ser224, which is responsible for its biological activity. It was found previously by X-ray diffraction experiments that the presence of Hg(II) inhibits the enzymatic action of proteinase K by affecting the stereochemistry of the triad. Our simulations predict that (i) the overall structure as well as the protein backbone dynamics are only slightly affected by the mercury cation, (ii) depending on the occupied mercury site, the hydrogen bonds of the catalytic triad are either severely disrupted (both bonds for mercury at site 1, and the His69-Ser224 contact for mercury at site 2) or slightly strengthened (the Asp39-His69 bond when mercury is at site 2), (iii) the network of hydrogen bonds of the catalytic triad is not static but undergoes constant fluctuations, which are significantly modified by the presence of the Hg(II) cation, influencing in turn the triad's ability to carry out the enzymatic function--these facts explain the experimental findings on the inhibition of proteinase K by Hg(II).

  18. Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon.

    Science.gov (United States)

    Jian, Jiwen; Lin, Hailu; Luo, Mingbiao; Chen, Mohua; Zhou, Mingfei

    2016-07-11

    A ground-state boron atom inserts into the C=C bond of ethylene to spontaneously form the allene-like compound H2 CBCH2 on annealing in solid neon. This compound can further isomerize to the propyne-like HCBCH3 isomer under UV light excitation. The observation of this unique spontaneous C=C bond insertion reaction is consistent with theoretical predictions that the reaction is thermodynamically exothermic and kinetically facile. This work demonstrates that the stronger C=C bond, rather than the less inert C-H bond, can be broken to form organoboron species from the reaction of a boron atom with ethylene even at cryogenic temperatures.

  19. Theoretical study of the intermolecular hydrogen bond interaction for furan-HCl and furan-CHCl3 complexes

    Institute of Scientific and Technical Information of China (English)

    李绛; 谢代前; 鄢国森

    2003-01-01

    The nature of the intermolecular hydrogen bond for the furan-HCl and furan-CHCl3 complexes has been studied using ab initio calculations with MP2 level of theory. The new hydrogen bond type of C(Cl)-H...O and C(Cl)-H... interactions are studied also. It is shown that, for the optimized geometries of furan-CHCl3, C-H bond lengths contract and vibrational frequencies are blue-shifted, while for the furan-HCl complex, H-Cl bond lengths elongate and vibrational frequencies are red-shifted. In addition, the NBO analysis indicates that, for the furan-CHCl3 complex, the charge transfers from the lone pair of the proton acceptor to both * (CH) antibonding MO and lone pairs of Cl atom.

  20. Trends in bond dissociation energies of alcohols and aldehydes computed with multireference averaged coupled-pair functional theory.

    Science.gov (United States)

    Oyeyemi, Victor B; Keith, John A; Carter, Emily A

    2014-05-01

    As part of our ongoing investigation of the combustion chemistry of oxygenated molecules using multireference correlated wave function methods, we report bond dissociation energies (BDEs) in C1-C4 alcohols (from methanol to the four isomers of butanol) and C1-C4 aldehydes (from methanal to butanal). The BDEs are calculated with a multireference averaged coupled-pair functional-based scheme. We compare these multireference BDEs with those derived from experiment and single-reference methods. Trends in BDEs for the alcohols and aldehydes are rationalized by considering geometry relaxations of dissociated radical fragments, resonance stabilization, and hyperconjugation. Lastly, we discuss the conjectured association between bond strengths and rates of hydrogen abstraction by hydroxyl radicals. In general, abstraction reaction rates are higher at sites where the C-H bond energies are lower (and vice versa). However, comparison with available rate data shows this inverse relationship between bond strengths and abstraction rates does not hold at all temperatures.