WorldWideScience

Sample records for catalytic asymmetric synthesis

  1. Microscale Synthesis of Chiral Alcohols via Asymmetric Catalytic Transfer Hydrogenation

    Science.gov (United States)

    Peeters, Christine M.; Deliever, Rik; De Vos, Dirk

    2009-01-01

    Synthesis of pure enantiomers is a key issue in industry, especially in areas connected to life sciences. Catalytic asymmetric synthesis has emerged as a powerful and practical tool. Here we describe an experiment on racemic reduction and asymmetric reduction via a catalytic hydrogen transfer process. Acetophenone and substituted acetophenones are…

  2. A Catalytic, Asymmetric Formal Synthesis of (+)-Hamigeran B

    KAUST Repository

    Mukherjee, Herschel

    2011-03-04

    A concise asymmetric, formal synthesis of (+)-hamigeran B is reported. A Pd-catalyzed, decarboxylative allylic alkylation, employing a trifluoromethylated derivative of t-BuPHOX, is utilized as the enantioselective step to form the critical quaternary carbon center in excellent yield and enantioselectivity. The product is converted in three steps to a late-stage intermediate previously used in the synthesis of hamigeran B.

  3. Catalytic Asymmetric Synthesis of Dihydrofurans and Cyclopentenols with Tertiary Stereocenters

    NARCIS (Netherlands)

    Wu, Zhongtao; Madduri, Ashoka V.R.; Harutyunyan, Syuzanna R.; Minnaard, Adriaan J.

    A new asymmetric synthesis of dihydrofurans and cyclopentenols has been developed and is based on the copper-catalyzed 1,2-addition of Grignard reagents to enones in combination with Sonogashira coupling/cyclization or ring-closing metathesis. By this approach, dihydrofurans with an

  4. Recent advances in the catalytic asymmetric synthesis of β-amino acids

    NARCIS (Netherlands)

    Weiner, Barbara; Szymanski, Wiktor; Janssen, Dick B.; Minnaard, Adriaan J.; Feringa, Ben L.

    2010-01-01

    In this critical review, the progress in catalytic asymmetric synthesis of β-amino acids is discussed, covering the literature since 2002. The review treats transition metal catalysis, organocatalysis and biocatalysis and covers the most important synthetic methods, such as hydrogenation, the

  5. Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    KAUST Repository

    Hong, Allen Y.

    2011-02-24

    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions.

  6. Catalytic asymmetric synthesis of acyclic arrays by tandem 1,4-addition-aldol reactions

    NARCIS (Netherlands)

    Howell, Gareth P.; Fletcher, Stephen P.; Geurts, Koen; ter Horst, Bjorn; Feringa, Ben L.

    2006-01-01

    Herein, we report efficient acyclic stereocontrol in tandem 1,4-addition-aldol reactions triggered by catalytic asymmetric organometallic addition. Grignard reagents add to alpha,beta-unsaturated thioesters in a 1,4-fashion and the resulting magnesium enolatesare trapped with aromatic or aliphatic

  7. Green Synthesis of (R)-Terbutaline for Recyclable Catalytic Asymmetric Transfer Hydrogenation in Ionic Liquids.

    Science.gov (United States)

    Uchimoto, Hitomi; Ikeda, Miki; Tanida, Saori; Ohhashi, Kayo; Chihara, Yoshiko; Shigeta, Takashi; Arimitsu, Kenji; Yamashita, Masayuki; Nishide, Kiyoharu; Kawasaki, Ikuo

    2017-01-01

    We synthesize optically active (R)-terbutaline 2, which is an anti-asthmatic drug, through recyclable catalytic asymmetric transfer hydrogenation (RCATH). Various chloroketones 4 were prepared and RCATH was performed on them. The products exhibit moderate to high enantioselectivity. In particular, the hydrogenation of acyl substituted substrates 4c yields chiral secondary alcohols 5c in good yield and enantioselectivity. Furthermore, (R)-terbutaline 2 can be synthesized in one step from the resulting secondary alcohol 5 without racemization.

  8. Catalytic Asymmetric Roskamp Reaction of Silyl Diazoalkane: Synthesis of Enantioenriched α-Silyl Ketone.

    Science.gov (United States)

    Kim, Jae Yeon; Kang, Byung Chul; Ryu, Do Hyun

    2017-11-03

    A catalytic enantioselective Roskamp reaction of silyl diazoalkane to synthesize a highly optically active α-silyl ketone from aldehydes is described. In the presence of a chiral oxazaborolidinium ion catalyst, the reaction provides α-chiral silyl ketones with good yields (up to 97%) and high enantioselectivities (up to >99% ee). In addition, a one-pot procedure using an asymmetric Roskamp/reduction strategy gives highly optically active syn-β-hydroxysilane in good yields (up to 94%) with high enantioselectivities (up to 99% ee) and syn stereoselectivities (>20:1).

  9. Catalytic Asymmetric Synthesis of Fluoroalkyl-Containing Compounds by Three-Component Photoredox Chemistry.

    Science.gov (United States)

    Ma, Jiajia; Xie, Xiulan; Meggers, Eric

    2018-01-02

    Multicomponent reactions allow the construction of molecular complexity in an economical fashion, fluorinated compounds play an important role in pharmaceuticals and agrochemicals, whereas visible light is an abundant and sustainable source of energy for activating chemical transformations. Here we report a visible-light-induced asymmetric three-component fluoroalkylation reaction scheme catalyzed by a chiral-at-rhodium Lewis acid. The photoredox process is mediated by the inexpensive, commercially available organic photoredox mediator 4,4'-difluorobenzil, which upon activation by visible light induces the generation of perfluoroalkyl radicals from their sulfinates via single electron transfer oxidation. The fluorinated radicals are trapped by electron-rich C-C double bonds to deliver α-oxy carbon-centered radicals, followed by a subsequent stereocontrolled reaction with acceptor-substituted alkenes. This three-component fluoroalkylation scheme provides a range of complex fluoroalkyl-containing chiral compounds under dual C-C bond formation with high enantioselectivities (up to 98 % ee) and modest diastereoselectivities (up to 6:1 dr). Excellent diastereoselectivities (up to >38:1:1 dr) for natural chiral compound derivatives are observed. Broad substrate scope (25 examples), excellent functional group tolerance, scalability of the reaction, along with the option to recover the chiral catalyst and photoredox mediator reveal the practicability of this methodology in organic synthesis for the rapid synthesis of fluorinated chiral molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Catalytic asymmetric alkylation of ketones using organometallic reagents

    NARCIS (Netherlands)

    Madduri, Ashoka V.R.; Harutyunyan, Syuzanna R.; Minnaard, Adriaan J.

    2013-01-01

    The catalytic asymmetric synthesis of tertiary alcohols by the addition of organometallic reagents to ketones is of central importance in organic chemistry. The resulting quaternary stereocentres are difficult to prepare selectively by other means despite their widespread occurrence in natural

  11. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei

    2016-10-13

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields as well as excellent enantioselectivities and diastereoselectivities. The high value of the aza-Piancatelli rearrangement was demonstrated by the synthesis of a cyclopentane-based hNK1 antagonist analogue.

  12. Synthesis of Chiral Tertiary Boronic Esters: Phosphonate-Directed Catalytic Asymmetric Hydroboration of Trisubstituted Alkenes.

    Science.gov (United States)

    Chakrabarty, Suman; Takacs, James M

    2017-05-03

    Highly enantioselective rhodium-catalyzed hydroboration of allylic phosphonates by pinacolborane affords chiral tertiary boronic esters. The β-borylated phosphonates are readily converted to chiral β- and γ-hydroxyphosphonates and aminophosphonates and to phosphonates bearing a quaternary carbon stereocenter. The utility of the latter is illustrated by the synthesis of (S)-(+)-bakuchiol methyl ether.

  13. Synthesis of New Chiral Ligands Based on Thiophene Derivatives for Use in Catalytic Asymmetric Oxidation of Sulfides

    International Nuclear Information System (INIS)

    Jeong, Yong Chul; Ahn, Dae Jun; Lee, Woo Sun; Lee, Seung Han; Ahn, Kwang Hyun

    2011-01-01

    We discovered that the vanadium complexes of new Schiff base ligands and prepared from thiophene derivatives efficiently catalyze the asymmetric oxidation of sulfides by hydrogen peroxide to provide sulfoxides with enantioselectivities up to 79% ee and in yields up to 89%. Notably, Schiff base showed better or similar enantioselectivity than the well-studied Schiff base. These results suggest possible applications of Schiff bases derived from and in other catalytic asymmetric reactions. Chiral sulfoxides are important functional groups for various applications. For example, the biological activities of sulfoxide containing drugs such as omeprazole are strongly related to the chirality of the sulfoxide group; for this reason, esomeprazole, the enantiomerically pure form of omeprazole, was later developed. There are several chiral sulfoxide based drugs that have been introduced by the pharmaceutical industry including armodafinil, aprikalim, oxisurane, and ustiloxin. Chiral sulfoxides have also been utilized as chiral auxiliaries in asymmetric syntheses of chiral intermediates

  14. Asymmetric synthesis v.4

    CERN Document Server

    Morrison, James

    1984-01-01

    Asymmetric Synthesis, Volume 4: The Chiral Carbon Pool and Chiral Sulfur, Nitrogen, Phosphorus, and Silicon Centers describes the practical methods of obtaining chiral fragments. Divided into five chapters, this book specifically examines initial chiral transmission and extension. The opening chapter describes the so-called chiral carbon pool, the readily available chiral carbon fragments used as building blocks in synthesis. This chapter also provides a list of 375 chiral building blocks, along with their commercial sources, approximate prices, and methods of synthesis. Schemes involving

  15. Asymmetric total synthesis of Apocynaceae hydrocarbazole alkaloids (+)-deethylibophyllidine and (+)-limaspermidine.

    Science.gov (United States)

    Du, Ji-Yuan; Zeng, Chao; Han, Xiao-Jie; Qu, Hu; Zhao, Xian-He; An, Xian-Tao; Fan, Chun-An

    2015-04-01

    An unprecedented asymmetric catalytic tandem aminolysis/aza-Michael addition reaction of spirocyclic para-dienoneimides has been designed and developed through organocatalytic enantioselective desymmetrization. A unified strategy based on this key tandem methodology has been divergently explored for the asymmetric total synthesis of two natural Apocynaceae alkaloids, (+)-deethylibophyllidine and (+)-limaspermidine. The present studies not only enrich the tandem reaction design concerning the asymmetric catalytic assembly of a chiral all-carbon quaternary stereocenter contained in the densely functionalized hydrocarbazole synthons but also manifest the potential for the application of the asymmetric catalysis based on the para-dienone chemistry in asymmetric synthesis of natural products.

  16. Catalytic Oligopeptide Synthesis.

    Science.gov (United States)

    Liu, Zijian; Noda, Hidetoshi; Shibasaki, Masakatsu; Kumagai, Naoya

    2018-02-02

    Waste-free catalytic assembly of α-amino acids is fueled by a multiboron catalyst that features a characteristic B 3 NO 2 heterocycle, providing a versatile catalytic protocol wherein functionalized natural α-amino acid units are accommodated and commonly used protecting groups are tolerated. The facile dehydrative conditions eliminate the use of engineered peptide coupling reagents, exemplifying a greener catalytic alternative for peptide coupling. The catalysis is sufficiently robust to enable pentapeptide synthesis, constructing all four amide bond linkages in a catalytic fashion.

  17. Catalytic asymmetric addition of Grignard reagents to alkenyl-substituted aromatic N-heterocycles

    NARCIS (Netherlands)

    Jumde, Ravindra P; Lanza, Francesco; Veenstra, Marieke J; Harutyunyan, Syuzanna R

    2016-01-01

    Catalytic asymmetric conjugate addition reactions represent a powerful strategy to access chiral molecules in contemporary organic synthesis. However, their applicability to conjugated alkenyl-N-heteroaromatic compounds, of particular interest in medicinal chemistry, has lagged behind applications

  18. Synthesis of (R)-BINOL-Derived (Cyclopentadienone)iron Complexes and Their Application in the Catalytic Asymmetric Hydrogenation of Ketones

    NARCIS (Netherlands)

    Gajewski, Piotr; Renom-Carrasco, Marc; Facchini, Sofia Vailati; Pignataro, Luca; Lefort, Laurent; de Vries, Johannes G.; Ferraccioli, Raffaella; Piarulli, Umberto; Gennari, Cesare

    A family of chiral (cyclopentadienone)iron complexes, featuring an (R)-BINOL-derived backbone, and their application in the asymmetric hydrogenation of ketones are described. The complexes differ from each other in the substituents at the 3,3-positions of the binaphthyl residue (H, OH, OR, OCOR,

  19. Dinuclear PhosphoiminoBINOL-Pd Container for Malononitrile: Catalytic Asymmetric Double Mannich Reaction for Chiral 1,3-Diamine Synthesis.

    Science.gov (United States)

    Arai, Takayoshi; Sato, Katsuya; Nakamura, Ayu; Makino, Hiroki; Masu, Hyuma

    2018-01-16

    A phosphoiminoBINOL ligand was designed to form a dinuclear metal complex that could hold a malononitrile molecule. The dinuclear bis(phosphoimino)binaphthoxy-Pd 2 (OAc) 2 complex catalyzed a double Mannich reaction of N-Boc-imines with malononitrile to give chiral 1,3-diamines with high enantioselectivity. The rational asymmetric catalyst, which smoothly introduces the first coupling product to the second coupling reaction while avoiding the reverse reaction, facilitates the over-reaction into a productive reaction process.

  20. Metal-Catalyzed Asymmetric Michael Addition in Natural Product Synthesis.

    Science.gov (United States)

    Hui, Chunngai; Pu, Fan; Xu, Jing

    2017-03-23

    Asymmetric catalysis for chiral compound synthesis is a rapidly growing field in modern organic chemistry. Asymmetric catalytic processes have been indispensable for the synthesis of enantioselective materials to meet demands from various fields. Michael addition has been used extensively for the construction of C-C bonds under mild conditions. With the discovery and development of organo- and metal-catalyzed asymmetric Michael additions, the synthesis of enantioselective and/or diastereoselective Michael adducts has become possible and increasingly prevalent in the literature. In particular, metal-catalyzed asymmetric Michael addition has been employed as a key reaction in natural product synthesis for the construction of contiguous quaternary stereogenic center(s), which is still a difficult task in organic synthesis. Previously reported applications of metal-catalyzed asymmetric Michael additions in natural product synthesis are presented here and discussed in depth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The catalystic asymmetric synthesis of optically active epoxy ketones

    NARCIS (Netherlands)

    Marsman, Bertha Gerda

    1981-01-01

    In this thesis the use of catalytic asymmetric synthesis to prepare optically active epoxy ketones is described. This means that the auxiliary chirality, necessary to obtain an optically active product, is added in a catalytic quantity . In principle this is a very efficient way to make opticlly

  2. Catalytic asymmetric access to alpha,beta unsaturated delta-lactones through a vinylogous aldol reaction: application to the total synthesis of the Prelog-Djerassi lactone.

    Science.gov (United States)

    Bluet, G; Bazán-Tejeda, B; Campagne, J M

    2001-11-15

    [reaction--see text] A one-step catalytic asymmetric access to alpha,beta unsaturated delta-lactones is described, using a vinylogous Mukaiyama-aldol reaction between a gamma-substituted dienolate and various aldehydes in the presence of Carreira catalyst CuF.(S)-tolBinap. This methodology has been further applied to a straightforward access to the Prelog-Djerassi lactone.

  3. Direct Catalytic Asymmetric Mannich Reaction with Dithiomalonates as Excellent Mannich Donors: Organocatalytic Synthesis of (R)-Sitagliptin.

    Science.gov (United States)

    Bae, Han Yong; Kim, Mun Jong; Sim, Jae Hun; Song, Choong Eui

    2016-08-26

    In this study, dithiomalonates (DTMs) were demonstrated to be exceptionally efficient Mannich donors in terms of reactivity and stereoselectivity in cinchona-based-squaramide-catalyzed enantioselective Mannich reactions of diverse imines or α-amidosulfones as imine surrogates. Owing to the superior reactivity of DTMs as compared to conventional malonates, the catalyst loading could be reduced to 0.1 mol % without the erosion of enantioselectivity (up to 99 % ee). Furthermore, by the use of a DTM, even some highly challenging primary alkyl α-amidosulfones were smoothly converted into the desired adducts with excellent enantioselectivity (up to 97 % ee), whereas the use of a malonate or monothiomalonate resulted in no reaction under identical conditions. The synthetic utility of the chiral Mannich adducts obtained from primary alkyl substrates was highlighted by the organocatalytic, coupling-reagent-free synthesis of the antidiabetic drug (-)-(R)-sitagliptin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Organocatalyzed Asymmetric Synthesis of Axially, Planar, and Helical Chiral Compounds.

    Science.gov (United States)

    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho

    2016-02-04

    Axially, planar, and helical chiral compounds are indispensable building blocks in modern organic synthesis. A wide variety of chiral ligands and catalysts were designed based on these chiral scaffolds, and these chiral ligands and catalysts were used for various catalytic asymmetric transformations to produce important chiral compounds in an optically enriched form. Furthermore, these chiral skeletons are found in the structure of biologically active natural products. Thus, the development of efficient enantioselective methods for the synthesis of these chiral compounds is an important task in the field of organic chemistry. In the last few years, organocatalyzed approaches, which are one of the most reliable catalytic asymmetric methods, became a hot topic. This Focus Review summarizes asymmetric organocatalytic methods for the synthesis of axially, planar, and helical chiral compounds as useful chiral building blocks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Asymmetric synthesis of acetomycin

    NARCIS (Netherlands)

    Kinderman, S.S.; Feringa, B.L.

    1998-01-01

    The synthesis of (-)-acetomycin, a highly functionalized γ-lactone with antitumor activity, was achieved in five steps with nearly complete enantioselectivity. The key step was realized by a large scale lipase R catalyzed esterification of 5-hydroxy-4-methyl-2(5H)-furanone providing

  6. Asymmetric synthesis of cyclo-archaeol and beta-glucosyl cyclo-archaeol

    NARCIS (Netherlands)

    Ferrer, Catalina; Fodran, Peter; Barroso, Santiago; Gibson, Robert; Hopmans, Ellen C.; Damste, Jaap Sinninghe; Schouten, Stefan; Minnaard, Adriaan J.

    2013-01-01

    An efficient asymmetric synthesis of cyclo-archaeol and beta-glucosyl cyclo-archaeol is presented employing catalytic asymmetric conjugate addition and catalytic epoxide ring opening as the key steps. Their occurrence in deep sea hydrothermal vents has been confirmed by chromatographic comparison

  7. Asymmetric Synthesis of Apratoxin E.

    Science.gov (United States)

    Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang

    2016-10-21

    An efficient method for asymmetric synthesis of apratoxin E 2 is described in this report. The chiral lactone 8, recycled from the degradation of saponin glycosides, was utilized to prepare the non-peptide fragment 6. In addition to this "from nature to nature" strategy, olefin cross-metathesis (CM) was applied as an alternative approach for the formation of the double bond. Moreover, pentafluorophenyl diphenylphosphinate was found to be an efficient condensation reagent for the macrocyclization.

  8. Hydrodehalogenation of alkyl iodides with base-mediated hydrogenation and catalytic transfer hydrogenation: application to the asymmetric synthesis of N-protected α-methylamines.

    Science.gov (United States)

    Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S

    2014-09-05

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.

  9. Catalytic Enantioselective Synthesis of Naturally Occurring Butenolides via Hetero-Allylic Alkylation and Ring Closing Metathesis

    NARCIS (Netherlands)

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; Zijl, Anthoni W. van; Fletcher, Stephen P.; Minnaard, Adriaan J.; Feringa, Bernard

    2011-01-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey

  10. Catalytic enantioselective synthesis of naturally occurring butenolides via hetero-allylic alkylation and ring closing metathesis.

    Science.gov (United States)

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; van Zijl, Anthoni W; Fletcher, Stephen P; Minnaard, Adriaan J; Feringa, Ben L

    2011-03-04

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey lactone, (-)-cognac lactone, (-)-nephrosteranic acid, and (-)-roccellaric acid.

  11. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  12. Synthesis of asymmetrical multiantennary human milk oligosaccharides

    NARCIS (Netherlands)

    Prudden, Anthony R; Liu, Lin; Capicciotti, Chantelle J.; Wolfert, Margreet A; Wang, Shuo; Gao, Zhongwei; Meng, Lu; Moremen, Kelley W; Boons, Geert-Jan

    2017-01-01

    Despite mammalian glycans typically having highly complex asymmetrical multiantennary architectures, chemical and chemoenzymatic synthesis has almost exclusively focused on the preparation of simpler symmetrical structures. This deficiency hampers investigations into the biology of glycan-binding

  13. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    Science.gov (United States)

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  14. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  15. Magnetically Retrievable Catalysts for Asymmetric Synthesis

    Science.gov (United States)

    Surface modification of magnetic nanoparticles with chiral scaffolds for asymmetric catalytic applications is an elegant way of providing a special pseudo homogenous phase which could be separated using an external magnet. In this review, we summarize the use of magnetic nanopart...

  16. Asymmetric synthesis II more methods and applications

    CERN Document Server

    Christmann, Mathias

    2012-01-01

    After the overwhelming success of 'Asymmetric Synthesis - The Essentials', narrating the colorful history of asymmetric synthesis, this is the second edition with latest subjects and authors. While the aim of the first edition was mainly to honor the achievements of the pioneers in asymmetric syntheses, the aim of this new edition was bringing the current developments, especially from younger colleagues, to the attention of students. The format of the book remained unchanged, i.e. short conceptual overviews by young leaders in their field including a short biography of the authors. The growing multidisciplinary research within chemistry is reflected in the selection of topics including metal catalysis, organocatalysis, physical organic chemistry, analytical chemistry, and its applications in total synthesis. The prospective reader of this book is a graduate or undergraduate student of advanced organic chemistry as well as the industrial chemist who wants to get a brief update on the current developments in th...

  17. A combined continuous microflow photochemistry and asymmetric organocatalysis approach for the enantioselective synthesis of tetrahydroquinolines

    Directory of Open Access Journals (Sweden)

    Erli Sugiono

    2013-11-01

    Full Text Available A continuous-flow asymmetric organocatalytic photocyclization–transfer hydrogenation cascade reaction has been developed. The new protocol allows the synthesis of tetrahydroquinolines from readily available 2-aminochalcones using a combination of photochemistry and asymmetric Brønsted acid catalysis. The photocylization and subsequent reduction was performed with catalytic amount of chiral BINOL derived phosphoric acid diester and Hantzsch dihydropyridine as hydrogen source providing the desired products in good yields and with excellent enantioselectivities.

  18. Asymmetric catalysis in organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, S.D.; Click, D.R.; Grumbine, S.K.; Scott, B.L.; Watkins, J.G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of the project was to prepare new catalyst systems, which would perform chemical reactions in an enantioselective manner so as to produce only one of the possible optical isomers of the product molecule. The authors have investigated the use of lanthanide metals bearing both diolate and Schiff-base ligands as catalysts for the enantioselective reduction of prochiral ketones to secondary alcohols. The ligands were prepared from cheap, readily available starting materials, and their synthesis was performed in a ''modular'' manner such that tailoring of specific groups within the ligand could be carried out without repeating the entire synthetic procedure. In addition, they have developed a new ligand system for Group IV and lanthanide-based olefin polymerization catalysts. The ligand system is easily prepared from readily available starting materials and offers the opportunity to rapidly prepare a wide range of closely related ligands that differ only in their substitution patterns at an aromatic ring. When attached to a metal center, the ligand system has the potential to carry out polymerization reactions in a stereocontrolled manner.

  19. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 3. Synthesis, spectroscopic characterization and catalytic oxidation properties of ONO/ONS donor Schiff base ruthenium(III) complexes containing PPh3/AsPh3. Priyarega M Muthu Tamizh R Karvembu R Prabhakaran K Natarajan. Volume 123 Issue 3 May ...

  20. Asymmetric synthesis of syn-propargylamines and unsaturated β-amino acids under Brønsted base catalysis

    Science.gov (United States)

    Wang, Yingcheng; Mo, Mingjie; Zhu, Kongxi; Zheng, Chao; Zhang, Hongbin; Wang, Wei; Shao, Zhihui

    2015-01-01

    Propargylamines are important intermediates for the synthesis of polyfunctional amino derivatives and natural products and biologically active compounds. The classic method of synthesizing chiral propargylamines involves the asymmetric alkynylation of imines. Here, we report a significant advance in the catalytic asymmetric Mannich-type synthesis of propargylamines through catalytic asymmetric addition of carbon nucleophiles to C-alkynyl imines, culminating in a highly syn-selective catalytic asymmetric Mannich reaction of C-alkynyl imines that provide syn-configured propargylamines with two adjacent stereogenic centres and a transition metal-free organocatalytic asymmetric approach to β-alkynyl-β-amino acids with high efficiency and practicality, via a chiral Brønsted base-catalysed asymmetric Mannich-type reaction of in situ generated challenging N-Boc C-alkynyl imines from previously unreported C-alkynyl N-Boc-N,O-acetals, with α-substituted β-keto esters and less-acidic malonate (thio)esters as nucleophiles, respectively. A catalytic activation strategy is also disclosed, which may have broad implications for use in catalysis and synthesis. PMID:26423837

  1. C2-Symmetric diamines and their derivatives as promising organocatalysts for asymmetric synthesis

    Science.gov (United States)

    Zlotin, S. G.; Kochetkov, S. V.

    2015-11-01

    The review is devoted to the application of C2-symmetric diamines and their derivatives as organocatalysts for asymmetric reactions (aldol, Michael, Mannich, Diels-Alder reactions, desymmetrization, allylation, etc.). Amino acid derivatives, di- and polyamides (sulfamides), bisureas, bisthioureas, bisamidines and bisguanidines are considered. Significant attention is given to the effect of the catalyst structure on the mechanism of catalytic action. Successful applications of such catalysts in enantioselective synthesis of chiral biologically active compounds are summarized. The bibliography includes 181 references.

  2. Synthesis and Catalytic Activity of Two New Cyclic Tetraaza Ligands

    Directory of Open Access Journals (Sweden)

    Burkhard König

    2003-05-01

    Full Text Available Two new chiral cyclic tetraaza ligands were synthesized and characterized. Their catalytic activity was tested in the asymmetric addition of diethylzinc to benzaldehyde. The expected secondary alcohol was obtained in moderate yields, but with very low enantioselectivity.

  3. Catalytic Asymmetric Nitro-Mannich Reactions with a Yb/K Heterobimetallic Catalyst

    Directory of Open Access Journals (Sweden)

    Tatsuya Nitabaru

    2010-03-01

    Full Text Available A catalytic asymmetric nitro-Mannich (aza-Henry reaction with rare earth metal/alkali metal heterobimetallic catalysts is described. A Yb/K heterobimetallic catalyst assembled by an amide-based ligand promoted the asymmetric nitro-Mannich reaction to afford enantioenriched anti-b-nitroamines in up to 86% ee. Facile reduction of the nitro functionality allowed for efficient access to optically active 1,2-diamines.

  4. Direct Catalytic Asymmetric Mannich-Type Reaction of Alkylamides.

    Science.gov (United States)

    Arteaga, Fernando Arteaga; Liu, Zijian; Brewitz, Lennart; Chen, Jianyang; Sun, Bo; Kumagai, Naoya; Shibasaki, Masakatsu

    2016-05-20

    Direct enolate formation coupled with subsequent enantioselective C-C bond formation remains a topic of intense interest in asymmetric catalysis. This methodology is achieved even with low acidic amides without an electron-withdrawing group at the α-position in the context of a Mannich-type reaction. Acetate-, propionate-, and butyrate-type 7-azaindoline amides served as enolate precursors to afford the desired Mannich adducts with high stereoselectivity, and ligand-enabled diastereo-divergency provided access to both anti/syn diastereomers. The facile transformation of the amide moiety ensures the synthetic utility of the Mannich adducts.

  5. Stoichiometric and Catalytic Synthesis of Alkynylphosphines

    Directory of Open Access Journals (Sweden)

    Annie-Claude Gaumont

    2012-12-01

    Full Text Available Alkynylphosphines or their borane complexes are available either through C–P bond forming reactions or through modification of the phosphorus or the alkynyl function of various alkynyl phosphorus derivatives. The latter strategy, and in particular the one involving phosphoryl reduction by alanes or silanes, is the method of choice for preparing primary and secondary alkynylphosphines, while the former strategy is usually employed for the synthesis of tertiary alkynylphosphines or their borane complexes. The classical C–P bond forming methods rely on the reaction between halophosphines or their borane complexes with terminal acetylenes in the presence of a stoichiometric amount of organometallic bases, which precludes the access to alkynylphosphines bearing sensitive functional groups. In less than a decade, efficient catalytic procedures, mostly involving copper complexes and either an electrophilic or a nucleophilic phosphorus reagent, have emerged. By proceeding under mild conditions, these new methods have allowed a significant broadening of the substituent scope and structure complexity.

  6. Early Universe synthesis of asymmetric dark matter nuggets

    Science.gov (United States)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2018-02-01

    We compute the mass function of bound states of asymmetric dark matter—nuggets—synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  7. Catalytic synthesis of ammonia using vibrationally excited nitrogen molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1992-01-01

    The dissociation of nitrogen is the rate-limiting step in the catalytic synthesis of ammonia. Theoretical calculations have shown that the dissociative sticking probability of molecular nitrogen on catalytic active metal surfaces is enhanced by orders of magnitude when the molecules...

  8. Catalytic Asymmetric Mannich Reaction with N-Carbamoyl Imine Surrogates of Formaldehyde and Glyoxylate.

    Science.gov (United States)

    You, Yang'en; Zhang, Long; Cui, Linfeng; Mi, Xueling; Luo, Sanzhong

    2017-10-23

    N,O-acetals (NOAcs) were developed as bench stable surrogates for N-carbamoyl, (Boc, Cbz and Fmoc) formaldehyde and glyoxylate imines in asymmetric Mannich reactions. The NOAcs can be directly utilized in the chiral primary amine catalyzed Mannich reactions of both acyclic and cyclic β-ketocarbonyls with high yields and excellent stereoselectivity. The current reaction offers a straightforward approach in the asymmetric synthesis of α- or β-amino carbonyls bearing chiral quaternary centers in a practical and highly stereocontrolled manner. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. α-Halo Amides as Competent Latent Enolates: Direct Catalytic Asymmetric Mannich-Type Reaction.

    Science.gov (United States)

    Sun, Bo; Balaji, Pandur Venkatesan; Kumagai, Naoya; Shibasaki, Masakatsu

    2017-06-21

    α-Halogenated carbonyl compounds are susceptible to dehalogenation and thus largely neglected as enolate precursors in catalytic enantioselective C-C bond-forming reactions. By merging the increased stability of the α-C-halogen bond of amides and the direct enolization methodology of the designed amide, we explored a direct catalytic asymmetric Mannich-type reaction of α-halo 7-azaindoline amides with N-carbamoyl imines. All α-halo substituents, α-F, -Cl, -Br, -I amides, were tolerated to provide the Mannich-adducts in a highly stereoselective manner without undesirable dehalogenation. The diastereoselectivity switched intriguingly depending on the substitution pattern of the aromatic imines, which is ascribed to stereochemical differentiation based on the open transition-state model. Functional group interconversion of the 7-azaindoline amide moiety of the Mannich-adducts and further elaboration into a diamide without dehalogenation highlight the synthetic utility of the present protocol for accessing enantioenriched halogenated chemical entities.

  10. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis.

    Science.gov (United States)

    Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter

    2016-01-26

    A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate.

    Science.gov (United States)

    North, Michael; Omedes-Pujol, Marta

    2010-11-03

    Propylene carbonate can be used as a green solvent for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers from aldehydes and trimethylsilyl cyanide catalysed by VO(salen)NCS, though reactions are slower in this solvent than the corresponding reactions carried out in dichloromethane. A mechanistic study has been undertaken, comparing the catalytic activity of VO(salen)NCS in propylene carbonate and dichloromethane. Reactions in both solvents obey overall second-order kinetics, the rate of reaction being dependent on the concentration of both the aldehyde and trimethylsilyl cyanide. The order with respect to VO(salen)NCS was determined and found to decrease from 1.2 in dichloromethane to 1.0 in propylene carbonate, indicating that in propylene carbonate, VO(salen)NCS is present only as a mononuclear species, whereas in dichloromethane dinuclear species are present which have previously been shown to be responsible for most of the catalytic activity. Evidence from ⁵¹V NMR spectroscopy suggested that propylene carbonate coordinates to VO(salen)NCS, blocking the free coordination site, thus inhibiting its Lewis acidity and accounting for the reduction in catalytic activity. This explanation was further supported by a Hammett analysis study, which indicated that Lewis base catalysis made a much greater contribution to the overall catalytic activity of VO(salen)NCS in propylene carbonate than in dichloromethane.

  12. Asymmetric Synthesis of Fluoroamines from Chiral Aziridines

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyeonjeong; Yoon, Dooha; Ha, Hyunjoon [Hankuk Univ. of Foreign Studies, Yongin (Korea, Republic of); Son, Se In; Lee, Won Koo [Sogang Univ., Seoul (Korea, Republic of)

    2014-03-15

    We described an efficient preparation of fluoroamines by the ring-opening reactions of chiral aziridines with Et{sub 3}N·3HF. At most cases both regioisomers were obtained from the ring openings at C2 and C3 positions depending on the substituents at C2 of the starting substrates.The fluorinated organic molecules have attracted great attentions from synthetic and medicinal chemists with wide use of various agrochemicals and pharmaceuticals. Their uniqueness is originated from its electronic characteristics and the small size without altering the molecular conformations of non-fluorinated compounds. The fluorine is the second most widely used atom in the commercial drugs following the amine. Thereby, the elaboration of fluoro-amines bearing two most widely used atoms in drugs is one of the most challenging problems in drug synthesis and its development.

  13. Improved synthesis of symmetrically & asymmetrically N-substituted pyridinophane derivatives.

    Science.gov (United States)

    Wessel, Andrew J; Schultz, Jason W; Tang, Fengzhi; Duan, Hui; Mirica, Liviu M

    2017-11-29

    The N,N'-di(toluenesulfonyl)-2,11-diaza[3,3](2,6)pyridinophane ( Ts N4) precursor was sought after as a starting point for the preparation of various symmetric and asymmetric pyridinophane-derived ligands. Various procedures to synthesize Ts N4 had been published, but the crucial problem had been the purification of Ts N4 from the larger 18- and 24-membered azamacrocycles. Most commonly, column chromatography or other laborious methods have been utilized for this separation, yet we have found an alternate selective dissolution method upon protonation which allows for multi-gram scale output of Ts N4·HCl. This optimized synthesis of Ts N4 also led to the development of symmetric R N4 derivatives as well as the asymmetric derivative N-(tosyl)-2,11-diaza[3,3](2,6)pyridinophane ( TsH N4). Using this TsH N4 precursor, different N-substituents can be added to create a library of asymmetric RR' N4 macrocyclic ligands. These asymmetric RR' N4 derivatives expand the utility of the R N4 framework in coordination chemistry and the ability to study the electronic, steric, and denticity effects of these pyridinophane ligands on the metal center.

  14. Asymmetric synthesis of an axially chiral antimitotic biaryl via an atropo-enantioselective Suzuki cross-coupling.

    Science.gov (United States)

    Herrbach, Audrey; Marinetti, Angela; Baudoin, Olivier; Guénard, Daniel; Guéritte, Françoise

    2003-06-13

    A catalytic asymmetric synthesis of the axially chiral bridged biaryl (-)-2, a structural analogue of natural (-)-rhazinilam possessing original antimitotic properties, is described. The key step is an intermolecular asymmetric Suzuki coupling, furnishing the nonbridged biaryl (-)-6, precursor of (-)-2, with up to 40% ee using binaphthyl ligand 7a. Various known or new binaphthyl and ferrocenyl phosphines as well as phosphetanes were screened as ligands in this reaction, the conditions of which were optimized. The comparison with another Suzuki coupling system showed that 7a is the most versatile ligand described to date for this type of transformation. This work gives the first application of the asymmetric Suzuki coupling to a biologically relevant target.

  15. Synthesis, characterization and investigation of catalytic activity of ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 124, No. 4, July 2012, pp. 827–834. c Indian Academy of Sciences. Synthesis, characterization and investigation of catalytic activity ..... 2004 J. Catal. 222 107. 8. Rajgopal R, Vetrivel R and Rao B S 2000 Catal. Lett. 65 99. 9. Rao B S, Sreekumar K and Jyothi T M 1998 Indian. Patent 2707/98. 10.

  16. Assessing the reliability of calculated catalytic ammonia synthesis rates

    DEFF Research Database (Denmark)

    Medford, Andrew James; Wellendorff, Jess; Vojvodic, Aleksandra

    2014-01-01

    We introduce a general method for estimating the uncertainty in calculated materials properties based on density functional theory calculations. We illustrate the approach for a calculation of the catalytic rate of ammonia synthesis over a range of transition-metal catalysts. The correlation...

  17. Catalytic synthesis of alcoholic fuels for transportation from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao

    This work has investigated the catalytic conversion of syngas into methanol and higher alcohols. Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different ...

  18. Synthesis and catalytic properties of ferrocenophane phosphines

    OpenAIRE

    Škoch, Karel

    2014-01-01

    6 Title: Sythesis and catalytic properties of ferrocenophane phosphines Author: Karel Škoch Institution: Faculty of Science, Charles University in Prague, Department of Inorganic Chemistry Supervisor: prof. RNDr. Petr Štěpnička, Ph.D. Keywords: ferrocene, ferrocenophane, phosphine ligands, palladium, asymetric catalysis, aza- Morita-Baylis-Hillman reaction, asymetric allylic alkylation Abstract: This Thesis describes the preparation of five sterically and electronically different ferrocene ph...

  19. Catalytic Synthesis of Nitriles in Continuous Flow

    DEFF Research Database (Denmark)

    Nordvang, Emily Catherine

    , alternative path to acetonitrile from ethanol via the oxidative dehydrogenation of ethylamine. The catalytic activity and product ratios of the batch and continuous flow reactions are compared and the effect of reaction conditions on the reaction is investigated. The effects of ammonia in the reaction...... dehydrogenation of ethylamine and post-reaction purging.Chapter 4 outlines the application of RuO2/Al2O3 catalysts to the oxidative dehydrogenation of benzylamine in air, utilizing a new reaction setup. Again, batch and continuous flow reactions are compared and the effects of reaction conditions, ammonia...

  20. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Oxidation of alcohols to carbonyl compounds is one of the most pivotal functional group transformations in organic synthesis. Three important natural enzymes ..... 6. Benzyl alcohol. Benzaldehyde. 57. 1-Phenylethanol. Acetophenone. 65. Cyclohexanol. Cyclohexanone. 49 a Reaction time, 5 h. b Yields based on substrate.

  1. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    tion in the development of catalysis, magnetism, molec- ular architectures and materials chemistry. Oxidation of alcohols to carbonyl compounds is one of the most pivotal functional group transformations in organic synthesis. Three important natural enzymes used for oxidation reactions are cytochrome P-450, per- oxidases ...

  2. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    Membranes consisting of one or more metal oxides can be synthesized by flame pyrolysis. The general principle behind flame pyrolysis is the decomposition and oxidation of evaporated organo-metallic precursors in a flame, thereby forming metal oxide monomers. Because of the extreme supersaturation...... technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate......, membranes with pore sizes below 5 nm have been produced by this continuous filtration of nano-particles. In this way, top-layers with Knudsen separation have been achieved by a reduction of the pore size of three orders of magnitude within an hour. It has previously been shown that it also is possible...

  3. Catalytic synthesis of ammonia using vibrationally excited nitrogen

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Billing, Gert D.; Hansen, Flemming Yssing

    1992-01-01

    In a previous study we have considered the catalytic synthesis of ammonia in the presence of vibrationally excited nitrogen. The distribution over vibrational states was assumed to be maintained during the reaction, and it was shown that the yield of ammonia increased considerably compared...... to that from conventional synthesis. In the present study the nitrogen molecules are only excited at the inlet of a plug flow reactor, and the importance of vibrational relaxation is investigated. We show that vibrational excitation can give an enhanced yield of ammonia also in the situation where vibrational...

  4. Recyclable Nanostructured Catalytic Systems in Modern Environmentally Friendly Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Irina Beletskaya

    2010-07-01

    Full Text Available Modern chemical synthesis makes heavy use of different types of catalytic systems: homogeneous, heterogeneous and nano-sized. The latter – nano-sized catalysts – have given rise in the 21st century to a rapidly developing area of research encompassing several prospects and opportunities for new technologies. Catalytic reactions ensure high regio- and stereoselectivity of chemical transformations, as well as better yields and milder reaction conditions. In recent years several novel catalytic systems were developed for selective formation of carbon-heteroatom and carbon-carbon bonds. This review presents the achievements of our team in our studies on various types of catalysts containing metal nanoparticles: palladium-containing diblock copolymer micelles; soluble palladium-containing polymers; metallides on a support; polymeric metal salts and oxides; and, in addition, metal-free organic catalysts based on soluble polymers acting as nanoreactors. Representative examples are given and discussed in light of possible applications to solve important problems in modern organic synthesis.

  5. Chiral 1,3,2-oxazaborolidines in asymmetric synthesis: recent advances

    International Nuclear Information System (INIS)

    Glushkov, Vladimir A; Tolstikov, Alexander G

    2004-01-01

    The use of chiral 1,3,2-oxazaborolidines in asymmetric organic synthesis, particularly, in enantioselective reduction of ketones, imines and oxime ethers, asymmetric Diels-Alder reactions, aldol condensation and atroposelective reduction of lactones is reviewed. Reactions of immobilised 1,3,2-oxazaborolidines are also considered.

  6. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  7. Iterative Cr-mediated catalytic asymmetric allylation to synthesize syn/syn- and anti/anti-1,3,5-triols.

    Science.gov (United States)

    Zhang, Zhiyu; Aubry, Sylvain; Kishi, Yoshito

    2008-07-17

    Iterative use of Cr-mediated catalytic asymmetric allylation could give a simple access to 1,3-polyols. Using syn/syn- and anti/anti-1,3,5-triols as representative examples, the feasibility of this approach is studied, thereby demonstrating that (1) the pre-existing TMS-protected alcohol at the beta-position does not give a significant effect on the Cr-mediated catalytic asymmetric allylation and (2) this synthetic route furnishes the expected syn/syn- and anti/anti-1,3,5-triols at the useful level of asymmetric induction and yield.

  8. Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics

    Directory of Open Access Journals (Sweden)

    Matthias Wünsch

    2017-11-01

    Full Text Available The amide moiety of peptides can be replaced for example by a triazole moiety, which is considered to be bioisosteric. Therefore, the carbonyl moiety of an amino acid has to be replaced by an alkyne in order to provide a precursor of such peptidomimetics. As most amino acids have a chiral center at Cα, such amide bond surrogates need a chiral moiety. Here the asymmetric synthesis of a set of 24 N-sulfinyl propargylamines is presented. The condensation of various aldehydes with Ellman’s chiral sulfinamide provides chiral N-sulfinylimines, which were reacted with (trimethylsilylethynyllithium to afford diastereomerically pure N-sulfinyl propargylamines. Diverse functional groups present in the propargylic position resemble the side chain present at the Cα of amino acids. Whereas propargylamines with (cycloalkyl substituents can be prepared in a direct manner, residues with polar functional groups require suitable protective groups. The presence of particular functional groups in the side chain in some cases leads to remarkable side reactions of the alkyne moiety. Thus, electron-withdrawing substituents in the Cα-position facilitate a base induced rearrangement to α,β-unsaturated imines, while azide-substituted propargylamines form triazoles under surprisingly mild conditions. A panel of propargylamines bearing fluoro or chloro substituents, polar functional groups, or basic and acidic functional groups is accessible for the use as precursors of peptidomimetics.

  9. The Effect of Synthesis Parameters on the Catalytic Synthesis of ...

    African Journals Online (AJOL)

    NJD

    Synthesis of Multiwalled Carbon Nanotubes using. Fe-Co/CaCO. 3. Catalysts. Sabelo D. Mhlangaa,b, Kartick C. Mondala,b, Robin Cartera,b, Michael J. Witcombb,c and Neil J. Covillea,b*. aMolecular Sciences Institute and School of Chemistry, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa.

  10. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    Directory of Open Access Journals (Sweden)

    Jarian Vernimmen

    2011-11-01

    Full Text Available In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials.

  11. Chiral bicycle imidazole nucleophilic catalysts: rational design, facile synthesis, and successful application in asymmetric Steglich rearrangement.

    Science.gov (United States)

    Zhang, Zhenfeng; Xie, Fang; Jia, Jia; Zhang, Wanbin

    2010-11-17

    A new type of chiral bicycle imidazole nucleophilic catalyst was rationally designed, facilely synthesized, and successfully applied in an asymmetric Steglich rearrangement with good to excellent yield and enantioselectivity at ambient temperature. Moreover, it can be easily recycled with almost no reduction of catalytic efficiency. This is the first example for the successful chiral imidazole nucleophilic catalyst without H-bonding assistance.

  12. Synthesis and catalytic properties of metal and semiconductor nanoclusters

    Science.gov (United States)

    Wilcoxon, J. P.; Martino, T.; Klavetter, E.; Sylwester, A. P.

    Synthesis of metal or semiconductor nanoclusters in microheterogeneous oil-continuous inverse micelle systems is discussed. We focus on synthesis and catalytic properties of palladium, iron, and iron sulfide nanoclusters. Cluster size-control is achieved by changing the micelle size which is determined by small angle neutron scattering (SANS) and chosen to produce cluster in size range of 1-20 nm. Cluster sizes were determined by either transmission electron microscopy (TEM) or small-angle x-ray scattering (SAXS). Cluster structure was determined by either x-ray or electron diffraction. In the case of Fe nanoclusters, the crystal structure depended on the chemical nature of the surfactant micelle used in the synthesis, illustrating the important role of the surfactant during the growth process. Results of in-situ pyrene hydrogenation using size-selected Pd clusters show a significant increase in activity/total surface area as the size decreases. These clusters also proved effective as unsupported catalysts for direct coal hydropyrolysis, even at very low metal concentrations. Synthesis and optical features of a new semiconductor cluster material, FeS2, are discussed with regard to its use in photocatalysis. Application of FeS2 in coal hydrogenolysis reactions has improved yields of short chain hydrocarbons significantly compared to conventional FeS2 powders.

  13. Catalytic synthesis of diesel from syngas: Theoretical and practical aspects

    International Nuclear Information System (INIS)

    Khalid, N.; Saeed, M.M.

    2013-01-01

    The world energy needs have been increasing tremendously resulting in the depletion of the resources of fossil fuel and increase in the prices of crude oil. To meet the required needs or decrease the dependency at least in parts, the attention of the scientists is being focused on the generation of alternate sources for the diesel fuel and other valued products. The catalytic based Fisher-Tropsch process for the generation of liquid chemicals, specially the diesel fuels from syngas is gaining attention since the products formed are of relatively low cost, high quality and environmental friendly due to low aromaticity and sulphur contents. Two main characteristics of the Fischer-Tropsch synthesis (FTS) are the unavoidable production of a wide range of hydrocarbon products (olefins, paraffins, and oxygenated products) and the liberation of large amount of heat from the highly exothermic synthesis reactions. FT synthesis products are influenced by various factors like temperature and pressure of syngas, nature of the catalyst, and the type of reactors. All these parameters are discussed by focusing special attention to the synthesis of cobalt catalyst for the production of diesel fuel. (author)

  14. Exploring the Catalytic Promiscuity of Phenolic Acid Decarboxylases: Asymmetric, 1,6-Conjugate Addition of Nucleophiles Across 4-Hydroxystyrene.

    Science.gov (United States)

    Payer, Stefan E; Sheng, Xiang; Pollak, Hannah; Wuensch, Christiane; Steinkellner, Georg; Himo, Fahmi; Glueck, Silvia M; Faber, Kurt

    2017-06-19

    The catalytic promiscuity of a ferulic acid decarboxylase from Enterobacter sp. (FDC_ E s) and phenolic acid decarboxylases (PADs) for the asymmetric conjugate addition of water across the C=C bond of hydroxystyrenes was extended to the N-, C- and S-nucleophiles methoxyamine, cyanide and propanethiol to furnish the corresponding addition products in up to 91% ee . The products obtained from the biotransformation employing the most suitable enzyme/nucleophile pairs were isolated and characterized after optimizing the reaction conditions. Finally, a mechanistic rationale supported by quantum mechanical calculations for the highly ( S )-selective addition of cyanide is proposed.

  15. Asymmetric Ion-Pairing Catalysis

    Science.gov (United States)

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  16. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with

  17. Size Controlled Synthesis of Transition Metal Nanoparticles for Catalytic Applications

    KAUST Repository

    Esparza, Angel

    2011-07-07

    Catalysis offers cleaner and more efficient chemical reactions for environmental scientists. More than 90% of industrial processes are performed with a catalyst involved, however research it is still required to improve the catalyst materials. The purpose of this work is to contribute with the development of catalysts synthesis with two different approaches. First, the precise size control of non-noble metals nanoparticles. Second, a new one-pot synthesis method based on a microemulsion system was developed to synthesize size-controlled metal nanoparticles in oxide supports. The one-pot method represents a simple approach to synthesize both support and immobilized nanometer-sized non-noble metal nanoparticles in the same reaction system. Narrow size distribution nickel, cobalt, iron and cobalt-nickel nanoparticles were obtained. High metal dispersions are attainable regardless the metal or support used in the synthesis. Thus, the methodology is adaptable and robust. The sizecontrolled supported metal nanoparticles offer the opportunity to study size effects and metal-support interactions on different catalytic reactions with different sets of metals and supports.

  18. Asymmetric Shaped-Pattern Synthesis for Planar Antenna Arrays

    Directory of Open Access Journals (Sweden)

    T. M. Bruintjes

    2016-01-01

    Full Text Available A procedure to synthesize asymmetrically shaped beam patterns is developed for planar antenna arrays. As it is based on the quasi-analytical method of collapsed distributions, the main advantage of this procedure is the ability to realize a shaped (null-free region with very low ripple. Smooth and asymmetrically shaped regions can be used for Direction-of-Arrival estimation and subsequently for efficient tracking with a single output (fully analog beamformer.

  19. Palladium-catalyzed asymmetric alkylation in the synthesis of cyclopentanoid and cycloheptanoid core structures bearing all-carbon quaternary stereocenters

    KAUST Repository

    Hong, Allen Y.

    2011-12-01

    General catalytic asymmetric routes toward cyclopentanoid and cycloheptanoid core structures embedded in numerous natural products have been developed. The central stereoselective transformation in our divergent strategies is the enantioselective decarboxylative alkylation of seven-membered β-ketoesters to form α-quaternary vinylogous esters. Recognition of the unusual reactivity of β-hydroxyketones resulting from the addition of hydride or organometallic reagents enabled divergent access to γ-quaternary acylcyclopentenes through a ring contraction pathway or γ-quaternary cycloheptenones through a carbonyl transposition pathway. Synthetic applications of these compounds were explored through the preparation of mono-, bi-, and tricyclic derivatives that can serve as valuable intermediates for the total synthesis of complex natural products. This work complements our previous work with cyclohexanoid systems.

  20. Synthesis, characterization and catalytic activity of CdO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G., E-mail: gsingh4us@yahoo.com [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India); Kapoor, I.P.S.; Dubey, Reena; Srivastava, Pratibha [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India)

    2011-02-15

    In this paper, we report the synthesis of nanocrystalline cadmium oxide (CdO) and its characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Its catalytic activity was investigated on the thermal decomposition of 1,2,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), ammonium perchlorate (AP), hydroxyl terminated polybutadiene (HTPB) and composite solid propellants (CSPs) using thermogravimetric analysis (TG), simultaneous thermogravimerty and differential scanning calorimetry (TG-DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + CdO has also been investigated using model free (isoconversional) and model-fitting approaches which have been applied to data for isothermal TG decomposition. All these studies show enhancement in the rate of decomposition of AP, HTPB and CSPs but no effect on HMX. The burning rate of CSPs has also been found to be increased with CdO nanocrystals.

  1. Catalytic Asymmetric Mukaiyama-Mannich Reaction of Cyclic C-Acylimines with Difluoroenoxysilanes: Access to Difluoroalkylated Indolin-3-ones.

    Science.gov (United States)

    Li, Jin-Shan; Liu, Yong-Jie; Zhang, Guang-Wu; Ma, Jun-An

    2017-12-01

    A catalytic enantioselective Mukaiyama-Mannich reaction of cyclic C-acylimines with difluoroenoxysilanes is reported. (S)-TRIP enables the enantioselective synthesis of a series of novel difluoroalkylated indolin-3-ones bearing a quaternary stereocenter in up to 97% yield and 98% ee. The synthetic utility of this protocol is highlighted by efficient conversion of the products to the corresponding indolin-3-one derivatives without any erosion of the enantiopurity.

  2. Continuous-flow catalytic asymmetric hydrogenations: Reaction optimization using FTIR inline analysis

    Directory of Open Access Journals (Sweden)

    Magnus Rueping

    2012-02-01

    Full Text Available The asymmetric organocatalytic hydrogenation of benzoxazines, quinolines, quinoxalines and 3H-indoles in continuous-flow microreactors has been developed. Reaction monitoring was achieved by using an inline ReactIR flow cell, which allows fast and convenient optimization of reaction parameters. The reductions proceeded well, and the desired products were isolated in high yields and with excellent enantioselectivities.

  3. Catalytic asymmetric allylation of aliphatic aldehydes by chiral bipyridine N,N'-dioxides

    Czech Academy of Sciences Publication Activity Database

    Hrdina, R.; Boyd, T.; Valterová, Irena; Hodačová, Jana; Kotora, Martin

    -, č. 20 (2008), s. 3141-3144 ISSN 0936-5214 Grant - others:GA MŠk(CZ) LC06070 Program:LC Institutional research plan: CEZ:AV0Z40550506 Keywords : allylations * aldehydes * Lewis base * asymmetric catalysis * solvent effect Subject RIV: CC - Organic Chemistry Impact factor: 2.659, year: 2008

  4. Studies Toward the Asymmetric Synthesis of the Right Part of the Mycalamides

    OpenAIRE

    Zhong, H. Marlon; Sohn, Jeong-Hun; Rawal, Viresh H.

    2007-01-01

    Described herein is the asymmetric synthesis of a functionalized, trioxadecalin unit that comprises the right-hand part of the mycalamides and related natural products. The synthetic route involves a 16-step sequence that accomplishes the formation of two heterocyclic rings and the generation of five stereocenters. The synthesis commenced with a C2 symmetric starting material, diethyl D-tartrate, and took advantage of a relay of diastereoselective reactions to extend this four-carbon chain an...

  5. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger

    2016-11-30

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted products with excellent yields and enantioselectivities. The developed methodology allows an efficient synthesis of this important spirocyclic structural motif, which is present in numerous biologically active molecules and privileged structures in medicinal chemistry.

  6. Influence of the phase composition on the catalytic properties of ammonia synthesis catalysts

    International Nuclear Information System (INIS)

    Peev, T.M.; Bojinova, A.I.; Krylova, A.V.

    1981-01-01

    The phase composition of CA-1-type catalysts for ammonia synthesis was investigated by means of Moessbauer spectroscopy. A correlation was found between the catalytic activity of the samples and their wuestite content. (author)

  7. Asymmetric, Stereodivergent Synthesis of (−)-Clusianone Utilizing a Biomimetic Cationic Cyclization **

    Science.gov (United States)

    Boyce, Jonathan H.

    2014-01-01

    We report a stereodivergent, asymmetric total synthesis of (−)-clusianone in six steps from commercial materials. We implement a challenging cationic cyclization forging a bond between two sterically encumbered quaternary carbons. Mechanistic studies point to the unique ability of formic acid to bring about successful cyclization to the clusianone framework. PMID:24916169

  8. Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Hansen, E. Louise; Kane, John

    2001-01-01

    A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed by asy...

  9. An Ultimate Stereocontrol in Asymmetric Synthesis of Optically Pure Fully Aromatic Helicenes

    Czech Academy of Sciences Publication Activity Database

    Šámal, Michal; Chercheja, Serghei; Rybáček, Jiří; Vacek Chocholoušová, Jana; Vacek, Jaroslav; Bednárová, Lucie; Šaman, David; Stará, Irena G.; Starý, Ivo

    2015-01-01

    Roč. 137, č. 26 (2015), s. 8469-8474 ISSN 0002-7863 R&D Projects: GA ČR GA203/09/1766 Institutional support: RVO:61388963 Keywords : helicenes * asymmetric synthesis * cycloisomerization Subject RIV: CC - Organic Chemistry Impact factor: 13.038, year: 2015

  10. Direct Catalytic Asymmetric Mannich-Type Reaction of α-N3 Amide.

    Science.gov (United States)

    Sun, Zhongdong; Weidner, Karin; Kumagai, Naoya; Shibasaki, Masakatsu

    2015-12-01

    An α-N3 7-azaindoline amide serves as a latent enolate to directly engage in an asymmetric Mannich-type reaction with N-thiophosphinoyl imines by the action of a cooperative catalyst. The thus-obtained highly enantioenriched anti-adduct was transformed into β-amino-α-azido acid in high yield by simple acidic treatment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Novel phosphonium salts and bifunctional organocatalysts in asymmetric synthesis

    OpenAIRE

    Moore, Graham

    2013-01-01

    This thesis details the syntheses of catalysts and their applications in asymmetric reactions. Initially, the project focused on phase transfer catalysts; quaternary phosphonium salts derived from diethyl tartrate or from commercially available phosphorus compounds and their use primarily in the alkylation of N,N-diphenyl methylene glycine tert-butyl ester. Although some of the salts showed the ability to catalyse the alkylation reaction, all products obtained were racemic. The project then f...

  12. Asymmetric synthesis of bi(thio)xanthylidene overcrowded alkenes

    NARCIS (Netherlands)

    Geertsema, Edzard M.; Hoen, Rob; Meetsma, Auke; Feringa, Ben L.

    2006-01-01

    Overcrowded alkenes are a fascinating class of inherent dissymmetric molecules that attract considerable interest for instance as chiroptical molecular switches and unidirectionally rotary motors. A practical synthesis route towards enantiomerically pure overcrowded alkenes is an important goal. We

  13. A Series of Asymmetrical Phthalocyanines: Synthesis and Near Infrared Properties

    Directory of Open Access Journals (Sweden)

    Xiguang Du

    2013-04-01

    Full Text Available We report here the preparation of asymmetrical phthalocyanine dimers 1a–3a, which are endowed with novel charge transfer bands at 1,151–1,154 nm and strong NIR luminescences at 840–860 nm and 1,600–1,650 nm. Through H-bonding interaction, 1a–3a are inclined to self-assemble into hexrod nanotubes at the interface of CHCl3 and CH3OH. Our results provide further insights into the interaction in molecular dimers, and suggest that 1a–3a have potential application in magnets and supramolecular architectures.

  14. Catalytic synthesis of enantiopure mixed diacylglycerols - synthesis of a major M. tuberculosis phospholipid and platelet activating factor

    NARCIS (Netherlands)

    Fodran, Peter; Minnaard, Adriaan J.

    2013-01-01

    An efficient catalytic one-pot synthesis of TBDMS-protected diacylglycerols has been developed, starting from enantiopure glycidol. Subsequent migration-free deprotection leads to stereo- and regiochemically pure diacylglycerols. This novel strategy has been applied to the synthesis of a major

  15. Inherently chiral calixarenes: synthesis, optical resolution, chiral recognition and asymmetric catalysis.

    Science.gov (United States)

    Li, Shao-Yong; Xu, Yao-Wei; Liu, Jun-Min; Su, Cheng-Yong

    2011-01-17

    Inherently chiral calixarenes, whose chirality is based on the absence of a planar symmetry or an inversion center in the molecules as a whole through the asymmetric array of several achiral groups upon the three-dimensional calix-skeletons, are challenging and attractive chiral molecules, because of their potential in supramolecular chemistry. The synthesis and optical resolution of all varieties of inherently chiral calixarenes are systematically discussed and classified, and their applications in chiral recognition and asymmetric catalysis are thoroughly illustrated in this review.

  16. Asymmetric conjugate addition of alkylzirconium reagents to α,β-unsaturated lactones.

    Science.gov (United States)

    Maciver, Eleanor E; Maksymowicz, Rebecca M; Wilkinson, Nancy; Roth, Philippe M C; Fletcher, Stephen P

    2014-06-20

    The asymmetric synthesis of β-substituted lactones by catalytic asymmetric conjugate addition of alkyl groups to α,β-unsaturated lactones is reported. The method uses alkylzirconium nucleophiles prepared in situ from alkenes and the Schwartz reagent. Enantioselective additions to 6- and 7-membered lactones proceed at rt, tolerate a wide variety of functional groups, and are readily scalable. The method was used in a formal asymmetric synthesis of mitsugashiwalactone.

  17. Facile synthesis and catalytic properties of silver colloidal ...

    Indian Academy of Sciences (India)

    Administrator

    obtained with high dispersion (2–3 nm), which has high catalytic activity on reduction of 4-nitrobenzoic acid to 4-aminobenzoic acid. Keywords. Silver colloidal nanoparticles; SDBS; catalytic reduction; 4-nitrobenzoic acid. 1. Introduction. Silver colloidal nanoparticles (AgCNPs) have been studied extensively in catalysis ...

  18. Green synthesis and catalytic application of curcumin stabilized ...

    Indian Academy of Sciences (India)

    These c-AgNPs were used as catalysts in the catalytic reduction of p-nitrophenol to p-aminophenol. The c-AgNPs with narrower size distribution exhibited better catalytic activity as well as lower activation energy. Variation of apparent rate constant with the reactant concentration agreed with the Langmuir- Hinshelwood (LH) ...

  19. Metal-Free Catalytic Asymmetric Fluorination of Keto Esters Using a Combination of Hydrogen Fluoride (HF) and Oxidant: Experiment and Computation

    KAUST Repository

    Pluta, Roman

    2018-02-09

    A chiral iodoarene organocatalyst for the catalytic asymmetric fluorination has been developed. The catalyst was used in the asymmetric fluorination of carbonyl compounds, providing the products with a quaternary stereocenter with high enantioselectivities. Chiral hypervalent iodine difluoride intermediates were generated in situ by treatment of the catalyst with an oxidant and hydrogen fluoride as fluoride source. As such, the α-fluorination of a carbonyl compound was achieved with a nucleophilic fluorine source. A combined computational and experimental approach provided insight into the reaction mechanism and the origin of enantioselectivity.

  20. Correction: Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones.

    Science.gov (United States)

    Yin, Feng; Garifullina, Ainash; Tanaka, Fujie

    2018-04-25

    Correction for 'Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones' by Feng Yin et al., Org. Biomol. Chem., 2017, 15, 6089-6092.

  1. Asymmetric synthesis of (-)-sedacryptine through a diastereoselective Mannich reaction of N,O-acetals with ketones.

    Science.gov (United States)

    Liu, Yi-Wen; Ma, Rui-Jun; Yan, Jia-Hang; Zhou, Zhu; Wei, Bang-Guo

    2018-01-31

    An efficient diastereoselective approach to access the 3-hydroxy-2,6-disubstituted piperidine scaffold 1 has been developed through the Mannich process involving N,O-acetal (2S,3R)-6 and ketones in excellent yield with high diastereoselectivity (dr > 99 : 1). In addition, the utility of this convenient one-pot process is demonstrated by the asymmetric synthesis of (-)-sedacryptine 3.

  2. Synthesis and use of an asymmetric transfer hydrogenation catalyst based on iron(II) for the synthesis of enantioenriched alcohols and amines.

    Science.gov (United States)

    Zuo, Weiwei; Morris, Robert H

    2015-02-01

    The catalytic hydrogenation of prochiral ketones and imines is an advantageous approach to the synthesis of enantioenriched alcohols and amines, respectively, which are two classes of compounds that are highly prized in pharmaceutical, fragrance and flavoring chemistry. This hydrogenation reaction is generally carried out using ruthenium-based catalysts. Our group has developed an alternative synthetic route that is based on the environmentally friendlier iron-based catalysis. This protocol describes the three-part synthesis of trans-[amine(imine)diphosphine]chlorocarbonyliron(II) tetrafluoroborate templated by iron salts and starting from commercially available chemicals, which provides the precatalyst for the efficient asymmetric transfer hydrogenation of ketones and imines. The use of the enantiopure (S,S) catalyst to reduce prochiral ketones to the (R)-alcohol in good to excellent yields and enantioenrichment is also detailed, as well as the reduction to the amine in very high yield and enantiopurity of imines substituted at the nitrogen with the N-(diphenylphosphinoyl) group (-P(O)Ph2). Although the best ruthenium catalysts provide alcohols in higher enantiomeric excess (ee) than the iron complex catalyst used in this protocol, they do so on much longer time scales or at higher catalyst loadings. This protocol can be completed in 2 weeks.

  3. Asymmetric synthesis of tertiary alcohols by the use of tricarbonylchromium (O) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, O.R.; Gomes Costa, M.R.; Marcelo Curto, M.J. [Instituto Nacional de Engenharia e Tecnolgia Industrial, Queluz (Portugal)] [and others

    1995-12-31

    The demand for homochiral compounds by the pharmaceutical and related industries has stimulated great interest in the development of asymmetric methodology for organic synthesis. The authors report herein the stereoselective synthesis of tertiary benzylic alcohols. These homochiral tertiary alcohols could be obtained by stereoselective addition to the carbonyl function of chiral [(aryl)Cr(CO){sub 3}] ketones. The syntheses of these ketones were performed by reaction of lithiated (arene)Cr(CO){sub 3} complexes with acyl halides or aldehydes followed by Swern oxidation of the alcohols obtained.

  4. Electroenzymatic strategies for deracemization, stereoinversion and asymmetric synthesis of amino acids

    International Nuclear Information System (INIS)

    Maerkle, Wolfgang; Luetz, Stephan

    2008-01-01

    A combination of a selective enzymatic oxidation with an unselective electrochemical reduction step was applied for deracemization, stereoinversion and asymmetric synthesis of L-leucine (starting from racemic leucine, D-leucine or 4-methyl-2-oxovaleric acid) in a batch reactor. D-Amino acid oxidase (D-AAO) from Trigonopsis variabilis was used as enzyme. Reaction conditions for the electrochemical and enzymatic reactions were investigated separately and finally combined to an electroenzymatic synthesis, yielding 3.5 mmol L -1 d -1 of L-leucine (ee 91%)

  5. Studies toward the asymmetric synthesis of the right part of the mycalamides.

    Science.gov (United States)

    Zhong, H Marlon; Sohn, Jeong-Hun; Rawal, Viresh H

    2007-01-19

    Described herein is the asymmetric synthesis of a functionalized, trioxadecalin unit that comprises the right-hand part of the mycalamides and related natural products. The synthetic route involves a 16-step sequence that accomplishes the formation of two heterocyclic rings and the generation of five stereocenters. The synthesis commenced with a C2-symmetric starting material, diethyl D-tartrate, and took advantage of a relay of diastereoselective reactions to extend this four-carbon chain and introduce new chiral centers. Subsequent electrophile-mediated cyclization afforded the desired pyran ring, which was then transformed into the desired, functionalized trioxadecalin skeleton.

  6. Asymmetric Total Synthesis of Four Stereoisomers of the Sex Pheromone of the Western Corn Rootworm

    Directory of Open Access Journals (Sweden)

    Zhi-Feng Sun

    2018-03-01

    Full Text Available A convergent synthesis of four stereoisomers of the sex pheromone of the western corn rootworm (8-methyldecan-2-yl propionate, 1 from commercially available chiral starting materials is reported. The key step was Julia–Kocienski olefination between chiral BT-sulfone and chiral aldehyde. This synthetic route provided the four stereoisomers of 1 in 24–29% total yield via a six-step sequence. The simple scale-up strategy provides a new way to achieve the asymmetric synthesis of the sex pheromone.

  7. Chemoenzymatic synthesis of vitamin B5-intermediate (R)-pantolactone via combined asymmetric organo- and biocatalysis.

    Science.gov (United States)

    Heidlindemann, Marcel; Hammel, Matthias; Scheffler, Ulf; Mahrwald, Rainer; Hummel, Werner; Berkessel, Albrecht; Gröger, Harald

    2015-04-03

    The combination of an asymmetric organocatalytic aldol reaction with a subsequent biotransformation toward a "one-pot-like" process for the synthesis of (R)-pantolactone, which to date is industrially produced by a resolution process, is demonstrated. This process consists of an initial aldol reaction catalyzed by readily available l-histidine followed by biotransformation of the aldol adduct by an alcohol dehydrogenase without the need for intermediate isolation. Employing the industrially attractive starting material isobutanal, a chemoenzymatic three-step process without intermediate purification is established allowing the synthesis of (R)-pantolactone in an overall yield of 55% (three steps) and high enantiomeric excess of 95%.

  8. Primary amine/CSA ion pair: A powerful catalytic system for the asymmetric enamine catalysis

    KAUST Repository

    Liu, Chen

    2011-05-20

    A novel ion pair catalyst containing a chiral counteranion can be readily derived by simply mixing cinchona alkaloid-derived diamine with chiral camphorsulfonic acid (CSA). A mixture of 9-amino(9-deoxy)epi-quinine 8 and (-)-CSA was found to be the best catalyst with matching chirality, enabling the direct amination of α-branched aldehydes to proceed in quantitative yields and with nearly perfect enantioselectivities. A 0.5 mol % catalyst loading was sufficient to catalyze the reaction, and a gram scale enantioselective synthesis of biologically important α-methyl phenylglycine has been successfully demonstrated. © 2011 American Chemical Society.

  9. Catalytic asymmetric mannich-type reaction of N-alkylidene-α-aminoacetonitrile with ketimines.

    Science.gov (United States)

    Lin, Shaoquan; Kawato, Yuji; Kumagai, Naoya; Shibasaki, Masakatsu

    2015-04-20

    Optically active vicinal diamines are versatile chiral building blocks in organic synthesis. A soft Lewis acid/hard Brønsted base cooperative catalyst allows for an efficient stereoselective coupling of N-alkylidene-α-aminoacetonitrile and ketimines to access this class of compounds bearing consecutive tetra- and trisubstituted stereogenic centers. The strategic use of a soft Lewis basic thiophosphinoyl group for ketimines is the key to promoting the reaction, and aliphatic ketimines serve as suitable substrates with as little as 3 mol % catalyst loading. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Direct Catalytic Asymmetric Mannich-Type Reaction of α- and β-Fluorinated Amides.

    Science.gov (United States)

    Brewitz, Lennart; Arteaga, Fernando Arteaga; Yin, Liang; Alagiri, Kaliyamoorthy; Kumagai, Naoya; Shibasaki, Masakatsu

    2015-12-23

    The last two decades have witnessed the emergence of direct enolization protocols providing atom-economical and operationally simple methods to use enolates for stereoselective C-C bond-forming reactions, eliminating the inherent drawback of the preformation of enolates using stoichiometric amounts of reagents. In its infancy, direct enolization relied heavily on the intrinsic acidity of the latent enolates, and the reaction scope was limited to readily enolizable ketones and aldehydes. Recent advances in this field enabled the exploitation of carboxylic acid derivatives for direct enolization, offering expeditious access to synthetically versatile chiral building blocks. Despite the growing demand for enantioenriched fluorine-containing small molecules, α- and β-fluorinated carbonyl compounds have been neglected in direct enolization chemistry because of the competing and dominating defluorination pathway. Herein we present a comprehensive study on direct and highly stereoselective Mannich-type reactions of α- and β-fluorine-functionalized 7-azaindoline amides that rely on a soft Lewis acid/hard Brønsted base cooperative catalytic system to guarantee an efficient enolization while suppressing undesired defluorination. This protocol contributes to provide a series of fluorinated analogs of enantioenriched β-amino acids for medicinal chemistry.

  11. Synthesis and characterization of formaldehyde by catalytic oxidation of methanol

    International Nuclear Information System (INIS)

    Salman, M.; Answer, J.; Zaman, W.U.

    2008-01-01

    The catalytic oxidation of methanol to formaldehyde is studied over copper and silver catalysts. The impact of various factors catalytic poisoning, temperature, contact time on the formaldehyde yield have been investigated. An assembly using copper and silver as catalysts has been proposed to prepare formaldehyde in perspective of Pakistan in local industry. All the conditions to optimize the formaldehyde yield were also investigated. The formaldehyde produced was standardized chemically as well as spectroscopically. (author)

  12. Catalytic asymmetric formation of delta-lactones from unsaturated acyl halides.

    Science.gov (United States)

    Tiseni, Paolo S; Peters, René

    2010-02-22

    Previously unexplored enantiopure zwitterionic ammonium dienolates have been utilized in this work as reactive intermediates that act as diene components in hetero-Diels-Alder reactions (HDAs) with aldehydes to produce optically active delta-lactones, subunits of numerous bioactive products. The dienolates were generated in situ from E/Z mixtures of alpha,beta-unsaturated acid chlorides by use of a nucleophilic quinidine derivative and Sn(OTf)(2) as co-catalyst. The latter component was not directly involved in the cycloaddition step with aldehydes and simply facilitated the formation of the reactive dienolate species. The scope of the cycloaddition was considerably improved by use of a complex formed from Er(OTf)(3) and a simple commercially available norephedrine-derived ligand that tolerated a broad range of aromatic and heteroaromatic aldehydes for a cooperative bifunctional Lewis-acid-/Lewis-base-catalyzed reaction, providing alpha,beta-unsaturated delta-lactones with excellent enantioselectivities. Mechanistic studies confirmed the formation of the dienolate intermediates for both catalytic systems. The active Er(III) complex is most likely a monomeric species. Interestingly, all lanthanides can catalyze the title reaction, but the efficiency in terms of yield and enantioselectivity depends directly on the radius of the Ln(III) ion. Similarly, use of the pseudolanthanides Sc(III) and Y(III) also resulted in product formation, whereas the larger La(III) and other transition metal salts, as well as main group metal salts, proved to be inefficient. In addition, various synthetic transformations of 6-CCl(3)- or 4-silyl-substituted alpha,beta-unsaturated delta-lactones, giving access to a number of valuable delta-lactone building blocks, were investigated.

  13. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  14. Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance.

    Science.gov (United States)

    Mourdikoudis, Stefanos; Altantzis, Thomas; Liz-Marzán, Luis M; Bals, Sara; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2016-05-21

    Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac) 2 ) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

  15. Recent Advances in Substrate-Controlled Asymmetric Induction Derived from Chiral Pool α-Amino Acids for Natural Product Synthesis.

    Science.gov (United States)

    Paek, Seung-Mann; Jeong, Myeonggyo; Jo, Jeyun; Heo, Yu Mi; Han, Young Taek; Yun, Hwayoung

    2016-07-21

    Chiral pool α-amino acids have been used as powerful tools for the total synthesis of structurally diverse natural products. Some common naturally occurring α-amino acids are readily available in both enantiomerically pure forms. The applications of the chiral pool in asymmetric synthesis can be categorized prudently as chiral sources, devices, and inducers. This review specifically examines recent advances in substrate-controlled asymmetric reactions induced by the chirality of α-amino acid templates in natural product synthesis research and related areas.

  16. Green synthesis and catalytic application of curcumin stabilized ...

    Indian Academy of Sciences (India)

    nols, like in the case of tea, wine and winery waste, red grape pomace.10,11 Similarly, curcumin, the main ... nitrophenols, which are regarded as one of the most widespread environmental pollutants, while nitro to ... carried out and the kinetic data generated were sub- jected to the LH model to understand the catalytic.

  17. Catalytic Synthesis of Ethyl Ester From Some Common Oils ...

    African Journals Online (AJOL)

    Catalytic conversion of ethanol to fatty acid ethyl esters (FAEE) was carried out by homogeneous and heterogeneous transesterification of melon seed, shea butter and neem seed oils using NaOH, KOH and 5wt%CaO/Al2O3 catalyst systems respectively. Oil content of the seeds from n-hexane or hot water extract ranged ...

  18. Synthesis, characterization and study of catalytic activity of Silver ...

    Indian Academy of Sciences (India)

    tophenone are precursors for some pharmaceuticals, drugs, vitamins, fragrances alcohols, esters and useful in the food processing or cosmetics industry and are important intermediates in many complex syntheses.2. Today, heterogeneous catalytic systems are available for the selective oxidation of different alcohols to the.

  19. Synthesis and characterization of Polyindole and its catalytic ...

    Indian Academy of Sciences (India)

    The catalytic performance study of polyindole as a heterogeneous catalyst is reported for the syn- thesis of 3,3'-arylmethylene-bis-1H-Indole derivatives using various substituted aldehydes ..... Indoles Vol.18 (Academic Press: London). 2. Sivaprasad G, Perumal P T, Prabavathy V R and. Mathivanan N 2006 Bioorg. Med.

  20. Synthesis, characterization, scale-up and catalytic behaviour of ...

    Indian Academy of Sciences (India)

    The particles show good catalytic activity for the oxidation of oxalic acid and benzaldehyde under mild temperature conditions. ... The XRD measurements show cubic spinel phase and Debye–Scherrer relation was used to measure average particle size. ..... Zacheis G A, Gray K A and Kamat P V 2001 J. Phys. Chem. B.

  1. Synthesis, characterization, scale-up and catalytic behaviour of ...

    Indian Academy of Sciences (India)

    Highly uniform cobalt oxide (Co3O4) nanoparticles were synthesized via thermal decomposition of cobalt hydroxy carbonates with particle size around 16 ± 1 nm. The process gives reproducible results in batches of 1–5 kg. The particles show good catalytic activity for the oxidation of oxalic acid and benzaldehyde under ...

  2. Synthesis and characterization of Polyindole and its catalytic ...

    Indian Academy of Sciences (India)

    Abstract. The catalytic performance study of polyindole as a heterogeneous catalyst is reported for the syn- thesis of 3,3'-arylmethylene-bis-1H-Indole derivatives using various substituted aldehydes and indole under reflux reaction condition with good to excellent yield. Polyindole was synthesized by chemical oxidative poly ...

  3. Catalytic

    Directory of Open Access Journals (Sweden)

    S.A. Hanafi

    2014-03-01

    Full Text Available A series of dealuminated Y-zeolites impregnated by 0.5 wt% Pt catalysts promoted by different amounts of Ni, Pd or Cr (0.3 and 0.6 wt% were prepared and characterized as hydrocracking catalysts. The physicochemical and structural characterization of the solid catalysts were investigated and reported through N2 physisorption, XRD, TGA-DSC, FT-IR and TEM techniques. Solid catalysts surface acidities were investigated through FT-IR spectroscopy aided by pyridine adsorption. The solid catalytic activities were evaluated through hydroconversion of n-hexane and n-heptane employing micro-catalytic pulse technique directly connected to a gas chromatograph analyzer. The thermal stability of the solids was also investigated up to 800 °C. Crystallinity studies using the XRD technique of all modified samples proved analogous to the parent Y-zeolite, exhibiting nearly an amorphous and microcrystalline character of the second metal oxides. Disclosure of bimetallic catalysts crystalline characterization, through XRD, was not viable. The nitrogen adsorption–desorption isotherms for all samples concluded type I adsorption isotherms, without any hysteresis loop, indicating that the entire pore system is composed of micropores. TEM micrographs of the solid catalysts demonstrate well-dispersed Pt, Ni and Cr nanoparticles having sizes of 2–4 nm and 7–8 nm, respectively. The catalytic activity results indicate that the bimetallic (0.5Pt–0.3Cr/D18H–Y catalyst is the most active towards n-hexane and n-heptane isomerization while (0.5Pt–0.6Ni/D18H–Y catalyst can be designed as most suitable as a cracking catalyst.

  4. Dual catalyst bed concept for catalytic partial oxidation of methane to synthesis gas

    NARCIS (Netherlands)

    Zhu, J.J.; Mujeebur Rahuman, M.S.M.; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    A system with two catalyst beds instead of one single metal catalyst bed is proposed for catalytic partial oxidation of methane (CPOM) to synthesis gas. In this dual catalyst bed system, an irreducible stable oxide, such as yttrium-stabilized zirconia (YSZ), is used in the first catalyst bed to

  5. One-pot synthesis of Cu{sub 2}O octahedron particles and their catalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Biao; Li, Dan; Mu, Lei; Yang, Sung Ik [Dept. of Applied Chemistry, Kyung Hee University, Yongin (Korea, Republic of)

    2017-04-15

    We report a facile one-step synthesis method of cuprous oxide (Cu{sub 2}O) hollow octahedrons with controllable size Cu{sub 2}O exhibited a great catalytic activity for the reduction of methylene blue by N{sub 2}H{sub 4} as well as NABH{sub 4}.

  6. Synthesis and characterization of type silicoaluminophosphates catalytic support

    International Nuclear Information System (INIS)

    Leite, C.E.T.; Carvalho, M.W.N.C.; Pereira, K.R.O.

    2010-01-01

    The refining processes, the catalytic hydrocracking is the future of diesel oil in Brazil and the first units are already scheduled to be inaugurated. Among the catalysts used in this process, silicoaluminophosphates (SAPO's) have considerable potential for use as they have been effective in the isomerization of n-alkanes, the isomerization of olefins and alkylation of aromatics. Because of this, the objective is to develop catalysts that will be used in hydrocracking reactions. The media like SAPO-5 were synthesized with different ratios silicon/aluminum, which is used as a catalytic support and have the function of crack organic molecules, since it has acidic character. The materials were characterized by techniques: X-ray diffraction, chemical analysis and textural by BET. After summarizing the media found that they had agreements with the crystalline phases presented in the literature.(author)

  7. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles: An Undergraduate Experiment Exploring Catalytic Nanomaterials

    Science.gov (United States)

    Feng, Z. Vivian; Lyon, Jennifer L.; Croley, J. Sawyer; Crooks, Richard M.; Vanden Bout, David A.; Stevenson, Keith J.

    2009-01-01

    Copper nanoparticles were synthesized using generation 4 hydroxyl-terminated (G4-OH) poly(amidoamine) (PAMAM) dendrimers as templates. The synthesis is conducted by coordinating copper ions with the interior amines of the dendrimer, followed by chemical reduction to form dendrimer-encapsulated copper nanoparticles (Cu-DEN). The catalytic…

  8. New insight in the microscopic mechanism of the catalytic synthesis of ammonia

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1995-01-01

    Theoretical quantum calculations and molecular beam experiments of the dissociative chemisorption of N-2 molecules on catalytic active metal surfaces have given new insight in the fundamental process of the ammonia synthesis. This new approach to the study of catalytic process supplements...... to dissociation. Our analysis of the dissociation process suggests that it is not possible to define, in some well specified way, a precursor state at typical temperatures in the technical ammonia synthesis. The kinetic scheme for the complete ammonia synthesis without the precursor state can still account...... for the observed conversion to ammonia. We have constructed an empirical potential energy surface for N-2/Fe(111) which has barriers to dissociation even larger than for the previously studied N-2/Re system. It is shown that the presence of barriers is consistent with the observation that the activation energy...

  9. Catalytic enantioselective synthesis of chiral organic compounds of ultra-high purity of >99% ee.

    Science.gov (United States)

    Negishi, Ei-ichi; Xu, Shiqing

    2015-01-01

    Shortly after the discovery of Zr-catalyzed carboalumination of alkynes in 1978, we sought expansion of the scope of this reaction so as to develop its alkene version for catalytic asymmetric C-C bond formation, namely the ZACA (Zr-catalyzed asymmetric carboalumination of alkenes). However, this seemingly easy task proved to be quite challenging. The ZACA reaction was finally discovered in 1995 by suppressing three competitive side reactions, i.e., (i) cyclic carbometalation, (ii) β-H transfer hydrometalation, and (iii) alkene polymerization. The ZACA reaction has been used to significantly modernize and improve syntheses of various natural products including deoxypolypropionates and isoprenoids. This review focuses on our recent progress on the development of ZACA-lipase-catalyzed acetylation-transition metal-catalyzed cross-coupling processes for highly efficient and enantioselective syntheses of a wide range of chiral organic compounds with ultra-high enantiomeric purities.

  10. Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation

    Science.gov (United States)

    Ahmad, A. L.; Salaudeen, Y. O.; Jawad, Z. A.

    2017-06-01

    Large emission of carbon dioxide (CO2) to the environment requires mitigation to avoid unbearable consequences on global climate change. The CO2 emissions generated by fossil fuel combustion within the power and industrial sectors need to be quickly curbed. The gas emission can be abated using membrane technology; this is one of the most promising approaches for selective separation of CO2/N2. The purpose of the study is to synthesis an asymmetric polyetherimide (PEI) membrane and to establish its morphological characteristics for CO2/N2 separation. The PEI flat-sheet asymmetric membrane was fabricated using phase inversion with N-methyl-2-pyrrolidone (NMP) as solvent and water-isopropanol as a coagulant. Particularly, polymer concentration of 20, 25, and 30 wt. % were studied. In addition, the structure and morphology of the produced membrane were observed using scanning electron microscopy (SEM). Importantly, results showed that the membrane with high PEI concentration of 30 wt. % yield an optimal selectivity of 10.7 for CO2/Nitrogen (N2) separation at 1 bar and 25 ºC for pure gas, aided by the membrane surface morphology. The dense skin present was as a result of non-solvent (water) while isopropanol generates a porous sponge structure. This appreciable separation performance makes the PEI asymmetric membrane an attractive alternative for CO2/N2 separation.

  11. Micro/Mesoporous Zeolitic Composites: Recent Developments in Synthesis and Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Xuan Hoan Vu

    2016-11-01

    Full Text Available Micro/mesoporous zeolitic composites (MZCs represent an important class of hierarchical zeolitic materials that have attracted increasing attention in recent years. By introducing an additional mesoporous phase interconnected with the microporosity of zeolites, a hierarchical porous system of MZCs is formed which facilitates molecular transport while preserving the intrinsic catalytic properties of zeolites. Thus, these materials offer novel perspectives for catalytic applications. Over the years, numerous synthesis strategies toward the formation of MZCs have been realized and their catalytic applications have been reported. In this review, the three main synthesis routes, namely direct synthesis using zeolite precursors, recrystallization of zeolites, and zeolitization of preformed mesoporous materials are thoroughly discussed, with focus on prior works and the most recent developments along with prominent examples given from the literature. In addition, the significant improvement in the catalytic properties of MZCs in a wide range of industrially relevant reactions is presented through several representative cases. Some perspectives for the future development of MZCs are also given.

  12. Catalytic synthesis of long-chained alcohols from syngas

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt

    for the production of gasoline additives/replacements from biomass via a gasification process. It is observed that the sulfide catalyst is able to operate both with and without a sulfur source in the syngas feed, but the presence of a sulfur source like H2S can exert a significant influence on the catalytic....... Various catalysts based upon the bulk carbides Mo2C, WC and NbC have been synthesized and evaluated with respect to the catalytic behavior in highpressure CO hydrogenation. NbC is largely inactive, and K2CO3/WC produces mainly methanol and methane with a low activity, while K2CO3/Mo2C produces a mixture...... is qualitatively similar, although K provides a markedly better activity (31 % at 300 °C, 100 bar, 5000 h-1) and a better selectivity at identical conditions. At 275 °C an Li(CH3COO) promoted catalyst is very active and produces only hydrocarbons. If the effect of the different alkali promoters is compared...

  13. Catalytic synthesis of ammonia using vibrationally excited nitrogen

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Billing, Gert D.; Hansen, Flemming Yssing

    1992-01-01

    to that from conventional synthesis. In the present study the nitrogen molecules are only excited at the inlet of a plug flow reactor, and the importance of vibrational relaxation is investigated. We show that vibrational excitation can give an enhanced yield of ammonia also in the situation where vibrational...

  14. Green synthesis and catalytic application of curcumin stabilized ...

    Indian Academy of Sciences (India)

    nols, like in the case of tea, wine and winery waste, red grape pomace.10,11 Similarly, curcumin, the main polyphenol in turmeric has recently been used as a stabilizing and reducing agent in synthesis of Au and. Ag nanoparticles.12 14 To the best of our knowledge, there is no study on whether curcumin stabilization of.

  15. Microwave-Assisted SynthesisCatalytic Applications in Aqueous Media

    Science.gov (United States)

    The development of sustainable methods directed towards the synthesis of molecules is due to the heightened awareness and recognition of alternative eco-friendly and economical protocols that have minimum impact on environment. Among others, microwave (MW)-assisted methodology ha...

  16. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.

    2011-01-01

    catalysis, and an intramolecular aryne capture cyclization reaction. Pivotal to the successful completion of the synthesis was a sequence involving ring expansion from a [6-5-4] tricycle to a [6-7] bicyclic core followed by stereoselective hydrogenation of a sterically occluded tri-substituted olefin...

  17. Synthesis and catalytic activity of metallo-organic complexes ...

    Indian Academy of Sciences (India)

    the fields of organic synthesis and pharmaceuticals.1–7. This is due to the importance of the carboximide ester structural unit as an intermediate or ligand in these fields. For example, this unit can be used as the cat- alyst for the atom transfer radical polymerization of methyl methacrylate,8 or as a new class of chiral Lewis.

  18. Synthesis of polyaniline nanotubes through UV light catalytic method

    Directory of Open Access Journals (Sweden)

    Chuanyu Sun

    2015-03-01

    Full Text Available In this study, nitrocellulose (NC fiber blanket prepared by electrostatic spinning method has been used as a template, and copper nitrate (Cu(NO32 as an oxidant to synthesise polyaniline nanotubes doped with heteropolyacid (H4SiW12O40, SiW12 using UV light catalytic method. Infrared spectroscopy (IR, X-ray powder diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM technologies were applied to characterize the prepared samples of polyaniline nanotubes. The results show that the external diameter of the tube is about 200 nm, and the internal diameter about 170 nm. We also give a reasonable speculation and explanation about the formation mechanism of the nanotubes.

  19. Synthesis of (+)-Pancratistatins via Catalytic Desymmetrization of Benzene.

    Science.gov (United States)

    Hernandez, Lucas W; Pospech, Jola; Klöckner, Ulrich; Bingham, Tanner W; Sarlah, David

    2017-11-08

    A concise synthesis of (+)-pancratistatin and (+)-7-deoxypancratistatin from benzene using an enantioselective, dearomative carboamination strategy has been achieved. This approach, in combination with the judicious choice of subsequent olefin-type difunctionalization reactions, permits rapid and controlled access to a hexasubstituted core. Finally, minimal use of intermediary steps as well as direct, late stage C-7 hydroxylation provides both natural products in six and seven operations.

  20. New catalytic processes for the synthesis of adipic acid

    OpenAIRE

    Raabová, Katerina

    2011-01-01

    The aim of my Ph.D. research was to study the new synthetic ways for the production of adipic acid. Three different pathways were studied: i) oxidation of cyclohexanone with molecular oxygen using Keggin – heteropolycompounds as the catalyst, ii) Baeyer – Villiger oxidation of cyclohexanone with hydrogen peroxide in the presence of two different heterogeneous catalysts, titanium silicalite and silica grafted decatungstate, iii) two step synthesis of adipic acid starting from cyclohexene ...

  1. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  2. Conformity of macroscopic behavior to local properties in the catalytic ammonia synthesis and oscillatory reactions on metal surfaces

    OpenAIRE

    Cholach, A. R.

    2016-01-01

    Unique catalytic potential of metal surfaces has encouraged a great number of basic and applied studies. The manuscript highlights the general regularities in a field on the grounds of strong interrelation between catalytic, kinetic and thermodynamic behaviour of the reaction system. The trials of the catalytic NH3 synthesis and the oscillatory NO+H2 reaction have revealed that the thermodynamics of the local structure determines the properties and multiplicity of the reaction intermediates e...

  3. Solvent dependent asymmetric hydrogenation with self-assembled catalysts: a combined catalytic, NMR- and IR-study.

    Science.gov (United States)

    Shuklov, Ivan A; Dubrovina, Natalia V; Barsch, Enrico; Ludwig, Ralf; Michalik, Dirk; Börner, Armin

    2009-03-28

    For the first time the hydrogen bond based structure of self-aggregated Rh-phosphine complexes in fluorinated alcohols was directly determined, which gives a rationale for the high enantioselectivity observed in the asymmetric hydrogenation.

  4. Catalytic synthesis of aromatic diisocyanates by means of carbonylation of nitrocompounds with carbon monoxide

    International Nuclear Information System (INIS)

    Nefedov, B.K.; Manov-Yuvenskij, V.I.; Khoshdurdyev, Kh.O.; Novikov, S.S.

    1977-01-01

    The development of an active and selective heterogeneous catalyst for synthesis of aromatic diisocyanates has been studied. The catalytic ability of the catalyst PdO-MoO 3 -Fe 2 O 3 deposited on γ-Al 2 O 3 has been investigated in the reactions of carbonilation of aromatic dinitrocompounds with carbon oxide. The effect of the catalyst composition, method of catalyst production, reaction temperature and pressure on the catalytic ability have been studied. It has been established that the catalyst PdO-MoO 3 -Fe 2 O 3 (2-6:1:1) deposited on γ-Al 2 O 3 is highly active and selective in the reactions of carbonilation of aromatic dinitrocompounds at 210 deg and 300 atm. It has been used for synthesis of aromatic diisocyanates in yield 32-75%

  5. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    Science.gov (United States)

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  6. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor.

    Science.gov (United States)

    Zhang, Weidong; Qing, Weihua; Ren, Zhongqi; Li, Wei; Chen, Jiangrong

    2014-11-01

    A composite catalytically active membrane immobilized with Candida rugosa lipase has been prepared by immersion phase inversion technique for enzymatic synthesis of lauryl stearate in a pervaporation membrane reactor. SEM images showed that a "sandwich-like" membrane structure with a porous lipase-PVA catalytic layer uniformly coated on a polyvinyl alcohol (PVA)/polyethersulfone (PES) bilayer was obtained. Optimum conditions for lipase immobilization in the catalytic layer were determined. The membrane was proved to exhibit superior thermal stability, pH stability and reusability than free lipase under similar conditions. In the case of pervaporation coupled synthesis of lauryl stearate, benefited from in-situ water removal by the membrane, a conversion enhancement of approximately 40% was achieved in comparison to the equilibrium conversion obtained in batch reactors. In addition to conversion enhancement, it was also found that excess water removal by the catalytically active membrane appears to improve activity of the lipase immobilized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. MWW-type titanosilicate synthesis, structural modification and catalytic applications to green oxidations

    CERN Document Server

    Wu, Peng; Xu, Le; Liu, Yueming; He, Mingyuan

    2013-01-01

    This book provides a comprehensive review of a new generation of selective oxidation titanosilicate catalysts with the MWW topology (Ti-MWW) based on the research achievements of the past 12 years. It gives an overview of the synthesis, structure modification and catalytic properties of Ti-MWW. Ti-MWW can readily be prepared by means of direct hydrothermal synthesis with crystallization-supporting agents, using dual-structure-directing agents and a dry-gel conversion technique. It also can be post-synthesized through unique reversible structure transformation and liquid-phase isomorphous subst

  8. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth

    OpenAIRE

    Magrez, Arnaud; Seo, Jin Won; Smajda, Rita; Mioni?, Marijana; Forr?, L?szl?

    2010-01-01

    The catalytic chemical vapor deposition (CCVD) is currently the most flexible and economically attractive method for the growth of carbon nanotubes. Although its principle is simple, the precisely controlled growth of carbon nanotubes remains very complex because many different parameters influence the growth process. In this article, we review our recent results obtained on the synthesis of carbon nanotubes via CCVD. We discuss the role of the catalyst and the catalyst support. Our recent re...

  9. Design of supramolecular metal complex catalytic systems for organic and petrochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Karakhanov, Eduard A; Maksimov, Anton L; Runova, Elena A [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2005-01-31

    The state-of-the-art in investigations into the supramolecular catalysis by metal complexes using macrocyclic receptor molecules is surveyed. The emphasis is placed on issues related to the design of novel metal complex catalysts capable of molecular recognition and to their applications in organic synthesis, in particular, in such reactions as hydrogenation, hydroformylation, carbonylation, hydroxylation, Wacker oxidation, biomimetic oxidation, and some others. The factors affecting the activity, stability and selectivity of such catalytic systems are discussed.

  10. Nanorods of manganese oxides: Synthesis, characterization and catalytic application

    Science.gov (United States)

    Yang, Zeheng; Zhang, Yuancheng; Zhang, Weixin; Wang, Xue; Qian, Yitai; Wen, Xiaogang; Yang, Shihe

    2006-03-01

    Single-crystalline nanorods of β-MnO 2, α-Mn 2O 3 and Mn 3O 4 were successfully synthesized via the heat-treatment of γ-MnOOH nanorods, which were prepared through a hydrothermal method in advance. The calcination process of γ-MnOOH nanorods was studied with the help of Thermogravimetric analysis and X-ray powder diffraction. When the calcinations were conducted in air from 250 to 1050 °C, the precursor γ-MnOOH was first changed to β-MnO 2, then to α-Mn 2O 3 and finally to Mn 3O 4. When calcined in N 2 atmosphere, γ-MnOOH was directly converted into Mn 3O 4 at as low as 500 °C. Transmission electron microscopy (TEM) and high-resolution TEM were also used to characterize the products. The obtained manganese oxides maintain the one-dimensional morphology similar to the precursor γ-MnOOH nanorods. Further experiments show that the as-prepared manganese oxide nanorods have catalytic effect on the oxidation and decomposition of the methylene blue (MB) dye with H 2O 2.

  11. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Science.gov (United States)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  12. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  13. Synthesis, characterization and catalytic activity of nanosized Ni complexed aminoclay

    Science.gov (United States)

    Ranchani, A. Amala Jeya; Parthasarathy, V.; Devi, A. Anitha; Meenarathi, B.; Anbarasan, R.

    2017-11-01

    A novel Ni complexed aminoclay (AC) catalyst was prepared by complexation method followed by reduction reaction. Various analytical techniques such as FTIR spectroscopy, UV-visible spectroscopy, DSC, TGA, SEM, HRTEM, EDX, XPS and WCA measurement are used to characterize the synthesized material. The AC-Ni catalyst system exhibited improved thermal stability and fiber-like morphology. The XPS results declared the formation of Ni nanoparticles. Thus, synthesized catalyst was tested towards the Schiff base formation reaction between various bio-medical polymers and aniline under air atmosphere at 85 °C for 24 h. The catalytic activity of the catalyst was studied by varying the % weight loading of the AC-Ni system towards the Schiff base formation. The Schiff base formation was quantitatively calculated by the 1H-NMR spectroscopy. While increasing the % weight loading of the AC-Ni catalyst, the % yield of Schiff base was also increased. The k app and Ti values were determined for the reduction of indole and α-terpineol in the presence of AC-Ni catalyst system. The experimental results were compared with the literature report.

  14. Synthesis of Improved Catalytic Materials for High-Temperature Water-gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Zara P. Cherkezova-Zheleva

    2015-12-01

    Full Text Available In this investigation, we report the preparation and characterization of Co-, Cu- and Mn-substituted iron oxide catalytic materials supported on activated carbon. Co-precipitation method and low temperature treatment were used for their synthesis. The influence of chemical composition, stoichiometry, particle size and dispersity on their catalytic activity was studied. Samples were characterized in all stages of their co-precipitation, heating and spend samples after catalytic tests. The obtained results from room and low temperature Mössbauer spectroscopy were combined with analysis of powder X-ray diffraction patterns (XRD. They revealed the preparation of nano-sized iron oxide materials supported on activated carbon. Relaxation phenomena were registered also for the supported phases. The catalytic performance in the water-gas shift reaction was studied. The activity order was as follows: Cu0.5Fe2.5O4 > Co0.5Fe2.5O4 > Mn0.5Fe2.5O4. Catalytic tests demonstrated very promising results and potential application of studied samples due to their cost-effective composition.

  15. Asymmetric Synthesis of (-)-Incarvillateine Employing an Intramolecular Alkylation via Rh-Catalyzed Olefinic C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Andy; Bergman, Robert; Ellman, Jonathan

    2008-02-18

    An asymmetric total synthesis of (-)-incarvillateine, a natural product having potent analgesic properties, has been achieved in 11 steps and 15.4% overall yield. The key step is a rhodium-catalyzed intramolecular alkylation of an olefinic C-H bond to set two stereocenters. Additionally, this transformation produces an exocyclic, tetrasubstituted alkene through which the bicyclic piperidine moiety can readily be accessed.

  16. Modular synthesis of optically active lactones by Ru-catalyzed asymmetric allylic carboxylation and ring-closing metathesis reaction.

    Science.gov (United States)

    Takii, Koichiro; Kanbayashi, Naoya; Onitsuka, Kiyotaka

    2012-04-21

    A new synthetic route to optically active unsaturated γ- and δ-lactones has been demonstrated via asymmetric allylic carboxylation with a planar-chiral Cp'Ru catalyst and ring-closing metathesis reaction with a Grubbs II catalyst, and successfully applied to the enantioselective synthesis of (R)-(-)-massoialactone. This journal is © The Royal Society of Chemistry 2012

  17. The asymmetric synthesis of (+-sitophilure, the natural form of the aggregation pheromone of Sitophilus oryzae L. and Sitophilus zeamais M.

    Directory of Open Access Journals (Sweden)

    Pilli Ronaldo A.

    1999-01-01

    Full Text Available The asymmetric synthesis of (+-sitophilure, the aggregation pheromone of Sitophilus oryzae L. and Sitophilus zeamais M., was carried out in 12 steps, 18% overall yield and 82% enantiomeric excess from the enzymatic reduction of methyl 3-oxopentanoate with S. cerevisiae in the presence of ethyl chloroacetate.

  18. Asymmetric Conjugate Addition of Grignard Reagents to Pyranones

    NARCIS (Netherlands)

    Mao, Bin; Fananas Mastral, Martin; Feringa, Ben L.

    2013-01-01

    An efficient enantioselective synthesis of lactones was developed based on the catalytic asymmetric conjugate addition (ACA) of alkyl Grignard reagents to pyranones. The use of 2H-pyran-2-one for the first time in the ACA with Grignard reagents allows for a variety of further transformations to

  19. Thiophenyl-substituted triazolyl-thione L-alanine: asymmetric synthesis, aggregation and biological properties.

    Science.gov (United States)

    Saghyan, Ashot S; Simonyan, Hayarpi M; Petrosyan, Satenik G; Geolchanyan, Arpine V; Roviello, Giovanni N; Musumeci, Domenica; Roviello, Valentina

    2014-10-01

    In this work, we report the asymmetric synthesis and characterization of an artificial amino acid based on triazolyl-thione L-alanine, which was modified with a thiophenyl-substituted moiety, as well as in vitro studies of its nucleic acid-binding ability. We found, by dynamic light scattering studies, that the synthetic amino acid was able to form supramolecular aggregates having a hydrodynamic diameter higher than 200 nm. Furthermore, we demonstrated, by UV and CD experiments, that the heteroaromatic amino acid, whose enzymatic stability was demonstrated by HPLC analysis also after 24 h of incubation in human serum, was able to bind a RNA complex, which is a feature of biomedical interest in view of innovative antiviral strategies based on modulation of RNA-RNA molecular recognition.

  20. Multicomponent Synthesis of Cyclic Depsipeptide Mimics by Ugi Reaction Including Cyclic Hemiacetals Derived from Asymmetric Organocatalysis.

    Science.gov (United States)

    de la Torre, Alexander F; Rivera, Daniel G; Concepción, Odette; Echemendia, Radell; Correa, Arlene G; Paixão, Márcio W

    2016-02-05

    The synthesis of novel cyclic depsipeptide mimics by means of an organocatalytic conjugate addition, leading to chiral cyclic hemiacetals, followed by a multicomponent reaction with α-amino acids and isocyanides, is described. The initial organocatalytic step is employed for the asymmetric derivatization of α,β-unsaturated aldehydes to 4,5-disubstituted 2-hydroxytetrahydropyrans, which are next used as chiral bifunctional substrates on the Ugi five-center three-component reaction, giving rise to nine-membered-ring lactones. This sequential approach proved to be suitable for the rapid generation of molecular complexity through the combination of aliphatic, dipeptidic, glucosidic, and lipidic isocyanides with several amino acids, thus giving access to amido-, glyco-, and lipo-depsipeptide scaffolds featuring natural product-like structures.

  1. Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method

    Directory of Open Access Journals (Sweden)

    Nobuhito Inami et al

    2007-01-01

    Full Text Available We report the dependence of growth yield of single-walled carbon nanotubes (SWNTs on heat-treatment time and catalyst film thickness by the alcohol catalytic chemical vapor deposition method. Three types of heat-treatment, synthesis of 30 min, synthesis of 30 min after annealing of 30 min, and synthesis of 60 min, were investigated. Thickness of Co catalyst film was varied from 1 to 10 nm. In the case of thinner Co film less than 3 nm, long synthesis time of 60 min is favorable for the effective SWNT growth, because of the small amount of Co catalyst. In the case of thicker Co film more than 3 nm, an amount of grown SWNTs by 30 min synthesis after 30 min annealing and by 60 min synthesis was much higher than that by 30 min synthesis without annealing, showing that total heat-treatment time of 60 min is important for the SWNT growth. Results suggest that the conversion from the thicker film of Co to nano-particle which acts as catalyst takes place during the first 30 min.

  2. Synthesis and catalytic properties of Au-Pd nanoflowers.

    Science.gov (United States)

    Xu, Jianguang; Wilson, Adria R; Rathmell, Aaron R; Howe, Jane; Chi, Miaofang; Wiley, Benjamin J

    2011-08-23

    Reduction of Pd ions by hydroquinone in the presence of gold nanoparticles and polyvinylpyrrolidone resulted in the formation of nanoflowers with a Au core and Pd petals. Addition of HCl to the synthesis halted the reduction by hydroquinone and enabled the acquisition of snapshots of the nanoflowers at different stages of growth. TEM images of the reaction after 10 s show that the nanoflower morphology resulted from the homogeneous nucleation of Pd clusters in solution and their subsequent attachment to gold seeds coated with a thin (0.8 ± 0.1 nm) shell of Pd. UV-visible spectra also indicate Pd clusters formed in the early stages of the reaction and disappeared as the nanoflowers grew. The speed at which this reaction can be halted is useful not only for producing a variety of bimetallic nanostructures with precisely controlled dimensions and morphologies but also for understanding the growth mechanism of these structures. The ability of the AuPd core-shell structure to catalyze the Suzuki coupling reaction of iodobenzene to phenylboronic acid was probed and compared against the activity of Pd nanocubes and thin-shelled AuPd core-shell nanoparticles. The results of this study suggest that Suzuki coupling was not affected by the surface structure or subsurface composition of the nanoparticles, but instead was primarily catalyzed by molecular Pd species that leached from the nanostructures. © 2011 American Chemical Society

  3. Synthesis and Catalytic Properties of Au Pd Nanoflowers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianguang [Department of Chemistry, Duke University; Wilson, Adria [Duke University; Howe, Jane Y [ORNL; Chi, Miaofang [ORNL; Wiley, Benjamin J [Duke University

    2011-01-01

    Reduction of Pd ions by hydroquinone in the presence of gold nanoparticles and polyvinylpyrrolidone resulted in the formation of nanoflowers with a Au core and Pd petals. Addition of HCl to the synthesis halted the reduction by hydroquinone and enabled the acquisition of snapshots of the nanoflowers at different stages of growth. TEM images of the reaction after 10 s show that the nanoflower morphology resulted from the homogeneous nucleation of Pd clusters in solution and their subsequent attachment to gold seeds coated with a thin (0.8 0.1 nm) shell of Pd. UV visible spectra also indicate Pd clusters formed in the early stages of the reaction and disappeared as the nanoflowers grew. The speed at which this reaction can be halted is useful not only for producing a variety of bimetallic nanostructures with precisely controlled dimensions and morphologies but also for understanding the growth mechanism of these structures. The ability of the AuPd core shell structure to catalyze the Suzuki coupling reaction of iodobenzene to phenylboronic acid was probed and compared against the activity of Pd nanocubes and thin-shelled AuPd core shell nanoparticles. The results of this study suggest that Suzuki coupling was not affected by the surface structure or subsurface composition of the nanoparticles, but instead was primarily catalyzed by molecular Pd species that leached from the nanostructures.

  4. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    . These investigations prove that synthesis in a premixed flame is a very attractive method for the preparation of high surface area spinel structures with a high degree of crystallinity and a good resistance against sintering. ZnAl2O4, CuAl2O4 and MgAl2O4 spinel structures have been synthesized. The CuAl2O4 spinel...... exhibits a high activity for alcohol dehydrogenation due to a high reduced copper surface area. The copper surface areas of the reduced copper catalysts are measured employing N2O-titration. Treating the reduced copper catalysts with N2O results in a mild oxidation and only the surface layer of the copper...... crystallites is oxidized. A number of complications may arise using the N2O-titration. It may be difficult to obtain full oxidation of the copper surface without having some oxidation of the bulk. Secondly, some sintering of the nano-sized copper crystallites may occur due to the exothermic nature...

  5. Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction

    Science.gov (United States)

    Muthu, Karuppiah; Priya, Sethuraman

    2017-05-01

    Cassia auriculata L., the flower aqueous extract was fractionated by separating funnel using n-hexane (A1), chloroform (A2), ethyl acetate (A3) and triple distilled water (A4). The A4 fraction was concentrated and determined the presence of preliminary phytochemicals such as tannins, flavonoids, glycosides, carbohydrates and polyphenolic compounds. These phytochemical compounds acted as reducing as well as a stabilizing agent in the green synthesis of Ag NPs from aqueous silver ions. Initially, the colour change and UV-vis absorbance surface Plasmon resonance strong, wide band located at 435 nm has confirmed the synthesis of Ag NPs. The X-ray diffraction (XRD) pattern of Ag NPs shows a face-centered cubic crystal structure. The observed values were calculated by Debye-Scherrer equation to theoretical confirms the particle size of 18 nm. The surface morphology of Ag NPs was viewed by HRTEM, the particles are spherical and triangle shapes with sizes from 10 to 35 nm. Further, the Ag NPs was effective catalytic activity in the reduction of highly environmental polluted organic compounds of 4-nitrophenol and methyl orange. The green synthesis of Ag NPs seems to eco-friendly, cost-effective, conventional one spot synthesis and greater performance of catalytic degradation of environmentally polluted organic dyes.

  6. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  7. A Ligand Structure-Activity Study of DNA-Based Catalytic Asymmetric Hydration and Diels-Alder Reactions

    NARCIS (Netherlands)

    Rosati, F.; Roelfes, J.G.

    A structure-activity relationship study of the first generation ligands for the DNA-based asymmetric hydration of enones and Diels-Alder reaction in water is reported. The design of the ligand was optimized resulting in a maximum ee of 83% in the hydration reaction and 75% in the Diels-Alder

  8. Structure Investigation of Ti(IV)BODOLates Involved in the Catalytic Asymmetric Reduction of Ketones Using Catecholborane

    DEFF Research Database (Denmark)

    Sarvary, Ian; Norrby, Per-Ola; Frejd, Torbjörn

    2004-01-01

    The complexes formed on mixing Ti(OiPr)4 and bicyclo-octanediols (BODOLs) 1 and 2 (1:1) are useful as chiral catalysts in asymmetric reductions and were investigated by 1HNMR-spectroscopy and by computational methods. A consistent picture emerged of head-to-tail dimers being kept together via a T...

  9. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity.

    Science.gov (United States)

    Yan, Wei; Chen, Chang; Wang, Ling; Zhang, Dan; Li, Ai-Jun; Yao, Zheng; Shi, Li-Yi

    2016-04-20

    The emphasis of science and technology shifts toward environmentally friendly and sustainable resources and processes. Herein, we report a facile, one-pot and green synthesis of biomaterial-supported gold nanoparticles (AuNPs) with superior catalytic activity. Cellulose nanocrystal (CNC)-supported AuNPs were prepared by heating the aqueous mixture of HAuCl4, CNCs and polyethylene glycol, avoiding toxic chemicals, extreme condition and complicated procedure. The resultant CNC-supported AuNPs exhibited catalytic activities for the reduction of 4-nitrophenol by sodium borohydride. The maximum apparent rate constant reached 1.47×10(-2)s(-1), and the turnover frequency reached 641h(-1). The superior catalytic performance can be ascribed to the large amount of highly dispersed AuNPs with few nanometers in size which are loaded on CNCs. About 90% of the AuNPs are smaller than 10nm, and nearly 60% of the AuNPs are smaller than 5nm. The synthesis is eco-friendly, facile and low-cost, thus has great potential for industrial and medical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Enantiopure N-Acyldihydropyridones as Synthetic Intermediates: Asymmetric Synthesis of (-)-Septicine and (-)-Tylophorine.

    Science.gov (United States)

    Comins, Daniel L.; Chen, Xinghai; Morgan, Lawrence A.

    1997-10-17

    A concise asymmetric synthesis of (-)-septicine (1) and (-)-tylophorine (2) was accomplished with a high degree of stereocontrol in eight and nine steps, respectively. Addition of 4-(1-butenyl)magnesium bromide to 1-acylpyridinium salt 3, prepared in situ from 4-methoxy-3-(triisopropylsilyl)pyridine and the chloroformate of (-)-trans-2-(alpha-cumyl)cyclohexanol, gave a 91% yield of diastereomerically pure dihydropyridone 7. Oxidative cleavage of 7 and subsequent reduction provided alcohol 6 in 81% yield. Conversion of 6 to the chloride followed by treatment with sodium methoxide gave indolizidinone 9 in high yield. Bromination and conjugate reduction of 9 with L-Selectride, and trapping the intermediate enolate with N-(5-chloro-2-pyridyl)triflimide, provided bromovinyl triflate 11. Palladium-catalyzed cross-coupling of excess (3,4-dimethoxyphenyl)zinc bromide and 11 gave (-)-septicine (1). On the basis of this synthesis, (-)-1 was assigned the Rconfiguration. Reaction of 1 with vanadium(V) trifluoride oxide in TFA/CH(2)Cl(2) effected oxidative coupling to give a 68% yield of (-)-tylophorine (2).

  11. Recent Advances in the Catalytic One-Pot Synthesis of Flavonoids and Chromones.

    Science.gov (United States)

    Mohadeszadeh, Manijeh; Iranshahi, Mehrdad

    2017-01-01

    Flavonoids and chromones are two important classes of natural products that have various biological properties. During the past 10 years, there has been a significant increase in studies on the one-pot synthesis of flavonoids and chromones as medicinal scaffolds in drug discovery. This review describes the scope, mechanistic properties and regio- and chemo-selectivity features of several recently developed one-pot procedures for the synthesis of substituted chromones and flavonoids that have recently been published. Special importance is placed on the most promising and exciting medicinal applications of flavonoids and chromones. In this review, we discuss the progress on the synthesis of flavonoid and chromone derivatives in the presence of metal catalysts, organocatalysts, solid surfaces, microwave irradiation, acid and base catalysis, etc. For example, flavones can be prepared via the catalytic coordination of palladium complexes in a short time and at a low temperature with a high yield. Additionally, the one-pot synthesis of 2-substituted chromones via metal triflate (Yb(OTf)3) has provided the best result for this type of reaction with a high yield and a high regio and chemoselectivity. Generally, this review proposes the first specific overview of this developing and rapidly expanding field of flavonoid synthesis. We also discuss the mechanisms and advantages and disadvantages of methods for the synthesis of flavonoids and chromones. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Catalytic Asymmetric Synthesis of 8-Oxabicyclooctanes by Intermolecular [5+2] Pyrylium Cycloadditions**

    Science.gov (United States)

    Witten, Michael R.

    2014-01-01

    Highly enantioselective intermolecular [5+2] cycloadditions of pyrylium ion intermediates with electron-rich alkenes are promoted by a dual catalyst system composed of an achiral thiourea and a chiral primary aminothiourea. The observed enantioselectivity is highly dependent on the substitution pattern of the 5π component, and the basis for this effect is analyzed using experimental and computational evidence. The resultant 8-oxabicyclo[3.2.1]octane derivatives possess a scaffold common in natural products and medicinally active compounds and are also versatile chiral building blocks for further manipulations. Several stereoselective complexity-generating transformations of the 8-oxabicyclooctane products are presented. PMID:24782332

  13. Direct Catalytic Asymmetric Mannich-Type Reaction en Route to α-Hydroxy-β-amino Acid Derivatives.

    Science.gov (United States)

    Sun, Bo; Pluta, Roman; Kumagai, Naoya; Shibasaki, Masakatsu

    2018-02-02

    A direct catalytic Mannich-type reaction of α-oxygen-functionalized amides was achieved. The use of 7-azaindoline amide was crucial to facilitate direct enolization and subsequent stereoselective addition to imines in a cooperative catalytic system comprising a soft Lewis acid and Brønsted base. The operationally simple room-temperature protocol furnished a syn-Mannich adduct with high stereoselectivity. Divergent functional group transformation of the amide moiety of the product allowed for expeditious access to enantioenriched syn-configured α-hydroxy-β-amino carboxylic acid derivatives, highlighting the synthetic utility of the present catalysis.

  14. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  15. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Sayed M. Badawy

    2015-07-01

    Full Text Available Copper/Copper oxide (Cu/Cu2O nanoparticles were synthesized by modified chemical reduction method in an aqueous medium using hydrazine as reducing agent and copper sulfate pentahydrate as precursor. The Cu/Cu2O nanoparticles were characterized by X-ray Diffraction (XRD, Energy Dispersive X-ray Fluorescence (EDXRF, Scanning Electron Microscope (SEM, and Transmission Electron Microscope (TEM. The analysis revealed the pattern of face-centered cubic (fcc crystal structure of copper Cu metal and cubic cuprites structure for Cu2O. The SEM result showed monodispersed and agglomerated particles with two micron sizes of about 180 nm and 800 nm, respectively. The TEM result showed few single crystal particles of face-centered cubic structures with average particle size about 11-14 nm. The catalytic activity of Cu/Cu2O nanoparticles for the decomposition of hydrogen peroxide was investigated and compared with manganese oxide MnO2. The results showed that the second-order equation provides the best correlation for the catalytic decomposition of H2O2 on Cu/Cu2O. The catalytic activity of hydrogen peroxide by Cu/Cu2O is less than the catalytic activity of MnO2 due to the presence of copper metal Cu with cuprous oxide Cu2O. © 2015 BCREC UNDIP. All rights reservedReceived: 6th January 2015; Revised: 14th March 2015; Accepted: 15th March 2015How to Cite: Badawy, S.M., El-Khashab, R.A., Nayl, A.A. (2015. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 169-174. (doi:10.9767/bcrec.10.2.7984.169-174 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7984.169-174  

  16. Synthesis, characterization and catalytic activity of oxovanadium (IV) complexes of heterocyclic acid hydrazones

    International Nuclear Information System (INIS)

    Pandey, Manju; Sunaja Devi, K.R.; Sreeja, P.B.

    2014-01-01

    Two acid hydrazones, Furan-2-carbaldehyde nicotinic hydrazone (L 1 ) and Furan-2-carbaldehyde benzhydrazone (L 2 ) have been synthesised and they are characterized by elemental analysis, IR, NMR and UV spectral analysis. Oxovanadium (IV) complexes of these two hydrazones were synthesised and characterised by elemental analysis, IR, UV, EPR, molar conductivity and magnetic susceptibility measurements. Conductivity measurements reveal that the complexes are nonelectrolytes. Spectral data indicates the square pyramidal geometry for the monomeric give coordinated oxovanadium (IV) complexes with the general formula (VO(L)(OCH 3 )). The complex was studied for its catalytic activity and was found to be a good catalyst in quinoxaline synthesis. (author)

  17. Synthesis and characterization of tantalum organometallic complexes. Catalytic activity for olefins

    International Nuclear Information System (INIS)

    Baley, A.S.

    1990-11-01

    Synthesis of monoaryloxy (alcoxy) neopentyl compounds is investigated. The tantalum-oxygen bond is formed by two parallel ways from TaCl 5 or TaR 2 Cl 3 with R = neopentyl and the tantalum carbon bond from a neopentyl derivative of the main series. Some compounds were isolated and characterized by NMR, elemental analysis and sometimes X-ray structure, some others are characterized in solution only. Catalytic effect is tested by ethylene dimerization and olefin polymerization. Reactivity of tantalum aryloxy neopentyl in respect to complexing and chelating ligands is studied for preparation of neopentylidene complexes

  18. Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol

    Science.gov (United States)

    2014-01-01

    A facile one-pot approach for synthesis of gold nanoparticles with narrow size distribution and good stability was presented by reducing chloroauric acid with a polysaccharide, konjac glucomannan (KGM) in alkaline solution, which is green and economically viable. Here, KGM served both as reducing agent and stabilizer. The effects of KGM on the formation and stabilization of as-synthesized gold nanoparticles were studied systematically by a combination of UV-visible (UV-vis) absorption spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering, and Fourier transform infrared spectroscopy. Furthermore, the gold nanoparticles exhibited a notable catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol. PMID:25177220

  19. Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications.

    Science.gov (United States)

    Sheny, D S; Philip, Daizy; Mathew, Joseph

    2013-10-01

    An environment friendly approach for the synthesis of Pt nanoparticles (NPs) using dried leaf powder of Anacardium occidentale is reported. The formation of Pt NPs is monitored using UV-Vis spectrophotometer. FTIR spectra reveal that proteins are bound to Pt nanoparticles. TEM images show irregular rod shaped particles which are crystalline. The quantity of leaf powder plays a vital role in determining the size of particles. Synthesized NPs exhibit good catalytic activity in the reduction of aromatic nitrocompound. The effective thermal conductivity of synthesized Pt/water nanofluid has been measured and found to be enhanced to a good extent. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application

    Science.gov (United States)

    Lakshmipathy, R.; Palakshi Reddy, B.; Sarada, N. C.; Chidambaram, K.; Khadeer Pasha, Sk.

    2015-02-01

    The present study reports the feasibility of synthesis of palladium nanoparticles (Pd NPs) by watermelon rind. The aqueous extract prepared from watermelon rind, an agro waste, was evaluated as capping and reducing agent for biosynthesis of palladium nanoparticles. The formation of Pd NPs was visually monitored with change in color from pale yellow to dark brown and later monitored with UV-Vis spectroscopy. The synthesized Pd NPs were further characterized by XRD, FTIR, DLS, AFM and TEM techniques. The synthesized Pd NPs were employed in Suzuki coupling reaction as catalyst. The results reveal that watermelon rind, an agro waste, is capable of synthesizing spherical-shaped Pd NPs with catalytic activity.

  1. Catalytic asymmetric aza-Morita-Baylis-Hillman reaction of methyl acrylate: role of a bifunctional La(O-iPr)3/linked-BINOL complex.

    Science.gov (United States)

    Yukawa, Takafumi; Seelig, Bianca; Xu, Yingjie; Morimoto, Hiroyuki; Matsunaga, Shigeki; Berkessel, Albrecht; Shibasaki, Masakatsu

    2010-09-01

    The catalytic asymmetric aza-Morita-Baylis-Hillman reaction using unactivated methyl acrylate is described. A simple Lewis acidic metal catalyst, such as La(OTf)(3), was not suitable for the reaction, but rare earth metal alkoxide/linked-BINOL complexes possessing bifunctional Lewis acid and Brønsted base properties efficiently promoted the reaction in combination with an achiral nucleophilic organocatalyst. The combined use of a La(O-iPr)(3)/(S,S)-TMS-linked-BINOL complex with a catalytic amount of DABCO promoted the aza-Morita-Baylis-Hillman reaction of a broad range of N-diphenylphosphinoyl imines. Products from aryl, heteroaryl, and alkenyl imines were obtained in 67-99% yield and 81-95% ee. It is noteworthy that isomerizable alkyl imines could be employed as well, giving products in 78-89% yield and 94-98% ee. Initial rate kinetic studies as well as kinetic isotope effect experiments using alpha-deuterio-methyl acrylate support the importance of both the nucleophilicity of La-enolate and the Brønsted basicity of a La-catalyst for promoting the reaction.

  2. Stereoselective Catalytic Synthesis of Active Pharmaceutical Ingredients in Homemade 3D-Printed Mesoreactors.

    Science.gov (United States)

    Rossi, Sergio; Porta, Riccardo; Brenna, Davide; Puglisi, Alessandra; Benaglia, Maurizio

    2017-04-03

    3D-printed flow reactors were designed, fabricated from different materials (PLA, HIPS, nylon), and used for a catalytic stereoselective Henry reaction. The use of readily prepared and tunable 3D-printed reactors enabled the rapid screening of devices with different sizes, shapes, and channel dimensions, aimed at the identification of the best-performing reactor setup. The optimized process afforded the products in high yields, moderate diastereoselectivity, and up to 90 % ee. The method was applied to the continuous-flow synthesis of biologically active chiral 1,2-amino alcohols (norephedrine, metaraminol, and methoxamine) through a two-step sequence combining the nitroaldol reaction with a hydrogenation. To highlight potential industrial applications of this method, a multistep continuous synthesis of norephedrine has been realized. The product was isolated without any intermediate purifications or solvent switches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The application of catalytic ring-closing olefin metathesis to the synthesis of unsaturated oxygen heterocycles

    Energy Technology Data Exchange (ETDEWEB)

    Fu, G.C.; Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1992-06-17

    The development of general approaches to carbon-carbon bond formation represents an important ongoing challenge for synthetic organic chemists. One efficient method for constructing carbon-carbon double bonds, the transition metal alkylidene-catalyzed olefin metathesis reaction, has been the focus of intense interest in recent years from the standpoint of both mechanism and polymer synthesis, in contrast, use of this transformation in organic synthesis has been limited. As part of a broader program directed toward establishing transition metal alkylidenes as versatile reagents for organic chemistry, the authors report the successful application of catalytic olefin methathesis to the generation of a variety of unsaturated oxygen heterocycles. 13 refs., 1 fig., 1 tab.

  4. Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity

    Science.gov (United States)

    Zayed, Mervat F.; Eisa, Wael H.

    2014-03-01

    A green synthesis route was reported to explore the reducing and capping potential of Phoenix dactylifera extract for the synthesis of gold nanoparticles. The processes of nucleation and growth of gold nanoparticles were followed by monitoring the absorption spectra during the reaction. The size and morphology of these nanoparticles was typically imaged using transmission electron microscopy (TEM). The particle size ranged between 32 and 45 nm and are spherical in shape. Fourier transform infrared (FTIR) analysis suggests that the synthesized gold nanoparticles might be stabilized through the interactions of hydroxyl and carbonyl groups in the carbohydrates, flavonoids, tannins and phenolic acids present in P. dactylifera. The as-synthesized Au colloids exhibited good catalytic activity for the degradation of 4-nitrophenol.

  5. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles

    DEFF Research Database (Denmark)

    Hosseinkhani, Baharak; Søbjerg, Lina Sveidal; Rotaru, Amelia-Elena

    2012-01-01

    Bimetallic nanoparticles are considered the next generation of nanocatalysts with increased stability and catalytic activity. Bio-supported synthesis of monometallic nanoparticles has been proposed as an environmentally friendly alternative to the conventional chemical and physical protocols....... In this study we synthesize bimetallic bio-supported Pd-Au nanoparticles for the first time using microorganisms as support material. The synthesis involved two steps: (1) Formation of monometallic bio-supported Pd(0) and Au(0) nanoparticles on the surface of Cupriavidus necator cells, and (2) formation...... of bimetallic bio-supported nanoparticles by reduction of either Au(III) or Pd(II) on to the nanoparticles prepared in step one. Bio-supported monometallic Pd(0) or Au(0) nanoparticles were formed on the surface of C. necator by reduction of Pd(II) or Au(III) with formate. Addition of Au(III) or Pd...

  6. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity

    Science.gov (United States)

    Dash, Shib Shankar; Bag, Braja Gopal

    2014-01-01

    Punica granatum juice, a delicious multivitamin drink of great medicinal significance, is rich in different types of phytochemicals, such as terpenoids, alkaloids, sterols, polyphenols, sugars, fatty acids, aromatic compounds, amino acids, tocopherols, etc. We have demonstrated the use of the juice for the synthesis of gold nanoparticles (AuNPs) at room temperature under very mild conditions. The synthesis of the AuNPs was complete in few minutes and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the fruit extract. The AuNPs were characterized by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, fourier transform infrared spectroscopy and X-ray diffraction studies. Catalytic activity of the synthesized colloidal AuNPs has also been demonstrated.

  7. Iron-substituted cubic silsesquioxane pillared clays: Synthesis, characterization and acid catalytic activity.

    Science.gov (United States)

    Potsi, Georgia; Ladavos, Athanasios K; Petrakis, Dimitrios; Douvalis, Alexios P; Sanakis, Yiannis; Katsiotis, Marios S; Papavassiliou, Georgios; Alhassan, Saeed; Gournis, Dimitrios; Rudolf, Petra

    2018-01-15

    Novel pillared structures were developed from the intercalation of iron-substituted cubic silsesquioxanes in a sodium and an acid-activated montmorillonite nanoclay and evaluated as acid catalysts. Octameric cubic oligosiloxanes were formed upon controlled hydrolytic polycondensation of the corresponding monomer (a diamino-alkoxysilane) and reacted with iron cations to form complexes that were intercalated within the layered nanoclay matrices. Upon calcination iron oxide nanoparticles are formed which are located on the silica cubes (pillars) and on the surfaces of the clay platelets. Acid activation of the nanoclay was performed in order to increase the number of acid active sites in the pristine clay and thus increase its catalytic activity. A plethora of analytical techniques including X-ray diffraction, thermal analyses, Fourier transform infrared, electron paramagnetic resonance, Raman, Mössbauer and X-ray photoelectron spectroscopies and porosimetry measurements were used in order to follow the synthesis steps and to fully characterize the final catalysts. The resulting pillared clays exhibit a high specific area and show significant acid catalytic activity that was verified using the catalytic dehydration of isopropanol asa probe reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications.

    Science.gov (United States)

    Fan, Zhanxi; Zhang, Hua

    2016-12-20

    Noble metal nanocrystals own high chemical stability, unique plasmonic and distinctive catalytic properties, making them outstanding in many applications. However, their practical applications are limited by their high cost and scarcity on the earth. One promising strategy to solve these problems is to boost their catalytic performance in order to reduce their usage amount. To realize this target, great research efforts have been devoted to the size-, composition-, shape- and/or architecture-controlled syntheses of noble metal nanocrystals during the past two decades. Impressively, recent experimental studies have revealed that the crystal structure of noble metal nanocrystals can also significantly affect their physicochemical properties, such as optical, magnetic, catalytic, mechanical, electrical and electronic properties. Therefore, besides the well-established size, composition, shape, and architecture control, the rise of crystal structure-controlled synthesis of noble metal nanocrystals will open up new opportunities to further improve their functional properties, and thus promote their potential applications in energy conversion, catalysis, biosensing, information storage, surface enhanced Raman scattering, waveguide, near-infrared photothermal therapy, controlled release, bioimaging, biomedicine, and so on. In this Account, we review the recent research progress on the crystal structure control of noble metal nanocrystals with a template synthetic approach and their crystal structure-dependent catalytic properties. We first describe the template synthetic methods, such as epitaxial growth and galvanic replacement reaction methods, in which a presynthesized noble metal nanocrystal with either new or common crystal structure is used as the template to direct the growth of unusual crystal structures of other noble metals. Significantly, the template synthetic strategy described here provides an efficient, simple and straightforward way to synthesize unusual

  9. Synthesis, characterization and catalytic evaluation of cubic ordered mesoporous iron-silicon oxides

    Energy Technology Data Exchange (ETDEWEB)

    Martins, T.S., E-mail: tsmartins@unifesp.br [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Rua Prof. Artur Riedel 275, 09972-270 Diadema, Sao Paulo (Brazil); Mahmoud, A.; Cides da Silva, L.C. [Instituto de Quimica, Universidade de Sao Paulo, 05508-900 Sao Paulo (Brazil); Cosentino, I.C. [IPEN, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Tabacniks, M.H. [Instituto de Fisica, Universidade de Sao Paulo 66318, 05315-970 Sao Paulo (Brazil); Matos, J.R. [Instituto de Quimica, Universidade de Sao Paulo, 05508-900 Sao Paulo (Brazil); Freire, R.S. [CEPEMA/USP, Centro de Capacitacao e Pesquisa em Meio Ambiente, Cubatao/SP (Brazil); Instituto de Quimica, Universidade de Sao Paulo, 05508-900 Sao Paulo (Brazil); Fantini, M.C.A. [Instituto de Fisica, Universidade de Sao Paulo 66318, 05315-970 Sao Paulo (Brazil)

    2010-11-01

    Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS), N{sub 2} sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe{sup 2+} present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples' average pore diameter was around 12.0 nm and BET specific surface area was of 680 m{sup 2} g{sup -1}. Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 deg. C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1, Fe{sub 2}O{sub 3} and Fe/FDU-1 prepared with higher pH of 2 and 3.5.

  10. Synthesis, characterization and catalytic activity toward methanol oxidation of electrocatalyst Pt4+-NH2-MCM-41

    International Nuclear Information System (INIS)

    Zheng Huajun; Chen Zuo; Wang Limin; Ma Chun’an

    2012-01-01

    Highlights: ► It was first confirmed that the Pt 4+ exhibited a good electro-catalytic property for methanol oxidation. ► The Pt 4+ perfectly distributed on a mesoporous molecular sieve matrix synthesis by a facile method. ► The good performance of catalyst resistance to poisoning because of a homogeneous distribution of Pt 4+ and large specific surface area. - Abstract: Mesoporous material with functional group (Pt 4+ -NH 2 -MCM-41) was prepared by grafting aminopropyl group and adsorbing platinum ions on the surface of the commercial molecular sieve (MCM-41). The characterization carried out by X-ray photoelectron spectroscopy, X-ray diffraction, and N 2 adsorption–desorption measurement pointed out that Pt was adsorbed on the NH 2 -MCM-41 surface as the oxidation state (Pt 4+ ) and the surface area of Pt 4+ -NH 2 -MCM-41 was up to 564 m 2 /g. Transmission electron microscopy and elemental mapping indicated a homogeneous distribution of Pt 4+ throughout all surface of the mesoporous materials. Electro-catalytic properties of methanol oxidation on the Pt 4+ -NH 2 -MCM-41 electrode were investigated with electrochemical methods. The results showed that the Pt 4+ -NH 2 -MCM-41 electrode exhibited catalytic activity in the methanol electro-oxidation with the apparent activation energy being 49.29 kJ/mol, and the control step of methanol electro-oxidation was the mass transfer process. It is first proved that platinum ions had good electro-catalytic property for methanol oxidation and provided a new idea for developing electrode materials in future.

  11. Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: a mathematical solution to asymmetric Markov chains.

    Science.gov (United States)

    Vinyard, David J; Zachary, Chase E; Ananyev, Gennady; Dismukes, G Charles

    2013-07-01

    Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called "S-states"). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts

    Science.gov (United States)

    Pretzer, Lori A.

    Transition metal nanomaterials are used to catalyze many chemical reactions, including those key to environmental, medicinal, and petrochemical fields. Improving their catalytic properties and lifetime would have significant economic and environmental rewards. Potentially expedient options to make such advancements are to alter the shape, size, or composition of transition metal nanocatalysts. This work investigates the relationships between structure and catalytic properties of synthesized Au, Pd-on-Au, and Au-enzyme model transition metal nanocatalysts. Au and Pd-on-Au nanomaterials were studied due to their wide-spread application and structure-dependent electronic and geometric properties. The goal of this thesis is to contribute design procedures and synthesis methods that enable the preparation of more efficient transition metal nanocatalysts. The influence of the size and composition of Pd-on-Au nanoparticles (NPs) was systematically investigated and each was found to affect the catalyst's surface structure and catalytic properties. The catalytic hydrodechlorination of trichloroethene and reduction of 4-nitrophenol by Pd-on-Au nanoparticles were investigated as these reactions are useful for environmental and pharmaceutical synthesis applications, respectively. Structural characterization revealed that the dispersion and oxidation state of surface Pd atoms are controlled by the Au particle size and concentration of Pd. These structural changes are correlated with observed Pd-on-Au NP activities for both probe reactions, providing new insight into the structure-activity relationships of bimetallic nanocatalysts. Using the structure-dependent electronic properties of Au NPs, a new type of light-triggered biocatalyst was prepared and used to remotely control a model biochemical reaction. This biocatalyst consists of a model thermophilic glucokinase enzyme covalently attached to the surface of Au nanorods. The rod-like shape of the Au nanoparticles made the

  13. Synthesis of hollow asymmetrical silica dumbbells with a movable inner core

    NARCIS (Netherlands)

    Nagao, D.; van Kats, C.M.; Hayasaka, K.; Sugimoto, M.; Konno, M.; Imhof, A.; van Blaaderen, A.

    2010-01-01

    Hollow asymmetrical silica dumbbells containing a movable inner core were fabricated by a template-assisted method. Three different templates were employed for the fabrication of the hollow asymmetrical dumbbells. For the preparation of the first template, silica particles were uniformly covered

  14. β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene

    NARCIS (Netherlands)

    Cárdenas-Lizana, F.; Gómez-Quero, S.; Perret, N.; Kiwi-Minsker, L.; Keane, M.A.

    2011-01-01

    A temperature programmed treatment of MoO3 in flowing N2 + H2 has been employed to prepare β-phase molybdenum nitride (β-Mo2N) which has been used to promote, for the first time, the catalytic hydrogenation of p-chloronitrobenzene. The reduction/nitridation synthesis steps have been monitored in

  15. Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract

    Science.gov (United States)

    Lim, Soo Hyeon; Ahn, Eun-Young; Park, Youmie

    2016-10-01

    Gold nanoparticles were synthesized using a water extract of Artemisia capillaris (AC-AuNPs) under different extract concentrations, and their catalytic activity was evaluated in a 4-nitrophenol reduction reaction in the presence of sodium borohydride. The AC-AuNPs showed violet or wine colors with characteristic surface plasmon resonance bands at 534 543 nm that were dependent on the extract concentration. Spherical nanoparticles with an average size of 16.88 ± 5.47 29.93 ± 9.80 nm were observed by transmission electron microscopy. A blue shift in the maximum surface plasmon resonance was observed with increasing extract concentration. The face-centered cubic structure of AC-AuNPs was confirmed by high-resolution X-ray diffraction analysis. Based on phytochemical screening and Fourier transform infrared spectra, flavonoids, phenolic compounds, and amino acids present in the extract contributed to the reduction of Au ions to AC-AuNPs. The average size of the AC-AuNPs decreased as the extract concentration during the synthesis was increased. Higher 4-nitrophenol reduction reaction rate constants were observed for smaller sizes. The extract in the AC-AuNPs was removed by centrifugation to investigate the effect of the extract in the reduction reaction. Interestingly, the removal of extracts greatly enhanced their catalytic activity by up to 50.4 %. The proposed experimental method, which uses simple centrifugation, can be applied to other metallic nanoparticles that are green synthesized with plant extracts to enhance their catalytic activity.

  16. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  17. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth.

    Science.gov (United States)

    Magrez, Arnaud; Seo, Jin Won; Smajda, Rita; Mionić, Marijana; Forró, László

    2010-11-01

    The catalytic chemical vapor deposition (CCVD) is currently the most flexible and economically attractive method for the growth of carbon nanotubes. Although its principle is simple, the precisely controlled growth of carbon nanotubes remains very complex because many different parameters influence the growth process. In this article, we review our recent results obtained on the synthesis of carbon nanotubes via CCVD. We discuss the role of the catalyst and the catalyst support. Our recent results obtained from the water assisted growth and the equimolar C₂H₂-CO₂ reaction are also discussed. Both procedures lead to significantly enhanced carbon nanotube growth. In particular, the latter allows growing carbon nanotubes on diverse substrate materials at low temperatures.

  18. Facile Synthesis, Characterization and Catalytic Function of Gelatin Stabilized Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zulfiqar A. Tagar

    2012-06-01

    Full Text Available In the present investigation, we report a new one phase, one pot method for synthesis of 3.5 ± 0.7 nm average sized gelatin capped gold nano particles (Gel-AuNPs using strong reductant NaBH4 in aqueous system at room temperature. Size controlled Gel-AuNPs were characterized by UV-Visible, STEM, XRD, DLS and FT-IR. Spherical Gel-AuNPs showed excellent catalytic activity for reduction of three differently charged dyes eosin B (EB, methylene blue (MB and rose bengal (RB in the presence of NaBH4. The study revealed that 100% reduction of EB, MB and RB dyes was carried out in just 150 sec. The developed catalyst was easy to recover and capable to be reused three times. The process of reduction rate and kinetics of dyes was monitored using UV-Visible spectrophotometer. A plot of lnC Vs time (sec showed that reaction follows the first order kinetics. Rate constant (K was determined for EB, MB and RB reduction at 10 μM, which was found as 2.735 x10-2 sec-1, 2.738 x 10-2 sec-1 and 2.55 x 10-2 sec-1, respectively. The study revealed that catalytic reduction of dyes by Gel-AuNPs in aqueous medium is environmental friendly in terms of recovery of catalyst, is exceptionally fast and hence extremely economical.

  19. Synthesis, Characterization, and Catalytic Ability of U3O8/SiO2 Nocomposite Materials

    Science.gov (United States)

    Green, Fatima

    Applications of uranium oxide nanoparticles as oxidative catalysts is a field uncommonly studied. In the past, little research has been done to study the potential of this material for room temperature, catalytic breakdown of organic pollutants. Due to an increase in the presence of these pollutants in surface water, an effort to study these reactions in aqueous solution has been a high priority. To further enhance the properties of the nanoparticles, synthesis was performed using the sol-gel method. Characterization of the material was carried out using, Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction, (XRD) and transmission electron microscopy (TEM). This material has proven to be pure, crystalline alpha-phase U3O8 with an average particle size of 27 nm. Based on previous studies, we hypothesized that under ambient conditions our synthesized material will be able to effectively breakdown organic molecules in aqueous solution. Catalytic studies were monitored using titration techniques with oxalic acid as a model system. The decomposition percentages varied based on amounts of nanocomposite used and temperature controls.

  20. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances

    International Nuclear Information System (INIS)

    Li, Chao; Ren, Yanqun; Gou, Jinsheng; Liu, Baoyu; Xi, Hongxia

    2017-01-01

    Highlights: • A mesostructured MFI zeolite was synthesized via dual-functional surfactant approach. • Mass transport was investigated by applying zero length column technique. • The catalyst exhibited excellent catalytic activity and long lifetime. • Gaussian DFT was employed to study the role of surfactant in crystallization process. - Abstract: A mesostructured ZSM-5 zeolite with multilamellar structure was successfully synthesized by employing a tetra-headgroup rigid bolaform quaternary ammonium surfactant. It was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherms, amines temperature programmed desorption (amines-TPD), and computer simulation. These results indicated that the dual-functional amphiphilic surfactants play a critical role for directing the multilamellar structure with high mesoporosity. The mass transport and catalytic performances of the zeolite were investigated by zero length column (ZLC) technique and aldol condensation reactions to evaluate the structure-property relationship. These results clearly indicated that the mass transport of selected molecules in hierarchical zeolite can be accelerated by introducing mesoporous structure with mesostructure with reduced diffusion length and an overall enhanced resistance against deactivation in reactions involving large molecules. Furthermore, the dual-functional surfactant approach of making hierarchical zeolite with MFI nanosheets framework would open up new opportunities for design and synthesis of hierarchical zeolites with controllable mesoporous structures.

  1. Green Synthesis of Smart Metal/Polymer Nanocomposite Particles and Their Tuneable Catalytic Activities

    Directory of Open Access Journals (Sweden)

    Noel Peter Bengzon Tan

    2016-03-01

    Full Text Available Herein we report a simple and green synthesis of smart Au and Ag@Au nanocomposite particles using poly(N-isopropylacrylamide/polyethyleneimine (PNIPAm/PEI core-shell microgels as dual reductant and templates in an aqueous system. The nanocomposite particles were synthesized through a spontaneous reduction of tetrachloroauric (III acid to gold nanoparticles at room temperature, and in situ encapsulation and stabilization of the resultant gold nanoparticles (AuNPs with amine-rich PEI shells. The preformed gold nanoparticles then acted as seed nanoparticles for further generation of Ag@Au bimetallic nanoparticles within the microgel templates at 60 °C. These nanocomposite particles were characterized by TEM, AFM, XPS, UV-vis spectroscopy, zeta-potential, and particle size analysis. The synergistic effects of the smart nanocomposite particles were studied via the reduction of p-nitrophenol to p-aminophenol. The catalytic performance of the bimetallic Ag@Au nanocomposite particles was 25-fold higher than that of the monometallic Au nanoparticles. Finally, the controllable catalytic activities of the Au@PNIPAm/PEI nanocomposite particles were demonstrated via tuning the solution pH and temperature.

  2. Catalytic Z-selective olefin cross-metathesis for natural product synthesis.

    Science.gov (United States)

    Meek, Simon J; O'Brien, Robert V; Llaveria, Josep; Schrock, Richard R; Hoveyda, Amir H

    2011-03-24

    Alkenes are found in many biologically active molecules, and there are a large number of chemical transformations in which alkenes act as the reactants or products (or both) of the reaction. Many alkenes exist as either the E or the higher-energy Z stereoisomer. Catalytic procedures for the stereoselective formation of alkenes are valuable, yet methods enabling the synthesis of 1,2-disubstituted Z alkenes are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and of allylic amides, used until now only in E-selective processes. The corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. These transformations, promoted by catalysts that contain the highly abundant and inexpensive metal molybdenum, are amenable to gram-scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. The utility of this method is demonstrated by its use in syntheses of an anti-oxidant plasmalogen phospholipid, found in electrically active tissues and implicated in Alzheimer's disease, and the potent immunostimulant KRN7000.

  3. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    Science.gov (United States)

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO 2 ) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al 2 O 3 and Ni-Co/Al 2 O 3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al 2 O 3 catalyst, producing 153.67mmol syngas g -1 waste . The addition of cobalt metal as a promoter to the Ni/Al 2 O 3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Synthesis of copper graphene materials functionalized by amino acids and their catalytic applications.

    Science.gov (United States)

    Huang, Qiang; Zhou, Limei; Jiang, Xiaohui; Zhou, Yafen; Fan, Hongwei; Lang, Wencheng

    2014-08-27

    Graphene oxide and its derivative have attracted extensive interests in many fields, including catalytic chemistry, organic synthesis, and electrochemistry, recently. We explored whether the use of graphene after chemical modification with amino acids to immobilize copper nanoparticles could achieve a more excellent catalytic activity for N-arylation reactions. A facile and novel method to prepare copper supported on amino-acid-grafted graphene hybrid materials (A-G-Cu) was first reported. The as-prepared hybrid materials were characterized by a variety of techniques, including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and inductively coupled plasma-atomic emission spectrometry. The results showed that the morphology, distribution, and loading of copper nanoparticles could be well-adjusted by controlling the type of amino acids grafted on graphene. Moreover, most A-G-Cu hybrid materials could catalyze N-arylation of imidazole with iodobenzene with yields more than 90%, while the copper supported on graphene (G-Cu) displayed a yield of just 65.8%. The high activity of A-G-Cu can be ascribed to the good synergistic effects of copper nanoparticles (Cu NPs) and amino-acid-grafted graphene.

  5. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao; Ren, Yanqun [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641 (China); Gou, Jinsheng [College Material Science and Technology, Beijing Forestry University, Key Laboratory of Wooden Material Science and Application, Ministry of Education, 35 Tsinghua East Road, Haidian District, Beijing 100083 (China); Liu, Baoyu [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641 (China); Xi, Hongxia, E-mail: cehxxi@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641 (China)

    2017-01-15

    Highlights: • A mesostructured MFI zeolite was synthesized via dual-functional surfactant approach. • Mass transport was investigated by applying zero length column technique. • The catalyst exhibited excellent catalytic activity and long lifetime. • Gaussian DFT was employed to study the role of surfactant in crystallization process. - Abstract: A mesostructured ZSM-5 zeolite with multilamellar structure was successfully synthesized by employing a tetra-headgroup rigid bolaform quaternary ammonium surfactant. It was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherms, amines temperature programmed desorption (amines-TPD), and computer simulation. These results indicated that the dual-functional amphiphilic surfactants play a critical role for directing the multilamellar structure with high mesoporosity. The mass transport and catalytic performances of the zeolite were investigated by zero length column (ZLC) technique and aldol condensation reactions to evaluate the structure-property relationship. These results clearly indicated that the mass transport of selected molecules in hierarchical zeolite can be accelerated by introducing mesoporous structure with mesostructure with reduced diffusion length and an overall enhanced resistance against deactivation in reactions involving large molecules. Furthermore, the dual-functional surfactant approach of making hierarchical zeolite with MFI nanosheets framework would open up new opportunities for design and synthesis of hierarchical zeolites with controllable mesoporous structures.

  6. Carbohydrate synthesis by disaccharide phosphorylases: reactions, catalytic mechanisms and application in the glycosciences.

    Science.gov (United States)

    Luley-Goedl, Christiane; Nidetzky, Bernd

    2010-12-01

    Disaccharide phosphorylases are glycosyltransferases (EC 2.4.1.α) of specialized carbohydrate metabolism in microorganisms. They catalyze glycosyl transfer to phosphate using a disaccharide as donor substrate. Phosphorylases for the conversion of naturally abundant disaccharides including sucrose, maltose, α,α-trehalose, cellobiose, chitobiose, and laminaribiose have been described. Structurally, these disaccharide phosphorylases are often closely related to glycoside hydrolases and transglycosidases. Mechanistically, they are categorized according the stereochemical course of the reaction catalyzed, whereby the anomeric configuration of the disaccharide donor substrate may be retained or inverted in the sugar 1-phosphate product. Glycosyl transfer with inversion is thought to occur through a single displacement-like catalytic mechanism, exemplified by the reaction coordinate of cellobiose/chitobiose phosphorylase. Reaction via configurational retention takes place through the double displacement-like mechanism employed by sucrose phosphorylase. Retaining α,α-trehalose phosphorylase (from fungi) utilizes a different catalytic strategy, perhaps best described by a direct displacement mechanism, to achieve stereochemical control in an overall retentive transformation. Disaccharide phosphorylases have recently attracted renewed interest as catalysts for synthesis of glycosides to be applied as food additives and cosmetic ingredients. Relevant examples are lacto-N-biose and glucosylglycerol whose enzymatic production was achieved on multikilogram scale. Protein engineering of phosphorylases is currently pursued in different laboratories with the aim of broadening the donor and acceptor substrate specificities of naturally existing enzyme forms, to eventually generate a toolbox of new catalysts for glycoside synthesis. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. One-Step Synthesis of Zeolite Membranes Containing Catalytic Metal Nanoclusters.

    Science.gov (United States)

    Kim, Seok-Jhin; Tan, Shuai; Taborga Claure, Micaela; Briones Gil, Laura; More, Karren L; Liu, Yujun; Moore, Jason S; Dixit, Ravindra S; Pendergast, John G; Sholl, David S; Jones, Christopher W; Nair, Sankar

    2016-09-21

    Metal-loaded zeolitic membranes are promising candidates as catalytic membrane reactors. We report a one-step synthesis method to synthesize zeolite membranes containing metal nanoclusters, that has advantages in comparison to multistep methods such as impregnation and ion exchange. Pure-silica MFI zeolite-Pt hybrid membranes were prepared by hydrothermal synthesis with addition of 3-mercaptopropyl-trimethoxysilane (MPS) and a platinum precursor. Composition analysis and mapping by energy-dispersive X-ray spectroscopy (EDX) reveal that Pt ions/clusters are uniformly distributed along the membrane cross-section. High-magnification scanning transmission electron microscopy (STEM) analysis shows that Pt metal clusters in the hybrid zeolite membrane have a diameter distribution in the range of 0.5-2.0 nm. In contrast, a pure-silica MFI membrane synthesized from an MPS-free solution shows negligible incorporation of Pt metal clusters. To characterize the properties of the hybrid (zeolite/metal) membrane, it was used as a catalytic membrane reactor (CMR) for high-temperature propane dehydrogenation (PDH) at 600 °C and 1 atm. The results indicate that Pt metal clusters formed within the MFI zeolite membrane can serve as effective catalysts for high-temperature PDH reaction along with H2 removal via membrane permeation, thereby increasing both conversion and selectivity in relation to a conventional membrane reactor containing an equivalent amount of packed Pt catalyst in contact with an MFI membrane. The hybrid zeolite-Pt CMR also showed stable conversion and selectivity upon extended high-temperature operation (12 h), indicating that encapsulation in the zeolite allowed thermal stabilization of the Pt nanoclusters and reduced catalyst deactivation.

  8. Synthesis, characterization and catalytic activity of carbon-silica hybrid catalyst from rice straw

    Science.gov (United States)

    Janaun, J.; Safie, N. N.; Siambun, N. J.

    2016-07-01

    The hybrid-carbon catalyst has been studied because of its promising potential to have high porosity and surface area to be used in biodiesel production. Silica has been used as the support to produce hybrid carbon catalyst due to its mesoporous structure and high surface area properties. The chemical synthesis of silica-carbon hybrid is expensive and involves more complicated preparation steps. The presence of natural silica in rice plants especially rice husk has received much attention in research because of the potential as a source for solid acid catalyst synthesis. But study on rice straw, which is available abundantly as agricultural waste is limited. In this study, rice straw undergone pyrolysis and functionalized using fuming sulphuric acid to anchor -SO3H groups. The presence of silica and the physiochemical properties of the catalyst produced were studied before and after sulphonation. The catalytic activity of hybrid carbon silica acid catalyst, (H-CSAC) in esterification of oleic acid with methanol was also studied. The results showed the presence of silica-carbon which had amorphous structure and highly porous. The carbon surface consisted of higher silica composition, had lower S element detected as compared to the surface that had high carbon content but lower silica composition. This was likely due to the fact that Si element which was bonded to oxygen was highly stable and unlikely to break the bond and react with -SO3H ions. H-CSAC conversions were 23.04 %, 35.52 % and 34.2 7% at 333.15 K, 343.15 K and 353.15 K, respectively. From this research, rice straw can be used as carbon precursor to produce hybrid carbon-silica catalyst and has shown catalytic activity in biodiesel production. Rate equation obtained is also presented.

  9. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities

    Science.gov (United States)

    Din, Muhammad Imran; Arshad, Farhan; Hussain, Zaib; Mukhtar, Maria

    2017-12-01

    Copper nanoparticles (CuNPs) are of great interest due to their extraordinary properties such as high surface-to-volume ratio, high yield strength, ductility, hardness, flexibility, and rigidity. CuNPs show catalytic, antibacterial, antioxidant, and antifungal activities along with cytotoxicity and anticancer properties in many different applications. Many physical and chemical methods have been used to synthesize nanoparticles including laser ablation, microwave-assisted process, sol-gel, co-precipitation, pulsed wire discharge, vacuum vapor deposition, high-energy irradiation, lithography, mechanical milling, photochemical reduction, electrochemistry, electrospray synthesis, hydrothermal reaction, microemulsion, and chemical reduction. Phytosynthesis of nanoparticles has been suggested as a valuable alternative to physical and chemical methods due to low cytotoxicity, economic prospects, environment-friendly, enhanced biocompatibility, and high antioxidant and antimicrobial activities. The review explains characterization techniques, their main role, limitations, and sensitivity used in the preparation of CuNPs. An overview of techniques used in the synthesis of CuNPs, synthesis procedure, reaction parameters which affect the properties of synthesized CuNPs, and a screening analysis which is used to identify phytochemicals in different plants is presented from the recent published literature which has been reviewed and summarized. Hypothetical mechanisms of reduction of the copper ion by quercetin, stabilization of copper nanoparticles by santin, antimicrobial activity, and reduction of 4-nitrophenol with diagrammatic illustrations are given. The main purpose of this review was to summarize the data of plants used for the synthesis of CuNPs and open a new pathway for researchers to investigate those plants which have not been used in the past.

  10. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities.

    Science.gov (United States)

    Din, Muhammad Imran; Arshad, Farhan; Hussain, Zaib; Mukhtar, Maria

    2017-12-28

    Copper nanoparticles (CuNPs) are of great interest due to their extraordinary properties such as high surface-to-volume ratio, high yield strength, ductility, hardness, flexibility, and rigidity. CuNPs show catalytic, antibacterial, antioxidant, and antifungal activities along with cytotoxicity and anticancer properties in many different applications. Many physical and chemical methods have been used to synthesize nanoparticles including laser ablation, microwave-assisted process, sol-gel, co-precipitation, pulsed wire discharge, vacuum vapor deposition, high-energy irradiation, lithography, mechanical milling, photochemical reduction, electrochemistry, electrospray synthesis, hydrothermal reaction, microemulsion, and chemical reduction. Phytosynthesis of nanoparticles has been suggested as a valuable alternative to physical and chemical methods due to low cytotoxicity, economic prospects, environment-friendly, enhanced biocompatibility, and high antioxidant and antimicrobial activities. The review explains characterization techniques, their main role, limitations, and sensitivity used in the preparation of CuNPs. An overview of techniques used in the synthesis of CuNPs, synthesis procedure, reaction parameters which affect the properties of synthesized CuNPs, and a screening analysis which is used to identify phytochemicals in different plants is presented from the recent published literature which has been reviewed and summarized. Hypothetical mechanisms of reduction of the copper ion by quercetin, stabilization of copper nanoparticles by santin, antimicrobial activity, and reduction of 4-nitrophenol with diagrammatic illustrations are given. The main purpose of this review was to summarize the data of plants used for the synthesis of CuNPs and open a new pathway for researchers to investigate those plants which have not been used in the past. Graphical abstract Proposed Mechanism for Antibacterial activity of copper nanoparticles.

  11. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    Science.gov (United States)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  12. Enantioselective Synthesis of Chiral-at-Cage o-Carboranes via Pd-Catalyzed Asymmetric B-H Substitution.

    Science.gov (United States)

    Cheng, Ruofei; Li, Bowen; Wu, Jie; Zhang, Jie; Qiu, Zaozao; Tang, Wenjun; You, Shu-Li; Tang, Yong; Xie, Zuowei

    2018-03-26

    Carborane cage chirality is an outstanding issue of great interest as the icosahedral carboranes have wide applications in medicinal and materials chemistry. The synthesis of optically active carborane derivatives, whose chirality is associated with the substitution patterns on the polyhedron, will open new avenues to carborane chemistry. We report herein an efficient method to achieve chiral-at-cage arylation of o-carboranes with high regio- and enantio-selectivities by a strategy of palladium-catalyzed asymmetric intramolecular B-H arylation and cyclization. This represents the first example of the enantioselective reaction on carboranes, providing an efficient way for the construction of chiral-at-cage compounds with new skeletons.

  13. Divergent Chemoenzymatic Synthesis of Asymmetrical-Core-Fucosylated and Core-Unmodified N-Glycans

    NARCIS (Netherlands)

    Li, Tiehai; Huang, Min; Liu, Lin; Wang, Shuo; Moremen, Kelley W; Boons, Geert-Jan|info:eu-repo/dai/nl/088245489

    2016-01-01

    A divergent chemoenzymaytic approach for the preparation of core-fucosylated and core-unmodified asymmetrical N-glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated

  14. Vinylimidazole-Based Asymmetric Ion Pair Comonomers: Synthesis, Polymerization Studies and Formation of Ionically Crosslinked PMMA

    NARCIS (Netherlands)

    Jana, S.; Vasantha, V.A.; Stubbs, L.P.; Parthiban, A.; Vancso, Gyula J.

    2013-01-01

    Vinylimidazole-based asymmetric ion pair comonomers (IPCs) which are free from nonpolymerizable counter ions have been synthesized, characterized and polymerized by free radical polymerization (FRP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer

  15. Nanostructured Samarium Doped Fluorapatites and Their Catalytic Activity towards Synthesis of 1,2,4-Triazoles

    Directory of Open Access Journals (Sweden)

    Kranthi Kumar Gangu

    2016-09-01

    Full Text Available An investigation was conducted into the influence of the amino acids as organic modifiers in the facile synthesis of metal incorporated fluorapatites (FAp and their properties. The nanostructured Sm doped fluorapatites (Sm-FAp were prepared by a co-precipitation method using four different amino acids, namely glutamic acid, aspartic acid, glycine and histidine. The materials were characterized by various techniques including X-ray diffraction (XRD, Fourier transform infra-red spectroscopy (FT-IR, field emission scanning electron microscopy (FE-SEM, energy-dispersive X-ray spectroscopy (EDX, high resolution transmission electron microscopy (HR-TEM, N2-adsorption/desorption isotherm, temperature programmed desorption (TPD and fluorescence spectrophotometry. Under similar conditions, Sm-FAp prepared using different amino acids exhibited distinctly different morphological structures, surface area and pore properties. Their activity as catalysts was assessed and Sm-FAp/Glycine displayed excellent efficiency in the synthesis of 1,2,4-triazole catalyzing the reaction between 2-nitrobenzaldehyde and thiosemicarbazide with exceptional selectivity and 98% yield in a short time interval (10 min. The study provides an insight into the role of organic modifiers as controllers of nucleation, growth and aggregation which significantly influence the nature and activity of the catalytic sites on Sm-FAp. Sm-FAp could also have potential as photoactive material.

  16. Synthesis of hollow asymmetrical silica dumbbells with a movable inner core.

    Science.gov (United States)

    Nagao, Daisuke; van Kats, Carlos M; Hayasaka, Kentaro; Sugimoto, Maki; Konno, Mikio; Imhof, Arnout; van Blaaderen, Alfons

    2010-04-06

    Hollow asymmetrical silica dumbbells containing a movable inner core were fabricated by a template-assisted method. Three different templates were employed for the fabrication of the hollow asymmetrical dumbbells. For the preparation of the first template, silica particles were uniformly covered with a cross-linked polymethylmethacrylate (PMMA) shell and the polymerization of styrene was conducted to induce a protrusion of polystyrene (PSt) from the PMMA shell. Anisotropic colloids composed of silica, PMMA, and PSt were used as templates, coated with a silica shell, and held at 500 degrees C for 2 h to remove the polymer interior components of the template colloid. The heat treatment successfully produced hollow asymmetrical silica dumbbells containing an inner silica core. After being dried, approximately 50% of the inner silica particles that were originally coated with PMMA ended up in the other hollow sphere in which the PSt component existed before heat treatment, indicating that the inner silica particles could pass through the hollow asymmetrical dumbbells' necks and were free to move in the interior. In the preparation of the second and third asymmetrical dumbbell templates, magnetic silica particles and titania particles, respectively, were covered with a PMMA shell to incorporate externally responsive particles into the hollow silica shells as above. The successful syntheses demonstrated the generality of our approach. The passage of the responsive particles through the dumbbell's neck enabled active control of the position of the responsive particles inside the asymmetrical dumbbells by external fields.

  17. Sustainable Catalytic Process for Synthesis of Triethyl Citrate Plasticizer over Phosphonated USY Zeolite

    Directory of Open Access Journals (Sweden)

    Kakasaheb Y. Nandiwaleand

    2016-10-01

    Full Text Available Fruits wastage is harmful to health and environment concerning spreading diseases and soil pollution, respectively. To avoid this issue, use of citrus fruit waste for the production of citric acid (CA is one of viable mean to obtain value added chemicals. Moreover, synthesis of triethyl citrate (TEC, a non-toxic plasticizer by esterification of CA with ethanol over heterogeneous catalyst would be renewable and sustainable catalytic process. In this context, parent Ultrastable Y (USY and different percentage phosphonated USY (P-USY zeolites were used for the synthesis of TEC in a closed batch reactor, for the first time. The synthesized catalysts were characterized by N2-adsorption desorption isotherm, powder X-ray diffraction (XRD and NH3 temperature programmed desorption (TPD. Effect of reaction conditions, such as the molar ratio of ethanol to CA (5:1 - 20:1, the catalyst to CA ratio (0.05 - 0.25 and reaction temperature (363-403 K, were studied in view to maximizing CA conversion and TEC yield. Phosphonated USY catalysts were found to be superior in activity (CA conversion and TEC yield than parent USY, which is attributed to the increased in total acidity with phosphonation. Among the studied catalysts, the P2USY (2% phosphorous loaded on USY was found to be an optimum catalyst with 99% CA conversion and 82% TEC yield, which is higher than the reported values. This study opens new avenues of research demonstrating principles of green chemistry such as easy separable and reusable catalyst, non-toxic product, bio-renewable synthetic route, milder operating parameters and waste minimization. Copyright © 2016 BCREC GROUP. All rights reserved Received: 12nd October 2015; Revised: 22nd December 2015; Accepted: 29th January 2016 How to Cite: Nandiwale, K.Y., Bokade, V.V. (2016. Sustainable Catalytic Process for Synthesis of Triethyl Citrate Plasticizer over Phosphonated USY Zeolite. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 292

  18. Asymmetric photoredox transition-metal catalysis activated by visible light

    Science.gov (United States)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  19. Supported liquid membrane as a novel tool for driving the equilibrium of ω-transaminase catalyzed asymmetric synthesis.

    Science.gov (United States)

    Rehn, Gustav; Adlercreutz, Patrick; Grey, Carl

    2014-06-10

    An attractive option to produce chiral amines of industrial importance is through asymmetric synthesis using ω-transaminase. However, reaching high yields often requires a strategy for shifting the equilibrium position. This paper describes a novel strategy for handling this problem. It involves the use of a supported liquid membrane (SLM) together with a packed bed reactor. The reactor contains Escherichia coli cells with ω-transaminase from Arthrobacter citreus, immobilized by flocculation with chitosan. The SLM consists of a hollow fibre membrane contactor in which the pores contain undecane. The system enables continuous extraction of the amine product and was used to successfully shift the equilibrium in asymmetric synthesis of (S)-α-methylbenzylamine (MBA). A conversion of 98% was reached, compared to 50% without product extraction. Moreover, a selective extraction of the produced MBA was realized. A high product concentration of 55g/l was reached after 80h, and the system showed promising potential for continuous operation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Adding a functional handle to nature's building blocks: the asymmetric synthesis of β-hydroxy-α-amino acids.

    Science.gov (United States)

    Zhang, Yinfeng; Farrants, Helen; Li, Xuechen

    2014-07-01

    β-Hydroxy-α-amino acids are not only used by synthetic chemists but are also found in natural products, many of which show anti-microbial or anti-cancer properties. Over the past 30 years, chemists have searched for many asymmetric routes to these useful building blocks. Initial attempts to synthesize these compounds utilized chiral auxiliaries and the reactions of glycine equivalents with aldehydes to form two stereocenters in one step. Other methods with the formation of specific intermediates or that were aimed at a specific amino acid have also been investigated. Asymmetric hydrogenation by dynamic kinetic resolution has emerged as a high-yielding method for the synthesis of an array of modified amino acids with good stereoselectivity. More recently, amino-acid functionalization and multicomponent reactions have increased the atom economy and simplified many long and difficult routes. In this Focus Review, many of the elegant syntheses of these compounds are explored. The applications of β-hydroxy-α-amino acids in natural-product synthesis are also mentioned. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Asymmetric reactions in continuous flow

    Directory of Open Access Journals (Sweden)

    Xiao Yin Mak

    2009-04-01

    Full Text Available An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed.

  2. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange.

    Science.gov (United States)

    Umamaheswari, C; Lakshmanan, A; Nagarajan, N S

    2018-01-01

    The present study reports, novel and greener method for synthesis of gold nanoparticles (AuNPs) using 5,7-dihydroxy-6-metoxy-3 ' ,4 ' methylenedioxyisoflavone (Dalspinin), isolated from the roots of Dalbergia coromandeliana was carried out for the first time. The synthesized gold nanoparticles were characterized by UV-Vis spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The observed surface plasmon resonance (SPR) at 532nm in the UV-Vis absorption spectrum indicates the formation of gold nanoparticles. The powder XRD and SAED pattern for synthesized gold nanoparticles confirms crystalline nature. The HR-TEM images showed that the AuNPs formed were small in size, highly monodispersed and spherical in shape. The average particle sizes of the AuNPs are found to be ~10.5nm. The prepared AuNPs were found to be stable for more than 5months without any aggregation. The catalytic degradation studies of the synthesized AuNPs towards degradation of congo red and methyl orange, showed good catalytic in the complete degradation of both the dyes. The reduction catalyzed by gold nanoparticles followed the pseudo-first order kinetics, with a rate constant of 4.5×10 -3 s -1 (R 2 =0.9959) and 1.7×10 -3 s -1 (R 2 =0.9918) for congo red (CR) and methyl orange (MO), respectively. Copyright © 2017. Published by Elsevier B.V.

  3. Novel techniques for the synthesis of three-way catalytic converter support materials

    Science.gov (United States)

    Anyaba, Prince Nwabueze

    Current automobiles use catalytic converters, consisting of noble metals on an oxide support, to convert noxious engine exhaust pollutants into less harmful species. The development of mesoporous oxide supports with optimal pore geometries could enable these devises to decrease in size and weight and significantly reduce the metal loadings required to achieve optimal performance. Thus, in this work, I investigated a wide range of techniques for the synthesis of mesoporous oxides to determine if they could be adapted to ceria-zirconia-yttria mixed oxide (CZY) systems, which are the industry standard for the optimal oxide support for catalytic converter applications. Additionally, I compared and critically evaluated the catalytic performance of the CZY mixed oxides, which were synthesized from the various templating techniques. The catalytic performance test was broken up into two: catalyst activity test which was determined based on the light-off temperatures at which 50% conversion of the reacting species have been converted; and resistance to surface area loss under accelerated aging at heating rate of 20°C/min form 700 to 1000°C, with the final temperature being held fixed for 4 h. To date, the most cost effective methods for preparing mesoporous materials are via techniques that employ templates or structure directing agents. These templates can be divided into two groups: endo-templates (i.e., soft templates, such as surfactants, dendrimers, and block copolymers) and exo-templates (i.e., hard templates, such as porous carbons and resins). The soft templating techniques generally involve both sol-gel and templating methods, while the hard templates required no sol-gel chemistry to achieve the desired templating effect. The precursors for ceria, zirconia, and yttria used were cerium (III) nitrate hexahydrate, zirconyl nitrate, and yttrium nitrate hexahydrate, respectively. The mesoporous CZY materials that were synthesized had surface area values that were

  4. A General Asymmetric Synthesis of (R-Matsutakeol and Flavored Analogs

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-02-01

    Full Text Available An efficient and practical synthetic route toward chiral matsutakeol and analogs was developed by asymmetric addition of terminal alkyne to aldehydes. (R-matsutakeol and other flavored substances were feasibly synthesized from various alkylaldehydes in high yield (up to 49.5%, in three steps and excellent enantiomeric excess (up to >99%. The protocols may serve as an alternative asymmetric synthetic method for active small-molecule library of natural fatty acid metabolites and analogs. These chiral allyl alcohols are prepared for food analysis and screening insect attractants.

  5. Synthesis of sheath voltage drops in asymmetric radio-frequency discharges

    International Nuclear Information System (INIS)

    Yonemura, Shigeru; Nanbu, Kenichi; Iwata, Naoaki

    2004-01-01

    A sheath voltage drop in asymmetric discharges is one of the most important parameters of radio-frequency capacitively coupled plasmas because it determines the kinetic energy of the ions incident on the target or substrate. In this study, we developed a numerical simulation code to estimate the sheath voltage drops and, consequently, the self-bias voltage. We roughly approximated general asymmetric rf discharges to one-dimensional spherical ones. The results obtained by using our simulation code are consistent with measurements and Lieberman's theory

  6. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye

    Directory of Open Access Journals (Sweden)

    Jayanta Saha

    2017-09-01

    Full Text Available Green synthesis processes are regarded as safer alternative to usual physical, chemical and microbial methods due to their cost effectiveness, environmental friendly nature and easy handling. In the present study, an eco-friendly and facile method for biogenic synthesis of silver nanoparticles (AgNPs has been developed using fruit extract of Gmelina arborea, an abundantly available medicinal plant in North Eastern region of India. The prepared AgNPs were characterized by UV–Vis spectroscopy, transmission electron microscopy (TEM, selected area electron diffraction pattern and energy dispersive X-ray spectrum. TEM studies showed the as-synthesized AgNPs were stable, almost spherical and crystalline with the particles size varying from 8 to 32 nm. The average diameter of the particles was 17.0 ± 1.6 nm. The catalytic effectiveness of the prepared green catalyst, AgNP, was also investigated in catalytic degradation of Methylene Blue (MB dye. The catalytic degradation reaction was completed within 10 min, signifying excellent catalytic properties of silver nanoparticles in reduction of MB.

  7. Synthesis ZrO2-Montmorillonite and Application as Catalyst in Catalytic Cracking of Heavy Fraction of Crude Oil

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2010-10-01

    Full Text Available Research on synthesis and characterization of ZrO2-Montmorillonit and its application as catalyst in heavy fraction of crude oil (HFCO conversion has been investigated. Synthesis of catalyst was done by pillarization of ZrO2 into silicate interlayer of montmorillonite structure. The success in synthesis is shown by XRD and BET surface area measurement in that basal spacing d001 was increase after pillarization. Activity test of material was showed that ZrO2 dispersion affected catalytic activity in liquid production and the activity was increased asn increasing temperature in the range of 473K-673K. Composition of liquid product indicated that ZrO2-Montmorillonit tend to produce kerosene related to metal oxide distribution in synthesis. © 2008 BCREC UNDIP. All rights reserved.[Received: 3 June 2008, Accepted: 15 July 2008][How to Cite: I. Fatimah, K. Wijaya, K. H. Setyawan. (2008. Synthesis ZrO2-Montmorillonite and Application as Catalyst in Catalytic Cracking of Heavy Fraction of Crude Oil. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 9-13.  doi:10.9767/bcrec.3.1-3.7118.9-13][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7118.9-13 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7118

  8. Synthesis ZrO2-Montmorillonite and Application as Catalyst in Catalytic Cracking of Heavy Fraction of Crude Oil

    Directory of Open Access Journals (Sweden)

    Khoirul Himmi Setyawan

    2008-04-01

    Full Text Available Research on synthesis and characterization of ZrO2-Montmorillonit and its application as catalyst in heavyfraction of crude oil (HFCO conversion has been investigated. Synthesis of catalyst was done by pillarizationof ZrO2 into silicate interlayer of montmorillonite structure. The success in synthesis is shown by XRDand BET surface area measurement in that basal spacing d001 was increase after pillarization. Activitytest of material was showed that ZrO2 dispersion affected catalytic activity in liquid production and the activitywas increased asn increasing temperature in the range of 473K-673K. Composition of liquid productindicated that ZrO2-Montmorillonit tend to produce kerosene related to metal oxide distribution in synthesis. © 2008 BCREC UNDIP. All rights reserved.[Received: 3 June 2008, Accepted: 15 July 2008][How to Cite: I. Fatimah, K. Wijaya, K. H. Setyawan. (2008. Synthesis ZrO2-Montmorillonite and Application as Catalyst in Catalytic Cracking of Heavy Fraction of Crude Oil. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 9-13. doi:10.9767/bcrec.3.1-3.17.9-13

  9. External field-assisted solution synthesis and selectively catalytic properties of amorphous iron nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jianguo; Yan, Gongqin; Wang, Wei; Liu, Jun

    2012-03-07

    This work describes an easy and flexible approach for the synthesis of 2D nanostructures by external composite field-induced self-assembly. Amorphous iron nanoplatelets with a large aspect ratio were prepared by reducing a concentrated FeSO4 solution with NaBH4 without any templates or surfactants under a magnetic field and a shear field, and characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Based on the morphological dependence of the resultant iron nanostructures on the kinetic parameters such as reactant concentration, reaction temperature, external fields as well as reaction time, etc., a novel conceivable formation mechanism of the iron nanoplatelets was substantiated to be a self-assembly of concentrated iron nuclei induced by the synergistic effect of both a magnetic field and a shear field. Due to the amorphous nature and shape anisotropy, the as-synthesized iron nanoplatelets exhibit quite different magnetic properties with an enhanced coercivity of >220 Oe from isotropic iron nanoparticles. In the oxidation of cyclohexane with hydrogen peroxide as a 'green' oxidant, the as-obtained amorphous iron nanoplatelets show a conversion more than 84% and a complete selectivity for cyclohexanol and cyclohexanone due to the unique structure. Moreover, their catalytic performances are strongly influenced by their morphology, and the iron atoms located on the faces tend to catalyze the formation of cyclohexanol while those on the sides tend to catalyze the formation of cyclohexanone. The external composite field-induced solution synthesis reported here can be readily explored for fabricating other 2D magnetic nanoplatelets, and the resulting iron nanoplatelets are promising for a number of applications such as high efficient selective catalysis, energy, environment fields and so forth.

  10. Optimization on electrochemical synthesis of HKUST-1 as candidate catalytic material for Green diesel production

    Science.gov (United States)

    Lestari, W. W.; Nugraha, R. E.; Winarni, I. D.; Adreane, M.; Rahmawati, F.

    2016-04-01

    In the effort to support the discovery of new renewable energy sources in Indonesia, biofuel is one of promising options. The conversion of vegetable oil into ready-biofuel, especially green diesel, needs several steps, one of which is a hydrogenation or hydro-deoxygenation reaction. In this case, the catalyst plays a very important role regarding to its activity and selectivity, and Metal-Organic Frameworks (MOFs) becoming a new generation of heterogeneous catalyst in this area. In this research, a preliminary study to optimize electrochemical synthesis of the catalytic material based on MOFs, namely HKUST-1 [Cu3(BTC)2], has been conducted. Some electrochemical reaction parameters were tested, for example by modifying the electrochemical synthetic conditions, i.e. by performing variation of voltages (12, 13, 14, and 15 Volt), temperatures (RT, 40, 60, and 80 °C) and solvents (ethanol, water, methanol and dimethyl-formamide (DMF)). Material characterization was carried out by XRD, SEM, FTIR, DTA/TG and SAA. The results showed that the optimum synthetic conditions of HKUST-1 are performed at room temperature in a solvent combination of water: ethanol (1: 1) and a voltage of 15 Volt for 2 hours. The XRD-analysis revealed that the resulted peaks are identical to the simulated powder pattern generated from single crystal data and comparable to the peaks of solvothermal method. However, the porosity of the resulting material through electrochemical method is still in the range of micro-pore according to IUPAC and 50% smaller than the porosity resulted from solvothermal synthesis. The corresponding compounds are thermally stable until 300 °C according to TG/DTA.

  11. Nicotinamide adenine dinucleotide assisted shape-controlled synthesis of catalytically active raspberry-like gold nanostructures

    International Nuclear Information System (INIS)

    Das, Ashok Kumar; Layek, Rama K.; Kim, Nam Hoon; Samdani, Jitendra; Kang, Myung Chul; Lee, Joong Hee

    2015-01-01

    Graphical abstract: A facile method was developed for the synthesis of raspberry-like Au nanostructure and it was used as an electrocatalyst for the oxidation of methanol and reduction of oxygen. - Highlights: • Raspberry-like gold nanostructures have been synthesized. • Nicotinamide adenine dinucleotide plays an important role in the synthesis. • Raspberry-like Au nanostructure has an excellent electrocatalytic activity in methanol oxidation and oxygen reduction. - Abstract: We describe the shape-controlled growth of raspberry-like gold (Au) nanostructures and their application in the electrochemical oxidation of methanol and reduction of oxygen. Nicotinamide adenine dinucleotide (NAD + ) plays a vital role in the growth of raspberry-like Au nanostructures. The preferential adsorption of NAD + onto the (011) facets of Au favors the growth of raspberry-like morphology. In the absence of NAD + , icosahedral Au nanostructures were obtained. The raspberry-like Au nanostructures have been characterized by UV-visible spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and electrochemical measurements. The FESEM image shows that the raspberry-like morphology has an average size of 170 nm. The spectral profile shows a broad band between 650 and 795 nm. Compared to Au nanoseeds and icosahedral Au nanostructures that were grown in the absence of NAD + , the raspberry-like morphology has excellent catalytic activity towards the electrochemical oxidation of methanol and reduction of oxygen. On the raspberry-like nanoparticle-based electrode, the oxidation of methanol was observed at 0.35 V in alkaline pH, and the reduction of oxygen was observed at -0.06 and -0.4 V in 0.1 M PBS. The electrochemical reduction of oxygen occurs in two steps: (i) reduction of oxygen to H 2 O 2 and (ii) further reduction of electrogenerated H 2 O 2 to water. The electrochemical performance of the raspberry-like nanostructure-based electrode is highly

  12. Synthesis of (-)-Δ9-trans-Tetrahydrocannabinol - Stereocontrol via Mo-catalyzed Asymmetric Allylic Alkylation Reaction

    Science.gov (United States)

    Trost, Barry M.; Dogra, Kalindi

    2008-01-01

    Δ9-THC is synthesized in enantiomericaly pure form, where all of the stereochemistry is derived from the molybdenum catalyzed asymmetric alkylation reaction of the extremely sterically congested bis-ortho substituted cinnamyl carbonate in high regio- and enantioselectivity. PMID:17266321

  13. Recent approaches towards the asymmetric synthesis of α,α-disubstituted α-amino acids

    DEFF Research Database (Denmark)

    Vogt, Henning; Brase, S.

    2007-01-01

    The class of alpha,alpha-disubstituted alpha-amino acids has gained considerable attention in the past decades and continues doing so. The ongoing interest in biological and chemical properties of the substance class has inspired the development of many new methodologies for their asymmetric...

  14. α-Ketophosphonates as ester surrogates: isothiourea-catalyzed asymmetric diester and lactone synthesis.

    Science.gov (United States)

    Smith, Siobhan R; Leckie, Stuart M; Holmes, Reuben; Douglas, James; Fallan, Charlene; Shapland, Peter; Pryde, David; Slawin, Alexandra M Z; Smith, Andrew D

    2014-05-02

    Isothiourea HBTM-2.1 catalyzes the asymmetric Michael addition/lactonization of aryl- and alkenylacetic acids using α-keto-β,γ-unsaturated phosphonates as α,β-unsaturated ester surrogates, giving access to a diverse range of stereodefined lactones or enantioenriched functionalized diesters upon ring-opening.

  15. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials

    Science.gov (United States)

    Jin, Lei

    2011-12-01

    This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third

  16. Immobilized Cu (II)—Amino Acid Complexes as Prospective Highly Efficient Catalytic Materials: Synthesis, Structural Characterization and Catalytic Activities

    Science.gov (United States)

    Pálinkó, István; Ordasi, Adrien; Kiss, János T.; Labádi, Imre

    2008-11-01

    In this work the covalent anchoring of N-or C-protected Cu(II)—L-tyrosine complexes onto a swellable resin or surface-modified silica gel is described. Experimental conditions (solvents, the availability of ligands) of the synthesis were varied; the structures (by IR spectroscopy) and the superoxide dismutase activities of the anchored complexes were studied.

  17. Green synthesis of Silver and Gold Nanoparticles for Enhanced catalytic and bactericidal activity

    Science.gov (United States)

    Naraginti, S.; Tiwari, N.; Sivakumar, A.

    2017-11-01

    A rapid one step green synthetic method using kiwi fruit extract was employed for preparation of silver and gold nanoparticles. The synthesized nanoparticles were successfully used as green catalysts for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB). They also exhibited excellent antimicrobial activity against clinically isolated Pseudomonas aeruginosa (P.aeruginosa) and Staphylococcus aureus (S.aureus). It was noticed that with increase in concentration of the aqueous silver and gold solutions, particle size of the Ag and Au NPS showed increase as evidenced from UV-Visible spectroscopy and TEM micrograph. The method employed for the synthesis required only a few minutes for more than 90% formation of nanoparticles when the temperature was raised to 80°C. It was also noticed that the catalytic activity of nanoparticles depends upon the size of the particles. These nanoparticles were observed to be crystalline from the clear lattice fringes in the transmission electron microscopic (TEM) images, bright circular spots in the selected area electron diffraction (SAED) pattern and peaks in the X-ray diffraction (XRD) pattern. The Fourier-transform infrared (FTIR) spectrum indicated the presence of different functional groups in the biomolecule capping the nanoparticles.

  18. Rapid biological synthesis of silver nanoparticles using Leucas martinicensis leaf extract for catalytic and antibacterial activity.

    Science.gov (United States)

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-10-01

    A novel green approach for the synthesis and stabilization of silver nanoparticles (AgNPs) using water extract of Leucas martinicensis leaf has been developed. As obtained, the nanoparticles are characterized by UV-visible (UV-Vis), transmission electron microscope (TEM), and X-ray diffraction (XRD). The crystalline nature of the AgNPs is confirmed by the prominent peaks in the XRD pattern. FTIR spectra suggest that the possible biomolecules are responsible for the efficient stabilization of the sample. The effects of leaf quantity on the biosynthesis of AgNPs are investigated by UV-Vis spectrophotometer. The synthesized AgNPs are observed to have a good catalytic activity on the reduction of methylene blue by L. martinicensis leaf. This is confirmed by the decrease in absorbance maximum values of methylene blue with respect to time through UV-Vis spectrophotometer. Moreover, the antibacterial activity of synthesized AgNPs against Staphylococcus aureus, Bacillus subtilis, Salmonella typhi, and Escherichia coli are screened.

  19. Biomimetic synthesis of silver nanoparticles and evaluation of their catalytic activity towards degradation of methyl orange

    Science.gov (United States)

    Manjari Mishra, Pravat; Bihari Pani, Khirod

    2017-11-01

    This paper described the significant effect of process variables like reductant concentrations, substrate concentration, reaction pH and reaction temperature on the size, morphology and yield of the silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of a medicinal plant Momordica charantia (Bitter guard). By means of UV-vis spectroscopy, XRD analysis, TEM analysis and Fluorescence analysis, it is observed that the reaction solution containing 10-3 M of AgNO3 of pH 5.3  +  10 ml of aqueous leaf extract at normal room temperature, was optimum for synthesis of stable, polydisperse, predominantly spherical AgNPs with average size of 12.15 nm. FT-IR and TEM studies confirmed the stability of AgNPs was due to the capping of phytoconstituents present in the leaf extract. The aqueous solution of leaf extract containing AgNPs showed remarkable catalytic activity towards degradation of methyl orange (MO) in aqueous medium.

  20. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    Science.gov (United States)

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  1. Development of a concise, asymmetric synthesis of a smoothened receptor (SMO) inhibitor: enzymatic transamination of a 4-piperidinone with dynamic kinetic resolution.

    Science.gov (United States)

    Peng, Zhihui; Wong, John W; Hansen, Eric C; Puchlopek-Dermenci, Angela L A; Clarke, Hugh J

    2014-02-07

    A concise, asymmetric synthesis of a smoothened receptor inhibitor (1) is described. The synthesis features an enzymatic transamination with concurrent dynamic kinetic resolution (DKR) of a 4-piperidone (4) to establish the two stereogenic centers required in a single step. This efficient reaction affords the desired anti amine (3) in >10:1 dr and >99% ee. The title compound is prepared in only five steps with 40% overall yield.

  2. Asymmetric synthesis of the HMG-CoA reductase inhibitor atorvastatin calcium: an organocatalytic anhydride desymmetrization and cyanide-free side chain elongation approach.

    Science.gov (United States)

    Chen, Xiaofei; Xiong, Fangjun; Chen, Wenxue; He, Qiuqin; Chen, Fener

    2014-03-21

    An efficient asymmetric synthesis of atorvastatin calcium has been achieved from commercially available diethyl 3-hydroxyglutarate through a novel approach that involves an organocatalytic enantioselective cyclic anhydride desymmetrization to establish C(3) stereogenicity and cyanide-free assembly of C7 amino type side chain via C5+C2 strategy as the key transformations.

  3. Catalytic asymmetric alkylation of acylsilanes

    NARCIS (Netherlands)

    Rong, Jiawei; Oost, Rik; Desmarchelier, Alaric; Minnaard, Adriaan J; Harutyunyan, Syuzanna R

    2015-01-01

    The highly enantioselective addition of Grignard reagents to acylsilanes is catalyzed by copper diphosphine complexes. This transformation affords -silylated tertiary alcohols in up to 97% yield and 98:2 enantiomeric ratio. The competing Meerwein-Ponndorf-Verley reduction is suppressed by the use of

  4. Designed synthesis of nanoporous organic polymers for selective gas uptake and catalytic applications

    Science.gov (United States)

    Arab, Pezhman

    Design and synthesis of porous organic polymers have attracted considerable attentions during the past decade due to their wide range of applications in gas storage, gas separation, energy conversion, and catalysis. Porous organic polymers can be pre-synthetically and post-synthetically functionalized with a wide variety of functionalities for desirable applications. Along these pursuits, we introduced new synthetic strategies for preparation of porous organic polymers for selective CO2 capture and catalytic applications. Porous azo-linked polymers (ALPs) were synthesized by an oxidative reaction of amine-based monomers using copper(I) as a catalyst which leads to azo-linkage formation. ALPs exhibit high surface areas of up to 1200 m2 g-1 and have high chemical and thermal stabilities. The nitrogen atoms of the azo group can act as Lewis bases and the carbon atom of CO2 can act as a Lewis acid. Therefore, ALPs show high CO2 uptake capacities due to this Lewis acid-based interaction. The potential applications of ALPs for selective CO2 capture from flue gas, natural gas, and landfill gas under pressure-swing and vacuum swing separation settings were studied. Due to their high CO2 uptake capacity, selectivity, and regenerability, ALPs are among the best porous organic frameworks for selective CO2 capture. In our second project, a new bis(imino)pyridine-linked porous polymer (BIPLP-1) was synthesized and post-synthetically functionalized with Cu(BF4)2 for highly selective CO2 capture. BIPLP-1 was synthesized via a condensation reaction between 2,6-pyridinedicarboxaldehyde and 1,3,5-tris(4-aminophenyl)benzene, wherein the bis(imino)pyridine linkages are formed in-situ during polymerization. The functionalization of the polymer with Cu(BF4)2 was achieved by treatment of the polymer with a solution of Cu(BF4)2 via complexation of copper cations with bis(imino)pyridine moieties of the polymer. BF4- ions can act Lewis base and CO2 can act as a Lewis acid; and therefore

  5. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure

    2014-01-13

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  6. alpha-Ketophosphonates as ester surrogates : isothiourea-catalyzed asymmetric diester and lactone synthesis

    OpenAIRE

    Smith, Siobhan R.; Leckie, Stuart M.; Holmes, Reuben; Douglas, James; Fallan, Charlene; Shapland, Peter; Pryde, David; Slawin, Alexandra M. Z.; Smith, Andrew D.

    2014-01-01

    This work is in part supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC Grant Agreement No. 279850 Isothiourea HBTM-2.1 catalyzes the asymmetric Michael addition/lactonization of aryl- and alkenylacetic acids using α-keto-β,γ-unsaturated phosphonates as α,β-unsaturated ester surrogates, giving access to a diverse range of stereodefined lactones or enantioenriched functionalized diesters upon ring-opening. Postprint Pe...

  7. Asymmetric synthesis of a functionalized tricyclo[6.2.0.0 ]decane ring ...

    Indian Academy of Sciences (India)

    Synthesis of a functionalized tricyclo[6.2.0.02,6]decane derivative in enantiomerically pure form, the core structure present in the natural ... The formidable task associated with the synthesis of kelsoene lies in the construction of the .... ice cold ammonia solution (10 mL, 35%) in a separa- tory funnel. After thoroughly shaking ...

  8. Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant ofStreptomyces griseoruberwith special reference to catalytic activity.

    Science.gov (United States)

    Ranjitha, V R; Rai, V Ravishankar

    2017-10-01

    Biogenic synthesis of nanoparticles has received a tremendous attention from the past few decades. The significant progress in the field of nanotechnology has resulted in a cost-effective and eco-friendly process for nanoparticle synthesis. In the present study, the extracellular synthesis of gold nanoparticles was carried out using culture supernatant of Streptomyces griseoruber , actinomycetes isolated from the soil. Bioreduction of gold nanoparticles was confirmed by UV-visible spectrophotometer that showed the peak between 520 and 550 nm. The crystalline nature and mean size of the GNPs were confirmed using XRD. FTIR revealed the possible functional group that could be useful in immobilisation and stabilisation of GNPs. Size and distribution of the biosynthesized GNPs were analysed by HR-TEM that showed the formation of GNPs in the range of 5-50 nm. The synthesised GNPs showed good catalytic activity for the degradation of methylene blue. The study shows the rapid and eco-friendly synthesis of GNPs from Streptomyces griseoruber , and this is the first report on the catalytic activity of GNPs from actinomycetes so far.

  9. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow.

    Science.gov (United States)

    Willrodt, Christian; Halan, Babu; Karthaus, Lisa; Rehdorf, Jessica; Julsing, Mattijs K; Buehler, Katja; Schmid, Andreas

    2017-02-01

    The efficiency of biocatalytic reactions involving industrially interesting reactants is often constrained by toxification of the applied biocatalyst. Here, we evaluated the combination of biologically and technologically inspired strategies to overcome toxicity-related issues during the multistep oxyfunctionalization of (R)-(+)-limonene to (R)-(+)-perillic acid. Pseudomonas putida GS1 catalyzing selective limonene oxidation via the p-cymene degradation pathway and recombinant Pseudomonas taiwanensis VLB120 were evaluated for continuous perillic acid production. A tubular segmented-flow biofilm reactor was used in order to relieve oxygen limitations and to enable membrane mediated substrate supply as well as efficient in situ product removal. Both P. putida GS1 and P. taiwanensis VLB120 developed a catalytic biofilm in this system. The productivity of wild-type P. putida GS1 encoding the enzymes for limonene bioconversion was highly dependent on the carbon source and reached 34 g L tube -1  day -1 when glycerol was supplied. More than 10-fold lower productivities were reached irrespective of the applied carbon source when the recombinant P. taiwanensis VLB120 harboring p-cymene monooxygenase and p-cumic alcohol dehydrogenase was used as biocatalyst. The technical applicability for preparative perillic acid synthesis in the applied system was verified by purification of perillic acid from the outlet stream using an anion exchanger resin. This concept enabled the multistep production of perillic acid and which might be transferred to other reactions involving volatile reactants and toxic end-products. Biotechnol. Bioeng. 2017;114: 281-290. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Chiral phosphites as ligands in asymmetric metal complex catalysis and synthesis of coordination compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, Konstantin N [Department of Chemistry, S.A. Esenin Ryazan State Pedagogical University, Ryazan (Russian Federation); Bondarev, Oleg G; Polosukhin, Aleksei I [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation)

    2004-07-31

    The data published during the last five years on the application of chiral derivatives of phosphorous acid in coordination chemistry and enantioselective catalysis are summarised and discussed. The effect of the nature of these ligands on the structure of metal complexes and on the efficiency of catalytic organic syntheses is shown. Hydroformylation, hydrogenation, allylic substitution and conjugate addition catalysed by transition metal complexes with optically active phosphites and hydrophosphoranes are considered. The prospects for the development of this field of research are demonstrated.

  11. A General Asymmetric Formal Synthesis of Aza-Baylis-Hillman Type Products under Bifunctional Catalysis.

    Science.gov (United States)

    Frías, María; Carrasco, Ana Cristina; Fraile, Alberto; Alemán, José

    2018-03-02

    A new organocatalytic strategy for the synthesis of enantioenriched aza-Baylis-Hillman type products via a frustrated vinylogous reaction is presented. This process proceeds under mild conditions with good yields, completed Z/E selectivity and excellent enantioselectivities. Moreover, easy derivatizations of the final products led to important building blocks of organic synthesis such as 1,3-aminoalcohols and Lewis base catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Asymmetric Synthesis of Amino-Bis-Pyrazolone Derivatives via an Organocatalytic Mannich Reaction.

    Science.gov (United States)

    Chauhan, Pankaj; Mahajan, Suruchi; Kaya, Uğur; Peuronen, Anssi; Rissanen, Kari; Enders, Dieter

    2017-07-07

    A new series of N-Boc ketimines derived from pyrazolin-5-ones have been used as electrophiles in asymmetric Mannich reactions with pyrazolones. The amino-bis-pyrazolone products are obtained in excellent yields and stereoselectivities by employing a very low loading of 1 mol % of a bifunctional squaramide organocatalyst. Depending on the substitution at position 4 of the pyrazolones, the new protocol allows for the generation of one or two tetrasubstituted stereocenters, including a one-pot version combing the Mannich reaction with a base-mediated halogenation.

  13. Asymmetric synthesis of chiral heterocyclic amino acids via the alkylation of the Ni(II) complex of glycine and alkyl halides.

    Science.gov (United States)

    Chen, Hui; Wang, Jiang; Zhou, Shengbin; Liu, Hong

    2014-09-05

    An investigation into the reactivity profile of alkyl halides has led to the development of a new method for the asymmetric synthesis of chiral heterocyclic amino acids. This protocol involves the asymmetric alkylation of the Ni(II) complex of glycine to form an intermediate, which then decomposes to form a series of valuable chiral amino acids in high yields and with excellent diastereoselectivity. The chiral amino acids underwent a smooth intramolecular cyclization process to afford the valuable chiral heterocyclic amino acids in high yields and enantioselectivities. This result paves the way for the development of a new synthetic method for chiral heterocyclic amino acids.

  14. New Organocatalytic Asymmetric Synthesis of Highly Substituted Chiral 2-Oxospiro-[indole-3,4′- (1′,4′-dihydropyridine] Derivatives

    Directory of Open Access Journals (Sweden)

    Fernando Auria-Luna

    2015-08-01

    Full Text Available Herein, we report our preliminary results concerning the first promising asymmetric synthesis of highly functionalized 2-oxospiro-[indole-3,4′-(1′,4′-dihydropyridine] via the reaction of an enamine with isatylidene malononitrile derivatives in the presence of a chiral base organocatalyst. The moderate, but promising, enantioselectivity observed (30%–58% ee (enantiomeric excess opens the door to a new area of research for the asymmetric construction of these appealing spirooxindole skeletons, whose enantioselective syntheses are still very limited.

  15. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry

    Science.gov (United States)

    Fortea-Pérez, Francisco R.; Mon, Marta; Ferrando-Soria, Jesús; Boronat, Mercedes; Leyva-Pérez, Antonio; Corma, Avelino; Herrera, Juan Manuel; Osadchii, Dmitrii; Gascon, Jorge; Armentano, Donatella; Pardo, Emilio

    2017-07-01

    The development of catalysts able to assist industrially important chemical processes is a topic of high importance. In view of the catalytic capabilities of small metal clusters, research efforts are being focused on the synthesis of novel catalysts bearing such active sites. Here we report a heterogeneous catalyst consisting of Pd4 clusters with mixed-valence 0/+1 oxidation states, stabilized and homogeneously organized within the walls of a metal-organic framework (MOF). The resulting solid catalyst outperforms state-of-the-art metal catalysts in carbene-mediated reactions of diazoacetates, with high yields (>90%) and turnover numbers (up to 100,000). In addition, the MOF-supported Pd4 clusters retain their catalytic activity in repeated batch and flow reactions (>20 cycles). Our findings demonstrate how this synthetic approach may now instruct the future design of heterogeneous catalysts with advantageous reaction capabilities for other important processes.

  16. Effect of pretreatment temperature on catalytic performance of the catalysts derived from cobalt carbonyl cluster in Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Byambasuren O

    2017-02-01

    Full Text Available The monometallic cobalt-based catalysts were prepared by pretreating the catalysts derived from carbonyl cluster precursor (CO6Co2CC(COOH2 supported on γ-Al2O3 with hydrogen at 180, 220, and 260°C respectively. The temperature effect of the pretreatments on the structure evolution of cluster precursors and the catalytic performance of the Fischer-Tropsch (F-T synthesis was investigated. The pretreated catalyst at 220°C with unique phase structure exhibited best catalytic activity and selectivity among three pretreated catalysts. Moreover, the catalysts exhibited high dispersion due to the formation of hydrogen bonds between the cluster precursor and γ-Al2O3 support.

  17. Large-scale synthesis of palladium concave nanocubes with high-index facets for sustainable enhanced catalytic performance.

    Science.gov (United States)

    Xie, Xiaobin; Gao, Guanhui; Pan, Zhengyin; Wang, Tingjun; Meng, Xiaoqing; Cai, Lintao

    2015-02-17

    The catalytic activity of palladium (Pd) nanostructures highly relies on their size and morphology, especially enclosed with high-index facets, which provide more active sites so as to enhance their catalytic performance comparing with their low-index facet counterparts. Herein, Pd concave nanocubes enclosed with {730} facets by a one-pot scalable liquid method, with various high-index facets are synthesized via tuning reduction kinetics. Due to their high-index facets, the Pd concave nanocubes exhibit much higher electrocatalytic activity and stability for methanol oxidation than the Pd nanocubes enclosed by {100} facets and commercial Pd/C. Furthermore, we scale up synthesis of Pd concave nanocubes by expanding the volume of all species to fifty times with high-yield production.

  18. Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Ay, Burak [Department of Chemistry, Arts and Science Faculty,Çukurova University, 01330 Adana (Turkey); Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr [Department of Chemistry, Arts and Science Faculty,Çukurova University, 01330 Adana (Turkey); Felts, Ashley C.; Abboud, Khalil A. [Department of Chemistry, University of Florida, Gainesville, FL 32611 (United States)

    2016-12-15

    A novel metal-organic framework, (H{sub 2}pip){sub n}[Sm{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (1) (H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) has been synthesized under hydrothermal conditions and characterized by the elemental analysis, inductively coupled plasma (ICP) spectrometer, fourier transform infrared (FT-IR) spectra, thermogravimetric analysis (TGA), single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). The structure of 1 was determined to be three-dimensional, linked along Sm-O-Sm chains. The asymmetric unit consisted of one singly anionic fragment consisting of Sm(III) coordinated to two H{sub 2}pydc ligands and one water, and one half of a protonated H{sub 2}pip, which sits on an inversion center. 1 exhibited luminescence emission bands at 534 nm at room temperature when excited at 440 nm. Its thermal behavior and catalytic performance were investigated and the selectivity was measured as 100% for the oxidation of thymol to thymoquinone. - Graphical abstract: A novel 3D lanthanide-organic framework has been synthesized under hydrothermal conditions. The thermal behavior and catalytic performance of 1 were investigated and its selectivity was measured as 100% for the oxidation of thymol to thymoquinone.

  19. Highly Atom Economic Synthesis of d?2?Aminobutyric Acid through an In?Vitro Tri?enzymatic Catalytic System

    OpenAIRE

    Chen, Xi; Cui, Yunfeng; Cheng, Xinkuan; Feng, Jinhui; Wu, Qiaqing; Zhu, Dunming

    2017-01-01

    Abstract d?2?Aminobutyric acid is an unnatural amino acid serving as an important intermediate in pharmaceutical production. Developing a synthetic method that uses cheaper starting materials and produces less by?product is a pressing demand. A tri?enzymatic catalytic system, which is composed of l?threonine ammonia lyase (l?TAL), d?amino acid dehydrogenase (d?AADH), and formate dehydrogenase (FDH), has thus been developed for the synthesis of d?2?aminobutyric acid with high optical purity. I...

  20. Chemoenzymatic synthesis of chiral 2,2'-bipyridine ligands and their N-oxide derivatives: applications in the asymmetric aminolysis of epoxides and asymmetric allylation of aldehydes.

    Science.gov (United States)

    Boyd, D R; Sharma, N D; Sbircea, L; Murphy, D; Malone, J F; James, S L; Allen, C C R; Hamilton, J T G

    2010-03-07

    A series of enantiopure 2,2'-bipyridines have been synthesised from the corresponding cis-dihydrodiol metabolites of 2-chloroquinolines. Several of the resulting hydroxylated 2,2'-bipyridines were found to be useful chiral ligands for the asymmetric aminolysis of meso-epoxides leading to the formation of enantioenriched amino alcohols (-->84% ee). N-oxide and N,N'-dioxide derivatives of these 2,2'-bipyridines, including separable atropisomers, have been synthesised and used as enantioselective organocatalysts in the asymmetric allylation of aldehydes to give allylic alcohols (-->86% ee).

  1. Synthesis and characterization of polystyrene coated iron oxide nanoparticles and asymmetric assemblies by phase inversion

    KAUST Repository

    Xie, Yihui

    2014-09-02

    Films with a gradient concentration of magnetic iron oxide nanoparticles are reported, based on a phase inversion membrane process. Nanoparticles with ∼13 nm diameter were prepared by coprecipitation in aqueous solution and stabilized by oleic acid. They were further functionalized by ATRP leading to grafted polystyrene brush. The final nanoparticles of 33 nm diameter were characterized by TGA, FTIR spectroscopy, GPC, transmission electron microscopy, and dynanmic light scattering. Asymmetric porous nanoparticle assemblies were then prepared by solution casting and immersion in water. The nanocomposite film production with functionalized nanoparticles is fast and technically scalable. The morphologies of films were characterized by scanning electron microscopy and atomic force microscopy, demonstrating the presence of sponge-like structures and finger-like cavities when 50 and 13 wt % casting solutions were, respectively, used. The magnetic properties were evaluated using vibrating sample magnetometer.

  2. Asymmetric synthesis of batrachotoxin: Enantiomeric toxins show functional divergence against NaV.

    Science.gov (United States)

    Logan, Matthew M; Toma, Tatsuya; Thomas-Tran, Rhiannon; Du Bois, J

    2016-11-18

    The steroidal neurotoxin (-)-batrachotoxin functions as a potent agonist of voltage-gated sodium ion channels (Na V s). Here we report concise asymmetric syntheses of the natural (-) and non-natural (+) antipodes of batrachotoxin, as well both enantiomers of a C-20 benzoate-modified derivative. Electrophysiological characterization of these molecules against Na V subtypes establishes the non-natural toxin enantiomer as a reversible antagonist of channel function, markedly different in activity from (-)-batrachotoxin. Protein mutagenesis experiments implicate a shared binding side for the enantiomers in the inner pore cavity of Na V These findings motivate and enable subsequent studies aimed at revealing how small molecules that target the channel inner pore modulate Na V dynamics. Copyright © 2016, American Association for the Advancement of Science.

  3. Concise methods for the synthesis of chiral polyoxazolines and their application in asymmetric hydrosilylation

    Directory of Open Access Journals (Sweden)

    Wei Jie Li

    2010-03-01

    Full Text Available Seven polyoxazoline ligands were synthesized in high yield in a one-pot reaction by heating polycarboxylic acids or their esters and chiral β-amino alcohols under reflux with concomitant removal of water or the alcohol produced in the reaction. The method is much simpler and more efficient in comparison to those methods reported in the literature.The compounds were used as chiral ligands in the rhodium-catalyzed asymmetric hydrosilylation of aromatic ketones, and the effects of the linkers and the substituents present on the oxazoline rings on the yield and enantioselectivity investigated. Compound 2 was identified as the best ligand of this family for the hydrosilylation of aromatic ketones.

  4. Asymmetric total synthesis of 6-Tuliposide B and its biological activities against tulip pathogenic fungi.

    Science.gov (United States)

    Shigetomi, Kengo; Omoto, Shoko; Kato, Yasuo; Ubukata, Makoto

    2011-01-01

    The structure-activity relationship was investigated to evaluate the antifungal activities of tuliposides and tulipalins against tulip pathogenic fungi. 6-Tuliposide B was effectively synthesized via the asymmetric Baylis-Hillman reaction. Tuliposides and tulipalins showed antifungal activities against most of the strains tested at high concentrations (2.5 mM), while Botrytis tulipae was resistant to tuliposides. Tulipalin formation was involved in the antifungal activity, tulipalin A showed higher inhibitory activity than 6-tuliposide B and tulipalin B. Both the tuliposides and tulipalins showed pigment-inducing activity against Gibberella zeae and inhibitory activity against Fusarium oxysporum f. sp tulipae. These activities were induced at a much lower concentration (0.05 mM) than the antifungal MIC values.

  5. Asymmetric synthesis of a functionalized tricyclo [6.2. 0.0 2, 6 ...

    Indian Academy of Sciences (India)

    Synthesis of a functionalized tricyclo[6.2.0.02,6]decane derivative in enantiomerically pure form, the core structure present in the natural products kelsoene and poduran, is described. The key steps involve a stereocontrolled copper (I)-catalyzed intramolecular [2+2] photocycloaddition of a 1, 6-diene prepared from ...

  6. Asymmetric Synthesis of (S)-2-Indolinecarboxylic Acid by Combining Biocatalysis and Homogeneous Catalysis

    NARCIS (Netherlands)

    Lange, Ben de; Hyett, David J.; Maas, Peter J.D.; Mink, Daniel; Assema, Friso B.J. van; Sereinig, Natascha; Vries, André H.M. de; Vries, Johannes G. de

    2011-01-01

    (S)-2-Indolinecarboxylic acid, an intermediate for ACE inhibitors, was until recently produced by Fischer indole synthesis and classical resolution in seven steps. However, Perkin condensation to form ortho-chlorocinnamic acid, which is converted to (S)-ortho-chlorophenylalanine using the enzyme

  7. Synthesis and biological evaluation of asymmetric gramicidin S analogues containing modified d-phenylalanine residues

    NARCIS (Netherlands)

    Knaap, M. van der; Engels, E.; Busscher, H.J.; Otero, J.M.; Llamas-Saiz, A.L.; Raaij, M.J. van; Mars-Groenendijk, R.H.; Noort, D.; Marel, G.A. van der; Overkleeft, H.S.; Overhand, M.

    2009-01-01

    The synthesis of new analogues of the cationic antimicrobial peptide gramicidin S, having a modified d-phenylalanine residue, their antibacterial properties against several Gram positive and negative strains, as well as their hemolytic activity is reported. © 2009 Elsevier Ltd. All rights reserved.

  8. Asymmetric synthesis of trans-disubstituted cyclopropanes using phosphine oxides and phosphine boranes

    DEFF Research Database (Denmark)

    Clarke, Celia; Foussat, Stéphanie; Fox, David J

    2009-01-01

    The stereocontrolled synthesis of trans-disubstituted cyclopropylketones has been achieved from beta-alkyl, gamma-benzoyl phosphine oxides via a three-step cascade reaction incorporating an acyl transfer, phosphinoyl transfer and cyclisation to form the cyclopropane. Using Evans' chiral oxazolidi...

  9. Aziridine- and Azetidine-Pd Catalytic Combinations. Synthesis and Evaluation of the Ligand Ring Size Impact on Suzuki-Miyaura Reaction Issues

    Directory of Open Access Journals (Sweden)

    Hamza Boufroura

    2017-01-01

    Full Text Available The synthesis of new vicinal diamines based on aziridine and azetidine cores as well as the comparison of their catalytic activities as ligand in the Suzuki-Miyaura coupling reaction are described in this communication. The synthesis of three- and four-membered ring heterocycles substituted by a methylamine pendant arm is detailed from the parent nitrile derivatives. Complexation to palladium under various conditions has been examined affording vicinal diamines or amine-imidate complexes. The efficiency of four new catalytic systems is compared in the preparation of variously substituted biaryls. Aziridine- and azetidine-based catalytic systems allowed Suzuki-Miyaura reactions from aryl halides including chlorides with catalytic loadings until 0.001% at temperatures ranging from 100 °C to r.t. The evolution of the Pd-metallacycle ring strain moving from azetidine to aziridine in combination with a methylamine or an imidate pendant arm impacted the Suzuki-Miyaura reaction issue.

  10. Synthesis of non-racemic α-hydroxyphosphonates via asymmetric phospho-aldol reaction.

    Science.gov (United States)

    Spilling, Christopher D; Malla, Raj K

    2015-01-01

    It has been more than 50 years since the first phospho-aldol reactions of dialkyl phosphites were reported. These efficient P-C bond-forming reactions have become the cornerstone of methods for the synthesis of α-hydroxyphosphonates and, by numerous available substitution reactions, the synthesis of other α- and γ-substituted phosphonates and phosphonic acids. Much of the interest in α- and γ-substituted phosphonates and phosphonic acids has been stimulated by reports of their biological activity, which is often dependent upon their absolute and relative stereochemistry. In this chapter, we review diastereoselective and enantioselective additions of dialkyl phosphites to aldehydes and ketones, otherwise called the phospho-aldol, Pudovik or Abramov reactions.

  11. Asymmetric fluorocyclizations of alkenes.

    Science.gov (United States)

    Wolstenhulme, Jamie R; Gouverneur, Véronique

    2014-12-16

    .g., TRIP and derivatives) brings into solution the resulting chiral Selectfluor reagent, now capable of asymmetric fluorocyclization. This strategy is best applied to a subset of substrates bearing a nucleophilic pendent group (benzamide is best) capable of hydrogen bonding for association with the chiral phosphate catalyst. These contributions focused on fluoroheterocyclization involving either O- or N-nucleophiles. As for other halocyclizations, alkenes armed with π C-nucleophiles represent the most demanding class of substrates for asymmetric F(+)-induced electrophilic fluorination-cyclization. Successful implementation required the design of new chiral Selectfluor reagents featuring stereogenicity on the DABCO core. These reagents, accessible from chiral vicinal diamines, allowed the synthesis of unusual chiral fluorine-containing tetracyclic compounds, some composed of carbon, hydrogen, and fluorine exclusively. The challenges associated with F(+)-induced fluorocarbocyclizations prompted methodologists to consider chemistry where the Csp(3)-F bond formation event follows a catalyst-controlled cyclization. An exciting development built on in the area of transition metal π-cyclization of polyenes leading to cationic metal-alkyl intermediates. When intercepted by oxidative fluorodemetalation with a F(+) source, the resulting products are complex polycyclic structures emerging from an overall catalytic cascade fluorocarbocyclization. Complementing F(+)-based reactions, examples of fluorocyclizations with fluoride in the presence of an oxidant were reported. Despite some exciting developments, the field of asymmetric fluorocyclizations is in its infancy and undoubtedly requires new activation modes, catalysts, as well as F(+) and F(-) reagents to progress into general retrosynthetic approach toward enantioenriched fluorocycles. Numerous opportunities emerge, not least the use of a latent fluorine source as a means to minimize background fluorination.

  12. Palladium-catalyzed intramolecular asymmetric C-H functionalization/cyclization reaction of metallocenes: an efficient approach toward the synthesis of planar chiral metallocene compounds.

    Science.gov (United States)

    Deng, Ruixian; Huang, Yunze; Ma, Xinna; Li, Gencheng; Zhu, Rui; Wang, Bin; Kang, Yan-Biao; Gu, Zhenhua

    2014-03-26

    A palladium-catalyzed asymmetric synthesis of planar chiral metallocene compounds is reported. The reaction stereoselectively functionalized one of the ortho C-H bonds of Cp rings by intramolecular cyclization to form indenone derivatives in high yields with excellent enantioselectivity. The mild set of reaction conditions allowed a wide variety of chiral metallocene compounds to be synthesized with broad functional group tolerance. The influences of preinstalled chiralities on the other Cp-ring were also investigated.

  13. Asymmetric Synthesis of γ-Lactones through Koga Amine-Controlled Addition of Enediolates to α,β-Unsaturated Sulfoxonium Salts.

    Science.gov (United States)

    Peraino, Nicholas J; Kaster, Sven H; Wheeler, Kraig A; Kerrigan, Nessan J

    2017-01-06

    A chiral Koga amine-controlled asymmetric synthesis of cis-γ-lactones through a formal [3 + 2] cycloaddition of enediolates with α,β-unsaturated sulfoxonium salts is described. The desired structural motif was formed in moderate to good yields (50-71% for 13 examples), with good to very good diastereoselectivity (dr 5:1 to 10:1 for 20 examples), favoring the cis-isomer, and good to excellent enantioselectivity (70-91% ee for 13 examples).

  14. Possibilities of synthesis of unknown isotopes of superheavy nuclei with charge numbers Z > 108 in asymmetric actinide-based complete fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Juhee [Institute for Basic Science, Rare Isotope Science Project, Daejeon (Korea, Republic of); Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic University, Mathematical Physics Department, Tomsk (Russian Federation)

    2016-10-15

    The possibilities of production of new isotopes of superheavy nuclei with charge numbers Z = 109-114 in various asymmetric hot fusion reactions are studied for the first time. The excitation functions of the formation of these isotopes in the xn evaporation channels are predicted and the optimal conditions for the synthesis are proposed. The products of the suggested reactions can fill a gap of unknown isotopes between the isotopes of the heaviest nuclei obtained in cold and hot complete fusion reactions. (orig.)

  15. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  16. Synthesis, characterization and theoretical study of a new asymmetrical tripodal amine containing morpholine moiety

    Directory of Open Access Journals (Sweden)

    Majid Rezaeivala

    2016-11-01

    Full Text Available A new asymmetrical tripodal amine, [H3L2]Br3 containing morpholine moiety was prepared from reacting of one equivalent of N-(3-aminopropylmorpholine and two equivalents of tosylaziridine, followed by detosylation with HBr/CH3COOH. The products were characterized by various spectroscopic methods such as FAB-MS, elemental analysis, 1H and 13C NMR spectroscopy. The crystal structure of the hydrobromide salt of the latter amine, [H3L2]Br3, was also determined. For triprotonated form of the ligand L2 we can consider several microspecies and/or conformers. A theoretical study at B3LYP/6-31G∗∗ level of theory showed that the characterized microspecies is the most stable microspecies for the triprotonated form of the ligand. It was shown that the experimental NMR data for [H3L2]Br3 in solution have good correlation with the corresponding calculated data for the most stable microspecies of [H3L2]3+ in the gas phase.

  17. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors

    KAUST Repository

    Liang, Hanfeng

    2017-04-06

    We report a versatile route for the preparation of metal phosphides using PH plasma for supercapacitor applications. The high reactivity of plasma allows rapid and low temperature conversion of hydroxides into monometallic, bimetallic, or even more complex nanostructured phosphides. These same phosphides are much more difficult to synthesize by conventional methods. Further, we present a general strategy for significantly enhancing the electrochemical performance of monometallic phosphides by substituting extrinsic metal atoms. Using NiCoP as a demonstration, we show that the Co substitution into NiP not only effectively alters the electronic structure and improves the intrinsic reactivity and electrical conductivity, but also stabilizes Ni species when used as supercapacitor electrode materials. As a result, the NiCoP nanosheet electrodes achieve high electrochemical activity and good stability in 1 M KOH electrolyte. More importantly, our assembled NiCoP nanoplates//graphene films asymmetric supercapacitor devices can deliver a high energy density of 32.9 Wh kg at a power density of 1301 W kg, along with outstanding cycling performance (83% capacity retention after 5000 cycles at 20 A g). This activity outperforms most of the NiCo-based materials and renders the NiCoP nanoplates a promising candidate for capacitive storage devices.

  18. Asymmetric synthesis of trans-4,5-disubstituted γ-butyrolactones involving a key allylboration step. First access to (-)-nicotlactone B and (-)-galbacin.

    Science.gov (United States)

    Henrion, S; Macé, A; Vallejos, M M; Roisnel, T; Carboni, B; Villalgordo, J M; Carreaux, F

    2018-03-07

    An efficient asymmetric synthesis of trans-4,5-disubstituted γ-butyrolactones from aldehydes and enantioenriched γ-carbamate alkenylboronates is reported. The cornerstone of this strategy is the implementation of sequential [3,3]-allyl cyanate rearrangement/allylboration/nucleophilic addition/cyclisation reactions. Diverse γ-butyrolactones such as the flavouring compounds, (+)-trans-whiskey lactone and (+)-trans-cognac lactone, as well as an advanced intermediate towards the first synthesis of natural products, (-)-nicotlactone B and (-)-galbacin, have thus been obtained.

  19. Synthesis of silyloxy dienes by silylene transfer to divinyl ketones: application to the asymmetric synthesis of substituted cyclohexanes.

    Science.gov (United States)

    Ventocilla, Christian C; Woerpel, K A

    2012-04-06

    Silver-catalyzed silylene transfer to divinyl ketones provided 2-silyloxy-1,3-dienes with control of stereochemistry and regioselectivity. The products participated in Diels-Alder reactions with electron-deficient alkenes and imines to form six-membered-ring products diastereoselectively. Cycloaddition reactions with alkenes bearing chiral auxiliaries provided access to chiral, nonracemic cyclohexenes. The methodology, therefore, represents a synthesis of diastereomerically and enantiomerically pure products in a single flask. The highly substituted cyclohexene products could be functionalized stereoselectively to provide cyclohexanols after oxidation of the carbon-silicon bond.

  20. Asymmetric synthesis of quaternary aryl amino acid derivatives via a three-component aryne coupling reaction

    Directory of Open Access Journals (Sweden)

    Elizabeth P. Jones

    2011-11-01

    Full Text Available A method was developed for the synthesis of α-alkyl, α-aryl-bislactim ethers in good to excellent yields and high diastereoselectivities, consisting of a facile one-pot procedure in which the aryl group is introduced by means of a nucleophilic addition to benzyne and the alkyl group by alkylation of a resultant benzylic anion. Hydrolysis of the sterically less hindered adducts gave the corresponding quaternary amino acids with no racemization, whereas hydrolytic ring opening gave the corresponding valine dipeptides from bulkier bislactims.

  1. Trienamine catalyzed asymmetric synthesis and biological investigation of a cytochalasin B-inspired compound collection.

    Science.gov (United States)

    Sellstedt, Magnus; Schwalfenberg, Melanie; Ziegler, Slava; Antonchick, Andrey P; Waldmann, Herbert

    2016-01-07

    Due to their enhanced metabolic needs many cancers need a sufficient supply of glucose, and novel inhibitors of glucose import are in high demand. Cytochalasin B (CB) is a potent natural glucose import inhibitor which also impairs the actin cytoskeleton leading to undesired toxicity. With a view to identifying selective glucose import inhibitors we have developed an enantioselective trienamine catalyzed synthesis of a CB-inspired compound collection. Biological analysis revealed that indeed actin impairment can be distinguished from glucose import inhibition and led to the identification of the first selective glucose import inhibitor based on the basic structural architecture of cytochalasin B.

  2. Concise and Straightforward Asymmetric Synthesis of a Cyclic Natural Hydroxy-Amino Acid

    Directory of Open Access Journals (Sweden)

    Mario J. Simirgiotis

    2014-11-01

    Full Text Available An enantioselective total synthesis of the natural amino acid (2S,4R,5R-4,5-di-hydroxy-pipecolic acid starting from D-glucoheptono-1, 4-lactone is presented. The best sequence employed as a key step the intramolecular nucleophilic displacement by an amino function of a 6-O-p-toluene-sulphonyl derivative of a methyl D-arabino-hexonate and involved only 12 steps with an overall yield of 19%. The structures of the compounds synthesized were elucidated on the basis of comprehensive spectroscopic (NMR and MS and computational analysis.

  3. Catalytic Asymmetric Synthesis of 3-Indolyl Methanamines Using Unprotected Indoles and N-Boc Imines under Basic Conditions.

    Science.gov (United States)

    Arai, Takayoshi; Kakino, Junki

    2016-12-05

    A chiral imidazolidine-containing NCN/Pd-OTf catalyst (C4) promoted the nucleophilic addition of unprotected indoles to N-Boc imines. Using sulfinyl amines as the N-Boc imine precursors, the combined use of C4 with K 2 CO 3 activated the NH indoles to give chiral 3-indolyl methanamines with up to 98 % ee. Compared with conventional acid-catalyzed Friedel-Crafts reactions, this reaction proceeds under mildly basic conditions and is advantageous for the use of acid-sensitive substrates. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Catalytic asymmetric Meerwein-Ponndorf-Verley reduction of glyoxylates induced by a chiral N,N'-dioxide/Y(OTf)3complex.

    Science.gov (United States)

    Wu, Wangbin; Zou, Sijia; Lin, Lili; Ji, Jie; Zhang, Yuheng; Ma, Baiwei; Liu, Xiaohua; Feng, Xiaoming

    2017-03-18

    An asymmetric Meerwein-Ponndorf-Verley (MPV) reduction of glyoxylates was for the first time accomplished via an N,N'-dioxide/Y(OTf) 3 complex with aluminium alkoxide and molecular sieves (MSs) as crucial additives. A variety of optically active α-hydroxyesters were obtained with excellent results. A possible reaction mechanism was proposed based on the experiments.

  5. Synthesis and characterization of Co(III) amidoamine complexes: influence of substituents of the ligand on catalytic cyclic carbonate synthesis from epoxide and carbon dioxide.

    Science.gov (United States)

    Ramidi, Punnamchandar; Gerasimchuk, Nikolay; Gartia, Yashraj; Felton, Charlette M; Ghosh, Anindya

    2013-09-28

    A series of amidoamine ligands (1) and their cobalt(III) complexes (2) were synthesized and characterized by various spectroscopic techniques including (1)H-NMR and X-ray crystallographic techniques. X-ray crystallography shows that one of the complexes, 2a, forms a chiral coordination polymer due to bridge formation with Li(+) associated with the complex, although the ligand is achiral. Complex 2 was employed for catalytic synthesis of cyclic carbonates from epoxides and carbon dioxide (CO2) in a solvent free condition. A strong influence of the substituents on the ligand 1 was revealed by the varied activity of complex 2. The presence of electron withdrawing groups such as chloro (2b) and nitro (2c) increases the Lewis acidity of the catalyst, which, in turn, enhances the catalytic activity of 2. An electron withdrawing group containing complexes (2b and 2c) showed exceptionally high catalytic activity with a turnover frequency (TOF) of 662 and 602 h(-1) respectively at 130 °C and 300 psig CO2 pressure. On the other hand, our studies indicate that a catalyst with an electron releasing group (2d) showed relatively lower activity with a TOF of 488 h(-1) under similar reaction conditions. Our results show that cobalt(iii) complexes follow the reactivity order of 2d < 2a < 2c < 2b.

  6. Novel synthesis and shape-dependent catalytic performance of Cu-Mn oxides for CO oxidation

    Science.gov (United States)

    Li, Zhixun; Wang, Honglei; Wu, Xingxing; Ye, Qinglan; Xu, Xuetang; Li, Bin; Wang, Fan

    2017-05-01

    Transition metal oxides with large specific surface area are attractive for high-activity catalysts, and hierarchical structures of transition metal oxides with porous feature possess the structural advantage in the transfer of gaseous reactant and product. In this work, porous Cu-Mn oxides with high surface area were successfully obtained through low-temperature coprecipitation method in alcohol/water solvent and then post-annealing. The addition of alcohol showed great influences on the shape and catalytic performances for CO oxidation. Dumbbell-like Cu-Mn oxide particles with splitting ends displayed high catalytic activity and a complete conversion of CO was achieved at 45 °C, suggesting a shape-dependent catalytic activity. The oxidative activity was attributed to a combination of factors including specific surface area, active surface oxygen species and Mn(IV) cations. The results may supply a new thought to design high-performance Cu-Mn oxide catalysts.

  7. Synthesis gas production via catalytic partial oxidation reforming of liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Cheekatamarla, P.K.; Finnerty, C.M. [NanoDynamics Energy Inc., 901 Fuhrmann Boulevard, Buffalo, NY 14203 (United States)

    2008-10-15

    This work deals with the performance of waterless catalytic partial oxidation (CPOX)-based catalytic reformer system fed by different liquid fuels including ethanol, isooctane, hexadecane, synthetic JP8, kerosene and diesel for solid oxide fuel cell applications. The effect of different fuel components on product composition was studied and the operational parameters were optimized to provide a stable reforming performance. The system provided negligible pressure drop combined with the simpler system design due to the lack of water requirement making the POX reformer an attractive choice. (author)

  8. Synthesis and physical properties of asymmetrical quaterthiophene derivatives as organic thin-film transistor materials

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Baji; Noh, Young Ri; Choi, Ho June; Yoon, Soon Byung; Lee, Sang Gyeong [Research Institute of Natura l Science, Gyeongsang National University, Jinju (Korea, Republic of); Yun, Myoung Hee; Kim, Jin Young [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-04-15

    We report here, synthesis, physical, thermal, and optoelectronic properties of compounds containing anthracene, anthraquinone, and 11,11,12,12-tetracyano-9,10-anthraquinodimethane units connected to quaterthiophene units. Three compounds, TQAO (6), TQAN (7), and TQAM (8) are synthesized by using Stille coupling, reduction, and Knoevenagel condensation reactions. These compounds were thermally stable and exhibited organic thin-film transistor (OTFT) properties. Among them, TQAM (8)-based OTFT has shown ambipolar mobility, both hole and electron mobility of 2.0 × 10{sup −6} and 2.43 × 10{sup −7} cm{sup 2}/Vs, respectively. TQAO (6) and TQAN (7) has shown low electron mobility of 5.58 × 10{sup −6} and 1.22 × 10{sup −5} cm{sup 2}/Vs, respectively.

  9. Synthesis and bio-catalytic activity of isostructural cobalt(III ...

    Indian Academy of Sciences (India)

    which revealed that the cationic complex efficiently inhibits catalytic activity with kcat value 9.65×102 h−1. [1]+ cleaved pBR 322 DNA without .... 2.2 Physical measurements. Infrared spectra (KBr) were recorded .... Mean OD of untreated cells (control) - Mean OD of treated cells(treat) × 100. Mean absorbance of untreated ...

  10. Enantioselective Synthesis of a PKC Inhibitor via Catalytic C-HBond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Rebecca M.; Thalji, Reema K.; Bergman, Robert G.; Ellman,Jonathan A.

    2006-02-26

    The syntheses of two biologically active molecules possessing dihydropyrroloindole cores (1 and 2) were completed using rhodium-catalyzed imine-directed C-H bond functionalization, with the second of these molecules containing a stereocenter that can be set with 90% ee during cyclization using chiral nonracemic phosphoramidite ligands. Catalytic decarbonylation and direct indole/maleimide coupling provide efficient access to 2.

  11. Transition Metal-Free Catalytic Synthesis of 1,5-Diaryl-1,2,3-Triazoles

    Science.gov (United States)

    Kwok, Sen W.; Fotsing, Joseph R.; Fraser, Rebecca J.; Rodionov, Valentin O.; Fokin, Valery V.

    2010-01-01

    1,5-Diarylsubstituted 1,2,3-triazoles are formed in high yield from aryl azides and terminal alkynes in DMSO in the presence of catalytic tetraalkyl ammonium hydroxide. The reaction is experimentally simple, does not require a transition-metal catalyst, and is not sensitive to atmospheric oxygen and moisture. PMID:20825167

  12. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  13. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  14. Organocatalytic Asymmetric Mannich/Aza-Michael Cascade Reaction of δ-Formyl-α,β-unsaturated Ketones with Cyclic N-Sulfimines: Enantioselective Synthesis of Benzosulfamidate-Fused Pyrrolidines.

    Science.gov (United States)

    Kim, Hanna; Kim, Yerin; Kim, Sung-Gon

    2017-08-04

    A catalytic highly enantioselective Mannich/aza-Michael cascade reaction of δ-formyl-α,β-unsaturated ketones with cyclic N-sulfimines, promoted by diphenylprolinol TMS ether as an organocatalyst, has been developed for the synthesis of chiral benzosulfamidate-fused pyrrolidines, which generated in good yields and with high diastero- and enantioselectivities. Further chemical transformations have been performed with chiral benzosulfamidate-fused pyrrolidines.

  15. Asymmetric chemoenzymatic synthesis of miconazole and econazole enantiomers. The importance of chirality in their biological evaluation.

    Science.gov (United States)

    Mangas-Sánchez, Juan; Busto, Eduardo; Gotor-Fernández, Vicente; Malpartida, Francisco; Gotor, Vicente

    2011-04-01

    A simple and novel chemoenzymatic route has been applied for the first time in the synthesis of miconazole and econazole single enantiomers. Lipases and oxidoreductases have been tested in stereoselective processes; the best results were attained with oxidoreductases for the introduction of chirality in an adequate intermediate. The behaviors of a series of ketones and racemic alcohols in bioreductions and acetylation procedures, respectively, have been investigated; the best results were found with alcohol dehydrogenases A and T, which allowed the production of (R)-2-chloro-1-(2,4-dichlorophenyl)ethanol in enantiopure form under very mild reaction conditions. Final chemical modifications have been performed in order to isolate the target fungicides miconazole and econazole both as racemates and as single enantiomers. Biological evaluation of the racemates and single enantiomers has shown remarkable differences against the growth of several microorganisms; while (R)-miconazole seemed to account for most of the biological activity of racemic miconazole on all the strains tested, both enantiomers of econazole showed considerable biological activities. In this manner, (R)-econazole showed higher values against Candida krusei , while higher values were observed for (S)-econazole against Cryptococcus neoformans, Penicillium chrysogenum, and Aspergillus niger.

  16. Synthesis, characterization and catalytic activity of stable [(NHC)H][ZnXY2] (NHC=N-Heterocyclic carbene, X, Y=Cl, Br) species

    KAUST Repository

    Santoro, Orlando

    2016-06-04

    The synthesis and characterization of imidazol(in)ium-based zinc(II) halide salts are reported. These compounds present interesting structural features and exhibit high stability. Their catalytic activity was explored in the methylation of amines with CO2 and PhSiH3.

  17. Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor

    KAUST Repository

    Chen, Tao

    2016-05-31

    In this study, we report the direct synthesis of amides and ureas via the catalytic dehydrogenation of volatile alcohols and amines using the Milstein catalyst in a Pd-Ag/ceramic membrane reactor. A series of amides and ureas, which could not be synthesized in an open system by catalytic dehydrogenation coupling, were obtained in moderate to high yields via catalytic dehydrogenation of volatile alcohols and amines. This process could be monitored by the hydrogen produced. Compared to the traditional method of condensation, this catalytic system avoids the stoichiometric pre-activation or in situ activation of reagents, and is a much cleaner process with high atom economy. This methodology, only possible by employing the Pd-Ag/ceramic membrane reactor, not only provides a new environmentally benign synthetic approach of amides and ureas, but is also a potential method for hydrogen storage.

  18. Cyanogel-derived N-doped C nanosheets immobilizing Pd-P nanoparticles: One-pot synthesis and enhanced hydrogenation catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao; Yan, Xiaohong; Huang, Yundi; Zhang, Mengru; Tang, Yawen; Sun, Dongmei; Xu, Lin, E-mail: njuxulin@gmail.com; Wei, Shaohua, E-mail: weishaohua@njnu.edu.cn

    2017-02-28

    Highlights: • Cyanogel-bridged approach was developed for the synthesis of Pd-P@N-Cnanosheets. • Pd-P@N-C nanosheets exhibit high activity and stability for reduction of 4-NP. • Compositional and structural advantages account for the high catalytic activity. • The feasible synthesis could be extendable to other carbon-based nanohybrids. - Abstract: For Pd-based nanocatalysts, stabilization of Pd nanoparticles on carbon support could not only effectively avoid particle aggregation and maintain catalytic stability during catalytic processes, but also facilitate enhancing the catalytic activity due to the synergy between Pd nanoparticles and carbon support. Furthermore, the incorporation of non-metal of phosphorus (P) into Pd could effectively modulate the electronic structure of Pd and thus help to boost the catalytic properties. However, one-pot synthesis of such nanohybrids remains a great challenge due to the distinct physiochemical properties of Pd, P and C components. Herein, we demonstrate a one-pot and scalable synthesis of highly dispersed PdP alloy nanoparticle-immobilized on N-doped graphitic carbon nanosheets (abbreviated as Pd-P@N-C nanosheets) by using inorganic-organic hybrid cyanogel as a reaction precursor. In virtue of both compositional and structural advantages, the as-synthesized Pd-P@N-C nanosheets manifest a superior catalytic activity and stability toward the hydrogenation of 4-nitrophenol (4-NP). We believe that the present work will provide a feasible and versatile strategy for the development of efficient catalysts for environmental remediation and can also be extendable to other carbon-based nanohybrids with desirable functionalities.

  19. Metallogel templated synthesis and stabilization of silver-particles and its application in catalytic reduction of nitro-arene.

    Science.gov (United States)

    Sharma, Mukesh; Sarma, Plaban Jyoti; Goswami, Manash Jyoti; Bania, Kusum K

    2017-03-15

    Metallogel of iron-carboxylates was obtained from trans-1,2-cyclohexanedicarboxylic acid in dimethylformamide (DMF) at basic condition. Spectroscopic and SEM morphology study of the iron-metallogel revealed that the iron complex with dicarboxylic acid was linked together via carboxylates and led to a supramolecular helical like architecture. The synthesized metallogel served as an excellent template for in-situ reduction of silver ion to silver particles micro to nano scale range. Variation of AgNO 3 concentration shepherd to change the morphology of the Ag-particles. AgNO 3 concentration was found to affect the shape and size of silver particles. On going from lower to higher concentration shape of silver particles changed from spherical to large agglomerated particles. Cubic shape Ag-particles were found on treatment of 0.05M AgNO 3 solution with metallogel. Cubical shape silver particles were found to be effective catalyst for nitro-arene reduction in presence of NaBH 4 . Density functional theory (DFT) calculations were performed to rationalize the role of Ag-particles in catalytic reduction of 4-nitrophenol to 4-aminophenol. Based on DFT study, we proposed that catalytic reduction occurred via Ag-hydride complex formation. Since metallogels as well as the 4-aminophenol are finding large application in pharmaceuticals industries therefore the current work can provide an alternatives path in production of 4-aminophenols. In addition to this, the synthesis of Ag-nanomaterials using metallogel as template can pave a new direction in the development of nanotechnology and might find wide applications in catalytic industrial processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities.

    Science.gov (United States)

    Aboelfetoh, Eman F; El-Shenody, Rania A; Ghobara, Mohamed M

    2017-07-01

    Stable colloidal silver nanoparticles (AgNPs) were synthesized using Caulerpa serrulata (green marine algae) aqueous extract as an efficient reducing and stabilizing agent. This method is considered to be a sustainable alternate to the more complicated chemical procedures. To achieve the optimization synthesis of AgNPs, several effects such as extract concentration, contact time, pH values, and temperature were examined. The synthesized AgNPs were characterized by UV-Vis spectroscopy, FT-IR, XRD, and HR-TEM. The synthesized AgNPs showed an intense surface plasmon resonance band at 412 nm at the optimal conditions (20% (v/v) extract and 95 °C). TEM reveal that higher extract concentration and higher temperature leading to the formation of spherical AgNPs with an average particle size of 10 ± 2 nm. The synthesized AgNPs showed excellent catalytic reduction activity of Congo red (CR) dye from aqueous solutions. The degradation percentage of CR with AgNPs accelerated by increasing either NaBH 4 concentration or catalytic dosage. The AgNPs synthesized at higher temperature (e.g., 10Ag-95) exhibited the highest catalytic activity. The reaction kinetics was found to be pseudo first order with respect to the dye concentration. Moreover, the AgNPs displayed antibacterial activity at lower concentration against Staphylococcus aureus, Pseudomonas aeruginosa, Shigella sp., Salmonella typhi, and Escherichia coli and may be a good alternative therapeutic approach. The outcomes of the current study confirmed that the synthesized AgNPs had an awesome guarantee for application in catalysis and wastewater treatment.

  1. Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis

    DEFF Research Database (Denmark)

    Dahl, Søren; Logadottir, Ashildur; Jacobsen, C.J.H.

    2001-01-01

    to calculate how these two factors affect the energies of the intermediates and transition states in the ammonia synthesis reaction. We show that a linear relationship exists between the activation energy for N-2 dissociation and the binding energy of adsorbed nitrogen. The ammonia synthesis activity under...... promoted transition metals. We conclude that promotion is most effective for the best non-promoted catalysts and that promotion will always be essential for obtaining an optimal ammonia synthesis catalyst. Analysis of the micro-kinetic model show that the best catalysts are those with the lowest apparent...

  2. Synthesis and catalytic performance of ZSM-5/MCM-41 composite molecular sieve from palygorskite

    Science.gov (United States)

    Jiang, Jinlong; Wu, Mei; Yang, Yong; Duanmu, Chuansong; Chen, Jing; Gu, Xu

    2017-10-01

    ZSM-5/MCM-41 composite molecular sieve has been hydrothermally synthesized through a two-step crystallization process using palygorskite (PAL) as silicon and aluminum source. The products were characterized by various means and their catalytic properties for acetalization of cyclohexanone and esterification of acetic acid and n-butanol were also investigated. In the first step ZSM-5 zeolite could be formed from the acid-treated PAL after hydrothermal treatment using tetrapropylammonium bromide as template. XRD patterns, N2 adsorption and desorption data, and TEM images show that the composite obtained in the secondary step had a well-ordered mesoporous MCM-41 phase and a microporous ZSM-5 zeolite phase. Compared with ZSM-5, ZSM-5/MCM-41 composite possessed more total acid amount, weak acid sites and large pore structure due to the formation of MCM-41 and exhibited higher catalytic activity for the acetalization and esterification reaction.

  3. Catalytic Chemical Vapor Deposition Synthesis of Carbon Aerogels of High-Surface Area and Porosity

    Directory of Open Access Journals (Sweden)

    Armando Peña

    2012-01-01

    Full Text Available In this work carbon aerogels were synthesized by catalytic chemical vapor deposition method (CCVD. Ferrocene were employed as a source both of catalytic material (Fe and of carbon. Gaseous hydrogen and argon were used as reductant and carrier gas, respectively. The products of reaction were collected over alumina. The morphology and textural properties of the soot produced in the reaction chamber were investigated using Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, X-ray photoelectron spectroscopy, and N2 physisorption (BET and BHJ methods. After the evaluation of the porous structure of the synthesized products, 780 ± 20 m2/g of SBET and 0.55 ± 0.02 cm3/g of VBJH were found. The presence of iron carbide and the partial oxidation of carbon nanostructures were revealed by XPS.

  4. Electrochemical synthesis of Mo{sub 2}C catalytical coatings for the water-gas shift reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, S.A.; Dubrovskiy, A.R. [Inst. of Chemistry, Kola Science Centre RAS, Apatity, Murmansk Region (Russian Federation); Rebrov, E.V.; Schouten, J.C. [Lab. of Chemical Reactor Engineering, Eindhoven Univ. of Tech., Eindhoven (Netherlands)

    2007-10-15

    The electroreduction of CO{sub 3}{sup 2-} ions on a molybdenum cathode in a NaCl-KCl-Li{sub 2}CO{sub 3} melt was studied by cyclic voltammetry. The electrochemical synthesis of Mo{sub 2}C on molybdenum substrates has been performed at 1123 K for 7 h with a cathodic current density of 5 mA cm{sup -2}. If molybdenum carbide is present as a thin (ca. 500 nm) film on a molybdenum substrate (Mo{sub 2}C/Mo), its catalytic activity in the water gas-shift reaction is enhanced by at least an order of magnitude compared to that of the bulk Mo{sub 2}C phase. (orig.)

  5. Abroma augusta Linn bark extract-mediated green synthesis of gold nanoparticles and its application in catalytic reduction

    Science.gov (United States)

    Das, Subhajit; Bag, Braja Gopal; Basu, Ranadhir

    2015-10-01

    The bark extract of Abroma augusta Linn is rich in medicinally important phytochemicals including antioxidants and polyphenols. First one step green synthesis of gold nanoparticles (AuNPs) has been described utilizing the bark extract of Abroma augusta L. and chloroauric acid under very mild reaction conditions. The phytochemicals present in the bark extract acted both as a reducing as well as a stabilizing agent, and no additional stabilizing and capping agents were needed. Detailed characterizations of the stabilized AuNPs were carried out by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles has been demonstrated for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol, and the kinetics of the reduction reaction have been studied spectrophotometrically.

  6. Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones.

    Science.gov (United States)

    Platon, Mélanie; Amardeil, Régine; Djakovitch, Laurent; Hierso, Jean-Cyrille

    2012-05-21

    A survey highlighting the most recent palladium catalytic systems produced and their performances for progress in direct synthesis of indole backbones by heterocarbocyclization of reactive substrates is provided. The discussion is developed in relation with the principles of sustainable chemistry concerning atom and mass economy. In this respect, the general convergent character of the syntheses is of particular interest (one-pot, domino, cascade or tandem reactions), and the substrates accessibility and reactivity, together with the final waste production, are also important. This critical review clearly indicates that the development of ligand chemistry, mainly phosphines and carbenes, in the last few decades gave a significant impetus to powerful functionalization of indoles at virtually all positions of this ubiquitous backbone (118 references).

  7. A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties

    International Nuclear Information System (INIS)

    Dong Yuming; He Kun; Yin Lin; Zhang Aimin

    2007-01-01

    Using ammonia and Co(CH 3 COO) 2 ·4H 2 O as starting materials, a facile and surfactant-free route to controlled synthesis of Co 3 O 4 nanoparticles was proposed. Co 3 O 4 nanoparticles with average sizes of 3.5, 6, 11, 19 and 70 nm were obtained through adjusting the ethanol amount in the solvent (the ratio of ethanol to water) or the concentration of raw materials. In this process, the presence of enough O 2 was crucial for the formation of pure Co 3 O 4 phase. The environmental catalytic properties of as-obtained Co 3 O 4 nanoparticles were investigated. The results indicated their remarkable catalysis for ozonation degradation of phenol, which denoted a promising application as catalyst in waste-water treatment

  8. Abroma augusta Linn bark extract-mediated green synthesis of gold nanoparticles and its application in catalytic reduction

    Science.gov (United States)

    Das, Subhajit; Bag, Braja Gopal; Basu, Ranadhir

    2014-11-01

    The bark extract of Abroma augusta Linn is rich in medicinally important phytochemicals including antioxidants and polyphenols. First one step green synthesis of gold nanoparticles (AuNPs) has been described utilizing the bark extract of Abroma augusta L. and chloroauric acid under very mild reaction conditions. The phytochemicals present in the bark extract acted both as a reducing as well as a stabilizing agent, and no additional stabilizing and capping agents were needed. Detailed characterizations of the stabilized AuNPs were carried out by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles has been demonstrated for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol, and the kinetics of the reduction reaction have been studied spectrophotometrically.

  9. Synthesis and characterization of branched fcc/hcp ruthenium nanostructures and their catalytic activity in ammonia borane hydrolysis

    KAUST Repository

    AlYami, Noktan

    2018-01-30

    Several systems have shown the ability to stabilize uncommon crystal structures during the synthesis of metallic nanoparticles. By tailoring the nanoparticle crystal structure, the physical and chemical properties of the particles can also be controlled. Herein, we first synthesized branched nanoparticles of mixed hcp/fcc ruthenium, which were formed using tungsten carbonyl [W(CO)6] as both a reducing agent and a source of carbon monoxide. The branched particles were formed from multiple particulates off a central core. High-resolution transmission electron microscopy (HRTEM) clearly showed that the branched structures consisted of aligned hcp crystal domains, a mixture of fcc and hcp crystal domains with several defects and misalignments, and particles that contained multiple cores and branches. Branched particles were also formed with molybdenum carbonyl [Mo(CO)6], and faceted particles of hcp and fcc particles were formed with Re2(CO)10 as a carbon monoxide source. Without metal carbonyls, small particles of spherical hcp ruthenium were produced, and their size could be controlled by the selection of the precursor. The ruthenium nanoparticles were tested for ammonia borane hydrolysis; the branched nanoparticles were more reactive for catalytic hydrogen evolution than the faceted hcp/fcc nanoparticles or the spherical hcp nanoparticles. This work showcases the potential of crystal phase engineering of transition metal nanoparticles by different carbon monoxide precursors for tailoring their catalytic reactivity.

  10. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis

    KAUST Repository

    Oar-Arteta, Lide

    2017-11-15

    High productivity towards C-2-C-4 olefins together with high catalyst stability are key for optimum operation in high temperature Fischer-Tropsch synthesis (HT-FTS). Here, we report the fabrication of Fe@C/Al composites that combine both the outstanding catalytic properties of the Fe-BTC MOF-derived Fe catalyst and the excellent mechanical resistance and textural properties provided by the inorganic AlOOH binder. The addition of AlOOH to Fe-BTC followed by pyrolysis in N-2 atmosphere at 500 degrees C results in composites with a large mesoporosity, a high Fe/Fe3O4 ratio, 10-35 nm average Fe crystallite size and coordinatively unsaturated Al3+ sites. In catalytic terms, the addition of AlOOH binder gives rise to enhanced C-2-C-4 selectivity and catalyst mechanical stability in HT-FTS, but at high Al contents the activity decreases. Altogether, the productivity of these Fe@C/Al composites is well above most known Fe catalysts for this process.

  11. Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis

    Science.gov (United States)

    Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief

    2017-03-01

    Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.

  12. Enantioselective synthesis of a PKC inhibitor via catalytic C-H bond activation.

    Science.gov (United States)

    Wilson, Rebecca M; Thalji, Reema K; Bergman, Robert G; Ellman, Jonathan A

    2006-04-13

    [reaction: see text] The syntheses of two biologically active molecules possessing dihydropyrroloindole cores (1 and 2) were completed using rhodium-catalyzed imine-directed C-H bond functionalization, with the second of these molecules containing a stereocenter that can be set with 90% ee during cyclization using chiral nonracemic phosphoramidite ligands. Catalytic decarbonylation and direct indole/maleimide coupling provide efficient access to 2.

  13. Synthesis and photo-catalytic property of TiO2 nanotube arrays/ZnS

    Science.gov (United States)

    Kong, Junhan; Liu, Zhe; Xiong, Yehan; Liu, Zhanhong; Wang, Yongqian

    2017-04-01

    TiO2 nanotube arrays/ZnS (TNAs/ZnS) nanocomposites were synthesized successfully via anodic oxidation method and hydrothermal method as well. In this study, field emission scanning electron microscopy equipped with energy-dispersive spectroscopy (EDS) was used to monitor the morphological features and elemental composition of the samples. UV-Vis absorption spectra showed the absorption performance in both UV and visible light regions. In addition, the photo-catalytic activity of the samples was measured by the photo-degradation rate of methylene blue. From the result, we could notice that the morphology of the samples would change gradually when the amounts of zinc source and sulfur source changed, and the hydrothermal temperature was one of the significant factors which influenced the morphology. EDS spectra showed the existence of zinc and sulfur elements. Photo-catalytic activity test indicated that the photo-degradation rate of MB rises up to 91.6% after 240 min. Furthermore, there existed an expected relationship between the photo-degradation rate and the amounts of zinc source and sulfur source. UV-Vis absorption spectra of the samples also verified the result of photo-catalytic activity test.

  14. Synthesis of Bio-aromatics from Black Liquors Using Catalytic Pyrolysis

    Science.gov (United States)

    2018-01-01

    Bio-aromatics (benzene, toluene, xylenes, BTX) were prepared by the catalytic pyrolysis of six different black liquors using both in situ and ex situ approaches. A wide range of catalysts was screened and conditions were optimized in microscale reactors. Up to 7 wt % of BTX, based on the organic fraction of the black liquors, was obtained for both the in situ and ex situ pyrolysis (T = 500–600 °C) using a Ga-modified H-ZSM-5 catalyst. The in situ catalytic pyrolysis of black liquors from hardwood paper mills afforded slightly higher yields of aromatics/BTX than softwood black liquors, a trend that could be confirmed by the results obtained in the ex situ catalytic pyrolysis. An almost full deoxygenation of the lignin and carbohydrate fraction was achieved and both organic fractions were converted to a broad range of (substituted) aromatics. The zeolite catalyst used was remarkably stable and even after 100 experiments in batch mode with intermittent oxidative catalyst regeneration, the yields and selectivity toward BTX remained similar. The ex situ pyrolysis of black liquor has potential for large-scale implementation in a paper mill without disturbing the paper production process. PMID:29607268

  15. A CATALYTIC METHOD FOR THE SYNTHESIS OF 4-ALKYL(ARYL ...

    African Journals Online (AJOL)

    Preferred Customer

    )-pyridinones and their 2-imino ... synthesis of milrinone analogues as a series of nonglycosidic, non-sympathomimetic, cardiotonic .... from dimethoxyacetophenone and ammonia adds to the aldol condensation product of the aldehyde and ...

  16. Cyanogel-derived N-doped C nanosheets immobilizing Pd-P nanoparticles: One-pot synthesis and enhanced hydrogenation catalytic performance

    Science.gov (United States)

    Zhang, Hao; Yan, Xiaohong; Huang, Yundi; Zhang, Mengru; Tang, Yawen; Sun, Dongmei; Xu, Lin; Wei, Shaohua

    2017-02-01

    For Pd-based nanocatalysts, stabilization of Pd nanoparticles on carbon support could not only effectively avoid particle aggregation and maintain catalytic stability during catalytic processes, but also facilitate enhancing the catalytic activity due to the synergy between Pd nanoparticles and carbon support. Furthermore, the incorporation of non-metal of phosphorus (P) into Pd could effectively modulate the electronic structure of Pd and thus help to boost the catalytic properties. However, one-pot synthesis of such nanohybrids remains a great challenge due to the distinct physiochemical properties of Pd, P and C components. Herein, we demonstrate a one-pot and scalable synthesis of highly dispersed PdP alloy nanoparticle-immobilized on N-doped graphitic carbon nanosheets (abbreviated as Pd-P@N-C nanosheets) by using inorganic-organic hybrid cyanogel as a reaction precursor. In virtue of both compositional and structural advantages, the as-synthesized Pd-P@N-C nanosheets manifest a superior catalytic activity and stability toward the hydrogenation of 4-nitrophenol (4-NP). We believe that the present work will provide a feasible and versatile strategy for the development of efficient catalysts for environmental remediation and can also be extendable to other carbon-based nanohybrids with desirable functionalities.

  17. Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation

    International Nuclear Information System (INIS)

    Hao, Ding; Xue-Zhao, Shi; Cheng-Min, Shen; Chao, Hui; Zhi-Chuan, Xu; Chen, Li; Yuan, Tian; Deng-Ke, Wang; Hong-Jun, Gao

    2010-01-01

    The single crystalline palladium nanocubes with an average size of 7 nm were prepared in the presence of poly (vinyl pyrrolidone) (PVP) and KBr using the polyol method. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The electrochemical catalytic activity of these Pd nanocubes towards methanol oxidation was found to be higher than that of spherical Pd nanoparticles of similar size. (condensed matter: structure, thermal and mechanical properties)

  18. Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation

    Science.gov (United States)

    Ding, Hao; Shi, Xue-Zhao; Shen, Cheng-Min; Hui, Chao; Xu, Zhi-Chuan; Li, Chen; Tian, Yuan; Wang, Deng-Ke; Gao, Hong-Jun

    2010-10-01

    The single crystalline palladium nanocubes with an average size of 7 nm were prepared in the presence of poly (vinyl pyrrolidone) (PVP) and KBr using the polyol method. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The electrochemical catalytic activity of these Pd nanocubes towards methanol oxidation was found to be higher than that of spherical Pd nanoparticles of similar size.

  19. Model-based design of low-temperature carbon nanotube synthesis via catalytic oxidation for supercapacitor application.

    Science.gov (United States)

    Vasenkov, A V; Carnahan, D L

    2010-12-01

    Novel electrochemical double layer capacitors with carbon nanotube (CNT) electrode, often referred to as supercapacitors, have a potential to bridge a power and energy gap between traditional dielectric capacitors and chemical batteries. However, their future is uncertain because current fabrication technologies involve difficult-to-control post-growth manipulations of CNTs. This paper addresses this problem by introducing model-based design of low-temperature CNT synthesis that is suitable for in-situ fabrication of CNT-based supercapacitor electrode. The insight to the surface kinetics during low-temperature CNT synthesis via catalytic oxidation was obtained via coupled Molecular Dynamics and Quantum Semiempirical Hamiltonian simulations. It was determined that the presence of oxygen on the surface of catalyst increases, by several times, the time necessary for the decomposition of hydrocarbons as well as shifts the reaction zone from the surface of catalyst to the catalyst underlayer. Theoretical trends were confirmed by CNT growth experiments. A contact between conducting CNTs and zinc oxide binding layer was analyzed in detail since its properties strongly affect the performance of CNT electrode. It was demonstrated that the formed CNT-zinc oxide interface was free from unbonded oxygen atoms and/or clusters of zinc atoms and was weakly affected by defects in CNTs.

  20. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  1. Asymmetric Synthesis of N-Boc-(R)-Silaproline via Rh-Catalyzed Intramolecular Hydrosilylation of Dehydroalanine and Continuous Flow N-Alkylation.

    Science.gov (United States)

    Chung, John Y L; Shevlin, Michael; Klapars, Artis; Journet, Michel

    2016-04-15

    An asymmetric synthesis of a silicon-containing proline surrogate, N-Boc-(R)-silaproline (1), is described. Starting from N-Boc-dehydroalanine ester, deprotonation, followed by N-alkylation with chloromethyldimethylsilane under flow conditions, afforded the N-alkylated product 8 in 91% yield. An unprecedented enantioselective (NBD)2RhBF4/Josiphos 404-1 catalyzed 5-endo-trig hydrosilylation afforded the silaproline ester in 85-90% yield and >95% ee. Subsequent saponification and salt formation upgraded 1 to >99% ee.

  2. Synthesis of carbon-supported copper catalyst and its catalytic performance in methanol dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Shelepova, Ekaterina V. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Vedyagin, Aleksey A., E-mail: vedyagin@catalysis.ru [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Ilina, Ludmila Yu.; Nizovskii, Alexander I. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); Tsyrulnikov, Pavel G. [Institute of Hydrocarbon Processing SB RAS, Neftezavodskaya st., 54, Omsk, 644040 (Russian Federation)

    2017-07-01

    Highlights: • Carbon-supported copper catalyst was studied in dehydrogenation of methanol. • Reduction temperature affected size of Cu particles and Cu{sup 0}/Cu{sup 2+} ratio. • Reduction at 400 °C was required to obtain high methyl formate yield. - Abstract: Carbon-supported copper catalyst was prepared by incipient wetness impregnation of Sibunit with an aqueous solution of copper nitrate. Copper loading was 5 wt.%. Temperature of reductive pretreatment was varied within a range of 200–400 °C. The samples were characterized by transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron and X-ray absorption spectroscopies. Catalytic activity of the samples was studied in a reaction of methanol dehydrogenation. Silica-based catalyst with similar copper loading was used as a reference. It was found that copper is distributed over the surface of support in the form of metallic and partially oxidized particles of about 12–17 nm in size. Diminished interaction of copper with support was supposed to be responsible for high catalytic activity.

  3. Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis

    Science.gov (United States)

    Nguyen, Thach T.; Koh, Ming Joo; Mann, Tyler J.; Schrock, Richard R.; Hoveyda, Amir H.

    2017-12-01

    Catalytic cross-metathesis is a central transformation in chemistry, yet corresponding methods for the stereoselective generation of acyclic trisubstituted alkenes in either the E or the Z isomeric forms are not known. The key problems are a lack of chemoselectivity—namely, the preponderance of side reactions involving only the less hindered starting alkene, resulting in homo-metathesis by-products—and the formation of short-lived methylidene complexes. By contrast, in catalytic cross-coupling, substrates are more distinct and homocoupling is less of a problem. Here we show that through cross-metathesis reactions involving E- or Z-trisubstituted alkenes, which are easily prepared from commercially available starting materials by cross-coupling reactions, many desirable and otherwise difficult-to-access linear E- or Z-trisubstituted alkenes can be synthesized efficiently and in exceptional stereoisomeric purity (up to 98 per cent E or 95 per cent Z). The utility of the strategy is demonstrated by the concise stereoselective syntheses of biologically active compounds, such as the antifungal indiacen B and the anti-inflammatory coibacin D.

  4. Synthesis and characterization of Cr-MSU-1 and its catalytic application for oxidation of styrene

    Science.gov (United States)

    Liu, Hong; Wang, Zhigang; Hu, Hongjiu; Liang, Yuguang; Wang, Mengyang

    2009-07-01

    Chromium-containing mesoporous silica material Cr-MSU-1 was synthesized using lauryl alcohol-polyoxyethylene (23) ether as templating agent under the neutral pH condition by two-step method. The sample was characterized by XRD, TEM, FT-IR, UV-Vis, ESR, ICP-AES and N 2 adsorption. Its catalytic performance for oxidation of styrene was studied. Effects of the solvent used, the styrene/H 2O 2 mole ratio and the reaction temperature and time on the oxidation of styrene over the Cr-MSU-1 catalyst were examined. The results indicate that Cr ions have been successfully incorporated into the framework of MSU-1 and the Cr-MSU-1 material has a uniform worm-like holes mesoporous structure. After Cr-MSU-1 is calcined, most of Cr 3+ is oxidized to Cr 5+ and Cr 6+ in tetrahedral coordination and no extra-framework Cr 2O 3 is formed. The Cr-MSU-1 catalyst is highly active for the selective oxidation of styrene and the main reaction products over Cr-MSU-1 are benzaldehyde and phenylacetaldehyde. Its catalytic performance remains stable within five repeated runs and no leaching is noticed for this chromium-based catalyst.

  5. Synthesis and utilization of catalytically cracked cashew nut shell liquid in a diesel engine

    KAUST Repository

    Vedharaj, S.

    2015-09-30

    In this study, CNSL (Cashew nut shell liquid), an economically viable feedstock among the other contemporary resources, has been considered as an appropriate source of alternate fuel. Herein, CNSL was extracted from cashew nut outer shell, a waste product, through a unique approach of steam treatment process followed by mechanical crushing technique. In contrast to the past studies that have attempted to use unprocessed CNSL directly as substitute for diesel, this study has resorted to use processed CNSL by cracking it using zeolite catalyst. Thus, both the extraction of CNSL from cashew nut outer shell and processing of it through catalytic cracking process to help synthesize CC-CNSL (catalytically cracked CNSL) are different, which underscores the significance of the current work. In wake of adopting such distinct methodologies with fuel characterization, the properties of CC-CNSL such as viscosity and calorific value were figured out to be improved. Subsequently, CC-CNSL20 (20% CC-CNSL and 80% diesel) was tested at different fuel injection pressure such as 200 bar, 235 bar, 270 bar and 300 bar so as to optimize its use in a single cylinder diesel engine. From the engine experimental study, CC-CNSL20 was found to evince better engine performance than diesel and the composite emissions of CO (carbon monoxide), HC (hydrocarbon), NOX (oxides of nitrogen) and smoke, computed based on ISO 8178 D2 standard test cycle, were found to be better than diesel and incompliance with the legislative norms for genset.

  6. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Velinov, N., E-mail: nikivelinov@ic.bas.bg; Petrova, T. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Tsoncheva, T.; Genova, I. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences (Bulgaria); Koleva, K. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Kovacheva, D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences (Bulgaria); Mitov, I. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria)

    2016-12-15

    Spinel ferrites with nominal composition Cu {sub 0.5}Mn {sub 0.5}Fe {sub 2}O{sub 4} and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe {sub 5}C{sub 2} were observed by the influence of the reaction medium.

  7. Fourier synthesis of asymmetrical optical potentials for atoms; Fourier-Synthese von asymmetrischen optischen Potentialen fuer Atome

    Energy Technology Data Exchange (ETDEWEB)

    Ritt, G.

    2007-07-13

    In this work a dissipationless asymmetrical optical potential for cold atoms was produced. In a first step a new type of optical lattice was generated, whose spatial periodicity only corresponds to a quarter of the wavelength of the light used for the generation. This corresponds to the half of the periodicity of a conventional optical lattice, which is formed by the light of the same wavelength. The generation of this new type of optical lattice was reached by the use of two degenerated raman transitions. Virtual processes occur, in which four photons are involved. In conventional optical lattices however virtual two-photon processes occur. By spatially superimposing this optical lattice with a conventional optical lattice an asymmetrical optical potential could be formed. By diffraction of a Bose Einstein condensate of rubidium atoms at the transient activated asymmetrical potential the asymmetrical structure was proven. (orig.)

  8. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  9. Carbon nanotube synthesis via the catalytic CVD method: a review on the effect of reaction parameters

    OpenAIRE

    Öncel, Çınar; Oncel, Cinar; Yürüm, Yuda; Yurum, Yuda

    2006-01-01

    This review covers the results obtained in carbon nanotube synthesis by chemical vapor deposition. Parameters such as catalysts, supports, carbon precursors, reaction time, temperature and gas flow rates that are used in the production of carbon nanotubes are discussed throughout the text. Purification of the synthesized carbon nanotubes and methods utilized for cost reduction were also explored.

  10. Ex situ synthesis of G/α-Fe2O3 nanocomposite and its catalytic effect ...

    Indian Academy of Sciences (India)

    G/ α -Fe 2 O 3 nanocomposite was prepared using ex situ synthesis in the presence of α -Fe 2 O 3 nanoparticles and GO solution. The characterization of the as-prepared materialswas performed using X-ray diffraction analyses and Fourier transform infrared spectroscopy; their morphology wasinvestigated by scanning ...

  11. Catalytic Conia-ene and related reactions.

    Science.gov (United States)

    Hack, Daniel; Blümel, Marcus; Chauhan, Pankaj; Philipps, Arne R; Enders, Dieter

    2015-10-07

    Since its initial inception, the Conia-ene reaction, known as the intramolecular addition of enols to alkynes or alkenes, has experienced a tremendous development and appealing catalytic protocols have emerged. This review fathoms the underlying mechanistic principles rationalizing how substrate design, substrate activation, and the nature of the catalyst work hand in hand for the efficient synthesis of carbocycles and heterocycles at mild reaction conditions. Nowadays, Conia-ene reactions can be found as part of tandem reactions, and the road for asymmetric versions has already been paved. Based on their broad applicability, Conia-ene reactions have turned into a highly appreciated synthetic tool with impressive examples in natural product synthesis reported in recent years.

  12. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...

  13. Synthesis and DFT study on Hantzsch reaction to produce asymmetrical compounds of 1,4-dihydropyridine derivatives for P-glycoprotein inhibition as anticancer agent.

    Science.gov (United States)

    Mollazadeh, Shirin; Moosavi, Fatemeh; Hadizadeh, Farzin; Seifi, Mahmoud; Behravan, Javad; Iman, Maryam

    2018-02-19

    P-glycoprotein (P-gp) causes the efflux of cancer chemotherapy drugs from tumor cells, so it's inhibition can be one target for design and synthesis of new anticancer drugs. In this study new compounds of 1,4-dihydropyridine (DHP) were recommended as inhibitors of P-gp. We synthesized new symmetrical DHP with 36% - 43% yield by the reaction of new reactants. In biological studies, these compounds have high lipophilicity, and thus low water solubility. Four reactants I with different reactivity was computed and compared using DFT study. The LUMO-map was differently distributed on each reactant. Amine intermediate underwent tautomerism as atransition state and it seems to play important role in reaction progress. Calculations were performed to select suitable reactants. Two different reactants I, including one polar group and a non-polar group, were used to produce asymmetric compounds with 49%-60% yield. These asymmetric DHPs were more soluble than symmetric DHPs. In the final step another selected symmetric product (by elimination of chlorine atom) was synthesized with high yield (74%) with using DFT study. In this study, selected reactants by DFT calculation have increased yield of reaction from 36% to 74% without any catalyst. Diversity of products is noticeable topic. Racemic asymmetric compounds with R and S enantiomers have potential for enantiomeric separation. Each of these enantiomers could have different physiological effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Ruthenium(II) hydrazone Schiff base complexes: Synthesis, spectral study and catalytic applications

    Science.gov (United States)

    Manikandan, R.; Viswanathamurthi, P.; Muthukumar, M.

    2011-12-01

    Ruthenium(II) hydrazone Schiff base complexes of the type [RuCl(CO)(B)(L)] (were B = PPh 3, AsPh 3 or Py; L = hydrazone Schiff base ligands) were synthesized from the reactions of hydrazone Schiff base ligand (obtained from isonicotinoylhydrazide and different hydroxy aldehydes) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P or As; B = PPh 3, AsPh 3 or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, 1H, 13C and 31P NMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/Isopropanol.

  15. Synthesis of carbon nanofibers by catalytic CVD of chlorobenzene over bulk nickel alloy

    Science.gov (United States)

    Kenzhin, Roman M.; Bauman, Yuri I.; Volodin, Alexander M.; Mishakov, Ilya V.; Vedyagin, Aleksey A.

    2018-01-01

    Catalytic chemical vapor deposition (CCVD) of chlorobenzene over bulk nickel alloy (nichrome) was studied. The bulk Ni-containing samples being exposed to a contact with aggressive reaction medium undergo self-disintegration followed by growth of carbon nanofibers. This process, also known as a metal dusting, requires the simultaneous presence of chlorine and hydrogen sources in the reaction mixture. Molecule of chlorobenzene complies with these requirements. The experiments on CCVD were performed in a flow-through reactor system. The initial stages of nickel disintegration process were investigated in a closed system under Autogenic Pressure at Elevated Temperature (RAPET) conditions. Scanning and transmission electron microscopies and ferromagnetic resonance spectroscopy were applied to examine the samples after their interaction with chlorobenzene. Introduction of additional hydrogen into the flow-through system was shown to affect the morphology of grown carbon nanofibers.

  16. Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation.

    Science.gov (United States)

    Jodłowski, Przemysław J; Jędrzejczyk, Roman J; Chlebda, Damian K; Dziedzicka, Anna; Kuterasiński, Łukasz; Gancarczyk, Anna; Sitarz, Maciej

    2017-07-07

    The aim of this study was to obtain nanocrystalline mixed metal-oxide-ZrO₂ catalysts via a sonochemically-induced preparation method. The effect of a stabiliser's addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature.

  17. Synthesis of 1-dodecanethiol-capped Ag nanoparticles and their high catalytic activity

    Science.gov (United States)

    Zhang, Danhui; Yang, Youbo

    2017-01-01

    Silver nanoparticles, which were produced by the borohydride reduction of silver nitrate, were stabilized by means of 1-dodecanethiol providing sulfur atom in two-phase system involving water and organic solvent (such as toluene, chloroform and hexane). Different organic solvent played a major role in the particle size of silver nanoparticles. These silver nanoparticles synthesized in the three different organic solvent were characterized by X-ray Diffraction, transmission electron microscopy and ultraviolet-visible absorption spectroscopy. The results indicate that the particles size of silver nanoparticles formed in three organic solvents was different. Furthermore, 1-dodecanethiol-capped silver nanoparticles were found to serve as effective catalysts to activate the reduction of 4-nitrophenol (4NP) in the presence of NaBH4, where the size of silver nanoparticles played the determining role in catalytic activity.

  18. Synthesis and catalytic properties of a heterogeneous palladium-polymer complex

    Energy Technology Data Exchange (ETDEWEB)

    Rasadkina, E.N.; Rozhdestvenskaya, I.D.

    1978-05-01

    By reacting a copolymer of 2-dimethylamino-1-butyl methacrylate and ethylene dimethacrylate (10:6 weight ratio) with an aqueous ethanol solution of potassium palladochloride at 25/sup 0/C and 19% Pd-polymer weight ratio, a cross-linked polymeric complex with 4-15% Pd was obtained, containing a coordinationally unsaturated nitrogen atom in a side chain and one chlorine ion per gram-atom of palladium; it was thermally stable up to > 400/sup 0/C and insoluble in organic solvents. In contrast to the previously studied palladium-polyamide complex, this complex showed high catalytic activities in hydrogenation at ambient conditions of unsaturated carboxylic acids and their esters, unsaturated hydrocarbons, Schiff bases, and aromatic nitrocompounds dissolved in polar solvents, including selective hydrogenation of dienes to monoolefins.

  19. Synthesis, characterization and catalytic activity of highly ordered hexagonal and cubic composite monoliths.

    Science.gov (United States)

    El-Safty, Sherif A

    2008-03-15

    Design of nanocatalysts for efficient heterogeneous catalytic systems is needed to high ingredients for environmental cleanup of organic pollutant species. Here, well-defined order NiO-silica monolithic catalysts with hexagonal P6mm and cubic Pm3n mesostructures were successfully fabricated by using an instant direct-templating method of lyotropic and microemulsion phases of Brij 76 (C18H37(OCH2CH2)10 OH, C18EO 10). Ordered hexagonal P6mm NiO/HOM-2 monoliths could be fabricated in lyotropic system of Brij 76 at phase composition domains of TMOS/Brij 76 (50 wt%). However, periodically ordered cubic Pm3n NiO-supported monoliths were synthesized in microemulsion system formed by addition of C12-alkane to the hexagonal phase domains. This synthetic strategy also revealed that the NiO particles were well-dispersed into the silicate pore surface matrices of mesostructures. Monolithic NiO-silica composites with 2D hexagonal and 3D cubic geometries and with large particle morphologies show promise to act as catalysts. The current study revealed evidence of the advantages of nanoscale pore geometry and shape, and particle morphology of the supported silica monoliths in the design of nanocatalysts that can efficiently enhance the catalytic functionality in terms of stability, reversibility and reactivity. Furthermore, a key finding in our study was that 2D hexagonal and 3D cubic mesostructured NiO-silica catalysts retained the specific activity towards the oxidation reaction even after several regeneration/reuse cycles. Significant study of the mechanistic cyclization of the organic reactant using the density functional (DFT) calculations provided evidence of the key components of conformations of the functional model during the formation of the oxidation product.

  20. Catalytic Activity of Sulfated and Phosphated Catalysts towards the Synthesis of Substituted Coumarin

    Directory of Open Access Journals (Sweden)

    Nagi R. E. Radwan

    2018-01-01

    Full Text Available New modified acidic catalysts were prepared from the treatment of silica, titania and silica prepared from hydrolyzed tetraethyl orthosilicate (TEOS with sulfuric and phosphoric acid. The sulfated and phosphated silica synthesized from TEOS were calcined at 450 and 650 °C. These catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR, transmission electron microscope (TEM, and scanning electron microscope (SEM. The surface areas, total pore volume, and mean pore radius of the acidic catalysts were investigated, while the pore size distribution was determined by the Barrett, Joyner and Halenda (BJH method. The catalytic activity of the sulfated and phosphated silica and/or titania were examined with the Pechmann condensation reaction, in which different phenols reacted with ethyl acetoacetate as a neat reaction to obtain the corresponding coumarin derivatives. The results indicated that the treatment of the catalysts with sulfuric or phosphoric acid led to a decrease in the phases’ crystallinity to a certain degree. The morphology and the structure of the acidified catalysts were examined and their particle size was calculated. Furthermore, the amount of the used catalysts played a vital role in controlling the formation of the products as well as their performance was manipulated by the number and nature of the active acidic sites on their surfaces. The obtained results suggested that the highest catalytic conversion of the reaction was attained at 20 wt % of the catalyst and no further increase in the product yield was detected when the amount of catalyst exceeded this value. Meanwhile the phenol molecules were a key feature in obtaining the final product.

  1. Cloning, overexpression, and characterization of a high enantioselective nitrilase from Sphingomonas wittichii RW1 for asymmetric synthesis of (R)-phenylglycine.

    Science.gov (United States)

    Qiu, Jian; Su, Er-Zheng; Wang, Hua-Lei; Cai, Wen-Wen; Wang, Wei; Wei, Dong-Zhi

    2014-05-01

    In this study, a high (R)-enantioselective nitrilase gene from Sphingomonas wittichii RW1 was cloned and overexpressed in Escherichia coli BL21 (DE3). The recombinant nitrilase was purified to homogeneity with a molecular weight of 40 kDa. The pH and temperature optima were shown to be pH 8.0 and 40 °C, respectively. The purified nitrilase was most active toward succinonitrile, approximately 30-fold higher than that for phenylglycinonitrile. Using the E. coli BL21/ReSWRW1 whole cells as biocatalysts, the kinetic resolution for asymmetric synthesis of (R)-phenylglycine was investigated at pH 6.0. A yield of 46 % was obtained with 95 % enantiomeric excess (ee), which made it a promising biocatalyst for synthesis of (R)-phenylglycine.

  2. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    Science.gov (United States)

    Majumdar, Rakhi; Bag, Braja Gopal; Ghosh, Pooja

    2016-04-01

    The bark extract of Mimusops elengi is rich in different types of plant secondary metabolites such as flavonoids, tannins, triterpenoids and saponins. The present study shows the usefulness of the bark extract of Mimusops elengi for the green synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete within a few minutes without any extra stabilizing or capping agents and the polyphenols present in the bark extract acted as both reducing as well as stabilizing agents. The synthesized colloidal gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature.

  3. FACILE GREEN SYNTHESIS OF GOLD NANOPARTICLES WITH GREAT CATALYTIC ACTIVITY USING ULVA FASCIATA

    OpenAIRE

    V. Sugantha Kumari; G. Sivagammi Sundari; S. Khaleel Basha

    2014-01-01

    We report a facile, green, and high yielding approache for the synthesis and stabilization of monodisperse gold nanoparticles (AuNPs) using green seaweed Ulva fasciata extract. Characterization of the obtained AuNPs was performed using UV-visible, Fourier transform infrared (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). UV-visible absorption spectroscopy was used to determine the yield of the gold nanoparticles. The UV-visible absorption spectrum showed a characte...

  4. Catalytic Enantioselective Synthesis of Tetrahydocarbazoles and Exocyclic Pictet-Spengler-Type Reactions

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke; Ohm, Ragnhild Gaard; Olsen, Lasse Bohn

    2016-01-01

    A synthetic strategy for the synthesis of chiral tetrahydrocarbazoles (THCAs) has been developed. The strategy relies on two types of 6-exo-trig cyclization of 3-substituted indole substrates. Enantioselective domino Friedel-Crafts-type reactions leading to THCAs can be catalyzed by chiral phosph...... phosphoric acid derivatives (with up to >99% ee), and the first examples of exocyclic Pictet-Spengler reactions to form THCAs are reported....

  5. Template-directed synthesis of nets based upon octahemioctahedral cages that encapsulate catalytically active metalloporphyrins

    KAUST Repository

    Zhang, ZhenJie

    2012-01-18

    meso-Tetra(N-methyl-4-pyridyl)porphine tetratosylate (TMPyP) templates the synthesis of six new metal-organic materials by the reaction of benzene-1,3,5-tricarboxylate with transition metals, five of which exhibit HKUST-1 or tbo topology (M = Fe, Mn, Co, Ni, Mg). The resulting materials, porph@MOMs, selectively encapsulate the corresponding metalloporphyrins in octahemioctahedral cages and can serve as size-selective heterogeneous catalysts for oxidation of olefins. © 2011 American Chemical Society.

  6. Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity.

    Science.gov (United States)

    Shaik, Mohammed Rafi; Ali, Zuhur Jameel Qandeel; Khan, Mujeeb; Kuniyil, Mufsir; Assal, Mohamed E; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Khan, Merajuddin; Adil, Syed Farooq

    2017-01-19

    The synthesis of Palladium (Pd) nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs) using an aqueous extract of aerial parts of Origanum vulgare L. (OV) as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs) were analyzed using ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and thermal gravimetric analysis (TGA). Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.

  7. Pyrolysis-GCMS Analysis of Solid Organic Products from Catalytic Fischer-Tropsch Synthesis Experiments

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2015-01-01

    Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.

  8. Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2017-01-01

    Full Text Available The synthesis of Palladium (Pd nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs using an aqueous extract of aerial parts of Origanum vulgare L. (OV as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs were analyzed using ultraviolet-visible spectroscopy (UV-Vis, Fourier-transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, transmission electron microscopy (TEM, energy-dispersive X-ray spectroscopy (EDX, and thermal gravimetric analysis (TGA. Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.

  9. A chiral mixed metal-organic framework based on a Ni(saldpen) metalloligand: synthesis, characterization and catalytic performances.

    Science.gov (United States)

    Ren, Yanwei; Cheng, Xiaofei; Yang, Shaorong; Qi, Chaorong; Jiang, Huanfeng; Mao, Qiuping

    2013-07-21

    A three-dimensional (3D) chiral mixed metal-organic framework [Cd4Cl(Ni-L)3(Ni-HL)(H2O)6(DMF)]·4DMF (CMOF 1) based on a new enantiopure dicarboxyl-functionalized Ni(saldpen) metalloligand Ni-H2L and a novel tetranuclear cadmium cluster [Cd4Cl(CO2)7(CO2H)] has been synthesized and characterized by elemental analyses, IR and UV-vis spectra, thermogravimetric analysis, nitrogen and carbon dioxide adsorption, powder and single-crystal X-ray diffractions. Each tetranuclear-cadmium cluster in 1 is linked by eight Ni-L ligands, and each Ni-L ligand is linked by two tetranuclear-cadmium clusters to generate a 3D framework with 1D open channels (∼1.1 × 0.9 nm(2)) along the b-axis. Based on its good stability, permanent porosity, Lewis acid sites and moderate uptake for CO2, 1 can be used as a self-supported heterogeneous catalyst for the synthesis of optically active propylene carbonate by asymmetric cycloaddition of CO2 with racemic propylene oxide under relatively mild conditions.

  10. New chiral phosphinephosphinite ligands: Application to stereoselective synthesis of a key intermediate of 1{beta}-methyl carbapenems by Rh(I)-catalyzed asymmetric hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Takao; Yoshida, Akifumi; Matsumura, Kazuhiko [Takasago International Corp., Kanagawa (Japan)] [and others

    1995-12-31

    Transition metal catalyzed asymmetric hydroformylation is an attractive and highly useful homologation process for organic synthesis. Recently, the authors reported that the Rh(I) complexes of phosphinephosphite BINAPHOS are highly efficient catalysts for enantioselective hydroformylation of a variety of olefins. This time, the authors have designed and synthesized new chiral phosphinephosphinite ligands having binaphthyl backbone, (R)-2-diarylphosphino-2{prime}-diarylphosphinoxy-1,1{prime}-binaphthy1 (hereafter abbreviated (R)-BIPNITE). The Rh(I) complexes of these ligands are effective catalysts for the asymmetric hydroformylation of 4-vinylazetidin-2-one to give the corresponding oxo-aldehyde 3{beta} as the major product in very high diastereoselectivities and in good regioselectivities. Interestingly, modifications of the aryl substituents in phosphine and phosphinite moieties afforded higher selectivities. Aldehyde 3{beta} was easily oxidized with NaClO{sub 2} to 4, a key intermediate of 1{beta}-methyl carbapenems. Thus, the present method provides a new practical route to a versatile key intermediate for the synthesis of carbapenem antibiotics.

  11. Modulation of nucleotide binding to the catalytic sites of thermophilic F(1)-ATPase by the epsilon subunit: implication for the role of the epsilon subunit in ATP synthesis.

    Science.gov (United States)

    Yasuno, Taichi; Muneyuki, Eiro; Yoshida, Masasuke; Kato-Yamada, Yasuyuki

    2009-12-11

    Effect of epsilon subunit on the nucleotide binding to the catalytic sites of F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) has been tested by using alpha(3)beta(3)gamma and alpha(3)beta(3)gammaepsilon complexes of TF(1) containing betaTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the epsilon subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the epsilon subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.

  12. Atroposelective Synthesis of Axially Chiral Biaryls by Palladium-Catalyzed Asymmetric C-H Olefination Enabled by a Transient Chiral Auxiliary.

    Science.gov (United States)

    Yao, Qi-Jun; Zhang, Shuo; Zhan, Bei-Bei; Shi, Bing-Feng

    2017-06-01

    Atroposelective synthesis of axially chiral biaryls by palladium-catalyzed C-H olefination, using tert-leucine as an inexpensive, catalytic, and transient chiral auxiliary, has been realized. This strategy provides a highly efficient and straightforward access to a broad range of enantioenriched biaryls in good yields (up to 98 %) with excellent enantioselectivities (95 to >99 % ee). Kinetic resolution of trisubstituted biaryls bearing sterically more demanding substituents is also operative, thus furnishing the optically active olefinated products with excellent selectivity (95 to >99 % ee, s-factor up to 600). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Precursor-induced template free hydrothermal synthesis of faujasite and its application in catalytic pyrolysis

    Science.gov (United States)

    Rahman, Mati ur; Ullah Wazir, Hameed; Khan, Matiullah; Nosheen, Shaneela; Rahman, Sami Ur; Ullah, Asad

    2017-05-01

    This paper reports the fabrication of Faujasite type zeolite by template free hydrothermal method without using structural directing agent (SDA) and seed source. The effect of various modifiers during synthesis process such as mineralization source and solvent is investigated. The as-prepared materials are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermo gravimetric analysis (TGA). It is found that microwave process, solvent, and mineralization source significantly impact the morphology, pore structure, crystallization behavior and nature of resulting zeolites.

  14. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Luqman Buchori

    2017-05-01

    Full Text Available Biodiesel synthesis through transesterification of soybean oil with methanol on hybrid catalytic-plasma reactor over sulphated zinc oxide (SO42-/ZnO active acid catalyst was investigated. This research was aimed to study effects of Weight Hourly Space Velocity (WHSV and the catalyst diameter on performance of the hybrid catalytic-plasma reactor for biodiesel synthesis. The amount (20.2 g of active sulphated zinc oxide solid acid catalysts was loaded into discharge zone of the reactor. The WHSV and the catalyst diameter were varied between 0.89 to 1.55 min-1 and 3, 5, and 7 mm, respectively. The molar ratio of methanol to oil as reactants of 15:1 is fed to the reactor, while operating condition of the reactor was kept at reaction temperature of 65 oC and ambient pressure. The fatty acid methyl ester (FAME component in biodiesel product was identified by Gas Chromatography - Mass Spectrometry (GC-MS. The results showed that the FAME yield decreases with increasing WHSV. It was found that the optimum FAME yield was achieved of 56.91 % at WHSV of 0.89 min-1 and catalyst diameter of 5 mm and reaction time of 1.25 min. It can be concluded that the biodiesel synthesis using the hybrid catalytic-plasma reactor system exhibited promising the FAME yield. Copyright © 2017 BCREC Group. All rights reserved Received: 15th November 2016; Revised: 24th December 2016; Accepted: 16th February 2017 How to Cite: Buchori, L., Istadi, I., Purwanto, P. (2017. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 227-234 (doi:10.9767/bcrec.12.2.775.227-234 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.775.227-234

  15. Studies on bis(halogeno) dioxomolybdenum(VI)-bipyridine complexes: synthesis and catalytic activity.

    Science.gov (United States)

    Günyar, Alev; Zhou, Ming-Dong; Drees, Markus; Baxter, Paul N W; Bassioni, Ghada; Herdtweck, Eberhardt; Kühn, Fritz E

    2009-10-28

    Dioxomolybdenum(VI) complexes with the general formula [MoO2Cl2L2] (L2=3,3'-dimethyl-2,2'-bipyridine, 5,5'-dimethyl-2,2'-bipyridine, 6,6'-dimethyl-2,2'-bipyridine, 4,4'-dibromo-2,2'-bipyridine, 5,5'-dibromo-2,2'-bipyridine, 5,5'-diamino-2,2'-bipyridine; 5,5'-dinitro-2,2'-bipyridine; 5,5'-di-ethoxycarbonyl-2,2'-bipyridine; 6-phenyl-2,2'-bipyridine; 2,2':6',2''-terpyridine) have been prepared and characterised. [MoO2Cl2(5,5'-di-ethoxycarbonyl-2,2'-bipyridine)] has been examined by single crystal X-ray analysis. The complexes were applied as homogenous catalysts for the epoxidation of cyclooctene with tert-butyl hydroperoxide (TBHP) as oxidising agent. The new compounds show an overall high activity and are highly selective catalysts in the epoxidation of cyclooctene. The stability of the complexes and differences in the catalytic activity can be clearly attributed to electronic contributions of the functional groups on bipyridine ligands and to steric restrictions. DFT calculations have assisted in a better understanding of the stability of the complexes and are in agreement with experiment. The influence of the terminal oxo ligands and the Lewis base ligands on the Mo center keep the compounds on quite a stable level of electron density.

  16. Gold nanostars: Benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity.

    Science.gov (United States)

    Ndokoye, Pancras; Li, Xinyong; Zhao, Qidong; Li, Tingting; Tade, Moses O; Liu, Shaomin

    2016-01-15

    Fabrication of Au nanostars (AuNSs) can expand the application range of Au nanoparticles because of their high electron density and localized surface plasmon resonance (LSPR) on branches. Exploiting this potential requires further refinement of length of the branches and radius of their tips. To this end, we successfully synthesized AuNSs with uniform and sharply-pointed branches by combining benzyldimethylammonium chloride (BDAC) and cetyltrimethylammonium bromide (CTAB) at low BDAC/CTAB ratios. Once mixed with CTAB, BDAC lowers the critical micelle concentration (CMC) for quick formation of the micelles, which provides favorable growth templates for AuNSs formation. Besides, BDAC increases the concentration of Cl(-), which favors Ag(+) in adsorbing on Au facets. This feature is crucial for the yield boosting and synergic shape control of AuNSs regardless of types of Au seeds used. Use of less amounts of seeds as the center of nucleation benefited sharper and longer growth of the branches. AuNSs exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) intensities as the result of high electron density localized at the tips; however, the enhancement degree varied in accordance with the size of branches. In addition, AuNSs showed high catalytic performance toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Efficient catalysis over AuNSs originates from their corners, stepped surfaces and high electron density at the tips. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Yucca-derived synthesis of gold nanomaterial and their catalytic potential

    Science.gov (United States)

    Krishnamurthy, Sneha; Esterle, Andrea; Sharma, Nilesh C.; Sahi, Shivendra V.

    2014-11-01

    AuNPs ranging in 20 to 300 nm size were synthesized at a room temperature using Yucca filamentosa leaf extract. Diverse nanomaterial morphologies were obtained by varying the extract concentration, reaction pH, and temperature. While low volumes of extract (0.25 and 0.5 mL) induced the formation of microscale Au sheets with edge length greater than 1 μm, high volumes yielded spherical particles ranging from 20 to 200 nm. Varying pH of the solution significantly influenced the particle shape with the production of largely spherical particles at pH 5 to 6 and truncated triangles at pH 2. Separation of multidimensional nanostructures was achieved using a novel method of sucrose density gradient centrifugation. The catalytic function of Yucca-derived AuNPs was demonstrated by degradation of a wastewater dye: methylene blue using spectrophotometric measurements over time. Treatment with Au nanosheets and spheres demonstrated methylene blue degradation approximately 100% greater than the activity in control at 60 min.

  18. Mixed diphosphine/diamine ruthenium (II) isomers: Synthesis, structural characterization and catalytic hydrogenation of ketones

    Science.gov (United States)

    Nascimento, Rebecca D.; Silva, Andressa K.; Lião, Luciano M.; Deflon, Victor M.; Ueno, Leonardo T.; Dinelli, Luis R.; Bogado, André L.

    2018-01-01

    The complexes trans-[RuCl2(dppb)(cydn)] (1), trans-[RuCl2(dppb)(opda)] (2) and cis-[RuCl2(dppb)(cydn)] (3) were synthesized from [{RuCl2(dppb)}2-μ-(dppb)] {where: dppb = 1,4-bis(diphenylphosphino)butane; cydn = cis and trans (±) 1,2-diaminocyclohexane, and opda = o-phenylenediamine}. The complexes were characterized by nuclear magnetic resonance of phosphorus (31P{1H} NMR), cyclic voltammetry (CV), infrared and ultraviolet/visible spectra (IR and UV/vis) as well as elemental analyses (CHN). The X-ray structures of (1) and (3) were determined and they are presented here. DFT calculations and experimental data showed that the trans isomers are obtained as thermodynamic products while the cis isomers are kinetic products. This behavior is different than described in the literature for similar complexes, where the cis isomer is obtained from the trans isomer. Additionally, the catalytic activity of the complexes (1), (2) and (3) was investigated, as pre-catalysts, in the reduction of the acetophenone and 4-methylacetophenone by transfer-hydrogenation.

  19. Synthesis, characterization, electrical and catalytic studies of some coordination compounds derived from unsymmetrical Schiff base ligand

    Directory of Open Access Journals (Sweden)

    G. B. Pethe

    2015-10-01

    Full Text Available New unsymmetrical tetradentate Schiff base ligand derived from 5-chloro-2-hydroxyacetophenone, 2-hydroxy-5-methyl-3-nitro acetophenone and carbohydrazide and its complexes with VO(IV, Cr(III, Mn(III, Fe(III, MoO2(VI, WO2(VI, Zr(IV and UO2(VI have been prepared. They were characterized by elemental analysis, IR and electronic spectra, magnetic susceptibility measurements and thermal analyses. The Schiff base ligand has also been characterised by 1H-NMR spectroscopy. The thermal behaviour of metal complexes shows that the hydrated complexes lose water molecules of hydration in the first and then is immediately followed by decomposition of ligand molecule in the subsequent steps. The IR spectra suggest that ligand acts as dibasic tetradentate nature and coordination takes place through azomethine nitrogen and phenolate oxygen. The crystalline nature of the VO(IV complex was conformed through the powder XRD analysis. The catalytic activity of the VO(IV and Mn(III complexes have been tested in the epoxidation reaction of styrene and conversion of styrene were 11.14-24.35% and 9.64-23.42%, respectively. The solid state electrical conductivity of ligand and its complexes were measured, which could obeyed the relation s = s0 exp (Ea/KT over the temperature range 313-413 K. DOI: http://dx.doi.org/10.4314/bcse.v29i3.6

  20. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity.

    Science.gov (United States)

    Sun, Tai; Zhang, Zheye; Xiao, Junwu; Chen, Chen; Xiao, Fei; Wang, Shuai; Liu, Yunqi

    2013-01-01

    We report a facile and green method to synthesize a new type of catalyst by coating Pd nanoparticles (NPs) on reduced graphene oxide (rGO)-carbon nanotube (CNT) nanocomposite. An rGO-CNT nanocomposite with three-dimensional microstructures was obtained by hydrothermal treatment of an aqueous dispersion of graphene oxide (GO) and CNTs. After the rGO-CNT composites have been dipped in K₂PdCl₄ solution, the spontaneous redox reaction between the GO-CNT and PdCl₄(2-) led to the formation of nanohybrid materials consisting rGO-CNT decorated with 4 nm Pd NPs, which exhibited excellent and stable catalytic activity: the reduction of 4-nitrophenol to 4-aminophenol using NaBH4 as a catalyst was completed in only 20 s at room temperature, even when the Pd content of the catalyst was 1.12 wt%. This method does not require rigorous conditions or toxic agents and thus is a rapid, efficient, and green approach to the fabrication of highly active catalysts.

  1. Flower-Like Mn-Doped CeO2 Microstructures: Synthesis, Characterizations, and Catalytic Properties

    Directory of Open Access Journals (Sweden)

    Ling Liu

    2015-01-01

    Full Text Available Mn-doped CeO2 flower-like microstructures have been synthesized by a facile method, involving the precipitation of metallic alkoxide precursor in a polyol process from the reaction of CeCl3·7H2O with ethylene glycol in the presence of urea followed by calcination. By introducing manganese ions, the composition can be freely manipulated. To investigate whether there was a hybrid synergic effect in CH4 combustion reaction, further detailed characteristics of Mn-doped CeO2 with various manganese contents were revealed by XRD, Raman, FT-IR, SEM, EDS, XPS, OSC, H2-TPR, and N2 adsorption-desorption measurements. The doping manganese is demonstrated to increase the storage of oxygen vacancy for CH4 and enhance the redox capability, which can efficiently convert CH4 to CO2 and H2O under oxygen-rich condition. The excellent catalytic performance of MCO-3 sample, which was obtained with the starting Mn/Ce ratios of 0.2 in the initial reactant compositions, is associated with the larger surface area and richer surface active oxygen species.

  2. Synthesis and catalytic activity of Birnessite-Type Manganese Oxide synthesized by solvent-free method

    Science.gov (United States)

    Siregar, S. S.; Awaluddin, A.

    2018-04-01

    Redox reaction between KMnO4 and glucose usingsolvent-free method produces the octahedral layer birnessite-type manganese oxide. The effects of mole ratios, temperatures, and calcinations time on the structures and crystallinity of the oxides were studied throughthe X-ray powder diffraction analysis. The mole ratio of KMnO4/glucose (1:3) produces the purebirnessite with low crystallinity, whereas the mole ratio of KMnO4/glucose (3:1) yields high crystalline birnessite with minor components of hausmannite-type manganese oxide.The increasing of the temperature and calcinations times (300-700 °C and 3-7 h, respectively) willimprove the crystallinity and the purity of the as-synthesized oxide. Further experiments also showed that the as-syntesized octahedral layer birnessite-type manganese oxides have catalytic activity on the degradation of methylene blue (MB) dye with H2O2 as oxidant. The results revealed that the effective degradation could be achieved only in the presence of both the birnessite and H2O2, whereas without the addition of catalyst (H2O2only) or addition of H2O2 (catalyst only), the 3.5% and 15.5% of MB removal were obtained, respectively.

  3. Synthesis and study of catalytic application of l-methionine protected gold nanoparticles

    Science.gov (United States)

    Raza, Akif; Javed, Safdar; Qureshi, Muhammad Zahid; khan, Muhammad Usman; Khan, Muhammad Saleem

    2017-10-01

    Gold nanoparticle is growing class of nanotechnology due to large number of uses. We synthesized stable l-methionine protected gold nanoparticles (AuNps) by in situ reduction of HAuCl4 using sodium borohydrate as reducing and l-methionine as stabilizing agent in an aqueous medium. Different parameters (pH, capping agent, precursor salt, and heating time) were optimized to see the effect on the size of particles. Double beam spectrophotometer was used to carry out the spectroscopic studies. It was observed that pH and concentration of reducing salt are deciding factors in controlling the size and morphology of AuNps. Scanning electron microscopy (SEM) verified the formation of AuNPs as predicted by UV-Vis spectra. The interaction of AuNPs with l-methionine was confirmed by Fourier Transform Infrared (FTIR). The reduction of 4-nitrophenol acted as standard of reaction to check the response of AuNps catalyst. Complete reduction of 4-nitrophenol was accomplished by AuNps sol in just 60 s. Fastest reduction rate was observed with smaller spherical particles. This study concluded that size and shape of AuNps can be monitored by controlling the pH, concentration of capping and reducing agent. It also provides an economical solution to aquatic environment in terms of time saving and use of small volume of catalytic solution for reduction of several other toxic organic pollutants.

  4. Hydrothermal synthesis, structure, and catalytic properties of UO2Sb2O4

    International Nuclear Information System (INIS)

    Sykora, Richard E.; King, Joseph E.; Illies, Andreas J.; Albrecht-Schmitt, Thomas E.

    2004-01-01

    A new uranyl antimonite, UO 2 Sb 2 O 4 (1), has been prepared from the hydrothermal reaction of UO 3 with Sb 2 O 3 and KCl. The structure of 1 consists of neutral two-dimensional ∞ 2 [UO 2 Sb 2 O 4 ] layers. The U(VI) centers are ligated by two trans oxo ligands and four square pyramidal antimonite anions. In addition, the U(VI) also forms long contacts with two additional oxygen atoms that are distorted by 12.7(2) degree sign out of the equatorial plane perpendicular to the uranyl unit. These long interactions are significant owing to evidence supplied by bond valence sum calculations. The two-dimensional layers found in 1 are built from one-dimensional chains formed from edge-sharing UO 6 octahedra that run along the b-axis, and are linked together by [Sb 2 O 4 ] 2- chains. A flow microreactor system has been used to study the catalytic activity of 1, and these results show that it can be used as a catalyst in the conversion of propene and O 2 to acrolein. Crystallographic data: 1, monoclinic, space group C2/m, a=13.490(2) A, b=4.0034(6) A, c=5.1419(8) A, β=104.165(3) deg., Z=2, MoKα, λ=0.71073, R(F)=1.74% for 30 parameters with 365 reflections with I>2σ(I)

  5. Synthesis of ultrasmall Li-Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties

    Science.gov (United States)

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-10-01

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li-Mn spinel oxides by tuning the hydration of Li+ ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m2 g-1. They exhibited unique properties such as unusual topotactic Li+/H+ ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li-Mn spinel oxides obtained by conventional solid-state methods.

  6. Synthesis of ultrasmall Li–Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties

    Science.gov (United States)

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-01-01

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li–Mn spinel oxides by tuning the hydration of Li+ ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m2 g−1. They exhibited unique properties such as unusual topotactic Li+/H+ ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li–Mn spinel oxides obtained by conventional solid-state methods. PMID:26456216

  7. Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance.

    Science.gov (United States)

    Ni, Youming; Sun, Aiming; Wu, Xiaoling; Hai, Guoliang; Hu, Jianglin; Li, Tao; Li, Guangxing

    2011-09-15

    Hierarchical nanocrystalline ZSM-5 zeolite (NZ5) was synthesized at 100 °C under atmospheric pressure using methylamine as a mineralizing agent. The crystallization process of NZ5 was characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), and infrared spectroscopy (FTIR). The results of contrastive experiments showed that evaporation of the solvent promoted the aggregation of primary particles, and the addition of methylamine accelerated the crystallization process. The NZ5 aggregate consisted of 20 nm individual particles, as shown in scanning electron microscope (SEM). The lattice fringes in the transmission electron microscope (TEM) images and the XRD results indicated that individual particles of NZ5 were highly crystalline. N(2) adsorption-desorption isotherms showed that NZ5 had high BET surface areas with mesopores having a mean diameter of about 9 nm. NZ5 exhibited a long lifetime, a stable and high yield of liquid hydrocarbons, and a high anti-coking performance in methanol-to-hydrocarbons reaction. Catalytic testing and TGA results showed that the lifetime of NZ5 was about ten times longer than that of micro-sized ZSM-5 zeolite (MZ5), and the average coking rate with NZ5 was one fifth over that of MZ5. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. In Situ Synthesis of Catalytic Active Au Nanoparticles onto Gibbsite-Polydopamine Core-Shell Nanoplates.

    Science.gov (United States)

    Cao, Jie; Mei, Shilin; Jia, He; Ott, Andreas; Ballauff, Matthias; Lu, Yan

    2015-09-01

    We report a facile method to synthesize anisotropic platelike gibbsite-polymer core-shell particles. Dopamine is self-polymerized on the surface of gibbsite nanoplates and forms a homogeneous layer on it. Transmission electron microscopy characterization of the resulting latexes demonstrates the formation of well-defined platelike core-shell particles. Reaction time and ultrasonification are found to be important factors to control the thickness of the polymer shell and avoid aggregation. Good control over the platelike morphology and 100% encapsulation efficiency have been achieved via this novel route. The resulting well-defined gibbsite-polydamine (G-PDA) core-shell nanoplates show excellent colloidal stability and can form opal-like columnar crystal with iridescent Bragg reflection after modest centrifugation. In addition, G-PDA core-shell nanoplates can serve both as reductant and stabilizer for the generation of Au nanoparticles (NPs) in situ. Au NPs with tunable size have been formed on the G-PDA particle surface, which show efficient catalytic activity for the reduction of 4-nitrophenol and Rhodamine B (RhB) in the presence of borohydride. Such nanocatalysts can be easily deposited on silicon substrate by spin-coating due to the large contact area of platelike G-PDA particles and the strong adhesive behavior of the PDA layer. The substrate-deposited nanocatalyst can be easily recycled which show excellent reusability for the reduction of RhB.

  9. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation

    Science.gov (United States)

    Jolliffe, John D.; Armstrong, Roly J.; Smith, Martin D.

    2017-06-01

    Axially chiral biaryls, as exemplified by 1,1‧-bi-2-naphthol (BINOL), are key components of catalysts, natural products and medicines. These materials are synthesized conventionally in enantioenriched form through metal-mediated cross coupling, de novo construction of an aromatic ring, point-to-axial chirality transfer or an atropselective transformation of an existing biaryl. Here, we report a highly enantioselective organocatalytic method for the synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Treatment of racemic 1-aryl-2-tetralones with a chiral quinidine-derived ammonium salt under basic conditions in the presence of an alkylating agent leads to atropselective O-alkylation with e.r. up to 98:2. Oxidation with DDQ gives access to C2-symmetric and non-symmetric BINOL derivatives without compromising e.r. We propose that the chiral ammonium counterion differentiates between rapidly equilibrating atropisomeric enolates, leading to highly atropselective O-alkylation. This dynamic kinetic resolution process offers a general approach to the synthesis of enantioenriched atropisomeric materials.

  10. Total chemical synthesis of the enzyme sortase A(ΔN59) with full catalytic activity.

    Science.gov (United States)

    Deng, Fang-Kun; Zhang, Liang; Wang, Ya-Ting; Schneewind, Olaf; Kent, Stephen B H

    2014-04-25

    The enzyme sortase A is a ligase which catalyzes transpeptidation reactions.1, 2 Surface proteins, including virulence factors, that have a C terminal recognition sequence are attached to Gly5 on the peptidoglycan of bacterial cell walls by sortase A.1 The enzyme is an important anti-virulence and anti-infective drug target for resistant strains of Gram-positive bacteria.2 In addition, because sortase A enables the splicing of polypeptide chains, the transpeptidation reaction catalyzed by sortase A is a potentially valuable tool for protein science.3 Here we describe the total chemical synthesis of enzymatically active sortase A. The target 148 residue polypeptide chain of sortase AΔN59 was synthesized by the convergent chemical ligation of four unprotected synthetic peptide segments. The folded protein molecule was isolated by size-exclusion chromatography and had full enzymatic activity in a transpeptidation assay. Total synthesis of sortase A will enable more sophisticated engineering of this important enzyme molecule. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solvothermal synthesis and characterization of ceria-zirconia mixed oxides for catalytic applications

    Science.gov (United States)

    Devaraju, M. K.; Liu, Xiangwen; Yusuke, Kikuchi; Yin, S.; Sato, T.

    2009-10-01

    Solvothermal synthesis under supercritical conditions (400 °C) and high autogenous pressure (about 40 MPa), has been carried out for the direct preparation of nanocrystalline powders of CeO2, Ce0.85Zr0.15O2, Ce0.75Zr0.25O2, Ce0.65Zr0.35O2 and Ce0.5Zr0.5O2 which are characterized for applications as catalysts for oxygen storage in automotive catalysis. The synthesis was carried out in the presence of polyethylene glycol and water. For the characterization, x-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS) and the Brunauer-Emmet-Teller (BET) technique were employed. The oxygen storage capacity (OSC) of as-prepared and calcined samples without loading of noble metals was measured using thermogravimetric-differential thermal analysis (TG-DTA) at 600 °C with a continuous flow of CO-N2 gas and air alternately. Ce0.5Zr0.5O2 nanoparticles with a BET surface area of 102 m2 g-1 exhibited the highest OSC of 0.073 50 mol-O2/mol-CeO2. The OSC values obtained increased with increasing the amount of ZrO2 doping in the samples.

  12. Catalytic palladium phosphination: modular synthesis of C1-symmetric biaryl-based diphosphines.

    Science.gov (United States)

    Bonnafoux, Laurence; Gramage-Doria, Rafael; Colobert, Françoise; Leroux, Frédéric R

    2011-09-19

    A new family of C(1)-symmetric bis(diphenylphosphino)biphenyls have been prepared starting from readily available ortho,ortho'-dihalobiphenyl precursors by a palladium-catalyzed C-P coupling reaction. This process does not require the use of an additional ligand. To date, the synthesis of such diphosphines, by reaction of an intermediate biphenyldiyl dianion with ClPPh(2), mainly afforded the undesired cyclic phosphafluorene derivative. So far, no synthetic pathway has been found to avoid this intramolecular reaction. Herein we report the first general and external-ligand-free palladium-catalyzed phosphination reaction that allows the synthesis of a wide variety of substituted ortho,ortho'-bis(diphenylphosphino)biphenyls. With the aim of illustrating the scope and efficiency of this methodology, we applied it to the establishment of a straightforward access to C(1)-symmetrical analogues of the most powerful ligands used in homogenous catalysis and extended it to more challenging substrates. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of a Scalable, Chromatography-Free Synthesis of t-Bu-SMS-Phos and Application to the Synthesis of an Important Chiral CF3-Alcohol Derivative with High Enantioselectivity Using Rh-Catalyzed Asymmetric Hydrogenation.

    Science.gov (United States)

    Sieber, Joshua D; Rodriguez, Sonia; Frutos, Rogelio; Buono, Frederic; Zhang, Yongda; Li, Ning; Qu, Bo; Premasiri, Ajith; Li, Zhibin; Han, Zhengxu S; Xu, Yibo; Byrne, Denis; Haddad, Nizar; Lorenz, Jon; Grinberg, Nelu; Kurouski, Dmitry; Lee, Heewon; Narayanan, Bikshandarkoil; Nummy, Laurence; Mulder, Jason; Brown, Jack D; Granger, Alice; Gao, Joe; Krawiec, Mariusz; Williams, Zeena; Pennino, Scott; Song, Jinhua J; Hossain, Azad; Yee, Nathan K; Busacca, Carl; Roschangar, Frank; Xin, Yanchao; Mao, Zhantong; Zhang, Xinzhu; Hong, Yaping; Senanayake, Chris H

    2018-02-02

    A chromatography-free, asymmetric synthesis of the C2-symmetric P-chiral diphosphine t-Bu-SMS-Phos was developed using a chiral auxiliary-based approach in five steps from the chiral auxiliary in 36% overall yield. Separtion and recovery of the auxiliary were achieved with good yield (97%) to enable recycling of the chiral auxiliary. An air-stable crystalline form of the final ligand was identified to enable isolation of the final ligand by crystallization to avoid chromatography. This synthetic route was applied to prepare up to 4 kg of the final ligand. The utility of this material was demonstrated in the asymmetric hydrogenation of trifluoromethyl vinyl acetate at 0.1 mol % Rh loading to access a surrogate for the pharmaceutically relavent chiral trifluoroisopropanol fragment in excellent yield and enantiomeric excess (98.6%).

  14. Solid state green synthesis and catalytic activity of CuO nanorods in thermal decomposition of potassium periodate

    Science.gov (United States)

    Patel, Vinay Kumar; Bhattacharya, Shantanu

    2017-09-01

    The present study reports a facile solid state green synthesis process using the leaf extracts of Hibiscus rosa-sinensis to synthesize CuO nanorods with average diameters of 15-20 nm and lengths up to 100 nm. The as-synthesized CuO nanorods were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction. The formation mechanism of CuO nanorods has been explained by involving the individual role of amide I (amino groups) and carboxylate groups under excess hydroxyl ions released from NaOH. The catalytic activity of CuO nanorods in thermal decomposition of potassium periodate microparticles (µ-KIO4) microparticles was studied by thermo gravimetric analysis measurement. The original size (~100 µm) of commercially procured potassium periodate was reduced to microscale length scale to about one-tenth by PEG200 assisted emulsion process. The CuO nanorods prepared by solid state green route were found to catalyze the thermal decomposition of µ-KIO4 with a reduction of 18 °C in the final thermal decomposition temperature of potassium periodate.

  15. Catalytic Synthesis of n-Butyl Oleate by Cerium Complex Doped Y/SBA-15 Composite Molecular Sieve

    Science.gov (United States)

    Shi, Chunwei; Bian, Xue; Wu, Yongfu; Cong, Yufeng; Pei, Mingyuan

    2018-01-01

    Cerium ion was successfully incorporated into Y/SBA-15 micro-mesoporous molecular sieves via the hydrothermal synthesis method to give a series of composite materials. The prepared materials were thoroughly characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and differential thermo gravimetric analysis (TG-DTG). The results showed that the prepared composite materials retained the highly ordered mesoporous two-dimensional hexagonal structure of SBA-15 and the octagonal structure of Y. The catalyst Ce-Y/SBA-15 was prepared and characterized, then the esterification of n-butanol and oleic acid was studied with bismuth phosphotungstate as a catalyst. Using this model reaction, the effects of Ce-HY/SBA-15, molar ratio of alcohol to oleic acid, amount of catalysts, reaction time and reaction temperature were investigated. The experimental results show that the optimal reaction conditions were: 1.8:1 molar ratio of alcohol to acid, 5 % catalyst amount (based on weight of oleic acid), 4 h reaction time and reflux conditions. Under these conditions, the yield of esterification was 90.6 %. The results suggest that the addition of Ce can effectively improve the catalytic properties of composite molecular sieves.

  16. Nanocrystalline Ferrihydrite-Based Catalysts for Fischer-Tropsch Synthesis: Part II. Effects of Activation Gases on the Catalytic Performance.

    Science.gov (United States)

    Rhim, Geun Bae; Hong, Seok Yong; Park, Ji Chan; Jung, Heon; Rhee, Young Woo; Chun, Dong Hyun

    2016-02-01

    Fischer-Tropsch synthesis (FTS) was carried out over nanocrystalline ferrihydrite-based (Fe9O2(OH)23) catalysts activated by different reducing agents: syngas (H2+CO), CO, and H2. The syngas activation successfully changed the ferrihydrite-based catalysts into an active and stable catalytic structure with chi-carbide (Fe2.5 C) and epsilon'-carbide (Fe2.2 C). The crystal structure of the catalysts obtained by syngas activation was similar to the structure obtained by CO activation; this similarity was probably due to the peculiar reduction behavior of the ferrihydrite-based catalysts, which exhibit much greater reducibility in CO atmosphere than in H2 atmosphere. The performance of the catalysts activated by syngas was much higher than the performance of the catalysts activated by H2 and was comparable to the performance of the catalysts activated by CO. This strongly demonstrates that the ferrihydrite-based catalysts are advantageous for industrial FTS processes because syngas can be commonly used for both activation pre-treatment and subsequent reaction.

  17. Electrochemical synthesis of NiFe{sub 2}O{sub 4} nanoparticles: Characterization and their catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, R. [Chemistry Department, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito de Rocha, C.P. 36040 Guanajuato Gto. (Mexico); Department of Physical Chemistry Applied, Universidad Autonoma de Madrid, Cantoblanco S/N, C.P 28049 Madrid (Spain); Mazario, E. [Department of Physical Chemistry Applied, Universidad Autonoma de Madrid, Cantoblanco S/N, C.P 28049 Madrid (Spain); Gutierrez, S. [Chemistry Department, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito de Rocha, C.P. 36040 Guanajuato Gto. (Mexico); Morales, M.P. [Materials Science Institute of Madrid, Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Department of Physical Chemistry Applied, Universidad Autonoma de Madrid, Cantoblanco S/N, C.P 28049 Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Nickel ferrite nanoparticles were synthesized by new electrochemical method. Black-Right-Pointing-Pointer Stoichometric nanoparticles with 20 nm of size can be prepared with this method. Black-Right-Pointing-Pointer Nickel ferrites nanoparticles were used as catalysts in the direct oxidation of glucose at pH 7. - Abstract: In this work a new route for preparation of nickel ferrites nanoparticles has been developed. The synthesis is carried out in an electrochemical cell using three electrodes, a sheet of iron was employed as cathode and two sheets of iron and nickel were used as sacrificial anodes. The obtained nanoparticles were washed several times with distilled water, separated magnetically and dried under vacuum with constant temperature for 12 h. The characterization of the nanoparticles was carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Inductively coupled plasma mass spectrometry (ICP-MS). Magnetic measurements were carried out using a vibrating sample magnetometer (VSM). To evaluate the catalytical properties of these nanoparticles against the oxidation of glucose a graphite paste electrode (GPE) was made. The proportions of the nanoparticles in GPE were 5, 10, 20 and 50% in weight. The electrode shows promising properties for its use as catalyst in the glucose oxidation.

  18. Nitrides and carbides of molybdenum and tungsten with high specific-surface area: their synthesis, structure, and catalytic properties

    International Nuclear Information System (INIS)

    Volpe, L.

    1985-01-01

    Temperature-programmed reactions between trioxides of molybdenum or tungsten and ammonia provide a new method to synthesize dimolybdenum and ditungsten nitrides with specific surface areas to two-hundred-and-twenty and ninety-one square meters per gram, respectively. These are the highest values on record for any unsupported metallic powders. They correspond to three-four nonometer particles. The reaction of molybdenum trioxide with ammonia is topotactic in the sense that one-zero-zero planes of dimolybdenum nitride are parallel to zero-one-zero planes of molybdenum trioxide. As the trioxide transforms, it passes through an oxynitride intermediate with changing bulk structure and increasing surface area and extent of reduction. The nitride product consists of platelets, pseudomorphous with the original trioxide, which can be regarded as highly porous defect single crystals. By treating small particles of dimolybdenum or ditungsten nitride with methane-dihydrogen mixtures it is possible to replace interstitial nitrogen atoms by carbon atoms, without sintering, and thus to prepare carbides of molybdenum and tungsten with very high specific surface areas. Molybdenum nitride powders catalyze ammonia synthesis. A pronounced increase in the catalytic activity with increasing particle size confirms the structure-sensitive character of this reaction

  19. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications

    Science.gov (United States)

    Arul, Velusamy; Sethuraman, Mathur Gopalakrishnan

    2018-04-01

    Green synthesis of fluorescent nitrogen doped carbon dots (N-CDs) using Actinidia deliciosa (A. deliciosa) fruit extract as a carbon precursor and aqueous ammonia as a nitrogen dopant is reported here. The synthesized N-CDs were characterized by high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), UV-Visible spectroscopy (UV-Vis), fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The average size of the N-CDs was approximately 3.59 nm and the calculated inter layer distance was found to be 0.21 nm. Raman spectroscopy and SAED pattern revealed the graphitic nature of the synthesized N-CDs. The N-CDs were found to emit intense blue color at 405 nm under the excitation of 315 nm. The doping of nitrogen over the surface of the N-CDs was confirmed by EDS, FT-IR and XPS studies. The synthesized N-CDs were found to exhibit excellent catalytic activity in the reduction of Rhodamine-B using sodium borohydrate. The MTT assay was used to evaluate the cytotoxicity and biocompatibility of N-CDs towards L-929 and MCF-7 cells. From the results obtained, it was found that the N-CDs exhibit low cytotoxicity and superior biocompatibility on both L-929 and MCF-7 cells.

  20. Hierarchically porous MgCo2O4 nanochain networks: template-free synthesis and catalytic application

    Science.gov (United States)

    Guan, Xiangfeng; Yu, Yunlong; Li, Xiaoyan; Chen, Dagui; Luo, Peihui; Zhang, Yu; Guo, Shanxin

    2018-01-01

    In this work, hierarchically porous MgCo2O4 nanochain networks were successfully synthesized by a novel template-free method realized via a facile solvothermal synthesis followed by a heat treatment. The morphologies of MgCo2O4 precursor could be adjusted from nanosheets to nanobelts and finally to interwoven nanowires, depending on the volume ratio of diethylene glycol to deionized water in the solution. After calcination, the interwoven precursor nanowires were transformed to hierarchical MgCo2O4 nanochain networks with marco-/meso-porosity, which are composed of 10-20 nm nanoparticles connected one by one. Moreover, the relative formation mechanism of the MgCo2O4 nanochain networks was discussed. More importantly, when evaluated as catalytic additive for AP thermal decomposition, the MgCo2O4 nanochain networks show excellent accelerating effect. It is benefited from the unique hierarchically porous network structure and multicomponent effect, which effectively accelerates ammonia oxidation and {{{{ClO}}}4}- species dissociation. This approach opens the way to design other hierarchically porous multicomponent metal oxides.

  1. Facile synthesis of unique NiO nanostructures for efficiently catalytic conversion of CH{sub 4} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yucheng; Zhao, Yanting; Ni, Liuliu; Jiang, Kedan; Tong, Guoxiu, E-mail: tonggx@zjnu.cn; Zhao, Yuling; Teng, Botao, E-mail: tbt@zjnu.cn

    2016-01-30

    Graphical abstract: - Highlights: • A simple one-pot thermal decomposition approach for NiO nanostructures. • Revealing the mechanism of morphological evolution. • Investigating the morphology-dependence of catalytic properties. - Abstract: A simple one-pot thermal decomposition approach to the selective synthesis of NiO nanomaterials was developed. The morphologies of the NiO nanomaterials were nanoparticle-based sheets, octahedra, nanosheet-built agglomerates, and nanoparticle-based microspheres. The samples were characterized by field-emission scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and N{sub 2} adsorption analyses. The morphology, crystal size, and texture properties of the products can be easily modulated by selecting various decomposition temperatures and precursors. Samples with high specific surface area and small crystal size were found to easily form at low sintering temperatures and when basic nickel carbonate and nickel oxalate dihydrate were used as precursors. Reduction property and CH{sub 4} conversion, as functions of decomposition temperature and precursor type, were systematically investigated. When NiCO{sub 3}·2Ni(OH){sub 2}·4H{sub 2}O and NiC{sub 2}O{sub 4}·2H{sub 2}O were used as precursors, the as-obtained nanosheet-built agglomerates and nanoparticle-based sheets presented a high CH{sub 4} conversion rate because of the small crystal size and large specific surface area.

  2. Homochiral nickel coordination polymers based on salen(Ni) metalloligands: synthesis, structure, and catalytic alkene epoxidation.

    Science.gov (United States)

    Huang, Yuanbiao; Liu, Tianfu; Lin, Jingxiang; Lü, Jian; Lin, Zujin; Cao, Rong

    2011-03-21

    One-dimensional (1D) homochiral nickel coordination polymers [Ni(3)(bpdc)(RR-L)(2)·(DMF)](n) (2R, RR-L = (R,R)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene), bpdc = 4,4'-biphenyldicarboxylic acid) and [Ni(3)(bpdc)(SS-L)(2)·(DMF)](n) (2S, SS-L = (S,S)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene) based on enantiopure pyridyl-functionalized salen(Ni) metalloligand units NiL ((1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene))Ni(II)) have been synthesized and characterized by microanalysis, IR spectroscopy, solid-state UV-vis spectroscopy, thermogravimetric analysis (TGA), circular dichroism (CD) spectroscopy, cyclic voltammetric measurement, and powder and single crystal X-ray diffraction. Each NiL as unbridging pendant metalloligand uses one terminal pyridyl group to coordinate achiral unit (nickel and bpdc(2-)) building a helical chain, while the other pyridyl group remains uncoordinated. Both 2R and 2S contain left- and right-handed helical chains made of the achiral building blocks, while the NiL as remote external chiral source is perpendicular to the backbone of the helices. The nickel coordination polymers 2R and 2S containing unsaturated active nickel center in metalloligand NiL can be used as self-supported heterogeneous catalysts. They show catalytic activity comparable with their homogeneous counterpart in alkene epoxidation and exhibit great potential as recyclable catalysts.

  3. Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis.

    Science.gov (United States)

    Banerjee, Ruma

    2017-04-01

    The view of enzymes as punctilious catalysts has been shifting as examples of their promiscuous behavior increase. However, unlike a number of cases where the physiological relevance of breached substrate specificity is questionable, the very synthesis of H 2 S relies on substrate and reaction promiscuity, which presents the enzymes with a multitude of substrate and reaction choices. The transsulfuration pathway, a major source of H 2 S, is inherently substrate-ambiguous. A heme-regulated switch embedded in the first enzyme in the pathway can help avert the stochastic production of cysteine versus H 2 S and control switching between metabolic tracks to meet cellular needs. This review discusses the dominant role of enzyme promiscuity in pathways that double as sulfur catabolic and H 2 S synthetic tracks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An Improved Strategy for the Synthesis of Ethylene Glycol by Oxamate-Mediated Catalytic Hydrogenation.

    Science.gov (United States)

    Satapathy, Anilkumar; Gadge, Sandip T; Bhanage, Bhalchandra M

    2017-04-10

    The present study reports an improved approach for the preparation of ethylene glycol (EG) by using carbon monoxide as C1 chemical by a two-step oxidative carbonylation and hydrogenation sequence. In the first step, oxamates are synthesized through oxidative cross double carbonylation of piperidine and ethanol by using Pd/C catalyst under phosphine ligand-free conditions and subsequently hydrogenated by Milstein's catalyst (carbonylhydrido[6-(di-t-butylphosphinomethylene)-2-(N,N-diethylaminomethyl)-1,6-dihydropyridine]ruthenium(II)). The presented stepwise oxamate-mediated coupling provides the basis for a new strategy for the synthesis of EG by selective upgrading of C1 chemicals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardium occidentale

    Science.gov (United States)

    Sheny, D. S.; Mathew, Joseph; Philip, Daizy

    2012-11-01

    A new phytochemical method for the synthesis of gold nanoparticles is reported. The essential oils extracted from the fresh leaves of Anacardium occidentale are used for the reduction of auric acid to Au nanoparticles (NPs). The formation and morphology of synthesized NPs are investigated with the help of UV-visible, TEM and FTIR spectroscopy. The NPs synthesized at room temperature are mono-dispersed and hexagonal in shape with an average size of 36 nm while those prepared at higher temperature are composed of a mixture of anisotropic particles. The UV-visible absorption spectra of these anisotropic NPs show asymmetry in the longer wavelength side. The quantity of oil is an important criterion modulating the shape of NPs. Possible biochemical mechanism leading to the formation of NPs is studied using FTIR spectroscopy. The potential of synthesized Au NPs as catalyst is explored for the hydrogenation of p-nitro phenol to p-amino phenol at room temperature.

  6. Study on the synthesis of dimethyl 1,4-cyclohexanedicarboxylate by catalytic hydrogenation of dimethyl terephthalate

    Directory of Open Access Journals (Sweden)

    LI Yuanhua

    2016-12-01

    Full Text Available In the field of polymer industry,1,4-cyclohexanedimethanol (CHDM occupies an important position especially for the synthesis of highly valued polyester products.In industry,CHDM is prepared from dimethyl terephthalate (DMT through a two-step hydrogenation process Palladium supported on magnesium oxide (Pd/MgO was prepared by animpregnation method and was characterized by x-ray diffraction (XRD,transmission electron microscope (TEM and scan electron microscope (SEM.During the hydrogenation of DMT to synthesize dimethyl 1,4-cyclohexanedicarboxylate (DMCD,the as-prepared Pd/MgO was used as the catalyst with methyl acetate as the solvent.Under optimized reaction conditions (reaction temperature:180 ℃,reaction pressure:4.5 MPa,the conversion of DMT was 100% and the selectivity of DMCD was 99%.Such a catalyst shows a good potential in industrial applications.

  7. Tetraarylcyclobutadienecyclopentadienylcobalt Complexes: Synthesis, Electronic Spectra, Magnetic Circular Dichroism, Linear Dichroism, and TD DFT Calculations

    Czech Academy of Sciences Publication Activity Database

    Kottas, G. S.; Brotin, T.; Schwab, P. F. H.; Gala, K.; Havlas, Zdeněk; Kirby, J. P.; Miller, J. R.; Michl, Josef

    2014-01-01

    Roč. 33, č. 13 (2014), s. 3251-3264 ISSN 0276-7333 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : catalytic asymmetric synthesis * altitudinal molecular rotors * organometallic pi-complexes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.126, year: 2014

  8. Biocatalytic Asymmetric Synthesis of (1R, 2S)-N-Boc-vinyl-ACCA Ethyl Ester with a Newly Isolated Sphingomonas aquatilis.

    Science.gov (United States)

    Zhu, Shaozhou; Shi, Ying; Zhang, Xinyu; Zheng, Guojun

    2018-02-01

    1-amino cyclopropane-1-carboxylic acid (ACCA) and its derivatives are essential pharmacophoric unit that widely used in drug research and development. Specifically, (1R, 2S)-N-Boc-vinyl-ACCA ethyl ester (vinyl-ACCA) is a key chiral intermediate in the synthesis of highly potent hepatitis C virus (HCV) NS3/4A protease inhibitors such as asunaprevir and simeprevir. Developing strategies for the asymmetric synthesis of vinyl-ACCA is thus extremely high demand. In this study, 378 bacterial strains were isolated from soil samples using N-Boc-vinyl-ACCA ethyl ester as the sole carbon source and were screened for esterase activity. Fourteen of which worked effectively for the asymmetric synthesis of (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester. The strain CY-2, identified as Sphingomonas aquatilis, which showed the highest stability and enantioselectivity was selected as whole cell biocatalyst for further study. A systematic study of all factors influencing the enzymatic hydrolysis was performed. Under optimized conditions, resolution of rac-vinyl-ACCA to (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester with 88.2% ee and 62.4% conversion (E = 9) was achieved. Besides, S. aquatilis was also used to transform other 10 different substrates. Notably, it was found that 7 of them could be stereoselectively hydrolyzed, especially for (1R,2S)-1-amino-vinyl-ACCA ethyl ester hydrochloride (99.6% ee, E>200). Our investigations provide a new efficient whole cell biocatalyst for resolution of ACCA and might be developed for industry application.

  9. Total Synthesis of (R, R, R)-gamma-Tocopherol through Cu-Catalyzed Asymmetric 1,2-Addition

    NARCIS (Netherlands)

    Wu, Zhongtao; Harutyunyan, Syuzanna R.; Minnaard, Adriaan J.

    2014-01-01

    Based on the asymmetric copper-catalyzed 1,2-addition of Grignard reagents to ketones, (R,R,R)--tocopherol has been synthesized in 36% yield over 12 steps (longest linear sequence). The chiral center in the chroman ring was constructed with 73% ee by the 1,2-addition of a phytol-derived Grignard

  10. Synthesis and characterization of two novel organic-inorganic compounds based on tetrahexyl and tetraheptyl ammonium ions and the Preyssler anion and their catalytic activities in the synthesis of 4-aminopyrazolo[3,4-d]- pyrimidines.

    Science.gov (United States)

    Bamoharram, Fatemeh Farrash

    2010-04-08

    Two novel organic-inorganic compounds based on tetrahexylammonium (THA) and tetraheptylammonium (THPA) ions and the Preyssler anion, [NaP5W30O110]14-, were synthesized and formulated as (THA)7.7H6.3 [NaP5W30O110] (A) and (THPA)7.5 H6.5[NaP5W30O110] (B). The synthesized compounds were characterized by IR, UV, and TGA and used for the catalytic synthesis of 4-aminopyrazolo[3,4,-d]pyrimidine derivatives 2a-2d. Our findings showed efficient catalytic activities for A and B.

  11. DNA-based asymmetric catalysis

    NARCIS (Netherlands)

    Boersma, Arnold J.; Megens, Rik P.; Feringa, Ben L.; Roelfes, Gerard

    2010-01-01

    The unique chiral structure of DNA has been a source of inspiration for the development of a new class of bio-inspired catalysts. The novel concept of DNA-based asymmetric catalysis, which was introduced only five years ago, has been applied successfully in a variety of catalytic enantioselective

  12. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Kishor Kr. [Department of Chemistry, ADP College, Nagaon, Assam 782002 (India); Nandi, Mithun [Department of Chemistry, Gauhati University, Guwahati, Assam 781014 (India); Talukdar, Anup K., E-mail: anup_t@sify.com [Department of Chemistry, Gauhati University, Guwahati, Assam 781014 (India)

    2015-06-15

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IR analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm{sup −1}. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA{sup +} cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m{sup 2} g{sup −1} and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm{sup 3} g{sup −1}. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of

  13. Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardium occidentale.

    Science.gov (United States)

    Sheny, D S; Mathew, Joseph; Philip, Daizy

    2012-11-01

    A new phytochemical method for the synthesis of gold nanoparticles is reported. The essential oils extracted from the fresh leaves of Anacardium occidentale are used for the reduction of auric acid to Au nanoparticles (NPs). The formation and morphology of synthesized NPs are investigated with the help of UV-visible, TEM and FTIR spectroscopy. The NPs synthesized at room temperature are mono-dispersed and hexagonal in shape with an average size of 36 nm while those prepared at higher temperature are composed of a mixture of anisotropic particles. The UV-visible absorption spectra of these anisotropic NPs show asymmetry in the longer wavelength side. The quantity of oil is an important criterion modulating the shape of NPs. Possible biochemical mechanism leading to the formation of NPs is studied using FTIR spectroscopy. The potential of synthesized Au NPs as catalyst is explored for the hydrogenation of p-nitro phenol to p-amino phenol at room temperature. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Controlled synthesis of water-dispersible faceted crystalline copper nanoparticles and their catalytic properties.

    Science.gov (United States)

    Wang, Yanfei; Biradar, Ankush V; Wang, Gang; Sharma, Krishna K; Duncan, Cole T; Rangan, Sylvie; Asefa, Tewodros

    2010-09-17

    We report a solution-phase synthetic route to copper nanoparticles with controllable size and shape. The synthesis of the nanoparticles is achieved by the reduction of copper(II) salt in aqueous solution with hydrazine under air atmosphere in the presence of poly(acrylic acid) (PAA) as capping agent. The results suggest that the pH plays a key role for the formation of pure copper nanoparticles, whereas the concentration of PAA is important for controlling the size and geometric shape of the nanoparticles. The average size of the copper nanoparticles can be varied from 30 to 80 nm, depending on the concentration of PAA. With a moderate amount of PAA, faceted crystalline copper nanoparticles are obtained. The as-synthesized copper nanoparticles appear red in color and are stable for weeks, as confirmed by UV/Vis and X-ray photoemission (XPS) spectroscopy. The faceted crystalline copper nanoparticles serve as an effective catalyst for N-arylation of heterocycles, such as the C--N coupling reaction between p-nitrobenzyl chloride and morpholine producing 4-(4-nitrophenyl)morpholine in an excellent yield under mild reaction conditions. Furthermore, the nanoparticles are proven to be versatile as they also effectively catalyze the three-component, one-pot Mannich reaction between p-substituted benzaldehyde, aniline, and acetophenone affording a 100% conversion of the limiting reactant (aniline).

  15. Novel Catalytic Process for SNG Synthesis; Sesshokuho ni yoru atarashii daitai tennen gasu no seizo koutei

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Akira.; Sato, Misuzu.; Ishihara, Tatsumi.; Takita, Yusaku. [Oita University, Oita (Japan). Faculty of Engineering; Murata, Toshio. [Nippon Bunri University, Oita (Japan). Faculty of Engiineering

    1999-04-10

    Methane rich city gas has been synthesized by means of steam reforming of naphtha; houever, the produced gas always contains significant concentration of CO{sub 2}. Therefore, development of a methane production process containing no CO and CO{sub 2} removal processes is strongly requested. Authors reported in the previous paper that C{sub 3}H{sub 8}{yields}2CH{sub 4}+C(1) took place over Ni/SiO{sub 2} with 90% selectivity. In this paper, the catalyst supports were studied and found that neutral SiO{sub 2} and {alpha}-Al{sub 2}O{sub 3} are suitable but the activity was much reduced over Ni supported siO{sub 2}-Al{sub 2}O{sub 3}. Catalyst was diluted by various materials to avoid blocking-up by deposited carbon. Several diluted materials affected the convesion. {alpha}-Al{sub 2}O{sub 3} and basic MgO accelerated the reaction which may be to interaction between Ni and dilution materials with direct contact. Over Ni/SiO{sub 2}, reaction (1) took place with 90% selectivity, so that the produced gas always contained H{sub 2} formed by the C{sub 3}H{sub 8}{yields}3C+4H{sub 2} (2). It has confirmed that H{sub 2} in a high concentration of CH{sub 4} can be reacted with C{sub 3}H{sub 8} to produce CH{sub 4}. From these results,a following simple synthesis process can v/be constituted; the first step is CH{sub 4}, H{sub 2}, and solid C formation from C{sub 3}H{sub 8}, and the second step is succeeding H{sub 2} consumption process of the produced gas in the first step. (author)

  16. Absolute configuration determination and convenient asymmetric synthesis of cis-3-(9-Anthryl)cyclohexanol with proline as a catalyst.

    Science.gov (United States)

    Wysocki, Jędrzej; Kwit, Marcin; Gawronski, Jacek

    2012-10-01

    cis-(3R)-(9-anthryl) derivative of cyclohexanol was conveniently obtained in enantiomerically pure form from 2-cyclohexenone using asymmetric Michael addition of anthrone catalyzed by l-proline in a key step. The absolute configuration of the addition product was unequivocally determined by means of electronic circular dichroism measurements combined with calculation of the circular dichroism spectrum by using a density functional theory method. Copyright © 2012 Wiley Periodicals, Inc.

  17. Crystallography of Magnetite Plaquettes and their Significance as Asymmetric Catalysts for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.

  18. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; He, Xin; Wang, Yiting; Xu, Zedong

    2017-11-01

    In this work, a high-performance asymmetric supercapacitor device based on NiCo2S4/NiS hollow nanospheres as the positive electrode and the porous activated carbon as the negative electrode was successfully fabricated via a facile two-step hydrothermal synthesis approach. This NiCo2S4/NiS//activated carbon asymmetric supercapacitor achieved a high energy density of 43.7 Wh kg-1 at a power density of 160 W kg-1, an encouraging specific capacitance of 123 F g-1 at a current density of 1 mA cm-2, as well as a long-term performance with capacitance degradation of 5.2% after 3000 consecutive cycles at 1 mA cm-2. Moreover, the NiCo2S4/NiS electrode also demonstrated an excellent specific capacitance (1947.5 F g-1 at 3 mA cm-2) and an outstanding cycling stability (retaining 90.3% after 1000 cycles). The remarkable electrochemical performances may be attributed to the effect of NiS doping on NiCo2S4 which could enlarge the surface area and increase the surface roughness.

  19. Interfacial Bioorthogonal Chemistry for Biomaterials Synthesis and Patterning and Development of Catalytic Method for "Turning-On" the Tetrazine Ligation

    Science.gov (United States)

    Zhang, Han

    The bioorthogonal trans-cyclooctene-tetrazine ligation has emerged into a powerful tool in the field of biomedical research. The development and the versatile applications of tetrazine ligation was made possible by the advancement of trans-cyclooctene synthesis. Based on the previous art of photoisomerization methods in Fox group, I carried out the first practical photosynthesis of trans-cycloheptene derivatives that were stabilized as silver(I) complexes form, as well as the photoisomerization of silicon-containing hetero- trans-cycloheptene derivatives. The reactivity of both the trans-cycloheptene silver(I) complexes and the hetero-trans-cycloheptene derivatives were investigated. Based on the rapid trans-cyclooctene-tetrazine ligation, first example of interfacial crosslinking will be described in Chapter 2. Bioocompatible hyaluronic acid-based hydrogel microspheres and channels were generated in a diffusion controlled fashion. These hydrogels can be covalently tagged with 3D resolution without the help of any external stimulus or triggers. An in vitro tumor model was achieved by 3D encapsulation and culture of LNCaP prostate cancer cells. Also included in Chapter 2 will be a novel interfacial polymerization strategy developed for the synthesis of hybrid multiblock copolymer. Meter-long copolymer fibers were pulled out of interface of two immiscible solutions. The unique modular approach enables the facile incorporation of functional peptides into the copolymer to fine-tune its biological properties. A fibronectin-derived peptide was successfully introduced onto the fibers during the polymerization and dramatically promoted the attachment and alignment of fibroblasts and myoepithelial-like cells. In Chapter 3, a novel method to activate rapid bioorthogonal reactivity catalytically will be described. This was achieved by catalytic conversion of an unreactive, latent dihydrotetrazine to reaction-ready tetrazine functionality. Series of long wavelength

  20. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    Science.gov (United States)

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  1. Modulation of surface structure and catalytic properties of cerium oxide nanoparticles by thermal and microwave synthesis techniques

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian [College of Pharmacy, Third Military Medical University, Chongqing 400038 (China); Zhou, Lan; Liu, Jie; Yang, Lu; Zou, Ling; Xiang, Junyu; Dong, Shiwu [School of Biomedical Engineering, Third Military Medical University, Chongqing 400038 (China); Yang, Xiaochao, E-mail: xcyang@tmmu.edu.cn [School of Biomedical Engineering, Third Military Medical University, Chongqing 400038 (China)

    2017-04-30

    Highlights: • The CNPs synthesized by microwave irradiation have more reactive hot spots than that synthesized by convective heating. • The CNPs synthesized by microwave irradiation exhibited higher SOD activity than that synthesized by convective heating. • The CNPs synthesized by microwave irradiation heating could better protect cells from oxidative stress. - Abstract: Cerium oxide nanoparticles (CNPs) have been intensively explored for biomedical applications in recent few years due to the versatile enzyme mimetic activities of the nanoparticles. However, the control of CNPs quality through the optimization of synthesis conditions remains largely unexplored as most of the previous studies only focus on utilizing the catalytic activities of the nanoparticles. In the present study, CNPs with size about 5 nm were synthesized by thermal decomposition method using traditional convective heating and recently developed microwave irradiation as heating source. The quality of CNPs synthesized by the two heating manner was evaluated. The CNPs synthesized by convective heating were slightly smaller than that synthesized by microwave irradiation heating. The cores of the CNPs synthesized by the two heating manner have similar crystal structure. While the surface subtle structures of the CNPs synthesized by two heating manner were different. The CNPs synthesized by microwave irradiation have more surface reactive hot spot than that synthesized by convective heating as the nanoparticles responded more actively to the redox environment variation. This difference resulted in the higher superoxide dismutase (SOD) mimetic activity of CNPs synthesized by microwave irradiation heating than that of the convective heating. Preliminary experiments indicated that the CNPs synthesized by microwave irradiation heating could better protect cells from oxidative stress due to the higher SOD mimetic activity of the nanoparticles.

  2. Synthesis of copper/nickel nanoparticles using newly synthesized Schiff-base metals complexes and their cytotoxicity/catalytic activities.

    Science.gov (United States)

    Aazam, Elham S; El-Said, Waleed Ahmed

    2014-12-01

    Transition metal complexes compounds with Schiff bases ligand representing an important class of compounds that could be used to develop new metal-based anticancer agents and as precursors of metal NPs. Herein, 2,3-bis-[(3-ethoxy-2-hydroxybenzylidene)amino]but-2-enedinitrile Schiff base ligand and its corresponding copper/nickel complexes were synthesized. Also, we reported a facile and rapid method for synthesis nickel/copper nanoparticles based on thermal reduction of their complexes. Free ligand, its metal complexes and metals nanoparticles have been characterized based on elemental analysis, transmission electron microscopy, powder X-ray diffraction, magnetic measurements and by various spectroscopic (UV-vis, FT-IR, (1)H NMR, GC-MS) techniques. Additionally, the in vitro cytotoxic activity of free ligand and its complexes compounds were assessed against two cancer cell lines (HeLa and MCF-7 cells)and one healthy cell line (HEK293 cell). The copper complex was found to be active against these cancer cell lines at very low LD50 than the free ligand, while nickel complex did not show any anticancer activity against these cell lines. Also, the antibacterial activity of as-prepared copper nanoparticles were screened against Escherichia coli, which demonstrated minimum inhibitory concentration and minimum bactericidal concentration values lower than those values of the commercial Cu NPs as well as the previous reported values. Moreover, the synthesized nickel nanoparticles demonstrated remarkable catalytic performance toward hydrogenation of nitrobenzene that producing clean aniline with high selectivity (98%). This reactivity could be attributed to the high degree of dispersion of Ni nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol.

    Science.gov (United States)

    Nasrollahzadeh, Mahmoud; Maham, Mehdi; Sajadi, S Mohammad

    2015-10-01

    A facile, efficient and environmentally-friendly protocol has been developed for the green synthesis of CuO nanoparticles (NPs) by aqueous extract of Gundelia tournefortii as a mild, renewable and non-toxic reducing agent. CuO NPs were characterized by SEM, TEM, XRD, EDS, FT-IR and UV-vis spectroscopy. More importantly, the green synthesized CuO NPs presented excellent catalytic activity for reduction of 4-nitrophenol and synthesis of N-monosubstituted ureas via hydration of cyanamides with the aid of acetaldoxime as an effective water surrogate in ethanol as a green solvent. The catalyst was easily separated and the recovered catalyst was reused many times without any significant loss of the catalytic activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Synthesis, characterization and catalytic application of silica supported tin oxide nanoparticles for synthesis of 2,4,5-tri and 1,2,4,5-tetrasubstituted imidazoles under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Ashok V. Borhade

    2017-02-01

    Full Text Available Highly efficient and eco-friendly, one pot synthesis of 1,2,4,5-tetra substituted imidazoles and 2,4,5-trisubstituted imidazoles was reported under solvent free conditions using nanocrystalline silica supported tin oxide (SiO2:SnO2 as a catalyst with excellent yield. The present methodology offers several advantages such as mild reaction conditions, short reaction time, good yield, high purity of product, recyclable catalyst without a noticeable decrease in catalytic activity and can be used for large scale synthesis. The synthesized SiO2:SnO2 nanocrystalline catalyst was characterized by XRD, BET surface area and TEM techniques.

  5. Bio-synthesis of silver nanoparticles using agroforestry residue and their catalytic degradation for sustainable waste management

    CSIR Research Space (South Africa)

    Anand, K

    2017-07-01

    Full Text Available (AR) and Congo red (CR) were characterised by UV spectrophotometry. The Silver nanoparticles were observed to have excellent catalytic properties on the degradation of AR and CR which is confirmed by the dyes mineralized in λmax values. The catalytic...

  6. A novel asymmetric chair-like hydroxyl-bridged tetra-copper compound: Synthesis, supramolecular structure and magnetic property

    Science.gov (United States)

    Wang, Xiao-Feng; Du, Ke-Jie; Wang, Hong-Qing; Zhang, Xue-Li; Nie, Chang-Ming

    2017-06-01

    A new polynuclear Cu(II) compound, [Cu4(bpy)4(OH)4(H2O)(BTC)]NO3·8H2O (1), was prepared by self-assembly from the solution of copper(II) nitrate and two kinds of ligands, 2,2‧-bipyridine (bpy) and benzene-tricarboxylic acid (H3BTC). Single crystal structure analysis reveals that 1 features a rare asymmetric chair-like hydroxyl-bridged tetra-copper cluster: [Cu4(OH)4] core along with one H2O and one BTC3- occupied each terminal coordinated site. In addition, the magnetic property has been investigated.

  7. Asymmetric Synthesis of Diarylmethyl Sulfones by Palladium-Catalyzed Enantioselective Benzylic Substitution: A Remarkable Effect of Water.

    Science.gov (United States)

    Najib, Atifah; Hirano, Koji; Miura, Masahiro

    2018-03-25

    A Pd/(R)-BINAP-catalyzed enantioselective benzylic sulfonation of diarylmethyl carbonates with sodium sulfinates proceeds to deliver the corresponding chiral diarylmethyl sulfones in good yields with high enantioselectivity. The reaction occurs in a dynamic kinetic asymmetric transformation (DYKAT) manner and thus provides convergent access to optically active benzylic sulfones from racemic secondary benzylic carbonates. Additionally, the addition of H 2 O is found to be critical for high enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis of Ultra-Small Platinum, Palladium and Gold Nanoparticles by Shewanella loihica PV-4 Electrochemically Active Biofilm and Their Enhanced Catalytic Activities

    KAUST Repository

    Ahmed, Elaf

    2018-02-21

    Ultra-small nanoparticles (USNPs) of noble metals have a great potential in a variety of applications due to their high surface areas and high reactivity. This works employed electrochemically active biofilms (EABs) composed of a single bacterium strain of Shewanella loihica PV-4 and successfully synthesized USNPs of noble metal Au, Pd, and Pt. The synthesized USNPs had a size range between 2 and 7 nm and exhibited excellent catalytic performance in dye decomposition. The results of this work shine lights on the use of EABs in nanoparticle synthesis.

  9. A Facile and Green Method for the Synthesis of SFE Borosilicate Zeolite and Its Heteroatom-Substituted Analogues with Promising Catalytic Performances.

    Science.gov (United States)

    Luo, Yi; Wang, Zhendong; Sun, Junliang; Wang, Yingying; Jin, Shaoqing; Zhang, Bin; Sun, Hongmin; Yang, Weimin

    2018-01-09

    Synthesis of SFE-type borosilcate zeolite was successfully carried out using a commercially available low-cost organic structure directing agent (OSDA) with ultra-low OSDA and water contents within a short crystallization time. Heteroatom (Al, Ti, V, or Fe)-substituted SFE-type zeolite analogues were also directly synthesized for the first time. The obtained Al containing zeolites exhibited promising catalytic performances in the disproportionation of isopropylnaphthalene. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Role of Carboxylate ligands in the Synthesis of AuNPs: Size Control, Molecular Interaction and Catalytic Activity

    KAUST Repository

    Aljohani, Hind Abdullah

    2016-05-22

    low temperature. The structure of the citrate layer on the AuNP surface may be a key factor in gaining a more detailed understanding of nanoparticle formation and stabilization. This can be affecting the catalytic activity. These thoughts invited us to systematically examine the role of sodium citrate as a stabilizer of gold nanoparticles, which is the main theme of this thesis. This research is focused on three main objectives, controlling the size of the gold nanoparticles based on citrate (and other carboxylate ligands Trisodium citrate dihydrate, Isocitric Acid, Citric acid, Trimesic acid, Succinic Acid, Phthalic acid, Disodium glutarate, Tartaric Acid, Sodium acetate, Acetic Acid and Formic Acid by varying the concentration of Gold/sodium citrate, investigating the interaction of the citrate layer on the AuNP surface, and testing the activity of the Au/TiO2 catalysts for the oxidation of carbon monoxide. This thesis will be divided into five chapters. In Chapter 1, a general literature study on the various applications and methods of synthesis of Au nanoparticles is described. Then we present the main synthetic pathways of Au nanoparticles we selected. A part of the bibliographic study was given to the use of Au nanoparticles in catalysis. In Chapter 2, we give a brief description of the different experimental procedures and characterization techniques utilized over the course of the present work. The study of the size control and the interaction between gold nanoparticles and the stabilizer (carboxylate groups) was achieved by using various characterization techniques such as UV-visible spectroscopy, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Nuclear Magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). In Chapter 3, we discuss the synthesis and size control of Au nanoparticles by following the growth of these nanoparticles by UV-Visible spectroscopy and TEM. We

  11. Facile and efficient synthesis of benzoxazole derivatives using novel catalytic activity of PEG-SO3H

    Directory of Open Access Journals (Sweden)

    Rupesh V. Chikhale

    2017-07-01

    Full Text Available A highly efficient, simple and rapid method for the preparation of various 2-aminobenzoxazoles and other benzoxazole derivatives using a catalytic amount of poly (ethylene glycol-bound sulfonic acid (PEG-SO3H is described. PEG-SO3H is found to be an economical and reusable catalyst with low catalytic loading. The percent yield was found to be satisfactory, experimental set up and purification of final products are facile and easy.

  12. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B.

    Science.gov (United States)

    Bhargava, Arpit; Jain, Navin; Khan, Mohd Azeem; Pareek, Vikram; Dilip, R Venkataramana; Panwar, Jitendra

    2016-12-01

    In recent years, the surging demand of nanomaterials has boosted unprecedented expansion of research for the development of high yielding and sustainable synthesis methods which can deliver nanomaterials with desired characteristics. Unlike the well-established physico-chemical methods which have various limitations, biological methods inspired by mimicking natural biomineralization processes have great potential for nanoparticle synthesis. An eco-friendly and sustainable biological method that deliver particles with well-defined shape, size and compositions can be developed by selecting a proficient organism followed by fine tuning of various process parameter. The present study revealed high metal tolerance ability of a soil fungus Cladosporium oxysporum AJP03 and its potential for extracellular synthesis of gold nanoparticles. The morphology, composition and crystallinity of nanoparticles were confirmed using standard techniques. The synthesized particles were quasi-spherical in shape with fcc packing and an average particle size of 72.32 ± 21.80 nm. A series of experiments were conducted to study the effect of different process parameters on particle size and yield. Biomass: water ratio of 1:5 and 1 mM precursor salt concentration at physiological pH (7.0) favoured the synthesis of well-defined gold nanoparticles with maximum yield. The as-synthesized nanoparticles showed excellent catalytic efficiency towards sodium borohydride mediated reduction of rhodamine B (2.5 × 10(-5) M) within 7 min of reaction time under experimental conditions. Presence of proteins as capping material on the nanoparticle surface was found to be responsible for this remarkable catalytic efficiency. The present approach can be extrapolated to develop controlled and up-scalable process for mycosynthesis of nanoparticles for diverse applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors

    Science.gov (United States)

    Kumar, Nagesh; Kumar, Amit; Huang, Guan-Min; Wu, Wen-Wei; Tseng, Tseung Yuen

    2018-03-01

    Morphology and synergistic effect of constituents are the two very important factors that greatly influence the physical, chemical and electrochemical properties of a composite material. In the present work, we report the enhanced electrochemical performance of mesoporous NiFe2O4 and multiwall carbon nanotubes (MWCNTs) nanocomposites synthesized via hexamethylene tetramine (HMT) assisted one-pot hydrothermal approach. The synthesized cubic phase spinel NiFe2O4 nanomaterial possesses high specific surface area (148 m2g-1) with narrow mesopore size distribution. The effect of MWCNTs addition on the electrochemical performance of nanocomposite has been probed thoroughly in a normal three electrode configuration using 2 M KOH electrolyte at room temperature. Experimental results show that the addition of mere 5 mg MWCNTs into fixed NiFe2O4 precursors amount enhances the specific capacitance up to 1291 F g-1 at 1 A g-1, which is the highest reported value for NiFe2O4 nanocomposites so far. NiFe2O4/CNT nanocomposite exhibits small relaxation time constant (1.5 ms), good rate capability and capacitance retention of 81% over 500 charge-discharge cycles. This excellent performance can be assigned to high surface area, mesoporous structure of NiFe2O4 and conducting network formed by MWCNTs in the composite. Further, to evaluate the device performance of the composite, an asymmetric pseudocapacitor has been designed using NiFe2O4/CNT nanocomposite as a positive and N-doped graphene as a negative electrode material, respectively. Our designed asymmetric pseudocapacitor gives maximum energy density of 23 W h kg-1 at power density of 872 W kg-1. These promising results assert the potential of synthesized nanocomposite in the development of efficient practical high-capacitive energy storage devices.

  14. Acylation, Diastereoselective Alkylation, and Cleavage of an Oxazolidinone Chiral Auxiliary: A Multistep Asymmetric Synthesis Experiment for Advanced Undergraduates

    Science.gov (United States)

    Smith, Thomas E.; Richardson, David P.; Truran, George A.; Belecki, Katherine; Onishi, Megumi

    2008-01-01

    An introduction to the concepts and experimental techniques of diastereoselective synthesis using a chiral auxiliary is described. The 4-benzyl-2-oxazolidinone chiral auxiliary developed by Evans is acylated with propionic anhydride under mild conditions using DMAP as an acyl transfer catalyst. Deprotonation with NaN(TMS)[subscript 2] at -78…

  15. Characterization of 12-molybdophosphoric acid supported on mesoporous silica MCM-41 and its catalytic performance in the synthesis of hydroquinone diacetate

    Science.gov (United States)

    Ahmed, Awad I.; Samra, S. E.; El-Hakam, S. A.; Khder, A. S.; El-Shenawy, H. Z.; El-Yazeed, W. S. Abo

    2013-10-01

    12-molybdophosphoric acid (PMA) was supported on mesoporous molecular sieves MCM-41 by impregnation of 12-molybdophosphoric acid followed by calcination. The nanochannels of MCM-41 provide a large surface area for the solid state dispersion of 12-molybdophosphoric acid. The samples have been characterized by N2 adsorption-desorption at -196 °C, transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and FT-IR measurements. The acidity and catalytic activity have been, respectively, examined by nonaqueous titration of n-butylamine in acetonitrile and synthesis of hydroquinone diacetate. The results showed that ordered hexagonal pore structure was observed in the synthesized MCM-41. Also the results indicate that PMA are highly dispersed on mesoporous silica MCM-41 spherical nanoparticles while PMA retains its Keggin structure. On the other hand, with increasing the introduced PMA amount, the specific surface area decreases, and the mesoporous ordering of the samples become poor. Both the surface acidity and the catalytic activity sharply increase with the modification of MCM-41 by PMA but decrease by increasing the calcination temperature. The sample with 55 wt% PMA/MCM-41 calcined at 350 °C shows the highest acidity and catalytic activity.

  16. Catalytic Asymmetric Alkylation of Aryl Heteroaryl Ketones

    NARCIS (Netherlands)

    Ortiz, Pablo; Harutyunyan, Syuzanna; del Hoyo, Ana

    Tertiary diarylmethanols are highly bioactive structural motifs. A new strategy to access chiral tertiary diarylmethanols through copper-catalyzed direct alkylation of (di)(hetero)aryl ketones by using Grignard reagents was developed. The low reactivity and the similarity of the enantiotopic faces

  17. Purge gas recovery of ammonia synthesis plant by integrated configuration of catalytic hydrogen-permselective membrane reactor and solid oxide fuel cell as a novel technology

    Science.gov (United States)

    Siavashi, Fakhteh; Saidi, Majid; Rahimpour, Mohammad Reza

    2014-12-01

    The purge gas emission of ammonia synthesis plant which contains hazardous components is one of the major sources of environmental pollution. Using integrated configuration of catalytic hydrogen-permselective membrane reactor and solid oxide fuel cell (SOFC) system is a new approach which has a great impact to reduce the pollutant emission. By application of this method, not only emission of ammonia and methane in the atmosphere is prevented, hydrogen is produced through the methane steam reforming and ammonia decomposition reactions that take place simultaneously in a catalytic membrane reactor. The pure generated hydrogen by recovery of the purge gas in the Pd-Ag membrane reactor is used as a feed of SOFC. Since water is the only byproduct of the electrochemical reaction in the SOFC, it is recycled to the reactor for providing the required water of the reforming reaction. Performance investigation of the reactor represents that the rate of hydrogen permeation increases with enhancing the reactor temperature and pressure. Also modeling results indicate that the SOFC performance improves with increasing the temperature and fuel utilization ratio. The generated power by recovery of the purging gas stream of ammonia synthesis plant in the Razi petrochemical complex is about 8 MW.

  18. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  19. One-Pot Synthesis of Monodisperse Noble Metal @ Resorcinol-Formaldehyde (M@RF) and M@Carbon Core-Shell Nanostructure and Their Catalytic Applications.

    Science.gov (United States)

    Yang, Peipei; Xu, Yong; Chen, Lei; Wang, Xuchun; Zhang, Qiao

    2015-10-27

    We demonstrate that noble metal @ RF core-shell nanostructures can be obtained through a facile one-pot synthesis approach in the absence of any additional surfactants. Monodisperse metal@RF core-shell nanostructures can be produced within 1 h on a large scale. Both the core size and shell thickness can be readily tuned by altering the reaction parameters. Systematic studies reveal that resorcinol could have several functions: it could act as a reactant to form RF resin, and it also could passivate the surface of metallic nanoparticles to prevent them from aggregating. Additionally, for the first time, our results suggest that resorcinol may act as a reducing agent that can reduce metal salts to form metal nanoparticles. The core-shell nanoparticles can be carbonized into M@carbon nanostructures, which have shown great performance in the catalytic hydrogenation of chlorobenzene. This work not only will help to achieve the controllable synthesis of noble metal@RF resin and M@carbon core-shell nanostructures but also will promote research into other RF-based nanostructures and their catalytic applications.

  20. Optimization of Catalytic Ozonation Process for Formaldehyde Mineralization from Synthetic Wastewater by Fe/MgO Nanoparticles Synthesis by Sol-Gel Method by Response Surface Model

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2014-09-01

    Full Text Available Background: Design experiment stages of formalin mineralization process by center composition design (CCD cause ease of work, reducing the number of samples, increasing the accuracy of optimized conditions and the interaction parameters determined during the process. The aim of this study was optimization of catalytic ozonation process for formaldehyde mineralization from synthetic wastewater by Fe/MgO nanoparticles synthesis by sol-gel method by response surface model. Methods: This experimental study was conducted in a semi-batch reactor, using a RSM by taking 3 factors in the final stage of pH (7-9, reaction time (10-20 min and catalyst dose (1.1-1.3 g/L was investigated. Synthesis of nanoparticles was done by sol-gel method. The results were analyzed by Design Expert 7.0.1 software. Results: The results showed that the process was dependent on the parameters studied and changing each parameter, affected the process efficiency and other parameters. The optimum conditions predicted for the process was 86.51% of mineralization efficiency. Optimum condition included pH=8.82, reaction time of 20 minute and catalyst dose of 1.3 g/L. The correlation coefficient for the process was determined 0.91. Conclusion: Using a statistical model could reduce the number of experiments, the accuracy and the prediction process. The catalytic ozonation process has the ability to remove formaldehyde with high efficiency and the process was environmental friendly.

  1. Asymmetric synthesis of densely functionalized medium-ring carbocycles and lactones through modular assembly and ring-closing metathesis of sulfoximine-substituted trienes and dienynes.

    Science.gov (United States)

    Lejkowski, Michal; Banerjee, Prabal; Schüller, Sabine; Münch, Alexander; Runsink, Jan; Vermeeren, Cornelia; Gais, Hans-Joachim

    2012-03-19

    An asymmetric synthesis of densely functionalized 7-11-membered carbocycles and 9-11-membered lactones has been developed. Its key steps are a modular assembly of sulfoximine-substituted C- and O-tethered trienes and C-tethered dienynes and their Ru-catalyzed ring-closing diene and enyne metathesis (RCDEM and RCEYM). The synthesis of the C-tethered trienes and dienynes includes the following steps: 1) hydroxyalkylation of enantiomerically pure titanated allylic sulfoximines with unsaturated aldehydes, 2) α-lithiation of alkenylsulfoximines, 3) alkylation, hydroxy-alkylation, formylation, and acylation of α-lithioalkenylsulfoximines, and 4) addition of Grignard reagents to α-formyl(acyl)alkenylsulfoximines. The sulfoximine group provided for high asymmetric induction in steps 1) and 4). RCDEM of the sulfoximine-substituted trienes with the second-generation Ru catalyst stereoselectively afforded the corresponding functionalized 7-11-membered carbocyles. RCDEM of diastereomeric silyloxy-substituted 1,6,12-trienes revealed an interesting difference in reactivity. While the (R)-diastereomer gave the 11-membered carbocyle, the (S)-diastereomer delivered in a cascade of cross metathesis and RCDEM 22-membered macrocycles. RCDEM of cyclic trienes furnished bicyclic carbocycles with a bicyclo[7.4.0]tridecane and bicyclo[9.4.0]pentadecane skeleton. Selective transformations of the sulfoximine- and bissilyloxy-substituted carbocycles were performed including deprotection, cross-coupling reaction and reduction of the sulfoximine moiety. Esterification of a sulfoximine-substituted homoallylic alcohol with unsaturated carboxylic acids gave the O-tethered trienes, RCDEM of which yielded the sulfoximine-substituted 9-11-membered lactones. RCEYM of a sulfoximine-substituted 1,7-dien-10-yne showed an unprecedented dichotomy in ring formation depending on the Ru catalyst. While the second-generation Ru catalyst gave the 9-membered exo 1,3-dienyl carbocycle, the first-generation Ru

  2. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine

    Directory of Open Access Journals (Sweden)

    Wang Li-Hua

    2017-04-01

    Full Text Available In order to study the catalytic activity of Cu(II coordination polymer material, a novel 1D chained Cu(II coordination polymer material, [CuL(bipy(H2O5]n (A1 (H2L = 1,4-phenylenediacetic acid, bipy = 2,2’-bipyridine, has been prepared by the reaction of 1,4-phenylenediacetic acid, 2,2’-bipyridine, Cu(CH3COO2·H2O and NaOH. The composition of A1 was determined by elemental analysis, IR spectra and single crystal X-ray diffraction. The results of characterization show that each Cu(II atom adopts six-coordination and forms a distorted octahedral configuration. The catalytic activity and reusability of A1 catalyst for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene have been investigated. And the results show that the Cu(II complex catalyst has good catalytic activity with a maximum yield of 54.3% and stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 21st October 2016; Revised: 17th November 2016; Accepted: 22nd November 2016 How to Cite: Li-Hua, W., Lei, L., Xin, W. (2017. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 113-118 (doi:10.9767/bcrec.12.1.735.113-118 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.735.113-118

  3. A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye

    International Nuclear Information System (INIS)

    Junejo, Y.; Sirajuddin; Baykal, A.; Safdar, M.; Balouch, A.

    2014-01-01

    Ampicillin derived silver nanoparticles were synthesized in an aqueous medium. Particle size and shape were determined by Transmission electron microscopy which showed the monodispersed morphology. The Fourier transform infrared spectra were represented the interaction of Ampicillin with surface of Ampicillin derived silver nanoparticles. X-ray powder diffraction study gave crystalline nature of the Ampicillin derived silver nanoparticles which exhibited exceptional catalytic activity for the reduction of Methylene Green dye. However, complete reduction of dye was accomplished by Ampicillin derived silver nanoparticles within 4 min only. The catalytic performance of these nanoparticles was adsorbed on glass. They were recovered easily from reaction medium and reused with enhanced catalytic potential. Based upon these results it has been concluded that Ampicillin derived silver nanoparticles are novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  4. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade.

    Science.gov (United States)

    Xu, Xuan; Li, Yi; Gong, Yutong; Zhang, Pengfei; Li, Haoran; Wang, Yong

    2012-10-17

    We report a catalyst made of Pd nanoparticles (NPs) supported on mesoporous N-doped carbon, Pd@CN(0132), which was shown to be highly active in promoting biomass refining. The use of a task-specific ionic liquid (3-methyl-1-butylpyridine dicyanamide) as a precursor and silica NPs as a hard template afforded a high-nitrogen-content (12 wt %) mesoporous carbon material that showed high activity in stabilizing Pd NPs. The resulting Pd@CN(0.132) catalyst showed very high catalytic activity in hydrodeoxygenation of vanillin (a typical model compound of lignin) at low H(2) pressure under mild conditions in aqueous media. Excellent catalytic results (100% conversion of vanillin and 100% selectivity for 2-methoxy-4-methylphenol) were achieved, and no loss of catalytic activity was observed after six recycles.

  5. Facile synthesis of Co(OH)2/Al(OH)3 nanosheets with improved electrochemical properties for asymmetric supercapacitor

    Science.gov (United States)

    Zhao, Cuimei; Ren, Fang; Cao, Yang; Xue, Xiangxin; Duan, Xiaoyue; Wang, Hairui; Chang, Limin

    2018-01-01

    Sheet-like Co(OH)2/Al(OH)3 or Co(OH)2 nanomaterial has been synthesized on conducting carbon fiber paper (CFP) by a facile one-step electrochemical deposition. The binder-free Co(OH)2/Al(OH)3/CFP displays an improved electrical conductivity, electrochemical activity and material utilization than solitary Co(OH)2, therefore Co(OH)2/Al(OH)3 nanomaterial exhibits improved electrochemical properties (a maximum capacitance of 1006 Fg-1 at 2 Ag-1, with 77% retention even at a high current density of 32 Ag-1, and more than 87% of the capacitance retention after 10000 cycles at 32 Ag-1) in comparison to that of the Co(OH)2/CFP (709 Fg-1, 65%, 79%). In addition, an asymmetric supercapacitor (ASC) fabricated with Co(OH)2/Al(OH)3/CFP positive electrode and AC/CFP negative electrode demonstrates ultrahigh specific capacitance (75.8 Fg-1) and potential window (1.7 V). These encouraging results make these low-cost and eco-friendly materials promising for high-performance energy storage application.

  6. Asymmetric Synthesis and Antimicrobial Activity of Some New Mono and Bicyclic β-Lactams

    Directory of Open Access Journals (Sweden)

    A. Taslimi

    2004-11-01

    Full Text Available Reaction of the amino acid D-phenylalanine ethyl ester (4 with cinnamaldehyde gave chiral Schiff base 5, which underwent an asymmetric Staudinger [2+2] cycloaddition reaction with phthalimidoacetyl chloride to give the monocyclic β-lactam 6 as a single stereoisomer. Ozonolysis of 6 followed by reduction with lithium aluminum tri(tert-butoxy hydride afforded the hydroxymethyl β-lactam 8. Treatment of 8 with methansulfonyl chloride gave the mesylated monocyclic β-lactam 9, which was converted to the bicyclic β-lactam 10 upon treatment with 1,8-diazabicyclo[5,4.0] undec- 7-ene (DBU. Deprotection of the phthalimido group in β-lactams 6 and 10 by methylhydrazine and subsequent acylation of the free amino β-lactams with different acyl chlorides in the presence of pyridine afforded mono and bicyclic β-lactams 14a-d and 15a-d respectively. The compounds prepared were tested against Escherichia coli, Staphilococcus citrus, Klebsiella pneumanie and Bacillus subtillis. Some of these compounds showed potential antimicrobial activities.

  7. 1: Mass asymmetric fission barriers for {sup 98}Mo; 2: Synthesis and characterization of actinide-specific chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Veeck, A.C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Livermore National Lab., CA (United States). Glenn T. Seaborg Inst. for Transactinium Science]|[Lawrence Berkeley National Lab., CA (United States). Nuclear Science Div.

    1996-08-01

    Excitation functions have been measured for complex fragment emission from the compound nucleus {sup 98}Mo, produced by the reaction of {sup 86}Kr with {sup 12}C. Mass asymmetric fission barriers have been obtained by fitting the excitation functions with a transition state formalism. The extracted barriers are {approximately} 5.7 MeV higher, on average, than the calculations of the Rotating Finite Range Model (RFRM). These data clearly show an isospin dependence of the conditional barriers when compared with the extracted barriers from {sup 90}Mo and {sup 94}Mo. Eleven different liquid/liquid extractants were synthesized based upon the chelating moieties 3,2-HOPO and 3,4-HOPO; additionally, two liquid/liquid extractants based upon the 1,2-HOPO chelating moiety were obtained for extraction studies. The Pu(IV) extractions, quite surprisingly, yielded results that were very different from the Fe(III) extractions. The first trend remained the same: the 1,2-HOPOs were the best extractants, followed closely by the 3,2-HOPOs, followed by the 3,4-HOPOs; but in these Pu(IV) extractions the 3,4-HOPOs performed much better than in the Fe(III) extractions. 129 refs.

  8. Synthesis of Highly Porous Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) Asymmetric Membranes

    KAUST Repository

    Xie, Yihui

    2016-03-24

    For the first time, self-assembly and non-solvent induced phase separation was applied to polysulfone-based linear block copolymers, reaching mechanical stability much higher than other block copolymers membranes used in this method, which were mainly based on polystyrene blocks. Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) (PtBA30k-b-PSU14k-b-PtBA30k) with a low polydispersity of 1.4 was synthesized by combining step-growth condensation and RAFT polymerization. Various advanced electron microscopies revealed that PtBA30k-b-PSU14k-b-PtBA30k assembles into worm-like cylindrical micelles in DMAc and adopts a “flower-like” arrangement with the PSU central block forming the shell. Computational modeling described the mechanism of micelle formation and morphological transition. Asymmetric nanostructured membranes were obtained with a highly porous interconnected skin layer and a sublayer with finger-like macrovoids. Ultrafiltration tests confirmed a water permeance of 555 L m-2 h-1 bar-1 with molecular weight cut-off of 28 kg/mol. PtBA segments on the membrane surface were then hydrolyzed and complexed with metals, leading to cross-linking and enhancement of antibacterial capability.

  9. 1: Mass asymmetric fission barriers for 98Mo; 2: Synthesis and characterization of actinide-specific chelating

    International Nuclear Information System (INIS)

    Veeck, A.C.; Lawrence Livermore National Lab., CA; Lawrence Berkeley National Lab., CA

    1996-08-01

    Excitation functions have been measured for complex fragment emission from the compound nucleus 98 Mo, produced by the reaction of 86 Kr with 12 C. Mass asymmetric fission barriers have been obtained by fitting the excitation functions with a transition state formalism. The extracted barriers are ∼ 5.7 MeV higher, on average, than the calculations of the Rotating Finite Range Model (RFRM). These data clearly show an isospin dependence of the conditional barriers when compared with the extracted barriers from 90 Mo and 94 Mo. Eleven different liquid/liquid extractants were synthesized based upon the chelating moieties 3,2-HOPO and 3,4-HOPO; additionally, two liquid/liquid extractants based upon the 1,2-HOPO chelating moiety were obtained for extraction studies. The Pu(IV) extractions, quite surprisingly, yielded results that were very different from the Fe(III) extractions. The first trend remained the same: the 1,2-HOPOs were the best extractants, followed closely by the 3,2-HOPOs, followed by the 3,4-HOPOs; but in these Pu(IV) extractions the 3,4-HOPOs performed much better than in the Fe(III) extractions. 129 refs

  10. Experimental and numerical investigation of the catalytic partial oxidation of methane to synthesis gas for power generation applications[Dissertation 17183

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.

    2007-07-01

    The present work addresses the catalytic partial oxidation (CPO) of methane to synthesis gas, with particular emphasis on power generation applications. A combined experimental and numerical investigation of methane partial oxidation to synthesis gas (H{sub 2}, CO) over rhodium-based catalysts has been carried out at pressures of up to 10 bar. The reactivity of the produced hydrogen and the suitably-low light-off temperatures of the CPO reactor, greatly facilitate operation of power generation gas turbines with reduced NO{sub x} emissions, stable operation with low calorific value fuels, and new combustion strategies for efficient CO{sub 2} capture. Those strategies utilize CPO of methane with oxygen (separated from air) and large exhaust gas recycle (H{sub 2}O and CO{sub 2}). An optically accessible catalytic channel-flow reactor was used to carry out Raman spectroscopy of major gas-phase species and laser induced fluorescence (LIF) of formaldehyde, in order to gain fundamental information on the catalytic and gas-phase chemical pathways. Transverse concentration profiles measured by the spontaneous Raman scattering technique determined the catalytic reactivity, while the LIF provided flame shapes and anchoring positions that, in turn, characterized the gaseous reactivity. Comparison between measurements and 2-D CFD computations, led to the validation of detailed catalytic and gas-phase reaction mechanisms. Experiments in a subscale gas-turbine honeycomb catalytic reactor have shown that the foregoing reaction mechanisms were also appropriate under gas-turbine relevant conditions with short reactant residence times. The light-off behavior of the subscale honeycomb reactor was reproduced by transient 2-D CFD computations. Ignition and extinction in CPO was studied. It was shown that, despite the chemical impact of the H{sub 2}O diluent during the transient catalytic ignition event, the light-off times themselves were largely unaffected by the exhaust gas dilution

  11. Synthesis of Silyloxy Dienes by Silylene Tranfer to Divinyl Ketones: Application to the Asymmetric Sythesis of Substituted Cyclohexanes

    Science.gov (United States)

    Ventocilla, Christian C.; Woerpel, K. A.

    2012-01-01

    Silver-catalyzed silylene transfer to divinyl ketones provided 2-silyloxy-1,3-dienes with control of stereochemistry and regioselectivity. The products participated in Diels–Alder reactions with electron-deficient alkenes and imines to form six-membered ring products diastereoselectively. Cycloaddition reactions with alkenes bearing chiral auxiliaries provided access to chiral, non-racemic cyclohexenes. The methodology therefore represents a synthesis of diastereomerically and enantiomerically pure products in a single flask. The highly substituted cyclohexene products could be functionalized stereoselectively to provide cyclohexanols after oxidation of the carbon–silicon bond. PMID:22372733

  12. Direct asymmetric vinylogous aldol reaction of allyl ketones with isatins: Divergent synthesis of 3-hydroxy-2-oxindole derivatives

    KAUST Repository

    Zhu, Bo

    2013-05-03

    6 in 1: The highly enantioselective title reaction is mediated by a bifunctional catalyst and leads to E-configured vinylogous aldol products (see scheme). These products are used as common intermediates in the synthesis of six biologically active 3-hydroxy-2-oxindole derivatives (e.g., CPC-1). Computational studies indicated that the observed stereoselectivity is a result of favorable secondary π-π* and H-bonding interactions in the transition state. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    International Nuclear Information System (INIS)

    Zhang Lin; Li Fan; Chen Yiwang; Wang Xiaofeng

    2011-01-01

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: → ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. → ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. → Thermal stability of these films is improved compared with those of physically blending ones.

  14. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lin [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Li Fan, E-mail: lfan@ncu.edu.cn [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Chen Yiwang, E-mail: ywchen@ncu.edu.cn [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang Xiaofeng [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China)

    2011-08-15

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: > ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. > ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. > Thermal stability of these films is improved compared with those of physically blending ones.

  15. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    Science.gov (United States)

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  16. Synthesis of Rh/Macro-Porous Alumina Over Micro-Channel Plate and Its Catalytic Activity Tests for Diesel Reforming.

    Science.gov (United States)

    Seong, Yeon Baek; Kim, Yong Sul; Park, No-Kuk; Lee, Tae Jin

    2015-11-01

    Macro-porous Al2O3 as the catalytic support material was synthesized using colloidal polystyrene spheres over a micro-channel plate. The colloidal polystyrene spheres were used as a template for the production of an ordered macro porous material using an alumina nitrate solution as the precursor for Al2O3. The close-packed colloidal crystal array template method was applied to the formulation of ordered macro-porous Al2O3 used as a catalytic support material over a micro-channel plate. The solvent in the mixture solution, which also contained the colloidal polystyrene solution, aluminum nitrate solution and the precursor of the catalytic active materials (Rh), was evaporated in a vacuum oven at 50 degrees C. The ordered polystyrene spheres and aluminum salt of the solid state were deposited over a micro channel plate, and macro-porous Al2O3 was formed after calcination at 600 degrees C to remove the polystyrene spheres. The catalytic activity of the Rh/macro-porous alumina supported over the micro-channel plate was tested for diesel reforming.

  17. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation

    Science.gov (United States)

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Dok Kim, Young

    2018-04-01

    NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (˜20 m2 g-1) than expected for a flat-surface structure (present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  18. Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B

    Czech Academy of Sciences Publication Activity Database

    Vomáčka, Petr; Štengl, Václav; Henych, Jiří; Kormunda, M.

    2016-01-01

    Roč. 481, NOV (2016), s. 28-38 ISSN 0021-9797 R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Sn-doped CuO * Tin doping * Copper oxide * Catalyst * Catalytic activity * Morphology Subject RIV: CA - Inorganic Chemistry Impact factor: 4.233, year: 2016

  19. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction

    Science.gov (United States)

    Li, Ziyu; Jia, Zhigang; Ni, Tao; Li, Shengbiao

    2017-12-01

    Natural cotton, featuring abundant oxygen-containing functional groups, has been utilized as a reductant to synthesize Ag nanoparticles on its surface. Through the facile and environment-friendly reduction process, the fibrous Ag/cotton composite (FAC) was conveniently synthesized. Various characterization techniques including XRD, XPS, TEM, SEM, EDS and FT-IR had been utilized to study the material microstructure and surface properties. The resulting FAC exhibited favorable activity on the catalytic reduction of 4-nitrophenol with high reaction rate. Moreover, the fibrous Ag/cotton composites were capable to form a desirable catalytic mat for catalyzing and simultaneous product separation. Reactants passing through the mat could be catalytically transformed to product, which is of great significance for water treatment. Such catalyst (FAC) was thus expected to have the potential as a highly efficient, cost-effective and eco-friendly catalyst for industrial applications. More importantly, this newly developed synthetic methodology could serve as a general tool to design and synthesize other metal/biomass composites catalysts for a wider range of catalytic applications.

  20. Synthesis of Co/N-HNTs composites and investigation on its catalytic activity for H{sub 2} generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongcui; Cheng, Zhilin; Nan, Zhaodong, E-mail: zdnan@yzu.edu.cn

    2016-11-01

    Co/N-HNTs composites were synthesized via a one-pot solvothermal method, where amine functional halloysite nanotubes (N-HNTs) were used as support materials. Effects of sulfosuccinate sodium salt (AOT), an anionic surfactant, on morphology and dispersibility of Co particles anchored at the N-HNTs were studied. The dispersibility of the Co particles was promoted with the increase of the AOT concentration. The as-obtained composite was used as a catalyst to generate H{sub 2} gas by hydrolysis of NaBH{sub 4} solution. The catalytic activity of the composite was significantly enhanced than the pure Co and Co/graphene composite at the same experimental conditions reported by our laboratory, and the catalyst was conveniently separated from the solution by a magnet. The catalytic activity was enhanced when the dispersibility of the Co particles was improved at the surface of the N-HNTs and the Co content contained in the composite was lowed. At the same time, the Co particles anchored at the inner surface of the N-HNTs resulted in higher catalytic activity, where the Co particles may bond with nitrogen atoms. The activation energy for the hydrolysis of NaBH{sub 4} was calculated to be about 15.42 kJ mol{sup −1}. The catalyst can be continuously used for four times with about the same catalytic activity. - Highlights: • Co/N-HNTs composites are synthesized. • The dispersibility and morphology of the Co particles anchored at the N-HNTs are modified by AOT. • The composite shows higher catalytic activity for production H{sub 2} gas.

  1. Synthesis of Co/N-HNTs composites and investigation on its catalytic activity for H2 generation

    International Nuclear Information System (INIS)

    Zhao, Dongcui; Cheng, Zhilin; Nan, Zhaodong

    2016-01-01

    Co/N-HNTs composites were synthesized via a one-pot solvothermal method, where amine functional halloysite nanotubes (N-HNTs) were used as support materials. Effects of sulfosuccinate sodium salt (AOT), an anionic surfactant, on morphology and dispersibility of Co particles anchored at the N-HNTs were studied. The dispersibility of the Co particles was promoted with the increase of the AOT concentration. The as-obtained composite was used as a catalyst to generate H 2 gas by hydrolysis of NaBH 4 solution. The catalytic activity of the composite was significantly enhanced than the pure Co and Co/graphene composite at the same experimental conditions reported by our laboratory, and the catalyst was conveniently separated from the solution by a magnet. The catalytic activity was enhanced when the dispersibility of the Co particles was improved at the surface of the N-HNTs and the Co content contained in the composite was lowed. At the same time, the Co particles anchored at the inner surface of the N-HNTs resulted in higher catalytic activity, where the Co particles may bond with nitrogen atoms. The activation energy for the hydrolysis of NaBH 4 was calculated to be about 15.42 kJ mol −1 . The catalyst can be continuously used for four times with about the same catalytic activity. - Highlights: • Co/N-HNTs composites are synthesized. • The dispersibility and morphology of the Co particles anchored at the N-HNTs are modified by AOT. • The composite shows higher catalytic activity for production H 2 gas.

  2. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation

    Science.gov (United States)

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-05-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method.

  3. Alkaline earth metal catalysts for asymmetric reactions.

    Science.gov (United States)

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    The group 2 alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) are among the most common elements on Earth, abundant in both the sea and the Earth's crust. Although they are familiar in our daily lives, their application to organic synthesis has, so far, been limited. Some particularly useful properties of these elements include (i) low electronegativity, (ii) a stable oxidation state of +2, meaning that they can potentially form two covalent bonds with anions, and (iii) the ability to occupy a variety of coordination sites due to their large ionic radius. Furthermore, the alkaline earth metals, found between the group 1 and group 3 elements, show mild but significant Lewis acidity, which can be harnessed to control coordinative molecules via a Lewis acid-base interaction. Taken together, these characteristics make the metals Ca, Sr, and Ba very promising components of highly functionalized acid-base catalysts. In this Account, we describe the development of chiral alkaline earth metal catalysts for asymmetric carbon-carbon bond-forming reactions. Recently prepared chiral alkaline earth metal complexes have shown high diastereo- and enantioselectivities in fundamental and important chemical transformations. We chose chiral bisoxazoline (Box) derivatives bearing a methylene tether as a ligand for chiral modification. These molecules are very useful because they can covalently coordinate to alkaline earth metals in a bidentate fashion through deprotonation of the tether portion. It was found that chiral calcium-Box complexes could successfully promote catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions with high diastereo- and enantioselectivities. Both the calcium-Box complexes and chiral strontium-bis-sulfonamide and chiral barium-BINOLate complexes could catalyze asymmetric 1,4-addition reactions with high enantioselectivities. Furthermore, we designed a calcium-neutral coordinative ligand complex as a new type of chiral alkaline

  4. Solvothermal synthesis of octahedral NiFe{sub 2}O{sub 4} nanocrystals and catalytic properties for the reduction of some aromatic nitrocompounds

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hangsong [College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 1 Beijing Eastern Road, Wuhu 241000 (China); Ni, Yonghong, E-mail: niyh@mail.ahnu.edu.cn [College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 1 Beijing Eastern Road, Wuhu 241000 (China); Xiang, Nannan [College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 1 Beijing Eastern Road, Wuhu 241000 (China); Ma, Xiang [Center of Modern Analyses, Nanjing University, Nanjing 210093 (China); Wan, Fengying [Library of Anhui Normal University, 1 Beijing Eastern Road, Wuhu 241000 (China)

    2015-05-05

    In this paper, we report the successful synthesis of octahedral NiFe{sub 2}O{sub 4} nanocrystals with room-temperature ferrimagnetism via a mixed solvothermal process at 170 °C for 15 h, using Fe(NO{sub 3}){sub 3} and NiCl{sub 2} as starting reactants. The phase and morphology of the as-prepared product is characterized by means of powder X-ray diffraction, energy dispersive spectrometry, selected area electron diffraction (SAED), (high resolution) transmission electron microscopy, and scanning electron microscopy. Experiments showed that the as-prepared octahedral NiFe{sub 2}O{sub 4} nanocrystals owned strong catalytic activity for the reduction of some aromatic nitro-compounds such as 4-nitrophenol, 2-nitroaniline, 4-nitroaniline, and 2,4-dinitrophenol. Under the presence of 9 mg NiFe{sub 2}O{sub 4} nanocrystals, the rate constants of the reductive reactions were in turn 3.16 × 10{sup −2} min{sup −1} for 4-nitrophenol, 4.28 × 10{sup −2} min{sup −1} for 2-nitroaniline, 6.79 × 10{sup −2} min{sup −1} for 4-nitroaniline, and 3.26 × 10{sup −2} min{sup −1} for 2,4-dinitrophenol. Moreover, the present catalyst could be conveniently recycled due to its magnetism. After ten cycles, its catalytic efficiency did not obviously decrease. - Highlights: • Octahedral NiFe{sub 2}O{sub 4} nanocrystals were successfully prepared by an emulsion-solvothermal route. • NiFe{sub 2}O{sub 4} nanocrystals with the room-temperature magnetism could be used as a recyclable catalyst. • NiFe{sub 2}O{sub 4} nanocrystals showed strong catalytic activity for the reduction of 4-NP in NaBH{sub 4} solution.

  5. Solvothermal synthesis of octahedral NiFe2O4 nanocrystals and catalytic properties for the reduction of some aromatic nitrocompounds

    International Nuclear Information System (INIS)

    Zheng, Hangsong; Ni, Yonghong; Xiang, Nannan; Ma, Xiang; Wan, Fengying

    2015-01-01

    In this paper, we report the successful synthesis of octahedral NiFe 2 O 4 nanocrystals with room-temperature ferrimagnetism via a mixed solvothermal process at 170 °C for 15 h, using Fe(NO 3 ) 3 and NiCl 2 as starting reactants. The phase and morphology of the as-prepared product is characterized by means of powder X-ray diffraction, energy dispersive spectrometry, selected area electron diffraction (SAED), (high resolution) transmission electron microscopy, and scanning electron microscopy. Experiments showed that the as-prepared octahedral NiFe 2 O 4 nanocrystals owned strong catalytic activity for the reduction of some aromatic nitro-compounds such as 4-nitrophenol, 2-nitroaniline, 4-nitroaniline, and 2,4-dinitrophenol. Under the presence of 9 mg NiFe 2 O 4 nanocrystals, the rate constants of the reductive reactions were in turn 3.16 × 10 −2 min −1 for 4-nitrophenol, 4.28 × 10 −2 min −1 for 2-nitroaniline, 6.79 × 10 −2 min −1 for 4-nitroaniline, and 3.26 × 10 −2 min −1 for 2,4-dinitrophenol. Moreover, the present catalyst could be conveniently recycled due to its magnetism. After ten cycles, its catalytic efficiency did not obviously decrease. - Highlights: • Octahedral NiFe 2 O 4 nanocrystals were successfully prepared by an emulsion-solvothermal route. • NiFe 2 O 4 nanocrystals with the room-temperature magnetism could be used as a recyclable catalyst. • NiFe 2 O 4 nanocrystals showed strong catalytic activity for the reduction of 4-NP in NaBH 4 solution

  6. Gold & silver nanoparticles supported on manganese oxide: Synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    Saad Alabbad

    2014-12-01

    Full Text Available Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which plays a significant role in the catalytic process. The catalyst calcined at 400 °C, gave a 100% conversion and >99% selectivity, whereas catalysts calcined at 300 and 500 °C gave a conversion of 69.51% and 19.90% respectively, although the selectivity remains >99%.

  7. Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate

    Directory of Open Access Journals (Sweden)

    Ping Cui

    2016-05-01

    Full Text Available Copper oxide (CuO nanoparticles were successfully deposited on carbon nanotubes’ (CNTs surface via complex-precipitation method, the nanocomposite was characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, X-ray powder diffraction (XRD, Raman spectroscopy, Fourier transform infrared (FT-IR and Brunauer–Emmett–Teller (BET. The catalytic performance of CNTs/CuO on ammonium perchlorate (AP decomposition was analyzed by differential thermal analyzer (DTA, the DTA results showed its excellent catalytic effect on AP decomposition, as 8 wt.% CNTs/CuO was added in AP, the second exothermic peak temperature decreased by 158 °C. Such composite may be a promising candidate for catalyzing the AP thermal decomposition.

  8. Synthesis and characterization of type silicoaluminophosphates catalytic support; Sintese e caracterizacao de suportes cataliticos do tipo silicoaluminofosfatico

    Energy Technology Data Exchange (ETDEWEB)

    Leite, C.E.T.; Carvalho, M.W.N.C.; Pereira, K.R.O., E-mail: carlosedisio@hotmail.co [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica. Lab. de Catalise, Adsorcao e Biocombustiveis

    2010-07-01

    The refining processes, the catalytic hydrocracking is the future of diesel oil in Brazil and the first units are already scheduled to be inaugurated. Among the catalysts used in this process, silicoaluminophosphates (SAPO's) have considerable potential for use as they have been effective in the isomerization of n-alkanes, the isomerization of olefins and alkylation of aromatics. Because of this, the objective is to develop catalysts that will be used in hydrocracking reactions. The media like SAPO-5 were synthesized with different ratios silicon/aluminum, which is used as a catalytic support and have the function of crack organic molecules, since it has acidic character. The materials were characterized by techniques: X-ray diffraction, chemical analysis and textural by BET. After summarizing the media found that they had agreements with the crystalline phases presented in the literature.(author)

  9. Ruthenium complexes with dendritic ferrocenyl phosphanes: synthesis, characterization, and application in the catalytic redox isomerization of allylic alcohols.

    Science.gov (United States)

    Neumann, Paul; Dib, Hanna; Sournia-Saquet, Alix; Grell, Toni; Handke, Marcel; Caminade, Anne-Marie; Hey-Hawkins, Evamarie

    2015-04-20

    An efficient system for the catalytic redox isomerization of the allylic alcohol 1-octen-3-ol to 3-octanone is presented. The homogeneous ruthenium(II) catalyst contains a monodentate phosphane ligand with a ferrocene moiety in the backbone and provides 3-octanone in quantitative yields. The activity is increased by nearly 90 % with respect to the corresponding triphenyl phosphane ruthenium(II) complex. By grafting the catalyst at the surface of a dendrimer, the catalytic activity is further increased. By introducing different spacers between ferrocene and phosphorus, the influence on the electronic properties of the complexes is shown by evaluating the electrochemical behavior of the compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Facile and rapid synthesis of divers xanthene derivatives using lanthanum(III chloride/chloroacetic acid as an efficient and reusable catalytic system under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Pouramiri Behjat

    2017-01-01

    Full Text Available LaCl3/ClCH2COOH was used as an efficient, and recyclable catalytic system for synthesis of 11H-benzo[a]xanthene-11-one, hexahydro-1H-xanthene- 1,8(2H-dione and 11-aryl-10H-diindeno[1,2-b:2′,1′-e]pyran-10,12(11H-dione derivatives via a one-pot three-component reaction of aldehydes, 2-naphthol, and cyclic 1,3-dicarbonyl compounds. The reactions proceeded rapidly at 70°C under solvent-free conditions and the desired products were obtained in good to excellent yields.

  11. Synthesis, characterization and photo catalytic activity of titanium oxide modified with nitrogen; Sintesis, caracterizacion y actividad fotocatalitica de oxido de titanio modificado con nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Enriquez, J. M.; Garcia Alamilla, R.; Garcia Serrano, L. A.; Cueto Hernandez, A.

    2011-07-01

    Titanium oxides (TiO{sub 2}) were synthesized by precipitation of titanium tetrachloride (TiCl{sub 4}) using ammonium hydroxide (NH{sub 4}OH). The synthesized materials were characterized by means of nitrogen physisorption, X-ray diffraction, infrared spectroscopy, U.V.-visible diffuse reflectance spectroscopy and the photo catalytic activity of the samples were measured by the degradation of the methyl orange. By means of this synthesis method we have doped the titanium oxide structure with nitrogen (N-TiO{sub 2}), stabilizing the anatase phase and obtaining meso porous and nanocrystalline materials. The titanium oxide with higher specific surface area (132 m{sup 2}/g) degraded the azo-compound to 100% in 180 min of reaction. (Author) 33 refs.

  12. Synthesis and visible-light-induced catalytic activity of Ag{sub 2}S-coupled TiO{sub 2} nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Xie Yi; Heo, Sung Hwan; Kim, Yong Nam; Yoo, Seung Hwa; Cho, Sung Oh, E-mail: socho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong, Yuseong, Daejeon 305-701 (Korea, Republic of)

    2010-01-08

    We present the synthesis and visible-light-induced catalytic activity of Ag{sub 2}S-coupled TiO{sub 2} nanoparticles (NPs) and TiO{sub 2} nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag{sub 2}S NPs and TiO{sub 2} NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag{sub 2}S NPs on TiO{sub 2} NWs was created. Due to the coupling with such a low bandgap material as Ag{sub 2}S, the TiO{sub 2} nanocomposites could have a visible-light absorption capability much higher than that of pure TiO{sub 2}. As a result, the synthesized Ag{sub 2}S/TiO{sub 2} nanocomposites exhibited much higher catalytic efficiency for the decomposition of methyl orange than commercial TiO{sub 2} (Degussa P25, Germany) under visible light.

  13. Azadirachta indica plant-assisted green synthesis of Mn3O4 nanoparticles: Excellent thermal catalytic performance and chemical sensing behavior.

    Science.gov (United States)

    Sharma, Jitendra Kumar; Srivastava, Pratibha; Ameen, Sadia; Akhtar, M Shaheer; Singh, Gurdip; Yadava, Sudha

    2016-06-15

    The leaf extract of Azadirachta indica (Neem) plant was utilized as reducing agent for the green synthesis of Mn3O4 nanoparticles (NPs). The crystalline analysis demonstrated the typical tetragonal hausmannite crystal structure of Mn3O4, which confirmed the formation of Mn3O4 NPs without the existence of other oxides. Green synthesized Mn3O4 NPs were applied for the catalytic thermal decomposition of ammonium perchlorate (AP) and as working electrode for fabricating the chemical sensor. The excellent catalytic effect for the thermal decomposition of AP was observed by decreasing the decomposition temperature by 175 °C with single decomposing step. The fabricated chemical sensor based on green synthesized Mn3O4 NPs displayed high, reliable and reproducible sensitivity of ∼569.2 μA mM(-1) cm(-2) with reasonable limit of detection (LOD) of ∼22.1 μM and the response time of ∼10 s toward the detection of 2-butanone chemical. A relatively good linearity in the ranging from ∼20 to 160 μM was detected for Mn3O4 NPs electrode based 2-butanone chemical sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Synthesis, characterization and Hydroformylation Catalytic Activity of 1-hexene of Water-soluble RuCl2(DMSO2(PySO3Na2 Complex

    Directory of Open Access Journals (Sweden)

    Yuraima Fonseca

    2012-05-01

    Full Text Available In this work we describe the synthesis and characterization of a new water soluble ruthenium complex [Ru(Cl2(DMSO2(PySO3Na2] (complex 1; where [PySO3Na] is the sodium salt of p-sulphonated pyridine. Complex 1 was obtained by slow addition of ligand to a cis-[Ru(Cl2(DMSO4] complex solution under inert atmosphere, the mixture was refluxed for 1 hour. Complex 1 was characterized by FT-IR and 1H NMR techniques. Complex 1 was active in the catalytic 1-hexene hydroformylation and a preliminary test with real naphtha in a biphasic reaction mixture (water/toluene shows little activity. Temperature, pressure, and substrate/catalyst ratio were studied with 1-hexene substrate. Catalysis with metallic particles was tested with a mercury drop trial giving negative results. The reuse of the aqueous phase in several reactions under the same experimental conditions showed loss of catalytic activity after the second reuse. Complex 1 is active for hydroformylation reaction of 1-hexene even in the presence of thiophene compounds.

  15. Fe-Containing Zeolites for NH3-SCR of NOx: Effect of Structure, Synthesis Procedure, and Chemical Composition on Catalytic Performance and Stability.

    Science.gov (United States)

    Martín, Nuria; Vennestrøm, Peter N R; Thøgersen, Joakim R; Moliner, Manuel; Corma, Avelino

    2017-09-27

    The direct preparation of different iron-containing Beta and CHA zeolites has been attempted under diverse synthesis conditions, including in alkaline and fluoride media, to evaluate the influence of their physicochemical properties on the selective catalytic reduction (SCR) of NO x using NH 3 as reductant. Of the different Fe-Beta zeolites, the sample prepared in the absence of alkali cations with a Si/Al ratio of around 13 showed high NO conversion values (>90 %). However, this catalyst suffered from severe deactivation when aged at high temperatures in the presence of steam. The preparation of more hydrophobic Fe-Beta zeolites did not improve the resistance of the catalyst against steam. In contrast, Fe-CHA zeolites prepared by a one-pot method under alkaline conditions with a Si/Al ratio of around 13 by using N,N,N-trimethyladamantylammonium as template not only showed excellent catalytic activity but also high hydrothermal stability, especially when sodium cations were selectively removed. Moreover, the Fe-CHA material synthesized by using the less expensive tetraethylammonium template also resulted in an active and hydrothermally stable catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    Science.gov (United States)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  17. Iron piano-stool complexes containing NHC ligands outfitted with pendent arms: synthesis, characterization, and screening for catalytic transfer hydrogenation

    Science.gov (United States)

    Parthapratim Das; Thomas Elder; William W. Brennessel; Stephen C. Chmely

    2016-01-01

    Catalysis is a fundamental technology that is widely used in the food, petrochemical, pharmaceutical, and agricultural sectors to produce chemical products on an industrial scale. Well-defined molecular organometallic species are a cornerstone of catalytic methodology, and the activity and selectivity of these complexes can be modulated by judicious choice of metal and...

  18. Catalytic fluorination s: the synthesis of hydro fluorocarbon (HFCs); Fluorations catalytiques: preparation d'hydrofluorocarbures (HFC)

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, S. [Faculte des Sciences, LACCO, UMR 6503, 86 - Poitiers (France)

    2006-10-15

    Catalytic processes in the fluorine chemistry are developed for example in the selective preparation of substitutes of chlorofluorocarbons, such as the hydro-fluorocarbon CF{sub 3}CH{sub 2}F used as a refrigeration agent to replace the CF{sub 2}CICCIF{sub 2}. A better understanding of the catalyst and of the various mechanisms involved is required in order to increase the selectivity towards the wanted fluorinated products. (authors)

  19. Gold & silver nanoparticles supported on manganese oxide: Synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol

    OpenAIRE

    Alabbad, Saad; Adil, S.F.; Assal, M.E.; Khan, Mujeeb; Alwarthan, Abdulrahman; Siddiqui, M. Rafiq H.

    2014-01-01

    Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD) and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which play...

  20. Mononuclear Nickel(II Complexes with Schiff Base Ligands: Synthesis, Characterization, and Catalytic Activity in Norbornene Polymerization

    Directory of Open Access Journals (Sweden)

    Yi-Mei Xu

    2017-03-01

    Full Text Available The nickel(II catalyst has manifested higher catalytic activity compared to that of other late transition metal catalysts for norbornene polymerization. Therefore, several structurally similar trans-nickel(II compounds of N,O-chelate bidentate ligands were synthesized and characterized. Both the electronic effect and the steric hindrance influence polymerization. The molecular structures of 2, 4 and 5 were further confirmed by single-crystal X-ray diffraction.

  1. Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B.

    Science.gov (United States)

    Vomáčka, Petr; Štengl, Václav; Henych, Jiří; Kormunda, Martin

    2016-11-01

    The uniform Sn-doped CuO nanoparticles were synthesized by a simple solution method at a low temperature. The prepared samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy techniques (HRSEM, HRTEM, SAED, STEM and EDS elemental mapping), atomic force microscopy (AFM), UV/Vis spectroscopy, nitrogen physisorption (BET) and by evaluation of the catalytic activity on the degradation of Rhodamine B. The tin doping had a considerable influence on the morphology of CuO. The gradual narrowing of the particles morphology in the crystallographic [010] direction was observed with increasing the dopant concentration. The plate-like, rectangularsquare and rod-like CuO nanoparticles were obtained. The mechanism of a crystal growth of CuO associated with doping is proposed. The tin doping also affected the structural and optical properties of CuO. Increasing the amount of a dopant led to a red-shift of a band gap from 1.33 to 1.18eV. The incorporation of tin into the structure of copper oxide was confirmed by XRD and distribution of tin mapped by EDS analysis. The good catalytic properties of the as-prepared doped material were demonstrated by the enhanced catalytic removal of Rhodamine B in the presence of H2O2. The undoped CuO nanosheets reached only 24% efficiency in the removal of Rhodamine B within two hours. The best result exhibited CuO_050Sn sample containing 4at.% of tin and the degradation of Rhodamine B reached 99% within the same time. We have demonstrated a simple, scalable process for the preparation of catalytically very active Sn-doped CuO nanoparticles with varying properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Novel Co(II) phthalocyanines of extended periphery and their water-soluble derivatives. Synthesis, spectral properties and catalytic activity

    Science.gov (United States)

    Filippova, Anna; Vashurin, Artur; Znoyko, Serafima; Kuzmin, Ilya; Razumov, Mikhail; Chernova, Alena; Shaposhnikov, Gennady; Koifman, Oscar

    2017-12-01

    Novel complexes of cobalt and copper with substituted phthalocyanines were synthesized and characterized. Their water-soluble derivatives were obtained by sulfonation under mild conditions and structurally proved. Aggregation equilibrium in water mediums was shown and influence of geometrical and electron parameters of macroheterocycle peripheral substituents on these processes was established. Catalytic activity upon liquid-phase oxidation of N,N-diethylcarbamodithiolate to thiuram E was studied. Kinetic parameters of substrate oxidation in presence of cobalt phthalocyanines were considered.

  3. Sonochemical synthesis of Fe3O4@NH2-mesoporous silica@Polypyrrole/Pd: A core/double shell nanocomposite for catalytic applications.

    Science.gov (United States)

    Snoussi, Youssef; Bastide, Stéphane; Abderrabba, Manef; Chehimi, Mohamed M

    2018-03-01

    There is a growing interest in sonochemistry for either the controlled design of nanostructured materials or for the synthesis of polymers and polymer composites. It is fast and highly efficient method that provides materials with exceptional and enhanced structural and chemical properties. Herein, we take advantage of the versatile sonochemical process in order to design core/double layered shell nanocomposite denoted by Fe 3 O 4 @NH 2 -mesoporous silica@ PPy/Pd. This magnetic, multicomponent material was designed in a three-step sono-process: (i) synthesis of magnetic core, (ii) cure of mesoporous silica, and (iii) sonochemical deposition of PPy/Pd. This last step was achieved within 1 h, a much shorter duration compared to conventional routes which usually take several hours to few days. The final nanocomposite can be recovered with a simple magnetic stick. X-ray diffraction patterns highlighted the presence of zerovalent palladium on the surface of the magnetic nanocomposite. The catalytic activity of the solid support was investigated by the study of the p-nitrophenol (p-NP) reduction and the Methyl Orange (MO) degradation in aqueous media. Results showed a very high catalytic efficiency, a high conversion yield of p-NP into 4-aminophenol (more than 94%) and an almost entire degradation of MO (99%) with a fast kinetics fitting to the first order model. This work demonstrates conclusively the benefits of sonochemistry in the design of metal nanoparticle-decorated inorganic/polymer hybrid system with outstanding performances. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mixture of fuels approach for the synthesis of SrFeO(3-δ) nanocatalyst and its impact on the catalytic reduction of nitrobenzene.

    Science.gov (United States)

    Naveenkumar, Akula; Kuruva, Praveena; Shivakumara, Chikkadasappa; Srilakshmi, Chilukoti

    2014-11-17

    A modified solution combustion approach was applied in the synthesis of nanosize SrFeO(3-δ) (SFO) using single as well as mixture of citric acid, oxalic acid, and glycine as fuels with corresponding metal nitrates as precursors. The synthesized and calcined powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis and derivative thermogravimetric analysis (TG-DTG), scanning electron microscopy, transmission electron microscopy, N2 physisorption methods, and acidic strength by n-butyl amine titration methods. The FT-IR spectra show the lower-frequency band at 599 cm(-1) corresponds to metal-oxygen bond (possible Fe-O stretching frequencies) vibrations for the perovskite-structure compound. TG-DTG confirms the formation temperature of SFO ranging between 850-900 °C. XRD results reveal that the use of mixture of fuels in the preparation has effect on the crystallite size of the resultant compound. The average particle size of the samples prepared from single fuels as determined from XRD was ∼50-35 nm, whereas for samples obtained from mixture of fuels, particles with a size of 30-25 nm were obtained. Specifically, the combination of mixture of fuels for the synthesis of SFO catalysts prevents agglomeration of the particles, which in turn leads to decrease in crystallite size and increase in the surface area of the catalysts. It was also observed that the present approach also impacted the catalytic activity of the SFO in the catalytic reduction of nitrobenzene to azoxybenzene.

  5. Direct catalytic enantio- and diastereoselective Mannich reaction of isocyanoacetates and ketimines.

    Science.gov (United States)

    Ortín, Irene; Dixon, Darren J

    2014-03-24

    A catalytic asymmetric synthesis of imidazolines with a fully substituted β-carbon atom by a Mannich-type addition/cyclization reaction of isocyanoacetate pronucleophiles and N-diphenylphosphinoyl ketimines has been developed. When a combination of a cinchona-derived aminophosphine precatalyst and silver oxide was employed as a binary catalyst system, good reactivity, high diastereoselectivities (up to 99:1 d.r.), and excellent enantioselectivities (up to 99% ee) were obtained for a range of substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A non-catalytic role for inositol 1,3,4,5,6-pentakisphosphate 2-kinase in the synthesis of ribosomal RNA.

    Science.gov (United States)

    Brehm, Maria A; Wundenberg, Torsten; Williams, Jason; Mayr, Georg W; Shears, Stephen B

    2013-01-15

    Fundamental to the life and destiny of every cell is the regulation of protein synthesis through ribosome biogenesis, which begins in the nucleolus with the production of ribosomal RNA (rRNA). Nucleolar organization is a highly dynamic and tightly regulated process; the structural factors that direct nucleolar assembly and disassembly are just as important in controlling rRNA synthesis as are the catalytic activities that synthesize rRNA. Here, we report that a signaling enzyme, inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5K) is also a structural component in the nucleolus. We demonstrate that IP5K has functionally significant interactions with three proteins that regulate rRNA synthesis: protein kinase CK2, TCOF1 and upstream-binding-factor (UBF). Through molecular modeling and mutagenic studies, we identified an Arg-Lys-Lys tripeptide located on the surface of IP5K that mediates its association with UBF. Nucleolar IP5K spatial dynamics were sensitive to experimental procedures (serum starvation or addition of actinomycin D) that inhibited rRNA production. We show that IP5K makes stoichiometrically sensitive contributions to the architecture of the nucleoli in intact cells, thereby influencing the degree of rRNA synthesis. Our study adds significantly to the biological significance of IP5K; previously, it was the kinase activity of this protein that had attracted attention. Our demonstration that IP5K 'moonlights' as a molecular scaffold offers an unexpected new example of how the biological sophistication of higher organisms can arise from gene products acquiring multiple functions, rather than by an increase in gene number.

  7. In Situ Study of Catalytic Processes: Neutron Diffraction of a Methanol Synthesis Catalyst at Industrially Relevant Pressure

    OpenAIRE

    Kandemir, T.; Girgsdies, F.; Hansen, T.; Liss, K.; Kasatkin, I.; Kunkes, E.; Wowsnick, G.; Jacobsen, N.; Schlögl, R.; Behrens, M.

    2013-01-01

    Studying the workplace: An industrial methanol synthesis catalyst operating at high pressure was studied by in situ neutron diffraction. The peculiar microstructure of Cu/ZnO/Al2O3 nanocatalysts was found to be stable under reaction conditions. Stacking fault annealing and brass formation was only observed at temperatures higher than used in the methanol synthesis process, providing support for active role of defects in this catalyst system.

  8. Tuning Catalytic Performance through a Single or Sequential Post-Synthesis Reaction(s) in a Gas Phase

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Junjun [Department; Department; Zhang, Shiran [Department; Department; Choksi, Tej [Department; Nguyen, Luan [Department; Department; Bonifacio, Cecile S. [Department; Li, Yuanyuan [Department; Zhu, Wei [Department; Department; College; Tang, Yu [Department; Department; Zhang, Yawen [College; Yang, Judith C. [Department; Greeley, Jeffrey [Department; Frenkel, Anatoly I. [Department; Tao, Franklin [Department; Department

    2016-12-05

    Catalytic performance of a bimetallic catalyst is determined by geometric structure and electronic state of the surface or even the near-surface region of the catalyst. Here we report that single and sequential postsynthesis reactions of an as-synthesized bimetallic nanoparticle catalyst in one or more gas phases can tailor surface chemistry and structure of the catalyst in a gas phase, by which catalytic performance of this bimetallic catalyst can be tuned. Pt–Cu regular nanocube (Pt–Cu RNC) and concave nanocube (Pt–Cu CNC) are chosen as models of bimetallic catalysts. Surface chemistry and catalyst structure under different reaction conditions and during catalysis were explored in gas phase of one or two reactants with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The newly formed surface structures of Pt–Cu RNC and Pt–Cu CNC catalysts strongly depend on the reactive gas(es) used in the postsynthesis reaction(s). A reaction of Pt–Cu RNC-as synthesized with H2 at 200 °C generates a near-surface alloy consisting of a Pt skin layer, a Cu-rich subsurface, and a Pt-rich deep layer. This near-surface alloy of Pt–Cu RNC-as synthesized-H2 exhibits a much higher catalytic activity in CO oxidation in terms of a low activation barrier of 39 ± 4 kJ/mol in contrast to 128 ± 7 kJ/mol of Pt–Cu RNC-as synthesized. Here the significant decrease of activation barrier demonstrates a method to tune catalytic performances of as-synthesized bimetallic catalysts. A further reaction of Pt–Cu RNC-as synthesized-H2 with CO forms a Pt–Cu alloy surface, which exhibits quite different catalytic performance in CO oxidation. It suggests the capability of generating a different surface by using another gas. The capability of tuning surface chemistry and structure of bimetallic catalysts was also demonstrated in restructuring of Pt–Cu CNC-as synthesized.

  9. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications.

    Science.gov (United States)

    Ramkumar, V Sri; Pugazhendhi, A; Prakash, S; Ahila, N K; Vinoj, G; Selvam, S; Kumar, G; Kannapiran, E; Rajendran, R Babu

    2017-08-01

    In the recent years, synthesis of nanomaterials using seaweeds and their diverse applications is escalating research in modern era. Among the noble metals, platinum nanoparticles (PtNPs) are of great importance owing to their catalytic property and less toxicity. The significance of this work is a simple one-step synthesis of PtNPs using aqueous extract of Indian brown seaweed Padina gymnospora and their catalytic activity with a polymer Polyvinylpyrrolidone (PVP) as PVP/PtNPs nanocomposite towards antimicrobial, haemolytic, cytotoxic (Artemia salina) and antioxidant properties. Fourier Transform Infrared (FT-IR) spectrum results showed diversified functional groups (biomoeities such as carbohydrates and proteins) present in the seaweed extract is responsible for the reduction of platinum ions (Pt + ) to PtNPs. The seaweed mediated PtNPs was characterized by UV-vis spectrophotometer, X-ray diffraction (XRD) pattern, Field Emission Scanning Electron Microscopy (FESEM) equipped with Energy Dispersive X-ray (EDX) spectroscopy and High Resolution Transmission Electron Microscopy (HRTEM) analysis. The synthesized PtNPs was found to be truncated octahedral in shape with the range of 5-50nm. Crystalline nature of the nanoparticles was evidenced by Selected Area Electron Diffraction (SAED) pattern with bright circular spots corresponding to (111), (200), (220) and (311) Bragg's reflection planes. The size of the PtNPs was further evidenced by Dynamic Light Scattering (DLS) analysis and it is originate to be stable at -22.5mV through Zeta Potential (ZP) analysis. The present study shows that the catalytic behavior of PtNPs as polymer/metal nanocomposite (PVP/PtNPs) preparation for an antibacterial activity against seven disease causing pathogenic bacterial strains with the maximum activity against Escherichia coli (15.6mm) followed by Lactococcus lactis (14.8mm) and Klebsiella pneumoniae (14.4mm). But no haemolytic activity was seen at their effective bactericidal

  10. The Origin of Remarkable Chromatographic Differences in Novel Azulenyl-1,5-diols; & Synthesis and Use of Phosphinine and Phosphabarrelene Ligands for Asymmetric Catalysis

    Science.gov (United States)

    Horgen, Dana Ann

    The synthesis, characterization and analysis of novel chiral molecules advance many areas of synthetic organic chemistry, both industrially and academically. This work touches on three of the major methods for obtaining enantiomerically pure compounds. Based on the observation of a remarkably large difference in the silica TLC mobility of a pair of azulene 1,5-diol diastereomers, a series of such azulene 1,5-diols were prepared. Every pair of diastereomers was especially well separated, and X-ray crystallography revealed a conformational explanation of the large differences in mobility. The separation of the diol enantiomers was then studied on two chiral HLPC columns. The enantiomers were well-resolved, the separation appearing to benefit from the presence of the azulene ring. In addition, the more polar diastereomers on silica TLC gave dramatically better enantiomer separations on a Chiralcel-OD-H column. Very few chiral phosphinine and phosphabarrelene ligands have been reported in the literature but have shown promise as good ligands for asymmetric catalysis. Our group had previously synthesized a C2-symmetric chiral bis-camphorphosphinine and the derived bis-camphorphosphabarrelene but neither had been tested as ligands for hydroformylation. In this work, optimization of the synthesis of these two compounds was undertaken. In addition, modifications to the structure of these molecules that incorporated electron donating (N,N-dimethylaminophenyl-) or electron withdrawing (trifluoromethyl-) substituents were made in an attempt to affect the electronic nature of the phosphorus atom. Steric modifications were also done to create a more hindered environment around the phosphorus atom. The activity and selectivity of bis-camphorphosphinine, bis-camphorphosphabarrelene and other chiral phosphinine molecules serving as ligands in the rhodiumcatalyzed hydroformylation of styrene were compared to other phosphorus ligands recently published in the literature. All of

  11. Palladium catalysed asymmetric alkylation of benzophenone Schiff ...

    Indian Academy of Sciences (India)

    Dongdaemun-Gu, Seoul 130-701, Republic of Korea. bDepartment of ..... Anionic effect of imidazolium based ionic liquids in catalytic asymmetric PT alkylationa promoted by palladium catalyst.b. Entry ... d: compared with the run involving catalyst only under similar PT conditions (entry 10, table 1) throw some light in this ...

  12. A new oxidovanadium(IV) Schiff base complex containing asymmetric tetradentate ONN′O′ Schiff base ligand: synthesis, characterization, crystal structure determination, thermal study and catalytic activity

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Ghavami, A.; Eigner, Václav; Dušek, Michal; Khalaji, A.D.

    2015-01-01

    Roč. 26, č. 6 (2015), s. 779-784 ISSN 1001-8417 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : oxidovanadium(IV) * Schiff base * crystal structure * nanoparticle * epoxidation Subject RIV: CC - Organic Chemistry Impact factor: 1.947, year: 2015

  13. Catalytic aziridination of electron-deficient olefins with an N-chloro-N-sodio carbamate and application of this novel method to asymmetric synthesis.

    Science.gov (United States)

    Minakata, Satoshi; Murakami, Yuta; Tsuruoka, Ryoji; Kitanaka, Shinsuke; Komatsu, Mitsuo

    2008-12-21

    A new method for the aziridination of electron-deficient olefins using an N-chloro-N-sodio carbamate is described; the reaction was promoted by phase-transfer catalysis (solid-liquid) and afforded aziridines from alpha,beta-unsaturated ketones, esters, sulfones and amides.

  14. Catalytic Asymmetric Synthesis of Both Enantiomers of 4‑Substituted 1,4-Dihydropyridines with the Use of Bifunctional Thiourea-Ammonium Salts Bearing Different Counterions

    Directory of Open Access Journals (Sweden)

    Kohzo Yoshida

    2010-11-01

    Full Text Available Organoammonium salts composed of a Brønsted acid and an anilinothiourea promoted the Michael addition of β-keto esters and α,β-unsaturated aldehydes in the presence of primary amines to give functionalized 1,4-dihydropyridines enantioselectively. With the use of the different Brønsted acids such as DFA and HBF4 with the same bifunctional thiourea, both enantiomers of 4-substituted 1,4-dihydropyridine were synthesized from the same starting materials.

  15. Binuclear ruthenium(III) bis(thiosemicarbazone) complexes: synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol.

    Science.gov (United States)

    Mohamed Subarkhan, M; Ramesh, R

    2015-03-05

    A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E=P or As; X=Cl or Br; L=NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d(5)) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx≠gy≠gz) at 77K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (Ru(III)-Ru(III)/Ru(IV)-Ru(IV); Ru(III)-Ru(III)/Ru(II)-Ru(II)) within the potential range of 0.38-0.86V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent Ru(V)O species is proposed as catalytic intermediate for the catalytic cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synthesis and Catalytic Performances of a Novel Zn-MOF Catalyst Bearing Nickel Chelating Diimine Carboxylate Ligands for Ethylene Oligomerization

    Directory of Open Access Journals (Sweden)

    Suyan Liu

    2015-01-01

    Full Text Available A novel Zn-MOF[Zn3(OH2L2] was synthesized from dicarboxylate ligands with diimine groups (1,4-bis(4-CO2HC6H4-2,3-dimethyl-1,4-diazabutadiene. The physicochemical properties of the material were characterized by a series of technologies including XRD, SEM, and ICP. In order to adapt to the ethylene oligomerization process, a catalyst [Zn3OH2L1Ni2] (denoted as Cat.A possessing active Ni2+ centers was prepared by a postsynthetic treatment method using dichloride nickel as a nickel source in this work. For comparison, α-diimine ligands with/without dicarboxylic acid groups reacted with dichloride nickel to obtain homogenous Cat.B and Cat.C, respectively. The effects of reaction parameters, including n(Al/n(Ni, temperature, and pressure on the oligomerization activities and oligomers distribution were investigated. The results demonstrated that all of catalysts used with diethylaluminum chloride were active for the ethylene oligomerization. Among them, Cat.A and Cat.B showed higher catalytic activities and higher selectivities to low-carbon α-olefins at atmospheric pressure. The Cat.A exhibited the optimal catalytic activity [6.7 × 105 g/(mol·Ni·h·atm] for C4 (91.8% under the conditions of Al/Ni = 1500, P = 1.0 atm, T = 20°C. In addition, Cat.A and Cat.B presented large amount of ethylene polymer, while Cat.C had a higher catalytic activity of ethylene oligomerization at high pressure.

  17. Synthesis, spectral, characterization, catalytic and biological studies of new RuII N2O Schiff base complexes

    International Nuclear Information System (INIS)

    Balasubramanian, K.P.; Manivannan, S.; Chinnusamy, V.

    2008-01-01

    Complexes of the type (RuCl(CO)(B)(L)) (B = PPh 3 , AsPh 3 , py or pip; L monobasic tridentate Schiff base) have been synthesized by the reaction of equimolar amounts of (RuHCl(CO)(EPh 3 ) 2 (B)) and Schiff bases in benzene. The resulting complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. An octahedral structure has been assigned to all these complexes. The new complexes have been exhibit catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in the presence of N-methylmorpholine-N-oxide as co-oxidant. (author)

  18. Near-Monodisperse Ni-Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yawen; Huang, Wenyu; Habas, Susan E.; Kuhn, John N.; Grass, Michael E.; Yamada, Yusuke; Yang, Peidong; Somorjai, Gabor A.

    2008-07-22

    Near-monodisperse Ni{sub 1-x}Cu{sub x} (x = 0.2-0.8) bimetallic nanocrystals were synthesized by a one-pot thermolysis approach in oleylamine/1-octadecene, using metal acetylacetonates as precursors. The nanocrystals form large-area 2D superlattices, and display a catalytic synergistic effect in the hydrolysis of NaBH{sub 4} to generate H{sub 2} at x = 0.5 in a strongly basic medium. The Ni{sub 0.5}Cu{sub 0.5} nanocrystals show the lowest activation energy, and also exhibit the highest H{sub 2} generation rate at 298 K.

  19. Synthesis of carbon nanotubes from acetylene on the FeCoMgO catalytic system obtained by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Biris, A R; Simon, S; Lupu, D; Misan, I [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Biris, A S; Dervishi, E; Li, Z; Watanabe, F [UALR Nanotechnology Center, University of Arkansas, 2801 S University Ave, Little Rock, AR 72204 (United States); Lucaci, M, E-mail: alexandru.biris@itim-cj.r [National Institute for Research and Development in Electrical Engineering ICPE-CA 313 Splaiul Unirii, 030138 Bucharest (Romania)

    2009-08-01

    Highly crystalline multi wall carbon nanotubes have been synthesized by RF-CVD from acetylene at 850{sup 0}C over a Fe:Co:MgO catalyst. The catalytic system was obtained by mixing for 100 h Fe, Co and MgO powders in a ball milling device under petroleum ether environment, followed by oxidation in air at 500{sup 0}C for 24 h. Most of the nanotubes had external diameters in order of dozens of nm and lengths of microns, resulting in an aspect ration of over 1000. Their external to internal diameter ratio varied between 2.5 and 3.

  20. Catalytic NH3 Synthesis using N2 /H2 at Molecular Transition Metal Complexes: Concepts for Lead Structure Determination using Computational Chemistry.

    Science.gov (United States)

    Hölscher, Markus; Leitner, Walter

    2017-09-07

    While industrial NH 3 synthesis based on the Haber-Bosch-process was invented more than a century ago, there is still no molecular catalyst available which reduces N 2 in the reaction system N 2 /H 2 to NH 3 . As the many efforts of experimentally working research groups to develop a molecular catalyst for NH 3 synthesis from N 2 /H 2 have led to a variety of stoichiometric reductions it seems justified to undertake the attempt of systematizing the various approaches of how the N 2 molecule might be reduced to NH 3 with H 2 at a transition metal complex. In this contribution therefore a variety of intuition-based concepts are presented with the intention to show how the problem can be approached. While no claim for completeness is made, these concepts intend to generate a working plan for future research. Beyond this, it is suggested that these concepts should be evaluated with regard to experimental feasibility by checking barrier heights of single reaction steps and also by computation of whole catalytic cycles employing density functional theory (DFT) calculations. This serves as a tool which extends the empirically driven search process and expands it by computed insights which can be used to rationalize the various challenges which must be met. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The synthesis and characterisation of MDMA derived from a catalytic oxidation of material isolated from black pepper reveals potential route specific impurities.

    Science.gov (United States)

    Plummer, Christopher M; Breadon, Thomas W; Pearson, James R; Jones, Oliver A H

    2016-05-01

    This work examines the chemical synthesis of 3,4-methylenedioxy-N-methylamphetamine (MDMA) from piperonal prepared via a catalytic ruthenium tetroxide oxidation of piperine extracted from black pepper. A variety of oxidation conditions were experimented with including different solvent systems and co-oxidants. A sample of prepared piperonal was successfully converted into MDMA via 3,4-methylenedioxyphenyl-2-nitropropene (MDP2NP) and 3,4-methylenedioxyphenyl-2-propanone (MDP2P) and the impurities within each product characterised by GC-MS to give a contaminant profile of the synthetic pathway. Interestingly, it was discovered that a chlorinated analogue of piperonal (6-chloropiperonal) was created during the oxidation process by an as yet unknown mechanism. This impurity reacted alongside piperonal to give chlorinated analogues of each precursor, ultimately yielding 2-chloro-4,5-methylenedioxymethamphetamine (6-Cl-MDMA) as an impurity within the MDMA sample. The methodology developed is a simple way to synthesise a substantial amount of precursor material with easy to obtain reagents. The results also show that chlorinated MDMA analogues, previously thought to be deliberately included adulterants, may in fact be route specific impurities with potential application in determining the origin and synthesis method of seized illicit drugs. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Synthesis of LaNiO{sub 3} perovskite by the modified proteic gel method and study of catalytic properties in the syngas production

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose C.; Mesquita, Maria E.; Pedrosa, Anne M. Garrido, E-mail: annemgp@ufs.br, E-mail: annemgp@yahoo.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Quimica e Engenharia Quimica; Souza, Marcelo J.B. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Engenharia Quimica; Ruiz, Juan A.C. [Centro de Tecnologias do Gas e Energias Renovaveis (CTGAS-ER), Natal, RN (Brazil). Laboratorio de Processamento do Gas; Melo, Dulce M.A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Ciencias Exatas e da Terra. Depaertamento de Quimica

    2012-10-15

    This work describes a study on the synthesis of LaNiO{sub 3} perovskites via the modified proteic gel method, varying collagen content and on the catalytic activity of LaNiO{sub 3} and LaNiO{sub 3}/Al{sub 2}O{sub 3} in the syngas (CO + H{sub 2}) production. X-ray diffraction patterns revealed the formation of perovskite structure in all samples prepared by proteic gel synthesis method, varying collagen content and after calcination at 700 deg C for 2 h. LaNiO{sub 3}/Al{sub 2}O{sub 3} catalyst prepared by the impregnation method showed diffraction peaks due to the perovskite structure and to the support (Al{sub 2}O{sub 3}). This catalyst presented: specific surface of 46.1 m{sup 2} g{sup -1}, two reduction peaks in the temperature programmed reduction (TPR) profile and 46% of methane conversion (by the partial oxidation of methane using oxygen) after 18 h of reaction. (author)

  3. Synthesis of bimetallic Au-Ag alloyed mesocomposites and their catalytic activity for the reduction of nitroaromatics

    Science.gov (United States)

    Sareen, Shweta; Mutreja, Vishal; Pal, Bonamali; Singh, Satnam

    2018-03-01

    Homogeneously dispersed Au-Ag alloyed nanostructures varying from spherical (6-8 nm) to rod shape (aspect ratio ∼15-20 nm) were synthesized within the channels of amine modified mesoporous SBA-15 using post modification. Formation of alloy nanostructures for varying Au-Ag loadings have been supported by XPS and elemental mapping studies. Furthermore, changes in the surface/electronic properties of mesocomposites as a function of increased bimetallic Au:Ag loading have been elucidated with the help of XRD, BET, TEM and XPS studies respectively. It was found that synergism owing to electronic interplay between Au and Ag species concurrently improved the catalytic activity of bimetallic nanocomposites. Among the various monometallic and bimetallic mesocomposites, Au-Ag (5:1)/m-SBA-15 nanocomposites exhibited the best catalytic activity (k = 2.12 × 10-2 min-1 and 3.99 × 10-2 min-1) for the selective reduction of nitrobenzene to aniline and p-nitroacetophenone to p-aminoacetophenone respectively.

  4. Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Du, Liangwei, E-mail: dulily9@163.com [State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); Xu, Qiuhong; Huang, Meiying [State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); Xian, Liang [State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); Feng, Jia-Xun, E-mail: jiaxunfeng@sohu.com [State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China)

    2015-06-15

    At present, green and efficient synthetic strategies have been gaining great interest for the synthesis of metal nanoparticles. In this study, the synthesis of extracellular silver nanoparticles (AgNPs) under light radiation was described using the cell filtrate of Penicillium oxalicum 1–208. The pH effect of the cell filtrate on nanosynthesis was investigated by visual observation, ultraviolet–visible absorption spectroscopy, dynamic light scattering and zeta potential. The results showed that the pH of the cell filtrate affected the time of nanosynthesis, and the size, size distribution and stability of the synthesized nanoparticles. The AgNPs synthesized at pH 8.0 and 12.0 were further characterized by X-ray diffraction, selected area electron diffraction, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The synthesized AgNPs were spherical in shape, crystalline in nature and preferentially oriented in (111) plane. Small AgNPs with an average particle size of about 4 nm were successfully synthesized at pH 12.0 and well dispersed in solution without obvious aggregation. Furthermore, the AgNPs synthesized at pH 8.0 were used as catalyst and exhibited excellent catalytic activity for the reduction of methylene blue in the presence of NaBH{sub 4} at ambient temperature. - Highlights: • Extracellular silver nanoparticles were synthesized using Penicillium oxalicum assisted by simulated sunlight. • The pH of the cell filtrate affected the synthesis of silver nanoparticles. • The silver nanoparticles were more stable in weakly alkaline and alkaline solutions. • Small silver nanoparticles with good dispersibility and stability were rapidly synthesized at pH 12.0. • The reduction of methylene blue was instantly completed with silver nanoparticles synthesized at pH 8.0 used as catalyst.

  5. Pd-Modified Cu–Zn Catalysts for Methanol Synthesis from CO2/H2 Mixtures : Catalytic Structures and Performance

    NARCIS (Netherlands)

    Fierro, J.L.G.; López Granados, M.; Melián-Cabrera, I.

    2002-01-01

    The effect of palladium incorporation on the performance of a CuO–ZnO catalyst for methanol synthesis by hydrogenation of carbon dioxide is studied. Three different catalysts are prepared: the reference CuO-ZnO (CZ), and two Pd-based CuO–ZnO catalysts, PCZ-CP and PCZ-SP, which are prepared by

  6. Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity.

    Science.gov (United States)

    Lammert, Martin; Wharmby, Michael T; Smolders, Simon; Bueken, Bart; Lieb, Alexandra; Lomachenko, Kirill A; Vos, Dirk De; Stock, Norbert

    2015-08-14

    A series of nine Ce(iv)-based metal organic frameworks with the UiO-66 structure containing linker molecules of different sizes and functionalities were obtained under mild synthesis conditions and short reaction times. Thermal and chemical stabilities were determined and a Ce-UiO-66-BDC/TEMPO system was successfully employed for the aerobic oxidation of benzyl alcohol.

  7. Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity

    Science.gov (United States)

    Prasad, Ch.; Gangadhara, S.; Venkateswarlu, P.

    2016-08-01

    Novel and bio-inspired magnetic nanoparticles were synthesized using watermelon rinds (WR) which are nontoxic and biodegradable. Watermelon rind extract was used as a solvent and capping and reducing agent in the synthesis. The Fe3o4 MNPs were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer techniques (VSM). XRD studies revealed a high degree of crystalline and monophasic Fe nanoparticles of face-centered cubic stricture. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process in an excellent candidate for the synthesis of iron nanoparticles that is simple, easy to execute, pollutant free and inexpensive. A practical and convenient method for the synthesis of highly stable and small-sized iron nanoparticles with a narrow distribution from 2 to 20 nm is reported. Also, the MNPs present in higher saturation magnetization (Ms) of 14.2 emu/g demonstrate tremendous magnetic response behavior. However, the synthesized iron nanoparticles were used as a catalyst for the preparation of biologically interesting 2-oxo-1,2,3,4-tetrahydropyrimidine derivatives in high yields. These results exhibited that the synthesized Fe3O4 MNPs could be used as a catalyst in organic synthesis.

  8. Synthesis and characterization of amoxicillin derived silver nanoparticles: Its catalytic effect on degradation of some pharmaceutical antibiotics

    International Nuclear Information System (INIS)

    Junejo, Y.; Güner, A.; Baykal, A.

    2014-01-01

    Graphical abstract: - Highlights: • Amp-Ag (0) NPs were prepared by simple one-pot chemical reduction method. • Ampicillin as an antibiotic was used as both reducing and capping agents in this study. • Amp-Ag (0) NPs have proved as the remarkably efficient catalysts with enhanced rate of reduction for cefdinir, cefditoren, cefixime, ceftriaxone sodium and doxycycline. • Amp-Ag (0) NPs were showed excellent catalytic activity as catalyst for the 100% reduction of these antibiotics. - Abstract: We synthesized novel amoxicillin derived silver nanoparticles (Amp-Ag (0) NPs) in aqueous solution by one-pot simple synthetic method by reducing silver nitrate by the help of amoxicillin antibiotic as a reducing/capping agent and NaOH as the catalyst for reaction enhancement. The formation of the Amp-Ag (0) NPs was monitored using UV–Vis absorption spectroscopy which confirmed the formation of Amp-Ag (0) NPs by exciting the typical surface plasmon absorption maxima at 404 nm. Transmission electron microscopy (TEM) confirmed the spherical morphology and monodispersed Amp-Ag (0) NPs with particle size 6.87 ± 2.2 nm. The antibacterial activities of the antibiotics were evaluated against Gram-negative bacteria Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa and Gram-positive bacteria Streptococcus pneumonia, Streptococcus pyogenes, Staphylococcus aureus by the disk diffusion method. Whereas standard antibiotics showed normal zone of inhibition, the reduced ones with Amp-Ag (0) NPs showed no inhibition zone. The antimicrobial results therefore reveal that newly synthesized Amp-Ag (0) NPs had an excellent catalytic activity as catalyst for the 100% reduction of antibiotics i.e. cefdinir, cefditoren, cefiximee, ceftriaxone sodium and doxycycline, which was carried out in just 2–5 min. They were recovered easily from reaction medium and reused with enhanced catalytic potential five times. Based upon these results it has been concluded that Amp-Ag (0) NPs

  9. Synthesis and characterization of amoxicillin derived silver nanoparticles: Its catalytic effect on degradation of some pharmaceutical antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Junejo, Y. [National Center of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Jamshoro 76080 (Pakistan); Department of Chemistry, Fatih University, Buyukcekmece, 34500 Istanbul (Turkey); Güner, A., E-mail: aguner@fatih.edu.tr [Department of Biology, Fatih University, Buyukcekmece, 34500 Istanbul (Turkey); Baykal, A. [Department of Chemistry, Fatih University, Buyukcekmece, 34500 Istanbul (Turkey)

    2014-10-30

    Graphical abstract: - Highlights: • Amp-Ag (0) NPs were prepared by simple one-pot chemical reduction method. • Ampicillin as an antibiotic was used as both reducing and capping agents in this study. • Amp-Ag (0) NPs have proved as the remarkably efficient catalysts with enhanced rate of reduction for cefdinir, cefditoren, cefixime, ceftriaxone sodium and doxycycline. • Amp-Ag (0) NPs were showed excellent catalytic activity as catalyst for the 100% reduction of these antibiotics. - Abstract: We synthesized novel amoxicillin derived silver nanoparticles (Amp-Ag (0) NPs) in aqueous solution by one-pot simple synthetic method by reducing silver nitrate by the help of amoxicillin antibiotic as a reducing/capping agent and NaOH as the catalyst for reaction enhancement. The formation of the Amp-Ag (0) NPs was monitored using UV–Vis absorption spectroscopy which confirmed the formation of Amp-Ag (0) NPs by exciting the typical surface plasmon absorption maxima at 404 nm. Transmission electron microscopy (TEM) confirmed the spherical morphology and monodispersed Amp-Ag (0) NPs with particle size 6.87 ± 2.2 nm. The antibacterial activities of the antibiotics were evaluated against Gram-negative bacteria Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa and Gram-positive bacteria Streptococcus pneumonia, Streptococcus pyogenes, Staphylococcus aureus by the disk diffusion method. Whereas standard antibiotics showed normal zone of inhibition, the reduced ones with Amp-Ag (0) NPs showed no inhibition zone. The antimicrobial results therefore reveal that newly synthesized Amp-Ag (0) NPs had an excellent catalytic activity as catalyst for the 100% reduction of antibiotics i.e. cefdinir, cefditoren, cefiximee, ceftriaxone sodium and doxycycline, which was carried out in just 2–5 min. They were recovered easily from reaction medium and reused with enhanced catalytic potential five times. Based upon these results it has been concluded that Amp-Ag (0) NPs

  10. Asymmetric Crater

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 18 December 2003Asymmetric craters such as the one in the center of this image are fairly rare. The more typical symmetric craters are formed when meteors impact a surface over a wide range of angles. Only very low impact angles (within 15o of horizontal) result in asymmetric structures such as this one. The bilateral symmetry of the ejecta, like two wings on either side of the elliptical crater, is typical of oblique impacts. The small crater downrange from the main crater could have been caused by the impactor breaking apart before impact or possibly a 'decapitation' of the impactor as it hit with the 'head' traveling farther to form the smaller structure.Image information: VIS instrument. Latitude -8.5, Longitude 227.5 East (132.5 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  12. Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their enhanced catalytic performance during ammonia decomposition

    KAUST Repository

    Tan, Hua

    2012-09-01

    In this work, Ru nanoparticles confined in the channels of ordered mesoporous alumina (MA) and magnesium oxide-modified ordered MA are prepared for the first time via a two-solvent technique, combined with the amorphous citrate route. Structural characterizations reveal that uniform 2-3 nm Ru nanoparticles are highly dispersed in the blockage-free channels of mesoporous supports. The Ru nanoparticles confined in MA modified with 20% molar ratio magnesium oxide exhibited a high catalytic activity and stability during ammonia decomposition due to the optimized particle size, basic support, lack of chlorine, and confined space provided by the channels of the mesoporous supports. © 2012 Elsevier B.V. All rights reserved.

  13. Novel Cage-Like Hexanuclear Nickel(II Silsesquioxane. Synthesis, Structure, and Catalytic Activity in Oxidations with Peroxides

    Directory of Open Access Journals (Sweden)

    Alexey N. Bilyachenko

    2016-05-01

    Full Text Available New hexanuclear nickel(II silsesquioxane [(PhSiO1.512(NiO6(NaCl] (1 was synthesized as its dioxane-benzonitrile-water complex (PhSiO1,512(NiO6(NaCl(C4H8O213(PhCN2(H2O2 and studied by X-ray and topological analysis. The compound exhibits cylinder-like type of molecular architecture and represents very rare case of polyhedral complexation of metallasilsesquioxane with benzonitrile. Complex 1 exhibited catalytic activity in activation of such small molecules as light alkanes and alcohols. Namely, oxidation of alcohols with tert-butylhydroperoxide and alkanes with meta-chloroperoxybenzoic acid. The oxidation of methylcyclohexane gave rise to the isomeric ketones and unusual distribution of alcohol isomers.

  14. The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins

    Science.gov (United States)

    Stamatin, Ioan; Morozan, Adina; Dumitru, Anca; Ciupina, V.; Prodan, G.; Niewolski, J.; Figiel, H.

    2007-03-01

    A series of carbon nanomaterials, particularly multi-walled carbon nanotubes (MWNT), are obtained as products from catalytic pyrolysis of the cross-linked phenol-formaldehyde resins with different ferrocene under inert atmosphere. The morphology and structure of the samples were evaluated by TEM and XRD techniques. CNTs morphology is dependent on the iron nanoparticles and their forms (Fe, Fe 3C) resulted from ferrocene decomposition. The amount of nanotubes increases with iron content released from ferrocene catalyst during the pyrolysis process. Fe 3C nanoparticles drive the nucleation and the growth of carbon nanotubes during the pyrolysis process. Long (up to microns) well-defined MWNTs with small defects, ropes and disordered carbon are representatives in the pyrolyzed resins composition.

  15. Synthesis, structure and catalytic activities of nickel(II) complexes bearing N4 tetradentate Schiff base ligand

    Science.gov (United States)

    Sarkar, Saikat; Nag, Sanat Kumar; Chattopadhyay, Asoke Prasun; Dey, Kamalendu; Islam, Sk. Manirul; Sarkar, Avijit; Sarkar, Sougata

    2018-05-01

    Two new nickel(II) complexes [Ni(L)Cl2] (1) and [Ni(L)(NCS)2] (2) of a neutral tetradentate mono-condensed Schiff base ligand, 3-(2-(2-aminoethylamino)ethylimino)butan-2-one oxime (L) have been synthesized and characterized using different physicochemical techniques e.g. elemental analyses, spectroscopic (IR, Electronic, NMR) methods, conductivity and molecular measurements. The crystal structure of complex (2) has been determined by using single crystal X-ray diffraction method and it suggests a distorted octahedral geometry around nickel(II) having a NiN6 coordinating atmosphere. The non-coordinated Osbnd H group on the ligand L remain engaged in H-bonding interactions with the S end of the coordinated thiocyanate moiety. These H-bonding interactions lead to Osbnd S separations of 3.132 Å and play prominent role in crystal packing. It is observed that the mononuclear units are glued together with such Osbnd H…S interactions and finally results in an 1D supramolecular sheet-like arrangement. DFT/TDDFT based theoretical calculations were also performed on the ligand and the complexes aiming at the accomplishment of idea regarding their optimized geometry, electronic transitions and the molecular energy levels. Finally the catalytic behavior of the complexes for oxidation of styrene has also been carried out. A variety of reaction conditions like the effect of solvent, effect of temperature and time as well as the effect of ratio of substrate to oxidant were thoroughly studied to judge the catalytic efficiency of the Ni(II) coordination entity.

  16. Synthesis and characterization of amoxicillin derived silver nanoparticles: Its catalytic effect on degradation of some pharmaceutical antibiotics

    Science.gov (United States)

    Junejo, Y.; Güner, A.; Baykal, A.

    2014-10-01

    We synthesized novel amoxicillin derived silver nanoparticles (Amp-Ag (0) NPs) in aqueous solution by one-pot simple synthetic method by reducing silver nitrate by the help of amoxicillin antibiotic as a reducing/capping agent and NaOH as the catalyst for reaction enhancement. The formation of the Amp-Ag (0) NPs was monitored using UV-Vis absorption spectroscopy which confirmed the formation of Amp-Ag (0) NPs by exciting the typical surface plasmon absorption maxima at 404 nm. Transmission electron microscopy (TEM) confirmed the spherical morphology and monodispersed Amp-Ag (0) NPs with particle size 6.87 ± 2.2 nm. The antibacterial activities of the antibiotics were evaluated against Gram-negative bacteria Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa and Gram-positive bacteria Streptococcus pneumonia, Streptococcus pyogenes, Staphylococcus aureus by the disk diffusion method. Whereas standard antibiotics showed normal zone of inhibition, the reduced ones with Amp-Ag (0) NPs showed no inhibition zone. The antimicrobial results therefore reveal that newly synthesized Amp-Ag (0) NPs had an excellent catalytic activity as catalyst for the 100% reduction of antibiotics i.e. cefdinir, cefditoren, cefiximee, ceftriaxone sodium and doxycycline, which was carried out in just 2-5 min. They were recovered easily from reaction medium and reused with enhanced catalytic potential five times. Based upon these results it has been concluded that Amp-Ag (0) NPs are novel, rapid, and highly cost-effective for environmental safety against pollution by antibiotics in wastewater and extendable for control of other reducible contaminants as well.

  17. Catalytic activity of bimetallic Zn/TiO2 catalyst for degradation of herbicide paraquat: synthesis and characterization

    Science.gov (United States)

    Sakee, Uthai; Wanchanthuek, Ratchaneekorn

    2017-11-01

    The preparation and characterization of Zn/TiO2 catalysts were performed and the photocatalytic properties of the resulting catalysts were tested using the paraquat degradation reaction under UV and solar light irradiation. The effect of the preparation method, amount of Zn loading, the calcination temperature and the thermal annealing during the autoclave aging were studied as well as the light irradiation during the testing reaction. The initial concentration of paraquat was 400 ppm, the pH during the catalytic testing was seven and the reaction temperature was 30 °C. The characterization information were obtained from XRD, XPS, UV-vis diffuse reflectance, FTIR, TEM and BET techniques. They were used to explain the expressed catalytic activity of Zn/TiO2. The results showed that the Zn/TiO2 catalyst from the hydrothermal method could remove about 80% of the paraquat from the solution (using 4 g l-1 of catalyst). The characterization data showed that the surface area, porous structure and dispersion of Zn species could affect the ability of the paraquat removal rather than the crystallnity of the TiO2 in the catalyst. The XPS spectra suggested that the preparation method, between the sol gel and hydrothermal, could not affect the state of the Zn and Ti, which presented in the Zn2+ and Ti4+ forms. This primary result will lead us to further study to elucidate the main active site by the XPS technique. Moreover, it clearly showed that the lowering of the band gap energy in the Zn/TiO2 was achieved (compared to bare TiO2), and this phenomena was one of the factors that gave the higher photocatalytic activity of the Zn/TiO2 catalyst.

  18. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.

    Science.gov (United States)

    Tsao, Yu-Chi; Rej, Sourav; Chiu, Chun-Ya; Huang, Michael H

    2014-01-08

    In this study, rhombic dodecahedral gold nanocrystals were used as cores for the generation of Au-Ag core-shell nanocrystals with cubic, truncated cubic, cuboctahedral, truncated octahedral, and octahedral structures. Gold nanocrystals were added to an aqueous mixture of cetyltrimethylammonium chloride (CTAC) surfactant, AgNO3, ascorbic acid, and NaOH to form the core-shell nanocrystals. The nanocrystals are highly uniform in size and shape, and can readily self-assemble into ordered packing structures on substrates. Results from observation of solution color changes and variation in the reaction temperature suggest octahedra are produced at a higher growth rate, while slower growth favors cube formation. The major localized surface plasmon resonance (LSPR) band positions for these nanocrystals are red-shifted compared to those for pristine silver particles with similar dimensions due to the LSPR effect from the gold cores. By increasing the concentrations of reagents, Au-Ag core-shell cubes and octahedra with tunable sizes were obtained. Au-Ag cubes with body diagonals of 130, 144, and 161 nm and octahedra with body diagonals of 113, 126, and 143 nm have been prepared, allowing the investigation of size effect on their optical properties. Au-Ag octahedra with thinner Ag shells (12-16.5 nm) exhibit a blue-shifted major LSPR band relative to the LSPR band at 538 nm for the gold cores. For Au-Ag octahedra and cubes with thicker shells (22.5-37 nm), the major LSPR band is progressively red-shifted from that of the gold cores with increasing shell thickness and particle size. The Au-Ag octahedra show higher catalytic activity than cubes toward reduction of 2-amino-5-nitrophenol by NaBH4 at 30 °C, but both particle shapes display significantly enhanced catalytic efficiency at 40 °C.

  19. Towards chiral diamines as chiral catalytic precursors for the borane ...

    Indian Academy of Sciences (India)

    2)-2-anilinomethylpiperidine (2) have been employed as chiral catalytic sources in the borane-mediated asymmetric reduction of prochiral ketones thus providing the resulting secondary alcohols in good enantiomeric purities (up to 81% ) ...

  20. Nd(III) and Dy(III) coordination compounds based on 1H-tetrazolate-5-acetic acid ligands: Synthesis, crystal structures and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiaoyun; Chen Dianyu; He Minghua [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Yang Gaowen, E-mail: ygwsx@126.com [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Shen Lei; Zhai Chun; Shen Wei; Gu Kun; Zhao Jingjing [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China)

    2012-06-15

    Reactions of 1H-tetrazolate-5-acetic acid(H{sub 2}tza) with Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O or Dy(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O with the presence of KOH under solvothermal conditions, produced two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)]. Both compounds were structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Compounds 1 and 2 reveal 1D structures via bridging tza as linker. Furthermore, the compounds 1 and 2 showed a specific and good catalytic behavior for the polymerization of styrene, and the polymerization showed controlled characteristics. - Graphical Abstract: Two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)] have been synthesis. 1 and 2 reveal 1D structures via bridging tza as linker, and showed a specific and good catalytic behavior for the polymerization of styrene. Highlights: Black-Right-Pointing-Pointer we have reported two novel compounds formed by H{sub 2}tza and Nd(III) or Dy(III). Black-Right-Pointing-Pointer Compounds 1 and 2 were found to have catalysis property for the photo-polymerization of styrene. Black-Right-Pointing-Pointer The high molecular weight polymers with narrow molecular weight distributions were obtained.