WorldWideScience

Sample records for catalytic asymmetric synthesis

  1. Catalytic Asymmetric Synthesis of Phosphine Boronates

    NARCIS (Netherlands)

    Hornillos, Valentin; Vila, Carlos; Otten, Edwin; Feringa, Ben L.

    2015-01-01

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of ,-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good y

  2. Catalytic Asymmetric Synthesis of Phosphine Boronates.

    Science.gov (United States)

    Hornillos, Valentín; Vila, Carlos; Otten, Edwin; Feringa, Ben L

    2015-06-26

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of α,β-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good yields and high enantiomeric excess. The synthetic utility of the products is demonstrated through stereospecific transformations into multifunctional optically active compounds.

  3. Asymmetric catalytic synthesis of the proposed structure of trocheliophorolide B.

    Science.gov (United States)

    Trost, Barry M; Quintard, Adrien

    2012-09-01

    A concise catalytic asymmetric synthesis of the proposed structure of trocheliophorolide B is reported. The synthetic sequence notably features an asymmetric acetaldehyde alkynylation, a Ru-catalyzed alder-ene reaction, and a Zn-ProPhenol ynone aldol condensation. Comparison with the reported data suggests a misassignment of the natural product structure.

  4. Catalytic Methods in Asymmetric Synthesis Advanced Materials, Techniques, and Applications

    CERN Document Server

    Gruttadauria, Michelangelo

    2011-01-01

    This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milesto

  5. Catalytic asymmetric synthesis of biologically important 3-hydroxyoxindoles: an update

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2016-05-01

    Full Text Available Oxindole scaffolds are prevalent in natural products and have been recognized as privileged substructures in new drug discovery. Several oxindole-containing compounds have advanced into clinical trials for the treatment of different diseases. Among these compounds, enantioenriched 3-hydroxyoxindole scaffolds also exist in natural products and have proven to possess promising biological activities. A large number of catalytic asymmetric strategies toward the construction of 3-hydroxyoxindoles based on transition metal catalysis and organocatalysis have been reported in the last decades. Additionally, 3-hydroxyoxindoles as versatile precursors have also been used in the total synthesis of natural products and for constructing structurally novel scaffolds. In this review, we aim to provide an overview about the catalytic asymmetric synthesis of biologically important 3-substituted 3-hydroxyoxindoles and 3-hydroxyoxindole-based further transformations.

  6. Catalytic asymmetric synthesis of biologically important 3-hydroxyoxindoles: an update

    Science.gov (United States)

    2016-01-01

    Summary Oxindole scaffolds are prevalent in natural products and have been recognized as privileged substructures in new drug discovery. Several oxindole-containing compounds have advanced into clinical trials for the treatment of different diseases. Among these compounds, enantioenriched 3-hydroxyoxindole scaffolds also exist in natural products and have proven to possess promising biological activities. A large number of catalytic asymmetric strategies toward the construction of 3-hydroxyoxindoles based on transition metal catalysis and organocatalysis have been reported in the last decades. Additionally, 3-hydroxyoxindoles as versatile precursors have also been used in the total synthesis of natural products and for constructing structurally novel scaffolds. In this review, we aim to provide an overview about the catalytic asymmetric synthesis of biologically important 3-substituted 3-hydroxyoxindoles and 3-hydroxyoxindole-based further transformations. PMID:27340490

  7. Recent developments in the catalytic asymmetric synthesis of alpha- and beta-amino acids.

    Science.gov (United States)

    Ma, Jun-An

    2003-09-22

    The stereoselective synthesis of amino acids is of great importance for the construction of optically active natural products and pharmaceuticals. Apart from enzymes, a broad repertoire of chiral reagents, auxiliaries, and catalysts can be used for the formation of amino acids. Asymmetric reactions using catalytic amounts of chiral molecules provide efficient methods for the generation of optically active proteinogenic and nonproteinogenic amino acids. This minireview collects recent work on catalytic asymmetric synthesis of alpha- and beta-amino acids.

  8. A Catalytic, Asymmetric Formal Synthesis of (+)-Hamigeran B

    KAUST Repository

    Mukherjee, Herschel

    2011-03-04

    A concise asymmetric, formal synthesis of (+)-hamigeran B is reported. A Pd-catalyzed, decarboxylative allylic alkylation, employing a trifluoromethylated derivative of t-BuPHOX, is utilized as the enantioselective step to form the critical quaternary carbon center in excellent yield and enantioselectivity. The product is converted in three steps to a late-stage intermediate previously used in the synthesis of hamigeran B.

  9. Synthesis and Catalytic Asymmetric Reaction of Chiral Pyridine Prolinol Derivatives

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao; ZHANG Yong-Xin; DU Da-Ming; HUA Wen-Ting

    2003-01-01

    @@ The enantioselective reduction of prochiral ketones with borane in the presence of a chiral ligand leading to enantiomerically pure secondary alcohols has received considerable attention in recent years. [1] Enantiomerically pure secondary alcohols are important intermediates for the synthesis of various other organic compounds such as halides, esters, ethers, ketones and amines. To the best of our knowledge, the use of pyridine prolinol derivatives in the reduction of ketones has not been reported so far. Thus, it should be of interest to investigate the catalytic a bility of such ligands. We have an ongoing project in the synthesis and application of chiral pyridine derivatives in chiral molecular recognition[2] and we want to evaluate the effect resulting from the introduction of a pyridinyl moiety onto the catalysts. We expect that the cooperation of pyridine unit and chiral prolinol unit in new ligands may result in unique properties for catalytic reaction.

  10. Catalytic asymmetric synthesis of enantioenriched heterocycles bearing a C-CF3 stereogenic center.

    Science.gov (United States)

    Huang, Yi-Yong; Yang, Xing; Chen, Zhuo; Verpoort, Francis; Shibata, Norio

    2015-06-08

    Given the important agricultural and medicinal application of optically pure heterocycles bearing a trifluoromethyl group at the stereogenic carbon center in the heterocyclic framework, the exploration of efficient and practical synthetic strategies to such types of molecules remains highly desirable. Catalytic enantioselective synthesis has one clear advantage that it is more cost-effective than other synthetic methods, but remains limited by challenges in achieving excellent yield and stereoselectivities with a low catalyst loading. Thus far, numerous models of organo- and organometal-catalyzed asymmetric reactions have been exploited to achieve this elusive goal over the past decade. This review article describes recent progress on this research topic, and focuses on an understanding of the catalytic asymmetric protocols exemplified in the catalytic enantioselective synthesis of a wide range of complex enantioenriched trifluoromethylated heterocycles.

  11. Synthesis of Novel Chiral Dibenzo [ a, c ] cycloheptadiene Bis(oxazoline) and Catalytic Asymmetric Reactions

    Institute of Scientific and Technical Information of China (English)

    FU Bin; DU Da-Ming; WANG Jian-Bo

    2003-01-01

    @@ Over the last decade, C2-symmetric chiral oxazoline metal complexes have been recognized as an effective classof chiral catalyst in a variety of transition metal catalyzed asymmetric reactions. [1] High catalytic activities and enantiomeric excesses have been obtained using C2-symmetric chiral ligands in conjunction with suitable transition metal ion, for example, the hydrosilylation of ketone, allylic alkylation, Michael addition, Diels-Alder cycloaddition, and cyclopropanation. Thus, the design and synthesis of new chiral oxazoline ligands have inspired many scientists to work with great efforts.

  12. A New Complex with Good Catalytic Properties in Asymmetric Synthesis of Cyclopropanecarboxylic Acids

    Institute of Scientific and Technical Information of China (English)

    CAI Ya; ZHENG He-Gen; XIN Xin-Quan

    2003-01-01

    @@ The chemistry of transition metal-sulfur clusters has attracted much attention recently owing to their relevance to certain biological and industrial catalyses, rich structural chemistry, and special reactive properties as well as potential application in nonlinear optical materials. [1~ 3] In this article, a new complex, WCu2S4 (dppf)2 [ dppf = 1, 1′bis(diphenylphosphino)ferrocene] was synthesized through solid state reaction, and it was found that this complex had good catalytic properties in asymmetric synthesis of cyclopropanecarboxylic acids.

  13. Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    KAUST Repository

    Hong, Allen Y.

    2011-02-24

    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions.

  14. Enantiopure inherently chiral calix[4]arene derivatives containing quinolin-2-yl-methanol moiety:Synthesis and application in the catalytic asymmetric addition of diethylzinc to benzaldehyde

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A series of novel N,O-type chiral ligands derived from enantiopure inherently chiral calix[4]arenes containing quinolin-2-yl-methanol moiety in the cone or partialcone conformation have been synthe-sized and characterized. Moreover,they have been applied to the catalytic asymmetric addition of diethylzinc to benzaldehyde,which represents the first example that the inherently chiral calixarene can be used as the chiral ligands for the catalytic asymmetric synthesis.

  15. THE ASYMMETRIC SYNTHESIS OF AMINO ACIDS UNDER POLYMER-SUPPORTED PHASE TRANSFER CATALYTIC CONDITION

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The optical α-amino acids were synthesized under room temperature by alkylation of N-(diphenyl methylene) glycine t-butyl ester under polymer-supported phase transfer conditions using polymer-supported cinchonine (or quinine) alkaloids as chiral phase transfer catalysts and dichloromethane as solvent, followed by hydrolysis of the above intermediates introduced to the final products-optical α-amino acids. This is a new method for the asymmetric synthesis of α-amino acids. The influences of catalyst,temperature, substrates, and organic solvents on the chemical yield and optical purities of products were studied.

  16. Catalytic Asymmetric Bromocyclization of Polyenes.

    Science.gov (United States)

    Samanta, Ramesh C; Yamamoto, Hisashi

    2017-02-01

    The first catalytic asymmetric bromonium ion-induced polyene cyclization has been achieved by using a chiral BINOL-derived thiophosphoramide catalyst and 1,3-dibromo-5,5-dimethylhydantoin as an electrophilic bromine source. Bromocyclization products are obtained in high yields, with good enantiomeric ratios and high diastereoselectivity, and are abundantly found as scaffolds in natural products.

  17. Synthesis of novel chiral tridentate Schiff-base ligands and their applications in catalytic asymmetric Henry reaction.

    Science.gov (United States)

    Qiang, Gen-Rong; Shen, Tian-Hua; Zhou, Xiao-Cong; An, Xiao-Xia; Song, Qing-Bao

    2014-12-01

    A series of chiral tridentate Schiff-bases were prepared and used as ligands in the catalytic asymmetric Henry reaction. Under the optimal conditions, a variety of arylaldehydes were smoothly converted into corresponding adducts with high yields (up to 98%) and excellent enantioselectivities (up to 97% ee).

  18. Biologically active Phytophthora mating hormone prepared by catalytic asymmetric total synthesis

    NARCIS (Netherlands)

    Harutyunyan, S.R.; Zhao, Z.; Hartog, den T.; Bouwmeester, K.; Minnaard, A.J.; Feringa, B.L.; Govers, F.

    2008-01-01

    A Phytophthora mating hormone with an array of 1,5-stereogenic centers has been synthesized by using our recently developed methodology of catalytic enantioselective conjugate addition of Grignard reagents. We applied this methodology in a diastereo- and enantioselective iterative route and obtained

  19. Biologically active Phytophthora mating hormone prepared by catalytic asymmetric total synthesis

    NARCIS (Netherlands)

    Harutyunyan, Syuzanna R.; Zhao, Zhijian; den Hartog, Tim; Bouwmeester, Klaas; Minnaard, Adriaan J.; Feringa, Ben L.; Govers, Francine

    2008-01-01

    A Phytophthora mating hormone with an array of 11,5-stereogenic centers has been synthesized by using our recently developed methodology of catalytic enantioselective conjugate addition of Grignard reagents. We applied this methodology in a diastereo-and enantioselective iterative route and obtained

  20. Enantioselective Synthesis of 2,2-Disubstituted Terminal Epoxides via Catalytic Asymmetric Corey-Chaykovsky Epoxidation of Ketones

    Directory of Open Access Journals (Sweden)

    Shigeki Matsunaga

    2012-02-01

    Full Text Available Catalytic asymmetric Corey-Chaykovsky epoxidation of various ketones with dimethyloxosulfonium methylide using a heterobimetallic La-Li3-BINOL complex (LLB is described. The reaction proceeded smoothly at room temperature in the presence of achiral phosphine oxide additives, and 2,2-disubstituted terminal epoxides were obtained in high enantioselectivity (97%–91% ee and yield ( > 99%–88% from a broad range of methyl ketones with 1–5 mol% catalyst loading. Enantioselectivity was strongly dependent on the steric hindrance, and other ketones, such as ethyl ketones and propyl ketones resulted in slightly lower enantioselectivity (88%–67% ee.

  1. The Catalytic Asymmetric Intramolecular Stetter Reaction.

    Science.gov (United States)

    de Alaniz, Javier Read; Rovis, Tomislav

    2009-05-01

    This account chronicles our efforts at the development of a catalytic asymmetric Stetter reaction using chiral triazolium salts as small molecule organic catalysts. Advances in the mechanistically related azolium-catalyzed asymmetric benzoin reaction are discussed, particularly as they apply to catalyst design. A chronological treatise of reaction discovery, catalyst optimization and reactivity extension follows.

  2. Asymmetric synthesis v.4

    CERN Document Server

    Morrison, James

    1984-01-01

    Asymmetric Synthesis, Volume 4: The Chiral Carbon Pool and Chiral Sulfur, Nitrogen, Phosphorus, and Silicon Centers describes the practical methods of obtaining chiral fragments. Divided into five chapters, this book specifically examines initial chiral transmission and extension. The opening chapter describes the so-called chiral carbon pool, the readily available chiral carbon fragments used as building blocks in synthesis. This chapter also provides a list of 375 chiral building blocks, along with their commercial sources, approximate prices, and methods of synthesis. Schemes involving

  3. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG XuMu

    2001-01-01

    @@ Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals

  4. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG; XuMu

    2001-01-01

    Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals  ……

  5. Recent advances in catalytic asymmetric hydrogenation:Renaissance of the monodentate phosphorus ligands

    Institute of Scientific and Technical Information of China (English)

    GUO Hongchao; DING Kuiling; DAI Lixin

    2004-01-01

    The history for the development of chiral phosphorus ligands in catalytic asymmetric hydrogenation is briefly highlighted. This review focuses on the recent advances in the synthesis of the monodentate phosphorus ligands and their applications in catalytic asymmetric hydrogenation. The examples highlighted in this article clearly demonstrated the importance and advantages of monodentate phosphorus ligands, which had been ignored for 30 a and experienced a renaissance at the very beginning of this millennium, particularly in the area of asymmetric hydrogenation.

  6. Catalytic Synthesis Lactobionic Acid

    Directory of Open Access Journals (Sweden)

    V.G. Borodina

    2014-07-01

    Full Text Available Gold nanoparticles are obtained, characterized and deposited on the carrier. Conducted catalytic synthesis of lactobionic acid from lactose. Received lactobionic acid identify on the IR spectrum.

  7. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG XiaoMing

    2001-01-01

    @@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.

  8. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG; XiaoMing

    2001-01-01

    Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.  ……

  9. Enantioselective synthesis of (thiolan-2-yl)diphenylmethanol and its application in asymmetric, catalytic sulfur ylide-mediated epoxidation.

    Science.gov (United States)

    Wu, Hsin-Yi; Chang, Chih-Wei; Chein, Rong-Jie

    2013-06-07

    This work describes an expeditious and efficient preparation of enantiopure (thiolan-2-yl)diphenylmethanol (2) featuring a double nucleophilic substitution and Shi epoxidation as key steps. One of the applications of its benzyl ether derivative to asymmetric sulfur ylide-mediated epoxidation with up to 92% ee (14 examples) was also demonstrated herein.

  10. Special Issue of "Asymmetric Synthesis"%Special Issue of "Asymmetric Synthesis"

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Organic chemistry exploring the world at a molecu- lar level remains essential for our society in the 21st century. Asymmetric synthesis, particularly those em- ploying catalytic approach, is one of the most important research fields in organic synthesis providing chiral compounds in an enantiopure form. The latter is critical since the two enantiomers of one chiral compound, in many cases, have a different response in biological sys- tems. The huge markets of non-racemic chiral com- pounds as synthetic intermediates, pharmaceuticals,

  11. Asymmetric synthesis of (-)-adaline.

    Science.gov (United States)

    Itoh, Toshimasa; Yamazaki, Naoki; Kibayashi, Chihiro

    2002-07-25

    [reaction: see text] An enantioselective total synthesis of (-)-adaline has been achieved starting from a chiral 6,6-disubstituted piperidone derivative previously prepared by diastereoselective allylation of a chiral tricyclic N-acyl-N,O-acetal. The key steps include lithium ion-activated SN2-type alkynylation of the tricyclic N,O-acetal leading to exclusive formation of the (6S)-ethynylpiperidine and ring-closing olefin metathesis of the (2R,6S)-cis-2,6-dialkenylpiperidine for constructing the bridged azabicyclononane.

  12. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  13. Synthesis of (+)-discodermolide by catalytic stereoselective borylation reactions.

    Science.gov (United States)

    Yu, Zhiyong; Ely, Robert J; Morken, James P

    2014-09-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides an inspiration for new reaction development. A new synthesis of discodermolide employs a previously undisclosed stereoselective catalytic diene hydroboration and also establishes a strategy for the alkylation of chiral enolates. Furthermore, this synthesis of discodermolide provides the first examples of the asymmetric 1,4-diboration of dienes and borylative diene-aldehyde couplings in complex-molecule synthesis.

  14. A novel asymmetric synthesis of cinacalcet hydrochloride

    OpenAIRE

    Arava, Veera R; Laxminarasimhulu Gorentla; Pramod K. Dubey

    2012-01-01

    A novel route to asymmetric synthesis of cinacalcet hydrochloride by the application of (R)-tert-butanesulfinamide and regioselective N-alkylation of the naphthyl ethyl sulfinamide intermediate is described.

  15. A novel asymmetric synthesis of cinacalcet hydrochloride

    Directory of Open Access Journals (Sweden)

    Veera R. Arava

    2012-08-01

    Full Text Available A novel route to asymmetric synthesis of cinacalcet hydrochloride by the application of (R-tert-butanesulfinamide and regioselective N-alkylation of the naphthyl ethyl sulfinamide intermediate is described.

  16. A novel asymmetric synthesis of cinacalcet hydrochloride

    Science.gov (United States)

    Gorentla, Laxminarasimhulu; Dubey, Pramod K

    2012-01-01

    Summary A novel route to asymmetric synthesis of cinacalcet hydrochloride by the application of (R)-tert-butanesulfinamide and regioselective N-alkylation of the naphthyl ethyl sulfinamide intermediate is described. PMID:23019473

  17. Asymmetric total synthesis of vindoline.

    Science.gov (United States)

    Kato, Daisuke; Sasaki, Yoshikazu; Boger, Dale L

    2010-03-24

    A concise asymmetric total synthesis of (-)-vindoline (1) is detailed based on a tandem intramolecular [4+2]/[3+2] cycloaddition cascade of a 1,3,4-oxadiazole inspired by the natural product structure, in which the tether linking the initiating dienophile and oxadiazole bears a chiral substituent that controls the facial selectivity of the initiating Diels-Alder reaction and sets absolute stereochemistry of the remaining six stereocenters in the cascade cycloadduct. This key reaction introduces three rings and four C-C bonds central to the pentacyclic ring system setting all six stereocenters and introducing essentially all the functionality found in the natural product in a single step. Implementation of the approach also required the development of a unique ring expansion reaction to provide a six-membered ring suitably functionalized for introduction of the Delta (6, 7)-double bond found in the core structure of vindoline and defined our use of a protected hydroxymethyl group as the substituent used to control the stereochemical course of the cycloaddition cascade.

  18. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    Science.gov (United States)

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  19. Absolute Asymmetric Synthesis Using A Cocrystal Approach

    Institute of Scientific and Technical Information of China (English)

    H.Koshima

    2007-01-01

    1 Results Absolute asymmetric synthesis by means of solid-state reaction of chiral crystals self-assembled from achiral molecules is an attractive and promising methodology for asymmetric synthesis because it is not necessary to employ any external chiral source like a chiral catalyst.In order to design reliably absolute asymmetric syntheses in the solid state,it is inevitable to prepare and predict the formation of chiral crystals from achiral compounds.We have prepared a number of chiral cocrystals co...

  20. Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted allenes

    Science.gov (United States)

    Hashimoto, Takuya; Sakata, Kazuki; Tamakuni, Fumiko; Dutton, Mark J.; Maruoka, Keiji

    2013-03-01

    Allenes are molecules based on three carbons connected by two cumulated carbon-carbon double bonds. Given their axially chiral nature and unique reactivity, substituted allenes have a variety of applications in organic chemistry as key synthetic intermediates and directly as part of biologically active compounds. Although the demands for these motivated many endeavours to make axially chiral, substituted allenes by exercising asymmetric catalysis, the catalytic asymmetric synthesis of fully substituted ones (tetrasubstituted allenes) remained largely an unsolved issue. The fundamental obstacle to solving this conundrum is the lack of a simple synthetic transformation that provides tetrasubstituted allenes in the action of catalysis. We report herein a strategy to overcome this issue by the use of a phase-transfer-catalysed asymmetric functionalization of 1-alkylallene-1,3-dicarboxylates with N-arylsulfonyl imines and benzylic and allylic bromides.

  1. An Efficient Method for Catalytic Asymmetric Reduction of Diketones and Application of Synthesis to Chiral 2,5-Diphenylpyrrolidine and 2,5-Diphenylthiolane

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; ZHAO Gang; CAO Wei-Guo

    2006-01-01

    Asymmetric reduction of diketones with borane reagents generated in situ using cheap and available NaBH4 and SnCl2 in the presence of (S)-(-)-α,α-diphenyl-2-pyrrolidinemethanol was successfully achieved to yield the corresponding chiral diols with excellent stereoselectivity and enantioselectivity. And the chiral diol was transformed into optically pure C2-symmetricl chiral amine or thioether.

  2. Enantiopure sulfoxides: recent applications in asymmetric synthesis.

    Science.gov (United States)

    Carreño, M Carmen; Hernández-Torres, Gloria; Ribagorda, María; Urbano, Antonio

    2009-11-07

    Sulfoxides are nowadays recognised as powerful chiral auxiliaries that may participate in a wide range of asymmetric reactions. Their high configurational stability, the existence of several efficient methods allowing the access to both configurations as well as their synthetic versatility are characteristic features offering a tremendous potential to develop new applications. Significant recent advances leading to high asymmetric inductions in carbon-carbon and carbon-oxygen bond forming reactions, and applications of homochiral sulfoxides to atroposelective synthesis and asymmetric catalysis are discussed. New uses of sulfoxides in the design of chiroptical switches are also shown.

  3. THE SYNTHESIS OF TWO KINDS OF POLYMERSUPPORTED ASYMMETRIC PHASE TRANSFER CATALYSITS(PS—PTCS)AND THE COMPARISON OF THEIR CATALYTIC ACTIVITIES

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhengpu; HUANGJinxia; 等

    1999-01-01

    In this paper,two kinds of PS-PTCs were synthesized using different methods by introducing cinchonine and quinine to the polymer support.Their catalytic properties for the alkylation of N-diphenylmethylene glycine t-butyl ester were also compared.

  4. Design and synthesis of chiral Ti-1,1'-bi-2-naphthol coordination polymers for heterogeneous catalytic asymmetric oxidation of sulfides

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-ya; WANG Xiao-tian

    2008-01-01

    Polymer-immobilized catalysis has many advantages such as easy recovery and reuse of catalyst. We prepared three novel chiral 1,1'-bi-2-naphthol-Ti coordination polymers with properly designed ligands and Ti(OiPr)4 under mild conditions. The prepared polymers exhibited good activity and excellent enantioselectivity (over 99%ee) in catalyzing the asymmetric oxidation of sulfides. The bridge linker in the polymer and the reaction solvent noticeably affected the enantioselectivity. The chiral coordination polymer was very stable and easy to separate from catalyzed reaction systems, with no significant loss of activity or enantioselectivity after reuse for at least ten times. These findings suggest a promising type of catalysts for synthesizing the widely used sulfoxides by asymmetrically oxidizing sulfides.

  5. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  6. Synthesis of Asymmetric Propanetriol Analogues

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    From natural tartaric acid, (R)-2-benzyloxy-3-(2-tetrahydropyranyloxy) propanol 3 was designed and synthesized, and (R)-2-benzyloxy-3-(4-methoxybenzyloxy) propanol 7 was prepared in a new method. They can be used as chiral synthons of lysophosphatidic acid and other compounds with asymmetric propanetriol backbone.

  7. Fluorous Mixture Synthesis of Asymmetric Dendrimers

    Science.gov (United States)

    Jiang, Zhong-Xing; Yu, Yihua Bruce

    2010-01-01

    A divergent fluorous mixture synthesis (FMS) of asymmetric fluorinated dendrimers has been developed. Four generations of fluorinated dendrimers with the same fluorinated moiety were prepared with high efficiency, yield and purity. Comparison of the physicochemical properties of these dendrimers provided valuable information for their application and future optimization. This strategy has not only provided a practical method for the synthesis and purification of dendrimers, but also established the possibility of utilizing the same fluorinated moiety for FMS. PMID:20170088

  8. Some Aspects of the Catalytic Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Anil; K.Saikia

    2007-01-01

    1 Results Catalytic reactions are gaining importance due to its low cost, operational simplicity, high efficiency and selectivity. It is also getting much attention in green synthesis. Many useful organic reactions, including the acylation of alcohols and aldehydes, carbon-carbon, carbon-nitrogen, carbon-sulfur bond forming and oxidation reactions are carried out by catalyst. We are exploring the catalytic acylation of alcohols and aldehydes in a simple and efficient manner. Catalytic activation of unr...

  9. Direct Asymmetric Aldol Type Reaction with Ethyl Diazoacetate: Stereoselective Synthesis of α, β-Dihydroxy Esters

    Institute of Scientific and Technical Information of China (English)

    LIAO Ming-Yi; YAO Wen-Gang; FENG Hai-Tao; WANG Jian-Bo

    2003-01-01

    @@ Enantioselective aldol condensation under catalytic condition remains a challenging task in modern organic synthesis, and numerous efforts have been directed to this area. In particular, the direct catalytic asymmetric aldol reaction is very attractive considering the requirement of atom efficiency. This has been studied only recently, and several very practical processes have been developed. We have recently initiated a study on the direct asymmetric aldol type reaction with ethyl diazoacetate as nucleophile. Moderate enantioselectivities (65% ~91% ee ) were achieved in the condensation of aldehydes with ethyl diazoacetate catalyzed by the chiral complex of BINOL derivatives-Zr (OBu- t )4. [1

  10. Asymmetric catalysis in organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, S.D.; Click, D.R.; Grumbine, S.K.; Scott, B.L.; Watkins, J.G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of the project was to prepare new catalyst systems, which would perform chemical reactions in an enantioselective manner so as to produce only one of the possible optical isomers of the product molecule. The authors have investigated the use of lanthanide metals bearing both diolate and Schiff-base ligands as catalysts for the enantioselective reduction of prochiral ketones to secondary alcohols. The ligands were prepared from cheap, readily available starting materials, and their synthesis was performed in a ''modular'' manner such that tailoring of specific groups within the ligand could be carried out without repeating the entire synthetic procedure. In addition, they have developed a new ligand system for Group IV and lanthanide-based olefin polymerization catalysts. The ligand system is easily prepared from readily available starting materials and offers the opportunity to rapidly prepare a wide range of closely related ligands that differ only in their substitution patterns at an aromatic ring. When attached to a metal center, the ligand system has the potential to carry out polymerization reactions in a stereocontrolled manner.

  11. Synthesis of New Bifunctional Bis(oxazolines) and Their Application in the Asymmetric Cyanosilylation of Aromatic Ketones

    Institute of Scientific and Technical Information of China (English)

    LUO,Mei; DU,Da-Ming

    2004-01-01

    @@ Catalytic asymmetric synthesis of tertiary cyanohydrins by the addition of cyanide to a wide range of ketones has important synthetic utility, since the resulting optically active cyanohydrins are important intermediates for the synthesis of a variety of valuable classes of chiral compounds. The application of oxazoline in asymmetric cyanosilylation has seldom reported in comparation with other reactions.[1] Recently, polymer-supported pyridine-bis(oxazoline) ytterbium complex was reported to catalyze cyanosilylation of benzaldehyde.

  12. Asymmetric Synthesis of Both Enantiomers of Disparlure

    Institute of Scientific and Technical Information of China (English)

    王志刚; 郑剑峰; 黄培强

    2012-01-01

    Starting from propargyl alcohol (12), and on the basis of Zhou's modified Sharpless asymmetric epoxidation, the sex pheromone of the Gypsy moth, disparlure (+)-8 and its enantiomer (-)-8 have been synthesized, each in six steps, with overall yields of 29% for (+)-8 and 27% for (-)-8 (ee〉98%). The use of the sequential coupling tactic renders the method flexible, which is applicable to the synthesis of other cis-epoxy pheromones.

  13. Asymmetric Intramolecular Alkylation of Chiral Aromatic Imines via Catalytic C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Watzke, Anja; Wilson, Rebecca; O' Malley, Steven; Bergman, Robert; Ellman, Jonathan

    2007-04-16

    The asymmetric intramolecular alkylation of chiral aromatic aldimines, in which differentially substituted alkenes are tethered meta to the imine, was investigated. High enantioselectivities were obtained for imines prepared from aminoindane derivatives, which function as directing groups for the rhodium-catalyzed C-H bond activation. Initial demonstration of catalytic asymmetric intramolecular alkylation also was achieved by employing a sterically hindered achiral imine substrate and catalytic amounts of a chiral amine.

  14. Catalytic Radical Domino Reactions in Organic Synthesis

    Science.gov (United States)

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  15. New Chiral Pyridine Prolinol Derivatives and Preliminary Study on Asymmetric Catalytic Reaction

    Institute of Scientific and Technical Information of China (English)

    Xiao CHEN; Yong Xin ZHANG; Da Ming DU; Wen Ting HUA

    2004-01-01

    Two new chiral pyridine prolinol derivatives have been synthesized from N-alkylation of (S)-α,α-diphenyl-2-pyrrolidinemethanol with 2-bromomethylpyridine and 2, 6-dibromo-methyl-pyridine. The catalytic asymmetric borane reduction of prochiral ketones and the asymmetric addition of diethylzinc to benzaldehyde were investigated.

  16. Chiral alkynylcarbinols from marine sponges: asymmetric synthesis and biological relevance.

    Science.gov (United States)

    Listunov, Dymytrii; Maraval, Valérie; Chauvin, Remi; Génisson, Yves

    2015-01-01

    Covering: up to March 2014. Previous review on the topic: B. W. Gung, C. R. Chim., 2009, 12, 489-505. Chiral α-functional lipidic propargylic alcohols extracted from marine sponges, in particular of the pacific genus Petrosia, constitute a class of acetylenic natural products exhibiting remarkable in vitro biological activities, especially anti-tumoral cytotoxicity. These properties, associated to functionalities that are uncommon among natural products, have prompted recent projects on asymmetric total synthesis. On the basis of a three-sector structural typology, three main sub-types of secondary alkynylcarbinols (with either alkyl, alkenyl, or alkynyl as the second substituent) can be identified as the minimal pharmacophoric units. Selected natural products containing these functionalities have been targeted using previously known or on purpose-designed procedures, where the stereo-determining step can be: (i) a C-C bond forming reaction (e.g. the Zn-mediated addition of alkynyl nucleophiles to aldehydes in the presence of chiral aminoalcohols), (ii) a functional layout (e.g. the asymmetric organo- or metallo-catalytic reduction of ynones), or (iii) an enantiomeric resolution (e.g. a lipase-mediated kinetic resolution via acetylation). The promising medicinal importance of these targets is finally surveyed, and future investigation prospects are proposed, such as: (i) further total synthesis of known or future extraction products; (ii) the synthesis of non-natural analogues, with simpler lipophilic environments of the alkynylcarbinol-based pharmacophoric units; (iii) the variation and optimization of both the pharmacophoric units and their lipophilic environment; and (iv) investigations into the biological mode of action of these unique structures.

  17. Asymmetric Synthesis of (+)-(11 R,12S)-Mefloquine Hydrochloride

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The asymmetric synthesis of (+)-(11R,12S)-mefloquine hydrochloride, an antimalarial drug, was accomplished from commercially available 2-trifluoromethylaniline, ethyl 4,4,4-trifluoroacetoacetate and cyclopentanone in 7 steps with a 14% overall yield. The key steps were proline-catalyzed asymmetric direct aldol reaction and Beck-mann rearrangement. The absolute configuration was assigned by a Mosher's method.

  18. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh.M.; Bragin, O.V.

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  19. Anodic aluminium oxide catalytic membranes for asymmetric epoxidation.

    Science.gov (United States)

    Cho, So-Hye; Walther, Nolan D; Nguyen, SonBinh T; Hupp, Joseph T

    2005-11-14

    Catechol-functionalized (salen)Mn complexes can be supported on mesoporous anodized aluminium oxide disks to yield catalytic membranes that are highly active in the enantioselective epoxidation of olefins when being deployed in a forced-through-flow reactor.

  20. Synthesis and Catalytic Activity of Two New Cyclic Tetraaza Ligands

    Directory of Open Access Journals (Sweden)

    Burkhard König

    2003-05-01

    Full Text Available Two new chiral cyclic tetraaza ligands were synthesized and characterized. Their catalytic activity was tested in the asymmetric addition of diethylzinc to benzaldehyde. The expected secondary alcohol was obtained in moderate yields, but with very low enantioselectivity.

  1. Development of Ar-BINMOL-Derived Atropisomeric Ligands with Matched Axial and sp(3) Central Chirality for Catalytic Asymmetric Transformations.

    Science.gov (United States)

    Xu, Zheng; Xu, Li-Wen

    2015-10-01

    Recently, academic chemists have renewed their interest in the development of 1,1'-binaphthalene-2,2'-diol (BINOL)-derived chiral ligands. Six years ago, a working hypothesis, that the chirality matching of hybrid chirality on a ligand could probably lead to high levels of stereoselective induction, prompted us to use the axial chirality of BINOL derivatives to generate new stereogenic centers within the same molecule with high stereoselectivity, obtaining as a result sterically favorable ligands for applications in asymmetric catalysis. This Personal Account describes our laboratory's efforts toward the development of a novel class of BINOL-derived atropisomers bearing both axial and sp(3) central chirality, the so-called Ar-BINMOLs, for asymmetric synthesis. Furthermore, on the basis of the successful application of Ar-BINMOLs and their derivatives in asymmetric catalysis, the search for highly efficient and enantioselective processes also compelled us to give special attention to the BINOL-derived multifunctional ligands with multiple stereogenic centers for use in catalytic asymmetric reactions.

  2. Asymmetric Catalytic Hydrogenation Using Rhodium Diphosphinites Derived From D-glucose and D-mannitol

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three diphosphinites were synthesized for preparing rhodium-diphosphinite complexes. The complexes were used for asymmetric catalytic hydrogenation of amino acid precursor a -acetamidocinnamic acid and its methyl ester. With all complexes, D-amino acid is the most abundant product.

  3. The First Catalytic Asymmetric Morita-Baylis-Hillman Reaction of Acrolein with Aromatic Aldehydes

    Institute of Scientific and Technical Information of China (English)

    曾兴平; 刘运林; 计从斌; 周剑

    2012-01-01

    We report the first example of catalytic asymmetric Morita-Baylis-Hillman reaction of acrolein with aromatic aldehydes. The use of 10 mol% of Hatakeyama's catalyst β-isocupreidine C4, in combination with 20 mol% of 2,6-dimethoxybenzoic acid, could catalyze the reaction to give the desired products in up to 81% ee.

  4. Direct Catalytic Asymmetric Mannich-Type Reaction of Alkylamides.

    Science.gov (United States)

    Arteaga, Fernando Arteaga; Liu, Zijian; Brewitz, Lennart; Chen, Jianyang; Sun, Bo; Kumagai, Naoya; Shibasaki, Masakatsu

    2016-05-20

    Direct enolate formation coupled with subsequent enantioselective C-C bond formation remains a topic of intense interest in asymmetric catalysis. This methodology is achieved even with low acidic amides without an electron-withdrawing group at the α-position in the context of a Mannich-type reaction. Acetate-, propionate-, and butyrate-type 7-azaindoline amides served as enolate precursors to afford the desired Mannich adducts with high stereoselectivity, and ligand-enabled diastereo-divergency provided access to both anti/syn diastereomers. The facile transformation of the amide moiety ensures the synthetic utility of the Mannich adducts.

  5. Catalytic Synthesis Methods for Triazolopyrimidine Derivatives

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new method for catalyzed synthesis of triazolopyrimidine derivatives is reported. Aikylamine reaction with dialkyl cyanodithioiminocarbonate was catalyzed by quaternary ammonium salts at room temperature to yield 3-alkylamine-5-amino-1,2,4-triazole in good quality and high yields. After imidization and reaction with an α,β-unsaturated acid derivative, the reaction intermediate was hydrolyzed in the presence of a Lewis acid to obtain the target product. This novel catalytic method for triazolopyrimidine derivatives can be carried out under inexpen-sive and mild conditions, and is safe and environmentally friendly. IH NMR results for all intermediates are re-ported.

  6. Biomimetic, Catalytic Oxidation in Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Shun-lchi Murahashi

    2005-01-01

    @@ 1Introduction Oxidation is one of the most fundamental reactions in organic synthesis. Owing to the current need to develop forward-looking technology that is environmentally acceptable with respect many aspects. The most attractive approaches are biomimetic oxidation reactions that are closely related to the metabolism of living things. The metabolisms are governed by a variety of enzymes such as cytochrome P-450 and flavoenzyme.Simulation of the function of these enzymes with simple transition metal complex catalyst or organic catalysts led to the discovery of biomimetic, catalytic oxidations with peroxides[1]. We extended such biomimetic methods to the oxidation with molecular oxygen under mild conditions.

  7. Catalytic enantioselective synthesis of quaternary carbon stereocentres

    Science.gov (United States)

    Quasdorf, Kyle W.; Overman, Larry E.

    2014-12-01

    Quaternary carbon stereocentres--carbon atoms to which four distinct carbon substituents are attached--are common features of molecules found in nature. However, before recent advances in chemical catalysis, there were few methods of constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for the synthesis of single stereoisomers of such organic molecules. This progress now makes it possible to incorporate quaternary stereocentres selectively in many organic molecules that are useful in medicine, agriculture and potentially other areas such as flavouring, fragrances and materials.

  8. Functionalized TUD-1: synthesis, characterization and (photo-)catalytic performance

    NARCIS (Netherlands)

    Hamdy M. Saad, M.S.

    2005-01-01

    The new mesoporous material; TUD-1 is chosen of which the synthesis, characterization, and functionalization for (photo)-catalytic performance are extensively investigated in this study. The synthesis of the new catalytic materials M TUD-1 (M = Ti, V, Cr, Mo, Fe, Co and Cu) is carried out through an

  9. Catalytic asymmetric Povarov reaction of isatin-derived 2-azadienes with 3-vinylindoles.

    Science.gov (United States)

    Zhang, Hong-Hao; Sun, Xiao-Xue; Liang, Jing; Wang, Yue-Ming; Zhao, Chang-Chun; Shi, Feng

    2014-12-21

    The first catalytic asymmetric Povarov reaction of isatin-derived 2-azadienes with 3-vinylindoles was established in the presence of chiral phosphoric acid, which tolerates a wide range of substrates with generally excellent diastereoselectivity and good enantioselectivity (up to >95 : 5 dr, 89 : 11 er). This approach will greatly enrich the chemistry of the catalytic asymmetric Povarov reaction, in particular ketone-involved transformations. Furthermore, this protocol represents the first diastereo- and enantio-selective construction of a spiro[indolin-3,2'-quinoline] framework bearing an indole moiety. This novel type of spiro-compound not only contains two chiral centers, including one quaternary stereogenic center, but also integrates two biologically important structures of spiro[indolin-3,2'-quinoline] and indole, which may find medicinal applications after bioassay.

  10. Recent advances in rhodium-catalyzed asymmetric synthesis of heterocycles.

    Science.gov (United States)

    Chen, Wen-Wen; Xu, Ming-Hua

    2017-02-01

    Heterocycles are crucial structural motifs that are ubiquitously present in biologically active natural products and pharmaceutically important compounds. Over the past few decades, great attention has been paid to develop efficient methodologies for the construction of diverse enantioenriched heterocyclic frameworks. This review focuses on the recent impressive progress and advances in the asymmetric synthesis of heterocycles under rhodium catalysis.

  11. New approaches in asymmetric synthesis using γ-alkoxybutenolides

    NARCIS (Netherlands)

    Lange, Ben de; Jansen, Johan F.G.A.; Jong, Johannes C. de; Lubben, Marcel; Faber, Wijnand; Schudde, Ebe P.; Feringa, Bernard

    1992-01-01

    The synthesis of a new class of auxiliary based chiral synthons, γ-alkoxy-2(5H)-furanones, is described. The multifunctional compounds enter a variety of asymmetric transformations leading to acyclic- and cyclic-products with up to four new stereogenic centers in a single operation with stereoselect

  12. Catalytic Ugi-type condensation of α-isocyanoacetamide and chiral cyclic imine: access to asymmetric construction of several heterocycles.

    Science.gov (United States)

    Xia, Liang; Li, Sheng; Chen, Ruijiao; Liu, Kai; Chen, Xiaochuan

    2013-04-05

    Several novel heterocycles have been constructed asymmetrically on the basis of a catalytic Ugi-type condensation of α-isocyanoacetamide and chiral cyclic imine. The combination of phenylphosphilic acid and trifluoroethanol is exploited to promote an Ugi-type reaction with α-isocyanoacetamide for the first time. By means of this reaction, chiral 3-oxazolyl morpholin-2-one/piperazin-2-one derivatives are synthesized with high yields and excellent stereoselectivities. As electron-rich azadienes, these condensation products are further transformed to fused tricyclic frameworks by treatment with appropriate dienophiles such as maleic anhydride and unsaturated acyl chlorides via domino processes. Moreover, a one-pot, three-component synthesis of the chiral tricyclic frameworks from isocyanoacetamide, imine, and maleic anhydride is also feasible.

  13. Stoichiometric and Catalytic Synthesis of Alkynylphosphines

    Directory of Open Access Journals (Sweden)

    Annie-Claude Gaumont

    2012-12-01

    Full Text Available Alkynylphosphines or their borane complexes are available either through C–P bond forming reactions or through modification of the phosphorus or the alkynyl function of various alkynyl phosphorus derivatives. The latter strategy, and in particular the one involving phosphoryl reduction by alanes or silanes, is the method of choice for preparing primary and secondary alkynylphosphines, while the former strategy is usually employed for the synthesis of tertiary alkynylphosphines or their borane complexes. The classical C–P bond forming methods rely on the reaction between halophosphines or their borane complexes with terminal acetylenes in the presence of a stoichiometric amount of organometallic bases, which precludes the access to alkynylphosphines bearing sensitive functional groups. In less than a decade, efficient catalytic procedures, mostly involving copper complexes and either an electrophilic or a nucleophilic phosphorus reagent, have emerged. By proceeding under mild conditions, these new methods have allowed a significant broadening of the substituent scope and structure complexity.

  14. Traceless Synthesis of Asymmetrically Modified Bivalent Nucleosomes.

    Science.gov (United States)

    Lechner, Carolin C; Agashe, Ninad D; Fierz, Beat

    2016-02-18

    Nucleosomes carry extensive post-translational modifications (PTMs), which results in complex modification patterns that are involved in epigenetic signaling. Although two copies of each histone coexist in a nucleosome, they may not carry the same PTMs and are often differently modified (asymmetric). In bivalent domains, a chromatin signature prevalent in embryonic stem cells (ESCs), namely H3 methylated at lysine 4 (H3K4me3), coexists with H3K27me3 in asymmetric nucleosomes. We report a general, modular, and traceless method for producing asymmetrically modified nucleosomes. We further show that in bivalent nucleosomes, H3K4me3 inhibits the activity of the H3K27-specific lysine methyltransferase (KMT) polycomb repressive complex 2 (PRC2) solely on the same histone tail, whereas H3K27me3 stimulates PRC2 activity across tails, thereby partially overriding the H3K4me3-mediated repressive effect. To maintain bivalent domains in ESCs, PRC2 activity must thus be locally restricted or reversed.

  15. Plasma Catalytic Synthesis of Silver Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Tao; GUO Ying; MA Teng-Cai

    2011-01-01

    We present the experimental results of plasma catalytic synthesis of colloidal silver nanoparticles, using AgNO3 as the precursor, ethanol as the solvent and reducing agent, and poly vinyl pyrrolidone (PVP) as the macromolecular surfactant. The plasma is generated by an atmospheric argon dielectric barrier discharge jet. Silver nanoparticles are produced instantly once the plasma is ignited. The system is not heated so it is necessary to use traditional chemical methods. The samples are characterized by UV-visible absorbance and transmission electron microscopy. For glow discharge mode no obvious silver nanoparticles are observed. For low voltage filamentary streamer discharge mode a lot of silver nanoparticles with the mean diameter of ~3.5nm are generated and a further increase of the voltage causes the occurrence of agglomeration.%We present the experimental results of plasma catalytic synthesis of colloidal silver nanoparticles,using AgNO3 as the precursor,ethanol as the solvent and reducing agent,and poly vinyl pyrrolidone (PVP) as the macromolecular surfactant.The plasma is generated by an atmospheric argon dielectric barrier discharge jet.Silver nanoparticles are produced instantly once the plasma is ignited.The system is not heated so it is necessary to use traditional chemical methods.The samples are characterized by UV-visible absorbance and transmission electron microscopy.For glow discharge mode no obvious silver nanoparticles are observed.For low voltage filamentary streamer discharge mode a lot of silver nanoparticles with the mean diameter of ~3.5nm are generated and a further increase of the voltage causes the occurrence of agglomeration.The study of silver nanoparticles has been an extremely active area in recent years because of their important physical and chemical properties as a catalyst and antimicrobial reagent,for example.A number of methods for silver nanoparticle preparation have been developed,[1-3] among them chemical reduction is

  16. A highly efficient and recoverable bi-cinchona alkaloid ligand for the catalytic asymmetric aminohydroxylation of olefins

    Directory of Open Access Journals (Sweden)

    SHENGYONG ZHANG

    2006-10-01

    Full Text Available A new freely recyclable bi-cinchona alkaloid ligand has been developed for the homogeneous catalytic asymmetric aminohydroxylation (AA of olefins. It can be easily recovered by precipitation and reused for 5 times without any significant loss in its catalytic efficiency in AA reactions.

  17. An efficient asymmetric synthesis of (-)-wodeshiol

    Indian Academy of Sciences (India)

    Soon Ho Lee; Jae-Chul Jung; Oee Sook Park

    2011-05-01

    An efficient synthesis of (-)-wodeshiol 1 is described. The key reactions include highly stereoselective aldol condensation of piperonal with the dianion of chiral oxazolidinone, subsequent intramolecular ring cyclization of the aldol product 8 and a diastereocontrolled oxygenation of dilactone 7 in good yield.

  18. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.;

    2011-01-01

    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwaveassisted metal cat...

  19. Catalytic synthesis of ammonia using vibrationally excited nitrogen molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1992-01-01

    The dissociation of nitrogen is the rate-limiting step in the catalytic synthesis of ammonia. Theoretical calculations have shown that the dissociative sticking probability of molecular nitrogen on catalytic active metal surfaces is enhanced by orders of magnitude when the molecules...

  20. Asymmetric synthesis using chiral-encoded metal

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  1. Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A

    Science.gov (United States)

    Han, Yi-Xin; Jiang, Yan-Long; Li, Yong; Yu, Hai-Xin; Tong, Bing-Qi; Niu, Zhe; Zhou, Shi-Jie; Liu, Song; Lan, Yu; Chen, Jia-Hua; Yang, Zhen

    2017-01-01

    Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A--which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids.

  2. Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A

    Science.gov (United States)

    Han, Yi-Xin; Jiang, Yan-Long; Li, Yong; Yu, Hai-Xin; Tong, Bing-Qi; Niu, Zhe; Zhou, Shi-Jie; Liu, Song; Lan, Yu; Chen, Jia-Hua; Yang, Zhen

    2017-01-01

    Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A—which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids. PMID:28139648

  3. The first catalytic asymmetric addition of diethylzinc to aldehyde promoted by chiral thiourea

    Institute of Scientific and Technical Information of China (English)

    Zhi Guo Qiao; Tian Hua Shen; Zhen Fang Fu; Jun Qi Li; Hong Wang; Qing Bao Song

    2011-01-01

    A series of C2-symmetric and asymmetric chiral thiourea derivatives were synthesized from commercial L-phenylalanine. All of the new compounds have been fully characterized by IR, 1H NMR, 13C NMR, MS spectra and elemental analyses. The chiral thioureas were used as chiral ligands in the catalytic enantioselective ethylation of aldehydes with diethylzinc, the corresponding sec-alcohols were gained with excellent enantioselectivities (up to 87.1 % ee) and high yields (up to 76.7%) after the conditions were optimized.

  4. Asymmetric Synthesis of Fluoroamines from Chiral Aziridines

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyeonjeong; Yoon, Dooha; Ha, Hyunjoon [Hankuk Univ. of Foreign Studies, Yongin (Korea, Republic of); Son, Se In; Lee, Won Koo [Sogang Univ., Seoul (Korea, Republic of)

    2014-03-15

    We described an efficient preparation of fluoroamines by the ring-opening reactions of chiral aziridines with Et{sub 3}N·3HF. At most cases both regioisomers were obtained from the ring openings at C2 and C3 positions depending on the substituents at C2 of the starting substrates.The fluorinated organic molecules have attracted great attentions from synthetic and medicinal chemists with wide use of various agrochemicals and pharmaceuticals. Their uniqueness is originated from its electronic characteristics and the small size without altering the molecular conformations of non-fluorinated compounds. The fluorine is the second most widely used atom in the commercial drugs following the amine. Thereby, the elaboration of fluoro-amines bearing two most widely used atoms in drugs is one of the most challenging problems in drug synthesis and its development.

  5. Simulation for Synthesis of TAME with Catalytic Distillation Process

    Institute of Scientific and Technical Information of China (English)

    Liu Boxue; Deng Zhengyong; Weng Huixin; Gao Buliang

    2008-01-01

    The triangular matrixing modified relaxation model equation was established for the synthesis of TAME with catalytic distillation process, and a new accelerated convergence technique was adopted. The simulation on the synthesis of TAME showed that the calculated data agreed well with the experimental results.

  6. Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications.

    Science.gov (United States)

    He, Jie; Liu, Yijing; Hood, Taylor C; Zhang, Peng; Gong, Jinlong; Nie, Zhihong

    2013-06-21

    Asymmetric particles (APs) with broken centrosymmetry are of great interest, due to the asymmetric surface properties and diverse functionalities. In particular, organic/metal(oxide) APs naturally combine the significantly different and complementary properties of organic and inorganic species, leading to their unique applications in various fields. In this review article, we highlighted recent advances in the synthesis and applications of organic/metal(oxide) APs. This type of APs is grounded on chemical or physical interactions between metal(oxide) NPs and organic small molecular or polymeric ligands. The synthetic methodologies were summarized in three categories, including the selective surface modifications, phase separation of mixed ligands on the surface of metal(oxide) NPs, and direct synthesis of APs. We further discussed the unique applications of organic/metal(oxide) APs in self-assembly, sensors, catalysis, and biomedicine, as a result of the distinctions between asymmetrically distributed organic and inorganic components. Finally, challenges and future directions are discussed in an outlook section.

  7. Synthesis of Asymmetrical Organic Carbonates using CO2 as a Feedstock in AgCl/Ionic Liquid System at Ambient Conditions.

    Science.gov (United States)

    Hu, Jiayin; Ma, Jun; Lu, Lu; Qian, Qingli; Zhang, Zhaofu; Xie, Chao; Han, Buxing

    2017-01-10

    Synthesis of asymmetrical organic carbonates from the renewable and inexpensive CO2 is of great importance but also challenging, especially at ambient conditions. Herein, we found that some metal salt/ionic liquid catalyst systems were highly active for the synthesis of asymmetrical organic carbonates from CO2 , propargylic alcohols, and primary alcohols. Especially, the AgCl/1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) system was very efficient for the reactions of a wide range of substrates at room temperature and atmospheric pressure, and the yields of the asymmetrical organic carbonates could approach 100 %. The catalyst system could be reused at least five times without changing its catalytic performance, and could be easily recovered and reused. A detailed study indicated that AgCl and [Bmim][OAc] catalyzed the reactions cooperatively, resulting in unique catalytic performance.

  8. Synthesis of (+)-Discodermolide by Catalytic Stereoselective Borylation Reactions**

    OpenAIRE

    Yu, Zhiyong; Ely, Robert J.; Morken, James P.

    2014-01-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides a forum for the inspiration of new reaction development. In this manuscript, we present a synthesis of discodermolide that employs a previously undisclosed stereoselective catalytic diene hydroboration a...

  9. Synthesis of (+)-Discodermolide by Catalytic Stereoselective Borylation Reactions**

    Science.gov (United States)

    Yu, Zhiyong; Ely, Robert J.

    2014-01-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides a forum for the inspiration of new reaction development. In this manuscript, we present a synthesis of discodermolide that employs a previously undisclosed stereoselective catalytic diene hydroboration and also establishes a strategy for chiral enolate alkylation. In addition, this synthesis of discodermolide provides the first examples of diene 1,4-diboration and borylative diene-aldehyde couplings in complex molecule synthesis. PMID:25045037

  10. Asymmetric Synthesis Using Enzymes in Supercritical CO2

    Institute of Scientific and Technical Information of China (English)

    T. Matsuda

    2005-01-01

    @@ 1Introduction Great efforts have been extended to catalysis in supercritical CO2 (scCO2) since the early 1990's due to the environmental friendliness, high diffusivity, high solubilizing power, easiness of the product separation,etc.. A combined process of scCO2 and enzymatic catalyst system would be a promising synthetic tool to produce optically active compounds because the enzyme has advantages of being natural and having high enantioselectivity in nature. Here we report asymmetric synthesis using lipase and alcohol dehydrogenase in scCO2[1,2].

  11. Mechanism of the cobalt oxazoline palladacycle (COP)-catalyzed asymmetric synthesis of allylic esters.

    Science.gov (United States)

    Cannon, Jeffrey S; Kirsch, Stefan F; Overman, Larry E; Sneddon, Helen F

    2010-11-03

    The catalytic enantioselective S(N)2' displacement of (Z)-allylic trichloroacetimidates catalyzed by the palladium(II) complex [COP-OAc](2) is a broadly useful method for the asymmetric synthesis of chiral branched allylic esters. A variety of experiments aimed at elucidating the nature of the catalytic mechanism and its rate- and enantiodetermining steps are reported. Key findings include the following: (a) the demonstration that a variety of bridged-dipalladium complexes are present and constitute resting states of the COP catalyst (however, monomeric palladium(II) complexes are likely involved in the catalytic cycle); (b) labeling experiments establishing that the reaction proceeds in an overall antarafacial fashion; (c) secondary deuterium kinetic isotope effects that suggest substantial rehybridization at both C1 and C3 in the rate-limiting step; and (d) DFT computational studies (B3-LYP/def2-TZVP) that provide evidence for bidentate substrate-bound intermediates and an anti-oxypalladation/syn-deoxypalladation pathway. These results are consistent with a novel mechanism in which chelation of the imidate nitrogen to form a cationic palladium(II) intermediate activates the alkene for attack by external carboxylate in the enantiodetermining step. Computational modeling of the transition-state structure for the acyloxy palladation step provides a model for enantioinduction.

  12. Synthesis and Catalytic Application of Chiral 1, 1'-Binaphthyl Polymers

    Institute of Scientific and Technical Information of China (English)

    Xu Dong LIU; Meng Xian DING; Lian Xun GAO

    2004-01-01

    The synthesis of a new type of polymers with main chain chirality based on BINOL skeleton is described. Titanium-BINOLate catalysts are easily generated from these polymers and applied to the asymmetric reaction of Et2Zn with benzaldehyde. The products are obtained in good yields with moderate enantioselectivities.

  13. Controlled synthesis of porous platinum nanostructures for catalytic applications.

    Science.gov (United States)

    Cao, Yanqin; Zhang, Junwei; Yang, Yong; Huang, Zhengren; Long, Nguyen Viet; Nogami, Masayuki

    2014-02-01

    Porous platinum, that has outstanding catalytic and electrical properties and superior resistant characteristics to corrosion, has been widely applied in chemical, petrochemical, pharmaceutical, electronic, and automotive industries. As the catalytic activity and selectivity depend on the size, shape and structure of nanomaterials, the strategies for controlling these factors of platinum nanomaterials to get excellent catalytic properties are discussed. Here, recent advances in the design and preparation of various porous platinum nanostructures are reviewed, including wet-chemical synthesis, electro-deposition, galvanic replacement reaction and de-alloying technology. The applications of various platinum nanostructures are also discussed, especially in fuel cells.

  14. Catalytic enantioselective synthesis of vicinal dialkyl arrays

    NARCIS (Netherlands)

    van Zijl, Anthoni W.; Szymanski, Wiktor; Lopez, Ferrnando; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    With a consecutive "asymmetric allylic alkylation (AAA)/cross-metathesis (CM)/conjugate addition (CA)" protocol it is possible to synthesize either stereoisomer of compounds containing a vicinal dialkyl array with excellent stereoselectivity. The versatility of this protocol in natural product synth

  15. Highly Efficient Asymmetric Synthesis Usomg Organocatalyst Derived From(S)-proline

    Institute of Scientific and Technical Information of China (English)

    T.Oriyama

    2007-01-01

    1 Results Much effort has been focused on organocatalytic asymmetric synthesis in these several years. We have already documented highly efficient organocatalytic asymmetric acylation of a wide variety of racemic alcohols and meso-diols catalyzed bya chiral 1,2-diamine derived from (S)-proline[1]. (S)-Homoproline seems to be a potentially interesting organocatalyst, but no examples using (S)-homoproline itself in asymmetric synthesis has been reported. We have accomplished an efficient and practical syn...

  16. [Asymmetric synthesis of aromatic L-amino acids catalyzed by transaminase].

    Science.gov (United States)

    Xia, Wenna; Sun, Yu; Min, Cong; Han, Wei; Wu, Sheng

    2012-11-01

    Aromatic L-Amino acids are important chiral building blocks for the synthesis of many drugs, pesticides, fine chemicals and food additives. Due to the high activity and steroselectivity, enzymatic synthesis of chiral building blocks has become the main research direction in asymmetric synthesis field. Guided by the phylogenetic analysis of transaminases from different sources, two representative aromatic transaminases TyrB and Aro8 in type I subfamily, from the prokaryote Escherichia coli and eukaryote Saccharomyces cerevisia, respectively, were applied for the comparative study of asymmetric transamination reaction process and catalytic efficiency of reversely converting keto acids to the corresponding aromatic L-amino acid. Both TyrB and Aro8 could efficiently synthesize the natural aromatic amino acids phenylalanine and tyrosine as well as non-natural amino acid phenylglycine. The chiral HPLC analysis showed the produced amino acids were L-configuration and the e.e value was 100%. L-alanine was the optimal amino donor, and the transaminase TyrB and Aro8 could not use D-amino acids as amino donor. The optimal molar ratio of amino donor (L-alanine) and amino acceptor (aromatic alpha-keto acids) was 4:1. Both of the substituted group on the aromatic ring and the length of fatty acid carbon chain part in the molecular structure of aromatic substrate alpha-keto acid have the significant impact on the enzyme-catalyzed transamination efficiency. In the experiments of preparative-scale transamination synthesis of L-phenylglycine, L-phenylalanine and L-tyrosine, the specific production rate catalyzed by TryB were 0.28 g/(g x h), 0.31 g/(g x h) and 0.60 g/(g x h) and the specific production rate catalyzed by Aro8 were 0.61 g/(g x h), 0.48 g/(g x h) and 0.59 g/(g x h). The results obtained here were useful for applying the transaminases to asymmetric synthesis of L-amino acids by reversing the reaction balance in industry.

  17. Assessing the reliability of calculated catalytic ammonia synthesis rates

    DEFF Research Database (Denmark)

    Medford, Andrew James; Wellendorff, Jess; Vojvodic, Aleksandra

    2014-01-01

    We introduce a general method for estimating the uncertainty in calculated materials properties based on density functional theory calculations. We illustrate the approach for a calculation of the catalytic rate of ammonia synthesis over a range of transition-metal catalysts. The correlation...

  18. Mechanism-guided development of VO(salen)X complexes as catalysts for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers.

    Science.gov (United States)

    Belokon, Yuri N; Clegg, William; Harrington, Ross W; Maleev, Victor I; North, Michael; Pujol, Marta Omedes; Usanov, Dmitry L; Young, Carl

    2009-01-01

    Catalyze this! Detailed study of the mechanism of asymmetric cyanohydrin synthesis catalyzed by VO(salen)X complexes (see figure) led to the development of VO(salen)NCS, as the most active vanadium-based catalyst yet developed for this reaction.The mechanism by which oxovanadium(V)(salen) complexes(1) VO(salen)X catalyze the asymmetric addition of trimethylsilyl cyanide to benzaldehyde has been studied. The reaction kinetics indicated that the structure of the counterion (X) had a significant influence on the rate, but not on the enantioselectivity of the reaction. The less coordinating the counterion, the lower the catalytic activity; a trend that was confirmed by a Hammett analysis. Variable temperature kinetics allowed the enthalpies and entropies of activation to be determined for some catalysts, and showed that, for others, the overall reaction order changes from second order to zero order as the temperature is reduced. The order with respect to the catalyst was determined for nine of the VO(salen)X complexes and showed that the less active catalysts were active predominantly as mononuclear species whilst the more active catalysts were active predominantly as dinuclear species. Mass spectrometry confirmed the formation of dinuclear species in situ from all of the VO(salen)X complexes and indicated that the dinuclear complexes contained one vanadium(V) and one vanadium(IV) ion. The latter conclusion was supported by cyclic voltammetry of the complexes, by fluorescence measurements and by the fact that catalyst deactivation occurs when reactions are carried out under an inert atmosphere. Based on this evidence, it has been deduced that the catalysis involves two catalytic cycles: one for catalysis by mononuclear VO(salen)X species and the other for catalysis by dinuclear species. The catalytic cycle involving dinuclear species involves activation of both the cyanide and aldehyde, whereas the catalytic cycle involving mononuclear species activates only the

  19. Catalytic Synthesis of Nitriles in Continuous Flow

    DEFF Research Database (Denmark)

    Nordvang, Emily Catherine

    , alternative path to acetonitrile from ethanol via the oxidative dehydrogenation of ethylamine. The catalytic activity and product ratios of the batch and continuous flow reactions are compared and the effect of reaction conditions on the reaction is investigated. The effects of ammonia in the reaction...... dehydrogenation of ethylamine and post-reaction purging.Chapter 4 outlines the application of RuO2/Al2O3 catalysts to the oxidative dehydrogenation of benzylamine in air, utilizing a new reaction setup. Again, batch and continuous flow reactions are compared and the effects of reaction conditions, ammonia...

  20. Simulation of Suspension Catalytic Distillation for Synthesis of Linear Alkylbenzene

    Institute of Scientific and Technical Information of China (English)

    王二强; 李成岳

    2003-01-01

    Suspension catalytic distillation (SCD) has been developed recently as an innovative technology in catalytic distillation. In this paper, a brief introduction to SCD is given and an equilibrium stage (EQ) model is developed to simulate this new process for synthesis of linear alkylbenzene (LAB) from benzene and 1-dodecene.Since non-ideality of this reaction system is not strong, EQ model developed could be applied to it successfully.Simulation results agree well with experimental data, and indicate some characteristics of SCD process as an advanced technology for the production of LAB: 100% conversion of olefins, low temperature (90-100℃) and low benzene/olefin mole ratio.

  1. Zn-catalyzed Enantio- and Diastereoselective Formal [4+2] Cycloaddition Involving Two Electron-Deficient Partners: Asymmetric Synthesis of Piperidines from 1-Azadienes and Nitroalkenes

    OpenAIRE

    Chu, John C. K.; Dalton, Derek M.; Rovis, Tomislav

    2015-01-01

    We report a catalytic asymmetric synthesis of piperidines through [4+2] cycloaddition of 1-azadienes and nitroalkenes. The reaction uses earth abundant Zn as catalyst, and is highly diastereo- and regio-selective. A novel BOPA ligand (F-BOPA) confers high reactivity and enantioselectivity in the process. The presence of ortho substitution on the arenes adjacent to the bis(oxazolines) was found to be particularly impactful, due to limiting the undesired coordination of 1-azadiene to the Lewis ...

  2. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    created in the flame, the monomers will nucleate homogeneously and agglomerate to form aggregates of large ensembles of monomers. The aggregates will then sinter together to form single particles. If the flame temperature and the residence time are sufficiently high, the formed oxide particles...... will be spherical due to the fast coalescence at the high temperatures in the flame. The primary product from the flame pyrolysis is an aerosol of metal oxide nanoparticles. The aerosol gas from the flame can be utilized for several different purposes, depending on the precursors fed to the flame. With the present...... technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  3. Catalytic synthesis of long-chained alcohols from syngas

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt

    This work has been an investigation of the catalytic conversion of syngas into mixed alcohols with Mo-based catalysts. The primary focus has been on the use of alkali promoted cobalt-molybdenum sulfide as a catalyst for the alcohol synthesis. The alcohol synthesis is a possibility...... the user to employ a less thorough and therefore less costly syngas cleaning. To evaluate, to which extent a removal of other components in the raw syngas is necessary, the influence of NH3 and H2O in the feed has also been investigated. Ammonia (741 ppmv) in the feed is observed to cause a general...

  4. Catalytic synthesis of ammonia using vibrationally excited nitrogen

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Billing, Gert D.; Hansen, Flemming Yssing

    1992-01-01

    In a previous study we have considered the catalytic synthesis of ammonia in the presence of vibrationally excited nitrogen. The distribution over vibrational states was assumed to be maintained during the reaction, and it was shown that the yield of ammonia increased considerably compared...... to that from conventional synthesis. In the present study the nitrogen molecules are only excited at the inlet of a plug flow reactor, and the importance of vibrational relaxation is investigated. We show that vibrational excitation can give an enhanced yield of ammonia also in the situation where vibrational...

  5. Catalytic synthesis of silicon carbide preceramic polymers: Polycarbosilanes

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.H.

    1991-11-01

    Polycarbosilanes are the most successful and widely studied class of polymer precursors for silicon carbide, but traditional methods for thier synthesis are inefficient and nonselective. This project is focused on developing transition metal catalysts for the synthesis of polycarbosilanes and other perceramic polymers. In recent work we have developed the first homogeneous transition metal catalysts for the dehydrogenative coupling of simple alkyl silanes to oligomeric and polymeric carbosilanes, H-(SiR{sub 2}CR{prime}{sub 2}){sub n}-SiR{sub 3}. Future work will help elucidate the mechanism of the catalytic process, explore the use of hydrogen acceptors as reaction accelerators, and develop new and more active catalysts.

  6. De novo synthesis of natural products via the asymmetric hydration of polyenes.

    Science.gov (United States)

    Wang, Yanping; Xing, Yalan; Zhang, Qi; O'Doherty, George A

    2011-08-14

    For the last ten years our group has been working toward the development of an asymmetric hydration approach to polyketide natural products based on the regioselective hydration of di- and tri-enoates. Key to the success of this approach is the recognition that both high regiocontrol and asymmetric induction could be obtained by the use of a Sharpless asymmetric dihydroxylation reaction. Herein we describe the development of the method and its application to natural product total synthesis.

  7. Mono(imidazolin-2-iminato) actinide complexes: synthesis and application in the catalytic dimerization of aldehydes.

    Science.gov (United States)

    Karmel, Isabell S R; Fridman, Natalia; Tamm, Matthias; Eisen, Moris S

    2014-12-10

    The synthesis of the mono(imidazolin-2-iminato) actinide(IV) complexes [(Im(R)N)An(N{SiMe3)2}3] (3-8) was accomplished by the protonolysis reaction between the respective imidazolin-2-imine (Im(R)NH, R = tBu, Mes, Dipp) and the actinide metallacycles [{(Me3Si)N}2An{κ(2)C,N-CH2SiMe2N(SiMe3)}] (1, An = U; 2, M = Th). The thorium and uranium complexes were obtained in high yields, and their structures were established by single-crystal X-ray diffraction analysis. The mono(imidazolin-2-iminato) actinide complexes 3-8 display short An-N bonds together with large An-N-C angles, indicating strong electron donation from the imidazolin-2-iminato moiety to the metal, corroborating a substantial π-character to the An-N bond. The reactivity of complexes 3-8 toward benzaldehyde was studied in the catalytic dimerization of aldehydes (Tishchenko reaction), displaying low to moderate catalytic activities for the uranium complexes 3-5 and moderate to high catalytic activities for the thorium analogues 6-8, among which 8 exhibited the highest catalytic activity. In addition, actinide coordination compounds showed unprecedented reactivity toward cyclic and branched aliphatic aldehydes in the catalytic Tishchenko reaction mediated by the thorium complex [(Im(Dipp)N)Th{N(SiMe3)2}3] (8), exhibiting high activity even at room temperature. Moreover, complex 8 was successfully applied in the crossed Tishchenko reaction between an aromatic or polyaromatic and an aliphatic cyclic and branched aldehyde, yielding selectively the asymmetrically substituted ester in high yields (80-100%).

  8. Practical catalytic method for synthesis of sterically hindered anilines.

    Science.gov (United States)

    Mailig, Melrose; Rucker, Richard P; Lalic, Gojko

    2015-07-14

    A practical catalytic method for the synthesis of sterically hindered anilines is described. The amination of aryl and heteroaryl boronic esters is accomplished using a catalyst prepared in situ from commercially available and air-stable copper(i) triflate and diphosphine ligand. For the first time, the method can be applied to the synthesis of both secondary and tertiary anilines in the presence of a wide range of functional groups. Esters, aldehydes, alcohols, aryl halides, ketones, nitriles, and nitro arenes are all compatible with the reaction conditions. Finally, even the most sterically hindered anilines can be successfully prepared under mild reaction conditions. Overall, the new method addresses significant practical limitations of a transformation previously developed in our lab, and provides a valuable complement to the existing methods for the synthesis of anilines.

  9. Shape tailored green synthesis and catalytic properties of gold nanocrystals.

    Science.gov (United States)

    Rajan, Anish; MeenaKumari, M; Philip, Daizy

    2014-01-24

    The use of environmentally benign procedures is highly desirable for the synthesis of nanoparticles. Here we report a simple, versatile, economic, ecofriendly and reproducible green method for the size-tunable synthesis of stable and crystalline gold nanoparticles of varied shape using aqueous extract of Garcinia Combogia fruit. The predominant anisotropic nature in the morphology of synthesized particles at lower quantities of extract gradually shifted to spherical particles with larger quantity of extract and increase of temperature. The onset of reduction, the time-evolution of the Surface Plasmon Resonance (SPR) and the catalytic activity are studied using UV-Visible spectroscopy. The Selected Area Diffraction (SAED) pattern, the lattice fringes in the High Resolution Transmission Electron Microscopic (HRTEM) image and the X-ray Diffraction (XRD) pattern clearly show the pure crystalline nature of the synthesized gold nanoparticles. The role of carboxyl group present in Garcinia Combogia fruit extract in the reduction of chloroaurate ions is established using Fourier Transform Infrared (FTIR) spectra. The size dependent catalytic activity of the green synthesized gold nanoparticles on the reduction of 4-Nitrophenol to 4-Aminophenol using sodium borohydride is studied and reported for the first time. The first order kinetics is fitted and rate constants are calculated. Catalytically active green synthesized gold nanoparticles with controllable size and shape presents an advanced step in future biomedical and chemical applications.

  10. Recyclable Nanostructured Catalytic Systems in Modern Environmentally Friendly Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Irina Beletskaya

    2010-07-01

    Full Text Available Modern chemical synthesis makes heavy use of different types of catalytic systems: homogeneous, heterogeneous and nano-sized. The latter – nano-sized catalysts – have given rise in the 21st century to a rapidly developing area of research encompassing several prospects and opportunities for new technologies. Catalytic reactions ensure high regio- and stereoselectivity of chemical transformations, as well as better yields and milder reaction conditions. In recent years several novel catalytic systems were developed for selective formation of carbon-heteroatom and carbon-carbon bonds. This review presents the achievements of our team in our studies on various types of catalysts containing metal nanoparticles: palladium-containing diblock copolymer micelles; soluble palladium-containing polymers; metallides on a support; polymeric metal salts and oxides; and, in addition, metal-free organic catalysts based on soluble polymers acting as nanoreactors. Representative examples are given and discussed in light of possible applications to solve important problems in modern organic synthesis.

  11. Green synthesis and catalytic application of curcumin stabilized silver nanoparticles

    Indian Academy of Sciences (India)

    A D VERMA; N JAIN; S K SINGHA; M A QURAISHI; I SINHA

    2016-12-01

    An ultrasonication based green synthesis approach was used to prepare curcumin-stabilized silver nanoparticles (c-AgNPs). Nanoparticles thus obtained were characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Two different size distributions of c-AgNPs were obtained by changing the ratio of curcumin to silver salt precursor. These c-AgNPs were used as catalysts in the catalytic reduction of p-nitrophenol to p-aminophenol. The c-AgNPs with narrower size distribution exhibited better catalytic activity as well as lower activation energy. Variation of apparent rate constant with the reactant concentration agreed with the Langmuir- Hinshelwood (LH) model. Consequently, the surface rate constant related to the rate-determining step and the respective adsorption constants of p-nitrophenol and of borohydride were determined as per this model.

  12. Polyporphyrin Complexes of Some Transition Metals. Synthesis and Catalytic Properties

    Directory of Open Access Journals (Sweden)

    A.V. Shakhvorostov

    2016-10-01

    Full Text Available The paper presents the results of synthesis of polyporphyrin structures and metal complex catalyzers at their basis. Porphyrin to be derived from the addition reaction of pyrrole and formaldehyde. Metal complex catalyzers to be derived at the reaction of complex formation of ions of Mn2+, Co2+, Ni2+ and Fe3+ with porphyrin. The structure, physical and chemical properties of derived materials to be examined with IR spectroscopy, differential thermal analysis, thermogravimetric analysis, scanning electron microscopy investigation. Catalytic activity of synthesized catalytic systems to be established at the reaction of decompounding of hydrogen peroxide and alkylaromatics oxidation by hydrogen peroxide. The processes have been conducted under soft conditions, and also at different organic solvents.

  13. Asymmetric Desymmetrization via Metal-Free C-F Bond Activation: Synthesis of 3,5-Diaryl-5-fluoromethyloxazolidin-2-ones with Quaternary Carbon Centers.

    Science.gov (United States)

    Tanaka, Junki; Suzuki, Satoru; Tokunaga, Etsuko; Haufe, Günter; Shibata, Norio

    2016-08-01

    We disclose the first asymmetric activation of a non-activated aliphatic C-F bond in which a conceptually new desymmetrization of 1,3-difluorides by silicon-induced selective C-F bond scission is a key step. The combination of a cinchona alkaloid based chiral ammonium bifluoride catalyst and N,O-bis(trimethylsilyl)acetoamide (BSA) as the silicon reagent enabled the efficient catalytic cycle of asymmetric Csp3 -F bond cleavage under mild conditions with high enantioselectivities. The ortho effect of the aryl group at the prostereogenic center is remarkable. This concept was applied for the asymmetric synthesis of promising agrochemical compounds, 3,5-diaryl-5-fluoromethyloxazolidin-2-ones bearing a quaternary carbon center.

  14. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    The scope of this work is to investigate flame synthesis of oxides and oxide composites for catalytic applications. Vaporized acetylcetonate precursors are combusted in a flame leading to the formation of metal oxides with high specific surface areas. The employed flame setup is a premixed flat...... agglomerates have a highly dendritic structure with a low density. The particle formation during alumina synthesis is modelled employing either a monodisperse model or a self-preserving model for coagulation in combination with a hybrid model describing the sintering kinetics. The hybrid model includes two...... mechanisms for the sintering, which allows the individual mechanisms to control the sintering in different temperature regimes. Simulation of the specific surface areas and collision diameters of the synthesized powder fits measured values nicely when the hybrid sintering model is applied. The temperature...

  15. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    Directory of Open Access Journals (Sweden)

    Jarian Vernimmen

    2011-11-01

    Full Text Available In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials.

  16. Catalytic synthesis of silicon carbide preceramic polymers: Polycarbosilanes

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.H.

    1992-10-01

    Polycarbosilanes are the most successful and widely studied class of polymer precursors for silicon carbide, but traditional methods for their synthesis are inefficient and nonselective. This project is focused on developing transition metal catalysts for the synthesis of polycarbosilanes and other preceramic polymers. In recent work we have developed the first homogeneous transition metal catalysts for the dehydrogenative coupling of simple alkyl silanes to oligomeric and polymeric carbosilanes, H-(SiR[sub 2]CR[prime][sub 2])n-SiR[sub 3]. The coupling of alkylgermanes, however, yields the corresponding oligomeric poly(germanes) (Ge-Ge). Future work will help elucidate the mechanisms of these catalytic process, explore the use of hydrogen acceptors as reaction accelerators, and develop new and more active catalysts.

  17. Catalytic Phosphination and Arsination

    Institute of Scientific and Technical Information of China (English)

    Kwong Fuk Yee; Chan Kin Shing

    2004-01-01

    The catalytic, user-friendly phosphination and arsination of aryl halides and triflates by triphenylphosphine and triphenylarsine using palladium catalysts have provided a facile synthesis of functionalized aryl phosphines and arsines in neutral media. Modification of the cynaoarisne yielded optically active N, As ligands which will be screened in various asymmetric catalysis.

  18. Catalytic Asymmetric Carbon-Carbon Forming Reactions Catalyzed Chiral Schiff Base-Metal Complexes

    Institute of Scientific and Technical Information of China (English)

    Takanori; Tanaka; Masahiko; Hayashi

    2007-01-01

    1 Results In 1991, we disclosed the novel asymmetric catalysts prepared from chiral Schiff base and titanium alkoxide in the reaction of asymmetric silylcyanation of aldehydes (eq.1)[1]. Since our first report, chiral Schiff base-metal complex was proven to be efficient in a variety of asymmetric reactions. We reported the first example of enantioselective addition of diketene to aldehydes promoted by chiral Schiff base-titanium alkoxide complexes (eq.2)[2]. The products of this reaction have been cove...

  19. Phosphonic acid functionalized asymmetric phthalocyanines: synthesis, modification of indium tin oxide, and charge transfer.

    Science.gov (United States)

    Polaske, Nathan W; Lin, Hsiao-Chu; Tang, Anna; Mayukh, Mayunk; Oquendo, Luis E; Green, John T; Ratcliff, Erin L; Armstrong, Neal R; Saavedra, S Scott; McGrath, Dominic V

    2011-12-20

    Metalated and free-base A(3)B-type asymmetric phthalocyanines (Pcs) bearing, in the asymmetric quadrant, a flexible alkyl linker of varying chain lengths terminating in a phosphonic acid (PA) group have been synthesized. Two parallel series of asymmetric Pc derivatives bearing aryloxy and arylthio substituents are reported, and their synthesis and characterization through NMR, combustion analysis, and MALDI-MS are described. We also demonstrate the modification of indium tin oxide (ITO) substrates using the PA functionalized asymmetric Pc derivatives and monitoring their electrochemistry. The PA functionalized asymmetric Pcs were anchored to the ITO surface through chemisorption and their electrochemical properties characterized using cyclic voltammetry to investigate the effects of PA structure on the thermodynamics and kinetics of charge transfer. Ionization energies of the modified ITO surfaces were measured using ultraviolet photoemission spectroscopy.

  20. Phosphonic Acid Functionalized Asymmetric Phthalocyanines: Synthesis, Modification of Indium Tin Oxide (ITO), and Charge Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Polaske, Nathan W.; Lin, Hsiao-Chu; Tang, Anna; Mayukh, Mayank; Oquendo, Luis E.; Green, John; Ratcliff, Erin L.; Armstrong, Neal R.; Saavedra, S. Scott; McGrath, Dominic V.

    2011-12-20

    Metalated and free-base A₃B-type asymmetric phthalocyanines (Pcs) bearing, in the asymmetric quadrant, a flexible alkyl linker of varying chain lengths terminating in a phosphonic acid (PA) group have been synthesized. Two parallel series of asymmetric Pc derivatives bearing aryloxy and arylthio substituents are reported, and their synthesis and characterization through NMR, combustion analysis, and MALDI-MS are described. We also demonstrate the modification of indium tin oxide (ITO) substrates using the PA functionalized asymmetric Pc derivatives and monitoring their electrochemistry. The PA functionalized asymmetric Pcs were anchored to the ITO surface through chemisorption and their electrochemical properties characterized using cyclic voltammetry to investigate the effects of PA structure on the thermodynamics and kinetics of charge transfer. Ionization energies of the modified ITO surfaces were measured using ultraviolet photoemission spectroscopy.

  1. Palladium-catalyzed asymmetric alkylation in the synthesis of cyclopentanoid and cycloheptanoid core structures bearing all-carbon quaternary stereocenters

    KAUST Repository

    Hong, Allen Y.

    2011-12-01

    General catalytic asymmetric routes toward cyclopentanoid and cycloheptanoid core structures embedded in numerous natural products have been developed. The central stereoselective transformation in our divergent strategies is the enantioselective decarboxylative alkylation of seven-membered β-ketoesters to form α-quaternary vinylogous esters. Recognition of the unusual reactivity of β-hydroxyketones resulting from the addition of hydride or organometallic reagents enabled divergent access to γ-quaternary acylcyclopentenes through a ring contraction pathway or γ-quaternary cycloheptenones through a carbonyl transposition pathway. Synthetic applications of these compounds were explored through the preparation of mono-, bi-, and tricyclic derivatives that can serve as valuable intermediates for the total synthesis of complex natural products. This work complements our previous work with cyclohexanoid systems.

  2. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Rahimi-Nasrabadi, Mehdi, E-mail: rahiminasrabadi@gmail.com [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Khalilian-Shalamzari, Morteza [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh [Islamic Azad University, Varamin Pishva Branch, Varamin (Iran, Islamic Republic of); Omrani, Ismail [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2012-12-15

    Graphical abstract: NiWO{sub 4} nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: Black-Right-Pointing-Pointer NiWO{sub 4} spherical nanoparticles were synthesized via direct precipitation method. Black-Right-Pointing-Pointer Taguchi robust design was used for optimization of synthesis reaction parameters. Black-Right-Pointing-Pointer Composition and structural properties of NiWO{sub 4} nanoparticles were characterized. Black-Right-Pointing-Pointer EDAX, XRD, SEM, FT-IR, UV-vis and photoluminescence techniques were employed. Black-Right-Pointing-Pointer Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO{sub 4} nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO{sub 4} particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO{sub 4} were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV

  3. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with

  4. Axial coordination dichotomy in dirhodium carbenoid catalysis: a curious case of cooperative asymmetric dual-catalytic approach toward amino esters.

    Science.gov (United States)

    Kisan, Hemanta K; Sunoj, Raghavan B

    2015-02-20

    One of the most recent developments in asymmetric catalysis is to employ two or more catalysts under one-pot reaction conditions. This article presents some interesting mechanistic insights on a cooperative dual-catalytic protocol relying on the catalytic ability of dirhodium carbenoid (derived from rhodium(II) tetracarboxylate and a diazo compound) and a chiral spirophosphoric acid ((R)-SPA) in an asymmetric N-H insertion reaction. We have employed DFT(M06 and B3LYP) computational methods to identify the stereocontrolling transition states wherein a chiral (R)-SPA protonates a dirhodium-bound enol intermediate. A true cooperative action elicited by both catalysts has been noted in the enantioselective protonation. More importantly, whether the second axial ligand on the remote rhodium atom could influence the energetic features of the reaction has been probed for the first time. In all steps (such as nitrogen extrusion, addition of amine to the dirhodium carbenoid, and the enol formation), except that in the stereocontrolling event, no major effect of axial ligation has been noticed. However, the presence of the axial ligand helps in stabilizing the protonation transition state and reduces the activation barrier for protonation, suggesting a vital role in stereoselectivity. The predicted sense of stereoselectivities is in good agreement with the experimental results.

  5. Asymmetric silica encapsulation toward colloidal Janus nanoparticles: a concave nanoreactor for template-synthesis of an electocatalytic hollow Pt nanodendrite

    Science.gov (United States)

    Koo, Jung Hun; Kim, Daun; Kim, Jin Goo; Jeong, Hwakyeung; Kim, Jongwon; Lee, In Su

    2016-07-01

    A novel reverse microemulsion strategy was developed to asymmetrically encapsulate metal-oxide nanoparticles in silica by exploiting the self-catalytic growth of aminosilane-containing silica at a single surface site. This strategy produced various colloidal Janus nanoparticles, including Au/Fe3O4@asy-SiO2, which were converted to an Au-containing silica nanosphere, Au@con-SiO2, by reductive Fe3O4 dissolution. The use of Au@con-SiO2 as a metal-growing nanoreactor allowed the templated synthesis of various noble-metal nanocrystals, including a hollow dendritic Pt nanoshell which exhibits significantly better electrocatalytic activities for the oxygen reduction reaction than commercial Pt/C catalysts.A novel reverse microemulsion strategy was developed to asymmetrically encapsulate metal-oxide nanoparticles in silica by exploiting the self-catalytic growth of aminosilane-containing silica at a single surface site. This strategy produced various colloidal Janus nanoparticles, including Au/Fe3O4@asy-SiO2, which were converted to an Au-containing silica nanosphere, Au@con-SiO2, by reductive Fe3O4 dissolution. The use of Au@con-SiO2 as a metal-growing nanoreactor allowed the templated synthesis of various noble-metal nanocrystals, including a hollow dendritic Pt nanoshell which exhibits significantly better electrocatalytic activities for the oxygen reduction reaction than commercial Pt/C catalysts. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03557d

  6. Size Controlled Synthesis of Transition Metal Nanoparticles for Catalytic Applications

    KAUST Repository

    Esparza, Angel

    2011-07-07

    Catalysis offers cleaner and more efficient chemical reactions for environmental scientists. More than 90% of industrial processes are performed with a catalyst involved, however research it is still required to improve the catalyst materials. The purpose of this work is to contribute with the development of catalysts synthesis with two different approaches. First, the precise size control of non-noble metals nanoparticles. Second, a new one-pot synthesis method based on a microemulsion system was developed to synthesize size-controlled metal nanoparticles in oxide supports. The one-pot method represents a simple approach to synthesize both support and immobilized nanometer-sized non-noble metal nanoparticles in the same reaction system. Narrow size distribution nickel, cobalt, iron and cobalt-nickel nanoparticles were obtained. High metal dispersions are attainable regardless the metal or support used in the synthesis. Thus, the methodology is adaptable and robust. The sizecontrolled supported metal nanoparticles offer the opportunity to study size effects and metal-support interactions on different catalytic reactions with different sets of metals and supports.

  7. Asymmetric total synthesis of (-)-lundurine B and determination of its absolute stereochemistry.

    Science.gov (United States)

    Nakajima, Masaya; Arai, Shigeru; Nishida, Atsushi

    2015-04-01

    A total synthesis of the Kopsia tenuis alkaloid (-)-lundurine B has been achieved. A quaternary chiral carbon has been created by an asymmetric deprotonation using a symmetric spiro cyclohexanone intermediate with a chiral lithium amide. The hexacyclic skeleton was sequentially constructed through metal-mediated reactions. The absolute stereochemistry of intermediate 5 has been unambiguously established by X-ray crystallographic analysis. This is the first description of the absolute stereochemistry of Kopsia tenuis alkaloids based on chemical synthesis.

  8. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger

    2016-11-30

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted products with excellent yields and enantioselectivities. The developed methodology allows an efficient synthesis of this important spirocyclic structural motif, which is present in numerous biologically active molecules and privileged structures in medicinal chemistry.

  9. Synthesis of Main-Chain Chiral Quaternary Ammonium Polymers for Asymmetric Catalysis Using Quaternization Polymerization

    Directory of Open Access Journals (Sweden)

    Md. Masud Parvez

    2012-06-01

    Full Text Available Main-chain chiral quaternary ammonium polymers were successfully synthesized by the quaternization polymerization of cinchonidine dimer with dihalides. The polymerization occurred smoothly under optimized conditions to give novel type of main-chain chiral quaternary ammonium polymers. The catalytic activity of the polymeric chiral organocatalysts was investigated on the asymmetric benzylation of N-(diphenylmethylideneglycine tert-butyl ester.

  10. Synthesis of Borohydride and Catalytic Dehydrogenation by Hydrogel Based Catalyst

    Science.gov (United States)

    Boynuegri, Tugba Akkas; Karabulut, Ahmet F.; Guru, Metin

    2016-08-01

    This paper deals with the synthesis of calcium borohydride (Ca(BH4)2) as hydrogen storage material. Calcium chloride salt (CaCl2), magnesium hydride (MgH2), and boron oxide (B2O3) were used as reactants in the mechanochemical synthesis of Ca(BH4)2. The mechanochemical reaction was carried out by means of Spex type ball milling without applying high pressure and temperature. Parametric studies have been established at different reaction times and for different amounts of reactants at a constant ball to powder ratio (BPR) 4:1. The best combination was determined by Fourier Transform Infrared (FT-IR) analysis. According to the FT-IR analysis, reaction time, the first reaction parameter, was found as 1600 min. After the reaction time was fixed at 1600 min, the difference of the B-H peak areas was dependent on the amount of reactant MgH2 that was investigated. The amount of the reactant (MgH2), the second reaction parameter, was measured to be 2.85 times more than the stoichiometric amount of MgH2. According to our previous studies, BPR was selected as 4:1 for all experiments. Samples were prepared in a glove box under argon atmosphere but the time that elapsed for FT-IR analysis highly affected B-H bonds. B-H peak areas clearly decreased with time because of negative effect of ambient atmosphere. A catalyst was prepared by absorbing cobalt fluoride (CoF2) in poly (acrylamide-co-acrylic acid) hydrogel matrices type and its catalytic dehydrogenation performance that has been characterized by the catalytic reaction of sodium borohydride's known hydrogen capacity in an alkaline medium. The metal amount of hydrogel catalyst was determined as 135.82 mg Co by Atomic Absorption Spectroscopy (AAS). The specific dehydrogenation capacity of the Co active compound in the catalyst thanks to catalytic dehydrogenation of commercial sodium borohydride was measured as 1.66 mL H2/mg Co.

  11. Asymmetric Synthesis of β, γ-β-Hydroxyl-γ-butyrolactones

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-Xin; ZHANG Chao-Xin; LI Ying

    2003-01-01

    @@ Chiral β-hydroxyl-γ-butyrolactones have attracted substantial interest in recent years due to their presence inmany strongly active natural products having antitumor, fungicidal, anti-inflammatory activity, and their use as important precursors in natural product synthesis. [1] In the course of the total synthesis of the natural product Tuxpano lide ,[2] we found a concise and efficient strategy on the stereocontrolled synthesis of β-hydroxyl-γ-butyrolactonederivatives from cheap and achiral starting material.

  12. A Convenient Method to Construct Chroman Skeleton: Asymmetric Synthesis of (-)-4'-Hydroxy-7-methoxyflavane

    Institute of Scientific and Technical Information of China (English)

    XU, Boyan; XUE, Jijun; ZHANG, Huabing; LI, Ying

    2009-01-01

    The first enantioselective synthesis of a naturally occurring 4'-hydroxy-7-methoxyflavane was developed by an asymmetric reduction and a microwave-assistant aromatic C-O bond formation to construct the benzopyran skele- ton. Key features of this method include its brevity, its preserved stereochemical integrity and two different syn- thetic routes to choose.

  13. De novo formal synthesis of (-)-virginiamycin M2 via the asymmetric hydration of dienoates.

    Science.gov (United States)

    Mortensen, Matthew S; Osbourn, Joshua M; O'Doherty, George A

    2007-08-02

    A de novo approach to the formal total synthesis of the macrolide natural product (-)-virginiamycin M2 has been achieved via a convergent approach. The absolute and relative stereochemistry of the nonpeptide portion of (-)-virginiamycin M2 was introduced by two Sharpless asymmetric dihydroxylation reactions.

  14. Fructose derived pyridyl alcohol ligands: synthesis and application in the asymmetric diethylzinc addition to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHOU, Yong-Gui; DAI, Li-Xin; HOU, Xue-Long

    2000-01-01

    Easily available chiral ketones were employed for the synthesis of optically active pyridyl alcohols, which were applied in the asymmetric diethylzinc addition to aldehydes, up to 89.4%e.e. was obtained using D-fructose-derived pyridyl alcohol.

  15. Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Hansen, E. Louise; Kane, John

    2001-01-01

    A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed...

  16. APPLICATION OF S-(+)-3-HYDROXYTETRAHYDROFURAN IN ASYMMETRIC-SYNTHESIS OF S-(+)-ATROLACTIC ACID

    NARCIS (Netherlands)

    TANDON, VK; AGARWAL, [No Value; van Leusen, A.M.

    1994-01-01

    S-(+)-3-Hydroxytetrahydrofuran (1) on reaction with phenylglyoxallyl chloride (2) forms S-(+)-3-tetrahydrofuranyl benzoyformate (3) in 88% yield. Further reaction of the alpha-ketoester 3 with MeLi at - 95 degrees C followed by basic hydrolysis results in asymmetric synthesis of S-(+)-atrolactic aci

  17. Amitorines A and B, Nitrogenous Diterpene Metabolites of Theonella swinhoei: Isolation, Structure Elucidation, and Asymmetric Synthesis.

    Science.gov (United States)

    Ota, Koichiro; Hamamoto, Yukiko; Eda, Wakiko; Tamura, Kenta; Sawada, Akiyoshi; Hoshino, Ayako; Mitome, Hidemichi; Kamaike, Kazuo; Miyaoka, Hiroaki

    2016-04-22

    Two new nitrogenous prenylbisabolanes never before found in Lithistid sponges have been isolated from Theonella swinhoei. These new diterpenes, named amitorine A (1) and amitorine B (2), containing a prenylbisabolane skeleton have been characterized by spectroscopic analyses, and the relative and absolute configurations of 1 and 2 were determined by asymmetric synthesis of both diastereomers via the common bicyclic lactone 6 intermediate.

  18. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-12-01

    Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  19. Synthesis of antidepressant duloxetine via asymmetric transfer hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Shan Zhen He; Xue Ming Li; Jia Dai; Ming Yan

    2008-01-01

    Antidepressant duloxetine (1) was prepared via asymmetric transfer hydrogenation of 3-(dimethylamino)-1-(thiophen-2-yl)propan-1-one (3). The Ru(Ⅱ), Rh(Ⅲ) and Ir(Ⅲ) complexes of several chiral ligands were examined as the catalyst and(S,S)-N-tosyl-1,2-diphenyl ethylenediamine (TsDPEN)-Ru(Ⅱ) complex was found to provide good yield and excellent enantios-electivity.

  20. Preparation of MCM-41-supported chiral Salen Mn (Ⅲ) catalysts and their catalytic properties in the asymmetric epoxidation of olefins

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A secondary amino-modified mesoporous molecular sieve MCM-41 was obtained by reaction of bis(3-(triethoxysilyl)propyl)amine with MCM-41. The chiral Salen-Mn (Ⅲ) complex was anchored onto the modified MCM-41 by a multi-step grafting method and two heterogenized catalysts with different Mn contents were obtained. The catalysts were characterized by XRD, N2 adsorption, ICP, FT-IR and DR UV-Vis. Their catalysis on asymmetric epoxidation of several olefins was studied with NaClO and m-CPBA as oxidants respectively. It was found that both the activity and enantioselectivity of the catalysts decreased after the homogeneous catalyst was heterogenized. The reasons resulting in the decrease of catalytic performance were discussed.

  1. Asymmetric synthesis of polypiperylene on a lanthanide-containing catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Monakov, Yu.B.; Marina, N.G.; Kozlova, O.I.; Kanzafarov, F.Ya.; Tolstikov, G.A.

    1987-07-01

    The authors study the polymerization of piperylene and subsequent synthesis of polypiperylene on a neodymium chloride catalyst containing a sulfoxide and an aluminium complex. Specifics of the catalyst preparation and activity are given.

  2. Asymmetric Total Synthesis of the Indole Diterpene Alkaloid Paspaline

    OpenAIRE

    2015-01-01

    An enantioselective synthesis of the indole diterpenoid natural product paspaline is disclosed. Critical to this approach was the implementation of stereoselective desymmetrization reactions to assemble key stereocenters of the molecule. The design and execution of these tactics are described in detail, and a thorough analysis of observed outcomes is presented, ultimately providing the title compound in high stereopurity. This synthesis provides a novel template for preparing key stereocenter...

  3. Titanium-Containing Mesoporous Materials: Synthesis and Application in Selective Catalytic Oxidation

    Institute of Scientific and Technical Information of China (English)

    Jie Li; Chunhui Zhou; Huali Xie; Zhonghua Ge; Liangcai Yuan; Xiaonian Li

    2006-01-01

    Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-containing mesoporous materials have been reviewed. Various strategies for the preparation of Ti-containing mesoporous materials, such as direct synthesis and post-synthesis, are described. Modifications of Ti-containing mesoporous materials by surface-grafting and atom-planting are also discussed. All approaches aimed mainly at the improving of the stability, the hydrophobicity, and mostly the catalytic activity. Structural and mechanistic features of various synthetic systems are discussed. Ticontaining mesoporous materials in liquid phase catalytic oxidation of organic compounds with H2O2 as an oxidant is briefly summarized, showing their broad utilities for green synthesis of fine chemicals by catalytic oxidative reactions.

  4. New Chiral Metal Cluster Systems for Catalytic Asymmetric Syntheses of Chiral Alcohols

    Institute of Scientific and Technical Information of China (English)

    LI Yan-yun; CHEN Jian-shan; YANG Chuan-bo; DONG Zhen-rong; LI Bao-zhu; ZHANG Hui; GAO Jing-xing; TAKAO Ikariya

    2004-01-01

    The efficient chiral Ru3(CO)12 systems were prepared in situ from Ru3(CO)12 and various chiral diiminoor diamino-diphosphine tetradentate ligands. The systems have been used for the asymmetric transfer hydrogenation of propiophenone in 2-propanol, leading to 1-phenyl-1-propanol in a 98% yield and 96% e.e. The IR study suggests that the carbonyl hydride anion [HRu3(CO)11]- most probably exists as a principal species under the reaction conditions. The high chiral efficiency may be due to the synergetic effect produced by the neighboring ruthenium atoms and a special chiral micro-environment involving the polydentate ligand and the Ru3 framework.

  5. Asymmetric Total Synthesis of the Indole Diterpene Alkaloid Paspaline.

    Science.gov (United States)

    Sharpe, Robert J; Johnson, Jeffrey S

    2015-10-02

    An enantioselective synthesis of the indole diterpenoid natural product paspaline is disclosed. Critical to this approach was the implementation of stereoselective desymmetrization reactions to assemble key stereocenters of the molecule. The design and execution of these tactics are described in detail, and a thorough analysis of observed outcomes is presented, ultimately providing the title compound in high stereopurity. This synthesis provides a novel template for preparing key stereocenters in this family of molecules, and the reactions developed en route to paspaline present a series of new synthetic disconnections in preparing steroidal natural products.

  6. Asymmetric Total Synthesis of a Diastereisomer A of Tuxpanolide

    Institute of Scientific and Technical Information of China (English)

    WANG,Jin-Xin; ZHANG,Chao-Xin; LI,Ying

    2004-01-01

    @@ α-Alkylidene-β-hydroxy butyrolactones have been attractive and challenging targets for organic synthesis in various laboratories because that not only they are rich in skeletal diversity and stereochemistry complexity but also many of them possess quite intriguing and wide biological activities.[1] A novel class of the phytane-type diterpenoid named Tuxpanolide, bearing α-alkylidene-β-hydroxy-γ-butyrolactone skeleton, was isolated from Perymenium hintonii in Central Mexico by Maldonado and co-wokers in 1998.[2] Now we firstly report the efficient strategy of the stereocontrolled total synthesis of a diastereisomer A of Tuxpanolide.

  7. ORGANIC CHEMISTRY. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines.

    Science.gov (United States)

    Yang, Yang; Shi, Shi-Liang; Niu, Dawen; Liu, Peng; Buchwald, Stephen L

    2015-07-01

    Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Here, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins—an important yet unexploited class of abundant feedstock chemicals—into highly enantioenriched α-branched amines (≥96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas.

  8. Catalytic synthesis of enantiopure mixed diacylglycerols - synthesis of a major M. tuberculosis phospholipid and platelet activating factor

    NARCIS (Netherlands)

    Fodran, Peter; Minnaard, Adriaan J.

    2013-01-01

    An efficient catalytic one-pot synthesis of TBDMS-protected diacylglycerols has been developed, starting from enantiopure glycidol. Subsequent migration-free deprotection leads to stereo- and regiochemically pure diacylglycerols. This novel strategy has been applied to the synthesis of a major Mycob

  9. IMMOBILIZATION OF Saccharomyces Cerevisiae USING POLY(ACRYLAMIDE) GEL FOR ASYMMETRIC SYNTHESIS OF R(-)-MANDELIC ACID

    Institute of Scientific and Technical Information of China (English)

    LI Zhongqin; GUO Daiping; HUANG Xinghua; YANG Kai; XU Xiaoping

    2006-01-01

    In this paper, the poly(acrylamide) hydrogel used to immobilize saccharomyces cerevisiae for asymmetric synthesis of R(-)-mandelic acid was prepared with free radical ploymerization in deionized water at room temperature under nitrogen atmosphere. The influence of the composition of hydrogel, loading amount of cells and culture conditions on the asymmetric synthesis was investigated. Results show that PAAm hydrogel is a feasible carrier for immobilization of cells which is a potential alternative method to prepare enantiomerically pure R(-)-mandelic acid.

  10. Synthesis of Ultraviolet Absorber Benzotriazole by Nanoparticles Ag/SiO2 Catalytic Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    QI Gang; ZHANG Wen-Guo; DAI Yong

    2012-01-01

    The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nano- particles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis route is very efficient with less pollution and excellent yields. It is also easy to industrialized production.

  11. Post-synthesis modifications on zeolites for improved accessibility and catalytic performance

    NARCIS (Netherlands)

    van Laak, A.N.C.

    2011-01-01

    The main goal of the work described in this thesis is to obtain (meso-) porous zeolites by post synthesis treatment for improved catalytic performance, with a focus on mordenite and cumene synthesis. The zeolite samples consist of small crystallites in the range between 20 and 200 nm that have agglo

  12. A Facile Method for Asymmetric Synthesis of β-Hydroxy-α-amino Acids

    Institute of Scientific and Technical Information of China (English)

    LI,Shuo; LI,Lei; ZHANG,Zhi-Hui; XU,Peng-Fei

    2004-01-01

    @@ β-Hydroxy-a-amino acids are an important class of amino acids due to their inherent biological investigations[1] and as structural components of more complex biomolecules.[2] β-Hydroxy-a-amino acids have been used as intermediates in the asymmetric synthesis of other compounds.[3] An efficient and convenient concise method for the preparation of optically pure enantiomers of β-hydroxy-α-amino acids would be of general interest.

  13. Dynamic kinetic cross-coupling strategy for the asymmetric synthesis of axially chiral heterobiaryls.

    Science.gov (United States)

    Ros, Abel; Estepa, Beatriz; Ramírez-López, Pedro; Álvarez, Eleuterio; Fernández, Rosario; Lassaletta, José M

    2013-10-23

    A dynamic kinetic asymmetric transformation (DYKAT) technique has been designed for the synthesis of 2'-substituted 2-aryl pyridines/isoquinolines and related heterobiaryls. In this way, the Pd(0)-catalyzed coupling of racemic 2-triflates with aryl boroxines using a TADDOL-derived phosphoramidite as the ligand provides the corresponding coupling products with good to excellent enantioselectivities. Structural studies support that the formation of configurationally labile oxidative addition palladacycles is the key for the success of the methodology.

  14. Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light

    OpenAIRE

    Takano, Yoshinori; Takahashi, Jun-ichi; Kaneko, Takeo; Marumo, Katsumi; Kobayashi, Kensei

    2007-01-01

    The asymmetric synthesis of amino acid precursors from complex organics have been performed. A gaseous mixture of carbon monoxide, ammonia and water (molecules which are among those identified in the interstellar medium) was irradiated with 3.0 MeV protons to obtain amino acid precursors within high-molecular-weight complex organics of up to 3,000 Da. The amino acid precursor products synthesized were then irradiated with right (R-) or left (L-) ultraviolet circularly polarized light (UV-CPL)...

  15. Enantioselective Synthesis of Antiepileptic Agent, (−-Levetiracetam, through Evans Asymmetric Strategy

    Directory of Open Access Journals (Sweden)

    K. Chandra Babu

    2013-01-01

    Full Text Available A practical and efficient enantioselective synthesis of antiepileptic drug, (−-Levetiracetam, has been described in five steps (33.0% overall yield and high optical purity (99.0% ee, using Evans asymmetric strategy for α-alkylation of carbonyl functionality as the key step. The simplicity of the experimental procedures and high stereochemical outcome make this method synthetically attractive for preparing the target compound on multigram scales.

  16. Enantioselective Synthesis of Antiepileptic Agent, (−)-Levetiracetam, through Evans Asymmetric Strategy

    OpenAIRE

    Chandra Babu, K.; Buchi Reddy, R.; Mukkanti, K.; Suresh, K.; Madhusudhan, G.; Satish Nigam

    2013-01-01

    A practical and efficient enantioselective synthesis of antiepileptic drug, (−)-Levetiracetam, has been described in five steps (33.0% overall yield) and high optical purity (99.0% ee), using Evans asymmetric strategy for α-alkylation of carbonyl functionality as the key step. The simplicity of the experimental procedures and high stereochemical outcome make this method synthetically attractive for preparing the target compound on multigram scales.

  17. Rational design and asymmetric synthesis of potent and neurotrophic ligands for FK506-binding proteins (FKBPs).

    Science.gov (United States)

    Pomplun, Sebastian; Wang, Yansong; Kirschner, Alexander; Kozany, Christian; Bracher, Andreas; Hausch, Felix

    2015-01-01

    To create highly efficient inhibitors for FK506-binding proteins, a new asymmetric synthesis for pro-(S)-C(5) -branched [4.3.1] aza-amide bicycles was developed. The key step of the synthesis is an HF-driven N-acyliminium cyclization. Functionalization of the C(5)  moiety resulted in novel protein contacts with the psychiatric risk factor FKBP51, which led to a more than 280-fold enhancement in affinity. The most potent ligands facilitated the differentiation of N2a neuroblastoma cells with low nanomolar potency.

  18. Asymmetric synthesis of L-carnitine from (R)-3-chloro-1,2-propanediol

    Institute of Scientific and Technical Information of China (English)

    Xu Qin Li; Yun Xu Yang; Wei Li Wang; Bin Hu; Hui Min Xue; Tian Yi Zhang; Xue Tao Zhang

    2011-01-01

    A practical chemical synthesis of L-carnitine (1) has been accomplished from (R)-3-chloro-l,2-propanediol ((R)-4), which is a main by-product originated from (R,R)-Salen Co(Ⅲ) catalyzed hydrolytic kinetic resolution (HKR) of (±)-epichlorohydrin. (R)-4 was utilized as a chiral starting material to prepare the key intermediate cyclic sulfite ((R)-5). The new synthetic approach demonstrated an efficient utilization of organic by-product for the asymmetric synthesis of bioactive compounds.

  19. Asymmetric synthesis of tertiary alcohols by the use of tricarbonylchromium (O) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, O.R.; Gomes Costa, M.R.; Marcelo Curto, M.J. [Instituto Nacional de Engenharia e Tecnolgia Industrial, Queluz (Portugal)] [and others

    1995-12-31

    The demand for homochiral compounds by the pharmaceutical and related industries has stimulated great interest in the development of asymmetric methodology for organic synthesis. The authors report herein the stereoselective synthesis of tertiary benzylic alcohols. These homochiral tertiary alcohols could be obtained by stereoselective addition to the carbonyl function of chiral [(aryl)Cr(CO){sub 3}] ketones. The syntheses of these ketones were performed by reaction of lithiated (arene)Cr(CO){sub 3} complexes with acyl halides or aldehydes followed by Swern oxidation of the alcohols obtained.

  20. Synthesis and spectroscopic properties of novel asymmetric Schiff bases.

    Science.gov (United States)

    Güngör, Ozlem; Gürkan, Perihan

    2010-09-15

    Three novel diimine Schiff bases including two asymmetric imines (2-OH)R-CHN-C(6)H(4)-CHN-R'(2-OH) type [where R=R'=phenyl for H(2)L(1); R=naphthyl, R'=phenyl for H(2)L(2) and R=R'=naphthyl for H(2)L(3)] have been synthesized with a new two step method. For this purpose, the starting Schiff bases 4-nitrobenzylidene-2-hydroxyaniline (SB(1)-NO(2)) and 4-nitrobenzylidene-2-hydroxy-3-naphthylamine (SB(2)-NO(2)) have been synthesized, previously. Nitro groups of them have been reduced into their amino derivatives (SB(1)-NH(2) and SB(2)-NH(2)) with sodium dithionite as selective reductant and the other imino groups have been formed by adding salicylaldehyde or 2-hydroxy-1-naphthaldehyde to the same solutions. The structures of the diimine Schiff bases were confirmed by elemental analyses, ESI-MS, FT-IR, (1)H NMR and (13)C NMR spectroscopy. The phenol-imine and keto-amine tautomerism of the Schiff bases were investigated by FT-IR, (1)H NMR, (13)C NMR techniques and UV-vis spectra in different solvents (DMSO, methanol, chloroform, toluene and cyclohexane). The effects of acidic and basic media on the tautomeric equilibria were discussed.

  1. Novel Chiral PNNP-Ru Complexes: Synthesis and Application in Asymmetric Transfer Hydrogenation of Ketones

    Institute of Scientific and Technical Information of China (English)

    CHENG Zhi-bo; YU Shen-luan; LI Yan-yun; DONG Zhen-rong; SUN Guo-song; HUANG Ke-lin; GAO Jing-xing

    2011-01-01

    The efficient catalytic systems generated in situ from RuCl2(PPh3)3 and chiral ligands N,N-bis[2-(di-otolylphosphino)-benzyl]cyclohexane-l,2-diamine(2) were employed for asymmetric transfer hydrogenation of aromatic ketones, giving the corresponding optically active alcohols with high activities(up to 99% conversion) and excellent enantioselectivities(up to 96% e.e.) under mild conditions. The chiral ruthenium(Ⅱ) complex (R,R)-3 has been prepared and characterized by NMR and X-ray crystallography.

  2. Primary amine/CSA ion pair: A powerful catalytic system for the asymmetric enamine catalysis

    KAUST Repository

    Liu, Chen

    2011-05-20

    A novel ion pair catalyst containing a chiral counteranion can be readily derived by simply mixing cinchona alkaloid-derived diamine with chiral camphorsulfonic acid (CSA). A mixture of 9-amino(9-deoxy)epi-quinine 8 and (-)-CSA was found to be the best catalyst with matching chirality, enabling the direct amination of α-branched aldehydes to proceed in quantitative yields and with nearly perfect enantioselectivities. A 0.5 mol % catalyst loading was sufficient to catalyze the reaction, and a gram scale enantioselective synthesis of biologically important α-methyl phenylglycine has been successfully demonstrated. © 2011 American Chemical Society.

  3. Catalytic synthesis of alcoholic fuels for transportation from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Qiongxiao Wu

    2012-12-15

    consequently on the catalytic activity. (3) Addition of 3 mol % CO{sub 2} to the H2/CO feed stream leads to a significant loss of activity for the Cu-Ni/SiO2 catalyst contrary to the case for the Cu/ZnO/Al2O3 catalyst. DFT calculations show in accordance with previous surface science studies that oxygen on the surface could lead to an enrichment of the Ni-content in the surface. (4) Silica supported bimetallic Cu-Ni catalysts with different ratios of Cu to Ni have been prepared by impregnation. In situ reduction of Cu-Ni alloys with combined synchrotron XRD and XAS reveal a strong interaction between Cu and Ni, resulting in improved reducibility of Ni as compared to monometallic Ni. At high nickel concentrations silica supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower nickel contents, copper and nickel are separately aggregated and form metallic Cu and Cu-Ni alloy phases. At the same reduction conditions, the particle sizes of reduced Cu-Ni alloys decrease with increasing in Ni content. A maximum methanol productivity of 0.66 kg kgcat-1 h-1 with methanol selectivity up to 99.2 mol % has been achieved for a Cu-Ni/SiO2 catalyst prepared by the deposition-co-precipitation method. There is no apparent catalyst deactivation observed during the tested time on stream (40-100 h), contrary to the observation for the industrial Cu/ZnO/Al2O3 catalyst. For higher alcohol synthesis, the main work has been performed on CO hydrogenation over supported Mo2C. Mo2C supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over supported Mo2C are significantly higher compared to bulk Mo2C. The CO conversion reaches a maximum, when about 20 wt % Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active

  4. Total Synthesis of (-)-Conolutinine.

    Science.gov (United States)

    Feng, Xiangyang; Jiang, Guangde; Xia, Zilei; Hu, Jiadong; Wan, Xiaolong; Gao, Jin-Ming; Lai, Yisheng; Xie, Weiqing

    2015-09-18

    The first enantioselective synthesis of (-)-conolutinine was achieved in 10 steps. The synthesis featured a catalytic asymmetric bromocyclization of tryptamine to forge the tricycle intermediate. Hydration of an alkene catalyzed by Co(acac)2 was also employed as a key step to diastereoselectively introduce the tertiary alcohol moiety. The absolute configuration of (-)-conolutinine was established to be (2S,5aS,8aS,13aR) based on this asymmetric total synthesis.

  5. A Facile Access to Fluorinated Pyrrolidines via Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides with Methyl a-Fluoroacrylate

    Institute of Scientific and Technical Information of China (English)

    严定策; 李清华; 王春江

    2012-01-01

    Asymmetric 1,3-dipolar cycloaddition of methyl a-fluoroacrylate with azomethine ylides for the construction of optically active fluorinated pyrrolidines bearing one unique fluorinated quaternary and two tertiary stereogenic cen- ters has been achieved with Cu(CH3CN)4BF4/TF-BiphamPhos complexes for the first time. This catalytic system performs well over a broad scope of substrates, providing the synthetically useful adducts in good yields and excel- lent diastereoselectivities and good to high enantioselectivities.

  6. Synthesis of amino alcohols through one-popt catalytic boron addition sequences

    OpenAIRE

    Solé Marcé, Cristina

    2013-01-01

    Amino alcohols are important building blocks extensively employed for the synthesis of natural products, pharmaceuticals, and for the production of chiral auxiliaries or catalysts used in asymmetric synthesis. Organoboranes can be utilized as interesting intermediates in organic chemistry. Taking into consideration the advantages of organoboronic esters and the importance of amino alcohols, four new one-pot routes to synthesize β– or γ–amino alcohols have been developed in this thesis. The fi...

  7. First-Principles Calculation, Synthesis, and Catalytic Properties of Rh-Cu Alloy Nanoparticles.

    Science.gov (United States)

    Komatsu, Tokutaro; Kobayashi, Hirokazu; Kusada, Kohei; Kubota, Yoshiki; Takata, Masaki; Yamamoto, Tomokazu; Matsumura, Syo; Sato, Katsutoshi; Nagaoka, Katsutoshi; Kitagawa, Hiroshi

    2017-01-01

    The first synthesis of pure Rh1-x Cux solid-solution nanoparticles is reported. In contrast to the bulk state, the solid-solution phase was stable up to 750 °C. Based on facile density-functional calculations, we made a prediction that the catalytic activity of Rh1-x Cux can be maintained even with 50 at % replacement of Rh with Cu. The prediction was confirmed for the catalytic activities on CO and NOx conversions.

  8. Recent Advances in Substrate-Controlled Asymmetric Induction Derived from Chiral Pool α-Amino Acids for Natural Product Synthesis.

    Science.gov (United States)

    Paek, Seung-Mann; Jeong, Myeonggyo; Jo, Jeyun; Heo, Yu Mi; Han, Young Taek; Yun, Hwayoung

    2016-07-21

    Chiral pool α-amino acids have been used as powerful tools for the total synthesis of structurally diverse natural products. Some common naturally occurring α-amino acids are readily available in both enantiomerically pure forms. The applications of the chiral pool in asymmetric synthesis can be categorized prudently as chiral sources, devices, and inducers. This review specifically examines recent advances in substrate-controlled asymmetric reactions induced by the chirality of α-amino acid templates in natural product synthesis research and related areas.

  9. Synthesis and catalytic application of amino acid based dendritic macromolecules

    NARCIS (Netherlands)

    Koten, G. van; Gossage, R.A.; Jastrzebski, J.T.B.H.; Ameijde, J. van; Mulders, S.J.E.; Brouwer, Arwin J.; Liskamp, R.M.J.

    1999-01-01

    The use of amino acid based dendrimers as molecular scaffolds for the attachment of catalytically active organometallic Ni ''pincer'' complexes, via a urea functionality, is described; the dendrimer catalysts have comparable activity to their mononuclear (NCN)NiX analogues.

  10. Synthesis of sulphonated mesoporous phenolic resins and their application in esterification and asymmetric aldol reactions

    Energy Technology Data Exchange (ETDEWEB)

    Muylaert, Ilke [Department of Inorganic and Physical Chemistry, Ghent University, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Krijgslaan 281-S3, 9000 Ghent (Belgium); Verberckmoes, An, E-mail: an.verberckmoes@hogent.be [Department of Inorganic and Physical Chemistry, Ghent University, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Krijgslaan 281-S3, 9000 Ghent (Belgium); Associated Faculty of Applied Engineering Sciences, University College Ghent, Valentin Vaerwyckweg 1, 9000 Ghent (Belgium); Spileers, Jeremy [Associated Faculty of Applied Engineering Sciences, University College Ghent, Valentin Vaerwyckweg 1, 9000 Ghent (Belgium); Demuynck, Anneleen; Peng, Li; De Clippel, Filip; Sels, Bert [Katholieke Universiteit Leuven, Centre for Surface Chemistry and Catalysis (COK), Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Van Der Voort, Pascal, E-mail: pascal.vandervoort@ugent.be [Department of Inorganic and Physical Chemistry, Ghent University, Center for Ordered Materials, Organometallics and Catalysis (COMOC), Krijgslaan 281-S3, 9000 Ghent (Belgium)

    2013-02-15

    Mesoporous phenolic resins were functionalized with sulphonic acid groups by four different types of sulphonation procedures: (i) direct sulphonation on the aromatic ring, (ii) alkyl sulphonation of the aromatic ring, and functionalizations of the phenolic hydroxyl surface by using an aryl silane, 2-(4-chlorosulphonylphenyl)ethyl trichlorosilane (iii) or a propyl silane, 3-mercaptopropyltrimethoxysilane (iv). The highest acidity loadings were obtained through direct sulphonation with fuming sulphuric acid (1.90 mmol H{sup +} g{sup −1}) or chlorosulphonic acid (1.31 mmol H{sup +} g{sup −1}) and these materials showed the highest conversion (97+ %) in Fischer esterification of acetic acid with propanol. However, the alkyl sulphonic groups, obtained through sulphonation procedure (ii) showed the highest stability in terms of maintenance of their acidity after use in consecutive catalytic runs or leaching treatments. This was demonstrated both through evaluation of the regenerated catalysts in a consecutive esterification run and during a leaching resistance test in aqueous medium. Moreover, the developed sulphonated mesoporous phenolic resins are presented as novel support for the non-covalent immobilization of an L-phenylalanine derived chiral diamine organocatalyst for asymmetric aldol reactions. The immobilization is established by an acid–base interaction between the sulphonic acid group and the amine function. The acidity and in particular the electronic withdrawing environment of the sulphonic acid groups influence enormously the catalytic performance of the non-covalent immobilized chiral diamine catalyst (aromatic > aliphatic). - Highlights: ► Different types of sulphonation procedures for mesoporous phenolic resins. ► Influence of acidity and electronic withdrawing environment. ► Novel support for non-covalent immobilization of chiral diamine catalyst. ► Catalytic performance in esterification and asymmetric aldol condensation. ► Demonstration

  11. Asymmetric synthesis of -aminophosphonates: The bio-isosteric analogs of -aminobutyric acid

    Indian Academy of Sciences (India)

    Kalisankar Bera; Dwayaja Nadkarni; Iirishi N N Namboothiri

    2013-05-01

    The properties of aminophosphonates as transition state analogs of amino acids, and as antibacterial, antifungal and antiHIV agents attracted considerable attention in recent years. Although many reviews appeared in the literature covering - and -aminophosphonates, -aminophosphonates did not receive sufficient attention despite the fact that parent -aminophosphonic acid and its derivatives are bio-isosteric analogs of GABA (-amino butyric acid). This review provides a critical summary of the significance of -aminophosphonates and various approaches to their synthesis, with particular emphasis to asymmetric versions.

  12. Group 11 N-heterocyclic carbenes : synthesis, characterisation and catalytic applications

    OpenAIRE

    Lazreg, Faïma

    2015-01-01

    As part of a worldwide effort to develop efficient catalysts for use in organic chemistry and in the synthesis of highly valuable molecules, work performed during the course of my stay in St Andrews has focused on the design and synthesis of new group 11 metal complexes for their applications in catalysis. The aim of this work was to develop new, active and stable, easy to synthesise group 11 complexes and investigate their catalytic activity as well as to try to understand the...

  13. Study on Synthesis and Catalytic Performance of Hierarchical Zeolite

    Institute of Scientific and Technical Information of China (English)

    Zhang Lingling; Li Fengyan; ZhaoTianbo; Sun Guida

    2007-01-01

    A kind of hierarchical zeolite catalyst was synthesized by hydrothermal method.X-ray diffraction (XRD)and nitrogen adsorption-desorption method were used to study the phase and aperture structure of the prepared catalyst.Infrared(IR)spectra of pyridine adsorbed on the sample showed that the hierarchical zeolite really had much more Bronsted and Lewis acidic sites than the HZSM-5 zeolite.The catalytic cracking of large hydrocarbon molecules showed that the hierarchical zeolite had a higher catalytic activity than the HZSM-5 zeolite.

  14. Chiral nonracemic late-transition-metal organometallics with a metal-bonded stereogenic carbon atom: development of new tools for asymmetric organic synthesis.

    Science.gov (United States)

    Malinakova, Helena C

    2004-06-07

    Transition-metal-catalyzed cross-coupling reactions and the Heck reaction have evolved into powerful tools for the construction of carbon-carbon bonds. In most cases, the reactive organometallic intermediates feature a carbon-transition-metal sigma bond between a sp(2)-hybridized carbon atom and the transition metal (Csp(2)--TM). New, and potentially more powerful approach to transition-metal-catalyzed asymmetric organic synthesis would arise if catalytic chiral nonracemic organometallic intermediates with a stereogenic sp(3)-hybridized carbon atoms directly bonded to the transition metal (C*sp(3)--TM bond) could be formed from racemic or achiral organic substrates, and subsequently participate in the formation of a new carbon-carbon bond (C*sp(3)-C) with retention of the stereochemical information. To date, only a few catalytic processes that are based on this concept, have been developed. In this account, both "classical" and recent studies on preparation and reactivity of stable chiral nonracemic organometallics with a metal-bonded stereogenic carbon, which provide the foundation for the future design of new synthetic transformations exploiting the outlined concept, are discussed, along with examples of relevant catalytic processes.

  15. Chiral Borated Esters in Asymmetric Synthesis:1.The First Asymmetric Reaction Catalyzed by Chiral Spiroborated Esters with an O3BN Framework

    Institute of Scientific and Technical Information of China (English)

    LIU, De-Jun(刘德军); SHAN, Zi-Xing(单自兴); QIN, Jin-Gui(秦金贵)

    2004-01-01

    The first asymmetric reaction catalyzed by chiral spiroborated esters with an O3BN framework was reported. In the presence of 0.1 equivalent of (R,S)-1 or (S,S)-1, acetophenone was reduced by 0.6 equivalent of borane in THF at 0-5 ℃ for 2 h to give (R)-1-phenylethanol of up to 76% ee and 73% isolated yield. Influence of reaction conditions on the stereoselectivity of the reduction was investigated and a possible catalytic mechanism of the chiral spiroborated esters toward the reduction was also suggested.

  16. Zn-catalyzed enantio- and diastereoselective formal [4 + 2] cycloaddition involving two electron-deficient partners: asymmetric synthesis of piperidines from 1-azadienes and nitro-alkenes.

    Science.gov (United States)

    Chu, John C K; Dalton, Derek M; Rovis, Tomislav

    2015-04-08

    We report a catalytic asymmetric synthesis of piperidines through [4 + 2] cycloaddition of 1-azadienes and nitro-alkenes. The reaction uses earth abundant Zn as catalyst and is highly diastereo- and regioselective. A novel BOPA ligand (F-BOPA) confers high reactivity and enantioselectivity in the process. The presence of ortho substitution on the arenes adjacent to the bis(oxazolines) was found to be particularly impactful, due to limiting the undesired coordination of 1-azadiene to the Lewis acid and thus allowing the reaction to be carried out at lower temperature. A series of secondary kinetic isotope effect studies using a range of ligands implicates a stepwise mechanism for the transformation, involving an initial Michael-type addition of the imine to the nitro-alkene followed by a cyclization event. The stepwise mechanism obviates the electronic requirement inherent to a concerted mechanism, explaining the successful cycloaddition between two electron-deficient partners.

  17. Synthesis of Three Novel Chiral Binuclear Mn(Ⅲ)-Schiff-base Complexes and the Application in Asymmetric Epoxidation of trans-Stilbene

    Institute of Scientific and Technical Information of China (English)

    Yang SUN; Ning TANG; Xin Wen LIU; Wei Sheng LIU

    2004-01-01

    Three novel chiral binuclear Mn(Ⅲ)-Schiff-base complexes have been synthesized and the application of these complexes in the asymmetric epoxidation of trans-stilbene is described, catalytic mechanism is also discussed briefly.

  18. Process Considerations for the Asymmetric Synthesis of Chiral Amines using ω-Transaminase

    DEFF Research Database (Denmark)

    Lima Afonso Neto, Watson

    of suitable polymeric resins for product removal. The work has been performed in collaboration with c-LEcta GmbH (Leipzig, Germany) and DSM Innovative Synthesis (Geleen, The Netherlands) who supplied the enzymes for the case study, making possible the successful demonstration of the screening methodologies...... in order to eliminate infeasible routes. This work illustrates the Laboratory scale characterization of different process options for the asymmetric synthesis of chiral amines catalysed by ω-transaminase (ω –TAm). The studied process options include: (i) the immobilization of the biocatalyst to improve its......PR) to respectively alleviate product inhibition and shift the reaction equilibrium. From an academic point of view, more important than the implementation of these technologies to a specific example, is the development of a general methodology that can be later applied in other cases. Hence, this work has also...

  19. Asymmetric synthesis of telcagepant, a CGRP receptor antagonist for the treatment of migraine.

    Science.gov (United States)

    Xu, Feng; Zacuto, Michael; Yoshikawa, Naoki; Desmond, Richard; Hoerrner, Scott; Itoh, Tetsuji; Journet, Michel; Humphrey, Guy R; Cowden, Cameron; Strotman, Neil; Devine, Paul

    2010-11-19

    A highly efficient, asymmetric synthesis of telcagepant (1), a CGRP receptor antagonist for the treatment of migraine, is described. This synthesis features the first application of iminium organocatalysis on an industrial scale. The key to the success of this organocatalytic transformation was the identification of a dual acid cocatalyst system, which allowed striking a balance of the reaction efficiency and product stability effectively. As such, via an iminium species, the necessnary C-6 stereogenicity was practically established in one operation in >95% ee. Furthermore, we enlisted an unprecedented Doebner-Knoevenagel coupling, which was also via an iminium species, to efficiently construct the C3-C4 bond with desired functionality. In order to prepare telcagepant (1) in high quality, a practical new protocol was discovered to suppress the formation of desfluoro impurities formed under hydrogenation conditions to manufacturing process and prepares telcagepant (1) with the high quality required for pharmaceutical use.

  20. Chiral 4-substituted 2-oxetanones : catalytic stereoselective synthesis, properties and applications

    NARCIS (Netherlands)

    Staring, Aemilianus Gradus Johannes

    1985-01-01

    In this thesis the catalytic stereoselective synthesis of chiral 4-substituted 2-oxetanones described. Chiral 4-substituted 2-oxetanones are formed by a C,C-bond forming cycloaddition reaction of ketene and reactive, alfa-halogenated aldehydes and ketones. The cycloaddition reaction is catalyzed by

  1. Asymmetric synthesis with microbes; Biseibutsu wo katsuyoshita kogaku kassei kagobutsu no koritsutekina gosei

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, S. [Ritsumeikan Univ., Tokyo (Japan). Faculty of Science and Engineering

    1996-02-01

    Use of microbial enzymes have been widely extended as an effective means for asymmetric synthesis. However, the asymmetric selectivity often decreases due to competitive catalysis among plural enzymes in a microbe. The author has been studied development of methods for control of the stereo-selectivity using subtle difference of enzyme characteristics. When Michaelis constant (Km) differs between two enzymes, one enzyme of lower Km becomes active with decrease in concentration of substrate, expressing its stereo-selectivity. Reduction of {alpha}-ketoesters in water by bread yeast (Saccharomyces cerevisiae) yields products of S-configuration, whereas those of R-configuration are obtained in an organic solvent in the presence of small amount of water. This is because reaction field of the yeast is in water and because R-configuration enzyme of lower Km works for substrate whose concentration in water has decreased due to two phase partition of organic solvent and water system. Further, use of difference of decrease in enzyme activity by inhibitors in stereo-selective synthesis of {alpha}-hydroxyketones (I) from {alpha}-diketone and use of difference of thermal endurance in improvement of formation ratio among I, are also introduced. 6 refs., 3 figs., 2 tabs.

  2. Asymmetric synthesis and biological activities of natural product (+)-balasubramide and its derivatives.

    Science.gov (United States)

    Li, Jun; Li, Jianzu; Xu, Yuan; Wang, Yunjie; Zhang, Luyong; Ding, Li; Xuan, Yining; Pang, Tao; Lin, Hansen

    2016-01-01

    The natural product (+)-balasubramide (3j) and its derivatives (3a-3i) were synthesized using a two-step asymmetric synthesis, and the biological activities of 3a-3j were determined in vitro. Methyl (2S,3R)-(+)-3-phenyloxirane-2-carboxylate (1h), the asymmetric synthesis of which was described in a previous paper, was selected as the starting material. Compounds 3a-3j were evaluated for their neuroprotective, antioxidative, and anti-neuroinflammatory effects. (+)-Balasubramide and its derivatives with different electronegative groups in the 6-phenyl ring produced little neuroprotection and antioxidation, but induced potent anti-neuroinflammatory effects in BV-2 microglial cells (with the exception of 3g). Compound 3c, with a trifluoromethyl group in its 6-phenyl ring, was a particularly potent anti-neuroinflammatory agent. These results demonstrated that the electronegativity of the 6-phenyl ring of (+)-balasubramide is an important determinant of its inhibitory effect on neuroinflammation. More electronegative substituents result in more potent anti-neuroinflammatory effects. Moreover, cytotoxicity assays indicated no significant effects of the tested compounds.

  3. New insight in the microscopic mechanism of the catalytic synthesis of ammonia

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1995-01-01

    Theoretical quantum calculations and molecular beam experiments of the dissociative chemisorption of N-2 molecules on catalytic active metal surfaces have given new insight in the fundamental process of the ammonia synthesis. This new approach to the study of catalytic process supplements...... to dissociation. Our analysis of the dissociation process suggests that it is not possible to define, in some well specified way, a precursor state at typical temperatures in the technical ammonia synthesis. The kinetic scheme for the complete ammonia synthesis without the precursor state can still account...... for the observed conversion to ammonia. We have constructed an empirical potential energy surface for N-2/Fe(111) which has barriers to dissociation even larger than for the previously studied N-2/Re system. It is shown that the presence of barriers is consistent with the observation that the activation energy...

  4. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties.

    Science.gov (United States)

    Somturk, Burcu; Yilmaz, Ismail; Altinkaynak, Cevahir; Karatepe, Aslıhan; Özdemir, Nalan; Ocsoy, Ismail

    2016-05-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to enhance catalytic activity and stability. Although stability of enzyme was accomplished with immobilization approaches, activity of the most of the enzymes was declined after immobilization. Herein, we synthesize the flower shaped-hybrid nanomaterials called hybrid nanoflower (HNF) consisting of urease enzyme and copper ions (Cu(2+)) and report a mechanistic elucidation of enhancement in both activity and stability of the HNF. We demonstrated how experimental factors influence morphology of the HNF. We proved that the HNF (synthesized from 0.02mgmL(-1) urease in 10mM PBS (pH 7.4) at +4°C) exhibited the highest catalytic activity of ∼2000% and ∼4000% when stored at +4°C and RT, respectively compared to free urease. The highest stability was also achieved by this HNF by maintaining 96.3% and 90.28% of its initial activity within storage of 30 days at +4°C and RT, respectively. This dramatically enhanced activity is attributed to high surface area, nanoscale-entrapped urease and favorable urease conformation of the HNF. The exceptional catalytic activity and stability properties of HNF can be taken advantage of to use it in fields of biomedicine and chemistry.

  5. Stereoselective Synthesis of trans-Olefins by the Copper-Mediated SN2′ Reaction of Vinyl Oxazines with Grignard Reagents. Asymmetric Synthesis of D-threo-Sphingosines

    OpenAIRE

    Singh, Om V; Han, Hyunsoo

    2007-01-01

    The SN2′ reaction of 6-vinyl-5,6-dihydro-4H-[1,3]oxazines with Grignard reagents in the presence of CuCN was studied, and high trans selectivity for the formation of double bond was observed with a variety of RMgX. The SN2′ reaction, coupled with regioselective asymmetric aminohydroxylation reaction, provided a highly efficient route for the asymmetric synthesis of D-threo-N-acetylsphingosine.

  6. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles: An Undergraduate Experiment Exploring Catalytic Nanomaterials

    Science.gov (United States)

    Feng, Z. Vivian; Lyon, Jennifer L.; Croley, J. Sawyer; Crooks, Richard M.; Vanden Bout, David A.; Stevenson, Keith J.

    2009-01-01

    Copper nanoparticles were synthesized using generation 4 hydroxyl-terminated (G4-OH) poly(amidoamine) (PAMAM) dendrimers as templates. The synthesis is conducted by coordinating copper ions with the interior amines of the dendrimer, followed by chemical reduction to form dendrimer-encapsulated copper nanoparticles (Cu-DEN). The catalytic…

  7. Asymmetric Synthesis of (R)-Fluoxetine: A Practical Approach Using Recyclable and in-situ Generated Oxazaborolidine Catalyst

    Institute of Scientific and Technical Information of China (English)

    PADIYA Kamlesh; GAGARE Pravin; GAGARE Manjiri; LAL Bansi

    2009-01-01

    A practical route for the synthesis of (R)-fluoxetine·HCl (ee=96%) in 56% overall yield was described. The key intermediate (R)-3-chloro-1-phenyl--propanol was obtained by the asymmetric reduction of prochiral 3-chloropropiophenone using in-situ generated oxazaborolidine catalyst derived from (S)-α,α-diphenylprolinol. The chiral procatalyst (S)-α,α-diphenylprolinol was recovered quantitatively and recycled. An improved practical syn-thesis of (S)-α,α-diphenylprolinol was also discussed.

  8. A tailor-made chimeric thiamine diphosphate dependent enzyme for the direct asymmetric synthesis of (S)-benzoins.

    Science.gov (United States)

    Westphal, Robert; Vogel, Constantin; Schmitz, Carlo; Pleiss, Jürgen; Müller, Michael; Pohl, Martina; Rother, Dörte

    2014-08-25

    Thiamine diphosphate dependent enzymes are well known for catalyzing the asymmetric synthesis of chiral α-hydroxy ketones from simple prochiral substrates. The steric and chemical properties of the enzyme active site define the product spectrum. Enzymes catalyzing the carboligation of aromatic aldehydes to (S)-benzoins have not so far been identified. We were able to close this gap by constructing a chimeric enzyme, which catalyzes the synthesis of various (S)-benzoins with excellent enantiomeric excess (>99%) and very good conversion.

  9. Synthesis of novel chiral N, P-containing multidentate ligands and their applications in asymmetric transfer hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Shen Luan Yu; Yan Yun Li; Zhen Rong Dong; Juan Ni Zhang; Qi Li; Jing Xing Gao

    2011-01-01

    Novel chiral PN4-type multidentate aminophosphine ligands have been successfully synthesized by Schiff-base condensation of bis(o-formylphenyl)phenylphosphane and various chiral amino-sulfonamides. Their structures were fully characterized by IR, EI-MS and NMR. The catalytic systems, prepared in situ from the multidentate ligands and iridium(I) complexes, showed high activity in asymmetric transfer hydrogenation of propiophenone in 2-propanol solution, leading to corresponding optical alcohol with up to 75% ee.

  10. (NII) Novel Catalytic, Synthesis Methods for Main Group

    Science.gov (United States)

    2014-12-23

    Application of Fundamental Organometallic Chemistry to the Development of a Gold- Catalyzed Synthesis of Sulfinate Derivatives.” Angew. Chem. Int. Ed. Engl...applied in selective functionalization of organic molecules. In recent chemistry relevant to this problem, we reported remarkable reactivity leading to

  11. Microwave-Assisted SynthesisCatalytic Applications in Aqueous Media

    Science.gov (United States)

    The development of sustainable methods directed towards the synthesis of molecules is due to the heightened awareness and recognition of alternative eco-friendly and economical protocols that have minimum impact on environment. Among others, microwave (MW)-assisted methodology ha...

  12. Short synthesis of the C1-C14 stretch of discodermolide from building blocks prepared by asymmetric catalysis.

    Science.gov (United States)

    Cao, Huanyan; Parker, Kathlyn A

    2008-04-01

    A convergent and stereoselective synthesis of the C1-C14 stretch of (+)-discodermolide demonstrates the utility of the "asymmetric catalysis approach" to complex polypropionates. The preparation of this complex synthon requires 15 steps in the longest linear sequence and 19 steps total from inexpensive materials.

  13. Asymmetric Synthesis of (-)-Incarvillateine Employing an Intramolecular Alkylation via Rh-Catalyzed Olefinic C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Andy; Bergman, Robert; Ellman, Jonathan

    2008-02-18

    An asymmetric total synthesis of (-)-incarvillateine, a natural product having potent analgesic properties, has been achieved in 11 steps and 15.4% overall yield. The key step is a rhodium-catalyzed intramolecular alkylation of an olefinic C-H bond to set two stereocenters. Additionally, this transformation produces an exocyclic, tetrasubstituted alkene through which the bicyclic piperidine moiety can readily be accessed.

  14. Origin of stereocontrol in guanidine-bisurea bifunctional organocatalyst that promotes α-hydroxylation of tetralone-derived β-ketoesters: asymmetric synthesis of β- and γ-substituted tetralone derivatives via organocatalytic oxidative kinetic resolution.

    Science.gov (United States)

    Odagi, Minami; Furukori, Kota; Yamamoto, Yoshiharu; Sato, Makoto; Iida, Keisuke; Yamanaka, Masahiro; Nagasawa, Kazuo

    2015-02-11

    The mechanism of asymmetric α-hydroxylation of tetralone-derived β-ketoesters with guanidine-bisurea bifunctional organocatalyst in the presence of cumene hydroperoxide (CHP) was examined by means of DFT calculations to understand the origin of the stereocontrol in the reaction. The identified transition-state model was utilized to design an enantioselective synthesis of β- or γ-substituted tetralones by catalytic oxidative kinetic resolution reaction of tetralone-derived β-ketoesters. This kinetic resolution reaction proceeded with high selectivity, and selectivity factors (s value) of up to 99 were obtained. The potential utility of this oxidative kinetic resolution method for synthesis of natural products was confirmed by applying it to achieve an enantioselective synthesis of (+)-linoxepin (13) from β-substituted tetralone rac-7 in only six steps.

  15. Synthesis of boron/nitrogen substituted carbons for aqueous asymmetric capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Tomko, Timothy [Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Rajagopalan, Ramakrishnan, E-mail: rur12@psu.edu [Materials Research Institute, Pennsylvania State University, 270 MRL Bldg., University Park, PA 16802 (United States); Aksoy, Parvana [Energy Institute, Pennsylvania State University, University Park, PA 16802 (United States); Foley, Henry C. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-06-01

    Highlights: > Synthesis of highly substituted boron and nitrogen containing carbons (BCN) for ultracapacitor applications. > Evidence for strong electroadsorption of protons on BCN. > Increased specific capacitance per unit area and improved cell voltage in aqueous asymmetric capacitors. - Abstract: Boron/nitrogen substituted carbons were synthesized by co-pyrolysis of polyborazylene/coal tar pitch blends to yield a carbon with a boron and nitrogen content of 14 at% and 10 at%, respectively. The presence of heteroatoms in these carbons shifted the hydrogen evolution overpotential to -1.4 V vs Ag/AgCl in aqueous electrolytes, providing a large electrochemical potential window ({approx}2.4 V) as well as a specific capacitance of 0.6 F/m{sup 2}. An asymmetric capacitor was fabricated using the as-prepared low surface area carbon as the negative electrode along with a redox active manganese dioxide as the positive electrode. The energy density of the capacitor exceeded 10 Wh/kg at a power density of 1 kW/kg and had a cycle life greater than 1000 cycles.

  16. Synthesis of polyaniline nanotubes through UV light catalytic method

    Directory of Open Access Journals (Sweden)

    Chuanyu Sun

    2015-03-01

    Full Text Available In this study, nitrocellulose (NC fiber blanket prepared by electrostatic spinning method has been used as a template, and copper nitrate (Cu(NO32 as an oxidant to synthesise polyaniline nanotubes doped with heteropolyacid (H4SiW12O40, SiW12 using UV light catalytic method. Infrared spectroscopy (IR, X-ray powder diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM technologies were applied to characterize the prepared samples of polyaniline nanotubes. The results show that the external diameter of the tube is about 200 nm, and the internal diameter about 170 nm. We also give a reasonable speculation and explanation about the formation mechanism of the nanotubes.

  17. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  18. Study on the Carbon-Methanation and Catalytic Activity of Ru/AC for Ammonia Synthesis

    Institute of Scientific and Technical Information of China (English)

    祝一锋; 李小年; 季德春; 刘化章

    2004-01-01

    The effects of promoters K, Ba, Sm on the resistance to carbon-methanation and catalytic activity of ruthenium supported on active carbon (Ru/AC) for ammonia synthesis have been studied by means of TG-DTG (thermalgravity-differential thermalgravity), temperature-programmed desorption, and activity test. Promoters Ba,K, and Sm increased the activity of Ru/AC catalysts for ammonia synthesis significantly. Much higher activity can be reached for Ru/AC catalyst with bi- or tri-promoters. Indeed, the triply promoted catalyst showed the highest activity, coupled to a surprisingly high resistance to methanation. The ability of resistance of promoter to methanation of Ru/AC catalyst is dependent on the adsorption intensity of hydrogen. The strong adsorption of hydrogen would enhance methanation and impact the adsorption of nitrogen, which results in the decrease of catalytic activity.

  19. Catalytic enantioselective addition of Grignard reagents to aromatic silyl ketimines

    Science.gov (United States)

    Rong, Jiawei; Collados, Juan F.; Ortiz, Pablo; Jumde, Ravindra P.; Otten, Edwin; Harutyunyan, Syuzanna R.

    2016-12-01

    α-Chiral amines are of significant importance in medicinal chemistry, asymmetric synthesis and material science, but methods for their efficient synthesis are scarce. In particular, the synthesis of α-chiral amines with the challenging tetrasubstituted carbon stereocentre is a long-standing problem and catalytic asymmetric additions of organometallic reagents to ketimines that would give direct access to these molecules are underdeveloped. Here we report a highly enantioselective catalytic synthesis of N-sulfonyl protected α-chiral silyl amines via the addition of inexpensive, easy to handle and readily available Grignard reagents to silyl ketimines. The key to this success was our ability to suppress any unselective background addition reactions and side reduction pathway, through the identification of an inexpensive, chiral Cu-complex as the catalytically active structure.

  20. Advances in Study on Catalysts for Phenol Synthesis via Catalytic Hydroxylation of Benzene in China

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhaohui

    2004-01-01

    Synthesis of phenol via direct hydroxylation of benzene as a typical reaction of atomic economy has attracted extensive attention worldwide and has also become an actively investigated domain in China. This article refers to the recent domestic advances in study on phenol synthesis via hydroxylation of benzene from the viewpoint of catalysts, and considers the TS-1/H2O2 and FeZSM-5/N2O catalytic systems to be promising ones with good prospects for commercialization along with some suggestions on future research work.

  1. MWW-type titanosilicate synthesis, structural modification and catalytic applications to green oxidations

    CERN Document Server

    Wu, Peng; Xu, Le; Liu, Yueming; He, Mingyuan

    2013-01-01

    This book provides a comprehensive review of a new generation of selective oxidation titanosilicate catalysts with the MWW topology (Ti-MWW) based on the research achievements of the past 12 years. It gives an overview of the synthesis, structure modification and catalytic properties of Ti-MWW. Ti-MWW can readily be prepared by means of direct hydrothermal synthesis with crystallization-supporting agents, using dual-structure-directing agents and a dry-gel conversion technique. It also can be post-synthesized through unique reversible structure transformation and liquid-phase isomorphous subst

  2. Development of a Novel, Oxidatively Activated, Safety-Catch Linker for Solid-Phase Asymmetric Organic Synthesis (SPOS)

    Institute of Scientific and Technical Information of China (English)

    LIN,Jun; Hjalmar Skarphedinsson; Stepehen G.Davies

    2004-01-01

    @@ Solid-phase asymmetric organic synthesis has become a very important synthetic strategy within the organic chemistry community.[1] Critical to success in SPOS is a linking strategy which allows both the substrate to be loaded and the product released efficiently from the polymeric support. A safety catch linker[2] (SCL) is in principle a linking molecule orthogonal to the reaction conditions of the library synthesis, which can be easily activated by a simple chemical transformation to allow efficient cleavage of the products from the polymer under mild conditions. In order to introduce the SuperQuat chiral auxiliaries[3] for SOPS, we report herein design and synthesis of a novel safety catch linker for asymmetric conjugate addition reactions.

  3. Direct catalytic asymmetric addition of allyl cyanide to ketones via soft Lewis acid/hard Brønsted base/hard Lewis base catalysis.

    Science.gov (United States)

    Yazaki, Ryo; Kumagai, Naoya; Shibasaki, Masakatsu

    2010-04-21

    We report that a hard Lewis base substantially affects the reaction efficiency of direct catalytic asymmetric gamma-addition of allyl cyanide (1a) to ketones promoted by a soft Lewis acid/hard Brønsted base catalyst. Mechanistic studies have revealed that Cu/(R,R)-Ph-BPE and Li(OC(6)H(4)-p-OMe) serve as a soft Lewis acid and a hard Brønsted base, respectively, allowing for deprotonative activation of 1a as the rate-determining step. A ternary catalytic system comprising a soft Lewis acid/hard Brønsted base and an additional hard Lewis base, in which the basicity of the hard Brønsted base Li(OC(6)H(4)-p-OMe) was enhanced by phosphine oxide (the hard Lewis base) through a hard-hard interaction, outperformed the previously developed binary soft Lewis acid/hard Brønsted base catalytic system, leading to higher yields and enantioselectivities while using one-tenth the catalyst loading and one-fifth the amount of 1a. This second-generation catalyst allows efficient access to highly enantioenriched tertiary alcohols under nearly ideal atom-economical conditions (0.5-1 mol % catalyst loading and a substrate molar ratio of 1:2).

  4. High-Throughput Continuous Flow Synthesis of Nickel Nanoparticles for the Catalytic Hydrodeoxygenation of Guaiacol

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Emily J.; Habas, Susan E.; Wang, Lu; Ruddy, Daniel A.; White, Erick A.; Baddour, Frederick G.; Griffin, Michael B.; Schaidle, Joshua A.; Malmstadt, Noah; Brutchey, Richard L.

    2016-11-07

    The translation of batch chemistries to high-throughput continuous flow methods dresses scaling, automation, and reproducibility concerns associated with the implementation of colloidally prepared nanoparticle (NP) catalysts for industrial catalytic processes. Nickel NPs were synthesized by the high-temperature amine reduction of a Ni2+ precursor using a continuous millifluidic (mF) flow method, achieving yields greater than 60%. The resulting Ni NP catalysts were compared against catalysts prepared in a batch reaction under conditions analogous to the continuous flow conditions with respect to total reaction volume, time, and temperature and by traditional incipient wetness (IW) impregnation for the hydrodeoxygenation (HDO) of guaiacol under ex situ catalytic fast pyrolysis conditions. Compared to the IW method, the colloidally prepared NPs displayed increased morphological control and narrowed size distributions, and the NPs prepared by both methods showed similar size, shape, and crystallinity. The Ni NP catalyst synthesized by the continuous flow method exhibited similar H-adsorption site densities, site-time yields, and selectivities towards deoxygenated products as compared to the analogous batch reaction, and outperformed the IW catalyst with respect to higher selectivity to lower oxygen content products and a 6.9-fold slower deactivation rate. These results demonstrate the utility of synthesizing colloidal Ni NP catalysts using continuous flow methods while maintaining the catalytic properties displayed by the batch equivalent. This methodology can be extended to other catalytically relevant base metals for the high-throughput synthesis of metal NPs for the catalytic production of biofuels.

  5. Hydrothermal Synthesis and Catalytic Application of Ultrathin Rhodium Nanosheet Nanoassemblies.

    Science.gov (United States)

    Bai, Juan; Xu, Guang-Rui; Xing, Shi-Hui; Zeng, Jing-Hui; Jiang, Jia-Xing; Chen, Yu

    2016-12-14

    Ultrathin noble metal nanosheets with atomic thickness exhibit abnormal electronic, surfacial, and photonic properties due to the unique two-dimensional (2D) confinement effect, which have attracted intensive research attention in catalysis/electrocatalysis. In this work, the well-defined ultrathin Rh nanosheet nanoassemblies with dendritic morphology are synthesized by a facile hydrothermal method with assistance of poly(allylamine hydrochloride) (PAH), where PAH effectively acts as the complexant and shape-directing agent. Transmission electron microscopy and atomic force microscopy images reveal the thickness of 2D Rh nanosheet with (111) planes is only ca. 0.8-1.1 nm. Nitrogen adsorption-desorption measurement displays the specific surface area of the as-prepared ultrathin Rh nanosheet nanoassemblies is 139.4 m(2) g(-1), which is much bigger than that of homemade Rh black (19.8 m(2) g(-1)). Detailed catalytic investigations display the as-prepared ultrathin Rh nanosheet nanoassemblies have nearly 20.4-fold enhancement in mass-activity for the hydrolysis of ammonia borane as compared with homemade Rh black.

  6. Polymer supported nickel complex: Synthesis, structure and catalytic application

    Indian Academy of Sciences (India)

    Alekha Kumar Sutar; Tungabidya Maharana; Yasobanta Das; Prasanta Rath

    2014-11-01

    In the present investigation, a new synthetic route for a novel recyclable free [3-MOBdMBn-Ni] and polystyrene-anchored [P-3-MOBdMBn-Ni] nickel complexes is presented. The free and polymer-anchored metal complexes were synthesized by the reaction of nickel (II) with one molar equivalent of unsupported N N′-bis (2-Hydroxy-3-methoxybenzaldehyde) 4-Methylbenzene-1,2-diamine (3-MOBdMBn) or polymersupported (P-3-MOBdMBn) Schiff-base ligand in methanol under nitrogen atmosphere. The advantages of these polymer-supported catalysts are the low cost of catalyst and recyclability up to six times, due to easy availability of materials and simple synthetic route. The higher efficiency of complexation of nickel on the polymer-anchored 3-MOBdMBn Schiff base than the unsupported analogue is another advantage of this catalyst system. The structural study reveals that nickel(II) complex of 3-MOBdMBn is square planar in geometry. The catalytic activity of nickel complex towards the oxidation of phenol was investigated in the presence of hydrogen peroxide. Experimental results indicate that the reactivity of P-3-MOBdMBn-Ni was dramatically affected by the polymer support compared to free 3-MOBdMBn-Ni. The rates of oxidation (R) for unsupported and supported catalysts are 1.37 × 10-6 mole dm-3 s-1 and 2.33 × 10-6 mole dm-3 s-1 respectively.

  7. Synthesis, characterization and catalytic application of polyhedron zinc oxide microparticles

    Science.gov (United States)

    Jamil, Saba; Ramzan Saeed Ashraf Janjua, Muhammad; Khan, Shanza Rauf; Jahan, Nazish

    2017-01-01

    Zinc oxide (ZnO) microparticles of unique morphology were synthesized by the microwave heating method. The composition and morphology of the synthesized microparticles were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). It is clear from the XRD pattern that the product is highly pure and crystalline. It is shown from the SEM images that the hexagonal unit cells are arranged in the form of a polyhedral lattice. The length of the sides is equal at the middle of the lattice, and unequal on the terminal sides of the lattice. This is due to the alignment of the hexagonal unit cells. The size distribution histogram of the product possesses a sharp band which shows that it is monodisperse. This means that a monodisperse product can be obtained by the microwave heating method. The synthesized particles were used as a catalyst for the thermal degradation of ammonium perchlorate (AP) and the catalytic reduction of 2-nitrophenol (2-NP) and 4-nitrophenol (4-NP). The effect of temperature on the value of the apparent rate constant was also studied, and the values of the kinetic and thermodynamic parameters were calculated. This shows that the catalyst possesses high efficiency for thermally degrading of substances at low temperatures and rapidly reducing the nitroarenes in an aqueous medium.

  8. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Science.gov (United States)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  9. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  10. Catalytic performance of symmetrical and unsymmetrical sulfur-containing pincer complexes: synthesis and tandem catalytic activity of the first PCS-pincer palladium complex

    NARCIS (Netherlands)

    Gagliardo, M.; Selander, N.; Mehendale, N.C.; van Koten, G.; Klein Gebbink, R.J.M.; Szabó, K.J.

    2008-01-01

    The synthesis and catalytic applications of a new aryl-based unsymmetrical PCS-pincer complex are reported. Preparation of the robust air- and moisture-stable PCS-pincer palladium complex 5[X] started from the symmetrical ,-dibromo-meta-xylene and involved the selective substitution of one bromide b

  11. Asymmetric catalysis with short-chain peptides.

    Science.gov (United States)

    Lewandowski, Bartosz; Wennemers, Helma

    2014-10-01

    Within this review article we describe recent developments in asymmetric catalysis with peptides. Numerous peptides have been established in the past two decades that catalyze a wide variety of transformations with high stereoselectivities and yields, as well as broad substrate scope. We highlight here catalytically active peptides, which have addressed challenges that had thus far remained elusive in asymmetric catalysis: enantioselective synthesis of atropoisomers and quaternary stereogenic centers, regioselective transformations of polyfunctional substrates, chemoselective transformations, catalysis in-flow and reactions in aqueous environments.

  12. Catalytic synthesis of alcoholic fuels for transportation from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao

    composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenation. The metal area based activity for a Cu-Ni/SiO2 catalyst is at the same level as a Cu/ZnO/Al2O3 model...... bimetallic Cu-Ni catalysts with different ratios of Cu to Ni have been prepared by impregnation. In situ reduction of Cu-Ni alloys with combined synchrotron XRD and XAS reveal a strong interaction between Cu and Ni, resulting in improved reducibility of Ni as compared to monometallic Ni. At high nickel...

  13. Structure Investigation of Ti(IV)BODOLates Involved in the Catalytic Asymmetric Reduction of Ketones Using Catecholborane

    DEFF Research Database (Denmark)

    Sarvary, Ian; Norrby, Per-Ola; Frejd, Torbjörn

    2004-01-01

    The complexes formed on mixing Ti(OiPr)4 and bicyclo-octanediols (BODOLs) 1 and 2 (1:1) are useful as chiral catalysts in asymmetric reductions and were investigated by 1HNMR-spectroscopy and by computational methods. A consistent picture emerged of head-to-tail dimers being kept together via a T...

  14. DIFLUORPHOS and SYNPHOS in asymmetric catalysis: Synthetic applications

    Indian Academy of Sciences (India)

    Sebastien Prevost; Tahar Ayad; Jean-Pierre Genet; Phannarath Phansavath; Virginie Ratovelomanana-Vidal

    2014-03-01

    Enantiomerically pure diphosphines play an important role in various homogeneous metalcatalyzed asymmetric reactions. Over the last few years, our group has been involved in the design and synthesis of atropisomeric ligands named SYNPHOS and DIFLUORPHOS with complementary stereoelectronic properties. This paper shows the high catalytic performances of DIFLUORPHOS, SYNPHOS and SYNPHOS analogues for some C-H and C-C bond forming processes as well as for the synthesis of biorelevant targets.

  15. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  16. Correction: A highly enantioselective Biginelli reaction using self-assembled methanoproline-thiourea organocatalysts: asymmetric synthesis of 6-isopropyl-3,4-dihydropyrimidines.

    Science.gov (United States)

    Hang, Zhijun; Zhu, Jun; Lian, Xiang; Xu, Peng; Yu, Han; Han, Sheng

    2016-02-07

    Correction for 'A highly enantioselective Biginelli reaction using self-assembled methanoproline-thiourea organocatalysts: asymmetric synthesis of 6-isopropyl-3,4-dihydropyrimidines' by Zhijun Hang et al., Chem. Commun., 2016, 52, 80-83.

  17. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity.

    Science.gov (United States)

    Yan, Wei; Chen, Chang; Wang, Ling; Zhang, Dan; Li, Ai-Jun; Yao, Zheng; Shi, Li-Yi

    2016-04-20

    The emphasis of science and technology shifts toward environmentally friendly and sustainable resources and processes. Herein, we report a facile, one-pot and green synthesis of biomaterial-supported gold nanoparticles (AuNPs) with superior catalytic activity. Cellulose nanocrystal (CNC)-supported AuNPs were prepared by heating the aqueous mixture of HAuCl4, CNCs and polyethylene glycol, avoiding toxic chemicals, extreme condition and complicated procedure. The resultant CNC-supported AuNPs exhibited catalytic activities for the reduction of 4-nitrophenol by sodium borohydride. The maximum apparent rate constant reached 1.47×10(-2)s(-1), and the turnover frequency reached 641h(-1). The superior catalytic performance can be ascribed to the large amount of highly dispersed AuNPs with few nanometers in size which are loaded on CNCs. About 90% of the AuNPs are smaller than 10nm, and nearly 60% of the AuNPs are smaller than 5nm. The synthesis is eco-friendly, facile and low-cost, thus has great potential for industrial and medical applications.

  18. An undergraduate level experiment on the synthesis of Au nanoparticles and their size-dependent optical and catalytic properties

    Directory of Open Access Journals (Sweden)

    Anderson G. M. da Silva

    2014-01-01

    Full Text Available The synthesis of gold nanoparticles (Au NPs 15, 26, and 34 nm in diameter, followed by the investigation of their size-dependent optical and catalytic properties, is described herein as an undergraduate level experiment. The proposed experiment covers concepts on the synthesis, stabilization, and characterization of Au NPs, their size-dependent optical and catalytic properties at the nanoscale, chemical kinetics, and the role of a catalyst. The experiment should be performed by groups of two or three students in three lab sessions of 3 h each and organized as follows: i synthesis of Au NPs of different sizes and investigation of their optical properties; ii evaluation of their catalytic activity; and iii data analysis and discussion. We believe that this activity enables students to integrate these multidisciplinary concepts in a single experiment as well as to become introduced/familiarized with an active research field and current literature in the areas of nanoparticle synthesis and catalysis.

  19. Asymmetric Synthesis of (3R, 5R)-3-((tert-Butyldimethylsily)oxy)-5-((Z)-2-Bromovinyl)-Tetrahydro-Furan-2-one, an Intermediate for the Synthesis of Fostriecin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    (3R,5R)-3-((tert-Butyldimethylsily)oxy)-5-((Z)-2-bromovinyl)-tetrahydro-furan-2-one, an intermediate for the synthesis of Fostriecin was achieved by intramolecular asymmetric induction in propene addition of (-)-8-phenylmenthyl glyoxylate followed by inversion of C3-hydroxyl group and Sharpless asymmetric dihydroxylation with simultaneous cyclization to give lactone 5. Then protection of C3-hydroxyl group and oxidation of the C6-primary hydroxyl group which reacted with Wittig reagent to yield the target compound 4.

  20. In Situ Synthesis of Bimetallic Hybrid Nanocatalysts on a Paper-Structured Matrix for Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2011-11-01

    Full Text Available Bimetallic nanoparticles have attracted significant attention as their electrochemical and catalytic properties being superior to those of the individual component nanoparticles. In this study, gold-silver hybrid nanoparticles (AuAgNPs with an Aucore-Agshell nanostructure were successfully synthesized on zinc oxide (ZnO whiskers. The as-prepared nanocatalyst, denoted AuAgNPs@ZnO whisker, exhibits an excellent catalytic efficiency in the aqueous reduction of 4-nitrophenol to 4-aminophenol; the turnover frequency was up to 40 times higher than that of each component nanoparticle. Their unique features were attributed to the electronic ligand effect at the bimetallic interface. In addition, the AuAgNPs were synthesized on a ZnO whisker-containing paper with a fiber-network microstructure, which was prepared via a papermaking technique. The paper-structured AuAgNPs composite possessed both a paper-like practical utility and a good catalytic performance. Furthermore, the on-paper synthesis process for these bimetallic nanocatalysts is facile. These easy-to-handle nanocatalyst hybrid composites are expected to find a wide range of applications in various chemical and catalytic processes.

  1. Catalytic Synthesis of Isopropyl Benzene over SO42-/ZrO2 -MCM-41

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Super acid catalyst SO2-4-/ZrO2 was introduced into pure silicone MCM-41 via the impregnation method and the catalyst samples obtained at different temperatures were characterized by means of XRD, IR, and Py-IR techniques.The selectively catalytic gas-phase flow reactions of benzene with propene over the catalyst samples were carried out in a made-to-measure high-pressure flow reactor equipped with a thermostat and a condenser. Effect of the preparative condition on the catalytic synthesis of isopropyl benzene over the catalyst samples was tested. The results show that SO2-4/ZrO2-MCM-41 (SZM-41) can be used as a catalyst for the title reaction, in which there are a higher conversion (97%) for the propene and a higher selectivity(93%) for the isopropyl benzene.

  2. Synthesis and characterization of vanadium nanoparticles on activated carbon and their catalytic activity in thiophene hydrodesulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Susana [Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 40679 (Venezuela); Centro de Quimica Organometalica y Macromolecular, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 47778 (Venezuela); D' Ornelas, Lindora [Centro de Quimica Organometalica y Macromolecular, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 47778 (Venezuela); Betancourt, Paulino [Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 40679 (Venezuela)], E-mail: pbetanco@strix.ciens.ucv.ve

    2008-06-30

    Vanadium nanoparticles ({approx}7 nm) stabilized on activated carbon were synthesized by the reduction of VCl{sub 3}.3THF with K[BEt{sub 3}H]. This material was characterized by inductive coupled plasma-atomic emission spectroscopy (ICP-AES), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses. The catalytic performance of the carbon-supported vanadium was studied using thiophene hydrodesulfurization (HDS) as model reaction at 300 deg. C and P = 1 atm. The catalytic activity of the vanadium carbide phase on the activated carbon carrier was more significant than that of the reference catalysts, alumina supported NiMoS. The method proposed for the synthesis of such a catalyst led to an excellent performance of the HDS process.

  3. Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity

    Science.gov (United States)

    Sreekanth, T. V. M.; Jung, Min-Ji; Eom, In-Yong

    2016-01-01

    In this study, we develop an inexpensive and green route for the synthesis of silver nanoparticles (AgNPs) using Picrasma quassioides bark aqueous extract as reducing and capping agent and also eco-friendly decorate graphene oxide (GO) nanosheets with AgNPs (GO-AgNPs). Green synthesized AgNPs and GO-AgNPs composites were characterized by UV-Visible spectroscopy, SEM-EDX, and TEM-SAED techniques. The resulting GO-AgNPs contained about 41.35% of Ag and the AgNPs size ranges 17.5-66.5 nm, and GO-AgNPs size ranges 10-49.5 nm. Moreover, the GO-AgNPs exhibited excellent catalytic activity towards the methylene blue (MB) in the presence of sodium borohydride (NaBH4) at room temperature. This catalytic reaction completed within 15 min.

  4. A dual arylboronic acid--aminothiourea catalytic system for the asymmetric intramolecular hetero-Michael reaction of α,β-unsaturated carboxylic acids.

    Science.gov (United States)

    Azuma, Takumi; Murata, Akihiro; Kobayashi, Yusuke; Inokuma, Tsubasa; Takemoto, Yoshiji

    2014-08-15

    A bifunctional aminoboronic acid has been used to facilitate for the first time the intramolecular aza- and oxa-Michael reactions of α,β-unsaturated carboxylic acids. The combination of an arylboronic acid with a chiral aminothiourea allowed for these reactions to proceed successfully in an enantioselective manner to afford the desired heterocycles in high yields and ee's (up to 96% ee). The overall utility of this dual catalytic system was demonstrated by a one-pot enantioselective synthesis of (+)-erythrococcamide B, which proceeded via sequential Michael and amidation reactions.

  5. Exploring the Scope of Asymmetric Synthesis of β-Hydroxy-γ-lactams via Noyori-type Reductions.

    Science.gov (United States)

    Lynch, Denis; Deasy, Rebecca E; Clarke, Leslie-Ann; Slattery, Catherine N; Khandavilli, U B Rao; Lawrence, Simon E; Maguire, Anita R; Magnus, Nicholas A; Moynihan, Humphrey A

    2016-10-07

    Enantio- and diastereoselective hydrogenation of β-keto-γ-lactams with a ruthenium-BINAP catalyst, involving dynamic kinetic resolution, has been employed to provide a general, asymmetric approach to β-hydroxy-γ-lactams, a structural motif common to several bioactive compounds. Full conversion to the desired β-hydroxy-γ-lactams was achieved with high diastereoselectivity (up to >98% de) by addition of catalytic HCl and LiCl, while β-branching of the ketone substituent demonstrated a pronounced effect on the modest to excellent enantioselectivity (up to 97% ee) obtained.

  6. The upside of downsizing: asymmetric trifunctional organocatalysts as small enzyme mimics for cooperative enhancement of both rate and enantioselectivity with regulation.

    Science.gov (United States)

    Liu, Fei

    2013-11-01

    Small molecule organic catalysts (organocatalysts) are widely used in asymmetric catalysis and synthesis. Compared to their enzymatic and transition-metal counterparts, organocatalysts have advantages in catalytic scope and efficiency but are more limited in proficiency. Chiral trifunctional organocatalysts, in which multiple catalytic motifs act cooperatively on a chiral scaffold, are an emerging class of organocatalysts with improved proficiency. Cooperativity design that enables both enantioselectivity and rate enhancement is essential to developing future generations of organocatalysts in biomimetic asymmetric catalysis.

  7. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  8. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Sayed M. Badawy

    2015-07-01

    Full Text Available Copper/Copper oxide (Cu/Cu2O nanoparticles were synthesized by modified chemical reduction method in an aqueous medium using hydrazine as reducing agent and copper sulfate pentahydrate as precursor. The Cu/Cu2O nanoparticles were characterized by X-ray Diffraction (XRD, Energy Dispersive X-ray Fluorescence (EDXRF, Scanning Electron Microscope (SEM, and Transmission Electron Microscope (TEM. The analysis revealed the pattern of face-centered cubic (fcc crystal structure of copper Cu metal and cubic cuprites structure for Cu2O. The SEM result showed monodispersed and agglomerated particles with two micron sizes of about 180 nm and 800 nm, respectively. The TEM result showed few single crystal particles of face-centered cubic structures with average particle size about 11-14 nm. The catalytic activity of Cu/Cu2O nanoparticles for the decomposition of hydrogen peroxide was investigated and compared with manganese oxide MnO2. The results showed that the second-order equation provides the best correlation for the catalytic decomposition of H2O2 on Cu/Cu2O. The catalytic activity of hydrogen peroxide by Cu/Cu2O is less than the catalytic activity of MnO2 due to the presence of copper metal Cu with cuprous oxide Cu2O. © 2015 BCREC UNDIP. All rights reservedReceived: 6th January 2015; Revised: 14th March 2015; Accepted: 15th March 2015How to Cite: Badawy, S.M., El-Khashab, R.A., Nayl, A.A. (2015. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 169-174. (doi:10.9767/bcrec.10.2.7984.169-174 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7984.169-174  

  9. Electrochemical Synthesis of Mo2C Catalytical Coatings for the Water-Gas Shift Reaction

    Science.gov (United States)

    Kuznetsov, Sergey A.; Dubrovskiy, Anton R.; Rebrov, Evgeny V.; Schouten, Jaap C.

    2007-11-01

    The electroreduction of CO32- ions on a molybdenum cathode in a NaCl-KCl-Li2CO3 melt was studied by cyclic voltammetry. The electrochemical synthesis of Mo2C on molybdenum substrates has been performed at 1123 K for 7 h with a cathodic current density of 5 mA cm-2. If molybdenum carbide is present as a thin (ca. 500 nm) film on a molybdenum substrate (Mo2C/Mo), its catalytic activity in the water gas-shift reaction is enhanced by at least an order of magnitude compared to that of the bulk Mo2C phase.

  10. Synthesis of Functionalized Furans via Chemoselective Reduction/Wittig Reaction Using Catalytic Triethylamine and Phosphine.

    Science.gov (United States)

    Lee, Chia-Jui; Chang, Tzu-Hsiu; Yu, Jhen-Kuei; Madhusudhan Reddy, Ganapuram; Hsiao, Ming-Yu; Lin, Wenwei

    2016-08-05

    An efficient protocol for the synthesis of highly functionalized furans via intramolecular Wittig reaction has been developed using catalytic amounts of phosphine and triethylamine. Silyl chloride served as the initial promoter to activate the phosphine oxide. Reduction of the activated phosphine oxide by hydrosilane resulted in generation of phosphine, while decomposition of Et3N·HCl resulted in regeneration of base, which mediated formation of phosphorus ylide. Remarkably, the in situ generated byproduct, Et3N·HCl, also catalyzes reduction of phosphine oxide.

  11. A sustainable and efficient synthesis of benzyl phosphonates using PEG/KI catalytic system

    Science.gov (United States)

    Gawande, Manoj; Disale, Shamrao; Kale, Sandip; Abraham, George; Kahandal, Sandeep; Sawarkar, Ashish

    2016-08-01

    An efficient and expedient protocol for the synthesis of benzyl phosphonates using KI/K2CO3 as a catalytic system and PEG-400 as benign solvent has been developed. The reaction proceeds smoothly at room temperature achieving excellent selectivity and yield of the corresponding products. The combination of PEG-400, KI and K2CO3 in this reaction avoids the need of volatile/toxic organic solvents and reactive alkali metals or metal nanoparticles/hydrides. We believe that this benign combination (PEG-400 and KI) could be used for other related organic transformations.

  12. A sustainable and efficient synthesis of benzyl phosphonates using PEG/KI catalytic system

    Directory of Open Access Journals (Sweden)

    Manoj B. Gawande

    2016-08-01

    Full Text Available An efficient and expedient protocol for the synthesis of benzyl phosphonates using KI/K2CO3 as a catalytic system and PEG-400 as benign solvent has been developed. The reaction proceeds smoothly at room temperature achieving excellent selectivity and yield of the corresponding products. The combination of PEG-400, KI and K2CO3 in this reaction avoids the need of volatile/toxic organic solvents and reactive alkali metals or metal nanoparticles/hydrides. We believe that this benign combination (PEG-400 and KI could be used for other related organic transformations.

  13. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles

    DEFF Research Database (Denmark)

    Hosseinkhani, Baharak; Søbjerg, Lina Sveidal; Rotaru, Amelia-Elena

    2012-01-01

    Bimetallic nanoparticles are considered the next generation of nanocatalysts with increased stability and catalytic activity. Bio-supported synthesis of monometallic nanoparticles has been proposed as an environmentally friendly alternative to the conventional chemical and physical protocols....... In this study we synthesize bimetallic bio-supported Pd-Au nanoparticles for the first time using microorganisms as support material. The synthesis involved two steps: (1) Formation of monometallic bio-supported Pd(0) and Au(0) nanoparticles on the surface of Cupriavidus necator cells, and (2) formation...... of bimetallic bio-supported nanoparticles by reduction of either Au(III) or Pd(II) on to the nanoparticles prepared in step one. Bio-supported monometallic Pd(0) or Au(0) nanoparticles were formed on the surface of C. necator by reduction of Pd(II) or Au(III) with formate. Addition of Au(III) or Pd...

  14. Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity.

    Science.gov (United States)

    Zayed, Mervat F; Eisa, Wael H

    2014-01-01

    A green synthesis route was reported to explore the reducing and capping potential of Phoenix dactylifera extract for the synthesis of gold nanoparticles. The processes of nucleation and growth of gold nanoparticles were followed by monitoring the absorption spectra during the reaction. The size and morphology of these nanoparticles was typically imaged using transmission electron microscopy (TEM). The particle size ranged between 32 and 45 nm and are spherical in shape. Fourier transform infrared (FTIR) analysis suggests that the synthesized gold nanoparticles might be stabilized through the interactions of hydroxyl and carbonyl groups in the carbohydrates, flavonoids, tannins and phenolic acids present in P. dactylifera. The as-synthesized Au colloids exhibited good catalytic activity for the degradation of 4-nitrophenol.

  15. The application of catalytic ring-closing olefin metathesis to the synthesis of unsaturated oxygen heterocycles

    Energy Technology Data Exchange (ETDEWEB)

    Fu, G.C.; Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1992-06-17

    The development of general approaches to carbon-carbon bond formation represents an important ongoing challenge for synthetic organic chemists. One efficient method for constructing carbon-carbon double bonds, the transition metal alkylidene-catalyzed olefin metathesis reaction, has been the focus of intense interest in recent years from the standpoint of both mechanism and polymer synthesis, in contrast, use of this transformation in organic synthesis has been limited. As part of a broader program directed toward establishing transition metal alkylidenes as versatile reagents for organic chemistry, the authors report the successful application of catalytic olefin methathesis to the generation of a variety of unsaturated oxygen heterocycles. 13 refs., 1 fig., 1 tab.

  16. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity

    Science.gov (United States)

    Dash, Shib Shankar; Bag, Braja Gopal

    2014-01-01

    Punica granatum juice, a delicious multivitamin drink of great medicinal significance, is rich in different types of phytochemicals, such as terpenoids, alkaloids, sterols, polyphenols, sugars, fatty acids, aromatic compounds, amino acids, tocopherols, etc. We have demonstrated the use of the juice for the synthesis of gold nanoparticles (AuNPs) at room temperature under very mild conditions. The synthesis of the AuNPs was complete in few minutes and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the fruit extract. The AuNPs were characterized by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, fourier transform infrared spectroscopy and X-ray diffraction studies. Catalytic activity of the synthesized colloidal AuNPs has also been demonstrated.

  17. Effect of preparation methods of aluminum emulsions on catalytic performance of copper-based catalysts for methanol synthesis from syngas

    Institute of Scientific and Technical Information of China (English)

    Lili Wang; Wen Ding; Yingwei Liu; Weiping Fang; Yiquan Yang

    2010-01-01

    Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their performances for methanol synthesis from syngas have been investigated.The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD,SEM,XPS,N2 adsorption-desorption techniques and methanol synthesis from syngas.The preparation methods of aluminum emulsions were found to influence the catalytic activity,CuO crystallite size,surface area and Cu0 surface area and reduction process.The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas.

  18. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng, E-mail: zhxch@zzu.edu.cn

    2014-03-15

    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H{sub 2}O{sub 2} indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions. Highlights: • 5–45 wt% HPW/MCM-48 mesoporous catalysts were prepared and characterized. • Their catalytic activities for the green synthesis of benzoic acid were investigated. • HPW/MCM-48 was approved to be an efficient catalyst. • 5 wt% HPW/MCM-48 exhibited the highest catalytic activity.

  19. Monomeric Cu(Ⅱ) Complex Containing Chiral Phase-transfer Catalyst as Ligand and Its Asymmetrically Catalytic Reaction

    Institute of Scientific and Technical Information of China (English)

    QU Zhi-Rong; XIONG Ren-Gen

    2008-01-01

    The thermal treatment of CuCl2 with N-(4'-vinylbenzyl)cinchonidinitim chloride(L1)afforded a monomeric discrete homochiral copper(Ⅱ)complex N-4'-(vinylbenzyl)cinchonidinium trichlorocoprate(Ⅱ)(1).Their applications to the enantioselectively catalytic alkylation reaction of N-(diphenylmethylidene)glycine tert-butyl ester(3)show that the higher ee value observed in catalyst 1 than that in the corresponding free ligand L1 is probably due to the rigidity enhancement after the coordination of N atom of quinoline ring to the copper ion.

  20. Co-Cu Nanoparticles: Synthesis by Galvanic Replacement and Phase Rearrangement during Catalytic Activation.

    Science.gov (United States)

    Nafria, Raquel; Genç, Aziz; Ibáñez, Maria; Arbiol, Jordi; de la Piscina, Pilar Ramírez; Homs, Narcís; Cabot, Andreu

    2016-03-08

    The control of the phase distribution in multicomponent nanomaterials is critical to optimize their catalytic performance. In this direction, while impressive advances have been achieved in the past decade in the synthesis of multicomponent nanoparticles and nanocomposites, element rearrangement during catalyst activation has been frequently overseen. Here, we present a facile galvanic replacement-based procedure to synthesize Co@Cu nanoparticles with narrow size and composition distributions. We further characterize their phase arrangement before and after catalytic activation. When oxidized at 350 °C in air to remove organics, Co@Cu core-shell nanostructures oxidize to polycrystalline CuO-Co3O4 nanoparticles with randomly distributed CuO and Co3O4 crystallites. During a posterior reduction treatment in H2 atmosphere, Cu precipitates in a metallic core and Co migrates to the nanoparticle surface to form Cu@Co core-shell nanostructures. The catalytic behavior of such Cu@Co nanoparticles supported on mesoporous silica was further analyzed toward CO2 hydrogenation in real working conditions.

  1. Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: a mathematical solution to asymmetric Markov chains.

    Science.gov (United States)

    Vinyard, David J; Zachary, Chase E; Ananyev, Gennady; Dismukes, G Charles

    2013-07-01

    Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called "S-states"). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions.

  2. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites.

    Science.gov (United States)

    Goel, Sarika; Wu, Zhijie; Zones, Stacey I; Iglesia, Enrique

    2012-10-24

    The synthesis protocols for encapsulation of metal clusters reported here expand the diversity in catalytic chemistries made possible by the ability of microporous solids to select reactants, transition states, and products on the basis of their molecular size. We report a synthesis strategy for the encapsulation of noble metals and their oxides within SOD (Sodalite, 0.28 nm × 0.28 nm), GIS (Gismondine, 0.45 nm × 0.31 nm), and ANA (Analcime, 0.42 nm × 0.16 nm) zeolites. Encapsulation was achieved via direct hydrothermal synthesis for SOD and GIS using metal precursors stabilized by ammonia or organic amine ligands, which prevent their decomposition or precipitation as colloidal hydroxides at the conditions of hydrothermal synthesis (12), thereby causing precipitation of even ligand-stabilized metal precursors as hydroxides. As a result, encapsulation was achieved by the recrystallization of metal clusters containing GIS into ANA, which retained these metal clusters within voids throughout the GIS-ANA transformation.

  3. Novel magnetic nanomaterials: Synthesis, characterization and study of their catalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Judy Azar, Amir Reza; Mohebbi, Sajjad, E-mail: smohebbi@uok.ac.ir

    2015-11-15

    A simple chemical process has been successfully developed to synthesize some N{sub 2}O{sub 2} Schiff base metal complexes as an organic shell on an inorganic support. Schiff base complexes of Ni(II), Cu(II), Co(II) and Zn(II) were immobilized on modified magnetic support. The magnetic support was modified using tetraethylorthosilicate (TEOS) and then functionalized with Schiff base complexes of transition metals ions. The synthesized nanocatalysts show high catalytic activity and selectivity in the oxidation of sulfide compounds to corresponding sulfoxides. The hybrid nanomaterials were fully characterized with different physicochemical techniques including Fourier transform Infrared, X-ray diffraction analysis, thermal gravimeter, scanning electron microscopy and transmission electron microscopy. Also, magnetic properties of hybrid nanomaterials were measured by Alternative Gradient Field Magnetometer. Magnetic measurements showed that the coating of nanomaterials reduces the magnetization indicating modification of NPs with Schiff base complexes. - Highlights: • Designing an easy procedure for synthesis of magnetic heterogeneous catalysts. • Anchoring of variety of Lewis acids on magnetic support. • Synthesis of materials as environmentally friendly systems for catalytic reaction. • Novel high-yield and selective catalysts for oxidation reaction. • Recyclable catalysts with excellent reusability.

  4. Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications.

    Science.gov (United States)

    Fan, Zhanxi; Zhang, Hua

    2016-12-20

    Noble metal nanocrystals own high chemical stability, unique plasmonic and distinctive catalytic properties, making them outstanding in many applications. However, their practical applications are limited by their high cost and scarcity on the earth. One promising strategy to solve these problems is to boost their catalytic performance in order to reduce their usage amount. To realize this target, great research efforts have been devoted to the size-, composition-, shape- and/or architecture-controlled syntheses of noble metal nanocrystals during the past two decades. Impressively, recent experimental studies have revealed that the crystal structure of noble metal nanocrystals can also significantly affect their physicochemical properties, such as optical, magnetic, catalytic, mechanical, electrical and electronic properties. Therefore, besides the well-established size, composition, shape, and architecture control, the rise of crystal structure-controlled synthesis of noble metal nanocrystals will open up new opportunities to further improve their functional properties, and thus promote their potential applications in energy conversion, catalysis, biosensing, information storage, surface enhanced Raman scattering, waveguide, near-infrared photothermal therapy, controlled release, bioimaging, biomedicine, and so on. In this Account, we review the recent research progress on the crystal structure control of noble metal nanocrystals with a template synthetic approach and their crystal structure-dependent catalytic properties. We first describe the template synthetic methods, such as epitaxial growth and galvanic replacement reaction methods, in which a presynthesized noble metal nanocrystal with either new or common crystal structure is used as the template to direct the growth of unusual crystal structures of other noble metals. Significantly, the template synthetic strategy described here provides an efficient, simple and straightforward way to synthesize unusual

  5. Synthesis, characterization and catalytic evaluation of cubic ordered mesoporous iron-silicon oxides

    Energy Technology Data Exchange (ETDEWEB)

    Martins, T.S., E-mail: tsmartins@unifesp.br [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Rua Prof. Artur Riedel 275, 09972-270 Diadema, Sao Paulo (Brazil); Mahmoud, A.; Cides da Silva, L.C. [Instituto de Quimica, Universidade de Sao Paulo, 05508-900 Sao Paulo (Brazil); Cosentino, I.C. [IPEN, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Tabacniks, M.H. [Instituto de Fisica, Universidade de Sao Paulo 66318, 05315-970 Sao Paulo (Brazil); Matos, J.R. [Instituto de Quimica, Universidade de Sao Paulo, 05508-900 Sao Paulo (Brazil); Freire, R.S. [CEPEMA/USP, Centro de Capacitacao e Pesquisa em Meio Ambiente, Cubatao/SP (Brazil); Instituto de Quimica, Universidade de Sao Paulo, 05508-900 Sao Paulo (Brazil); Fantini, M.C.A. [Instituto de Fisica, Universidade de Sao Paulo 66318, 05315-970 Sao Paulo (Brazil)

    2010-11-01

    Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS), N{sub 2} sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe{sup 2+} present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples' average pore diameter was around 12.0 nm and BET specific surface area was of 680 m{sup 2} g{sup -1}. Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 deg. C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1, Fe{sub 2}O{sub 3} and Fe/FDU-1 prepared with higher pH of 2 and 3.5.

  6. Asymmetric synthesis of the dibenzocyclooctadiene lignans interiotherin a and gomisin R.

    Science.gov (United States)

    Coleman, Robert S; Gurrala, Srinivas Reddy

    2005-04-28

    [structure: see text] Asymmetric total syntheses of the dibenzocyclooctadiene lignans interiotherin A and angeloylgomisin R are reported. The syntheses were based on an atropdiastereoselective, copper-promoted biaryl coupling reaction, a diastereoselective hydroboration/Suzuki-Miyaura coupling reaction sequence, and an asymmetric boron-mediated tiglylation of an aryl aldehyde precursor.

  7. Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Prodinger, Sebastian; Derewinski, Miroslaw A.; Wang, Yilin; Washton, Nancy M.; Walter, Eric D.; Szanyi, János; Gao, Feng; Wang, Yong; Peden, Charles H. F.

    2017-02-01

    For the first time, sub-micron Cu/SSZ-13, obtained by modifying an existing synthesis procedure, was shown to be an effective and stable catalyst for selective catalytic reduction reactions, such as NO reduction. Characterization of the materials with X-ray diffraction, N2-physisorption and 27Al MAS NMR shows that hydrothermal aging, simulating SCR reaction conditions, is more destructive in respect to dealumination for smaller particles prior to Cu-exchange. However, the catalytic performance and hydrothermal stability for Cu/SSZ-13 is independent of the particle size. In particular, the stability of tetrahedral framework Al is improved in the sub-micron Cu/SSZ-13 catalysts of comparable Cu loading. This indicates that variations in the Al distribution for different SSZ-13 synthesis procedures have a more critical influence on stabilizing isolated Cu-ions during harsh hydrothermal aging than the particle size. This study is of high interest for applications in vehicular DeNOx technologies where high loadings of active species on wash coats can be achieved by using sub-micron Cu/SSZ-13. The authors would like to thank B. W. Arey and J. J. Ditto for performing electron microscope imaging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. S. P and M. A. D also acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under the Laboratory Directed Research & Development Program at PNNL. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  8. Study on Direct Synthesis of Diphenyl Carbonate with Heterogeneous Catalytic Reaction (V) Screening Catalysts and Optimizing Synthesis Conditions

    Institute of Scientific and Technical Information of China (English)

    张光旭; 吴元欣; 马沛生; 田崎峰; 吴广文; 李定或; 王存文

    2003-01-01

    Pd/LaxPbyMnOz, Pd/C, Pd/molecular sieve and Pd-heteropoly acid catalysts for direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction were compared and the results of DPC synthesis indicated that the catalyst Pd/LaxPbyMnOz had higher activity. The Pd/LaxPbyMnOz catalyst and the support was characterized by XRD, SEM and TEM, the main phase was La0.62Pb0.38MnO3 and the average diameter could be about 25.4 nm. The optimum conditions for synthesis of DPC with Pd/LaxPbyMnOz were determined by orthogonal experiments and the experimental results showed that reaction temperature was the first factor of effect on the selectivity and yield of DPC, and the concentration of O2 in gas phase also had significant effect on selectivity of DPC. The optimum reaction conditions were catMyst/phenol mass ratio 1 to 50, pressure 4.5 MPa,volume concentration of O2 25%, reaction temperature 60° and reaction time 4 h. The maximum yield and average selectivity could reach 13% and 97% respectively in the batch operation.

  9. ABSOLUTE ASYMMETRIC SYNTHESIS. I. ON THE MECHANISM OF THEPHOTOCHEMICAL ABSOLUTE ASYMMETRIC SYNTHESIS OF HELICENES WITH CIRCULARLYPOLARIZED LIGHT. . WAVELENGTH DEPENDENCE OF THE OPTICAL YIELD OFOCTAHELICENE.

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, William J.; Calvin, Melvin; Buchardt, Ole.

    1971-05-01

    The synthesis of nonracemic yields of hexa-, hepta-, octa-, and nonhelicene with circular light was observed, and the structural and wavelength dependence of the induced optical yields was examined. The results obtained, together with a detailed consideration of the mechanism of helicene synthesis from the parent diarylolefins, indicate that the induced optical activity is due to selective reaction of enantiomeric conformations of the parent cis diarylolefins by circular light.

  10. Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts

    Science.gov (United States)

    Pretzer, Lori A.

    Transition metal nanomaterials are used to catalyze many chemical reactions, including those key to environmental, medicinal, and petrochemical fields. Improving their catalytic properties and lifetime would have significant economic and environmental rewards. Potentially expedient options to make such advancements are to alter the shape, size, or composition of transition metal nanocatalysts. This work investigates the relationships between structure and catalytic properties of synthesized Au, Pd-on-Au, and Au-enzyme model transition metal nanocatalysts. Au and Pd-on-Au nanomaterials were studied due to their wide-spread application and structure-dependent electronic and geometric properties. The goal of this thesis is to contribute design procedures and synthesis methods that enable the preparation of more efficient transition metal nanocatalysts. The influence of the size and composition of Pd-on-Au nanoparticles (NPs) was systematically investigated and each was found to affect the catalyst's surface structure and catalytic properties. The catalytic hydrodechlorination of trichloroethene and reduction of 4-nitrophenol by Pd-on-Au nanoparticles were investigated as these reactions are useful for environmental and pharmaceutical synthesis applications, respectively. Structural characterization revealed that the dispersion and oxidation state of surface Pd atoms are controlled by the Au particle size and concentration of Pd. These structural changes are correlated with observed Pd-on-Au NP activities for both probe reactions, providing new insight into the structure-activity relationships of bimetallic nanocatalysts. Using the structure-dependent electronic properties of Au NPs, a new type of light-triggered biocatalyst was prepared and used to remotely control a model biochemical reaction. This biocatalyst consists of a model thermophilic glucokinase enzyme covalently attached to the surface of Au nanorods. The rod-like shape of the Au nanoparticles made the

  11. Catalytic Reaction Synthesis for the Partial Oxidation of Methane to Formaldehyde.

    Science.gov (United States)

    Cardenas-Galindo, Maria-Guadalupe

    Catalytic reaction synthesis for the partial oxidation of methane to formaldehyde has been studied by combining microkinetic analysis with molecular orbital calculations. This strategy is used to establish microscopic correlations between the structure and composition of the active site and the kinetic parameters of the reaction mechanism. Using atom clusters to represent the active site of transition metal oxide catalysts, the relationship was probed between coordination number, oxidation state, and ionization potential of the active cation and the reaction steps of methane activation and surface reactions leading to formaldehyde formation. The analysis suggests that in transition metal oxide catalysts, the d-band orbitals of the metal cation should be empty, since otherwise CO_2 formation from CO oxidation will be excessive. Furthermore, the transition metal oxide d-band must be located at sufficiently low energy that it may accept electrons during methane activation. Oxygen O- species, representing vacancies in the 2p cluster band, will favor methane activation. However, clusters with fully occupied 2p bands (O^ {2-}^ecies) will favor formaldehyde production. Such inferences illustrate how experimental and theoretical information already incorporated into an existing microkinetic model for the reaction over V _2O_5 and MoO _3 catalysts can be extended to describe the reaction over new materials in the search for more active and selective catalysts. Using parameters estimated from the molecular orbital calculations, microkinetic reaction simulations were also shown to be useful to identify reactor operating conditions that may favor the production of formaldehyde. The simulation can be used to identify key experiments necessary to test the performance of postulated catalytic materials. The economic evaluation of the process design sets important target goals for methane conversion and formaldehyde selectivity that a catalytic material must satisfy to create a new

  12. Efficient Synthesis of Optically Active Alcohols

    Institute of Scientific and Technical Information of China (English)

    J.S. Chen; Z.R. Dong; Y.Y. Li; B.Z. Li; Y. Xing; W.Y. Shen; G. Chen; X.Q. Zhang; J. X. Gao

    2005-01-01

    @@ 1Introduction Optically active secondary alcohols are versatile building blocks for synthesis of unnatural biological active compounds and functional materials. Therefore, study on efficient synthesis of optically active alcohols is becoming an important subject in synthetic organic chemistry. Catalytic asymmetric reduction of carbonyl compounds is a practical method to create chiral alcohols. For the past decades, a large number of catalytic methods have been developed to achieve this goal.

  13. Asymmetric synthesis and biological evaluation of natural or bioinspired cytotoxic C2-symmetrical lipids with two terminal chiral alkynylcarbinol pharmacophores.

    Science.gov (United States)

    Listunov, Dymytrii; Fabing, Isabelle; Saffon-Merceron, Nathalie; Gaspard, Hafida; Volovenko, Yulian; Maraval, Valérie; Chauvin, Remi; Génisson, Yves

    2015-06-05

    Bidirectional syntheses of C2-symmetrical lipids embedding two terminal alkynylcarbinol pharmacophores are reported. Naturally occurring chiral alkenylalkynylcarbinol units were generated using Pu's procedure for enantioselective addition of terminal alkynes to aldehydes, allowing the first asymmetric synthesis of (3R,4E,16E,18R)-icosa-4,16-diene-1,19-diyne-3,18-diol, isolated from Callyspongia pseudoreticulata. Two synthetic analogues embedding the recently uncovered (S)-dialkynylcarbinol pharmacophore were secured using Carreira's procedure adapted to ynal substrates. The dramatic effect of the carbinol configuration on cytotoxicity was confirmed with submicromolar IC50 values against HCT116 cells.

  14. β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene

    NARCIS (Netherlands)

    Cárdenas-Lizana, F.; Gómez-Quero, S.; Perret, N.; Kiwi-Minsker, L.; Keane, M.A.

    2011-01-01

    A temperature programmed treatment of MoO3 in flowing N2 + H2 has been employed to prepare β-phase molybdenum nitride (β-Mo2N) which has been used to promote, for the first time, the catalytic hydrogenation of p-chloronitrobenzene. The reduction/nitridation synthesis steps have been monitored in sit

  15. Synthesis and application of chiral N,N′-dialkylated cyclohexanediamine for asymmetric hydrogenation of aryl ketones

    Institute of Scientific and Technical Information of China (English)

    Meng Lin Ma; Chuan Hong Ren; Ya Jing Lv; Hua Chen; Xian Jun Li

    2011-01-01

    Chiral N,N′-dialkylated cyclohexanediamine derived ligands have been synthesized and used in the asymmetric hydrogenation of aryl ketones. Optically active alcohols with up to 90% enantiomeric excess were obtained in high yields.

  16. Vinylimidazole-Based Asymmetric Ion Pair Comonomers: Synthesis, Polymerization Studies and Formation of Ionically Crosslinked PMMA

    NARCIS (Netherlands)

    Jana, S.; Vasantha, V.A.; Stubbs, L.P.; Parthiban, A.; Vancso, G.J.

    2013-01-01

    Vinylimidazole-based asymmetric ion pair comonomers (IPCs) which are free from nonpolymerizable counter ions have been synthesized, characterized and polymerized by free radical polymerization (FRP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer (R

  17. Asymmetric synthesis of pedamide using I2-induced heterocyclization to construct the skeleton

    Institute of Scientific and Technical Information of China (English)

    De Gang Liu; Ji Jun Xue; Zhi Xiang Xie; Li Ping Wei; Hua Bing Zhang; Ying Li

    2009-01-01

    An alternative approach to synthesize pedamide, a key building block of pederin was described. Iodine-induced asymmetric heterocyclization was used as the key step to construct the skeleton, a tetrahydropyran ring with three chiral centers. Brown's asymmetric allylation and Lewis acid-mediated allylation were investigated to introduce chains and chiral alcohols. Sharpless dihydroxylation decorated the side chain. And high optically pure target was obtained by removing the epimers formed in these reactions on column chromatography.

  18. Synthesis and Application of Novel Chiral Poly-nuclear-Mn(Ⅲ) Catalysts on Asymmetric Epoxidation of Alkenes

    Institute of Scientific and Technical Information of China (English)

    LIU Xin-Wen; Tang Ning

    2004-01-01

    The interest of the coordination chemistry of manganese has been driver by the important roles of metalloenzymes and highly valuable catalysts in olefin expoxidation.1 Jacobsen Salen-Mn complexes with a simple structure have been commercially utilized to catalyze asymmetric epoxidation of unfunctionalized cis-alkenes2, but the catalytic enantioselectivity for trans-alkenes, unfortunately, are lower and this kinds of complexes are unstable and difficult to be recovered for reuse.3 In order to improve the catalytic activity and recyclability, many new catalysts including the supported catalysts,heterogeneous catalysts and else modified catalysts have been studied, however their comprehensive effects are unsatisfying.4Recently, some studies in interrelated realm showed that the catalytic performance of bi- or poly-nuclear complexes was superior to that of monomer.5 Meanwhile, our previous studies also showed that properly increasing the molecular weight of catalysts as well as the extent of conjugation of active center would not only result in high activity or reactivity but also its stability and recyclablity, aiding product isolation and catalyst recovery.6For these reasons we designed and synthesized the chiral poly-Mn(Ⅲ) complexes in which active sites were conjugated in certain distance side by side though central nucleus of 4, 6-dihydroxy- isophthalaldehyde (see the scheme). These novel Mn(Ⅲ) complexes have been investigated for the first time as catalysts (lmol%)for the asymmetric epoxidation of alkenes by using pure urea-H2O2 as oxidant and NH4OAc as additive in CH2Cl2/MeOH, showing high activity and good enantioselectivity. All reactions were finished in 1.5h. Rather surprisingly, a marginal increase in ee was observed when the concentration of the substrate was increased from 0.01 to 0.5M. The poly-nuclear complex formation enhanced the catalyst's reactivity and stability. It, unlike mononuclear, could be easily recovered and reused several cycles with a

  19. Synthesis of bamboo-like carbon nanotubes by ethanol catalytic combustion technique

    Institute of Scientific and Technical Information of China (English)

    CHENG Jin; ZOU Xiao-ping; LI Fei; ZHANG Hong-dan; REN Peng-fei

    2006-01-01

    Bamboo-like carbon nanotubes were synthesized by ethanol catalytic combustion (ECC) technique with combustion method. Copper plate was employed as substrate,ethanol as carbon source,and iron chloride as catalyst precursor. The as-grown black powder was characterized by means of scanning electron microscopy,transmission electron microscopy and Raman spectroscopy. The results show that the thinner bamboo-like carbon nanotubes have a relatively good structure that the compartment layers are more regular,while the thicker carbon nanotubes have a relatively irregular bamboo-like structure:the proposed method is simple to synthesize bamboo-like carbon nanotubes and has some advantages,such as flexible synthesis conditions,simple setup,and environment-friendly.

  20. Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract

    Science.gov (United States)

    Lim, Soo Hyeon; Ahn, Eun-Young; Park, Youmie

    2016-10-01

    Gold nanoparticles were synthesized using a water extract of Artemisia capillaris (AC-AuNPs) under different extract concentrations, and their catalytic activity was evaluated in a 4-nitrophenol reduction reaction in the presence of sodium borohydride. The AC-AuNPs showed violet or wine colors with characteristic surface plasmon resonance bands at 534 543 nm that were dependent on the extract concentration. Spherical nanoparticles with an average size of 16.88 ± 5.47 29.93 ± 9.80 nm were observed by transmission electron microscopy. A blue shift in the maximum surface plasmon resonance was observed with increasing extract concentration. The face-centered cubic structure of AC-AuNPs was confirmed by high-resolution X-ray diffraction analysis. Based on phytochemical screening and Fourier transform infrared spectra, flavonoids, phenolic compounds, and amino acids present in the extract contributed to the reduction of Au ions to AC-AuNPs. The average size of the AC-AuNPs decreased as the extract concentration during the synthesis was increased. Higher 4-nitrophenol reduction reaction rate constants were observed for smaller sizes. The extract in the AC-AuNPs was removed by centrifugation to investigate the effect of the extract in the reduction reaction. Interestingly, the removal of extracts greatly enhanced their catalytic activity by up to 50.4 %. The proposed experimental method, which uses simple centrifugation, can be applied to other metallic nanoparticles that are green synthesized with plant extracts to enhance their catalytic activity.

  1. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  2. Synthesis Strategies to Design Structures for Catalytic Applications%硅基催化结构合成的策略

    Institute of Scientific and Technical Information of China (English)

    Harold H. KUNG; Mayfair C. KUNG

    2008-01-01

    Two approaches to synthesize silicon-based catalytic structures that aim at capturing the properties and functionalities of natural enzymes are described in this brief review: unit-by-unit synthesis of macromolecular units and templating/imprinting synthesis of nanocages. The unit-by-unit approach mimics the peptide synthesis method, offers atomic control of the structure, but is inefficient in synthesizing large structures such as nanocages. The templating/imprinting method is more suitable for nanocages at the sacrifice of atomic control, and the nanocages obtained are shown to possess properties exhibited by enzyme cavities.

  3. Iron oxide nanoparticles synthesis through a benign approach and its catalytic application

    Directory of Open Access Journals (Sweden)

    Henam Sylvia Devi

    2016-09-01

    Full Text Available Synthesis of iron oxide nanoparticles was carried out through an environmental benign route using tannic acid as reducing and capping agent. The TEM image shows the details of the poly-dispersity in size of the iron oxide nanoparticle and average diameter of the particles range in between 30 and 50 nm. XRD result rule out that iron oxide nanoparticle is a mixed phase constituted by Fe+2 and Fe+3 ions. The average size of the particle determined from XRD data is 45.6 nm which is agreeable with the finding obtained from TEM images. This particle of iron oxide is used for the degradation of p-cresol and it successfully degraded p-cresol. Catalytic property of the iron oxide nanoparticle was also investigation using methylene blue as role model dye. Degradation of methylene blue dye was studied in presence of NaBH4 and the degradation reaction followed first order kinetics with rate constant value of 1.6 × 10−3 min−1. The rate constant of the reaction in absence of iron oxide nanoparticles is 4 × 10−4 min−1, this result confirmed the catalytic nature of as such prepared iron oxide nanoparticles.

  4. FACILE GREEN SYNTHESIS OF GOLD NANOPARTICLES WITH GREAT CATALYTIC ACTIVITY USING ULVA FASCIATA

    Directory of Open Access Journals (Sweden)

    V. Sugantha Kumari

    2014-03-01

    Full Text Available We report a facile, green, and high yielding approache for the synthesis and stabilization of monodisperse gold nanoparticles (AuNPs using green seaweed Ulva fasciata extract. Characterization of the obtained AuNPs was performed using UV-visible, Fourier transform infrared (FTIR, X-ray diffraction (XRD and transmission electron microscopy (TEM. UV-visible absorption spectroscopy was used to determine the yield of the gold nanoparticles. The UV-visible absorption spectrum showed a characteristic optical peak of AuNPs at 541 nm. The X-ray diffraction pattern suggested the formation and crystallinity of AuNPs. Spherical AuNPs synthesized with an average particle size of 10 ± 3 nm were confirmed by TEM. FTIR analysis supported the role of phytochemicals of Ulva fasciata extract for bioreduction and stabilization of AuNPs. Moreover, the synthesized AuNPs exhibit remarkable catalytic efficiency by using the reduction of 4-nitroaniline by potassium borohydride in aqueous solution using UV-visible absorption spectroscopy. Catalytic reduction followed pseudo-first-order kinetics with respect to 4-Nitrophenol.

  5. Synthesis, characterization and photo catalytic studies of the composites by tantalum oxide and zinc oxide nanorods

    Science.gov (United States)

    Chennakesavulu, K.; Reddy, M. Madhusudhana; Reddy, G. Ramanjaneya; Rabel, A. M.; Brijitta, J.; Vinita, V.; Sasipraba, T.; Sreeramulu, J.

    2015-07-01

    In-situ synthesis of ZnO:Ta2O5 composites in basic medium by using tantalum chloride and zinc chloride as precursors. The prepared composites were characterized by Fourier Transform Infrared spectroscopy (FTIR), confocal Raman spectroscopy, diffuse reflectance UV-Vis spectrophotometer (DRS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, N2-sorption isotherms, Thermo Gravimetric Analysis (TGA), High Resolution Transmission Electron Microscope (HRTEM), X-ray Photoelectron Spectroscopy (XPS), and Field Emission Scanning Electron Microscopy (FESEM/EDS). The composite materials were used as photocatalyst in the degradation Rhodamine-B (RhB) dye under visible light irradiation. The catalytic activity and removal percentage of the dye was determined by the spectrophotometric method. This indicates the percentage of degradation was more for the ZnO:Ta2O5 composites. The kinetic parameter obeys pseudo-first order reaction. It may be due to fixed amount the catalysts and concentration of dye solution. The catalytic activity of the recycled ZnO:Ta2O5 catalyst was compared with fresh catalyst.

  6. Synthesis, structural properties and catalytic activity of MgO-SnO2 nanocatalysts

    Science.gov (United States)

    Perveen, Hina; Farrukh, Muhammad Akhyar; Khaleeq-ur-Rahman, Muhammad; Munir, Badar; Tahir, Muhammad Ashraf

    2015-01-01

    Surfactant controlled synthesis of magnesium oxide-tin oxide (MgO-SnO2) nanocatalysts was carried out via the hydrothermal method. Concentration of sodium dodecyl sulfate (SDS) was varied while all other reaction conditions were kept constant same for this purpose. Furthermore, MgO-SnO2 nanocatalysts were also prepared by changing the precursor's concentration. These precursors are magnesium nitrate Mg(NO3)2 · 6H2O and tin chloride (SnCl4 · 5H2O). The influence of these reaction parameters on the sizes and morphology of the nanocatalysts were studied by using Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscopy-Energy dispersive X-ray (SEM-EDX), Powder X-ray diffraction (XRD), Transmission electron microscopy and Thermo gravimetric analysis (TGA). The catalytic efficiency of MgO-SnO2 was checked against 2,4-dinitrophenylhydrazine (DNPH), which is an explosive compound. The nanocatalysts were found as a good catalyst to degrade the DNPH. Catalytic activity of nanocatalysts was observed up to 19.13% for the degradation DNPH by using UV-spectrophotometer.

  7. Facile Synthesis, Characterization and Catalytic Function of Gelatin Stabilized Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zulfiqar A. Tagar

    2012-06-01

    Full Text Available In the present investigation, we report a new one phase, one pot method for synthesis of 3.5 ± 0.7 nm average sized gelatin capped gold nano particles (Gel-AuNPs using strong reductant NaBH4 in aqueous system at room temperature. Size controlled Gel-AuNPs were characterized by UV-Visible, STEM, XRD, DLS and FT-IR. Spherical Gel-AuNPs showed excellent catalytic activity for reduction of three differently charged dyes eosin B (EB, methylene blue (MB and rose bengal (RB in the presence of NaBH4. The study revealed that 100% reduction of EB, MB and RB dyes was carried out in just 150 sec. The developed catalyst was easy to recover and capable to be reused three times. The process of reduction rate and kinetics of dyes was monitored using UV-Visible spectrophotometer. A plot of lnC Vs time (sec showed that reaction follows the first order kinetics. Rate constant (K was determined for EB, MB and RB reduction at 10 μM, which was found as 2.735 x10-2 sec-1, 2.738 x 10-2 sec-1 and 2.55 x 10-2 sec-1, respectively. The study revealed that catalytic reduction of dyes by Gel-AuNPs in aqueous medium is environmental friendly in terms of recovery of catalyst, is exceptionally fast and hence extremely economical.

  8. Synthesis and Catalytic Applications of Ruthenium(0) Nanoparticles in Click Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avvaru Praveen; Baek, Minwook; Sridhar, Chirumarry; Kumar, Begari Prem; Lee, Yongill [Changwon National Univ., Changwon (Korea, Republic of)

    2014-04-15

    Here we report a facile synthesis of ruthenium (Ru) Nanoparticles (NPs) by chemical co-precipitation method. The calcination of ruthenium hydroxide samples at 500 .deg. C under hydrogen atmosphere lead to the formation of Ru{sup 0} NPs. The size and aggregation of Ru NPs depends on the pH of the medium, and type of surfactant and its concentration. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope image (TEM) analyses of particles indicated the formation of Ru{sup 0} NPs, and have 10 to 20 nm sizes. As-synthesized Ru{sup 0} NPs are characterized and investigated their catalytic ability in click chemistry (azide-alkyne cycloaddition reactions), showing good results in terms of reactivity. Interestingly, small structural differences in triazines influence the catalytic activity of Ru{sup 0} nanocatalysts. Click chemistry has recently emerged to become one of the most powerful tools in drug discovery, chemical biology, proteomics, medical sciences and nanotechnology/nanomedicine. In addition, preliminary tests of recycling showed good results with neither loss of activity or significant precipitation.

  9. Synthesis of Water Dispersible and Catalytically Active Gold-Decorated Cobalt Ferrite Nanoparticles.

    Science.gov (United States)

    Silvestri, Alessandro; Mondini, Sara; Marelli, Marcello; Pifferi, Valentina; Falciola, Luigi; Ponti, Alessandro; Ferretti, Anna Maria; Polito, Laura

    2016-07-19

    Hetero-nanoparticles represent an important family of composite nanomaterials that in the past years are attracting ever-growing interest. Here, we report a new strategy for the synthesis of water dispersible cobalt ferrite nanoparticles (CoxFe3-xO4 NPs) decorated with ultrasmall (2-3 nm) gold nanoparticles (Au NPs). The synthetic procedure is based on the use of 2,3-meso-dimercaptosuccinic acid (DMSA), which plays a double role. First, it transfers cobalt ferrite NPs from the organic phase to aqueous media. Second, the DMSA reductive power promotes the in situ nucleation of gold NPs in proximity of the magnetic NP surface. Following this procedure, we achieved a water dispersible nanosystem (CoxFe3-xO4-DMSA-Au NPs) which combines the cobalt ferrite magnetic properties with the catalytic features of ultrasmall Au NPs. We showed that CoxFe3-xO4-DMSA-Au NPs act as an efficient nanocatalyst to reduce 4-nitrophenol to 4-aminophenol and that they can be magnetically recovered and recycled. It is noteworthy that such nanosystem is more catalytically active than Au NPs with equal size. Finally, a complete structural and chemical characterization of the hetero-NPs is provided.

  10. Synthesis, characterization and catalytic activity of carbon-silica hybrid catalyst from rice straw

    Science.gov (United States)

    Janaun, J.; Safie, N. N.; Siambun, N. J.

    2016-07-01

    The hybrid-carbon catalyst has been studied because of its promising potential to have high porosity and surface area to be used in biodiesel production. Silica has been used as the support to produce hybrid carbon catalyst due to its mesoporous structure and high surface area properties. The chemical synthesis of silica-carbon hybrid is expensive and involves more complicated preparation steps. The presence of natural silica in rice plants especially rice husk has received much attention in research because of the potential as a source for solid acid catalyst synthesis. But study on rice straw, which is available abundantly as agricultural waste is limited. In this study, rice straw undergone pyrolysis and functionalized using fuming sulphuric acid to anchor -SO3H groups. The presence of silica and the physiochemical properties of the catalyst produced were studied before and after sulphonation. The catalytic activity of hybrid carbon silica acid catalyst, (H-CSAC) in esterification of oleic acid with methanol was also studied. The results showed the presence of silica-carbon which had amorphous structure and highly porous. The carbon surface consisted of higher silica composition, had lower S element detected as compared to the surface that had high carbon content but lower silica composition. This was likely due to the fact that Si element which was bonded to oxygen was highly stable and unlikely to break the bond and react with -SO3H ions. H-CSAC conversions were 23.04 %, 35.52 % and 34.2 7% at 333.15 K, 343.15 K and 353.15 K, respectively. From this research, rice straw can be used as carbon precursor to produce hybrid carbon-silica catalyst and has shown catalytic activity in biodiesel production. Rate equation obtained is also presented.

  11. Asymmetric reactions in continuous flow

    Directory of Open Access Journals (Sweden)

    Xiao Yin Mak

    2009-04-01

    Full Text Available An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed.

  12. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    Science.gov (United States)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  13. Asymmetric photoredox transition-metal catalysis activated by visible light

    Science.gov (United States)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  14. Nanostructured Samarium Doped Fluorapatites and Their Catalytic Activity towards Synthesis of 1,2,4-Triazoles

    Directory of Open Access Journals (Sweden)

    Kranthi Kumar Gangu

    2016-09-01

    Full Text Available An investigation was conducted into the influence of the amino acids as organic modifiers in the facile synthesis of metal incorporated fluorapatites (FAp and their properties. The nanostructured Sm doped fluorapatites (Sm-FAp were prepared by a co-precipitation method using four different amino acids, namely glutamic acid, aspartic acid, glycine and histidine. The materials were characterized by various techniques including X-ray diffraction (XRD, Fourier transform infra-red spectroscopy (FT-IR, field emission scanning electron microscopy (FE-SEM, energy-dispersive X-ray spectroscopy (EDX, high resolution transmission electron microscopy (HR-TEM, N2-adsorption/desorption isotherm, temperature programmed desorption (TPD and fluorescence spectrophotometry. Under similar conditions, Sm-FAp prepared using different amino acids exhibited distinctly different morphological structures, surface area and pore properties. Their activity as catalysts was assessed and Sm-FAp/Glycine displayed excellent efficiency in the synthesis of 1,2,4-triazole catalyzing the reaction between 2-nitrobenzaldehyde and thiosemicarbazide with exceptional selectivity and 98% yield in a short time interval (10 min. The study provides an insight into the role of organic modifiers as controllers of nucleation, growth and aggregation which significantly influence the nature and activity of the catalytic sites on Sm-FAp. Sm-FAp could also have potential as photoactive material.

  15. Synthesis and characterization of asymmetric polymer/inorganic nanocomposites with pH/temperature sensitivity

    Science.gov (United States)

    Zhang, Xinjie; Gao, Chunmei; Liu, Mingzhu; Huang, Yinjuan; Yu, Xiyong; Ding, Enyong

    2013-01-01

    An easy, comprehensive and inexpensive method is demonstrated to produce asymmetric polymer/inorganic nanocomposites in a large quantity. With the aid of Pickering emulsion, unmodified particles aggregate on the surface of emulsion droplets and are fixed in place when the wax solidifies. The exposed surfaces of immobilized SiO2 particles are modified chemically by 2-(dimethylamino) ethylmethacrylate (DMAEMA). With the removal of wax, the exposed side of particles can be further modified chemically by N-isopropylacrylamide (NIPAAm). Based on these procedures, dual responsive asymmetric nanocomposite particles are achieved with both pH and temperature sensitivities. Due to their dual-stimuli and asymmetric structure, these particles have potential applications in molecule targeting, drug delivery and as building blocks for the assembly of complex nanostructure.

  16. Sustainable Catalytic Process for Synthesis of Triethyl Citrate Plasticizer over Phosphonated USY Zeolite

    Directory of Open Access Journals (Sweden)

    Kakasaheb Y. Nandiwaleand

    2016-10-01

    Full Text Available Fruits wastage is harmful to health and environment concerning spreading diseases and soil pollution, respectively. To avoid this issue, use of citrus fruit waste for the production of citric acid (CA is one of viable mean to obtain value added chemicals. Moreover, synthesis of triethyl citrate (TEC, a non-toxic plasticizer by esterification of CA with ethanol over heterogeneous catalyst would be renewable and sustainable catalytic process. In this context, parent Ultrastable Y (USY and different percentage phosphonated USY (P-USY zeolites were used for the synthesis of TEC in a closed batch reactor, for the first time. The synthesized catalysts were characterized by N2-adsorption desorption isotherm, powder X-ray diffraction (XRD and NH3 temperature programmed desorption (TPD. Effect of reaction conditions, such as the molar ratio of ethanol to CA (5:1 - 20:1, the catalyst to CA ratio (0.05 - 0.25 and reaction temperature (363-403 K, were studied in view to maximizing CA conversion and TEC yield. Phosphonated USY catalysts were found to be superior in activity (CA conversion and TEC yield than parent USY, which is attributed to the increased in total acidity with phosphonation. Among the studied catalysts, the P2USY (2% phosphorous loaded on USY was found to be an optimum catalyst with 99% CA conversion and 82% TEC yield, which is higher than the reported values. This study opens new avenues of research demonstrating principles of green chemistry such as easy separable and reusable catalyst, non-toxic product, bio-renewable synthetic route, milder operating parameters and waste minimization. Copyright © 2016 BCREC GROUP. All rights reserved Received: 12nd October 2015; Revised: 22nd December 2015; Accepted: 29th January 2016 How to Cite: Nandiwale, K.Y., Bokade, V.V. (2016. Sustainable Catalytic Process for Synthesis of Triethyl Citrate Plasticizer over Phosphonated USY Zeolite. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 292

  17. Recent Advances in the Application of Chiral Phosphine Ligands in Pd-Catalysed Asymmetric Allylic Alkylation

    Directory of Open Access Journals (Sweden)

    Erika Martin

    2011-01-01

    Full Text Available One of the most powerful approaches for the formation of simple and complex chiral molecules is the metal-catalysed asymmetric allylic alkylation. This reaction has been broadly studied with a great variety of substrates and nucleophiles under different reaction conditions and it has promoted the synthesis of new chiral ligands to be evaluated as asymmetric inductors. Although the mechanism as well as the active species equilibria are known, the performance of the catalytic system depends on the fine tuning of factors such as type of substrate, nucleophile nature, reaction medium, catalytic precursor and type of ligand used. Particularly interesting are chiral phosphines which have proved to be effective asymmetric inductors in several such reactions. The present review covers the application of phosphine-donor ligands in Pd-catalysed asymmetric allylic alkylation in the last decade.

  18. Recent approaches towards the asymmetric synthesis of α,α-disubstituted α-amino acids

    DEFF Research Database (Denmark)

    Vogt, Henning; Brase, S.

    2007-01-01

    The class of alpha,alpha-disubstituted alpha-amino acids has gained considerable attention in the past decades and continues doing so. The ongoing interest in biological and chemical properties of the substance class has inspired the development of many new methodologies for their asymmetric...

  19. Synthesis of Versatile Building Blocks through Asymmetric Hydrogenation of Functionalized Itaconic Acid Mono-Esters

    NARCIS (Netherlands)

    Hekking, Koen F.W.; Lefort, Laurent; Vries, André H.M. de; Delft, Floris L. van; Schoemaker, Hans E.; Vries, Johannes G. de; Rutjes, Floris P.J.T.

    2008-01-01

    The rhodium-catalyzed asymmetric hydrogenation of several β-substituted itaconic acid mono-esters, using a library of monodentate phosphoramidite and phosphite ligands is described. Two β-alkyl-substituted substrates were readily hydrogenated by the rhodium complex Rh(COD)2BF4 in combination with (S

  20. Divergent Chemoenzymatic Synthesis of Asymmetrical-Core-Fucosylated and Core-Unmodified N-Glycans

    NARCIS (Netherlands)

    Li, Tiehai; Huang, Min; Liu, Lin; Wang, Shuo; Moremen, Kelley W; Boons, Geert-Jan

    2016-01-01

    A divergent chemoenzymaytic approach for the preparation of core-fucosylated and core-unmodified asymmetrical N-glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated hexasaccharid

  1. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials

    Science.gov (United States)

    Jin, Lei

    2011-12-01

    This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third

  2. Synthesis and Asymmetric Mono-cyclopalladation of 1,1’-Di(α-dimethylaminoethylferrocene

    Directory of Open Access Journals (Sweden)

    V. Bondareva-Don

    2005-07-01

    Full Text Available Two-step synthesis of 1,1’-di(α-dimethylaminoethylferrocene is described in details. Cyclopalladation of this diamine involving one or two amino groups is reported and the product of asymmetric mono-cyclopalladation is fully characterized.

  3. Synthesis of solution-phase phosphoramidite and phosphite ligand libraries and their in situ screening in the rhodium-catalyzed asymmetric addition of arylboronic acids

    NARCIS (Netherlands)

    Jagt, Richard B. C.; Toullec, Patrick Y.; Schudde, Ebe P.; de Vries, Johannes G.; Feringa, Ben L.; Minnaard, Adriaan J.

    2007-01-01

    Herein, we report the automated parallel synthesis of solution-phase libraries of phosphoramidite ligands for the development of enantioselective catalysts. The ligand libraries are screened in situ in the asymmetric rhodium-catalyzed addition of arylboronic acids to aldehydes and imines. It is show

  4. Synthesis and catalytic activity of Ln(III) complexes with an unsymmetrical Schiff base including multigroups

    Institute of Scientific and Technical Information of China (English)

    YAO; Kemin; (

    2003-01-01

    [1]Elder, R. C., Tridentate and unsymmetrical tetradentate Schiff base ligands from salicylaldehydes and dimeric nickel(II) complexes, Aust. J. Chem., 1978, 31:35-45.[2]Atkins, R., Brewer, G., Kokot, G. et al., Copper(II) and nickel(II) complexesof unsymmetrical tetradentate Schiff base ligand, Inorg. Chem., 1985, 24: 127-134.[3]Meng Qingjin, Wang Ruixue, Bu Xiuren et al., New Ni (II) complexes with mixedtrimeric double Schiff ligands, Chemical Journal of Chinese Universities (in Chinese), 1990, 10: 1126-1130.[4]Yao Kemin, Zhou Wen, Lu Gui et al., Synthesis, mechanism and NMR spectra of lanthanide complexes with a novel unsymmetrical Schiff base, Science in China, Series B, 1999, 42(2): 164-169.[5]Yao Kemin, Li Ning, Huang Qiaohong et al., Synthesis and catalytic activity of novel heteronuclear Ln(III)-Cu(II) complexes with noncyclic polyether-amino acid Schiff base, Science in China, Series B, 1999, 42 (1) : 54-81.[6]Li Ning, Yao Kemin, Lou Kaiyan, Synthesis of La(III), Y(III) complexes with polyglycol aldehyde-amino acid Schiff base and their high resolution solid state 13C NMR spectra, Science in China, Series B, 1999, 42(6): 599-604.[7]Lam Berf, J. B., Shurvell, H. F., Verbet, L. et al., Organic Structural Analysis, New York: Macmillan Publishing Co. Inc., 1975, 234-250.[8]Yao Kemin, Cai Lezhen, Shen Liangfang et al., Synthesis and characterization of lanthanide perchlorates with noncyclic polyethylene glycols and their 13C-NMRspectra, Polyhedron, 1992,11(7): 2245-2251.[9]Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., AM1: A new general purpose quantum mechanical molecular model, J. Amer. Chem. Soc., 1985, 107: 3902-3909.[10]Feifer, P., Avnjr, D., Chemistry in noninteger dimensions between two and three, I. Fractal theory of heterogeneous surfaces, J. Chem. Phys., 1983, 79(7): 3558-3565.[11]Yang Haifeng, Wang Hui, Duan Jinxia et al., Ab initio research of organic ligand Schiff base 4-[(2-hydroxyphenyl) imine]-2

  5. Catalytic synthesis of silicon carbide preceramic polymers: Polycarbosilanes. Research progress report, March 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.H.

    1991-11-01

    Polycarbosilanes are the most successful and widely studied class of polymer precursors for silicon carbide, but traditional methods for thier synthesis are inefficient and nonselective. This project is focused on developing transition metal catalysts for the synthesis of polycarbosilanes and other perceramic polymers. In recent work we have developed the first homogeneous transition metal catalysts for the dehydrogenative coupling of simple alkyl silanes to oligomeric and polymeric carbosilanes, H-(SiR{sub 2}CR{prime}{sub 2}){sub n}-SiR{sub 3}. Future work will help elucidate the mechanism of the catalytic process, explore the use of hydrogen acceptors as reaction accelerators, and develop new and more active catalysts.

  6. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    Science.gov (United States)

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng

    2014-03-01

    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H2O2 indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions.

  7. Facile synthesis of a melt-spinnable polyborazine from asymmetric alkylaminoborazine

    Institute of Scientific and Technical Information of China (English)

    Yong Peng Lei; Ying De Wang; Yong Cai Song; Yi He Li; Hao Wang; Cheng Deng; Zheng Fang Xie

    2010-01-01

    A novel asymmetric alkylaminoborazine monomer,2-propylamino-4,6-bis(methylamino)borazine,was synthesized for the first time,and directly polymerized to give a melt-spinnable polyborazine(PBN).This asymmetric alkylaminoborazine was synthesized by an aminolysis reaction of 2,4,6-trichloroborazine(TCB)with different amines under mild conditions.This route turns out to be much cheaper and simpler than the conventional routes.The chemical composition,structure,molecular weights and ceramic yield were investigated by EA,FTIR,NMR,GPC and TG analysis.The PBN exhibits suitable rheological property for melt-spinning,which suggests that it is a potential precursor for BN fibers.

  8. Divergent Chemoenzymatic Synthesis of Asymmetrical-Core-Fucosylated and Core-Unmodified N-Glycans.

    Science.gov (United States)

    Li, Tiehai; Huang, Min; Liu, Lin; Wang, Shuo; Moremen, Kelley W; Boons, Geert-Jan

    2016-12-23

    A divergent chemoenzymaytic approach for the preparation of core-fucosylated and core-unmodified asymmetrical N-glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated hexasaccharide that is common to all mammalian core fucosylated N-glycans. Antennae-selective enzymatic extension of the undecasaccharide using a panel of glycosyl transferases afforded core fucosylated asymmetrical triantennary N-glycan isomers, which are potential biomarkers for breast cancer. A unique aspect of our approach is that a fucosidase (FucA1) has been identified that selectively can cleave a core-fucoside without affecting the fucoside of a sialyl Lewis(X) epitope to give easy access to core-unmodified compounds.

  9. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure

    2014-01-13

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  10. Design,Synthesis of Chiral Ketone and Application in Asymmetric Epoxidation

    Institute of Scientific and Technical Information of China (English)

    She Xue-gong; Tian Hong-qi; Shi Yi-an

    2004-01-01

    A class of chiral ketone was synthesized for asymmetric epoxidation. High ee values have been obtained for a number of cis olefin and trans olefin. The epoxidation was stereospecific with no isomerizatiom observed in the epoxidation of acyclic system. Encourageingly high ee value has also been obtained for a number of terminal olefins. Mechanistic studies show that electronic interactions play an important role in the stereodifferentiation.

  11. External field-assisted solution synthesis and selectively catalytic properties of amorphous iron nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jianguo; Yan, Gongqin; Wang, Wei; Liu, Jun

    2012-03-07

    This work describes an easy and flexible approach for the synthesis of 2D nanostructures by external composite field-induced self-assembly. Amorphous iron nanoplatelets with a large aspect ratio were prepared by reducing a concentrated FeSO4 solution with NaBH4 without any templates or surfactants under a magnetic field and a shear field, and characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Based on the morphological dependence of the resultant iron nanostructures on the kinetic parameters such as reactant concentration, reaction temperature, external fields as well as reaction time, etc., a novel conceivable formation mechanism of the iron nanoplatelets was substantiated to be a self-assembly of concentrated iron nuclei induced by the synergistic effect of both a magnetic field and a shear field. Due to the amorphous nature and shape anisotropy, the as-synthesized iron nanoplatelets exhibit quite different magnetic properties with an enhanced coercivity of >220 Oe from isotropic iron nanoparticles. In the oxidation of cyclohexane with hydrogen peroxide as a 'green' oxidant, the as-obtained amorphous iron nanoplatelets show a conversion more than 84% and a complete selectivity for cyclohexanol and cyclohexanone due to the unique structure. Moreover, their catalytic performances are strongly influenced by their morphology, and the iron atoms located on the faces tend to catalyze the formation of cyclohexanol while those on the sides tend to catalyze the formation of cyclohexanone. The external composite field-induced solution synthesis reported here can be readily explored for fabricating other 2D magnetic nanoplatelets, and the resulting iron nanoplatelets are promising for a number of applications such as high efficient selective catalysis, energy, environment fields and so forth.

  12. Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities.

    Science.gov (United States)

    Deng, Ziwei; Zhu, Haibao; Peng, Bo; Chen, Hong; Sun, Yuanfang; Gang, Xiaodong; Jin, Pujun; Wang, Juanli

    2012-10-24

    This paper describes a simple, mild, and environmentally friendly approach to synthesize polystyrene/Ag (PS/Ag) nanocomposite spheres, which makes use of both reducing and stabilizing functions of polyvinylpyrrolidone (PVP) in aqueous media. In this approach, monodisperse polystyrene (PS) spheres, which are used as templates for the synthesis of core-shell nanocomposite spheres, are sulfonated first. Then, [Ag(NH(3))(2)](+) ions are adsorbed onto the surface of the PS template spheres via electrostatic attraction between -SO(3)H groups (grafted on the surface of the PS template spheres) and [Ag(NH(3))(2)](+) ions. [Ag(NH(3))(2)](+) ions are then reduced by and simultaneously protected by PVP. In this way, the PS/Ag nanocomposite spheres in aqueous media are obtained through a so-called one-pot method. Neither additional reducing agents nor toxic organic solvents are utilized during the synthesis process. Furthermore, the coverage degree and the particle size of Ag nanoparticles on PS/Ag nanocomposite spheres is easily tuned by changing the concentration of [Ag(NH(3))(2)](+) ions in aqueous media. Moreover, these PS/Ag nanocomposite spheres can be used as catalyst for the reduction of organic dyes and as antibacterial agents against Salmonella and Escherichia coli. In the present study, these PS/Ag nanocomposite spheres exhibit excellent catalytic properties (both in efficiency and recyclability) for the reduction of organic dyes, and the preliminary antibacterial assays indicate that these PS/Ag nanocomposite spheres also possess extraordinary antibacterial abilities against Salmonella and Escherichia coli.

  13. Optimization on electrochemical synthesis of HKUST-1 as candidate catalytic material for Green diesel production

    Science.gov (United States)

    Lestari, W. W.; Nugraha, R. E.; Winarni, I. D.; Adreane, M.; Rahmawati, F.

    2016-04-01

    In the effort to support the discovery of new renewable energy sources in Indonesia, biofuel is one of promising options. The conversion of vegetable oil into ready-biofuel, especially green diesel, needs several steps, one of which is a hydrogenation or hydro-deoxygenation reaction. In this case, the catalyst plays a very important role regarding to its activity and selectivity, and Metal-Organic Frameworks (MOFs) becoming a new generation of heterogeneous catalyst in this area. In this research, a preliminary study to optimize electrochemical synthesis of the catalytic material based on MOFs, namely HKUST-1 [Cu3(BTC)2], has been conducted. Some electrochemical reaction parameters were tested, for example by modifying the electrochemical synthetic conditions, i.e. by performing variation of voltages (12, 13, 14, and 15 Volt), temperatures (RT, 40, 60, and 80 °C) and solvents (ethanol, water, methanol and dimethyl-formamide (DMF)). Material characterization was carried out by XRD, SEM, FTIR, DTA/TG and SAA. The results showed that the optimum synthetic conditions of HKUST-1 are performed at room temperature in a solvent combination of water: ethanol (1: 1) and a voltage of 15 Volt for 2 hours. The XRD-analysis revealed that the resulted peaks are identical to the simulated powder pattern generated from single crystal data and comparable to the peaks of solvothermal method. However, the porosity of the resulting material through electrochemical method is still in the range of micro-pore according to IUPAC and 50% smaller than the porosity resulted from solvothermal synthesis. The corresponding compounds are thermally stable until 300 °C according to TG/DTA.

  14. Two-step synthesis of Ag@GQD hybrid with enhanced photothermal effect and catalytic performance

    Science.gov (United States)

    Wu, Cong; Yuan, Yali; He, Qian; Song, Rui

    2016-12-01

    A novel Ag@GQD (graphene quantum dot) hybrid fabricated by a facile two-step strategy is presented: the GQDs are prepared by citrate acid and AgNO3 is reduced. Catalytic studies showed that the Ag@GQD hybrid exhibited excellent photothermal effect and catalytic performance for 4-nitrophenol (4-NP) reduction, suggesting that the GQDs enhanced the catalytic activity via a synergistic effect and the Ag NPs boosted the catalytic efficiency through SPR-mediated photothermal local heating.

  15. Catalytic asymmetric alkylation of acylsilanes

    NARCIS (Netherlands)

    Rong, Jiawei; Oost, Rik; Desmarchelier, Alaric; Minnaard, Adriaan J; Harutyunyan, Syuzanna R

    2015-01-01

    The highly enantioselective addition of Grignard reagents to acylsilanes is catalyzed by copper diphosphine complexes. This transformation affords -silylated tertiary alcohols in up to 97% yield and 98:2 enantiomeric ratio. The competing Meerwein-Ponndorf-Verley reduction is suppressed by the use of

  16. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances

    Science.gov (United States)

    Li, Chao; Ren, Yanqun; Gou, Jinsheng; Liu, Baoyu; Xi, Hongxia

    2017-01-01

    A mesostructured ZSM-5 zeolite with multilamellar structure was successfully synthesized by employing a tetra-headgroup rigid bolaform quaternary ammonium surfactant. It was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherms, amines temperature programmed desorption (amines-TPD), and computer simulation. These results indicated that the dual-functional amphiphilic surfactants play a critical role for directing the multilamellar structure with high mesoporosity. The mass transport and catalytic performances of the zeolite were investigated by zero length column (ZLC) technique and aldol condensation reactions to evaluate the structure-property relationship. These results clearly indicated that the mass transport of selected molecules in hierarchical zeolite can be accelerated by introducing mesoporous structure with mesostructure with reduced diffusion length and an overall enhanced resistance against deactivation in reactions involving large molecules. Furthermore, the dual-functional surfactant approach of making hierarchical zeolite with MFI nanosheets framework would open up new opportunities for design and synthesis of hierarchical zeolites with controllable mesoporous structures.

  17. Synthesis, characterization and catalytic performance of nanosized iron-cobalt catalysts for light olefins production

    Institute of Scientific and Technical Information of China (English)

    Mostafa Feyzi; Asadollah Hassankhani

    2011-01-01

    Nanosized Fe-Co catalysts were prepared by co-precipitation method and studied for the conversion of synthesis gas to light olefins.In particular,the effects of a range of preparation variables such as Co/Fe molar ratios of the precipitation solution,pH value of precipitate,temperature of precipitation,promoters and loading of optimum promoter on the structure and catalytic performance are investigated.The optimal nano catalyst for light olefins (C2-C4) production was obtained overthe catalyst with Co/Fe molar ratio of 3/1 which promoted with 2 wt% K.The results show that the best operational conditions were GHSV =2200 h-1 (H2/CO =2/1) at 260 ℃ under atmospheric pressure.Characterization of catalysts were carried out using X-ray diffraction (XRD),thermal gravimetric analysis (TGA),differential scanning calorimetry (DSC),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and N2 physisorption measurements such as BrunauerEmmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods.

  18. Synthesis and characterization of Polyindole and its catalytic performance study as a heterogeneous catalyst

    Indian Academy of Sciences (India)

    Prakash Chhattise; Kalpana Handore; Amit Horne; Kakasaheb Mohite; Atul Chaskar; Sabrina Dallavalle; Vasant Chabukswar

    2016-03-01

    The catalytic performance study of polyindole as a heterogeneous catalyst is reported for the synthesis of 3,3'-arylmethylene-bis-1H-Indole derivatives using various substituted aldehydes and indole under reflux reaction condition with good to excellent yield. Polyindole was synthesized by chemical oxidative polymerization using citric acid as a dopant. The synthesized polymer was well characterized by various spectroscopic techniques like FT-IR, XRD, FESEM, etc. The XRD pattern confirms the partially crystalline nature of polyindole. The FESEM images of polyindole revealed the formation of irregularly shaped particulate nature with size in the range of 0.2 to 6 micron. In FT-IR spectrum, the major peak at 3400 cm-1 indicates N-H stretching and at 1564−1624 cm-1 indicates C-C stretching of benzenoid ring of indole. The presence of peak at 3400 cm-1 indicates that the polymerization does not occur at nitrogen. The present protocol has certain advantages like recyclability, low loading of the catalyst, low-cost and efficient use of polyindole as a heterogeneous catalyst.

  19. One pot synthesis of copper nanoparticles at room temperature and its catalytic activity

    Directory of Open Access Journals (Sweden)

    Nikhil V. Suramwar

    2016-11-01

    Full Text Available A facile reduction approach with sodium borohydride as a reducing agent and starch as a stabilizing agent leads to monodispersed Cu nanoparticles in aqueous medium at an ambient condition. The synthesized nanoparticles are highly pure with no traces of CuO found on surface. They are uniform in size in the range of 40–80 nm. The Cu nanoparticles have a FCC structure as characterized by powder X-ray diffraction (XRD. Transmission electron microscopy (TEM images show that they are arranged in a regular array which is separated by starch thin layer which controls the growth as well as stabilizes the Cu nanoparticles from air oxidation. The catalytic activity of prepared Cu nanomaterial was tested in Ullman reaction for the synthesis of biphenyl from iodobenzene. We have shown in this paper that the size as well as exposed surface area of the copper nanoparticles is responsible for the increase in yield of biphenyl up to 92%. This is higher compare to the 40% yield with the normal size copper powder under the same reaction condition.

  20. Asymmetric syntheses and transformations--tools for chirality multiplication in drug synthesis.

    Science.gov (United States)

    Gawroński, Jacek

    2006-01-01

    A review of currently used methods for the synthesis and resolution of enantiomers of drugs and their precursors is presented. For the synthesis part the methods of diastereoselective as well as enantioselective synthesis are discussed, with particular consideration given to enantioselective catalysis with either metal complexes or biocatalysts. Desymmetrization processes are also included as methods to access enantiomerically pure compounds. Racemate resolution still remains an important method to obtain pure enantiomers and methods involving kinetic resolution in enzymatic or chemical systems, and particularly in connection with racemization (dynamic kinetic resolution) are on the rise in fine chemical industry, when applicable.

  1. Flexible and Asymmetric Ligand in Constructing Coordinated Complexes: Synthesis, Crystal Structures and Fluorescent Characterization

    Directory of Open Access Journals (Sweden)

    Jianhua Lin

    2010-12-01

    Full Text Available Flexible and asymmetric ligand L [L = 1-((pyridin-3-ylmethyl-1H-benzotriazole], is used as a basic backbone to construct complicated metal-organic frameworks. Two new polymers, namely, [Ag2(L2(NO32]n (1 and [Ag(L(ClO4]n (2, were synthesized and characterized by X-ray structure analysis and fluorescent spectroscopy. The complex 1 gives an “S” type double helical conformation, whereas complex 2 exhibits a 1D zigzag configuration. Different anions affect the silver coordination geometry and crystal packing topology.

  2. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity.

    Science.gov (United States)

    Aswathy Aromal, S; Philip, Daizy

    2012-11-01

    The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. Most of the current methods involve known protocols which may be potentially harmful to either environment or human health. Recent research has been focused on green synthesis methods to produce new nanomaterials, ecofriendly and safer with sustainable commercial viability. The present work reports the green synthesis of gold nanoparticles using the aqueous extract of fenugreek (Trigonella foenum-graecum) as reducing and protecting agent. The pathway is based on the reduction of AuCl(4)(-) by the extract of fenugreek. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 25 nm could be obtained by controlling the synthesis parameters. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from clear lattice fringes in the HRTEM images, bright circular spots in the SAED pattern and peaks in the XRD pattern. FTIR spectrum indicates the presence of different functional groups present in the biomolecule capping the nanoparticles. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH(4). The catalytic activity is found to be size-dependent, the smaller nanoparticles showing faster activity.

  3. Nickel ferrite spinel as catalyst precursor in the dry reforming of methane:Synthesis, characterization and catalytic properties

    Institute of Scientific and Technical Information of China (English)

    Rafik Benrabaa; Hamza Boukhlouf; Axel L(o)fberg; Annick Rubbens; Rose-N(o)elle Vannier; Elisabeth Bordes-Richard; Akila Barama

    2012-01-01

    Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcination,or by hydrothermal synthesis without calcination step.The textural and structural properties were determined by a number of analysis methods,including X-ray diffraction (XRD),Raman spectroscopy and X-ray photoelectron spectroscopy (XPS),among which X-ray diffraction (XRD) was at room and variable temperatures.All synthesized oxides showed the presence of micro or nanoparticles of NiFe2O4 inverse spinel,but Fe2O3 (hematite) was also present when ammonia was used for coprecipitation.The reducibility by hydrogen was studied by temperature-programmed reduction (TPR) and in situ XRD,which showed the influence of the preparation method.The surface area (BET),particle size (Rietveld refinement),as well as surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied according to the synthesis method.The catalytic reactivity was investigated using isopropanol decomposition to determine the acid/base properties.The catalytic performance of methane reforming with CO2 was measured with and without the pre-treatment of catalysts under H2 in 650-800 ℃ range.The catalytic conversions of methane and CO2 were quite low but they increased when the catalysts were pre-reduced.A significant contribution of reverse water gas shift reaction accounted for the low values of H2/CO ratio.No coking was observed as shown by the reoxidation step performed after the catalytic reactions.The possible formation of nickel-iron alloy observed during the study of reducibility by hydrogen was invoked to account for the catalytic behavior.

  4. New Organocatalytic Asymmetric Synthesis of Highly Substituted Chiral 2-Oxospiro-[indole-3,4′- (1′,4′-dihydropyridine] Derivatives

    Directory of Open Access Journals (Sweden)

    Fernando Auria-Luna

    2015-08-01

    Full Text Available Herein, we report our preliminary results concerning the first promising asymmetric synthesis of highly functionalized 2-oxospiro-[indole-3,4′-(1′,4′-dihydropyridine] via the reaction of an enamine with isatylidene malononitrile derivatives in the presence of a chiral base organocatalyst. The moderate, but promising, enantioselectivity observed (30%–58% ee (enantiomeric excess opens the door to a new area of research for the asymmetric construction of these appealing spirooxindole skeletons, whose enantioselective syntheses are still very limited.

  5. Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers.

    Science.gov (United States)

    Ma, Xinpeng; Tang, Jianbin; Shen, Youqing; Fan, Maohong; Tang, Huadong; Radosz, Maciej

    2009-10-21

    Polyester dendrimers are attractive for in vivo delivery of bioactive molecules due to their biodegradability, but their synthesis generally requires multistep reactions with intensive purifications. A highly efficient approach to the synthesis of dendrimers by simply "sticking" generation by generation together is achieved by combining kinetic or mechanistic chemoselectivity with click reactions between the monomers. In each generation, the targeted molecules are the major reaction product as detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The only separation needed is to remove the little unreacted monomer by simple precipitation or washing. This simple clicklike process without complicated purification is particularly suitable for the synthesis of custom-made polyester dendrimers.

  6. 1H-Imidazol-4(5H)-ones and thiazol-4(5H)-ones as emerging pronucleophiles in asymmetric catalysis

    Science.gov (United States)

    Mielgo, Antonia

    2016-01-01

    Summary Asymmetric catalysis represents a very powerful tool for the synthesis of enantiopure compounds. In this context the main focus has been directed not only to the search for new efficient chiral catalysts, but also to the development of efficient pronucleophiles. This review highlights the utility and first examples of 1H-imidazol-4(5H)-ones and thiazol-4(5H)-ones as pronucleophiles in catalytic asymmetric reactions. PMID:27340482

  7. Asymmetric carbon-carbon bond forming reactions catalyzed by chiral titanium complexes. Efficient synthesis of optically active secondary alcohols; Kiraru na chitan shokubai ni yoru fuseitanso-tanso ketsugo keisei. Kogaku kassei dainikyu arukoru no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, M. [Yamaguchi Univ., Yamaguchi (Japan). Faculty of Science

    1996-02-01

    For asymmetric metal complex catalysts with high catalytic activity and ability for recognizing asymmetry, it is most important to choose center metals and design asymmetric organic ligands. When the authors began to study on the title reactions, combination of titanium alkoxides as center metals and chiral Schiff bases as organic ligands was unknown, although two moieties had been used independently for asymmetric reactions with excellent results. Asymmetric silylcyanation of aldehydes and enantio-selective addition of diketone to aldehydes are introduced, that have been achieved by authors using titanium complexes of the above combination. In the silylcyanation, reactivity is remarkably improved, compared with a single catalyst of titanium isopropoxide. Cyanohydrin of R from was obtained preferentially with salicyladehyde, particularly having 3-tert butyl group, in an asymmetric yield of 85 % ee. In the latter addition reaction, 5-hydroxy-3-ketoesters were obtained from benzaldehyde in an asymmetric yield as high as 91 % ee. 9 refs., 2 figs.

  8. Facile synthesis of palladium nanoparticle doped polyaniline nanowires in soft templates for catalytic applications

    Science.gov (United States)

    Kshirasagar, Krushna J.; Markad, Uddhav S.; Saha, Abhijit; Sharma, Kiran Kumar K.; Sharma, Geeta K.

    2017-02-01

    Palladium nanoparticles doped polyaniline (Pd-PANI) nanocomposite (NCs) is synthesized in surfactant based liquid crystalline mesophase by chemical oxidation followed by radiolysis. The confinement of the liquid crystalline mesophase facilitates polymerization of aniline monomers and their 1D growth into polyaniline (PANI) nanowires by using ammonium persulfate. The PANI nanowires have an average diameter of 30–40 nm. The in situ radiolytic reduction of palladium ions ensures uniform size distribution of the palladium (Pd) nanoparticles on the surface of the PANI nanowires. The synthesized Pd-PANI nanocomposites show wire like structures of PANI (diameter ~30–40 nm) on which Pd nanoparticles of the size 10 nm are decorated. The identical average diameter of the PANI nanowires before and post gamma irradiation suggest high stability of the PANI nanowires in liquid crystalline mesophase. Surface characterization of the NCs were carried out using BET and XPS. The catalytic activity of Pd-PANI NCs are investigated in the reduction of methylene blue (MB) and 4-nitro phenol (4-NP) by sodium borohydride (NaBH4). The kinetics of the Pd-PANI NCs catalysed reactions are analysed using the Langmuir–Hinshelwood model. The apparent rate constant (k app) for the MB and 4-NP reduction reactions is 29  ×  10‑3 s‑1 and 20  ×  10‑3 s‑1 respectively with an actual Pd catalyst loading of 2.665  ×  10‑4 ppm. Further, the recyclability of the Pd-PANI NCs catalyst in both the reduction reactions shows the stability of the catalyst up to four reaction cycles tested in this investigation and the multifunctional nature of the catalyst. The study provides a new approach for the directional synthesis of conducting polymer-metal nanocomposites and their possible application as a nanocatalyst in environmental remediation.

  9. Asymmetric Synthesis of the C(17)-C(28)Subunit of Didemnaketal B

    Institute of Scientific and Technical Information of China (English)

    LI,Xue-Qiang; HE,Qin; TU,Yong-Qiang; ZHANG,Fu-Min; ZHANG,Shu-yu

    2007-01-01

    The stereocontrolled synthesis of the C(17)-C(28) fragment 3 of didemnaketal B was accomplished in 21 steps from the natural (R)-(+)-pulegone and (S)-(-)-citronellal. The key steps involved diastereoselective construction of two chiral carbon centers through the intramolecular chiral induction and uncommon Julia olefination of ketone forming the E-trisubstituted C(22)-C(23) double bound.

  10. Stereoselective synthesis of the C1-C13 fragment of (+)-discodermolide using asymmetric allyltitanations.

    Science.gov (United States)

    BouzBouz, Samir; Cossy, Janine

    2003-08-21

    [reaction: see text] The synthesis of the C1-C13 fragment of (+)-discodermolide has been achieved. The configurations of the stereogenic centers have been controlled by enantioselective allyl- and crotyltitanations of aldehydes, and the Z configuration of the olefin at C8-C9 was controlled by a ring-closing metathesis.

  11. Asymmetric and efficient synthesis of homophenylalanine derivatives via Friedel-Crafts reaction with trifluoromethanesulfonic acid

    OpenAIRE

    Murashige, Ryo; Hayashi, Yuka; Hashimoto, Makoto; 橋本, 誠

    2008-01-01

    An efficient Friedel-Crafts reaction of TFA-Asp(Cl)-OMe and stoichiometric amounts of benzene was established by using neat trifluoromethanesulfonic acid (TfOH) as solvent and catalyst under a mild condition. This methodology has been applied to many aromatic compounds and enabled synthesis of several homophenylalanine derivatives.

  12. Asymmetric synthesis of trans-disubstituted cyclopropanes using phosphine oxides and phosphine boranes

    DEFF Research Database (Denmark)

    Clarke, Celia; Foussat, Stéphanie; Fox, David J;

    2009-01-01

    The stereocontrolled synthesis of trans-disubstituted cyclopropylketones has been achieved from beta-alkyl, gamma-benzoyl phosphine oxides via a three-step cascade reaction incorporating an acyl transfer, phosphinoyl transfer and cyclisation to form the cyclopropane. Using Evans' chiral oxazolidi...

  13. Synthesis and Crystal Structure of (R)-4-Hydroxymethyl-2-thioxo Thiazolidine and Its Asymmetric Catalysis

    Institute of Scientific and Technical Information of China (English)

    LI Jing; SHANG Yan-mei; XIAO Chuan; SONG Zhi-guang; LI Ye-zhi; HUANG Hua-min

    2009-01-01

    (R)-4-Hydroxymethyl-2-thioxo thiazolidine as a new chiral catalyst in the asymmetric addition of diethyl-zinc to benzaldehyde was synthesized from (R)-4-hydroxymethyl-2-thioxo thiazolidine carboxylic acid and its crystal structure was determined by X-ray diffraction method. The compound was crystallized in the orthorhombic system, space group P212121 with unit cell dimensions a=0.67253(12) nm; b=0.89164(17) rim; c=1.06146(19) nm, volume 0.6365(2) nm3; Z=4, calculated denisity 1.557 Mg/m3; absorption coefficient 0.733 mm-1; F(000)=312. The X-ray crystal structure analysis reveals that the compound has a thione group.

  14. Large Scale Synthesis of NiCo Layered Double Hydroxides for Superior Asymmetric Electrochemical Capacitor

    Science.gov (United States)

    Li, Ruchun; Hu, Zhaoxia; Shao, Xiaofeng; Cheng, Pengpeng; Li, Shoushou; Yu, Wendan; Lin, Worong; Yuan, Dingsheng

    2016-01-01

    We report a new environmentally-friendly synthetic strategy for large-scale preparation of 16 nm-ultrathin NiCo based layered double hydroxides (LDH). The Ni50Co50-LDH electrode exhibited excellent specific capacitance of 1537 F g-1 at 0.5 A g-1 and 1181 F g-1 even at current density as high as 10 A g-1, which 50% cobalt doped enhances the electrical conductivity and porous and ultrathin structure is helpful with electrolyte diffusion to improve the material utilization. An asymmetric ultracapacitor was assembled with the N-doped graphitic ordered mesoporous carbon as negative electrode and the NiCo LDH as positive electrode. The device achieves a high energy density of 33.7 Wh kg-1 (at power density of 551 W kg-1) with a 1.5 V operating voltage.

  15. Synthesis and Evaluation of a Series of Novel Asymmetrical Curcumin Analogs for the Treatment of Inflammation

    Directory of Open Access Journals (Sweden)

    Yali Zhang

    2014-06-01

    Full Text Available Curcumin has been reported to possess multiple bioactivities, such as antioxidant, anticancer, and anti-inflammatory properties, however the clinical application of curcumin has been significantly limited by its instability and poor metabolism. Modification of curcumin has led to discovery and development of lots of novel therapeutic candidates. In recent years acute and chronic inflammation has been the focus of numerous studies in various diseases. Here, we synthesized a series of asymmetrical curcumin analogs with high in vitro chemical stability, and their anti-inflammatory activity was evaluated in LPS-stimulated macrophages. According to the bio-screening results and QSAR analysis, these analogs exhibited potent activities against LPS-induced TNF-α and IL-6 release. Among the analogs of the potent anti-inflammatory activity, compounds 3b8 and 3b9 exhibited significant protection and possess enhanced anti-inflammatory activity thereby attenuated the LPS-induced septic death in mice.

  16. Synthesis, Characterization and Properties of Asymmetric Methide Anion Based Ionic Liquids Containing Nitrile Groups

    Institute of Scientific and Technical Information of China (English)

    ZOU Ting; LU Liang; LIU Xiu-Li; ZHANG Zhan; WANG Li-Bing; FU Xian-Lei; GAO Guo-Hua; KOU Yuan; HE Ming-Yuan

    2008-01-01

    A series of asymmetric methide anion based ionic liquids containing nitrile groups have been synthesized for the first time using the method of ion-exchange between sodium/potassium methide and various quaternary bro-mide/chloride salts of trimethylamine, triethylamine, tributylamine, N-methylpyrrolidine, and N-methylimidazole. All of the functionalised ionic liquids were characterized by IR, 1H, 13C NMR, MS and elemental analysis. The de-composition temperature of the ionic liquids measured via TGA ranged from 219 to 339 ℃. The functionalised ionic liquid, [Bmim][C(CN)2COCH3], was used as a ligand for Suzuki coupling reaction. The yields of the coupling reaction increased 10%-15% by the addition of the functionalised ionic liquid, [Bmim] [C(CN)2COCH3].

  17. Concise methods for the synthesis of chiral polyoxazolines and their application in asymmetric hydrosilylation

    Directory of Open Access Journals (Sweden)

    Wei Jie Li

    2010-03-01

    Full Text Available Seven polyoxazoline ligands were synthesized in high yield in a one-pot reaction by heating polycarboxylic acids or their esters and chiral β-amino alcohols under reflux with concomitant removal of water or the alcohol produced in the reaction. The method is much simpler and more efficient in comparison to those methods reported in the literature.The compounds were used as chiral ligands in the rhodium-catalyzed asymmetric hydrosilylation of aromatic ketones, and the effects of the linkers and the substituents present on the oxazoline rings on the yield and enantioselectivity investigated. Compound 2 was identified as the best ligand of this family for the hydrosilylation of aromatic ketones.

  18. Synthesis and characterization of polystyrene coated iron oxide nanoparticles and asymmetric assemblies by phase inversion

    KAUST Repository

    Xie, Yihui

    2014-09-02

    Films with a gradient concentration of magnetic iron oxide nanoparticles are reported, based on a phase inversion membrane process. Nanoparticles with ∼13 nm diameter were prepared by coprecipitation in aqueous solution and stabilized by oleic acid. They were further functionalized by ATRP leading to grafted polystyrene brush. The final nanoparticles of 33 nm diameter were characterized by TGA, FTIR spectroscopy, GPC, transmission electron microscopy, and dynanmic light scattering. Asymmetric porous nanoparticle assemblies were then prepared by solution casting and immersion in water. The nanocomposite film production with functionalized nanoparticles is fast and technically scalable. The morphologies of films were characterized by scanning electron microscopy and atomic force microscopy, demonstrating the presence of sponge-like structures and finger-like cavities when 50 and 13 wt % casting solutions were, respectively, used. The magnetic properties were evaluated using vibrating sample magnetometer.

  19. Large-scale synthesis of palladium concave nanocubes with high-index facets for sustainable enhanced catalytic performance.

    Science.gov (United States)

    Xie, Xiaobin; Gao, Guanhui; Pan, Zhengyin; Wang, Tingjun; Meng, Xiaoqing; Cai, Lintao

    2015-02-17

    The catalytic activity of palladium (Pd) nanostructures highly relies on their size and morphology, especially enclosed with high-index facets, which provide more active sites so as to enhance their catalytic performance comparing with their low-index facet counterparts. Herein, Pd concave nanocubes enclosed with {730} facets by a one-pot scalable liquid method, with various high-index facets are synthesized via tuning reduction kinetics. Due to their high-index facets, the Pd concave nanocubes exhibit much higher electrocatalytic activity and stability for methanol oxidation than the Pd nanocubes enclosed by {100} facets and commercial Pd/C. Furthermore, we scale up synthesis of Pd concave nanocubes by expanding the volume of all species to fifty times with high-yield production.

  20. Asymmetric synthesis of aromatic β-amino acids using ω-transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable β-keto acids.

    Science.gov (United States)

    Mathew, Sam; Jeong, Seong-Su; Chung, Taeowan; Lee, Sang-Hyeup; Yun, Hyungdon

    2016-01-01

    Synthesized aromatic β-amino acids have recently attracted considerable attention for their application as precursors in many pharmacologically relevant compounds. Previous studies on asymmetric synthesis of aromatic β-amino acids using ω-transaminases could not be done efficiently due to the instability of β-keto acids. In this study, a strategy to circumvent the instability problem of β-keto acids was utilized to generate β-amino acids efficiently via asymmetric synthesis. In this work, thermodynamically stable β-ketoesters were initially converted to β-keto acids using lipase, and the β-keto acids were subsequently aminated using ω-transaminase. By optimizing the lipase concentration, we successfully overcame the instability problem of β-keto acids and enhanced the production of β-amino acids. This strategy can be used as a general approach to efficiently generate β-amino acids from β-ketoesters.

  1. Highly enantioselective synthesis of non-natural aliphatic α-amino acids via asymmetric hydrogenation.

    Science.gov (United States)

    Ji, Jianjian; Chen, Caiyou; Cai, Jiayu; Wang, Xinrui; Zhang, Kai; Shi, Liyang; Lv, Hui; Zhang, Xumu

    2015-07-28

    By employing a rhodium-Duanphos complex as the catalyst, β-alkyl (Z)-N-acetyldehydroamino esters were smoothly hydrogenated in a highly efficient and enantioselective way. Excellent enantioselectivities together with excellent yields were achieved for a series of substrates. An efficient approach for the synthesis of the intermediate of the orally administered anti-diabetic drugs Alogliptin and Linagliptin in the DPP-4 inhibitor class was also developed.

  2. Controlling stereochemical outcomes of asymmetric processes by catalyst remote molecular functionalizations: chiral diamino-oligothiophenes (DATs) as ligands in asymmetric catalysis.

    Science.gov (United States)

    Albano, Vincenzo Giulio; Bandini, Marco; Barbarella, Giovanna; Melucci, Manuela; Monari, Magda; Piccinelli, Fabio; Tommasi, Simona; Umani-Ronchi, Achille

    2006-01-11

    The synthesis, characterization, and structure-guided application of a new class of highly versatile chiral C(2)-symmetric diamine-oligothiophene ligands in Pd-catalyzed asymmetric transformations are presented. Experimental investigations of the intimate role of pendant pi-conjugate oligothiophenes in determining the catalytic activity of the corresponding chiral Pd complexes are described. Their unusual behavior opens up new routes toward the logical design of finely tuned organometallic catalysts by remote structural functionalizations.

  3. Asymmetric Synthesis of Natural Macrocyclic Diterpene(+)-Methyl Cembra-1,3,7,11-tetraene-16-carboxynate%(+)-Methyl Cembra-1,3,7,11-tetraene-16-carboxynate的不对称合成研究

    Institute of Scientific and Technical Information of China (English)

    孙彬; 梅天胜; 刘佐胜; 李裕林; 李瀛; 彭立增

    2005-01-01

    The first asymmetric synthesis of (+)-methyl cembra-1,3,7,11-tetraene-16-carboxynate, a naturally occurring cembrane-type macrocyclic diterpene isolated from Sinularia mayi, was achieved via general approach by employing an intramolecular McMurry coupling and Sharpless asymmetric epoxidation as the key steps from readily available starting materials. The synthesis presented here verifies that the absolute configuration of compound 1 was assumed as 15R.

  4. Possibilities of synthesis of unknown isotopes of superheavy nuclei with charge numbers Z > 108 in asymmetric actinide-based complete fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Juhee [Institute for Basic Science, Rare Isotope Science Project, Daejeon (Korea, Republic of); Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic University, Mathematical Physics Department, Tomsk (Russian Federation)

    2016-10-15

    The possibilities of production of new isotopes of superheavy nuclei with charge numbers Z = 109-114 in various asymmetric hot fusion reactions are studied for the first time. The excitation functions of the formation of these isotopes in the xn evaporation channels are predicted and the optimal conditions for the synthesis are proposed. The products of the suggested reactions can fill a gap of unknown isotopes between the isotopes of the heaviest nuclei obtained in cold and hot complete fusion reactions. (orig.)

  5. Possibilities of synthesis of unknown isotopes of superheavy nuclei with charge numbers Z > 108 in asymmetric actinide-based complete fusion reactions

    Science.gov (United States)

    Hong, Juhee; Adamian, G. G.; Antonenko, N. V.

    2016-10-01

    The possibilities of production of new isotopes of superheavy nuclei with charge numbers Z = 109-114 in various asymmetric hot fusion reactions are studied for the first time. The excitation functions of the formation of these isotopes in the xn evaporation channels are predicted and the optimal conditions for the synthesis are proposed. The products of the suggested reactions can fill a gap of unknown isotopes between the isotopes of the heaviest nuclei obtained in cold and hot complete fusion reactions.

  6. Asymmetric Synthesis of Spirobenzazepinones with Atroposelectivity and Spiro-1,2-Diazepinones by NHC-Catalyzed [3+4] Annulation Reactions.

    Science.gov (United States)

    Wang, Lei; Li, Sun; Blümel, Marcus; Philipps, Arne R; Wang, Ai; Puttreddy, Rakesh; Rissanen, Kari; Enders, Dieter

    2016-09-05

    A strategy for the NHC-catalyzed asymmetric synthesis of spirobenzazepinones, spiro-1,2-diazepinones, and spiro-1,2-oxazepinones has been developed via [3+4]-cycloaddition reactions of isatin-derived enals (3C component) with in-situ-generated aza-o-quinone methides, azoalkenes, and nitrosoalkenes (4atom components). The [3+4] annulation strategy leads to the seven-membered target spiro heterocycles bearing an oxindole moiety in high yields and excellent enantioselectivities with a wide variety of substrates. Notably, the benzazepinone synthesis is atroposelective and an all-carbon spiro stereocenter is generated.

  7. An Environmentally Benign System for Synthesis of β-Hydroxylketones: L-Histidine Asymmetrically Catalyzed Direct Aldol Reactions in Aqueous Micelle and Water-like Media

    Institute of Scientific and Technical Information of China (English)

    PENG Yi-Yuan; PENG Shu-Jun; DING Qiu-Ping; WANG Qi; CHENG Jin-Pei

    2007-01-01

    The first histidine catalyzed direct aldol reactions of ketones with nitrobenzaldehydes in water and in poly(ethylene glycol) (PEG) were reported. It reveals that histidine is a good aldol catalyst for synthesis of β-hydroxylketones in water and in PEG, giving good to excellent yields of the respective products. Better enantioand regioselectivity were achieved using low molecular weight PEG as the media. The results show that histidine and PEG-200 or -300 may constitute a promising environmentally benign system for asymmetric synthesis of β-hydroxylketones.

  8. Synthesis and thermodynamic properties of a novel pyridinium-based asymmetrical gemini ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xuzhao; Wang, Jun; Zou, Wenyuan; Wu, Jinchao [Zhengzhou University of Light Industry, Zhengzhou (China)

    2015-12-15

    A novel asymmetrical gemini ionic liquid (GIL), [1-(1-pyridinium-yl-hexyl)-6-methylpiperidinium] dihexafluorophosphate ([PyC{sub 6}MPi][PF{sub 6}]{sub 2}) combined with pyridine, 1-methylpiperidine by 1,6-dibromohexane with PF{sub 6} as anion, was synthesized and characterized by 1H NMR and IR. The molar heat capacity of the GIL was measured via differential scanning calorimetry from 298.15 K to 448.15 K under atmospheric pressure. No phase transition or other thermal anomaly was observed in the solid-phase region (298.15 K to 358.15 K) and liquid-phase region (403.15 K to 448.15 K). The basic properties and thermodynamic functions of the GIL, such as melting point, molar enthalpy and entropy of fusion, heat capacity, enthalpy HT-H298.15 K, and entropy S{sub T}-S{sub 298.15} K, were also determined from the experimental data. Thermal decomposition kinetics of [PyC{sub 6}MPi][PF{sub 6}]{sub 2} were investigated by using non-isothermal thermogravimetric analysis in pure nitrogen atmosphere at various heating rates. Thermal decomposition data were, respectively, correlated with Friedman method, Ozawa-Flynn-Wall equation, and ASTM model. The activation energy (E) and pre-exponential factor (logA) values were obtained by using the above three methods.

  9. Synthesis, characterization and theoretical study of a new asymmetrical tripodal amine containing morpholine moiety

    Directory of Open Access Journals (Sweden)

    Majid Rezaeivala

    2016-11-01

    Full Text Available A new asymmetrical tripodal amine, [H3L2]Br3 containing morpholine moiety was prepared from reacting of one equivalent of N-(3-aminopropylmorpholine and two equivalents of tosylaziridine, followed by detosylation with HBr/CH3COOH. The products were characterized by various spectroscopic methods such as FAB-MS, elemental analysis, 1H and 13C NMR spectroscopy. The crystal structure of the hydrobromide salt of the latter amine, [H3L2]Br3, was also determined. For triprotonated form of the ligand L2 we can consider several microspecies and/or conformers. A theoretical study at B3LYP/6-31G∗∗ level of theory showed that the characterized microspecies is the most stable microspecies for the triprotonated form of the ligand. It was shown that the experimental NMR data for [H3L2]Br3 in solution have good correlation with the corresponding calculated data for the most stable microspecies of [H3L2]3+ in the gas phase.

  10. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres

    Science.gov (United States)

    Liu, Xin; Liu, Yanhua; Shi, Xueting; Yu, Zhengyang; Feng, Libang

    2016-11-01

    Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core-shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

  11. Aziridine- and Azetidine-Pd Catalytic Combinations. Synthesis and Evaluation of the Ligand Ring Size Impact on Suzuki-Miyaura Reaction Issues

    Directory of Open Access Journals (Sweden)

    Hamza Boufroura

    2017-01-01

    Full Text Available The synthesis of new vicinal diamines based on aziridine and azetidine cores as well as the comparison of their catalytic activities as ligand in the Suzuki-Miyaura coupling reaction are described in this communication. The synthesis of three- and four-membered ring heterocycles substituted by a methylamine pendant arm is detailed from the parent nitrile derivatives. Complexation to palladium under various conditions has been examined affording vicinal diamines or amine-imidate complexes. The efficiency of four new catalytic systems is compared in the preparation of variously substituted biaryls. Aziridine- and azetidine-based catalytic systems allowed Suzuki-Miyaura reactions from aryl halides including chlorides with catalytic loadings until 0.001% at temperatures ranging from 100 °C to r.t. The evolution of the Pd-metallacycle ring strain moving from azetidine to aziridine in combination with a methylamine or an imidate pendant arm impacted the Suzuki-Miyaura reaction issue.

  12. Crystallization and solid-state reaction as a route to asymmetric synthesis from achiral starting materials.

    Science.gov (United States)

    Green, B S; Lahav, M

    1975-10-29

    Many molecules which are achiral can crystallize in chiral (enantiomorphic) crystals and, under suitable conditions, crystals of only one chirality may be obtained. The formation of right- or left-handed crystals in excess is equally probable. Lattice-controlled (topochemical) photochemical or thermal solid-state reactions may then afford stable, optically active products. In the presence of the chiral products, achiral reactants may preferentially produce crystals of one chirality, leading to a feedback mechanism for the generation and amplification of optical activity. Amplification of optical activity can also be achieved by solid-state reactions. The optical synthesis of biologically relevant compounds by such routes may be envisaged.

  13. The absolute configuration of (+)-oxopropaline D by theoretical calculation of specific rotation and asymmetric synthesis.

    Science.gov (United States)

    Kuwada, Takeshi; Fukui, Miyako; Hata, Toshiyuki; Choshi, Tominari; Nobuhiro, Junko; Ono, Yukio; Hibino, Satoshi

    2003-01-01

    The specific optical rotations of (R)-oxopropaline D calculated by two ab initio MO methods were +52+/-31 degrees and +61+/-29 degrees, respectively, and (+)-oxopropaline D (3) was presumed to have an R-configuration. On the basis of this theoretical result, the reaction of 1-litio-beta-carboline with (R)-glyceraldehyde acetonide followed by oxidation with MnO(2) gave (R)-oxopropaline D acetonide (4a), which was consistent with the previously synthesized (+)-oxopropaline D acetonide (4) in all respects. From the results of theoretical calculations and the experimental synthesis, we determined that natural (+)-oxopropaline D (3) has an R-configuration.

  14. Asymmetric synthesis of quaternary aryl amino acid derivatives via a three-component aryne coupling reaction

    Directory of Open Access Journals (Sweden)

    Elizabeth P. Jones

    2011-11-01

    Full Text Available A method was developed for the synthesis of α-alkyl, α-aryl-bislactim ethers in good to excellent yields and high diastereoselectivities, consisting of a facile one-pot procedure in which the aryl group is introduced by means of a nucleophilic addition to benzyne and the alkyl group by alkylation of a resultant benzylic anion. Hydrolysis of the sterically less hindered adducts gave the corresponding quaternary amino acids with no racemization, whereas hydrolytic ring opening gave the corresponding valine dipeptides from bulkier bislactims.

  15. Concise and Straightforward Asymmetric Synthesis of a Cyclic Natural Hydroxy-Amino Acid

    Directory of Open Access Journals (Sweden)

    Mario J. Simirgiotis

    2014-11-01

    Full Text Available An enantioselective total synthesis of the natural amino acid (2S,4R,5R-4,5-di-hydroxy-pipecolic acid starting from D-glucoheptono-1, 4-lactone is presented. The best sequence employed as a key step the intramolecular nucleophilic displacement by an amino function of a 6-O-p-toluene-sulphonyl derivative of a methyl D-arabino-hexonate and involved only 12 steps with an overall yield of 19%. The structures of the compounds synthesized were elucidated on the basis of comprehensive spectroscopic (NMR and MS and computational analysis.

  16. Catalytic synthesis of silicon carbide preceramic polymers: Polycarbosilanes. Technical research progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.H.

    1992-10-01

    Polycarbosilanes are the most successful and widely studied class of polymer precursors for silicon carbide, but traditional methods for their synthesis are inefficient and nonselective. This project is focused on developing transition metal catalysts for the synthesis of polycarbosilanes and other preceramic polymers. In recent work we have developed the first homogeneous transition metal catalysts for the dehydrogenative coupling of simple alkyl silanes to oligomeric and polymeric carbosilanes, H-(SiR{sub 2}CR{prime}{sub 2})n-SiR{sub 3}. The coupling of alkylgermanes, however, yields the corresponding oligomeric poly(germanes) (Ge-Ge). Future work will help elucidate the mechanisms of these catalytic process, explore the use of hydrogen acceptors as reaction accelerators, and develop new and more active catalysts.

  17. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli reaction

    Indian Academy of Sciences (India)

    Sankaranarayanan Nagarajan; Tanveer M Shaikh; Elango Kandasamy

    2015-09-01

    Synthesis of three Brønsted acid-based ionic liquids, namely, 1-ethyl-1,2,4-triazolium triflate (1a), 1-propyl-1,2,4-triazolium triflate (1b) and 1-butyl-1,2,4-triazolium triflate (1c), is described. These ionic liquids have been employed as catalysts for convenient and high-yielding one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 3,4-dihydropyrimidin-2(1H)-thiones, which are Biginelli reaction products. Advantages of the methodology are operational convenience, short reaction times, avoidance of chromatographic purification and non-production of toxic waste. Further, the catalysts are easily recovered and reused without any noticeable diminution in their catalytic activity.

  18. Optimizing the Synthesis of Ethyl tert-Butyl Ether in Continuous Catalytic Distillation Column Using New Ion Exchange Resin Catalyst

    Institute of Scientific and Technical Information of China (English)

    Muhammad Umar; Yahia Abubakar Al-Hamed; Abdulraheem Al-Zahrani; Hisham Saeed Bamufleh

    2013-01-01

    Liquid phase synthesis of one of the important fuel oxygenate, ethyl tert-butyl ether (ETBE), from etha-nol and tert-butyl alcohol (TBA) has been studied in catalytic distillation column (CDC) using ion exchange resin catalyst CT-145H. A packed CDC of 1.2 m height and 50 mm diameter with indigenously developed reactive sec-tion packing was used to generate experimental data. Effect of different key variables on product purity in distillate, was investigated to find the optimum operating conditions for ETBE synthesis. The optimum conditions for 0.2 kg·s-1 of ethanol feed were found:reboiler duty of 375 W, molar feed ratio of 1︰1.3 of reactants, and reflux ratio of 7. Concentration profiles for each component along each column section at optimum conditions were also drawn. Neither output nor input multiplicity was observed at experimental conditions.

  19. Synthesis and characterization of transition metal carbides and their catalytic applications

    Science.gov (United States)

    Wan, Cheng

    Transition metal (both monometallic and bimetallic) carbides have been synthesized by an amine-metal oxide composite (AMOC) method. The composite reduces the diffusion distances among each element and allows the formation of carbides to take place as low as 610°C, which is significantly lower than traditional carbide synthesis methods (above 1500°C). Additionally, amines act not only as carbon sources and reducing agents, but also morphological templates which helps to make uniform transition metal carbide (TMC) nanocrystals with various shapes. Beyond morphology control, AMOC method can also help to synthesize multiple phases of monometallic carbides, which includes four phases of molybdenum carbides (alpha-MoC1-x, beta-Mo2C, eta-MoC, and gamma-MoC), two phases of tungsten carbides (W2C and WC), and three phases of chromium carbides (Cr3C2-x, Cr7C3, and Cr3C2). Molybdenum carbide has been proposed as a possible alternative to platinum for catalyzing the hydrogen evolution reaction (HER). Previous studies were limited to only one phase, which is beta-Mo2C with an Fe 2N structure. Here, four molybdenum carbide materials including gamma-MoC with a WC type structure which was stabilized for the first time as a phase pure nanomaterial. Moreover, a wide range of magnetic iron-doped molybdenum carbide (Mo2-xFexC) nanomaterials were also synthesized, which exhibits a better HER activity to non-doped beta-Mo2C. A group of (CrxFe1-x)7C3 (0.2< x<1) solid solutions have also been synthesized for the first time as nanomaterials via AMOC method, which demonstrate excellent catalytic activities for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Other carbides/nitrides made from AMOCs include WN1-x, Fe3C, Fe3-xN, Fe3Mo3C, N 2Mo3C, Ni3Mo3C, Ni6Mo 6C, and Mo0.5W0.5C.

  20. Self-assembly of Ag-TiO2 Nanoparticles:Synthesis, Characterization and Catalytic Application

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; LIU Xiaoheng; WANG Xinyun

    2012-01-01

    The formation of Ag clusters on titanium oxide (TiO2) nanoparticles was achieved by selfassembly process and calcination.The obtained nanoparticles were characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM),and ultraviolet visible spectroscopy (UV-Vis),and conventional techniques (XRD,TEM and UV-Vis) were used to identify Ag particles on the TiO2 surfaces.The results show that Ag-TiO2 particles can be applied to improve catalytic activity of the epoxidation of styrene oxides.Styrene oxide is the main product of catalytic reaction with H2O2 as the oxidant by using Ag-TiO2 nanoparticles as catalysts.High catalytic activitity of styrene oxide can be obtainable at 80 ℃.The reaction temperature,reaction time,the molar ratio of H2O2/styrene and solvent affect greatly the catalytic epoxidation of styrene.

  1. Direct Synthesis, Characterization and Catalytic Performance of Iron-Containing SBA-15 for Phenol Degradation

    Institute of Scientific and Technical Information of China (English)

    XIE Huan-ling; XU Wen-guo

    2008-01-01

    An iron-containing SBA-15(Fe-SBA-15) has been synthesized via one-pot hydrothermal method under weak acidic conditions. A series of characterizations show nanocomposite materials of iron particles supported over mesostructured materials. The catalytic activity of these iron-containing SBA-15 materials has been tested for the heterogeneous Fenton degradation of phenolic aqueous solutions. The catalytic performance has been monitored in terms of phenol conversion, whereas the catalytic stability was evaluated by catalyst recycle. The influence of concentration of hydrogen peroxide, catalyst loading, catalyst prepared with different Fe/Si molar ratios in the gel and pH values of the solution on phenol conversion has been studied. Achieving a good catalytic performance accompanied with a noteworthy stability, Fe-SBA-15 materials prepared by this method are shown as the successful catalyst for degradation of phenolic aqueous solutions by Fenton process.

  2. In situ synthesis of platinum nanocatalysts on a microstructured paperlike matrix for the catalytic purification of exhaust gases.

    Science.gov (United States)

    Koga, Hirotaka; Umemura, Yuuka; Tomoda, Akihiko; Suzuki, Ryo; Kitaoka, Takuya

    2010-05-25

    The successful in situ synthesis of platinum nanoparticles (PtNPs) on a microstructured paperlike matrix, comprising ceramic fibers as main framework and zinc oxide whiskers as selective support for the PtNPs, is reported. The as-prepared hybrid material (PtNPs@ZnO "paper") resembles ordinary paper products because it is flexible, lightweight, and easy to handle. In the catalytic reduction of nitrogen oxide (NO(x)) with propene for exhaust gas purification, the PtNPs@ZnO paper demonstrates a high catalytic performance at a low reaction temperature, with one-third the dosage of precious platinum compared to conventional platinum-loaded honeycomb catalysts. These results imply that the combination of easily synthesized PtNPs and a unique fiber-network microstructure can provide excellent performances, promoting the effective transport of heat and reactants to the active sites of the platinum nanocatalysts. Thus, PtNPs@ZnO materials with paperlike practical aspects are promising catalytic materials for efficient NO(x) gas purification.

  3. Synthesis and characterization of magnetically recyclable Ag nanoparticles immobilized on Fe3O4@C nanospheres with catalytic activity

    Science.gov (United States)

    Li, Wei-hong; Yue, Xiu-ping; Guo, Chang-sheng; Lv, Jia-pei; Liu, Si-si; Zhang, Yuan; Xu, Jian

    2015-04-01

    A novel approach for the synthesis of Ag-loaded Fe3O4@C nanospheres (Ag-Fe3O4@C) was successfully developed. The catalysts possessed a carbon-coated magnetic core and grew active silver nanoparticles on the outer shell using hydrazine monohydrate as the AgNO3 reductant in ethanol. The morphology, inner structure, and magnetic properties of the as-prepared composites were studied with transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier translation infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. Catalytic activity was investigated by degrading rhodamine B (RhB) in the designed experiment. The obtained products were monodispersed and bifunctional with high magnetization, as well as exhibited excellent catalytic activity toward organic dye with 98% of RhB conversion within 20 min in the presence of NaBH4. The product also exhibited convenient magnetic separability and maintained high catalytic activity after six cycle runs.

  4. Synthesis of mesoporous CeO2-MnOx binary oxides and their catalytic performances for CO oxidation

    Institute of Scientific and Technical Information of China (English)

    詹望成; 张欣烨; 郭杨龙; 王丽; 郭耘; 卢冠忠

    2014-01-01

    Mesoporous CeO2-MnOx binary oxides with different Mn/Ce molar ratios were prepared by hydrothermal synthesis and characterized by scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR). The characterization results indicated that the CeO2-MnOx catalysts exhibited flower-like microspheres with high specific surface areas, and partial Mn cations could be incorporated into CeO2 lattice to form solid solution. The CeO2-MnOx catalysts showed better catalytic activity for CO oxidation than that prepared by the coprecipitation method. Furthermore, the CeO2-MnOx catalyst with Mn/Ce molar ratio of 1 in the synthesis gel (Ce-Mn-1) exhibited the best catalytic activity, over which the conversion of CO could achieve 90%at 135 ºC. This was ascribed to presence of more Mn species with higher oxida-tion state on the surface and the better reducibility over the Ce-Mn-1 catalyst than other CeO2-MnOx catalysts.

  5. Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction.

    Science.gov (United States)

    Khan, Mujeeb; Khan, Merajuddin; Kuniyil, Mufsir; Adil, Syed Farooq; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Tremel, Wolfgang; Tahir, Muhammad Nawaz; Siddiqui, Mohammed Rafiq H

    2014-06-28

    Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report a facile and eco-friendly method for the synthesis of palladium (Pd) nanoparticles (NPs) using an aqueous solution of Pulicaria glutinosa, a plant widely found in a large region of Saudi Arabia, as a bioreductant. The as-prepared Pd NPs were characterized using ultraviolet-visible (UV-vis) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform-infrared spectroscopy (FT-IR). The hydroxyl groups of the plant extract (PE) molecules were found mainly responsible for the reduction and growth of Pd NPs. FT-IR analysis confirmed the dual role of the PE, both as a bioreductant as well as a capping ligand, which stabilizes the surface of Pd NPs. The crystalline nature of the Pd NPs was identified using XRD analysis which confirmed the formation of a face-centered cubic structure (JCPDS: 87-0641, space group: Fm3m (225)). Furthermore, the as-synthesized Pd NPs demonstrated excellent catalytic activity towards the Suzuki coupling reaction under aqueous and aerobic conditions. Kinetic studies of the catalytic reaction monitored using GC confirmed that the reaction completes in less than 5 minutes.

  6. Synthesis of multi-walled carbon nanotubes using CoMnMgO catalysts through catalytic chemical vapor deposition

    Science.gov (United States)

    Yang, Wen; Feng, Yan-Yan; Jiang, Cheng-Fa; Chu, Wei

    2014-12-01

    The CoMgO and CoMnMgO catalysts are prepared by a co-precipitation method and used as the catalysts for the synthesis of carbon nanotubes (CNTs) through the catalytic chemical vapor deposition (CCVD). The effects of Mn addition on the carbon yield and structure are investigated. The catalysts are characterized by temperature programmed reduction (TPR) and X-ray diffraction (XRD) techniques, and the synthesized carbon materials are characterized by transmission electron microscopy (TEM) and thermo gravimetric analysis (TG). TEM measurement indicates that the catalyst CoMgO enclosed completely in the produced graphite layer results in the deactivation of the catalyst. TG results suggest that the CoMnMgO catalyst has a higher selectivity for CNTs than CoMgO. Meanwhile, different diameters of CNTs are synthesized by CoMnMgO catalysts with various amounts of Co content, and the results show that the addition of Mn avoids forming the enclosed catalyst, prevents the formation of amorphous carbon, subsequently promotes the growth of CNTs, and the catalyst with decreased Co content is favorable for the synthesis of CNTs with a narrow diameter distribution. The CoMnMgO catalyst with 40% Co content has superior catalytic activity for the growth of carbon nanotubes.

  7. Research of Catalytic Oxidation of 2-mercaptoethanol by Asymmetric Phthalocyanine Cobalt%非对称酞菁钴催化氧化2-巯基乙醇的研究

    Institute of Scientific and Technical Information of China (English)

    梁雅秋; 潘玲玲; 单秋杰; 吴迪; 陈伟

    2015-01-01

    采用统计缩合法合成三种不对称酞菁钴———2-(对羧基苯氧基)-9,10,16,17,23,24-六烷氧基酞菁钴(Ⅱ)CoPc (n-C4 H9, n-C5 H11, n-C10 H21)( a, b, c)。研究了催化剂对2-巯基乙醇的催化氧化性能。探讨了催化剂种类、催化剂用量对2-巯基乙醇催化氧化反应的影响。实验结果表明:在相同的催化条件下,三种催化剂均表现出良好的催化性能,在60 min内,能将0.10 mol· L-1的2-巯基乙醇氧化77%。%Three novel asymmetrical phthalocyanines cobalt (Ⅱ) , 2-( p-carboxylphenoxy )-9 ,10 ,16 ,17 ,23 ,24-hexaalkoxyphthalocyanine cobalt(Ⅱ)[(RO)6(OphCOOH)PcCo(Ⅱ)](R=n-C4H9, n-C5H11, n-C10H21)(a,b,c), were synthesized by statistical condensation method.The catalytic performance of catalysts for 2-mercaptoethanol , effects of catalyst type , catalyst dosage on the catalytic oxidation of 2-mercaptoethanol were studied.The experimental results showed that three kinds of catalysts showed good catalytic performance in the same catalytic conditions , the 0.10 mol· L-1 2-mercaptoethanol of 77%was oxidized in the 60 min.

  8. Application of modified amino acid as a chiral building block in asymmetric synthesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Phenylglycine 1 as a representative of natural resourceful (-amino acid was modified by reduction and protection of functional group to afford the amino alcohol as a chiral building block 3. A new chiral compound, the chiral building block/spiro-cyclopropane derivative containing four stereogenic centers, compound 7, has been obtained in 52% yield with de≥98% via the tandem double Michael addition/internal nucleophilic substitution under mild condition of 5-l-menthyloxy-3-bromo-2-(5H)-furanone 4 with the nucleophilic reagent, the amino alcohol 3. The new chiral compound 7 is identified on the basis of its analytical data and spectroscopic data, such as UV, IR, 1H NMR, 13C NMR, MS and elementary analysis. The absolute configuration of the interesting spiro-cyclopropanes 7 was established by X-ray crystallography. This result can provide new route and method for the introduction of chiral building block and the important synthetic strategy in synthesis of some complex molecules containing spiro-cyclopropane skeleton with multiple chiral centers and the study of their biological activity.

  9. Synthesis and catalytic property of Cu-Mn-Ce/ γ -Al2O3 complex oxide

    Institute of Scientific and Technical Information of China (English)

    黄可龙; 王红霞; 刘素琴; 桂客

    2002-01-01

    A new type of catalytic material for purification of automobile exhaust,Cu-Mn-Ce-O/ γ -Al2O3,has been studied.The factors affecting its catalytic activity,such as calcination temperature and the period of calcinations and so on have been investigated.Its catalytic activity after SO2-poisoning was determined in a fixed-bed reactor by exposing the sample to the atmosphere of 160 mL/min SO2/air.The study reveals that the catalyst has shown high catalytic activities for the conversion of NH3 oxidation by NO after sulfate.The conversion of NO reduction over the sulfated catalyst is somewhat higher than that over the fresh catalyst except that the optimum temperature has increased about 100 ℃.Also at the optimum process for the experiment,the selective catalytic oxidation of CO by NO is over 76% and the conversion of NO reduction is over 80% by NH3.

  10. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers.

    Science.gov (United States)

    Vandavasi, Venu Gopal; Putnam, Daniel K; Zhang, Qiu; Petridis, Loukas; Heller, William T; Nixon, B Tracy; Haigler, Candace H; Kalluri, Udaya; Coates, Leighton; Langan, Paul; Smith, Jeremy C; Meiler, Jens; O'Neill, Hugh

    2016-01-01

    A cellulose synthesis complex with a "rosette" shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.

  11. Asymmetric Synthesis of Spirocyclic 2-Benzopyrans for Positron Emission Tomography of σ1 Receptors in the Brain

    Directory of Open Access Journals (Sweden)

    Katharina Holl

    2014-01-01

    Full Text Available Sharpless asymmetric dihydroxylation of styrene derivative 6 afforded chiral triols (R-7 and (S-7, which were cyclized with tosyl chloride in the presence of Bu2SnO to provide 2-benzopyrans (R-4 and (S-4 with high regioselectivity. The additional hydroxy moiety in the 4-position was exploited for the introduction of various substituents. Williamson ether synthesis and replacement of the Boc protective group with a benzyl moiety led to potent σ1 ligands with high σ1/σ2-selectivity. With exception of the ethoxy derivative 16, the (R-configured enantiomers represent eutomers with eudismic ratios of up to 29 for the ester (R-18. The methyl ether (R-15 represents the most potent σ1 ligand of this series of compounds, with a Ki value of 1.2 nM and an eudismic ratio of 7. Tosylate (R-21 was used as precursor for the radiosynthesis of [18F]-(R-20, which was available by nucleophilic substitution with K[18F]F K222 carbonate complex. The radiochemical yield of [18F]-(R-20 was 18%–20%, the radiochemical purity greater than 97% and the specific radioactivity 175–300 GBq/µmol. Although radiometabolites were detected in plasma, urine and liver samples, radiometabolites were not found in brain samples. After 30 min, the uptake of the radiotracer in the brain was 3.4% of injected dose per gram of tissue and could be reduced by coadministration of the σ1 antagonist haloperidol. [18F]-(R-20 was able to label those regions of the brain, which were reported to have high density of σ1 receptors.

  12. Asymmetric Schiff bases derived from diaminomaleonitrile and their metal complexes

    Science.gov (United States)

    Yang, Jianjie; Shi, Rufei; Zhou, Pei; Qiu, Qiming; Li, Hui

    2016-02-01

    Asymmetric Schiff bases, due to its asymmetric structure, can be used as asymmetric catalyst, antibacterial, and mimic molecules during simulate biological processes, etc. In recent years, research on synthesis and properties of asymmetric Schiff bases have become an increase interest of chemists. This review summarizes asymmetric Schiff bases derived from diaminomaleonitrile (DAMN) and DAMN-based asymmetric Schiff bases metal complexes. Applications of DAMN-based asymmetric Schiff bases are also discussed in this review.

  13. Layered zirconium phosphate-supported metalloporphyrin:Synthesis and catalytic application

    Institute of Scientific and Technical Information of China (English)

    Hai Yan Wang; Wei Dong Ji; Da Xiong Han

    2008-01-01

    This paper reports a new route for the preparation of layered alpha-zirconium phosphate (a-ZrP)-supponed metalloporphyrin MnTMPyp.MnTMPyP was intercalated into a-ZrP using a-ZrP.BA (i.e.pre-intercalated buitylamine was arranged by a monolayer mode in a-ZrP) as a starting material.The catalytic activity of the supported material for homovanillic acid (HVA) oxidation was investigated.The results showed a promising layered material-supported catalyst in catalytic system.

  14. Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential.

    Science.gov (United States)

    Narayanan, Kannan Badri; Park, Hyun Ho; Han, Sung Soo

    2015-12-01

    Sustainable and greener synthesis of intracellular gold nanoparticles using mushroom Flammulina velutipes is reported. Incubation of a mushroom in chloroaurate solution resulted in the synthesis and immobilization of stable gold nanoparticles inside the mushroom mycelia. Transmission electron microscopic (TEM) analysis revealed the presence of gold nanoparticles (⩽20nm) inside the mycelia, primarily on the inner surface of the cell membrane. Inductively coupled plasma-optical emission spectrometry (ICP-OES) revealed that the accumulated gold concentration ranged from 64.4 to 330.5mgkg(-1) dry weight (DW) in the mushroom mycelia. The reduction of Au(3+) ions to Au(0) and stabilization of gold nanoparticles occurred within 1h, and the formation of fcc crystalline gold nanoparticles was confirmed by X-ray diffraction (XRD) analysis. This facile intracellular synthesis of gold nanoparticles by a mushroom without using any toxic chemicals or technologically expensive processes is used as a heterogeneous catalyst in the reduction of organic pollutants methylene blue (MB) and 4-nitrophenol (4NP). The reduction reaction follows pseudo-first order kinetics with a reaction rate constant of 0.0529min(-1) and 0.1236min(-1) for MB and 4NP, respectively. This biological process of biomatrixing of metal nanoparticles for heterogeneous catalytic reactions is simple, nontoxic, environmentally benign, and economically viable compared to the chemical synthetic routes.

  15. Synthesis, Crystal Structure and Catalytic Behavior of 1-Ethyl-3-benyl-imidazolyl Tetranuclear N-Heterocyclic Carbene Silver Bromide

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-Guo; SU Zhi-Xian; BIAN Qing-Quan; LIU Si-Man; LIU Ting

    2012-01-01

    The title complex [Ag(carbene)2]2[Ag2Br4] has been synthesized by the reaction of Ag2O with 1-ethyl-3-benyl-imidazolium bromide in DMSO at room temperature, and characterized by elemental analysis, 1H NMR and single-crystal X-ray diffraction analysis. It crystallizes in triclinic, space group P with a = 10.1597(10), b =11.0646(11), c = 13.0245(14) , α = 102.230(2), β = 90.606, γ = 113.9250(10)o, V = 1300.3(2) 3, Mr = 748.06, Z = 2, Dc = 1.911 g/cm3, μ(MoKα) = 4.60 mm-1 and F(000) = 728. The structure was refined to R = 0.0316 and wR = 0.0835 for 3744 observed reflections with I 〉 2σ(I). The title compound crystallizes as a centrosymmetric tetranuclear compound. One half of the molecule comprises the asymmetric unit of the structure. The Ag(1) atom is nearly linear or T-shaped when the Ag(1)-Ag(2) interaction is taken into consideration, which is bi-coordinated by two carbene carbon atoms. The Ag(2) atom adopts tetrahedral geometry. The catalytic behavior of the title complex has been investigated, and the results indicate it has a highly catalytic activation for L-lactide polymerization.

  16. SYNTHESIS AND CATALYTIC ACTIVITY OF PLATINUM COMPLEX OF ACRYLATE TERPOLYMER WITH Se,N BIDENTATE LIGAND

    Institute of Scientific and Technical Information of China (English)

    MengLingzhi; QiLiangwei; 等

    1998-01-01

    Acrylate terpolymer-bound Se,N bidentate ligand was synthesized from the side chain chlorine of copolymer and β-dimethylamino-β′-hydroxyl-diethyl selenoether.The polymer-supported platinum complex exhibited high catalytic activity in the hydrosilylation of olefins with triethoxysilane.

  17. Direct asymmetric aldol reactions catalyzed by lipase from porcine pancreas.

    Science.gov (United States)

    Zheng, Jing; Xie, Bang-Hua; Chen, Yan-Li; Cao, Jian-Fei; Yang, Yang; Guan, Zhi; He, Yan-Hong

    2014-01-01

    Porcine pancreas lipase type II (PPL II) exhibited unnatural catalytic activity in direct asymmetric aldol reactions between cyclic ketones and aromatic or heteroaromatic aldehydes in acetonitrile in the presence of phosphate buffer. A wide range of substrates was accepted by the enzyme to afford the corresponding aldol products in low to high yields (10-98%), with moderate to excellent enantioselectivities (53-94% ee, for anti-isomers) and low to moderate diastereoselectivities (48/52-87/13 dr, anti/syn). This methodology expands the application of PPL II, and it might be developed into a potentially valuable method for sustainable organic synthesis.

  18. Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor

    KAUST Repository

    Chen, Tao

    2016-05-31

    In this study, we report the direct synthesis of amides and ureas via the catalytic dehydrogenation of volatile alcohols and amines using the Milstein catalyst in a Pd-Ag/ceramic membrane reactor. A series of amides and ureas, which could not be synthesized in an open system by catalytic dehydrogenation coupling, were obtained in moderate to high yields via catalytic dehydrogenation of volatile alcohols and amines. This process could be monitored by the hydrogen produced. Compared to the traditional method of condensation, this catalytic system avoids the stoichiometric pre-activation or in situ activation of reagents, and is a much cleaner process with high atom economy. This methodology, only possible by employing the Pd-Ag/ceramic membrane reactor, not only provides a new environmentally benign synthetic approach of amides and ureas, but is also a potential method for hydrogen storage.

  19. Nucleophilic addition to an achiral dehydroalanine Schiff base Ni(II) complex as a route to amino acids. A case of stereodetermining asymmetric protonation in the presence of TADDOL

    NARCIS (Netherlands)

    Belokon, Yuri N.; Harutyunyan, Syuzanna; Vorontsov, Evgeni V.; Peregudov, Alexander S.; Chrustalev, Viktor N.; Kochetkov, Konstantin A.; Pripadchev, Dmitriy; Sagyan, Ashot S.; Beck, Albert K.; Seebach, Dieter

    2004-01-01

    We describe herein the elaboration of a new type of a substrate based on the Ni(II) complex of a Schiff base of dehydroalanine, 1, and Michael addition of nucleophiles to it, leading to the synthesis of racemic α-amino acids. We have also developed a catalytic method for the asymmetric 1,4 conjugate

  20. Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis

    DEFF Research Database (Denmark)

    Dahl, Søren; Logadottir, Ashildur; Jacobsen, C.J.H.

    2001-01-01

    to calculate how these two factors affect the energies of the intermediates and transition states in the ammonia synthesis reaction. We show that a linear relationship exists between the activation energy for N-2 dissociation and the binding energy of adsorbed nitrogen. The ammonia synthesis activity under...... promoted transition metals. We conclude that promotion is most effective for the best non-promoted catalysts and that promotion will always be essential for obtaining an optimal ammonia synthesis catalyst. Analysis of the micro-kinetic model show that the best catalysts are those with the lowest apparent...

  1. Catalytic partial oxidation of methane to synthesis gas over a ruthenium catalyst: the role of the oxidation state.

    Science.gov (United States)

    Rabe, Stefan; Nachtegaal, Maarten; Vogel, Frédéric

    2007-03-28

    The catalytic partial oxidation of methane to synthesis gas over ruthenium catalysts was investigated by thermogravimetry coupled with infrared spectroscopy (TGA-FTIR) and in situ X-ray absorption spectroscopy (XAS). It was found that the oxidation state of the catalyst influences the product formation. On oxidized ruthenium sites, carbon dioxide was formed. The reduced catalyst yielded carbon monoxide as a product. The influence of the temperature was also investigated. At temperatures below the ignition point of the reaction, the catalyst was in an oxidized state. At temperatures above the ignition point, the catalyst was reduced. This was also confirmed by the in situ XAS spectroscopy. The results indicate that both a direct reaction mechanism as well as a combustion-reforming mechanism can occur. The importance of knowing the oxidation state of the surface is discussed and a method to determine it under reaction conditions is presented.

  2. Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones.

    Science.gov (United States)

    Platon, Mélanie; Amardeil, Régine; Djakovitch, Laurent; Hierso, Jean-Cyrille

    2012-05-21

    A survey highlighting the most recent palladium catalytic systems produced and their performances for progress in direct synthesis of indole backbones by heterocarbocyclization of reactive substrates is provided. The discussion is developed in relation with the principles of sustainable chemistry concerning atom and mass economy. In this respect, the general convergent character of the syntheses is of particular interest (one-pot, domino, cascade or tandem reactions), and the substrates accessibility and reactivity, together with the final waste production, are also important. This critical review clearly indicates that the development of ligand chemistry, mainly phosphines and carbenes, in the last few decades gave a significant impetus to powerful functionalization of indoles at virtually all positions of this ubiquitous backbone (118 references).

  3. Abroma augusta Linn bark extract-mediated green synthesis of gold nanoparticles and its application in catalytic reduction

    Science.gov (United States)

    Das, Subhajit; Bag, Braja Gopal; Basu, Ranadhir

    2014-11-01

    The bark extract of Abroma augusta Linn is rich in medicinally important phytochemicals including antioxidants and polyphenols. First one step green synthesis of gold nanoparticles (AuNPs) has been described utilizing the bark extract of Abroma augusta L. and chloroauric acid under very mild reaction conditions. The phytochemicals present in the bark extract acted both as a reducing as well as a stabilizing agent, and no additional stabilizing and capping agents were needed. Detailed characterizations of the stabilized AuNPs were carried out by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles has been demonstrated for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol, and the kinetics of the reduction reaction have been studied spectrophotometrically.

  4. Synthesis and Catalytic Performance of Ni/SiO2 for Hydrogenation of 2-Methylfuran to 2-Methyltetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Fu Ding

    2015-01-01

    Full Text Available A series of Ni/SiO2 catalysts with different Ni content were prepared by sol-gel method for application in the synthesis of 2-methyltetrahydrofuran (2-MTHF by hydrogenation of 2-methylfuran (2-MF. The catalyst structure was investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and temperature programmed reduction (TPR. It is found that structures and catalytic performance of the catalysts were highly affected by the Ni content. The catalyst with a 25% Ni content had an appropriate size of the Ni species and larger BET surface area and produced a higher 2-MF conversion with enhanced selectivity in 2-MTHF.

  5. Unraveling Surface Plasmon Decay in Core-Shell Nanostructures toward Broadband Light-Driven Catalytic Organic Synthesis.

    Science.gov (United States)

    Huang, Hao; Zhang, Lei; Lv, Zhiheng; Long, Ran; Zhang, Chao; Lin, Yue; Wei, Kecheng; Wang, Chengming; Chen, Lu; Li, Zhi-Yuan; Zhang, Qun; Luo, Yi; Xiong, Yujie

    2016-06-01

    Harnessing surface plasmon of metal nanostructures to promote catalytic organic synthesis holds great promise in solar-to-chemical energy conversion. High conversion efficiency relies not only on broadening the absorption spectrum but on coupling the harvested energy into chemical reactions. Such coupling undergoes hot-electron transfer and photothermal conversion during the decay of surface plasmon; however, the two plasmonic effects are unfortunately entangled, making their individual roles still under debate. Here, we report that in a model system of bimetallic Au-Pd core-shell nanostructures the two effects can be disentangled through tailoring the shell thickness at atomic-level precision. As demonstrated by our ultrafast absorption spectroscopy characterizations, the achieved tunability of the two effects in a model reaction of Pd-catalyzed organic hydrogenation offers a knob for enhancing energy coupling. In addition, the two intrinsic plasmonic modes at 400-700 and 700-1000 nm in the bar-shaped nanostructures allow for utilizing photons to a large extent in full solar spectrum. This work establishes a paradigmatic guidance toward designing plasmonic-catalytic nanomaterials for enhanced solar-to-chemical energy conversion.

  6. Green synthesis of Au-rGO nanocomposite and its catalytic activity in nitro-reduction and degradation of dyes

    Science.gov (United States)

    Saikia, Indranirekha; Hazarika, Moushumi; Tamuly, Chandan

    2016-10-01

    An eco-friendly, very simple method for synthesis of gold-reduced graphene oxide nanocomposite was developed using leaf extract of Piper pedicellatum C.DC. Its characterization was done by UV-visible, FT-IR, XRD, XPS, Raman, TGA, EDX, TEM analysis. The nanocomposite was very efficiently utilized as catalyst for reduction reaction of 3-nitroaniline and 4-nitrophenol. The kinetic and rate constant of nitro-reduction also reported in this study. The nanocomposite showed excellent catalytic activity for reduction of nitro aromatic compound within very short period of time. The dye which are used in industries such as rhodamine B, methyl red, methyl orange, methylene blue and bromocresol green were degraded rapidly and efficiently in a photocatalytic pathway by the as-synthesized Au-rGO nanocomposite with only 6% activity loss in degradation after the 10th cycle. So, Au-rGO composite has significant catalytic activity in nitroreduction and photocatalytic degradation of dye molecules under sunlight.

  7. Enantioselective synthesis of aziridines using asymmetric transfer hydrogenation as a precursor for chiral derivatives used as bonding agent for rocket solid propellants

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2002-11-01

    Full Text Available A rapid, expedient and enantioselective method for the synthesis of beta-hydroxy amines and monosubstituted aziridines in up to 99% e.e., via asymmetric transfer hydrogenation of a-amino ketones and cyclisation through treatment with tosyl chloride and base, is described. (1R,2R-N-(para-toluenesulfonyl-1,2-ethylenediamine with formic acid has been utilised as a ligand for the Ruthenium (II catalysed enantioselective transfer hydrogenation of the ketones.The chiral 2-methyl aziridine, which is a potentially more efficient bonding agent for Rocket Solid Propellant has been successfully achieved.

  8. A Novel Strategy Towards the Asymmetric Synthesis of Orthogonally Funtionalised 2-N-Benzyl-N-α-methylbenzylamino- 5-carboxymethyl-cyclopentane-1-carboxylic acid.

    Directory of Open Access Journals (Sweden)

    Julio G. Urones

    2004-04-01

    Full Text Available The asymmetric synthesis of the orthogonally funtionalised compounds tert-butyl 2-N-benzyl-N-α-methylbenzylamino-5-methoxycarbonylmethylcyclopentane- 1-carboxylate and methyl 2-N-benzyl-N-α-methylbenzylamino-5–carboxymethylcyclo- pentane-1-carboxylate by a domino reaction of tert-butyl methyl (E,E-octa-2,6- diendioate with lithium N-α-methylbenzyl-N-benzylamide initiated by a Michael addition, subsequent 5-exo-trig intramolecular cyclisation and posterior selective hydrolysis with trifluoroacetic acid is reported.

  9. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.

    Science.gov (United States)

    Yu, Jie; Shi, Feng; Gong, Liu-Zhu

    2011-11-15

    Optically pure nitrogenous compounds, and especially nitrogen-containing heterocycles, have drawn intense research attention because of their frequent isolation as natural products. These compounds have wide-ranging biological and pharmaceutical activities, offering potential as new drug candidates. Among the various synthetic approaches to nitrogenous heterocycles, the use of asymmetric multicomponent reactions (MCRs) catalyzed by chiral phosphoric acids has recently emerged as a particularly robust tool. This method combines the prominent merits of MCRs with organocatalysis, thus affording enantio-enriched nitrogenous heterocyclic compounds with excellent enantioselectivity, atom economy, bond-forming efficiency, structural diversity, and complexity. In this Account, we discuss a variety of asymmetric MCRs catalyzed by chiral phosphoric acids that lead to the production of structurally diverse nitrogenous heterocycles. In MCRs, three or more reagents are combined simultaneously to produce a single product containing structural contributions from all the components. These one-pot processes are especially useful in the construction of heterocyclic cores: they can provide a high degree of both complexity and diversity for a targeted set of scaffolds while minimizing the number of synthetic operations. Unfortunately, enantioselective MCRs have thus far been relatively underdeveloped. Particularly lacking are reactions that proceed through imine intermediates, which are formed from the condensation of carbonyls and amines. The concomitant generation of water in the condensation reaction can deactivate some Lewis acid catalysts, resulting in premature termination of the reaction. Thus, chiral catalysts typically must be compatible with water for MCRs to generate nitrogenous compounds. Recently, organocatalytic MCRs have proven valuable in this respect. Brønsted acids, an important class of organocatalysts, are highly compatible with water and thereby offer great

  10. Synthesis and Catalytic Activity of Copper(Ⅱ) Resorcylic Acid Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Copper(Ⅱ) resorcylic acid(CuRes) nanoparticles were synthesized by using reactive precipitation method with resorcylic acid and blue copperas as the raw material in a rotating packed bed. The sample obtained was characterized by using X-ray diffraction( XRD), transmission electron microscopy( TEM ), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analyses (TG), and element analysis. In addition, the catalytic activity of CuRes nanoparticles on the thermal decomposition of nitrocellulose-nitroglycerine (NC-NG) was also determined via DSC.The results show that the spherical nanoparticles with a diameter of 20 nm were obtained in ethanol solution. The peak temperature of the thermal decomposition of NC-NG-CuRes decreases by 3 ℃ compared with that of normal CuRes,and the decomposition enthalpy is increased by 735 J/g, and therefore, it is reasonable to assume that CuRes nanoparticles have a better catalytic activity.

  11. Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    2015-01-01

    Full Text Available Nanocrystalline La2Sn2O7 and La2Sn1.8Co0.2O7 with a phase-pure pyrochlore structure were synthesized by a hydrothermal method, and their catalytic activity was investigated for soot combustion. The as-synthesized catalysts presented relatively larger surface area, and pore volume, which was benefit to the gas molecule diffusion in the reaction. A uniform spherical structure with particle size of 200–500 nm was found in SEM. The samples via hydrothermal route are more active for catalytic soot combustion, ascribing to the spherical morphology, high surface area and improved oxygen mobility. After Co, the reducibility was improved and surface oxygen vacancy was produced, resulting in the enhanced activity and selectivity to CO2 formation.

  12. Synthesis,Characterization and Catalytic Properties of Mesoporous HPMo/SiO2 Composite

    Institute of Scientific and Technical Information of China (English)

    YAN Xuemin; YAN Jiabao; MEI Ping; LEI Jiaheng

    2008-01-01

    A novel mesoporous HPMo/SiO2 composite was synthesized by the sol-gel method with triblock copolymer EO20PO70EO20 as template.The properties of the product were characterized by X-ray diffraction,transmission electron microscopy,N2 adsorption-desorption isotherms,Fourier transform infrared spectrometer and inductively-coupled plasma analysis.The experimental results show that the product has a very ordered hexagonal mesostructure,and the HPMo is immobilized into the framework of silica.The final mesoporous composite shows excellent stability in polar solvents.Results of catalytic tests indicate that the composite is an effective catalyst for oxidation of dibenzothiophen,and there are few activity losses even after the third cycle of uses.The high catalytic activity and good insolubility make it a promising catalyst in oxidative desulfurization process.

  13. Modification of ferrierite through post-synthesis treatments. Acidic and catalytic properties

    Science.gov (United States)

    Brylewska, Kamila; Tarach, Karolina A.; Mozgawa, Włodzimierz; Olejniczak, Zbigniew; Filek, Urszula; Góra-Marek, Kinga

    2016-12-01

    The main emphasis of this work was placed on a detailed characterization of structural, textural and acidic properties of FER zeolites with different Si/Al ratios in terms of their activity in ethanol dehydration reaction. Subsequent dealumination and desilication procedures were found to be an efficient methods of a secondary system of mesopore generation in the ferrierite crystals with preservation of their microporous characteristics. Through ethanol dehydration both the acidic and the textural features have a significant influence on catalytic performance of hierarchical ferrierites. It was shown that higher catalytic activity and selectivity to ethylene is ensured by zeolites with highly preserved microporous characteristic, i.e. well-developed micropore area and intrinsic acidity.

  14. Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates.

    Science.gov (United States)

    Zhang, Xiaomin; Liu, Xuhui; Lu, Peng; Wang, Liguo; Zhang, Zhaoliang; Wang, Xiuju; Wang, Zhongpeng

    2015-01-01

    Nanocrystalline La2Sn2O7 and La2Sn1.8Co0.2O7 with a phase-pure pyrochlore structure were synthesized by a hydrothermal method, and their catalytic activity was investigated for soot combustion. The as-synthesized catalysts presented relatively larger surface area, and pore volume, which was benefit to the gas molecule diffusion in the reaction. A uniform spherical structure with particle size of 200-500 nm was found in SEM. The samples via hydrothermal route are more active for catalytic soot combustion, ascribing to the spherical morphology, high surface area and improved oxygen mobility. After Co, the reducibility was improved and surface oxygen vacancy was produced, resulting in the enhanced activity and selectivity to CO2 formation.

  15. Catalytic Chemical Vapor Deposition Synthesis of Carbon Aerogels of High-Surface Area and Porosity

    Directory of Open Access Journals (Sweden)

    Armando Peña

    2012-01-01

    Full Text Available In this work carbon aerogels were synthesized by catalytic chemical vapor deposition method (CCVD. Ferrocene were employed as a source both of catalytic material (Fe and of carbon. Gaseous hydrogen and argon were used as reductant and carrier gas, respectively. The products of reaction were collected over alumina. The morphology and textural properties of the soot produced in the reaction chamber were investigated using Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, X-ray photoelectron spectroscopy, and N2 physisorption (BET and BHJ methods. After the evaluation of the porous structure of the synthesized products, 780 ± 20 m2/g of SBET and 0.55 ± 0.02 cm3/g of VBJH were found. The presence of iron carbide and the partial oxidation of carbon nanostructures were revealed by XPS.

  16. Catalytic Enantioselective Allylic Amination of Olefins for the Synthesis of ent-Sitagliptin.

    Science.gov (United States)

    Bao, Hongli; Bayeh, Liela; Tambar, Uttam K

    2013-11-01

    The presence of nitrogen atoms in most chiral pharmaceutical drugs has motivated the development of numerous strategies for the synthesis of enantioenriched amines. Current methods are based on the multi-step transformation of pre-functionalized allylic electrophiles into chiral allylic amines. The enantioselective allylic amination of unactivated olefins represents a more direct and attractive strategy. We report the enantioselective synthesis of ent-sitagliptin via an allylic amination of an unactivated terminal olefin.

  17. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  18. Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis

    Science.gov (United States)

    Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief

    2017-03-01

    Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.

  19. Chelating ruthenium phenolate complexes: synthesis, general catalytic activity, and applications in olefin metathesis polymerization.

    Science.gov (United States)

    Kozłowska, Anna; Dranka, Maciej; Zachara, Janusz; Pump, Eva; Slugovc, Christian; Skowerski, Krzysztof; Grela, Karol

    2014-10-20

    Cyclic Ru-phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring-closing metathesis (RCM), enyne and cross-metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring-opening metathesis polymeriyation (ROMP) of this monomer.

  20. SYNTHESIS OF POLYSILOXANE-SUPPORTED SELENAETHER PLATINUM COMPLEX AND ITS CATALYTIC PROPERTY FOR HYDROSILYLATION OF OLEFINS

    Institute of Scientific and Technical Information of China (English)

    LU Xueran; CHEN Zhen; DUAN Heping; CHEN Yifan

    1996-01-01

    A new type of selenious polymer, silica-bound polybispropoxyethyl-selenidesilsesquioxane,and its platinum complex were synthesized from bis-allyloxyethyl selenide via hydrosilylation with triethoxysilane, followed by immobilized on fumed silica, and then reacting with potassium chloroplatinite under nitrogen atmosphere in acetone. It was found that the platinum complex can catalyze the hydrosilylation of olefins with triethoxysilane effectively. The effects of the nature of the substrate, the amount of complex used, and the reaction temperature on the catalytic activity were investigated.

  1. Novel Catalytic Method for Synthesis of Glycosyl Esters by Combining PTC with DMAP

    Institute of Scientific and Technical Information of China (English)

    YANG Song-tao; ZHANG Suo-qin; ZHANG Guang-liang; WANG Xiao-ming; LI Yao-xian

    2007-01-01

    This article presents a novel catalytic method by combining phase-transfer catalyst, benzyltriethylammonium chloride, with 4-dimethylaminopyridine for the syntheses of glycosyl esters from substituted phenoxyacetic acids and the peracetate of α-D-l-bromosugars to produce eight novel β-glycosyl esters in high yields. The structures of the synthesized compounds were established by IR, MS, 1H NMR, and 13C NMR spectra and elemental analyses.

  2. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  3. Synthesis of Novel C2-Symmetrical Bidentate Phosphoramidite Ligands for Rh-catalyzed Asymmetric Hydrogenation of β-(Acylamino)acrylates

    Institute of Scientific and Technical Information of China (English)

    Qing Heng ZENG; Xiang Ping HU; Xin Miao LIANG; Zhuo ZHENG

    2006-01-01

    Two new C2-symmetrical bidentate phosphoramidite ligands were synthesized and employed in the Rh-catalyzed asymmetric hydrogenation of β-(acylamino)acrylates, up to 89% ee with full conversions was obtained.

  4. Asymmetric Synthesis of Substituted Thiolanes through Domino Thia-Michael-Henry Dynamic Covalent Systemic Resolution using Lipase Catalysis.

    Science.gov (United States)

    Zhang, Yan; Vongvilai, Pornrapee; Sakulsombat, Morakot; Fischer, Andreas; Ramström, Olof

    2014-03-24

    Dynamic systems based on consecutive thia-Michael and Henry reactions were generated and transformed using lipase-catalyzed asymmetric transformation. Substituted thiolane structures with three contiguous stereocenters were resolved in the process in high yields and high enantiomeric excesses.

  5. Fourier synthesis of asymmetrical optical potentials for atoms; Fourier-Synthese von asymmetrischen optischen Potentialen fuer Atome

    Energy Technology Data Exchange (ETDEWEB)

    Ritt, G.

    2007-07-13

    In this work a dissipationless asymmetrical optical potential for cold atoms was produced. In a first step a new type of optical lattice was generated, whose spatial periodicity only corresponds to a quarter of the wavelength of the light used for the generation. This corresponds to the half of the periodicity of a conventional optical lattice, which is formed by the light of the same wavelength. The generation of this new type of optical lattice was reached by the use of two degenerated raman transitions. Virtual processes occur, in which four photons are involved. In conventional optical lattices however virtual two-photon processes occur. By spatially superimposing this optical lattice with a conventional optical lattice an asymmetrical optical potential could be formed. By diffraction of a Bose Einstein condensate of rubidium atoms at the transient activated asymmetrical potential the asymmetrical structure was proven. (orig.)

  6. Asymmetric synthesis of gem-diaryl substituted cyclic sulfamidates and sulfamides by rhodium-catalyzed arylation of cyclic ketimines.

    Science.gov (United States)

    Nishimura, Takahiro; Ebe, Yusuke; Fujimoto, Hiroto; Hayashi, Tamio

    2013-06-18

    Asymmetric addition of arylboronates to aryl-substituted cyclic ketimines proceeded in the presence of a rhodium catalyst coordinated with a chiral diene ligand to give high yields of sulfamidates and sulfamides with high enantioselectivity (up to 99% ee).

  7. Synthesis and photo-catalytic property of TiO2 nanotube arrays/ZnS

    Science.gov (United States)

    Kong, Junhan; Liu, Zhe; Xiong, Yehan; Liu, Zhanhong; Wang, Yongqian

    2017-04-01

    TiO2 nanotube arrays/ZnS (TNAs/ZnS) nanocomposites were synthesized successfully via anodic oxidation method and hydrothermal method as well. In this study, field emission scanning electron microscopy equipped with energy-dispersive spectroscopy (EDS) was used to monitor the morphological features and elemental composition of the samples. UV-Vis absorption spectra showed the absorption performance in both UV and visible light regions. In addition, the photo-catalytic activity of the samples was measured by the photo-degradation rate of methylene blue. From the result, we could notice that the morphology of the samples would change gradually when the amounts of zinc source and sulfur source changed, and the hydrothermal temperature was one of the significant factors which influenced the morphology. EDS spectra showed the existence of zinc and sulfur elements. Photo-catalytic activity test indicated that the photo-degradation rate of MB rises up to 91.6% after 240 min. Furthermore, there existed an expected relationship between the photo-degradation rate and the amounts of zinc source and sulfur source. UV-Vis absorption spectra of the samples also verified the result of photo-catalytic activity test.

  8. Synthesis, characterization and catalytic activity of birnessite type potassium manganese oxide nanotubes and nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Khalid Abdelazez Mohamed, E-mail: khalidgnad@hotmail.com [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Chemistry, School of Chemistry and Chemical Technology, Faculty of Science and Technology, Al-Neelain University, P.O. Box 12702, Khartoum (Sudan); Huang Kaixun, E-mail: hxxzrf@mail.hust.edu.cn [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Birnessite type manganese oxides nanotubes and nanorods were prepared by calcination route. Black-Right-Pointing-Pointer The transition from tube to rod structure is described by an oriented attachment-thermodynamical (OA-TD) process. Black-Right-Pointing-Pointer The catalytic degradation efficiency of safranin O by as-prepared products was compared. - Abstract: Birnessite-type manganese oxide nanotubes and nanorods were synthesized via a calcination process using manganese acetate and potassium hydroxide as precursors in presence of polyethylene glycol-melamine-formaldehyde. As-prepared products were characterized by XRD, FT-IR, FE-SEM, TEM, SA-ED, HR-TEM, Brunauer-Emmett-Teller (BET) and TGA analyses. The influences of reaction temperature and time on the morphology of manganese oxide nanocrystals were investigated. The oriented attachment-thermodynamical (OA-TD) process is suggested to describe the transition from tube to rod structure. Their capability of catalytic degradation of safranin O was compared. The results indicate that birnessite-type manganese oxide nanotube has higher catalytic activity for than nanorod crystal in aqueous solution, because it has a larger surface area. The decomposition of safranin O follows pseudo-first order kinetics and is markedly affected by pH.

  9. Supercritical CO{sub 2} mediated synthesis and catalytic activity of graphene/Pd nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lulu [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of); Nguyen, Van Hoa [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of); Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang (Viet Nam); Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of)

    2015-11-15

    Highlights: • RGO/Pd composite was efficiently prepared via a facile method in supercritical CO{sub 2}. • Graphene sheets were coated uniformly with Pd nanoparticles with a size of ∼8 nm. • Composites exhibited excellent catalytic activity in the Suzuki reaction even after 10 cycles. - Abstract: Graphene sheets were decorated with palladium nanoparticles using a facile and efficient method in supercritical CO{sub 2}. The nanoparticles were formed on the graphene sheets by the simple hydrogen reduction of palladium(II) hexafluoroacetylacetonate precursor in supercritical CO{sub 2}. The product was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Highly dispersed nanoparticles with various sizes and shapes adhered well to the graphene sheets. The composites showed high catalytic activities for the Suzuki reaction under aqueous and aerobic conditions within 5 min. The effects of the different Pd precursor loadings on the catalytic activities of the composites were also examined.

  10. β-Amino acid catalyzed asymmetric Michael additions: design of organocatalysts with catalytic acid/base dyad inspired by serine proteases.

    Science.gov (United States)

    Yang, Hui; Wong, Ming Wah

    2011-09-16

    A new type of chiral β-amino acid catalyst has been computationally designed, mimicking the enzyme catalysis of serine proteases. Our catalyst approach is based on the bioinspired catalytic acid/base dyad, namely, a carboxyl and imidazole pair. DFT calculations predict that this designed organocatalyst catalyzes Michael additions of aldehydes to nitroalkenes with excellent enantioselectivities and remarkably high anti diastereoselectivities. The unusual stacked geometry of the enamine intermediate, hydrogen bonding network, and the adoption of an exo transition state are the keys to understand the stereoselectivity.

  11. The Effect of Mo2C Synthesis and Pretreatment on Catalytic Stability in Oxidative Reforming Environments

    Energy Technology Data Exchange (ETDEWEB)

    Lamont, David C.(8392); Gilligan, Andrew J.(Washington University); Darujati, Anna R S.(Washington State University); Chellappa, Anand S.(WASHINGTON STATE UNIV); Thomson, Wiliam J.(8392)

    2003-07-10

    The role of catalyst pretreatment on the stability of Mo2C catalysts in oxidative reforming environments has been studied. Catalysts were produced by both the temperature programmed reaction (TPR) and a solution-derived (SD) synthesis method, and compared to a low surface area commercial catalyst. Using a variety of techniques, including in situ dynamic X-ray diffraction (DXRD), the effects of various hydrogen pretreatment protocols were evaluated, including catalyst thermal stability, oxidation resistance and susceptibility to coking. The high surface areas produced by the SD synthesis is attributed to the presence of excess synthesis carbon and, whereas the presence of excess synthesis carbon enhances thermal stability, it also appears to accelerate coking. It is pointed out that the lowered oxidation resistance of the high surface area catalysts is due to a combination of smaller crystallite sizes and competitive oxidation of the excess synthesis carbon, which alters the oxidation mechanism. In addition, it was also found that incomplete carburization during TPR synthesis, forms an oxycarbide and its acidity also promotes coking. Hydrogen pretreatment at 700 .C not only removes all excess synthesis carbon, but it also reduces the oxycarbide to Mo, which is easily carburized under reforming conditions. Pretreatment at 600 .C, was largely ineffective and it is concluded that high temperature pretreatment is necessary to form the stoichiometric carbide, which is required for stability during reforming. Both the TPR and SD catalysts pretreated at 700 .C, were found to be stable over a 72 h period, whereas the commercial carbide had almost identical activity but slowly deactivated over the same period, probably because of its low surface area. Finally, labeled isotope experiments revealed that carbon exchange occurs readily with bulk Mo2C at temperatures above 550 .C, lending credence to a reforming redox mechanism.

  12. Cyanogel-derived N-doped C nanosheets immobilizing Pd-P nanoparticles: One-pot synthesis and enhanced hydrogenation catalytic performance

    Science.gov (United States)

    Zhang, Hao; Yan, Xiaohong; Huang, Yundi; Zhang, Mengru; Tang, Yawen; Sun, Dongmei; Xu, Lin; Wei, Shaohua

    2017-02-01

    For Pd-based nanocatalysts, stabilization of Pd nanoparticles on carbon support could not only effectively avoid particle aggregation and maintain catalytic stability during catalytic processes, but also facilitate enhancing the catalytic activity due to the synergy between Pd nanoparticles and carbon support. Furthermore, the incorporation of non-metal of phosphorus (P) into Pd could effectively modulate the electronic structure of Pd and thus help to boost the catalytic properties. However, one-pot synthesis of such nanohybrids remains a great challenge due to the distinct physiochemical properties of Pd, P and C components. Herein, we demonstrate a one-pot and scalable synthesis of highly dispersed PdP alloy nanoparticle-immobilized on N-doped graphitic carbon nanosheets (abbreviated as Pd-P@N-C nanosheets) by using inorganic-organic hybrid cyanogel as a reaction precursor. In virtue of both compositional and structural advantages, the as-synthesized Pd-P@N-C nanosheets manifest a superior catalytic activity and stability toward the hydrogenation of 4-nitrophenol (4-NP). We believe that the present work will provide a feasible and versatile strategy for the development of efficient catalysts for environmental remediation and can also be extendable to other carbon-based nanohybrids with desirable functionalities.

  13. Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol.

    Science.gov (United States)

    Narayanan, Kannan Badri; Park, Hyun Ho; Sakthivel, Natarajan

    2013-12-01

    Green synthesis of extracellular mycogenic silver nanoparticles using the fungus, Cylindrocladium floridanum is reported. The synthesized mycogenic silver nanoparticles were characterized using UV-Vis absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. The nanoparticles exhibit fcc structure with Bragg's reflections of (111), (200), (220) and (311) was evidenced by XRD pattern, high-resolution TEM lattice fringes and circular rings in selected-area electron diffraction (SAED) pattern. The morphology of nanoparticles was roughly spherical in shape with an average size of ca. 25 nm. From FTIR spectrum, it was found that the biomolecules with amide I and II band were involved in the stabilization of nanoparticles. These mycogenic silver nanoparticles exhibited the homogeneous catalytic potential in the reduction of pollutant, 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using sodium borohydride, which followed a pseudo-first-order kinetic model. Thus, the synthesis of metal nanoparticles using sustainable microbial approach opens up possibilities in the usage of mycogenic metal nanoparticles as catalysts in various chemical reactions.

  14. PdCo/Pd-Hexacyanocobaltate Hybrid Nanoflowers: Cyanogel-Bridged One-Pot Synthesis and Their Enhanced Catalytic Performance.

    Science.gov (United States)

    Liu, Zhen-Yuan; Fu, Geng-Tao; Zhang, Lu; Yang, Xiao-Yu; Liu, Zhen-Qi; Sun, Dong-Mei; Xu, Lin; Tang, Ya-Wen

    2016-08-30

    Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility.

  15. PdCo/Pd-Hexacyanocobaltate Hybrid Nanoflowers: Cyanogel-Bridged One-Pot Synthesis and Their Enhanced Catalytic Performance

    Science.gov (United States)

    Liu, Zhen-Yuan; Fu, Geng-Tao; Zhang, Lu; Yang, Xiao-Yu; Liu, Zhen-Qi; Sun, Dong-Mei; Xu, Lin; Tang, Ya-Wen

    2016-08-01

    Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility.

  16. Activation of carboxylic acids in asymmetric organocatalysis.

    Science.gov (United States)

    Monaco, Mattia Riccardo; Poladura, Belén; Diaz de Los Bernardos, Miriam; Leutzsch, Markus; Goddard, Richard; List, Benjamin

    2014-07-01

    Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. Its success relies to a large extent upon the introduction of novel and generic activation modes. Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition-metal catalysis, a general and well-defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self-assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine-opening reaction with carboxylic acids as nucleophiles.

  17. Catalytic enantioselective amination of alcohols by the use of borrowing hydrogen methodology: cooperative catalysis by iridium and a chiral phosphoric acid.

    Science.gov (United States)

    Zhang, Yao; Lim, Ching-Si; Sim, Derek Sui Boon; Pan, Hui-Jie; Zhao, Yu

    2014-01-27

    The catalytic asymmetric reduction of ketimines has been explored extensively for the synthesis of chiral amines, with reductants ranging from Hantzsch esters, silanes, and formic acid to H2 gas. Alternatively, the amination of alcohols by the use of borrowing hydrogen methodology has proven a highly atom economical and green method for the production of amines without an external reductant, as the alcohol substrate serves as the H2 donor. A catalytic enantioselective variant of this process for the synthesis of chiral amines, however, was not known. We have examined various transition-metal complexes supported by chiral ligands known for asymmetric hydrogenation reactions, in combination with chiral Brønsted acids, which proved essential for the formation of the imine intermediate and the transfer-hydrogenation step. Our studies led to an asymmetric amination of alcohols to provide access to a wide range of chiral amines with good to excellent enantioselectivity.

  18. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    Science.gov (United States)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  19. Synthesis,characterization and catalytic properties of mesoporous MCM-48 containing zeolite secondary building units

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; DOU Tao; ZHANG Ying; LI Yuping; WANG Shan; SUN Famin

    2007-01-01

    Mesoporous aluminosilicate MCM-48 containing zeolite secondary building units in the pore wall has been synthesized in alkaline media with a two-step procedure.The aluminosilicate precursors comprising zeolite secondary building units were first synthesized by carefully controlling reaction conditions and then were assembled using cotemplates of geminisurfactant [C18H37N(CH3)2(CH2)3-N(CH3)2C18H37]2+ (18-3-18) and triethanolamine (TEA).X-ray Diffraction (XRD) patterns of the as-made samples indicated that highly ordered mesostmctured MCM-48 was formed.Transmission Electron Microscopy (TEM) images further verified the formation of MCM-48 with uniform cubic pore channel system having the pore opening diameter of about 25 A.Compared with the conventionally synthesized MCM-48,the as-synthesized MCM-48 sample showed an adsorption band at 520-600 cm-1 in its FT-IR spectrum,which was assigned to five-membered ring vibration from zeolite structure.This suggested the presence of zeolite building units in the pore wall.N2 adsorption data showed that the material had a much higher specific surface area (1 200 m2/g)than the conventional MCM-48(1 100 m2/g).Finally,the catalytic performance of the as-made MCM-48 was evaluated by hydrogenation dealkylation reaction of heavy aromatic hydrocarbons.Catalytic results showed that the as-made MCM-48 catalyst exhibited higher conversion than the conventional MCM-48 catalyst.The as-made mesostructured MCM-48 may have a potential catalytic application in the conversion of bulky molecules.

  20. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  1. Facile synthesis and excellent catalytic activity of gold nanoparticles on graphene oxide

    Institute of Scientific and Technical Information of China (English)

    Yong Qiang He; Na Na Zhang; Yu Liu; Jian Ping Gao; Mao Cong Yi; Qiao Juan Gong; Hai Xia Qiu

    2012-01-01

    For the first time,Au nanoparticles on graphene oxide (GO-AuNPs) were successfully fabricated without applying any additional reductants,just by the redox reaction between AuCl4-1 and GO.Their structure was characterized by transmission electron microscopy and X-ray powder diffraction.The results show that flower-like AuNPs were successfully dispersed on GO surface.Importantly,they showed a high catalytic activity for the Suzuki-Miyaura coupling reaction in an aqueous medium.

  2. SYNTHESIS AND CATALYTIC HYDROSILYLATION PROPERTY OF POLYSILOXANE-SUPPORTED MERCAPTOSELENAETHER PLATINUM OR RHODIUM COMPLEX

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Silica-bound mercaptoselenaether-containing silsesquioxane and its platinum or rhodium complex were synthesized from γ-(2,3-epithiopropyl) propyltrimethoxysilane via ring-opening reaction with bis(2-hydroxyethyl) selenide, followed by hydrolysis and immobilization on fumed silica, and then reacting with potassium chloroplatinite or rhodium chloride in acetone under nitrogen atmosphere. It was found that two noble metal complexes can catalyze the hydrosilylation of olefins with triethoxysilane effectively. The influences of temperature, the amount of complex used, the nature of olefin on catalytic activity were investigated.

  3. SYNTHESIS AND CATALYTIC BEHAVIOR OF POLYSILOXANE-SUPPORTED FULLERENE PLATINUM OR RHODIUM COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    Peng-fei Fang; Yuan-yin Chen; Shu-ling Gong; Lei Guo; Qiu-sheng Lu; Ling Zhu

    1999-01-01

    Two polysiloxanes with pendant fullerene moieties and their platinum or rhodium complexes have been prepared from C60 via amination with ω-decenylamine, followed by hydrosilylation with triethoxysilane and immobilization on fumed silica or by hydrosilylation with methyldichlorosilane and polycondensation with polydimethylsiloxanol, and then by reacting them with potassium chloroplatinite or rhodium chloride in acetone respectively under argon atmosphere. It was found that the four noble metal complexes are effective catalysts for the hydrosilylation of olefins with triethoxysilane. The regioselectivity of platinum complexes for styrene increases remarkably by introducing C60 moiety. Factors influencing catalytic activity and the mechanism have been investigated.

  4. New chiral phosphinephosphinite ligands: Application to stereoselective synthesis of a key intermediate of 1{beta}-methyl carbapenems by Rh(I)-catalyzed asymmetric hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Takao; Yoshida, Akifumi; Matsumura, Kazuhiko [Takasago International Corp., Kanagawa (Japan)] [and others

    1995-12-31

    Transition metal catalyzed asymmetric hydroformylation is an attractive and highly useful homologation process for organic synthesis. Recently, the authors reported that the Rh(I) complexes of phosphinephosphite BINAPHOS are highly efficient catalysts for enantioselective hydroformylation of a variety of olefins. This time, the authors have designed and synthesized new chiral phosphinephosphinite ligands having binaphthyl backbone, (R)-2-diarylphosphino-2{prime}-diarylphosphinoxy-1,1{prime}-binaphthy1 (hereafter abbreviated (R)-BIPNITE). The Rh(I) complexes of these ligands are effective catalysts for the asymmetric hydroformylation of 4-vinylazetidin-2-one to give the corresponding oxo-aldehyde 3{beta} as the major product in very high diastereoselectivities and in good regioselectivities. Interestingly, modifications of the aryl substituents in phosphine and phosphinite moieties afforded higher selectivities. Aldehyde 3{beta} was easily oxidized with NaClO{sub 2} to 4, a key intermediate of 1{beta}-methyl carbapenems. Thus, the present method provides a new practical route to a versatile key intermediate for the synthesis of carbapenem antibiotics.

  5. Synthesis of 3,3-Disubstituted Oxindoles by Palladium-Catalyzed Asymmetric Intramolecular α-Arylation of Amides: Reaction Development and Mechanistic Studies.

    Science.gov (United States)

    Katayev, Dmitry; Jia, Yi-Xia; Sharma, Akhilesh K; Banerjee, Dipshikha; Besnard, Céline; Sunoj, Raghavan B; Kündig, E Peter

    2013-09-02

    Palladium complexes incorporating chiral N-heterocyclic carbene (NHC) ligands catalyze the asymmetric intramolecular α-arylation of amides producing 3,3-disubstituted oxindoles. Comprehensive DFT studies have been performed to gain insight into the mechanism of this transformation. Oxidative addition is shown to be rate-determining and reductive elimination to be enantioselectivity-determining. The synthesis of seven new NHC ligands is detailed and their performance is compared. One of them, L8, containing a tBu and a 1-naphthyl group at the stereogenic centre, proved superior and was very efficient in the asymmetric synthesis of fifteen new spiro-oxindoles and three azaspiro-oxindoles often in high yields (up to 99 %) and enantioselectivities (up to 97 % ee; ee=enantiomeric excess). Three palladacycle intermediates resulting from the oxidative addition of [Pd(NHC)] into the aryl halide bond were isolated and structurally characterized (X-ray). Using these intermediates as catalysts showed alkene additives to play an important role in increasing turnover number and frequency.

  6. Synthesis of a tricyclic mescaline analogue by catalytic C-H bond activation.

    Science.gov (United States)

    Ahrendt, Kateri A; Bergman, Robert G; Ellman, Jonathan A

    2003-04-17

    [reaction: see text] A tetrahydrobis(benzofuran) mescaline analogue has been prepared in six steps and 38% overall yield from (4'-O-methyl)methyl gallate. The key step in this synthesis is a tandem cyclization reaction via directed C[bond]H activation followed by olefin insertion.

  7. Catalytic Enantioselective Synthesis of Tetrahydocarbazoles and Exocyclic Pictet-Spengler-Type Reactions

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke; Ohm, Ragnhild Gaard; Olsen, Lasse Bohn;

    2016-01-01

    A synthetic strategy for the synthesis of chiral tetrahydrocarbazoles (THCAs) has been developed. The strategy relies on two types of 6-exo-trig cyclization of 3-substituted indole substrates. Enantioselective domino Friedel-Crafts-type reactions leading to THCAs can be catalyzed by chiral phosph...

  8. Graphene nanosheet as support of catalytically active metal particles in DMC synthesis

    Institute of Scientific and Technical Information of China (English)

    Jun Bian; Xiao Wei Wei; Ling Wang; Zheng Ping Guan

    2011-01-01

    Novel graphene nanosheet(GNS) supported Cu-Ni bimetal catalysts were firstly synthesized and used for the direct synthesis of dimethyl carbonate(DMC).The experimental results demonstrated that GNS was an effective and convenient support for the fabrication of Cu-Ni/GNS bimetal catalyst.

  9. Controlled Synthesis of Polyenes by Catalytic Methods. Progress Report, December 1, 1992 -- November 30, 1993

    Science.gov (United States)

    Schrock, R. R.

    1993-12-01

    Four studies are reported: living cyclopolymerization of diethyl dipropargylmalonate by Mo(CH-t-Bu)(NAr)[OCMe(CF{sub 3}){sub 2}]{sub 2} in dimethoxyethane, effect of chain length on conductivity of polyacetylene, nonlinear optical analysis of a series of triblock copolymers containing model polyenes, and synthesis of bifunctional hexafluoro-t-butoxide Mo species and their use as initiators in ROMP reactions.

  10. Synthesis and characterization of Cr-MSU-1 and its catalytic application for oxidation of styrene

    Science.gov (United States)

    Liu, Hong; Wang, Zhigang; Hu, Hongjiu; Liang, Yuguang; Wang, Mengyang

    2009-07-01

    Chromium-containing mesoporous silica material Cr-MSU-1 was synthesized using lauryl alcohol-polyoxyethylene (23) ether as templating agent under the neutral pH condition by two-step method. The sample was characterized by XRD, TEM, FT-IR, UV-Vis, ESR, ICP-AES and N 2 adsorption. Its catalytic performance for oxidation of styrene was studied. Effects of the solvent used, the styrene/H 2O 2 mole ratio and the reaction temperature and time on the oxidation of styrene over the Cr-MSU-1 catalyst were examined. The results indicate that Cr ions have been successfully incorporated into the framework of MSU-1 and the Cr-MSU-1 material has a uniform worm-like holes mesoporous structure. After Cr-MSU-1 is calcined, most of Cr 3+ is oxidized to Cr 5+ and Cr 6+ in tetrahedral coordination and no extra-framework Cr 2O 3 is formed. The Cr-MSU-1 catalyst is highly active for the selective oxidation of styrene and the main reaction products over Cr-MSU-1 are benzaldehyde and phenylacetaldehyde. Its catalytic performance remains stable within five repeated runs and no leaching is noticed for this chromium-based catalyst.

  11. MTO Schiff-base complexes: synthesis, structures and catalytic applications in olefin epoxidation.

    Science.gov (United States)

    Zhou, Ming-Dong; Zhao, Jin; Li, Jun; Yue, Shuang; Bao, Chang-Nian; Mink, Janos; Zang, Shu-Liang; Kühn, Fritz E

    2007-01-01

    Several Schiff-base ligands readily form complexes with methyltrioxorhenium(VII) (MTO) by undergoing a hydrogen transfer from a ligand-bound OH group to a ligand N atom. The resulting complexes are stable at room temperature and can be handled and stored in air without problems. Due to the steric demands of the ligands they display distorted trigonal-bipyramidal structures in the solid state, as shown by X-ray crystallography, with the O(-) moiety binding to the Lewis acidic Re atom and the Re-bound methyl group being located either in cis or trans position to the Schiff base. In solution, however, the steric differences seem not to be maintained, as can be deduced from (17)O NMR spectroscopy. Furthermore, the Schiff-base ligands exchange with donor ligands. Nevertheless, the catalytic behaviour is influenced significantly by the Schiff bases coordinated to the MTO moiety, which lead either to high selectivities and good activities or to catalyst decomposition. A large excess of ligand, in contrast to the observations with aromatic N-donor ligands, is detrimental to the catalytic performance as it leads to catalyst decomposition.

  12. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    Science.gov (United States)

    Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I.

    2016-12-01

    Spinel ferrites with nominal composition Cu 0.5Mn 0.5Fe 2 O 4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe 5 C 2 were observed by the influence of the reaction medium.

  13. Synthesis and catalytic activity of metallo-organic complexes bearing 5-amino 2-ethylpyridine -2-carboximidate

    Indian Academy of Sciences (India)

    LUO MEI; XU JIA; ZHANG JING CHENG

    2016-06-01

    A series of copper, cobalt, nickel and manganese complexes were synthesized and characterized. Reaction of 5-amino-2-cyanopyridine with $ MCl_{2}$·x$H_{2}O$ (M: $Cu^{2+}$, $Co^{2+}$, $Ni^{2+}$, $Mn^{2+})$ in anhydrous ethanol resulted in the formation of four complexes $[NH_{2}EtPyCuCl_{2}(CH_{3}OH)].H_{2}O 1$, $[(NH_{2}EtPyHCl)_{3}Co]$$(Cl)_{3}.3H_{2}O 2$, $[(NH_{2}EtPy)_{2}$ 2$(H_{2}O)Ni]$ $(Cl_{2})$ 3, and $[(NH_{2}EtPy)_{2}$ 2$(H_{2}O)$ Mn]$(Cl_{2})$ 4 $[NH_{2} EtPy=5-amino-oethylpyridine-2-carboximidate], respectively. The structures of these compounds were determined by X-raydiffraction, NMR and IR spectroscopy, and elemental analysis. Each complex was then used as a catalyst in the Henry reaction, and its catalytic activity was determined by 1H NMR. Good catalytic effects were achieved (69–87%).

  14. Synthesis and utilization of catalytically cracked cashew nut shell liquid in a diesel engine

    KAUST Repository

    Vedharaj, S.

    2015-09-30

    In this study, CNSL (Cashew nut shell liquid), an economically viable feedstock among the other contemporary resources, has been considered as an appropriate source of alternate fuel. Herein, CNSL was extracted from cashew nut outer shell, a waste product, through a unique approach of steam treatment process followed by mechanical crushing technique. In contrast to the past studies that have attempted to use unprocessed CNSL directly as substitute for diesel, this study has resorted to use processed CNSL by cracking it using zeolite catalyst. Thus, both the extraction of CNSL from cashew nut outer shell and processing of it through catalytic cracking process to help synthesize CC-CNSL (catalytically cracked CNSL) are different, which underscores the significance of the current work. In wake of adopting such distinct methodologies with fuel characterization, the properties of CC-CNSL such as viscosity and calorific value were figured out to be improved. Subsequently, CC-CNSL20 (20% CC-CNSL and 80% diesel) was tested at different fuel injection pressure such as 200 bar, 235 bar, 270 bar and 300 bar so as to optimize its use in a single cylinder diesel engine. From the engine experimental study, CC-CNSL20 was found to evince better engine performance than diesel and the composite emissions of CO (carbon monoxide), HC (hydrocarbon), NOX (oxides of nitrogen) and smoke, computed based on ISO 8178 D2 standard test cycle, were found to be better than diesel and incompliance with the legislative norms for genset.

  15. Synthesis of hydrothermally stable, hierarchically mesoporous aluminosilicate Al-SBA-1 and their catalytic properties

    Science.gov (United States)

    Li, Na; Wang, Jin-Gui; Xu, Jian-Xiong; Liu, Jin-Yu; Zhou, Hui-Jing; Sun, Ping-Chuan; Chen, Tie-Hong

    2012-03-01

    Hydrothermally stable mesoporous aluminosilicates Al-SBA-1 with hierarchical pore structure have been successfully synthesized under alkaline condition at 120 °C by employing organic mesomorphous complexes of polyelectrolyte (poly(acrylic acid) (PAA)) and cationic surfactant (hexadecyl pyridinium chloride (CPC)) as template. The Si/Al ratio could be as high as 5 and the incorporation of Al into the silica framework did not disturb the well-ordered cubic Pm3&cmb.macr;n mesostructure. Meanwhile, the incorporation of Al could greatly increase the specific surface area and pore volume of the samples. The Al-SBA-1 materials exhibited a high hydrothermal stability and remained stable even after being treated in boiling water for 10 days. The catalytic activity of the Al-SBA-1 materials was investigated by employing the Friedel-Crafts alkylation of toluene with benzyl alcohol as a model reaction and they exhibited excellent catalytic property due to the incorporated acid sites and the hierarchically mesoporous structure.

  16. Catalytic Enantioselective 1,2-Addition of Terminal 1,3-Diynes to Trifluoromethyl Ketones

    Institute of Scientific and Technical Information of China (English)

    Yan Zheng; Hai Ma; Jun-An Ma

    2016-01-01

    A facile catalytic enantioselective 1,2-addition of diynes to trifluoromethyl ketones was developed.By a combination of Me2Zn,Ti(OPr-i)4,BaF2 and quinine,the reaction of a series of terminal diynes with trifluoromethyl ketones proceeded to afford trifluoromethylated chrial tertiary alcohols with the diyne moiety in good to high yields with moderate to high enantioselectivities.Furthermore,this catalytic asymmetric diyne addition to trifluoromethylketone was applied in the synthesis of the Efavirenz analogue.

  17. One-Pot Synthesis of Bi/Fe3O4 and Its Catalytic Performances for 4-Nitrophenol Reduction

    Directory of Open Access Journals (Sweden)

    Ke-ying Cai

    2017-04-01

    Full Text Available A novel approach was successfully developed for the catalyst Bi-deposited Fe3O4 magnetic nanoparticles, which was used in the degradation of 4-nitrophenol (4-NP. The Bi/Fe3O4 composite was prepared via a one-pot process from ferrous sulfate and bismuth chloride using hydrazine hydrate as a reducing agent. The catalyst was characterized by X-ray diffraction (XRD and Fourier transform infrared (FTIR spectroscopy. In the composite pure Fe3O4 particles were synthesized and bismuth particles were well dispersed. The catalytic performances were investigated for the reduction of 4-NP with sodium borohydride. The catalyst has higher activity when Bi/Fe molar ratio is 1:4 in the composite and the rate constant k is about 0.611 min-1. The catalyst has good reusability which can be used 10 cycles without obvious deactivation. Furthermore, the catalyst can be easily separated by an external magnetic field. Copyright © 2017 BCREC GROUP. All rights reserved Received: 11st August 2016; Revised: 20th December 2016; Accepted: 21st December 2016 How to Cite: Cai, K.Y., Liu, Y.S., Xu, Y., Zhou, H., Zhang, L., Cui., Y. (2017. One-Pot Synthesis of Bi/Fe3O4 and Its Catalytic Performances for 4-Nitrophenol Reduction. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 89-95 (doi:10.9767/bcrec.12.1.621.89-95 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.621.89-95

  18. Preparation and Catalytic Activity of SO42-/TiO-La2O3 in Synthesis of Butyl Butyrate

    Institute of Scientific and Technical Information of China (English)

    YANG Shui-jin; LUO Yi; BAI Ai-min; HU Zhen-zhu; CHEN Fang

    2004-01-01

    Butyl butyrate is a very important compound, which is transparent liquid and has the pear,apple flavor. Natural exist is in the fruit, such as apple, pear, banana, grape and strawberry, etc.Primarily used for to prepare the edible spice and is also widely used in industrial intermediate product, solvent and synthetic perfumery. Until now, there are many methods to synthesize it.Conventionally H2SO4 was reported, but it causes many problems, such as the erosion of equipment,easily causes the vice-reaction, difficulty for after-treatment, environment pollution etc. A new environmentally friendly catalyst, SO42-/TiO2-La2O3 was prepared. And catalytic activity of catalyst in esterification of n-butanoic acid and n-butyl alcohol with SO42-/TiO2-La2O3 as catalyst has been no report up to now. Therefore, studying on the synthetic catalyst has theoretical and practical significances. The catalytic activity of catalyst in esterification of n-butanoic acid and n-butyl alcohol was measured.In this paper, we fast reported the preparation of SO42-/riO2-La2O3 and discussed the factors influencing the synthesis catalyst. The catalyst rare earth solid superacid SO42-/TiO2-La2O3 was The precipitate was filtered and washed thoroughly with distilled water until chloride ions were free.furnace at 480 ℃ for 3 h, and finally stored in a desiccator until use.The factors influencing the synthesis were discussed and the best conditions were found out. The experiment indicated that this catalyst has the following advantage. The amount of catalyst was little and getting high yield, its product has a good quanlity and is favour of reducing erosion of equipment, avoiding environment pollution. The optimum conditions are: molar ratio of n-butanoic acid to n-butyl alcohol was 1:1.5, the quantity of catalyst was equal to 1.5% of feed stocks, the reaction temperature was 93-114 ℃, and the reaction time was 1.0 h. Rare earth solid superacid SO42-/TiO2-La2O3 is an excellent catalyst for

  19. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    Science.gov (United States)

    Majumdar, Rakhi; Bag, Braja Gopal; Ghosh, Pooja

    2016-04-01

    The bark extract of Mimusops elengi is rich in different types of plant secondary metabolites such as flavonoids, tannins, triterpenoids and saponins. The present study shows the usefulness of the bark extract of Mimusops elengi for the green synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete within a few minutes without any extra stabilizing or capping agents and the polyphenols present in the bark extract acted as both reducing as well as stabilizing agents. The synthesized colloidal gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature.

  20. Catalytic Properties of ZSM-5 based Cu-Zn Catalysts Applies to Ethanol Synthesis from Syngas

    Directory of Open Access Journals (Sweden)

    Xu He-Shuang

    2016-01-01

    Full Text Available Cu-Zn catalysts based on ZSM-5 were prepared with impregnation method. Their catalatic behaviors for the synthesis of ethanol from syngas were investigated in a fixed bed. XRD and H2-TPR were adopted to characterize the structure and of the catalysts. In the synthesis procession, such factors as ZSM-5 with varied n(Si/n(Al ratio, reaction temperature and space velocity were inspected carefully. The results showed that: changing the ratio of silica to alumina in the carrier zeolite has a great influence on the conversion of CO.with a n(Si/n(Al ratio of 80, the conversion rate of CO peaked at 25% and the selectivity to ethanol reached 22%. Optimal space velocity for Cu-Zn catalysts was 8400·mL−1·h−1·g−1.

  1. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules.

    Science.gov (United States)

    Liu, Yiyang; Han, Seo-Jung; Liu, Wen-Bo; Stoltz, Brian M

    2015-03-17

    The ever-present demand for drugs with better efficacy and fewer side effects continually motivates scientists to explore the vast chemical space. Traditionally, medicinal chemists have focused much attention on achiral or so-called "flat" molecules. More recently, attention has shifted toward molecules with stereogenic centers since their three-dimensional structures represent a much larger fraction of the chemical space and have a number of superior properties compared with flat aromatic compounds. Quaternary stereocenters, in particular, add greatly to the three-dimensionality and novelty of the molecule. Nevertheless, synthetic challenges in building quaternary stereocenters have largely prevented their implementation in drug discovery. The lack of effective and broadly general methods for enantioselective formation of quaternary stereocenters in simple molecular scaffolds has prompted us to investigate new chemistry and develop innovative tools and solutions. In this Account, we describe three approaches to constructing quaternary stereocenters: nucleophilic substitution of 3-halooxindoles, conjugate addition of boronic acids to cyclic enones, and allylic alkylation of enolates. In the first approach, malonic ester nucleophiles attack electrophilic 3-halooxindoles, mediated by a copper(II)-bisoxazoline catalyst. A variety of oxindoles containing a benzylic quaternary stereocenter can be accessed through this method. However, it is only applicable to the specialized 3,3-disubstituted oxindole system. To access benzylic quaternary stereocenters in a more general context, we turned our attention to the enantioselective conjugate addition of carbon nucleophiles to α,β-unsaturated carbonyl acceptors. We discovered that in the presence of catalytic palladium-pyridinooxazoline complex, arylboronic acids add smoothly to β-substituted cyclic enones to furnish ketones with a β-benzylic quaternary stereocenter in high yields and enantioselectivities. The reaction is

  2. Supercritical Fluid Synthesis and Characterization of Catalytic Metal Nanoparticles on Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xiangrong; Lin, Yuehe; Wang, Chong M.; Engelhard, Mark H.; Wang, Yong; Wai, Chien M.

    2004-02-27

    A rapid, convenient and environmentally benign method has been developed for the fabrication of metal nanoparticle/multiwall carbon nanotube (MWCNT) composites. Nanoparticles of palladium, rhodium and ruthenium are deposited onto functionalized MWCNTs through a simple hydrogen reduction of metal-?-diketone precursors in supercritical carbon dioxide, and are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses. These highly dispersed nanoparticles, with a narrow range of size distribution and good adhesion on MWCNT surfaces, are expected to exhibit promising catalytic properties for a variety of chemical reactions. Preliminary experiments demonstrate that Pd nanoparticles supported on MWCNTs are effective catalysts for hydrogenation of olefins in carbon dioxide. The Pd nanoparticle?MWCNT composite also shows a high electrocatalytic activity in oxygen reduction for potential fuel cell application.

  3. Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property

    Science.gov (United States)

    Zhang, Yi; He, Xi; Ouyang, Jing; Yang, Huaming

    2013-10-01

    Palladium (Pd) nanoparticles were deposited on the surface of halloysite nanotubes (HNTs) modified with γ-aminopropyltriethoxysilane (APTES) to produce Pd/NH2-HNTs nanocomposites. The results indicated that Pd nanoparticles were densely immobilized onto NH2-HNTs with an average diameter of ~ 3 nm. The Pd distribution on the surface of silanized HNTs showed much more uniform, and the Pd nanoparticle size became smaller compared with those directly deposited onto HNTs without silanization. Systematic characterization demonstrated that APTES were chemically bonded onto HNTs, and further confirmed the bond formation between Pd and -NH2 groups, which could ensure the firm deposit of Pd nanoparticles on the surface of silanized HNTs. The as-synthesized Pd/NH2-HNTs exhibited an excellent catalytic activity in the liquid-phase hydrogenation of styrene to ethylbenzene with full conversion within 30 min. The mechanism of the deposit of Pd nanoparticles on silanized HNTs was also investigated.

  4. Synthesis,structure and catalytic behavior of yttrium complexes bearing a diaminobis(phenolate) ligand

    Institute of Scientific and Technical Information of China (English)

    SONG FengKui; YAN ChunHui; SUN HongMei; YAO YingMing; SHEN Qi; ZHANG Yong

    2009-01-01

    Yttrium complexes stabilized by a diaminobis(phenolate) ligand were synthesized and their catalytic behavior was explored. Reaction of YCI3 with 1 equiv of LNa2 [L=Me2NCH2CH2N{CH2-(2-O-C6H2-tBu2-3,5)}2]gave the yttrium chloride LYCI(THF) (1) in 92% yield. Complex 1 can be used as starting material to prepare the yttrium amido derivative. Complex 1 reacted with 1 equiv of LiNPh2 in THF to afford the expected yttrium amido complex LYNPh2 (2) in high yield. Both of complexes 1 and 2 have been well detected by elemental analysis,NMR spectra and single-crystal X-ray analysis. It was found that complex 2 can efficiently initiate the ring-opening polymerization of L-lactide and ε-caprolactone,and a controlled manner is observed in the former case.

  5. Synthesis, characterization, scale-up and catalytic behaviour of Co3O4 nanoparticles

    Indian Academy of Sciences (India)

    Manpreet Singh; N K Ralhan; Sukhdeep Singh

    2015-04-01

    Highly uniform cobalt oxide (Co3O4) nanoparticles were synthesized via thermal decomposition of cobalt hydroxy carbonates with particle size around 16 ± 1 nm. The process gives reproducible results in batches of 1–5 kg. The particles show good catalytic activity for the oxidation of oxalic acid and benzaldehyde under mild temperature conditions. The characterization was performed by X-ray diffractometry (XRD), Transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectrum and Nuclear magnetic resonance (NMR). The XRD measurements show cubic spinel phase and Debye–Scherrer relation was used to measure average particle size. The convenience of the production of catalyst can be exploited for its large-scale production and use in laboratories, R&Ds and industries.

  6. Synthesis of Y-junction carbon nanofibres by ethanol catalytic combustion technique

    Institute of Scientific and Technical Information of China (English)

    LI Fei; ZOU Xiao-ping; CHENG Jin; ZHANG Hong-dan; REN Peng-fei

    2006-01-01

    Y-shaped structure was synthesized by ethanol catalytic combustion(ECC) technique on the copper plate substrate,without directly seeding catalyst into the flame. The as-grown Y-junction carbon nanofibres were investigated by transmission electron microscopy (TEM). The very common laboratory ethanol burner was used for synthesizing carbon nanofibres. Two kinds of the catalyst precursor,which are iron nitrate (Fe(NO3)3) and nickel nitrate (Ni(NO3)2),were respectively employed to assist the formation of Y-junction carbon nanofibres. TEM analysis confirm the formation of Y-junction in the coiled and noncoiled carbon nanofibres. The type of the catalyst is found to be crucial to grow different Y-junction carbon nanofibres. Different Y-shaped structure may possess different mechanical and electronic properties. These three-terminal nanofibres provide the nanoelectronics community with a novel material for the development of molecular-scale electronic devices.

  7. Co$_9$S$_8$ nanotubes: facile synthesis and application in the catalytic reduction of 4-nitrophenol

    Indian Academy of Sciences (India)

    TAO GENG; YONGHONG NI; HONGYAN WANG; XIA ZHOU

    2016-10-01

    Co$_9$S$_8$ nanotubes have been successfully synthesized via a facile two-step solvothermal method without the assistance of any template or surfactant, using cobalt sulphate (CoSO$_4$·7H$_2$O), urea and sodium sulphide (Na$_2$S·9H$_2$O) as starting reactants, and deionized water and glycol as the reactive medium. The phase and the morphologyof the as-obtained product were characterized by means of powder X-ray diffraction, energy dispersive spectrometry and scanning electron microscopy. The result displays that the Co9S8 nanotubes have hexagonal crosssections,the diameter of the nanotubes is about 200 nm and the wall thickness is of 50 nm. The experiments showed that the Co$_9$S$_8$ nanotubes could be used as new-type catalysts for the reduction of 4-nitrophenol. It was found thatthe as-obtained Co$_9$S$_8$ nanotubes contributed to the best catalytic activity.

  8. Synthesis of 1-dodecanethiol-capped Ag nanoparticles and their high catalytic activity

    Science.gov (United States)

    Zhang, Danhui; Yang, Youbo

    2017-01-01

    Silver nanoparticles, which were produced by the borohydride reduction of silver nitrate, were stabilized by means of 1-dodecanethiol providing sulfur atom in two-phase system involving water and organic solvent (such as toluene, chloroform and hexane). Different organic solvent played a major role in the particle size of silver nanoparticles. These silver nanoparticles synthesized in the three different organic solvent were characterized by X-ray Diffraction, transmission electron microscopy and ultraviolet-visible absorption spectroscopy. The results indicate that the particles size of silver nanoparticles formed in three organic solvents was different. Furthermore, 1-dodecanethiol-capped silver nanoparticles were found to serve as effective catalysts to activate the reduction of 4-nitrophenol (4NP) in the presence of NaBH4, where the size of silver nanoparticles played the determining role in catalytic activity.

  9. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction

    Science.gov (United States)

    Wu, Shufen; Yan, Songjing; Qi, Wei; Huang, Renliang; Cui, Jing; Su, Rongxin; He, Zhimin

    2015-05-01

    We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.

  10. Facile synthesis and catalytic properties of silver colloidal nanoparticles stabilized by SDBS

    Indian Academy of Sciences (India)

    Wen Wang; Yinmin Song; Quansheng Liu; Keli Yang

    2014-06-01

    A facile method was explored to prepare stable silver colloidal nanoparticles (AgCNPs) in water. Sodium dodecyl benzene sulfonate (SDBS) was used as the stabilizing agent, without addition of any co-surfactant. The reaction was rapid and the product prepared at different conditions was measured by transmission electron microscopy (TEM) and UV-Vis spectroscopy. The results showed that AgCNPs stabilized by SDBS was stable in water with narrow size distribution (1-5 nm). The amount of surfactant has great influence on the products. When the molar ratio of Ag+ to SDBS increased to 1 : 4, AgCNPs can be obtained with high dispersion (2-3 nm), which has high catalytic activity on reduction of 4-nitrobenzoic acid to 4-aminobenzoic acid.

  11. Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications.

    Science.gov (United States)

    Ivanova, Irina I; Knyazeva, Elena E

    2013-05-07

    The review covers the recent developments in the field of novel micro-mesoporous materials obtained by zeolite recrystallization. The materials are classified into three distinctly different groups depending on the degree of recrystallization: (i) coated mesoporous zeolites (RZEO-1); (ii) micro-mesoporous nanocomposites (RZEO-2); and (iii) mesoporous materials with zeolitic fragments in the walls (RZEO-3). The first part of the review is focused on the analysis of the synthetic strategies leading to different types of recrystallized materials. In the second part, a comprehensive view on their structure, texture and porosity in connection with acidic and diffusion properties is given. The last part is devoted to the catalytic applications of recrystallized materials. The advantages and disadvantages with respect to pure micro- and mesoporous molecular sieves and other hierarchical zeolites are critically analyzed and the future opportunities and perspectives are discussed.

  12. Template-directed synthesis of nets based upon octahemioctahedral cages that encapsulate catalytically active metalloporphyrins

    KAUST Repository

    Zhang, ZhenJie

    2012-01-18

    meso-Tetra(N-methyl-4-pyridyl)porphine tetratosylate (TMPyP) templates the synthesis of six new metal-organic materials by the reaction of benzene-1,3,5-tricarboxylate with transition metals, five of which exhibit HKUST-1 or tbo topology (M = Fe, Mn, Co, Ni, Mg). The resulting materials, porph@MOMs, selectively encapsulate the corresponding metalloporphyrins in octahemioctahedral cages and can serve as size-selective heterogeneous catalysts for oxidation of olefins. © 2011 American Chemical Society.

  13. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling; Liu, Zhao-Tie; Dong, Wen-Sheng, E-mail: wsdong@snnu.edu.cn

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride as precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.

  14. Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2017-01-01

    Full Text Available The synthesis of Palladium (Pd nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs using an aqueous extract of aerial parts of Origanum vulgare L. (OV as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs were analyzed using ultraviolet-visible spectroscopy (UV-Vis, Fourier-transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, transmission electron microscopy (TEM, energy-dispersive X-ray spectroscopy (EDX, and thermal gravimetric analysis (TGA. Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.

  15. Pyrolysis-GCMS Analysis of Solid Organic Products from Catalytic Fischer-Tropsch Synthesis Experiments

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2015-01-01

    Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.

  16. Synthesis of Novel Derivatives of (R)-Cysteine and Their Application in Asymmetric Reduction of Prochiral Ketones

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; PEI Wei-wei; YE Wei-ping

    2005-01-01

    Novel chiral β-amino alcohols containing sulfide or sulfonyl groups were synthesized from (R)-cysteine. Their chiral induction in the asymmetric borane reduction of prochiral ketones was investigated. Optically active secondary alcohols with moderate or high e.e. values were obtained, and the causes of different enantioselectivities between these two sulfur-containing chiral β-amino alcohols were researched.

  17. Chiral dirhodium(II) carboxylates and carboxamidates as effective chemzymes in asymmetric synthesis of three-membered carbocycles.

    Science.gov (United States)

    Adly, Frady G; Ghanem, Ashraf

    2014-11-01

    In this review the recent advances in the utilization of two of the most important classes of dirhodium(II) paddlewheel complexes, dirhodium(II) carboxylates and carboxamidates, as chemzymes in inter- and intramolecular asymmetric cyclopropanation, as well as cyclopropenation reactions are discussed.

  18. Non-cross-linked polystyrene-supported 2-imidazolidinone chiral auxiliary: synthesis and application in asymmetric alkylation reactions

    Science.gov (United States)

    Nguyen, Quynh Pham Bao

    2013-01-01

    Summary Asymmetric alkylation reactions using non-cross-linked polystyrene (NCPS)-supported 2-imidazolidinone chiral auxiliaries were successfully investigated with excellent diastereocontrol (>99% de). The recovery and the recycling of this soluble polymer-supported chiral auxiliary were achieved in order to produce highly optical pure carboxylic acids. PMID:24204423

  19. Iridium ultrasmall nanoparticles, worm-like chain nanowires, and porous nanodendrites: One-pot solvothermal synthesis and catalytic CO oxidation activity

    Science.gov (United States)

    Zhang, Tao; Li, Shuai-Chen; Zhu, Wei; Ke, Jun; Yu, Jing-Wen; Zhang, Zhi-Ping; Dai, Lin-Xiu; Gu, Jun; Zhang, Ya-Wen

    2016-06-01

    We report a facile one-pot solvothermal synthesis of monodisperse iridium (Ir) ultrasmall (1.5-2.5 nm in diameter) nanoparticles (NPs), worm-like chain nanowires (NWs), and porous nanodendrites (NDs), for which CO oxidation reaction has been employed as a probe reaction to investigate the effects of nanoparticle size and surface-capping organics on the catalytic activities. Time-dependent experiments revealed that an oriented attachment mechanism induced by the strong adsorption of halide anions (Br- and I-) on specific facet of Ir nanoclusters or by decreasing the reduction rate of Ir precursors with changing their concentrations during the synthesis was responsible for the formation of Ir NWs and NDs. Annealing tests indicated that an O2-H2 atmosphere treatment turned out to be an effective measure to clean up the surface-capping organics of Ir NPs supported on commercial SiO2. Catalytic CO oxidation reaction illustrated that a significant improvement in the catalytic activity of CO oxidation reaction was achieved together with the changing of activation energies after such atmosphere treatment for the supported catalysts of the ultrasmall Ir NPs. It is noteworthy that this enhancement in catalytic activity could be ascribed to the changes in the surface status (including populations of Ir species in metallic and oxidized states, removal of surface capping organics, the variety of active sites, and total effective active site number) for the supported nanocatalysts during the atmosphere treatment.

  20. Development of ultrafine multichannel microfluidic mixer for synthesis of bimetallic nanoclusters: catalytic application of highly monodisperse AuPd nanoclusters stabilized by poly(N-vinylpyrrolidone).

    Science.gov (United States)

    Hayashi, Naoto; Sakai, Yuka; Tsunoyama, Hironori; Nakajima, Atsushi

    2014-09-02

    On account of their novel properties, bimetallic nanoparticles and nanoclusters (NCs) are strong potential candidates for optical, magnetic, and catalytic functional materials. These properties depend on the chemical composition and size (number of constituent atoms) of the NCs. Control of size, structure, and composition is particularly important for fabricating highly functional materials based on bimetallic NCs. Size- and structure-controlled synthesis of two-element alloys can reveal their intrinsic electronic synergistic effects. However, because synergistic enhancement of activity is strongly affected by composition as well as by size and structure, controlled synthesis is a challenging task, particularly in catalytic applications. To investigate catalytic synergistic effects, we have synthesized highly monodisperse, sub-2 nm, solid-solution AuPd NCs stabilized with poly(N-vinylpyrrolidone) (AuPd:PVP) using a newly developed ultrafine microfluidic mixing device with 15 μm wide multiple lamination channels. The synergistic enhancement for catalytic aerobic oxidation of benzyl alcohol exhibited a volcano-shaped trend, with a maximum at 20-65 at. % Pd. From X-ray photoelectron spectroscopic measurements, we confirmed that the enhanced activity originates from the enhanced electron density at the Au sites, donated by Pd sites.

  1. Synthesis of palladium nanoparticles over graphite oxide and carbon nanotubes by reduction in ethylene glycol and their catalytic performance on the chemoselective hydrogenation of para-chloronitrobenzene

    OpenAIRE

    2016-01-01

    Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared ...

  2. A protecting group-free synthesis of the Colorado potato beetle pheromone

    NARCIS (Netherlands)

    Wu, Zhongtao; Buter, Jeffrey; Minnaard, Adriaan J.; Jäger, Manuel; Dickschat, J.S.

    2013-01-01

    A novel synthesis of the aggregation pheromone of the Colorado potato beetle, Leptinotarsa decemlineata, has been developed based on a Sharpless asymmetric epoxidation in combination with a chemoselective alcohol oxidation using catalytic [(neocuproine)PdOAc](2)OTf2. Employing this approach, the phe

  3. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application

    Science.gov (United States)

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-01

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent

  4. Synthesis of LaFeO3 catalytic materials and their sensing properties

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    LaFeO3 is a p-type semiconductor catalytic material of perovskite structure (ABO3). Its magnetic and photocatalytic properties have been widely investigated,but the gas sensing properties are seldom reported,especially for toxic and noxious gases of NO2 and CO. The nanocomposites of LaFeO3 and LaFe1-xMgxO3 (x = 0.02,0.04,0.06) were prepared by various methods of the wet chemical process and their exact composition,crystal structures,grain sizes,specific surfaces,morphology and the electronic interaction between components were characterized by EDX,XRD,BET,SEM and XPS analysis. The sensors based on these nanocomposites have been fabricated to examine the sensing responses to gases,and the results show that these sensors exhibited high response to both oxidizing gas (NO2) and reducing gas (CO),and the response was greatly enhanced by the surface modification of MgO. The additive method,amount of additives,and their effects on the LaFeO3 structure and gas response have been analyzed and discussed by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopic (XPS) analysis.

  5. Synthesis and bio-catalytic activity of isostructural cobalt(III)-phenanthroline complexes

    Indian Academy of Sciences (India)

    Dhananjay Dey; Arnab Basu Roy; Anandan Ranjani; Loganathan Gayathri; Saravanan Chandraleka; Dharumadurai Dhanasekaran; Mohammad Abdulkader Akbarsha; Chung-Yu Shen; Hui-Lien Tsai; Milan Maji; Niranjan Kole; Bhaskar Biswas

    2015-04-01

    We have synthesized two isostructural mononuclear cobalt(III) complexes [1]NO3·3H2O and [1]NO3·CH3CO2H·H2O {[1]+ = [Co(1,10-phenanthroline)2Cl2]+} and characterized by single crystal X-ray structural analyses. Mass spectral studies of the complexes indicate both the compounds to produce identical cationic species viz., [Co(phen)2Cl2]+ in methanol solution. [1]+ has been evaluated as model system for the catechol oxidase enzyme by using 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate in methanol medium, which revealed that the cationic complex efficiently inhibits catalytic activity with kcat value 9.65 × 102 h−1. [1]+ cleaved pBR 322 DNA without addition of an activating agent. Further, the anti-cancer activity of [1]+ on human hepatocarcinoma cell line (HepG2) has been examined. The induction of apoptosis induced in the cell line was assessed base on the changes in cell morphology, which showed the efficacy of [1]+ to induce apoptosis in 53% of cells during 24 h treatment. Interestingly, the observed IC50 values reveal that [1]+ brings about conformational change on DNA strongly and exhibits remarkable cytotoxicity.

  6. Ruthenium(II) hydrazone Schiff base complexes: synthesis, spectral study and catalytic applications.

    Science.gov (United States)

    Manikandan, R; Viswanathamurthi, P; Muthukumar, M

    2011-12-01

    Ruthenium(II) hydrazone Schiff base complexes of the type [RuCl(CO)(B)(L)] (were B=PPh(3), AsPh(3) or Py; L=hydrazone Schiff base ligands) were synthesized from the reactions of hydrazone Schiff base ligand (obtained from isonicotinoylhydrazide and different hydroxy aldehydes) with [RuHCl(CO)(EPh(3))(2)(B)] (where E=P or As; B=PPh(3), AsPh(3) or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, (1)H, (13)C and (31)P NMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/Isopropanol.

  7. Facile synthesis of porous Pd nanoflowers with excellent catalytic activity towards CO oxidation☆

    Institute of Scientific and Technical Information of China (English)

    Tareque Odoom-Wubah; Mingming Du; Williams Brown Osei; Daohua Sun; Jiale Huang; Qingbiao Li

    2015-01-01

    Microorganism-mediated, hexadecyltrimethylammonium chloride (CTAC)-directed (MCD) method was employed in this work to synthesize Pd nanoflowers (PdNFs). Proper Pichia pastoris cel s (PPCs) dosage, ascorbic acid (AA), Pd(NO3)2 and CTAC concentrations were essential for the growth of the PdNFs. The size of the as-synthesized PdNFs could be tuned by adjusting the amount of Pd(NO3)2 solution and dosage of PPCs used. Char-acterization techniques such as X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy were used to verify the nature of the PdNFs. Finally the PdNF/PPC nanocomposites were immobilized onto TiO2 supports to obtain bio-PdNF/TiO2 catalysts which showed excellent catalytic activity for CO oxidation, obtaining 100%conversion at 100 °C and remaining stable over a period of 52 h of reaction time.

  8. Microwave-assisted facile green synthesis of silver nanoparticles and spectroscopic investigation of the catalytic activity

    Indian Academy of Sciences (India)

    Siby Joseph; Beena Mathew

    2015-06-01

    Silver nanoparticles have been successfully synthesized in aqueous medium by a green, rapid and costefficient synthetic approach based on microwave irradiation. In this study, iota-carrageenan (I-carrageenan) is used both as reducing and stabilizing agent. The formation of nanoparticles is determined using UV–vis, Fourier transform infrared (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) and high-resolution-transmission electron microscopic (HR-TEM) analysis. Transmission electron microscopic (TEM) images show that the nanoparticles are of spherical shape with an average diameter of 18.2 nm. I-carrageenan-stabilized silver nanoparticles show outstanding catalytic activity for the reduction of 4-nitrophenol in the presence of NaBH4 in aqueous medium. The reaction follows pseudo-first-order kinetics and the reaction rate increases with the increase in amount of the catalyst. The study of the temperature dependence of reaction rate gives activation energy of 42.81 kJ mol−1. The synthesized silver nanoparticles are anticipated to be a promising material for pollution abatement.

  9. Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites.

    Science.gov (United States)

    Li, Xueshan; Wang, Qian; Zhao, Yibo; Wu, Wei; Chen, Jianfeng; Meng, Hong

    2013-12-01

    The zinc oxide (ZnO)-reduced graphene oxide (RGO) nanocomposites were greenly synthesized by one-step hydrothermal reaction with ZnCl2 and graphite oxide (GO) as precursors without extra reductant. The photo-catalytic performances consisting of the photo-degradation of Rhodamine B (RhB) and the photo-reduction of CO2 under the illumination of simulated solar light at ambient temperature were investigated. It was validated that the ZnO spherical particles assembled by ZnO nanorods with an average diameter of 150nm are uniformly deposited on the RGO sheets. Meanwhile, due to the introduction of RGO, the light adsorption scope of ZnO is enlarged, the size of ZnO is decreased, the degree of crystallinity is improved and the self-aggregation of the ZnO particles is effectively prevented. Comparing with the pure ZnO particles, the efficiency of the nanocomposites for the photo-degradation of RhB is increased by 39% and the yield of methanol from the reduction of CO2 is improved by 75%. The mechanisms that may explain the enhanced properties of as-synthesized ZnO-RGO for both the photo-degradation of RhB and the reduction of CO2 were also proposed.

  10. Hierarchical ZSM-11 with intergrowth structures:Synthesis,characterization and catalytic properties

    Institute of Scientific and Technical Information of China (English)

    Qingjun; Yu; Chaoyue; Cui; Qiang; Zhang; Jing; Chen; Yang; Li; Jinpeng; Sun; Chunyi; Li; Qiukai; Cui; Chaohe; Yang; Honghong; Shan

    2013-01-01

    Hierarchical ZSM-11 microspheres with intercrystalline mesoporous properties and rod-like crystals intergrowth morphology have been synthesized using a spot of tetrabutylammonium as a single template.XRD,FTIR,SEM,TEM and N2 adsorption analysis revealed that each individual particle was composed of nanosized rod crystals inserting each other and the intercrystalline voids existing among rods gave a significant mesopore size distribution.Steam treatment result demonstrated the excellent hydrothermal stability of samples.Various crystallization modes including constant temperature crystallization (one-stage crystallization) and two-stage temperature-varying crystallization with different 1st stage durations were investigated.The results suggested that the crystallization modes were mainly responsible for the adjustable particle size and textural properties of samples while the small amount of tetrabutylammonium bromide was mainly used to direct the formation of both ZSM-11 framework and its intergrowth morphology.Furthermore,the performance of optimal ZSM-11 as an active component for the catalytic pyrolysis of heavy oil was also investigated.Compared with the commercial pyrolysis catalyst,the hierarchical ZSM-11 catalyst exhibited a high selectivity to desired products(LPG+gasoline+diesel),as well as a much lower dry gas and coke yield,plus a high selectivity and yield of light olefins(C=3 C=4)and very poor selectivity to benzene.Therefore,fully open micropore-mesopore connectivity would make such hierarchically porous ZSM-11 zeolites very attractive for applications in clean petrochemical catalysis field.

  11. Flower-Like Mn-Doped CeO2 Microstructures: Synthesis, Characterizations, and Catalytic Properties

    Directory of Open Access Journals (Sweden)

    Ling Liu

    2015-01-01

    Full Text Available Mn-doped CeO2 flower-like microstructures have been synthesized by a facile method, involving the precipitation of metallic alkoxide precursor in a polyol process from the reaction of CeCl3·7H2O with ethylene glycol in the presence of urea followed by calcination. By introducing manganese ions, the composition can be freely manipulated. To investigate whether there was a hybrid synergic effect in CH4 combustion reaction, further detailed characteristics of Mn-doped CeO2 with various manganese contents were revealed by XRD, Raman, FT-IR, SEM, EDS, XPS, OSC, H2-TPR, and N2 adsorption-desorption measurements. The doping manganese is demonstrated to increase the storage of oxygen vacancy for CH4 and enhance the redox capability, which can efficiently convert CH4 to CO2 and H2O under oxygen-rich condition. The excellent catalytic performance of MCO-3 sample, which was obtained with the starting Mn/Ce ratios of 0.2 in the initial reactant compositions, is associated with the larger surface area and richer surface active oxygen species.

  12. SYNTHESIS OF NOVEL THIOPHENEDIMETHYLENE BRIDGED HOMOBINUCLEAR METALLOCENES AND THEIR CATALYTIC PROPERTIES FOR ETHYLENE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Xi-jie Liu; Jun-quan Sun; Hai-ying Zhang; Xiao-hui Xiao; Feng Lin

    2006-01-01

    By treating disodium(thiophenedimethylene)dicyclopentadienide C4H2S(CH2C5H4Na)2 with two equivalent of CpTiCl3 or CpZrCl3 DME at 0℃ in THF, two new thiophenedimethylene bridged binuclear metallocenes [Cl2MC5H5][C5H4CH2C4H2SCH2C5H4][C5H5MCl2] (M = Ti 3, M = Zr 4) were synthesized in high yield and their structures were characterized by 1H-NMR. These complexes were used as catalysts for ethylene polymerization in the presence of methylaluminoxane (MAO). The effects of polymerization temperature, time, concentration of catalyst, molar ratio of MAO/Cat on polymerization were studied in detail. The catalytic activities of thiophenedimethylene bridged binuclear are higher than that of pheneyldimethylene bridged binuclear metallocene catalysts and much higher than that of corresponding mononuclear metallocenes (Cp2TiCl2 and Cp2ZrCl2). The molecular weight distribution curves of polyethylenes produced by binuclear metallocene catalysts (3, 4) and by mononuclear metallocene catalyst have only single peak, but the former (MWD = 3.5-4.7) is obviously broader than the latter (MWD = 2.0-2.2).

  13. Copper(I) complexes with trispyrazolylmethane ligands: synthesis, characterization, and catalytic activity in cross-coupling reactions.

    Science.gov (United States)

    Haldón, Estela; Álvarez, Eleuterio; Nicasio, M Carmen; Pérez, Pedro J

    2012-08-01

    Three novel Cu(I) complexes bearing tris(pyrazolyl)methane ligands, Tpm(x), have been prepared from reactions of equimolar amounts of CuI and the ligands Tpm, (HC(pz)(3)), Tpm*, (HC(3,5-Me(2)-pz)(3)), and Tpm(Ms), (HC(3-Ms-pz)(3)). X-ray diffraction studies have shown that the Tpm and Tpm(Ms) derivatives exhibit a 2:1 Cu:ligand ratio, whereas the Tpm* complex is a mononuclear species in nature. The latter has been employed as a precatalyst in the arylation of amides and aromatic thiols with good activity. The synthesis of a Tpm*Cu(I)-phthalimidate, a feasible intermediate in this catalytic process, has also been performed. Low temperature (1)H NMR studies in CDCl(3) have indicated that this complex exists in solution as a mixture of two, neutral and ionic forms. Conductivity measurements have reinforced this proposal, the ionic form predominating in a very polar solvent such as DMSO. The reaction of Tpm*Cu(I)-phthalimidate with iodobenzene afforded the expected C-N coupling product in 76% yield accounting for its role as an intermediate in this transformation.

  14. Electrochemical synthesis of NiFe{sub 2}O{sub 4} nanoparticles: Characterization and their catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, R. [Chemistry Department, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito de Rocha, C.P. 36040 Guanajuato Gto. (Mexico); Department of Physical Chemistry Applied, Universidad Autonoma de Madrid, Cantoblanco S/N, C.P 28049 Madrid (Spain); Mazario, E. [Department of Physical Chemistry Applied, Universidad Autonoma de Madrid, Cantoblanco S/N, C.P 28049 Madrid (Spain); Gutierrez, S. [Chemistry Department, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito de Rocha, C.P. 36040 Guanajuato Gto. (Mexico); Morales, M.P. [Materials Science Institute of Madrid, Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Department of Physical Chemistry Applied, Universidad Autonoma de Madrid, Cantoblanco S/N, C.P 28049 Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Nickel ferrite nanoparticles were synthesized by new electrochemical method. Black-Right-Pointing-Pointer Stoichometric nanoparticles with 20 nm of size can be prepared with this method. Black-Right-Pointing-Pointer Nickel ferrites nanoparticles were used as catalysts in the direct oxidation of glucose at pH 7. - Abstract: In this work a new route for preparation of nickel ferrites nanoparticles has been developed. The synthesis is carried out in an electrochemical cell using three electrodes, a sheet of iron was employed as cathode and two sheets of iron and nickel were used as sacrificial anodes. The obtained nanoparticles were washed several times with distilled water, separated magnetically and dried under vacuum with constant temperature for 12 h. The characterization of the nanoparticles was carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Inductively coupled plasma mass spectrometry (ICP-MS). Magnetic measurements were carried out using a vibrating sample magnetometer (VSM). To evaluate the catalytical properties of these nanoparticles against the oxidation of glucose a graphite paste electrode (GPE) was made. The proportions of the nanoparticles in GPE were 5, 10, 20 and 50% in weight. The electrode shows promising properties for its use as catalyst in the glucose oxidation.

  15. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity.

    Science.gov (United States)

    Sen, Ipsita K; Maity, Kousik; Islam, Syed S

    2013-01-16

    Gold nanoparticles were synthesized by reducing chloroauric acid with a glucan, isolated from an edible mushroom Pleurotus florida, cultivar Assam Florida. Here, glucan acts as reducing as well as stabilizing agent. The synthesized gold nanoparticles were characterized by UV-visible spectroscopy, HR-TEM, XRD, SEM, and FT-IR analysis. The results indicated that the size distribution of gold nanoparticles (Au NPs) changed with the change in concentration of chloroauric acid (HAuCl(4)). The resulting Au NPs-glucan bioconjugates function as an efficient heterogeneous catalyst in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), in the presence of sodium borohydride. The reduction of 4-nitrophenol with Au NPs-glucan bioconjugates followed pseudo-first-order kinetics. The effect of particle size and gold loading on reduction rate of 4-NP was studied with Au NPs-glucan bioconjugates prepared with different concentrations of HAuCl(4). The synthesis of catalytically active Au NPs using a pure mushroom polysaccharide of known structure is reported for the first time.

  16. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye

    Science.gov (United States)

    Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok; Sethuraman, Mathur Gopalakrishnan

    2016-05-01

    Facile green synthesis of silver nanoparticles (AgNPs) using aqueous bark extract of Terminalia cuneata has been reported in this article. The effects of concentration of the extract, reaction time and pH were studied by UV-Vis spectroscopy. Appearance of yellow color with λmax around ~ 420 nm suggested the formation of AgNPs. The stable AgNPs were further characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) with zeta potential and high resolution transmission electron microscopy (HR-TEM) with energy dispersive X-ray spectroscopy (EDS) analysis. The synthesized AgNPs were in the size range of 25-50 nm with a distorted spherical shape identified from HR-TEM analysis. The catalytic activity of AgNPs on the reduction of direct yellow-12 using NaBH4 was analyzed using a UV-Vis spectrophotometer. This study showed the efficacy of biogenic AgNPs in catalyzing the reduction of direct yellow-12.

  17. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst.

    Science.gov (United States)

    Baran, Talat; Inanan, Tülden; Menteş, Ayfer

    2016-07-10

    The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature.

  18. Synthesis and Characterization of Two Novel Organic-Inorganic Compounds Based on Tetrahexyl and Tetraheptyl Ammonium Ions and the Preyssler Anion and Their Catalytic Activities in the Synthesis of 4-Aminopyrazolo[3,4-d]- Pyrimidines

    Directory of Open Access Journals (Sweden)

    Fatemeh Farrash Bamoharram

    2010-04-01

    Full Text Available Two novel organic–inorganic compounds based on tetrahexylammonium (THA and tetraheptylammonium (THPA ions and the Preyssler anion, [NaP5W30O110]14-, were synthesized and formulated as (THA7.7H6.3 [NaP5W30O110] (A and (THPA7.5 H6.5[N aP5W30O110] (B. The synthesized compounds were characterized by IR, UV, and TGA and used for the catalytic synthesis of 4-aminopyrazolo[3,4,-d]pyrimidine derivatives 2a-2d. Our findings showed efficient catalytic activities for A and B.

  19. Direct and post-synthesis incorporation of chiral metallosalen catalysts into metal-organic frameworks for asymmetric organic transformations.

    Science.gov (United States)

    Xi, Weiqin; Liu, Yan; Xia, Qingchun; Li, Zijian; Cui, Yong

    2015-09-01

    Two chiral porous metal-organic frameworks (MOFs) were constructed from [VO(salen)]-derived dicarboxylate and dipyridine bridging ligands. After oxidation of V(IV) to V(V) , they were found to be highly effective, recyclable, and reusable heterogeneous catalysts for the asymmetric cyanosilylation of aldehydes with up to 95 % ee. Solvent-assisted linker exchange (SALE) treatment of the pillared-layer MOF with [Cr(salen)Cl]- or [Al(salen)Cl]-derived dipyridine ligands led to the formation of mixed-linker metallosalen-based frameworks and incorporation of [Cr(salen)] enabled its use as a heterogeneous catalyst in the asymmetric epoxide ring-opening reaction.

  20. Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardium occidentale

    Science.gov (United States)

    Sheny, D. S.; Mathew, Joseph; Philip, Daizy

    2012-11-01

    A new phytochemical method for the synthesis of gold nanoparticles is reported. The essential oils extracted from the fresh leaves of Anacardium occidentale are used for the reduction of auric acid to Au nanoparticles (NPs). The formation and morphology of synthesized NPs are investigated with the help of UV-visible, TEM and FTIR spectroscopy. The NPs synthesized at room temperature are mono-dispersed and hexagonal in shape with an average size of 36 nm while those prepared at higher temperature are composed of a mixture of anisotropic particles. The UV-visible absorption spectra of these anisotropic NPs show asymmetry in the longer wavelength side. The quantity of oil is an important criterion modulating the shape of NPs. Possible biochemical mechanism leading to the formation of NPs is studied using FTIR spectroscopy. The potential of synthesized Au NPs as catalyst is explored for the hydrogenation of p-nitro phenol to p-amino phenol at room temperature.

  1. Synthesis of mesoporous Beta and Sn-Beta zeolites and their catalytic performances.

    Science.gov (United States)

    Jin, Junjiang; Ye, Xinxin; Li, Yongsheng; Wang, Yanqin; Li, Liang; Gu, Jinlou; Zhao, Wenru; Shi, Jianlin

    2014-06-14

    Mesoporous Beta zeolite has been successfully prepared through hydrothermal synthesis in the presence of cationic ammonium-modified chitosan as the meso-template. Through a subsequent solid-gas reaction between highly dealuminated mesoporous Beta zeolite and SnCl4 steam at an elevated temperature, mesoporous Sn-Beta has been facilely obtained. It was revealed that the addition of cationic chitosan induced the nanocrystal aggregation to particle sizes of ∼300 nm, giving rise to the intercrystalline/interparticle mesoporosity. In the Sn-implanting procedure, Sn species were demonstrated to be doped into the framework of the resulting mesoporous Beta zeolite in a tetrahedral environment without structural collapse. Due to the micro/mesoporous structures, both mesoporous Beta and Sn-Beta exhibited superior performances in α-pinene isomerization, Baeyer-Villiger oxidation of 2-adamantanone by hydrogen peroxide and the isomerization of glucose in water, respectively.

  2. Synthesis of Nitrogen Incorporated Carbon Nanotubes with Different Diameters by Catalytic Pyrolysis of Butylamine

    Institute of Scientific and Technical Information of China (English)

    JIN Hai-ying; BING Nai-ci; WANG Ling-ling; WANG Li-jun

    2011-01-01

    Bamboo-like nitrogen-doped carbon(CNx)nanotubes were synthesized by chemical vapor deposition (CVD)at a high reaction temperature of 600-900 ℃.The butylamine and Fe/SBA-15 molecular sieve have been used as precursor and catalyst,respectively.Transmission electron microscopy(TEM)and high resolution transmission electron microscopy(HRTEM)observations show that the outer diameter and wall thickness as well as the inner diameter were increased with increasing reaction temperature in a temperature range of 600-800 ℃.A synergism mechanism of the growth through bulk diffusion and the competitive growth through surface diffusion functions during the synthesis of CNx nanotubes was proposed.

  3. Synthesis of New Chiral Benzimidazolylidene–Rh Complexes and Their Application in Asymmetric Addition Reactions of Organoboronic Acids to Aldehydes

    Directory of Open Access Journals (Sweden)

    Weiping He

    2016-09-01

    Full Text Available A series of novel chiral N-heterocyclic carbene rhodium complexes (NHC–Rh based on benzimidazole have been prepared, and all of the NHC–Rh complexes were fully characterized by NMR and mass spectrometry. These complexes could be used as catalysts for the asymmetric 1,2-addition of organoboronic acids to aldehydes, affording chiral diarylmethanols with high yields and moderate enantioselectivities.

  4. Crystallography of Magnetite Plaquettes and their Significance as Asymmetric Catalysts for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.

  5. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    Science.gov (United States)

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  6. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    Science.gov (United States)

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  7. Asymmetric synthesis of α-amino-1,3-dithianes via chiral N-phosphonyl imine-based Umpolung reaction without using chromatography and recrystallization.

    Science.gov (United States)

    Kattamuri, Padmanabha V; Ai, Teng; Pindi, Suresh; Sun, Yinwei; Gu, Peng; Shi, Min; Li, Guigen

    2011-04-15

    A series of α-amino-1,3-dithianes have been synthesized via the asymmetric Umpolung reaction of 2-lithio-1,3-dithianes with chiral N-phosphonyl imines in good chemical yields (up to 82%) and good to excellent diastereoselectivities (>99:1). The manner by which chiral N-phosphonyl imines are slowly added into the solution of 2-lithio-1,3-dithiane was found to be crucial for achieving excellent diastereoselectivity. The current synthesis was proven to follow the GAP chemistry (group-assistant-purification chemistry) process, which avoids traditional purification techniques of chromatography or recrystallization, i.e., the pure chiral α-amino-1,3-dithianes attached with the chiral N-phosphonyl group were readily obtained by washing the solid crude products with hexane or a mixture of hexane-ethyl acetate.

  8. Design and synthesis of ruthenium(II) OCO pincer type NHC complexes and their catalytic role towards the synthesis of amides

    Indian Academy of Sciences (India)

    Muthukumaran Nirmala; Periasamy Viswanathamurthi

    2016-01-01

    The present contribution describes the synthesis and characterization of a family of robust ruthenium complexes, supported by a tridentate pincer ligand of the type bis-phenolate--heterocyclic carbene [Bu(OCO)2−] (NHC). Ruthenium(II) complexes (1-3) bearing bis-phenolate--heterocyclic carbene ligand were synthesized in good yields by the reaction of imidazolinium proligand (HL) with metal precursors [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) by transmetalation from the corresponding silver carbene complex. All the Ru(II)-NHC complexes have been characterized by elemental analyses, spectroscopic methods as well as ESI mass spectrometry. Based on the spectral results, an octahedral geometry was assigned for all the complexes. The tridentate nature of the Bu(OCO)2− ligand as well as some level of steric protection provided by the Bu groups may rationalize the excellent stability of the Ru-Ccarbene bond in the present systems. Moreover, for the explorations of catalytic potential of the synthesized compounds, all the three [Ru-NHC] complexes (1-3) were tested as catalysts for amidation of alcohols with amines. Notably, the complex 1 was found to be very efficient and versatile catalyst towards amidation of a wide range of alcohols with amines.

  9. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Kishor Kr. [Department of Chemistry, ADP College, Nagaon, Assam 782002 (India); Nandi, Mithun [Department of Chemistry, Gauhati University, Guwahati, Assam 781014 (India); Talukdar, Anup K., E-mail: anup_t@sify.com [Department of Chemistry, Gauhati University, Guwahati, Assam 781014 (India)

    2015-06-15

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IR analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm{sup −1}. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA{sup +} cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m{sup 2} g{sup −1} and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm{sup 3} g{sup −1}. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of

  10. Catalytic synthesis of acetals and ketals with H3PW12O40/PAn

    Institute of Scientific and Technical Information of China (English)

    YANG Shuijin; ZHANG Yijun; DU Xinxian; Philippe G.Merle

    2008-01-01

    A new environmental friendly catalyst H3PW12O40/PAn was prepared and identified by means of FT-IR,XRD,and TG/DTA.The optimum conditions have been found;that is,the mass ratio of PAn to H3PW12O40 is 1:1.5,the volume of methanol is 20 mL,and the reflux reaction time is 3 h.The structural identity of Keggin units is preserved after the ineorporation into polyauiline matrix.Catalytic activities of H3PW12O40/PAn in synthesizing 2-methyl-2-ethoxycarbonylmethyl-1,3-dioxolane,2,4-dimethyl-2-ethoxycarbonylmethy;-1,3-dioxolane,cyclohexanone ethylene ketal,cyelohexanone 1,2-propanediol ketal,butanone ethylene ketal,butanone 1,2-propanediol ketal,2-phenyl-1,3-dioxolane,4-methyl-2-phenyl-1,3-dioxolane,2-propyl-1,3-dioxolane,and 4-methyl-2-propyl-1,3-dioxolane were reported.It has been demonstrated that H3PW12O40/PAn is an excellent catalyst.Various factors concerned in these reactions were investigated.The optimum conditions are as follows:the molar ratio of aldehyde/ketone to glycol (r) is 1:1.5,the mass ratio of the catalyst used to the reactants is 0.6%,and the reaction lime is 1.0 h.Under these conditions,the yield is as follows:2-methyl-2-ethoxycarbonylmethyl-1,3-dioxolane,69.0%;2,4-dimethyl-2-ethoxycarbonylmethyl-1,3-dioxolane,79.5%;cyclohexanene ethylene ketal,78.9%;cyclohexanone 1,2-propanediol ketal,85.3%;butanone ethylene ketal,56.9%;butanone 1,2-propanediol ketal,78.1%;2-phenyl-1,3-dioxolane,76.3%;4-methyl-2-phenyl-1,3-dionolane,94.2%;2-propyl-l,3-dioxolane,70.7%;and 4-methyl-2-propyl-1,3-dioxolane,79.2%.

  11. Catalytic performance of cerium iron complex oxides for partial oxidation of methane to synthesis gas

    Institute of Scientific and Technical Information of China (English)

    LI Kongzhai; WANG Hua; WEI Yonggang; LIU Mingchun

    2008-01-01

    The cerium iron complex oxides oxygen carder was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carrier could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carriers were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carder: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction con-dition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.

  12. Asymmetric synthesis and absolute stereochemistry of a labdane-type diterpenoid isolated from the rhizomes of Isodan yuennanensis.

    Science.gov (United States)

    Deng, Heping; Cao, Wei; Zhang, Zhijiang; Liu, Bo

    2016-07-14

    The first synthesis of a labdane-type diterpenoid isolated from Isodon yuennanensis was achieved in fourteen steps from commercially available starting material, (+)-sclareolide. The synthesis features the Barton nitrite ester reaction to introduce an oxime at the angular methyl group and the Jones oxidation to construct the lactone segment. By comparison of the optical rotation of our synthetic sample and the natural sample, the absolute stereochemistry of the natural diterpenoid has been determined.

  13. Synthesis, characterization, and catalytic properties of cationic hydrogels containing copper(II) and cobalt(II) ions.

    Science.gov (United States)

    Lombardo Lupano, Lucía Victoria; Lázaro Martínez, Juan Manuel; Piehl, Lidia Leonor; Rubín de Celis, Emilio; Torres Sánchez, Rosa María; Campo Dall' Orto, Viviana

    2014-03-18

    Here, we report the synthesis and characterization of a hydrogel based on ethylene glycol diglycidyl ether (EGDE) and 1,8-diamino-3,6-dioxaoctane (DA). Chemically stable Co(II) and Cu(II) coordination complexes were prepared with this nonsoluble polyelectrolyte, poly(EGDE-DA), and studied by ss-NMR, FT-IR, thermogravimetry, and microscopy. Mesopores were found in all the samples, the thermal stability of the polymer matrix was highly affected by the presence of metal ions, and the (13)C CP-MAS spectrum for the Cu(II)-complex evidenced a significant increase in the reticulation degree by Cu(II) ions. The catalytic activity of these materials on H2O2 activation was studied by electron spin resonance (ESR). The Co(II)-poly(EGDE-DA)/H2O2 heterogeneous system produced O2, an anion superoxide (O2(•)¯), and a hydroxyl radical (OH(•)), which diffused into the solution at the time that a decrease in pH was detected. In the same way, the Cu(II)-poly(EGDE-DA)/H2O2 heterogeneous system produced O2 and OH(•). H2O2 activation by the poly(EGDE-DA) complexes with Co(II) and Cu(II) were applied on the decolorization of solutions of the azo-dye methyl orange (MO). In the presence of 63 mM H2O2, 87% of MO was removed in 10 min with Cu(II)-poly(EGDE-DA) and in 110 min with Co(II)-poly(EGDE-DA). In addition, the pharmaceutical product epinephrine was partially oxidized to adrenochrome by the O2(•)¯ released from the Co(II)-poly(EGDE-DA)/H2O2 heterogeneous system.

  14. Poly-alpha-glutamic acid synthesis using a novel catalytic activity of RimK from Escherichia coli K-12.

    Science.gov (United States)

    Kino, Kuniki; Arai, Toshinobu; Arimura, Yasuhiro

    2011-03-01

    Poly-L-α-amino acids have various applications because of their biodegradable properties and biocompatibility. Microorganisms contain several enzymes that catalyze the polymerization of L-amino acids in an ATP-dependent manner, but the products from these reactions contain amide linkages at the side residues of amino acids: e.g., poly-γ-glutamic acid, poly-ε-lysine, and cyanophycin. In this study, we found a novel catalytic activity of RimK, a ribosomal protein S6-modifying enzyme derived from Escherichia coli K-12. This enzyme catalyzed poly-α-glutamic acid synthesis from unprotected L-glutamic acid (Glu) by hydrolyzing ATP to ADP and phosphate. RimK synthesized poly-α-glutamic acid of various lengths; matrix-assisted laser desorption ionization-time of flight-mass spectrometry showed that a 46-mer of Glu (maximum length) was synthesized at pH 9. Interestingly, the lengths of polymers changed with changing pH. RimK also exhibited 86% activity after incubation at 55°C for 15 min, thus showing thermal stability. Furthermore, peptide elongation seemed to be catalyzed at the C terminus in a stepwise manner. Although RimK showed strict substrate specificity toward Glu, it also used, to a small extent, other amino acids as C-terminal substrates and synthesized heteropeptides. In addition, RimK-catalyzed modification of ribosomal protein S6 was confirmed. The number of Glu residues added to the protein varied with pH and was largest at pH 9.5.

  15. Synthesis of copper/nickel nanoparticles using newly synthesized Schiff-base metals complexes and their cytotoxicity/catalytic activities.

    Science.gov (United States)

    Aazam, Elham S; El-Said, Waleed Ahmed

    2014-12-01

    Transition metal complexes compounds with Schiff bases ligand representing an important class of compounds that could be used to develop new metal-based anticancer agents and as precursors of metal NPs. Herein, 2,3-bis-[(3-ethoxy-2-hydroxybenzylidene)amino]but-2-enedinitrile Schiff base ligand and its corresponding copper/nickel complexes were synthesized. Also, we reported a facile and rapid method for synthesis nickel/copper nanoparticles based on thermal reduction of their complexes. Free ligand, its metal complexes and metals nanoparticles have been characterized based on elemental analysis, transmission electron microscopy, powder X-ray diffraction, magnetic measurements and by various spectroscopic (UV-vis, FT-IR, (1)H NMR, GC-MS) techniques. Additionally, the in vitro cytotoxic activity of free ligand and its complexes compounds were assessed against two cancer cell lines (HeLa and MCF-7 cells)and one healthy cell line (HEK293 cell). The copper complex was found to be active against these cancer cell lines at very low LD50 than the free ligand, while nickel complex did not show any anticancer activity against these cell lines. Also, the antibacterial activity of as-prepared copper nanoparticles were screened against Escherichia coli, which demonstrated minimum inhibitory concentration and minimum bactericidal concentration values lower than those values of the commercial Cu NPs as well as the previous reported values. Moreover, the synthesized nickel nanoparticles demonstrated remarkable catalytic performance toward hydrogenation of nitrobenzene that producing clean aniline with high selectivity (98%). This reactivity could be attributed to the high degree of dispersion of Ni nanoparticles.

  16. Synthesis, characterization and catalytic application of silica supported tin oxide nanoparticles for synthesis of 2,4,5-tri and 1,2,4,5-tetrasubstituted imidazoles under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Ashok V. Borhade

    2017-02-01

    Full Text Available Highly efficient and eco-friendly, one pot synthesis of 1,2,4,5-tetra substituted imidazoles and 2,4,5-trisubstituted imidazoles was reported under solvent free conditions using nanocrystalline silica supported tin oxide (SiO2:SnO2 as a catalyst with excellent yield. The present methodology offers several advantages such as mild reaction conditions, short reaction time, good yield, high purity of product, recyclable catalyst without a noticeable decrease in catalytic activity and can be used for large scale synthesis. The synthesized SiO2:SnO2 nanocrystalline catalyst was characterized by XRD, BET surface area and TEM techniques.

  17. Catalytic microrotor driven by geometrical asymmetry

    Science.gov (United States)

    Yang, Mingcheng; Ripoll, Marisol; Chen, Ke

    2015-02-01

    An asymmetric gear with homogeneous surface properties is, here, presented as a prototype to fabricate catalytic microrotors. The driving torque arises from the diffusiophoretic effect induced by the concentration gradients generated by catalytic chemical reactions at the gear surface. This torque produces a spontaneous and unidirectional rotation of the asymmetric gear. By means of mesoscopic simulations, we prove and characterize this scenario. The gear rotational velocity is determined by the gear-solvent interactions, the gear geometry, the solvent viscosity, and the catalytic reaction ratio. Our work presents a simple way to design self-propelled microrotors, alternative to existing catalytic bi-component, or thermophoretic ones.

  18. Synthesis and characterization of ZnO-Al2 O3 oxides as energetic electro-catalytic material for glucose fuel cell

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    One of the thrust areas of research is to find an alternative fuel to meet the increasing demand for energy. Glucose is a good source of alternative fuel for clean energy and is easily available in abundance from both naturally occurring plants and industrial processes. Electrochemical oxidation of glucose in fuel cell requires high electro-catalytic surface of the electrode to produce the clean electrical energy with minimum energy losses in the cell. Pt and Pt based alloys exhibit high electro-catalytic properties but they are expensive. For energy synthesis at economically cheap price, non Pt based inexpensive high electro catalytic material is required. Electro synthesized ZnO-Al2 O3 composite is found to exhibit high electro-catalytic properties for glucose oxidation. The Cyclic Voltammetry and Chronoamperometry curves reflect that the material is very much comparable to Pt as far as the maximum current and the steady state current delivered from the glucose oxidation are concerned. XRD image confirms the mixed oxide composite. SEM images morphology show increased 3D surface areas at higher magnification. This attributed high current delivered from electrochemical oxidation of glucose on this electrode surface.

  19. Effect of the graphitic degree of carbon supports on the catalytic performance of ammonia synthesis over Ba-Ru-K/HSGC catalyst

    Institute of Scientific and Technical Information of China (English)

    Wei Jiang; Ying Li; Wenfeng Han; Yaping Zhou; Haodong Tang; Huazhang Liu

    2014-01-01

    A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.

  20. Concise Asymmetric Construction of C2 -symmetric 1,9-Diarylnonanoids Using a Hypervalent Silicon Complex: Total Synthesis of (-)-Ericanone.

    Science.gov (United States)

    Kotani, Shunsuke; Kai, Kosuke; Shimoda, Yasushi; Hu, Hao; Gao, Shen; Sugiura, Masaharu; Ogasawara, Masamichi; Nakajima, Makoto

    2016-02-01

    By using a phosphine oxide-catalyzed enantioselective double aldol reaction, we achieved the concise construction of C2 -symmetric 1,9-diarylnonanoids, enabling the synthesis of (-)-ericanone from p-hydroxybenzaldehyde in 6 steps with 65 % overall yield. The enantioselective double aldol reaction is useful for establishing C2 -symmetric 1,9-diaryl-3,7-dihydroxy-5-nonanones with a single operation. Furthermore, the use of o-nosyl-protected p-hydroxybenzaldehyde and a 4,4'-disubstituted BINAP dioxide catalyst dramatically improved the reactivity and selectivity in the double aldol reaction, enabling the total synthesis of (-)-ericanone with high yield and with excellent enantiopurity.

  1. Pilot Plant Test for the Synthesis of Cumene by Catalytic Distillation%催化蒸馏合成异丙苯中试研究

    Institute of Scientific and Technical Information of China (English)

    李东风; 曹钢; 张吉瑞; 宋尚涛; 王振海; 于小东

    2001-01-01

    The influence of technological conditions on the synthesis of cumene by catalytic distillation over FHI-01 catalyst was studied with a pilot plant of 3 kt/a.The operating results for 1317 h showed the process for pilot plant was reasonable and the operation stable;qualified product was produced in accordance with design.The process for the synthesis of cumene by catalytic distillation over FHI-01 catalyst was feasible in that every index of the process was superior to that of fixed bed technology and the selectivity of cumene reached 98% under suitable technological conditions.Owing to lower height of catalytic distillation tower,however,there was 0.5%~1.0%(wt) propylene in the condensate from the top of the tower.The conversion of propylene can reach over 99% by increasing the height of the reacting section in the catalytic distillation tower.%建立了3kt/a催化蒸馏合成异丙苯的中试装置,考察了进料方式、空速、苯/烯摩尔比等工艺条件对反应的影响。1317 h连续运行的结果表明,催化蒸馏合成异丙苯的中试流程设计合理,操作运转平稳,能够生产出符合设计要求的合格产品,证明以改性β沸石FHI-01为催化剂的催化蒸馏合成异丙苯的工艺可行,各项指标均优于目前固定床鼓泡反应器工艺。在适宜的工艺条件下,异丙苯的单程选择性高达98%以上。

  2. Ultrasound-Accelerated Synthesis of Asymmetrical Thiosulfonate S-Esters by Base-Promoted Reaction of Sulfonyl Chlorides with Thiols

    DEFF Research Database (Denmark)

    Pham, Hien Thi; Nguyen, Ngoc-Lan Thi; Duus, Fritz

    2015-01-01

    or with a minimum amount of solvent assisted by magnetic stirring, ultrasound irradiation and microwave irradiation. Ultrasound irradiation has good effects on the synthesis of sterically hindered thiosulfonate S-esters in solvent-free media as well as in a minimum amount of anhydrous diethyl ether....

  3. Design, Synthesis and Antitumor Activity of Asymmetric Bis(s-triazole Schiff-base)s Bearing Functionalized Side-Chain

    Institute of Scientific and Technical Information of China (English)

    HU,Guo-Oiang; HOU,Li-Li; XIE,Song-Oiang; HUANG,Wen-Long

    2008-01-01

    1-Amino-2-pyrid-3-yl-5-(2-benzoylethylthio)-s-triazole (1) was condensed with 1-amino-3-mercapto-5-[(un)substituted phenyl]-s-triazoles and subsequently substituted with chloroacetic acid to afford bis-s-triazole sulfanylacetic acid mono-Schiff bases (3a-3e),which were condensed with 9-formylanthracene to produce asymmetric bis(s-triazole Schiff base) sulfanylacetic acids (4a-4e).The structures of new synthesized compounds were characterized by elemental analysis and spectral data,and their in vitro antitumor activity against L1210,CHO and HL60 cell lines was evaluted via the respective IC50 values by methylthiazole trazolium (MTT) assay.

  4. Rational Design and Synthesis of [5]Helicene-Derived Phosphine Ligands and Their Application in Pd-Catalyzed Asymmetric Reactions

    Science.gov (United States)

    Yamamoto, Kosuke; Shimizu, Takashi; Igawa, Kazunobu; Tomooka, Katsuhiko; Hirai, Go; Suemune, Hiroshi; Usui, Kazuteru

    2016-11-01

    A series of novel optically active [5]helicene-derived phosphine ligands (L1, with a 7,8-dihydro[5]helicene core structure- and L2, with a fully aromatic [5]helicene core structure) were synthesized. Despite their structural similarities, L1 and L2 exhibit particularly different characteristics in their use as chiral ligands. L1 was highly effective in the asymmetric allylation of indoles with 1,3-diphenylallyl acetate (up to 99% ee), and in the etherification of alcohols (up to 96% ee). In contrast, L2 was highly effective in the stereocontrol of helical chirality in Suzuki-Miyaura coupling (SMC) reaction (up to 99% ee). Density functional theory analysis was employed to propose a model that accounts for the origin of the enantioselectivity in these reactions.

  5. Bond dissociation mechanism of ethanol during carbon nanotube synthesis via alcohol catalytic CVD technique: Ab initio molecular dynamics simulation

    Science.gov (United States)

    Oguri, Tomoya; Shimamura, Kohei; Shibuta, Yasushi; Shimojo, Fuyuki; Yamaguchi, Shu

    2014-03-01

    Dissociation of ethanol on a nickel cluster is investigated by ab initio molecular dynamics simulation to reveal the bond dissociation mechanism of carbon source molecules during carbon nanotube synthesis. C-C bonds in only CHxCO fragments are dissociated on the nickel cluster, whereas there is no preferential structure among the fragments for C-O bond dissociation. The dissociation preference is uncorrelated with the bond dissociation energy of corresponding bonds in freestanding molecules but is correlated with the energy difference between fragment molecules before and after dissociation on the nickel surface. Moreover, carbon-chain formation occurs after C-C bond dissociation in a continuous simulation. What determines the chirality of CNTs? What happens at the dissociation stage of carbon source molecules? Regarding the former question, many researchers have pointed out the good epitaxial relationship between a graphite network and a close-packed facet (i.e., fcc(1 1 1) or hcp(0 0 0 1)) of transition metals [17-19]. Therefore, the correlation between the chirality of CNTs and the angle of the step edge on metal (or metal carbide) surfaces has been closely investigated [20-22]. In association with this geometric matching, the epitaxial growth of graphene on Cu(1 1 1) and Ni(1 1 1) surfaces has recently been achieved via CCVD technique [23-25], which is a promising technique for the synthesis of large-area and monolayer graphene.Regarding the latter question, it is empirically known that the yield and quality of CNT products strongly depend on the choice of carbon source molecules and additives. For example, it is well known that the use of ethanol as carbon source molecules yields a large amount of SWNTs without amorphous carbons (called the alcohol CCVD (ACCVD) technique) compared with the CCVD process using hydrocarbons [4]. Moreover, the addition of a small amount of water dramatically enhances the activity and lifetime of the catalytic metal (called the

  6. Synthesis of lathanum or La-B doped KIT-6 mesoporous materials and their application in the catalytic oxidation of styrene

    Institute of Scientific and Technical Information of China (English)

    詹望成; 郭杨龙; 王艳芹; 郭耘; 卢冠忠

    2010-01-01

    La-doped and La-B-doped KIT-6 mesoporous materials were prepared by direct hydrothermal synthesis with pH-adjusting method and characterized by X-ray diffractometer(XRD),nitrogen sorption,FT-IR,UV-Vis,X-ray photoelectron spectroscopy(XPS) and ICP-AES.The catalytic performance for the oxidation of styrene by hydrogen peroxide,tert-butyl hydroperoxide or oxygen was investigated.The results showed that the introduction of heteroatoms did not destroy the mesostructure of KIT-6 with cubic Ia3d space group.La or ...

  7. NaY zeolites modified by La~(3+) and Ba~(2+): the effect of synthesis details on surface structure and catalytic performance for lactic acid to acrylic acid

    Institute of Scientific and Technical Information of China (English)

    闫婕; 余定华; 李恒; 孙鹏; 黄和

    2010-01-01

    Modified NaY zeolites have been widely studied and the modification metal element is normally single, while few researches have been conducted on NaY zeolites modified by two kinds of metals. In our study, a series of La3+ and Ba2+ modified NaY zeolites were synthesized through different impregnation procedures. Lactic acid dehydration to acrylic acid was selected as a probe reaction to test the catalytic performance of these zeolites synthesized. The effects of synthesis details on their pore structures an...

  8. Role of Carboxylate ligands in the Synthesis of AuNPs: Size Control, Molecular Interaction and Catalytic Activity

    KAUST Repository

    Aljohani, Hind Abdullah

    2016-05-22

    low temperature. The structure of the citrate layer on the AuNP surface may be a key factor in gaining a more detailed understanding of nanoparticle formation and stabilization. This can be affecting the catalytic activity. These thoughts invited us to systematically examine the role of sodium citrate as a stabilizer of gold nanoparticles, which is the main theme of this thesis. This research is focused on three main objectives, controlling the size of the gold nanoparticles based on citrate (and other carboxylate ligands Trisodium citrate dihydrate, Isocitric Acid, Citric acid, Trimesic acid, Succinic Acid, Phthalic acid, Disodium glutarate, Tartaric Acid, Sodium acetate, Acetic Acid and Formic Acid by varying the concentration of Gold/sodium citrate, investigating the interaction of the citrate layer on the AuNP surface, and testing the activity of the Au/TiO2 catalysts for the oxidation of carbon monoxide. This thesis will be divided into five chapters. In Chapter 1, a general literature study on the various applications and methods of synthesis of Au nanoparticles is described. Then we present the main synthetic pathways of Au nanoparticles we selected. A part of the bibliographic study was given to the use of Au nanoparticles in catalysis. In Chapter 2, we give a brief description of the different experimental procedures and characterization techniques utilized over the course of the present work. The study of the size control and the interaction between gold nanoparticles and the stabilizer (carboxylate groups) was achieved by using various characterization techniques such as UV-visible spectroscopy, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Nuclear Magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). In Chapter 3, we discuss the synthesis and size control of Au nanoparticles by following the growth of these nanoparticles by UV-Visible spectroscopy and TEM. We

  9. Mechanistic insights on cooperative asymmetric multicatalysis using chiral counterions.

    Science.gov (United States)

    Jindal, Garima; Sunoj, Raghavan B

    2014-08-15

    Cooperative multicatalytic methods are steadily gaining popularity in asymmetric catalysis. The use of chiral Brønsted acids such as phosphoric acids in conjunction with a range of transition metals has been proven to be effective in asymmetric synthesis. However, the lack of molecular-level understanding and the accompanying ambiguity on the role of the chiral species in stereoinduction continues to remain an unresolved puzzle. Herein, we intend to disclose some novel transition state models obtained through DFT(B3LYP and M06) computations for a quintessential reaction in this family, namely, palladium-catalyzed asymmetric Tsuji-Trost allylation of aldehydes. The aldehyde is activated as an enamine by the action of a secondary amine (organocatalysis), which then adds to an activated Pd-allylic species (transition metal catalysis) generated through the protonation of allyic alcohol by chiral BINOL-phosphoric acid (Brønsted acid catalysis). We aim to decipher the nature of chiral BINOL-phosphates and their role in creating a quaternary chiral carbon atom in this triple catalytic system. The study reports the first transition state model capable of rationalizing chiral counterion-induced enantioselectivity. It is found that the chiral phosphate acts as a counterion in the stereocontrolling event rather than the conventional ligand mode.

  10. [Development of new methods in asymmetric reactions and their applications].

    Science.gov (United States)

    Node, Manabu

    2002-01-01

    Several novel methods using chiral reagents and biocatalysts for asymmetric reactions are described. Among those reactions, asymmetric reduction via a novel tandem Michael addition/Meerwein-Ponndorf-Verley reduction of acyclic alpha,beta-unsaturated ketones using a chiral mercapto alcohol, asymmetric synthesis of allene-1,3-dicarboxylate via crystallization induced asymmetric transformation, and improved asymmetric nitroolefination of lactones and lactames at alpha-carbon using new chiral reagents were developed. In the reactions using biocatalysts, asymmetric dealkoxycarbonylation of bicyclic beta-keto diesters having sigma-symmetry with lipase or esterase to give optically active beta-keto esters, the asymmetric reduction of bicyclic 1,3-diketones having sigma-symmetry with Baker's yeast to give optically active keto alcohols, and the asymmetric aldol reaction of glycine with threonine aldolase were also developed. The above mentioned products were effectively utilized as chiral building blocks for the asymmetric synthesis of natural products and drugs.

  11. 1,6-asymmetric induction in boron-mediated aldol reactions: application to a practical total synthesis of (+)-discodermolide.

    Science.gov (United States)

    Paterson, Ian; Delgado, Oscar; Florence, Gordon J; Lyothier, Isabelle; Scott, Jeremy P; Sereinig, Natascha

    2003-01-01

    By relying solely on substrate-based stereocontrol, a practical total synthesis of the microtubule-stabilizing anticancer agent (+)-discodermolide has been realized. This exploits a novel aldol bond construction with 1,6-stereoinduction from the boron enolate of (Z)-enone 3 in addition to aldehyde 2. The 1,3-diol 7 is employed as a common building block for the C(1)-C(5), C(9)-C(16), and C(17)-C(24) subunits. [reaction--see text

  12. Asymmetric One-Pot Synthesis of 1,3-Oxazolidines and 1,3-Oxazinanes via Hemiaminal Intermediates

    OpenAIRE

    Nimmagadda, Sri Krishna; Zhang, Zuhui; Antilla, Jon C.

    2014-01-01

    A highly efficient method for the enantioselective one-pot synthesis of 1,3-oxazolidines and 1,3-oxazinanes has been reported. The reaction proceeds via the formation of hemiaminal intermediates obtained by the enantioselective addition of respective alcohols to imines catalyzed by a chiral magnesium phosphate catalyst, followed by intramolecular cyclization under mildly basic conditions. A wide range of substrates have been converted to the respective chiral heterocyclic products in high yie...

  13. Asymmetric catalysis : ligand design and microwave acceleration

    OpenAIRE

    Bremberg, Ulf

    2000-01-01

    This thesis deals partly with the design and synthesis ofligands for use in asymmetric catalysis, and partly with theapplication of microwave heating on metal-based asymmetriccatalytic reactions. Enantiomerically pure pyridyl alcohols and bipyridylalcohols were synthesized from the chiral pool for future usein asymmetric catalysis. Lithiated pyridines were reacted withseveral chiral electrophiles, yielding diastereomeric mixturesthat could be separated without the use of resolutiontechniques....

  14. Enhanced metal loading in SBA-15-type catalysts facilitated by salt addition. Synthesis, characterization and catalytic epoxide alcoholysis activity of molybdenum incorporated porous silica

    Energy Technology Data Exchange (ETDEWEB)

    Budhi, Sridhar [Iowa State Univ., Ames, IA (United States); Colorado School of Mines, Golden, CO (United States); Peeraphatdit, Chorthip [Iowa State Univ., Ames, IA (United States); Pylypenko, Svitlana [Colorado School of Mines, Golden, CO (United States); Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States); Ames Lab., Ames, IA (United States); Smith, Emily A. [Iowa State Univ., Ames, IA (United States); Ames Lab., Ames, IA (United States); Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States); Colorado School of Mines, Golden, CO (United States)

    2014-02-07

    We report a novel method to increase the metal loading in SBA-15 silica matrix via direct synthesis. It was demonstrated through the synthesis and characterization of a series of molybdenum containing SBA-15 mesoporous silica catalysts prepared with and without diammonium hydrogen phosphate (DHP) as an additive. Catalysts prepared with DHP show a 2–3 times increase in incorporation of molybdenum in the silica matrix and pore size enlargement. The synthesized catalysts were characterized using nitrogen sorption, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma–optical emission spectroscopy (ICP–OES). The catalytic activity of catalysts prepared with DHP for alcoholysis of epoxides was superior than the catalyst prepared without DHP. Alcoholysis of epoxides was demonstrated for a range of alcohols and epoxides under ambient conditions in as little as 30 min with high selectivity.

  15. Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity.

    Science.gov (United States)

    Momeni, Seyedeh Samaneh; Nasrollahzadeh, Mahmoud; Rustaiyan, Abdolhossein

    2016-06-15

    A green synthesis process was developed for the preparation of the Cu/ZnO nanoparticles (NPs) using Euphorbia prolifera leaf extract as a mild, renewable and non-toxic reducing agent and efficient stabilizer without using dangerous, hazardous and toxic materials. The approach of biosynthesis appears to be cost efficient eco-friendly and easy alternative to conventional methods of the Cu/ZnO NPs synthesis. The Cu/ZnO NPs were characterized by FESEM, EDS, elemental mapping, TEM and XRD. TEM micrograph has shown the formation of Cu NPs with the size in the range of 5-17 nm. In addition, the synthesized Cu/ZnO NPs presented excellent catalytic activity for the degradation of Methylene blue (MB) and Congo red (CR) in the presence of NaBH4 in water at room temperature.

  16. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer.

    Science.gov (United States)

    Wu, Jianzhang; Wu, Shoubiao; Shi, Lingyi; Zhang, Shanshan; Ren, Jiye; Yao, Song; Yun, Di; Huang, Lili; Wang, Jiabing; Li, Wulan; Wu, Xiaoping; Qiu, Peihong; Liang, Guang

    2017-01-05

    The nuclear factor-kappa B (NF-κB) signaling pathway has been targeted for the therapy of various cancers, including lung cancer. EF24 was considered as a potent inhibitor of NF-κB signaling pathway. In this study, a series of asymmetric EF24 analogues were synthesized and evaluated for their anti-cancer activity against three lung cancer cell lines (A549, LLC, H1650). Most of the compounds exhibited good anti-tumor activity. Among them, compound 81 showed greater cytotoxicity than EF24. Compound 81 also possessed a potent anti-migration and anti-proliferative ability against A549 cells in a concentration-dependent manner. Moreover, compound 81 induced lung cancer cells death by inhibiting NF-κB signaling pathway, and activated the JNK-mitochondrial apoptotic pathway by increasing reactive oxygen species (ROS) generation resulting in apoptosis. In summary, compound 81 is a valuable candidate for anti-lung cancer therapy.

  17. Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors

    Science.gov (United States)

    Hsu, Chun-Tsung; Hu, Chi-Chang

    2013-11-01

    A simple and scalable process has been developed for synthesizing spinel NiCo2O4 nanocrystals through a thermal decomposition method. The introduction of hexadecyltrimethylammonium bromide (CTAB, (C16H33)N(CH3)3Br) into precursor solutions significantly enhances the homogeneity and porosity of spinel NiCo2O4. The porosity and high specific surface area of NiCo2O4 preserves the brilliant pseudo-capacitive performances due to providing smooth paths for electrolyte penetration and ion diffusion into inner active sites. Morphologies and microstructures of the active materials are examined by transmission electron microscopic (TEM) and X-ray diffraction (XRD) analyses. Thermogravimetric analysis (TGA) is used to evaluate the thermal properties of precursor solutions. The electrochemical performances of NiCo2O4 are systematically characterized by cyclic voltammetry and charge-discharge tests. Asymmetric supercapacitors are assembled with these brilliant binary oxides as the positive electrode and activated carbon as the negative electrode. The highly porous NiCo2O4 exhibits superior capacitive performances, i.e., high specific capacitance (764 F g-1 at 2 mV s-1) and long cycle life.

  18. Synthesis, characterization and thermal study of some transition metal complexes of an asymmetrical tetradentate Schiff base ligand

    Directory of Open Access Journals (Sweden)

    ACHUT S. MUNDE

    2010-03-01

    Full Text Available Complexes of Cu(II, Ni(II, Co(II, Mn(II and Fe(III with an asymmetric tetradentate Schiff base ligand derived from dehydroacetic acid, 4-methyl-o-phenylenediamine and salicylic aldehyde were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV–Vis, IR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a dibasic tetadentate ligand towards the central metal ion with an ONNO donor atoms sequence. From the microanalytical data, the stoichiometry of the complexes 1:1 (metal:ligand was found. The physico-chemical data suggested square planar geometry for the Cu(II and Ni(II complexes and octahedral geometry for the Co(II, Mn(II and Fe(III complexes. The thermal behaviour (TGA/DTA of the complexes was studied and kinetic parameters were determined by Horowitz–Metzger and Coats–Redfern methods. The powder X-ray diffraction data suggested a monoclinic crystal system for the Co(II, Mn(II and Fe(III complexes. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus niger and Trichoderma viride.

  19. Synthesis of Highly Porous Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) Asymmetric Membranes

    KAUST Repository

    Xie, Yihui

    2016-03-24

    For the first time, self-assembly and non-solvent induced phase separation was applied to polysulfone-based linear block copolymers, reaching mechanical stability much higher than other block copolymers membranes used in this method, which were mainly based on polystyrene blocks. Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) (PtBA30k-b-PSU14k-b-PtBA30k) with a low polydispersity of 1.4 was synthesized by combining step-growth condensation and RAFT polymerization. Various advanced electron microscopies revealed that PtBA30k-b-PSU14k-b-PtBA30k assembles into worm-like cylindrical micelles in DMAc and adopts a “flower-like” arrangement with the PSU central block forming the shell. Computational modeling described the mechanism of micelle formation and morphological transition. Asymmetric nanostructured membranes were obtained with a highly porous interconnected skin layer and a sublayer with finger-like macrovoids. Ultrafiltration tests confirmed a water permeance of 555 L m-2 h-1 bar-1 with molecular weight cut-off of 28 kg/mol. PtBA segments on the membrane surface were then hydrolyzed and complexed with metals, leading to cross-linking and enhancement of antibacterial capability.

  20. Synthesis and Characterization of an Unexpected Asymmetric Binuclear Copper(Ⅰ) Complex Containing 4-Vinyl-pyridine

    Institute of Scientific and Technical Information of China (English)

    JIANG, Kai(蒋凯); ZHAO, Dong(赵东); GUO, Li-Bing(郭利兵); ZHANG, Chuan-Jian(张传建); YANG, Rui-Na(杨瑞娜)

    2004-01-01

    The asymmetric binuclear copper(Ⅰ) complex [Cu2(dppm)2(C7H7N)(μ-HCOO)](NO3) (dppm=Ph2PCH2PPh2, C7H7N=4-vinyl-pyridine) has been prepared and characterized by physicochemical and spectroscopic methods. The complex is photoluminescent at room temperature. It crystallizes in triclinic system, space group P-1 with a= 1.2719(3) nm, b= 1.8637(4) nm, c= 1.1656(2) nm, α=97.16(3)°, β= 104.94(3)°, γ=89.39(3)°, V=2.648.1(9) nm3, Dc= 1.390 gbcm-3, Z=2, μ=0.974 mm-1, R=0.0483 for 5716 independently observed reflections with I>2σ(I).The structure consists of [Cu2(dppm)2(C7H7N)(μ-HCOO)]+cations and nitrate anions. The copper atoms show different coordination modes: Cu(1) displays a distorted trigonal and Cu(2) a tetrahedred geometry.