WorldWideScience

Sample records for catalytic ammonia decomposition

  1. Catalytic Ammonia Decomposition Over Ruthenium Nanoparticles Supported on Nano-Titanates

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Klitgaard, Søren Kegnæs; Fehrmann, Rasmus

    2009-01-01

    Nanosized Na2Ti3O7, K2Ti6O13 and Cs2Ti6O13 materials were prepared and used as supports of ruthenium nanoparticles for catalytic ammonia decomposition. It is shown that these catalysts exhibit higher catalytic activity than ruthenium supported on TiO2 nanoparticles promoted with cesium. The....... Furthermore, the effect of ruthenium loading on the catalytic decomposition of ammonia was investigated....

  2. Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their enhanced catalytic performance during ammonia decomposition

    KAUST Repository

    Tan, Hua

    2012-09-01

    In this work, Ru nanoparticles confined in the channels of ordered mesoporous alumina (MA) and magnesium oxide-modified ordered MA are prepared for the first time via a two-solvent technique, combined with the amorphous citrate route. Structural characterizations reveal that uniform 2-3 nm Ru nanoparticles are highly dispersed in the blockage-free channels of mesoporous supports. The Ru nanoparticles confined in MA modified with 20% molar ratio magnesium oxide exhibited a high catalytic activity and stability during ammonia decomposition due to the optimized particle size, basic support, lack of chlorine, and confined space provided by the channels of the mesoporous supports. © 2012 Elsevier B.V. All rights reserved.

  3. Catalytic ammonia oxidation to nitrogen (I) oxide

    OpenAIRE

    MASALITINA NATALIYA YUREVNA; SAVENKOV ANATOLIY SERGEEVICH

    2015-01-01

    The process of synthesis of nitrous oxide by low-temperature catalytical oxidation of NH has been investigated for organic synthesis. The investigation has been carried out by the stage separation approach with NH oxidation occurring in several reaction zones, which characterized by different catalytic conditions. The selectivity for N₂O was 92–92,5 % at the ammonia conversion of 98–99.5 % in the optimal temperature range.

  4. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  5. Effect of H{sub 2}S on the catalytic decomposition of tar and ammonia with dolomite and sintered iron ore in synthetic gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    The toluene-decomposing activity of calcined dolomite was not affected by the H{sub 2}S content of synthetic gasification gas. Iron was active with respect to toluene and ammonia at metallic state. The increase of the H{sub 2}S content of synthetic gasification gas (0 - 500 ppmv) decreased the tar-decomposing activity but not the ammonia- decomposing activity of sintered iron ore. (author) (12 refs.)

  6. Catalytic synthesis of ammonia using vibrationally excited nitrogen

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Billing, Gert D.; Hansen, Flemming Yssing

    1992-01-01

    In a previous study we have considered the catalytic synthesis of ammonia in the presence of vibrationally excited nitrogen. The distribution over vibrational states was assumed to be maintained during the reaction, and it was shown that the yield of ammonia increased considerably compared to tha...

  7. Studies of the kinetics of ammonia decomposition on promoted nanocrystalline iron using gas phases of different nitriding degree.

    Science.gov (United States)

    Kiełbasa, Karolina; Pelka, Rafał; Arabczyk, Walerian

    2010-04-01

    Promoted nanocrystalline iron was nitrided in a differential reactor equipped with systems that made it possible to conduct both thermogravimetric measurements and hydrogen concentration analyses in the reacting gas mixture. The nitriding process, particularly catalytic ammonia decomposition reaction, was investigated under an atmosphere of ammonia-hydrogen mixtures, under atmospheric pressure. Ammonia concentrations, and so nitriding potentials, were changed gradually from 0 to 100% at the inlet of reactor. The temperature was changed in the range of 475-500 degrees C. While values of nitriding potential were increasing, the rate of catalytic ammonia decomposition on alpha-Fe(N) was increasing too, but on mixture of alpha-Fe(N) with gamma'-Fe(4)N nitride the rate was decreasing. The obtained results were interpreted on the basis of the adsorption range model. New equations describing the catalytic ammonia decomposition reaction rate as a function of the logarithm of the nitriding potential of the gas phase, temperature, and nitriding degree of solid samples were proposed. PMID:20235497

  8. Catalytic synthesis of ammonia using vibrationally excited nitrogen molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.; Guldberg, Annette

    The dissociation of nitrogen is the rate-limiting step in the catalytic synthesis of ammonia. Theoretical calculations have shown that the dissociative sticking probability of molecular nitrogen on catalytic active metal surfaces is enhanced by orders of magnitude when the molecules are vibration......The dissociation of nitrogen is the rate-limiting step in the catalytic synthesis of ammonia. Theoretical calculations have shown that the dissociative sticking probability of molecular nitrogen on catalytic active metal surfaces is enhanced by orders of magnitude when the molecules are...... vibrationally excited to states with quantum numbers 3-10. The rate and equilibrium constants for the process using vibrationally excited nitrogen molecules are calculated and expressions for the reaction rates are derived. A comparison with the ordinary process, where the nitrogen molecules are in the...

  9. Decomposition of indoor ammonia with TiO 2-loaded cotton woven fabrics prepared by different textile finishing methods

    Science.gov (United States)

    Dong, Yongchun; Bai, Zhipeng; Liu, Ruihua; Zhu, Tan

    Addition of urea-based antifreeze admixtures during cement mixing in construction of buildings has led to increasing indoor air pollution due to continuous transformation and emission of urea to gaseous ammonia in indoor concrete wall. In order to control ammonia pollution from indoor concrete wall, the aqueous dispersion was firstly prepared with nano-scale TiO 2 photocatalysts and dispersing agent, and then mixed with some textile additives to establish a treating bath or coating paste. Cotton woven fabrics were used as the support materials owing to their large surface area and large number of hydrophilic groups on their cellulose molecules and finished using padding and coating methods, respectively. Two TiO 2-loaded fabrics were obtained and characterized by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). Moreover, a specifically designed ammonia photocatalytic system consisting of a small environmental chamber and a reactor was used for assessing the performance of these TiO 2-loaded fabrics as the wall cloth or curtains used in house rooms in the future and some factors affecting ammonia decomposition are discussed. Furthermore, a design equation of surface catalytic kinetics was developed for describing the decomposition of ammonia in air stream. The results indicated that increasing dosage of the TiO 2 aqueous dispersion in treating bath or coating paste improved the ammonia decomposition. And ammonia was effectively removed at low ammonia concentration or gas flow rate. When relative humidity level was 45%, ammonia decomposition was remarkably enhanced. It is the fact that ammonia could be significantly decomposed in the presence of the TiO 2-padded cotton fabric. Whereas, the TiO 2-coated cotton fabric had the reduced photocatalytic decomposition of ammonia and high adsorption to ammonia owing to their acrylic binder layer. Finally, the reaction rate constant k and the adsorption equilibrium constant K values were determined through a

  10. Catalytic Decomposition of PH3 on Heated Tungsten Wire Surfaces

    Science.gov (United States)

    Umemoto, Hironobu; Nishihara, Yushin; Ishikawa, Takuma; Yamamoto, Shingo

    2012-08-01

    The catalytic decomposition processes of PH3 on heated tungsten surfaces were studied to clarify the mechanisms governing phosphorus doping into silicon substrates. Mass spectrometric measurements show that PH3 can be decomposed by more than 50% over 2000 K. H, P, PH, and PH2 radicals were identified by laser spectroscopic techniques. Absolute density measurements of these radical species, as well as their PH3 flow rate dependence, show that the major products on the catalyst surfaces are P and H atoms, while PH and PH2 are produced in secondary processes in the gas phase. In other words, catalytic decomposition, unlike plasma decomposition processes, can be a clean source of P atoms, which can be the only major dopant precursors. In the presence of an excess amount of H2, the apparent decomposition efficiency is small. This can be explained by rapid cyclic reactions including decomposition, deposition, and etching to reproduce PH3.

  11. Catalytic Decomposition of Methylene Chloride by Sulfated Titania Catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Catalytic decomposition of methylene chloride in air below 300℃ was studied.Sulfated titania was very effective in converting 959ppm methylene chloride selectively to CO,CO2 and HCl.Complete decomposition of methylene chloride was achieved at low temperature(275℃).It was found that the acidic property of catalyst was a determinant factor for the catalytic activity.The presence of water vapor in the feed stream remarkably reduced the catalytic activity,which could be due to the blockage of acidic sites on the surface of catalyst by water molecules.A bifunctional catalyst comprising copper oxide was developed to improve the selectivity of catalytic oxidation,which indicated that copper oxide can promote the deep oxidation of methylene chloride.The crystal form of TiO2 imposes an important influence upon the catalytic oxidation.

  12. Catalytic synthesis of ammonia-a "never-ending story"?

    Science.gov (United States)

    Schlögl, Robert

    2003-05-01

    Nitrogen atoms are essential for the function of biological molecules and thus are and important component of fertilizers and medicaments. Bonds to nitrogen also find nonbiological uses in dyes, explosives, and resins. The synthesis of all these materials requires ammonia as an activated nitrogen building block. This situation is true for natural processes and the chemical industry. Knowledge of the various techniques for the preparation of ammonia is thus of fundamental importance for chemistry. The Haber-Bosch synthesis was the first heterogeneous catalytic system employed in the chemical industry and is still in use today. Understanding the mechanism and the translation of the knowledge into technical perfection has become a fundamental criterion for scientific development in catalysis research. PMID:12746811

  13. Assessing the reliability of calculated catalytic ammonia synthesis rates

    DEFF Research Database (Denmark)

    Medford, Andrew James; Wellendorff, Jess; Vojvodic, Aleksandra; Studt, Felix; Abild-Pedersen, Frank; Jacobsen, Karsten Wedel; Bligaard, Thomas; Nørskov, Jens K.

    2014-01-01

    We introduce a general method for estimating the uncertainty in calculated materials properties based on density functional theory calculations. We illustrate the approach for a calculation of the catalytic rate of ammonia synthesis over a range of transition-metal catalysts. The correlation...... between errors in density functional theory calculations is shown to play an important role in reducing the predicted error on calculated rates. Uncertainties depend strongly on reaction conditions and catalyst material, and the relative rates between different catalysts are considerably better described...

  14. Ammonia Decomposition with Manganese Nitride-Calcium Imide Composites as Efficient Catalysts.

    Science.gov (United States)

    Yu, Pei; Guo, Jianping; Liu, Lin; Wang, Peikun; Wu, Guotao; Chang, Fei; Chen, Ping

    2016-02-19

    Ammonia has high gravimetric and volumetric hydrogen densities and is, therefore, considered a promising carrier for the production of COx -free molecular H2 for forthcoming energy systems. Alkaline earth metals are generally regarded as structural promoters of catalysts and employed in numerous catalytic processes. Here, we report that calcium imide (CaNH) has a strong synergistic effect on Mn6 N5 in catalyzing the decomposition of NH3 , leading to a ca. 40 % drop in apparent activation energy. At 773 K, the H2 formation rate over a Mn6 N5 -11CaNH composite catalyst is about an order of magnitude higher than that of Mn6 N5 and comparable to the highly active Ni/SBA-15 and Ru/Al2 O3 catalysts. Analysis by means of temperature-programmed decomposition (TPD), X-ray diffraction (XRD), and X-ray absorption near edge spectroscopy (XANES) reveal that CaNH participates in the catalysis via forming a [Ca6 MnN5 ]-like intermediate, thus altering the reaction pathway and energetics. A two-step catalytic cycle, accounting for the synergy between CaNH and Mn6 N5 , is proposed. PMID:26914173

  15. Trends in catalytic NO decomposition over transition metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Rass-Hansen, Jeppe;

    2007-01-01

    The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional...... theory calculations. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen....

  16. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles

    DEFF Research Database (Denmark)

    Hellman, A.; Honkala, Johanna Karoliina; Remediakis, Ioannis;

    2009-01-01

    A recently published first-principles model for the ammonia synthesis on an unpromoted Ru-based catalyst is extended to also describe ammonia decomposition. In addition, further analysis concerning trends in ammonia productivity, surface conditions during the reaction, and macro-properties, such as...... apparent activation energies and reaction orders are provided. All observed trends in activity are captured by the model and the absolute value of ammonia synthesis/decomposition productivity is predicted to within a factor of 1-100 depending on the experimental conditions. Moreover it is shown: (i) that...

  17. Ammonia Decomposition over Bimetallic Nitrides Supported on γ-Al2O3

    Institute of Scientific and Technical Information of China (English)

    Chun Shan LU; Xiao Nian LI; Yi Feng ZHU; Hua Zhang LIU; Chun Hui ZHOU

    2004-01-01

    A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the ammonia decomposition activity were investigated. TPR-MS, XRD were also carried out to obtain better insight into the structure of the bimetallic nitride. The results of ammonia decomposition activity show that bimetallic nitrides are more active than monometallic nitrides or bimetallic oxides.

  18. Resonant active sites in catalytic ammonia synthesis: A structural model

    Science.gov (United States)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  19. KINETIC ANALYSIS OF THE CATALYTIC DECOMPOSITION OF HYDRAZINE

    Directory of Open Access Journals (Sweden)

    J.E. de MEDEIROS

    1998-06-01

    Full Text Available The bond-order conservation method was used to study the catalytic decomposition of N2H4. Variation in the activation energy, E, of the most relevant steps was calculated as a function of the enthalpy of adsorption of N, QN, between 0 and 1250 kJmol-1. Results suggest that below QN = 520 kJmol-1 the catalytic decomposition of N2H4 produces mostly N2 and H2. Above QN = 520 kJmol-1, NH3 and N2 are the main products. Near QN = 520 kJmol-1 N2, H2 and NH3 are obtained, in agreement with experimental results on different metals.

  20. NO2 Catalytic Decomposition - from Laboratory Experiment to Industry Reactor

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Kovanda, F.

    Kraków : Wydawnictwo Uniwersitetu Jagiellonskiego, 2011, s. 97. ISBN 978-83-233-3249-7. [International Symposium on Nitrogen Oxides Emission Abatement NOEA 2011. Zakopane (PL), 04.09.2011-07.09.2011] R&D Projects: GA TA ČR TA01020336 Institutional research plan: CEZ:AV0Z40720504 Keywords : catalytic decomposition of CO2 * reactor * kinetic data Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  1. Studies of the kinetics of two parallel reactions: ammonia decomposition and nitriding of iron catalyst.

    Science.gov (United States)

    Arabczyk, Walerian; Pelka, Rafat

    2009-01-15

    The reaction of ammonia decomposition and nitriding reaction as an example of the parallel reactions were studied. A surface reaction was assumed as the rate limiting step. The experiments were carried out in the range of temperatures from 623 to 723 K. Mixtures of different iron nitrides (gamma'-Fe(4)N, epsilon-Fe(3-2)N) were obtained. Differential tubular reactor with thermogravimetric (TG) measurement and analysis of the gas phase composition in the reaction volume was used. Reacting gases flowing through the reactor were mixed. Effective reactor volume was determined. The rate constants for ammonia decomposition and ammonia adsorption process at critical point between alpha-Fe and gamma'-Fe(4)N phases were estimated. The number of collisions and the sticking coefficient of ammonia over alpha-Fe phase were also assessed. PMID:19086865

  2. Monnte Carlo Simulation of Kinetics of Ammonia Oxidative Decomposition over the Commercial Propylene Ammoxidation Catalyst(Mo-Bi)

    Institute of Scientific and Technical Information of China (English)

    罗正鸿; 詹晓力; 等

    2003-01-01

    Monte Carlo method is applied to investigate the kinetics of ammonia oxidative decomposition over the commercial propylene ammoxidation catalyst(Mo-Bi).The simulation is quite in agreement with experimetal results.Monte Carlo simulation proves that the process of ammonia oxidation decomposition is a two-step reaction.

  3. Impact of selective catalytic reduction on exhaust particle formation over excess ammonia events.

    Science.gov (United States)

    Amanatidis, Stavros; Ntziachristos, Leonidas; Giechaskiel, Barouch; Bergmann, Alexander; Samaras, Zissis

    2014-10-01

    The introduction of selective catalytic reduction (SCR) aftertreatment to meet stringent diesel NOx emission standards around the world increases exhaust ammonia. Further to the direct air quality and health implications of ammonia, this may also lead to particle formation in the exhaust. In this study, an ammonia SCR system was examined with respect to its impact on both solid and total exhaust particle number and size distribution, downstream of a diesel particulate filter (DPF). Fuel post-injection was conducted in some tests to investigate the effect of ammonia during active DPF regeneration. On average, the post-DPF solid >23 nm and total <23 nm particle number emissions were increased by 129% (range 80-193%) and by 67% (range 26-136%), respectively, when 100 ppm ammonia level was induced downstream of the SCR catalyst. This is a typical level during ammonia overdosing, often practiced for efficient NOx control. Ammonia did not have a significant additional effect on the high particle concentrations measured during DPF regeneration. Based on species availability and formation conditions, sulfate, nitrate, and chloride salts with ammonium are possible sources of the new particles formed. Ammonia-induced particle formation corresponds to an environmental problem which is not adequately addressed by current regulations. PMID:25167537

  4. Characterization of FeCo based catalyst for ammonia decomposition. The effect of potassium oxide

    Directory of Open Access Journals (Sweden)

    Lendzion-Bieluń Zofia

    2014-12-01

    Full Text Available FeCo fused catalyst was obtained by fusing iron and cobalt oxides with an addition of calcium, aluminium, and potassium oxides (CaO, Al2O3, K2O. An additional amount of potassium oxide was inserted by wet impregnation. Chemical composition of the prepared catalysts was determined with an aid of the XRF method. On the basis of XRD analysis it was found that cobalt was built into the structure of magnetite and solid solution of CoFe2O4 was formed. An increase in potassium content develops surface area of the reduced form of the catalyst, number of adsorption sites for hydrogen, and the ammonia decomposition rate. The nitriding process of the catalyst slows down the ammonia decomposition.

  5. Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems

    NARCIS (Netherlands)

    Lezcano-Gonzalez, I.; Deka, U.; van der Bij, H. E.; Paalanen, P.; Arstad, B.; Weckhuysen, B. M.; Beale, A. M.

    2014-01-01

    The chemical deactivation of Cu-SSZ-13 Ammonia Selective Catalytic Reduction (NH3-SCR) catalysts by Pt, Zn, Ca and P has been systematically investigated using a range of analytical techniques in order to study the influence on both the zeolitic framework and the active Cu2+ ions. The results obtain

  6. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, Michael E.; Creighton, J. Randall

    1999-05-26

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N15H3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia.

  7. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    International Nuclear Information System (INIS)

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N15H3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia

  8. Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu Daishe [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China); Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China)], E-mail: dswu@ncu.edu.cn; Deng Haiwen [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China); Wang Wuyi [Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China); Xiao Huayun [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China)

    2007-10-10

    A method for the determination of iodine in coal using pyrohydrolysis for sample decomposition was proposed. A pyrohydrolysis apparatus system was constructed, and the procedure was designed to burn and hydrolyse coal steadily and completely. The parameters of pyrohydrolysis were optimized through the orthogonal experimental design. Iodine in the absorption solution was evaluated by the catalytic spectrophotometric method, and the absorbance at 420 nm was measured by a double-beam UV-visible spectrophotometer. The limit of detection and quantification of the proposed method were 0.09 {mu}g g{sup -1} and 0.29 {mu}g g{sup -1}, respectively. After analysing some Chinese soil reference materials (SRMs), a reasonable agreement was found between the measured values and the certified values. The accuracy of this approach was confirmed by the analysis of eight coals spiked with SRMs with an indexed recovery from 94.97 to 109.56%, whose mean value was 102.58%. Six repeated tests were conducted for eight coal samples, including high sulfur coal and high fluorine coal. A good repeatability was obtained with a relative standard deviation value from 2.88 to 9.52%, averaging 5.87%. With such benefits as simplicity, precision, accuracy and economy, this approach can meet the requirements of the limits of detection and quantification for analysing iodine in coal, and hence it is highly suitable for routine analysis.

  9. Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition.

    Science.gov (United States)

    Wu, Daishe; Deng, Haiwen; Wang, Wuyi; Xiao, Huayun

    2007-10-10

    A method for the determination of iodine in coal using pyrohydrolysis for sample decomposition was proposed. A pyrohydrolysis apparatus system was constructed, and the procedure was designed to burn and hydrolyse coal steadily and completely. The parameters of pyrohydrolysis were optimized through the orthogonal experimental design. Iodine in the absorption solution was evaluated by the catalytic spectrophotometric method, and the absorbance at 420 nm was measured by a double-beam UV-visible spectrophotometer. The limit of detection and quantification of the proposed method were 0.09 microg g(-1) and 0.29 microg g(-1), respectively. After analysing some Chinese soil reference materials (SRMs), a reasonable agreement was found between the measured values and the certified values. The accuracy of this approach was confirmed by the analysis of eight coals spiked with SRMs with an indexed recovery from 94.97 to 109.56%, whose mean value was 102.58%. Six repeated tests were conducted for eight coal samples, including high sulfur coal and high fluorine coal. A good repeatability was obtained with a relative standard deviation value from 2.88 to 9.52%, averaging 5.87%. With such benefits as simplicity, precision, accuracy and economy, this approach can meet the requirements of the limits of detection and quantification for analysing iodine in coal, and hence it is highly suitable for routine analysis. PMID:17920390

  10. Ammonia for hydrogen storage: challenges and opportunities

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Christensen, Claus H.; Nørskov, Jens Kehlet;

    2008-01-01

    The possibility of using ammonia as a hydrogen carrier is discussed. Compared to other hydrogen storage materials, ammonia has the advantages of a high hydrogen density, a well-developed technology for synthesis and distribution, and easy catalytic decomposition. Compared to hydrocarbons and...... maintains the high volumetric hydrogen density while alleviating the problems of handling the ammonia. Some of the remaining challenges for research in ammonia as a hydrogen carrier are outlined....

  11. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Mossin, Susanne L.; Riisager, Anders; Fehrmann, Rasmus

    2011-01-01

    were studied and compared with the catalytic activity for the selective catalytic reduction (SCR) of NO with ammonia. The SCR activities and acidity values of heteropoly acid promoted catalysts were found to be much higher than unpromoted catalysts. The influence of potassium poisons on the SCR...... activity and acidity was lower for promoted catalysts than for unpromoted catalysts. In the heteropoly acid promoted catalysts the SCR active Cu and Fe metals were protected from potassium poisons by bonding of the potassium to the Brønsted acid centres. Thus heteropoly acid promoted catalysts might be...... suitable for biomass fired power plant SCR applications....

  12. Efficient decomposition of NO by ammonia radical-injection method using an intermittent dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Yukimura, Ken [Department of Electrical Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321 (Japan)]. E-mail: kyukimur@mail.doshisha.ac.jp; Kawamura, Kensuke [Department of Electrical Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321 (Japan); Hiramatsu, Takashi [Department of Electrical Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321 (Japan); Murakami, Hiroshi [Department of Electrical Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321 (Japan); Kambara, Shinji [Department of Environmental Energy System, Gifu University, Gifu, Gifu 501-1193 (Japan); Moritomi, Hiroshi [Department of Environmental Energy System, Gifu University, Gifu, Gifu 501-1193 (Japan); Yamashita, Toru [Coal Research Laboratory, Idemitsu Kosan Co., LTD, Sodegaura, Chiba 299-0267 (Japan)

    2007-03-12

    Although many NO decomposition systems have been developed using plasmas such as dielectric barrier discharges (DBDs), corona discharges, surface discharges, glow discharges, and microwave discharges, the present system is unique on the viewpoint of the use of an intermittent one-cycle sinusoidal power source to generate DBD plasma. There are several features of the system: (1) easy control of the electric power consumed in the DBD plasma, and (2) DBD-plasma generation used only for the production of ammonia radicals. The system employs a radical injection system, where the radicals are produced in a separate discharge chamber, called radical injector, from NO flow field. This enables an efficient production of ammonia radicals being appropriate for DeNOx. It is shown from the temperature dependence of NO removal (DeNOx) characteristics that the present system is a low-temperature DeNOx system compared to a conventional thermal DeNOx system, and NO decomposition is performed over a wide range of gas temperature containing NO. Surveying parametric characteristics of DeNOx, the energy efficiency is improved by a factor of 30% compared to the previously obtained result.

  13. Macrophyte decomposition in a surface-flow ammonia-dominated constructed wetland: Rates associated with environmental and biotic variables

    Science.gov (United States)

    Thullen, J.S.; Nelson, S.M.; Cade, B.S.; Sartoris, J.J.

    2008-01-01

    Decomposition of senesced culm material of two bulrush species was studied in a surface-flow ammonia-dominated treatment wetland in southern California. Decomposition of the submerged culm material during summer months was relatively rapid (k = 0.037 day-1), but slowed under extended submergence (up to 245 days) and during fall and spring sampling periods (k = 0.009-0.014 day-1). Stepwise regression of seasonal data indicated that final water temperature and abundance of the culm-mining midge, Glyptotendipes, were significantly associated with culm decomposition. Glyptotendipes abundance, in turn, was correlated with water quality parameters such as conductivity and dissolved oxygen and ammonia concentrations. No differences were detected in decomposition rates between the bulrush species, Schoenoplectus californicus and Schoenoplectus acutus.

  14. Catalytic decomposition of low level ozone with gold nanoparticles supported on activated carbon

    Institute of Scientific and Technical Information of China (English)

    Pengyi ZHANG; Bo ZHANG; Rui SHI

    2009-01-01

    Highly dispersed gold nanoparticles were supported on coal-based activated carbon (AC) by a sol immobilization method and were used to investigate their catalytic activity for low-level ozone decomposition at ambient temperature. Nitrogen adsorption-desorption,scanning electron microscope (SEM), and X-ray photo-electron spectroscopy (XPS) were used to characterize the catalysts before and after ozone decomposition. The results showed that the supported gold nanoparticles prepared with microwave heating were much smaller and more uniformly dispersed on the activated carbon than those prepared with traditional conduction heating, exhibiting higher catalytic activity for ozone decomposition. The pH values of gold precursor solution significantly influenced the catalytic activity of supported gold for ozone decomposition, and the best pH value was 8. In the case of space velocity of 120000 h-1, inlet ozone concentration of 50mg/m3, and relative humidity of 45%, the Au/AC catalyst maintained the ozone removal ratio at 90.7% after 2500 min. After being used for ozone decomposition, the surface carbon of the catalyst was partly oxidized and the oxygen content increased accordingly, while its specific surface area and pore volume only decreased a little.Ozone was mainly catalytically decomposed by the gold nanoparticles supported on the activated carbon.

  15. Gram scale production of singlewall carbon nanotubes by catalytic decomposition of hydrocarbons

    International Nuclear Information System (INIS)

    The quality of singlewall carbon nanotubes produced by catalytic decomposition of hydrocarbons depends on the synthesis conditions but also on the scale of production. Singlewall nanotubes are produced by the decomposition of methane over cobalt based catalyst supported on magnesium oxide. The characteristics of the samples produced at different gas flows are studied by TEM, TGA, XRD, PIXE and Raman spectroscopy. A process is suggested to remove amorphous carbon and a part of the cobalt particles from the samples

  16. Comparative study on the catalytic performance of metal oxide catalysts for decomposition of hydrogen peroxide

    International Nuclear Information System (INIS)

    Commercial CuO and ZnO powders were analyzed for their catalytic activity under different experimental conditions. The mentioned catalysts were characterized by scanning electron microscope, X-ray diffractometery, Fourier transform infrared spectrometry and BET surface area. The decomposition of hydrogen peroxide was studied in the presence of commercial CuO and ZnO under different experimental conditions. Effect of pH on the decomposition reaction was used to evaluate the mechanism of the decomposition reaction. Surface negative sites were responsible for the decomposition of hydrogen peroxide. Rate constants were calculated for the decomposition reactions in pH and temperature ranges of 9-13 and 30-70 degree C, respectively. The observed increase in rate constants with increase in pH and temperature was attributed to the increase in surface negativity of both the solid catalysts. The high surface charge negativity (low PZC) and high surface area of CuO were the dominant factors for the better catalytic activity of the solid as compared to ZnO. The comparative study of these solids clearly demonstrate the higher catalytic activity at a given pH and temperature. Activation energies for the decomposition reaction of hydrogen peroxide on the surfaces of CuO and ZnO estimated from the Arrhenius plots were 57 KJ.mol/sup -1/ and 67 KJ.mol/sup -1/, respectively. (author)

  17. Conversion of the refractory ammonia and acetic acid in catalytic wet air oxidation of animal byproducts

    Institute of Scientific and Technical Information of China (English)

    Virginie Fontanier; Sofiane Zalouk; Stéphane Barbati

    2011-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) of slaughtered animal byproducts (ABPs) were investigated.Two step experiment was carried out consisting ofa non-catalysed WAO run followed by a CWAO run at 170-275℃, 20 MPa, and reaction time 180 min.The WAO (1st step) of sample (5 g/L total organic carbon (TOC)) yielded (82.0 ± 4)% TOC removal and (78.4 ± 13.2)%conversion of the initial organic-N into NH4+-N.Four metal catalysts (Pd, Pt, Rh, Ru) supported over alumina have been tested in catalytic WAO (2nd step) at elevated pH to enhance ammonia conversion and organic matter removal, particularly acetic acid.It was found that the catalysts Ru, Pt, and Rh had significant effects on the TOC removal (95.1%, 99.5% and 96.7%, respectively) and on the abatement of ammonia (93.4%, 96.7% and 96.3%, respectively) with high nitrogen selectivity.The catalyst Pd was found to have the less activity while Pt had the best performance.The X-Ray diffraction analysis showed that the support of catalyst was not stable under the experimental conditions since it reacted with phosphate present in solution.Nitrite and nitrate ions were monitored during the oxidation reaction and it was concluded that CWAO of ammonia in real waste treatment framework was in good agreement with the results obtained from the literature for ideal solutions of ammonia.

  18. Metal exchanged zeolites for catalytic decomposition of N2O

    Czech Academy of Sciences Publication Activity Database

    Lebhsetwar, N.; Dhakad, M.; Biniwale, R.; Mitsuhasi, T.; Haneda, H.; Reddy, P.S.S.; Bakardjieva, Snejana; Šubrt, Jan; Kumar, S.; Kumar, V.; Saiprasad, P.; Rayalu, S.

    2009-01-01

    Roč. 141, 1-2 (2009), s. 205-210. ISSN 0920-5861. [18th National Symposium and Indo-US seminar on Catalysis. Dehradun, 16.04.2007-18.04.2007] Grant ostatní: CSIR(IN) SIP -16 (1,3) Institutional research plan: CEZ:AV0Z40320502 Keywords : N2O decomposition * catalyst * zeolite Subject RIV: CA - Inorganic Chemistry Impact factor: 3.526, year: 2009

  19. Investigation of the red mud catalytic activity in carbon monoxide reaction decomposition

    OpenAIRE

    Кириченко, Алексей Геннадьевич; Колесник, Дмитрий Николаевич

    2011-01-01

    The process of iron carburization using СО-contaning gas as a catalyst red mud is investigated. Determined the catalytic activity of red mud in the decomposition reaction of CO. The effect of red mud addition to iron ore materials to improve their recoverability and carburization

  20. N2O Catalytic Decomposition – from Laboratory Experiment to Industry Reactor

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Karásková, K.; Chromčáková, Ž.

    2012-01-01

    Roč. 191, č. 1 (2012), s. 116-120. ISSN 0920-5861 R&D Projects: GA TA ČR TA01020336 Institutional support: RVO:67985858 Keywords : N2O * catalytic decomposition * fixed bed reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.980, year: 2012

  1. Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds

    Indian Academy of Sciences (India)

    B Rama Raju; E Linga Reddy; J Karuppiah; P Manoj Kumar Reddy; Ch Subrahmanyam

    2013-05-01

    The decomposition of mixture of selected volatile organic compounds (VOCs) has been studied in a catalytic non-thermal plasma dielectric barrier discharge reactor. The VOCs mixture consisting n-hexane, cyclo-hexane and -xylene was chosen for the present study. The decomposition characteristics of mixture of VOCs by the DBD reactor with inner electrode modified with metal oxides of Mn and Co was studied. The results indicated that the order of the removal efficiency of VOCs followed as -xylene > cyclo-hexane > -hexane. Among the catalytic study, MnOx/SMF (manganese oxide on sintered metal fibres electrode) shows better performance, probably due to the formation of active oxygen species by in situ decomposition of ozone on the catalyst surface. Water vapour further enhanced the performance due to the in situ formation of OH radicals.

  2. INVESTIGATION OF AMMONIA ADSORPTION ON FLY ASH DUE TO INSTALLATION OF SELECTIVE CATALYTIC REDUCTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G.F. Brendel; J.E. Bonetti; R.F. Rathbone; R.N. Frey Jr.

    2000-11-01

    This report summarizes an investigation of the potential impacts associated with the utilization of selective catalytic reduction (SCR) systems at coal-fired power plants. The study was sponsored by the U.S. Department of Energy Emission Control By-Products Consortium, Dominion Generation, the University of Kentucky Center for Applied Energy Research and GAI Consultants, Inc. SCR systems are effective in reducing nitrogen oxides (NOx) emissions as required by the Clean Air Act (CAA) Amendments. However, there may be potential consequences associated with ammonia contamination of stack emissions and combustion by-products from these systems. Costs for air quality, landfill and pond environmental compliance may increase significantly and the marketability of ash may be seriously reduced, which, in turn, may also lead to increased disposal costs. The potential impacts to air, surface water, groundwater, ash disposal, ash utilization, health and safety, and environmental compliance can not be easily quantified based on the information presently available. The investigation included: (1) a review of information and data available from published and unpublished sources; (2) baseline ash characterization testing of ash samples produced from several central Appalachian high-volatile bituminous coals from plants that do not currently employ SCR systems in order to characterize the ash prior to ammonia exposure; (3) an investigation of ammonia release from fly ash, including leaching and thermal studies; and (4) an evaluation of the potential impacts on plant equipment, air quality, water quality, ash disposal operations, and ash marketing.

  3. Catalytic Decomposition of Toluene Using Various Dielectric Barrier Discharge Reactors

    Institute of Scientific and Technical Information of China (English)

    YE Daiqi; HUANG Haibao; CHEN Weili; ZENG Ronghui

    2008-01-01

    Decomposition of toluene was experimentally investigated with various dielectric barrier discharge (DBD) reactors, such as wire-cylinder, wire-plate and plate-to-plate, combined with multi-metal oxides catalyst (Mn-Ni-Co-Cu-Ox/Al2O3) loaded on the cordierite honeycomb and nickel foam, respectively. The effects of some factors including the residence time, reactor configuration and catalyst, upon the toluene destruction were studied. Results revealed that the use of in-plasma catalysis was more helpful to enhancing the DRE (destruction and removal efficiency) and reducing the O3 formation than that of either post-plasma catalysis or plasma alone. It was demonstrated that the wire-plate reactor was favorable for the oxidation reaction of toluene and the nickel foam-supported catalysts exhibited good activity.

  4. Surface and catalytic properties of potassium-modified cobalt molybdenum catalysts for ammonia synthesis

    International Nuclear Information System (INIS)

    The influence of potassium addition on the structural, catalytic and surface properties of the cobalt molybdenum nitride was studied. The measurements of the catalytic activity and the specific surface area as well as the phase analysis with the use of X-ray diffraction were performed. The mixtures of Co3Mo3N and Co2Mo3N phases have been found to constitute the samples. The concentration ratio between the Co2Mo3N and Co3Mo3N phases is notably influenced by potassium admixture. The specific surface area of the catalysts changes also with the Co2Mo3N/Co3Mo3N ratio. The catalytic activity of the catalysts in the ammonia synthesis carried out at 400 deg. C and under the pressure of 10 MPa can be increased up to 2.4 times by the addition of potassium compounds. There is the optimal range of potassium concentration between 0.8 and 1.2 wt.%.

  5. 双分子水和氨气催化CF3OH分子裂解的理论研究%Theoretical Study on Decomposition of CF3OH Catalyzed by Water Dimer and Ammonia

    Institute of Scientific and Technical Information of China (English)

    龙波; 谭兴凤; 隆正文; 任达森; 张为俊

    2011-01-01

    The G3 and CBS-QB3 theoretical methods are employed to study the decomposition of CF3OH into FCFO and HF by water, water dimmer, and ammonia. The decomposition of CF3OH into FCFO and HF is unlikely to occur in the atmosphere due to the high activated energy of 88.7 k J/mol at the G3 level of theory. However, the computed results predict that the barrier for unimolecular decomposition of CF3OH is decreased to 25.1 k J/mol from 188.7 k J/mol with the aid of NH3 at the G3 level of theory, which shows that the ammonia play a strong catalytic effect on the split of CF3OH. In addition, the calculated rate constants show that the decomposition of CF3OH by NH3 is faster than those of H2Oand the water dimmer by 109 and 105 times respectively. The rate constants combined with the corresponding concentrations of these species demonstrate that the reaction CF3 OH with NH3 via TS4 is of great importance for the decomposition of CF3OH in the atmosphere.

  6. Low temperature catalytic decomposition and oxidation of MTBE

    International Nuclear Information System (INIS)

    Catalytic combustion of methyl-tert-butyl-ether (MTBE) was studied in the gas-phase from an aqueous solution spiked with MTBE (1.1mM), to simulate actual remediation conditions. The solution of MTBE was sparged with an oxygen/helium gas, at a ratio of 1-4. The sparged gas stream of MTBE and water vapor was passed over catalysts utilizing Pt/Rh or Pd in conjunction with a mixed metal oxide based upon La1-xSrxMnO3. The results were compared to a commercial catalyst which contained a higher loading of Pt. The experiments with the catalysts were conducted over a temperature range of 80-500C. Combustion to CO2 and water was observed in all cases, but by-product formation of isobutene and methanol was seen at lower temperatures for all of the catalysts tested, with the exception of the commercial catalyst. The catalyst with the lowest loading of Pt/Rh achieved the lowest temperature for complete oxidation of MTBE and its by-products

  7. Effect of γ-irradiation on the catalytic decomposition of 2-propanol

    International Nuclear Information System (INIS)

    70 kGy of γ-irradiation enhances the catalytic transformation of 2-propanol into acetone and propylene on transition metal oxides. Fragment products are formed and for TiO2, V2O5 and Fe2O3 the selectivity of 2-propanol decomposition is shifted towards dehydration by the irradiation. Both catalytic and radiocatalytic transformation of 2-propanol correlate with the adsorption capacity of metal oxides, which suggests that irradiation acts mainly on the adsorbed 2-propanol. Possible changes in the catalyst's chemical properties due to the irradiation are discussed. (author)

  8. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems

    NARCIS (Netherlands)

    Lezcano-Gonzalez, I; Deka, U; Arstad, B; Van Yperen-De Deyne, A; Hemelsoet, K; Waroquier, M; Van Speybroeck, V; Weckhuysen, B M; Beale, A M

    2014-01-01

    Three different types of NH3 species can be simultaneously present on Cu(2+)-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4(+)), formed on the Brønsted acid sites, [Cu(NH3)4](2+) complexes, resulting from NH3 co

  9. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    Directory of Open Access Journals (Sweden)

    Jakob G. Howalt

    2014-01-01

    Full Text Available The presence of water often gives rise to oxygen adsorption on catalyst surfaces through decomposition of water and the adsorbed oxygen or hydroxide species often occupy important surfaces sites, resulting in a decrease or a total hindrance of other chemical reactions taking place at that site. In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of O and N2 species on cuboctahedral Mo13 nanoclusters. The calculations show that the molybdenum nanocluster will preferentially bind oxygen over nitrogen and hydrogen at neutral bias, but under electrochemical reaction conditions needed for nitrogen reduction, oxygen adsorption is severely weakened and the adsorption energy is comparable to hydrogen and nitrogen adsorption. The potentials required to reduce oxygen off the surface are −0.72 V or lower for all oxygen coverages studied, and it is thus possible to (reactivate (partially oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface and electrochemical ammonia production via the associative mechanism is possible at potentials as low as −0.45 V to −0.7 V.

  10. Catalytic performance of Fe-ZSM-5 catalysts for selective catalytic reduction of nitric oxide by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Long, R.Q.; Yang, R.T.

    1999-12-10

    A series of Fe-exchanged molecular sieves were studied as catalysts for the selective catalytic reduction (SCR) of NO with ammonia. It was found that Fe-ZSM-5 and Fe-mordenite catalysts were highly active for the SCR reaction. Nearly 100% NO conversions were obtained at 400--500 C under conditions with a high space velocity (GHSV = 4.6 x 10{sup 5} 1/h). However, Fe-Y and Fe-MCM-41 with larger pore sizes showed lower activities for this reaction. F or Fe-ZSM-5 catalysts, the SCR activity decreased with increasing Si/Al ratio in the zeolites. As the Fe-exchange level in the Fe-ZSM-5 catalysts was increased from 58 to 252%, NO conversion increased at lower temperatures (e.g., 300 C), but decreased at high temperatures (e.g., 600 C). Compared with the commercial vanadia catalyst, based on the first-order rate constants, the Fe-ZSM-5 catalyst was five times more active at 400 C and seven times more active at 450 C. It also functioned in a broader temperature window, produced only N{sub 2} (rather than N{sub 2}O) and H{sub 2}O, and showed a substantially lower activity for oxidation of SO{sub 2} to SO{sub 3}.

  11. Solar production of catalytic filamentous carbon by thermal decomposition of hydrocarbons and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V.A.; Kuvshinov, G.G.; Mogilnykh, Yu.I. [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Reller, A. [University of Hamburg (Germany); Steinfeld, A.; Weidenkaff, A.; Meier, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Concentrated solar radiation was used as the clean source of process heat for the production of Catalytic Filamentous Carbon (CFC) by thermal decomposition of gaseous hydrocarbons and by CO disproportionation in the presence of small metal catalyst particles. Depending on the catalyst, two different types of CFC, namely nano tubes and nano fibers, were obtained in solar experiments at the PSI solar furnace. (author) 2 figs., 1 tab., 7 refs.

  12. H2 production by catalytic methane decomposition on Cu based catalyst

    International Nuclear Information System (INIS)

    The thermo-catalytic decomposition (TCD) of methane has been investigated in a laboratory scale fixed bed reactor using a copper dispersed on γ-alumina as a catalyst. The usefulness of a fluidized bed operation instead of a fixed bed one has been assessed in terms of methane to hydrogen conversion, amount of carbon accumulated on the catalyst, possibility of the catalyst regeneration. The results highlight some promising features in using fluidized bed reactors in the TCD process. (authors)

  13. Catalytic Decomposition of Nitrous Oxide over Calcined Hydrotalcite-like Compounds

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Kovanda, F.; Jirátová, Květa; Chmielová, M.; Wichterle, K.; Dorničák, V.

    Vol. 1. Prague : Process Engineering Publisher, 2002, s. 356. ISBN 80-86059-33-2. [International Congress of Chemical and Process Engineering CHISA 2002 /15./. Prague (CZ), 25.08.2002-29.08.2002] R&D Projects: GA ČR GA106/02/0523 Institutional research plan: CEZ:AV0Z4072921 Keywords : nitrous oxide * catalytic decomposition * hydrotalcite Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. Co-Containing Mixed Oxides and Their Activity in Catalytic Decomposition of Nitrous Oxide

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Kovanda, F.; Pacultová, K.; Lacný, Z.; Mikulová, Z.

    Praha : Process Engineering Publisher, 2004. s. 332. ISBN 80-86059-40-5. [International Congress of Chemical and Process Engineering CHISA 2004 /16./. 22.08.2004-26.08.2004, Praha] R&D Projects: GA ČR GA104/04/2116 Institutional research plan: CEZ:AV0Z4072921 Keywords : catalytic decomposition * mixed oxide s Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  15. Detailed study of the plasma-activated catalytic generation of ammonia in N2-H2 plasmas

    Science.gov (United States)

    van Helden, J. H.; Wagemans, W.; Yagci, G.; Zijlmans, R. A. B.; Schram, D. C.; Engeln, R.; Lombardi, G.; Stancu, G. D.; Röpcke, J.

    2007-02-01

    We investigated the efficiency and formation mechanism of ammonia generation in recombining plasmas generated from mixtures of N2 and H2 under various plasma conditions. In contrast to the Haber-Bosch process, in which the molecules are dissociated on a catalytic surface, under these plasma conditions the precursor molecules, N2 and H2, are already dissociated in the gas phase. Surfaces are thus exposed to large fluxes of atomic N and H radicals. The ammonia production turns out to be strongly dependent on the fluxes of atomic N and H radicals to the surface. By optimizing the atomic N and H fluxes to the surface using an atomic nitrogen and hydrogen source ammonia can be formed efficiently, i.e., more than 10% of the total background pressure is measured to be ammonia. The results obtained show a strong similarity with results reported in literature, which were explained by the production of ammonia at the surface by stepwise addition reactions between adsorbed nitrogen and hydrogen containing radicals at the surface and incoming N and H containing radicals. Furthermore, our results indicate that the ammonia production is independent of wall material. The high fluxes of N and H radicals in our experiments result in a passivated surface, and the actual chemistry, leading to the formation of ammonia, takes place in an additional layer on top of this passivated surface.

  16. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H.

    2008-08-15

    unfavourable for energetic and economic reasons, it is reasonable to investigate another reaction system, which is free of carbon. At the last part of this study the catalytic production of hydrogen from ammonia cracking was investigated. Ammonia is an interesting alternative: it has a high hydrogen density, it is available and cheap. Since the Pt electrode is sensitive to reactive substances, it must be ensured, that for example no hydrazine is produced during the ammonia cracking. A new type of ammonia cracking catalyst was investigated in this study, which unlike the conventional catalyst is not based on metal. Four different zirconium oxynitrides: ss' ZrON, ss'' ZrON, Zr{sub 2}ON{sub 2} and Zr{sub 0.88}Y{sub 0.12}O{sub 1.72}N{sub 0.15} (Y{sub 2}O{sub 3} doped ZrON) were prepared by various methods and subsequently tested for their activity in ammonia cracking. A long-term study was carried out on the best catalyst and no hydrazine was detected. On the basis of the data from the accomplished investigations a reaction mechanism is proposed. The result provides a basis for the further improvement of the catalyst. (orig.)

  17. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts

    OpenAIRE

    Irene Lock Sow Mei; S.S.M. Lock; Dai-Viet N. Vo; Bawadi Abdullah

    2016-01-01

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both catalytic activity and operational lifetime have been developed. In this study, the effect of palladium (Pd) as a promoter onto Ni supported on alumina catalyst has been investigated by u...

  18. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  19. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  20. Synthesis of dendritic iridium nanostructures based on the oriented attachment mechanism and their enhanced CO and ammonia catalytic activities

    Science.gov (United States)

    Wang, Chao; Xiao, Guanjun; Sui, Yongming; Yang, Xinyi; Liu, Gang; Jia, Mingjun; Han, Wei; Liu, Bingbing; Zou, Bo

    2014-11-01

    Branched iridium nanodendrites (Ir NDs) have been synthesized by a simple method based on the oriented attachment mechanism. Transmission electron microscopy images reveal the temporal growth process from small particles to NDs. Precursor concentrations and reaction temperatures have a limited effect on the morphology of Ir NDs. Metal oxide and hydroxide-supported Ir NDs exhibit enhanced activity for catalytic CO oxidation. Particularly, the Fe(OH)x-supported Ir NDs catalyst with a 4 wt% Ir loading show superior CO oxidation catalytic activity with a full conversion of CO at 120 °C. Furthermore, compared with Ir NPs and commercial Ir black, Ir NDs exhibit higher activity and stability for ammonia oxidation. The specific activity and mass activity of Ir NDs for ammonia oxidation are 1.7 and 7 times higher than that of Ir NPs. The improved catalytic activities of Ir NDs are attributed not only to their large specific surface area, but also to their considerably high index facets and rich edge and corner atoms. Hence, the obtained Ir NDs provide a promising alternative for direct ammonia fuel cells and proton-exchange membrane fuel cells.Branched iridium nanodendrites (Ir NDs) have been synthesized by a simple method based on the oriented attachment mechanism. Transmission electron microscopy images reveal the temporal growth process from small particles to NDs. Precursor concentrations and reaction temperatures have a limited effect on the morphology of Ir NDs. Metal oxide and hydroxide-supported Ir NDs exhibit enhanced activity for catalytic CO oxidation. Particularly, the Fe(OH)x-supported Ir NDs catalyst with a 4 wt% Ir loading show superior CO oxidation catalytic activity with a full conversion of CO at 120 °C. Furthermore, compared with Ir NPs and commercial Ir black, Ir NDs exhibit higher activity and stability for ammonia oxidation. The specific activity and mass activity of Ir NDs for ammonia oxidation are 1.7 and 7 times higher than that of Ir NPs. The

  1. Removal of ammonia from aqueous solutions by catalytic oxidation with copper-based rare earth composite metal materials: catalytic performance, characterization, and cytotoxicity evaluation

    Institute of Scientific and Technical Information of China (English)

    Chang-Mao Hung

    2011-01-01

    Ammonia (NH3) has an important use in the chemical industry and is widely found in industrial wastewater.For this investigation of copper-based rare earth composite metal materials,aqueous solutions containing 400 mg/L of ammonia were oxidized in a batch-bed reactor with a catalyst prepared by the co-precipitation of copper nitrate,lanthanum nitrate and cerium nitrate.Barely any of the dissolved ammonia was removed by wet oxidation without a catalyst,but about 88% of the ammonia was reduced during wet oxidation over the catalysts at 423 K with an oxygen partial pressure of 4.0 MPa.The catalytic redox behavior was determined by cyclic voltammetry (CV).Furthermore,the catalysts were characterized using thermogravimetric analyzer (TGA) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX),which showed that the catalytic behavior was related to the metal oxide properties of the catalyst.In addition,the copper-lanthanum-cerium composite-induced cytotoxicity in the human lung MRC-5 cell line was tested,and the percentage cell survival was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-zolium (MTS) analysis in vitro.No apparent cytotoxicity was observed when the human lung cells were exposed to the copper-lanthanum-cerium composite.

  2. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Experiments on aqueous TiO2 photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO2 photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  3. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2000-01-01

    Experiments on aqueous TiO{sub 2} photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO{sub 2} photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  4. Operation and uphold of area of liquid ammonia in Selective Catalytic Reduction%SCR氨区的运行维护

    Institute of Scientific and Technical Information of China (English)

    陈建明

    2014-01-01

    液氨是选择性催化还原脱硝法( SCR)工艺首选的脱硝反应剂,它属于危险化学品。氨区的安全运行是SCR系统安全运行的基础保障。从氨区的运行、维护、人员防护和事故处理等方面阐述了SCR系统运行维护中需要注意的一些关键点。%Liquid ammonia is the first choice of reductant in selective catalytic reduction,it is a sort of dangerous chemical. The safe operation in the area of liquid ammonia is foundation of SCR. lt describes take notice of SCR from the operation,uphold,physical protection and accident handling in the area of liquid ammonia.

  5. SCR氨区的运行维护%Operation and uphold of area of liquid ammonia in Selective Catalytic Reduction

    Institute of Scientific and Technical Information of China (English)

    陈建明

    2014-01-01

    液氨是选择性催化还原脱硝法( SCR)工艺首选的脱硝反应剂,它属于危险化学品。氨区的安全运行是SCR系统安全运行的基础保障。从氨区的运行、维护、人员防护和事故处理等方面阐述了SCR系统运行维护中需要注意的一些关键点。%Liquid ammonia is the first choice of reductant in selective catalytic reduction,it is a sort of dangerous chemical. The safe operation in the area of liquid ammonia is foundation of SCR. lt describes take notice of SCR from the operation,uphold,physical protection and accident handling in the area of liquid ammonia.

  6. Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic" conditions

    Science.gov (United States)

    Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.

    2011-08-01

    The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.

  7. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Long, R.Q.; Yang, R.T. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1999-06-16

    Nitrogen oxides in the exhaust gases from combustion of fossil fuels remain a major source for air pollution and acid rain. The current technology for reducing NO{sub x} (NO + NO{sub 2}) emissions from power plants is selective catalytic reduction (SCR) with ammonia in the presence of oxygen. For the SCR reaction, V{sub 2}O{sub 5} + WO{sub 3} (or MoO{sub 3}) supported on TiO{sub 2} are the commercial catalysts. The mechanism of the reaction on the vanadia catalysts has been studied extensively, and several different mechanisms have been proposed. Ion-exchanged zeolite catalysts have also been studied, e.g., Fe-Y, Cu-ZSM-5, and Fe-ZSM-5, but the reported activities were lower than that of the commercial vanadia catalysts. The SCR technology based on vanadia catalysts is being used in Europe and Japan and is being quickly adopted in the US. However, problems associated with vanadia catalysts remain, e.g., high activity for oxidation of SO{sub 2} to SO{sub 3}, toxicity of vanadia, and formation of N{sub 2}O at high temperature. Hence, there are continuing efforts in developing new catalysts. In this paper, the authors report a superior Fe-ZSM-5 catalyst that is much more active than the commercial vanadia catalysts and does not have the deficiencies that are associated with the vanadia catalysts.

  8. Production of High Purity Multi-Walled Carbon Nanotubes from Catalytic Decomposition of Methane

    Institute of Scientific and Technical Information of China (English)

    Kong Bee Hong; Aidawati Azlin Binti Ismail; Mohamed Ezzaham Bin Mohd Mahayuddin; Abdul Rahman Mohamed; Sharif Hussein Sharif Zein

    2006-01-01

    Acid-based purification process of multi-walled carbon nanotubes (MWNTs) produced via catalytic decomposition of methane with NiO/TiO2 as a catalyst is described. By combining the oxidation in air and the acid refluxes, the impurities, such as amorphous carbon, carbon nanoparticles, and the NiO/TiO2 catalyst, are eliminated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirm the removal of the impurities. The percentage of the carbon nanotubes purity was analyzed using thermal gravimetric analysis (TGA). Using this process, 99.9 wt% purity of MWNTs was obtained.

  9. Alkali Metals Promoted Co-Mn-Al Mixed Oxide for N2O Catalytic Decomposition

    Czech Academy of Sciences Publication Activity Database

    Karásková, K.; Kulová, T.; Obalová, L.; Jirátová, Květa; Kovanda, F.

    Bratislava : Slovak Society of Chemical Engineering, 2011 - (Markoš, J.), s. 251 ISBN 978-80-227-3503-2. [International Conference of Slovak Society of Chemical Engineering /38./. Tatranské Matliare (SK), 23.05.2011-27.05.2011] R&D Projects: GA ČR GA106/09/1664 Grant ostatní: GA MŠk ED2.1.00/03.0100 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * catalytic decomposition * mixed oxide catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  10. Decomposition of molybdate-hexamethylenetetramine complex: One single source route for different catalytic materials

    International Nuclear Information System (INIS)

    Decomposition of ammonium heptamolybdate-hexamethylentetramine (HMTA) complex (HMTA)2(NH4)4Mo7O24.2H2O was studied as a function of treatment conditions in the range 300-1173 K. The evolution of solid products during decomposition was studied by thermal analysis and in situ EXAFS. Depending on the nature of the gas used for treatment, single phases of highly dispersed nitrides Mo2N, carbide Mo2C, or oxide MoO2 can be obtained. The nature of the products obtained was explained by qualitative thermodynamical considerations. Morphology of the solids considerably depends on such preparation parameters as temperature and mass velocity of the gas flow. For the nitride-based materials, catalytic activity was evaluated in the model thiophene HDS reaction. It was demonstrated that NH3-treated samples showed better catalytic activity than N2-treated ones due to cleaner surface and better morphology. Transmission microscopy, XRD and XPS studies showed that MoS2 is formed on the surface during HDS reaction or sulfidation with H2S. Optimized nitride-derived catalysts showed mass activity several times higher than unsupported MoS2 or MoS2/Al2O3 reference catalyst. - Graphical Abstract: Depending on the conditions, decomposition of molybdate-HTMA complex yields highly dispersed molybdenum nitride, carbide or oxide. Research highlights: → Decomposition of molybdate-HTMA complex yields highly dispersed Mo2N, Mo2C or MoO2. → In situ EXAFS shows formation of common amorphous product MoCxNyOz at 673 K. → Crystalline Mo2N with surface area near 200 m2/g was obtained at 823 K. → High mass activity in thiophene HDS was observed.

  11. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    International Nuclear Information System (INIS)

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H2PtCl6, Pd(NO3)3 and Rh(NO3)3. Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h-1 in the wet catalytic processes

  12. Solid-oxide fuel cell operated on in situ catalytic decomposition products of liquid hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Hongxia; Ran, Ran; Zhou, Wei; Shao, Zongping; Jin, Wanqin; Xu, Nanping [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, No. 5 Xing Mofan Road, Nanjing, JiangSu 210009 (China); Ahn, Jeongmin [School of Mechanical and Materials Engineering, Washington State University, Sloan 217, Pullman, WA 99164-2920 (United States)

    2008-03-01

    Hydrazine was examined as a fuel for a solid-oxide fuel cell (SOFC) that employed a typical nickel-based anode. An in situ catalytic decomposition of hydrazine at liquid state under room temperature and ambient pressure before introducing to the fuel cell was developed by applying a Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) oxide catalyst. Catalytic testing demonstrated that liquid N{sub 2}H{sub 4} can be decomposed to gaseous NH{sub 3} and H{sub 2} at a favorable rate and at a temperature as low as 20 C and H{sub 2} selectivity reaching values as high as 10% at 60 C. Comparable fuel cell performance was observed using either the in situ decomposition products of hydrazine or pure hydrogen as fuel. A peak power density of {proportional_to}850 mW cm{sup -2} at 900 C was obtained with a typical fuel cell composed of scandia-stabilized zirconia and La{sub 0.8}Sr{sub 0.2}MnO{sub 3} cathode. The high energy and power density, easy storage and simplicity in fuel delivery make it highly attractive for portable applications. (author)

  13. Dehydrogenation of cyclohexane to benzene on lanthanide catalysts formed by thermal decomposition of Eu or Yb metal solutions in liquid ammonia

    International Nuclear Information System (INIS)

    Full text: Active lanthanide catalysts for the dehydrogenation of cyclohexane to benzene were prepared by impregnation of active carbon (AC) or MnO with liquid ammonia solutions of lanthanide (Ln: Eu or Yb) metals. The catalytic properties of the lanthanide catalysts varied markedly with changes in evacuation temperatures of Ln/AC and Ln/MnO during their pre-treatment. Yb/AC and Yb/MnO which were subjected to the evacuation treatment around 773 K and 673 K, respectively, showed a maximal activity and the catalysts thus treated could effectively dehydrogenated cyclohexane to benzene at 473 K. For Ln/AC, the europium and ytterbium catalysts exhibited similar activities. Studies of x-ray diffraction and Fourier-transform infrared spectra for Ln/AC showed that the lanthanides deposited on active carbon were changed through varied steps (metal, amide, imide or nitride) by the thermal treatments and simultaneously the dehydrogenation activity varied markedly. It was concluded that imide or imide-like spices formed during the thermal decomposition processes of lanthanide amide to nitride were active for the dehydrogenation. The dependence of activity on such thermal treatments was similar to that observed for the hydrogenation of olefin

  14. Mechanism of ammonia decomposition on clean and oxygen-covered Cu (1 1 1) surface: A DFT study

    International Nuclear Information System (INIS)

    Highlights: • Dehydrogenation mechanism of NH3 on clean and oxygen-covered Cu (1 1 1) was firstly studied using periodic DFT calculations. • The optimized structures and adsorption energies were obtained. • The results give the effect of using atomic oxygen to modify Cu (1 1 1) surface. • The energy barriers and reaction energies were calculated. • The existence of oxygen atom can reduce the energy barriers drastically and promote the decomposition of NHx. - Abstract: Employing density functional theory (DFT), the adsorption and dehydrogenation mechanism of ammonia on clean and O-covered Cu (1 1 1) surfaces have been studied systematically. Different adsorption geometries were investigated for NH3 and related intermediates. In addition, the stable co-adsorption configurations for the relevant co-adsorption groups were identified. The projected density of states (DOS) were calculated to understand the interaction between NHx (x = 1, 3) species and Cu (1 1 1) surface and investigate the effect of oxygen atom on adsorption. Finally, transition states, energy barriers and reaction energies were determined to confirm the mechanism of dehydrogenation of NH3 on clean and oxygen-covered Cu (1 1 1) surfaces. It was shown that NH is the most abundant intermediate on clean and O-covered Cu (1 1 1) surface due to the highest energy barrier, suggesting the dehydrogenation of NH group is the rate-determining step in the overall reaction. Furthermore, the existence of oxygen atom can reduce the energy barriers drastically and promote the decomposition of NHx (x = 1–3), indicating that ammonia decomposition is more favorable on oxygen-covered Cu (1 1 1) surface

  15. Mechanism of ammonia decomposition on clean and oxygen-covered Cu (1 1 1) surface: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhao; Qin, Pei; Fang, Tao, E-mail: taofang@mail.xjtu.edu.cn

    2014-12-05

    Highlights: • Dehydrogenation mechanism of NH{sub 3} on clean and oxygen-covered Cu (1 1 1) was firstly studied using periodic DFT calculations. • The optimized structures and adsorption energies were obtained. • The results give the effect of using atomic oxygen to modify Cu (1 1 1) surface. • The energy barriers and reaction energies were calculated. • The existence of oxygen atom can reduce the energy barriers drastically and promote the decomposition of NH{sub x}. - Abstract: Employing density functional theory (DFT), the adsorption and dehydrogenation mechanism of ammonia on clean and O-covered Cu (1 1 1) surfaces have been studied systematically. Different adsorption geometries were investigated for NH{sub 3} and related intermediates. In addition, the stable co-adsorption configurations for the relevant co-adsorption groups were identified. The projected density of states (DOS) were calculated to understand the interaction between NH{sub x} (x = 1, 3) species and Cu (1 1 1) surface and investigate the effect of oxygen atom on adsorption. Finally, transition states, energy barriers and reaction energies were determined to confirm the mechanism of dehydrogenation of NH{sub 3} on clean and oxygen-covered Cu (1 1 1) surfaces. It was shown that NH is the most abundant intermediate on clean and O-covered Cu (1 1 1) surface due to the highest energy barrier, suggesting the dehydrogenation of NH group is the rate-determining step in the overall reaction. Furthermore, the existence of oxygen atom can reduce the energy barriers drastically and promote the decomposition of NH{sub x} (x = 1–3), indicating that ammonia decomposition is more favorable on oxygen-covered Cu (1 1 1) surface.

  16. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol−1, which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  17. Understanding Catalytic Activity Trends for NO Decomposition and CO Oxidation using Density Functional Theory and Microkinetic Modeling

    DEFF Research Database (Denmark)

    Falsig, Hanne

    towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional theory calculations. We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition...... Pt are the best direct NO decomposition catalysts among the 3d, 4d, and 5d metals. We analyze the NO decomposition reaction in terms of the Sabatier analysis and a Sabatier–Gibbs-type analysis and obtain an activity trend in agreement with experimental results. We show specifically why the key...... problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen. We calculate adsorption and transition state energies for the full CO oxidation reaction pathway by the use of DFT for a number of...

  18. Hydrogen production by Thermo Catalytic Decomposition of Natural Gas: Ni-based catalysts

    International Nuclear Information System (INIS)

    Thermo Catalytic Decomposition of methane using Ni and Ni-Cu catalyst is studied. The conventional co-precipitation method is compared versus an easier preparation method based on the fusing of the metallic nitrates. The role of copper has also been analyzed. TCD has been carried out in a bench scale fixed bed and a semi-pilot scale fluidized bed. Catalysts prepared by both methods shown similar behaviour. Introduction of copper in the catalyst promoted NiO reduction which prevented hydrogen from CO contamination. Fluid-dynamic studies have shown that TCD can be carried out in a fluidized bed reactor without reactor clogging provided that a methane velocity of two times the minimum fluidization velocity is used. This high spatial velocity resulted in a reduction of methane conversion. So the optimum gas velocity should be chosen in terms of hydrogen production rates and fluidization quality. (authors)

  19. Spectroscopic and Kinetic Study of Copper-Exchanged Zeolites for the Selective Catalytic Reduction of NOx with Ammonia

    OpenAIRE

    Bates, Shane Adam

    2013-01-01

    The recent application of metal-exchanged, small-pore zeolites for use in the selective catalytic reduction (SCR) of NOx with ammonia NH3 for automotive deNOx applications has been a great stride in achieving emission standard goals. Copper-exchanged SSZ-13 (Cu-SSZ-13), the small-pore zeolite in this study, has been shown to be very hydrothermally stable and active under conditions presented in the exhaust of the lean-burn diesel engine. In this work, detailed studies were performed to identi...

  20. Effect of Potassium in Calcined Co-Mn-Al Layered Double Hydroxide on the Catalytic Decomposition of N2O

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Karásková, K.; Jirátová, Květa; Kovanda, F.

    2009-01-01

    Roč. 90, 1-2 (2009), s. 132-140. ISSN 0926-3373 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * catalytic decomposition * potassium promoter Subject RIV: CC - Organic Chemistry Impact factor: 5.252, year: 2009

  1. Effect of Promoters in Calcined Co-Mn-Al Layered Double Hydroxide on Catalytic Decomposition of N2O

    Czech Academy of Sciences Publication Activity Database

    Karásková, K.; Obalová, L.; Jirátová, Květa; Kovanda, F.

    Bratislava : Slovak University of Technology, 2009 - (Markoš, J.), s. 297 ISBN 978-80-227-3072-3. [International Conference of Slovak Society of Chemical Engineering /36./. Tatranské Matliare (SK), 25.05.2009-29.05.2009] Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * catalytic decomposition * mixed oxide catalyst Subject RIV: CC - Organic Chemistry

  2. Application of microscopy technology in thermo-catalytic methane decomposition to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Irene Lock Sow, E-mail: irene.sowmei@gmail.com; Lock, S. S. M., E-mail: serenelock168@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Sri Iskandar, 31750, Perak (Malaysia)

    2015-07-22

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production because it produces pure hydrogen without any CO{sub x} emissions. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both specific activity and operational lifetime have been developed. In this work, bimetallic Ni-Pd on gamma alumina support have been developed for methane cracking process by using co-precipitation and incipient wetness impregnation method. The calcined catalysts were characterized to determine their morphologies and physico-chemical properties by using Brunauer-Emmett-Teller method, Field Emission Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis. The results suggested that that the catalyst which is prepared by the co-precipitation method exhibits homogeneous morphology, higher surface area, have uniform nickel and palladium dispersion and higher thermal stability as compared to the catalyst which is prepared by wet impregnation method. This characteristics are significant to avoid deactivation of the catalysts due to sintering and carbon deposition during methane cracking process.

  3. Application of microscopy technology in thermo-catalytic methane decomposition to hydrogen

    International Nuclear Information System (INIS)

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production because it produces pure hydrogen without any COx emissions. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both specific activity and operational lifetime have been developed. In this work, bimetallic Ni-Pd on gamma alumina support have been developed for methane cracking process by using co-precipitation and incipient wetness impregnation method. The calcined catalysts were characterized to determine their morphologies and physico-chemical properties by using Brunauer-Emmett-Teller method, Field Emission Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis. The results suggested that that the catalyst which is prepared by the co-precipitation method exhibits homogeneous morphology, higher surface area, have uniform nickel and palladium dispersion and higher thermal stability as compared to the catalyst which is prepared by wet impregnation method. This characteristics are significant to avoid deactivation of the catalysts due to sintering and carbon deposition during methane cracking process

  4. Application of microscopy technology in thermo-catalytic methane decomposition to hydrogen

    Science.gov (United States)

    Mei, Irene Lock Sow; Lock, S. S. M.; Abdullah, Bawadi

    2015-07-01

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production because it produces pure hydrogen without any COx emissions. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both specific activity and operational lifetime have been developed. In this work, bimetallic Ni-Pd on gamma alumina support have been developed for methane cracking process by using co-precipitation and incipient wetness impregnation method. The calcined catalysts were characterized to determine their morphologies and physico-chemical properties by using Brunauer-Emmett-Teller method, Field Emission Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis. The results suggested that that the catalyst which is prepared by the co-precipitation method exhibits homogeneous morphology, higher surface area, have uniform nickel and palladium dispersion and higher thermal stability as compared to the catalyst which is prepared by wet impregnation method. This characteristics are significant to avoid deactivation of the catalysts due to sintering and carbon deposition during methane cracking process.

  5. Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate

    Directory of Open Access Journals (Sweden)

    Ping Cui

    2016-05-01

    Full Text Available Copper oxide (CuO nanoparticles were successfully deposited on carbon nanotubes’ (CNTs surface via complex-precipitation method, the nanocomposite was characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, X-ray powder diffraction (XRD, Raman spectroscopy, Fourier transform infrared (FT-IR and Brunauer–Emmett–Teller (BET. The catalytic performance of CNTs/CuO on ammonium perchlorate (AP decomposition was analyzed by differential thermal analyzer (DTA, the DTA results showed its excellent catalytic effect on AP decomposition, as 8 wt.% CNTs/CuO was added in AP, the second exothermic peak temperature decreased by 158 °C. Such composite may be a promising candidate for catalyzing the AP thermal decomposition.

  6. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  7. Catalytic decomposition of nitrous oxide from nitric acid production tail gases. Investigation of inhibition effects. Executive summary

    International Nuclear Information System (INIS)

    Nitric acid production is an important source of nitrous oxide, one of the green-house gases. Catalytic decomposition of N2O in nitric acid tail-gases might be a possibility for emission reduction, but technology is not yet available. As a part of development of suitable catalytic systems, research was performed, aiming at: gaining an improved understanding of catalytic decomposition of N2O and the inhibiting effects of NO, NO2, H2O and O2; and preparing a 'go-no go' decision whether or not to proceed with subsequent re-search and development and if yes, to indicate what technology further development should aim for. Due to the presence of NOx and water in the nitric acid tail gases, catalytic decomposition proves not to be feasible at temperatures below 350C. At higher temperatures possibilities do exist and a number of promising catalysts are identified. These are active (80 - 100 % conversion) in the temperature range of 400 - 500C and under simulated tail gas conditions. Considering process conditions only (temperatures and composition of the tail-gases), the catalysts studied (pref. the Rh/Al2O3 types) could be in principle applied successfully in all Dutch nitric acid plants

  8. New insight in the microscopic mechanism of the catalytic synthesis of ammonia

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1995-01-01

    account for the observed conversion to ammonia. We have constructed an empirical potential energy surface for N-2/Fe(111) which has barriers to dissociation even larger than for the previously studied N-2/Re system. It is shown that the presence of barriers is consistent with the observation that the...

  9. CATALYTIC REDUCTION OF NITROGEN OXIDES WITH AMMONIA: UTILITY PILOT PLANT OPERATION

    Science.gov (United States)

    The report describes work to demonstrate, on a utility pilot plant scale, the performance, reliability, and practicability of reducing nitrogen oxides (NOx) emissions from steam boilers by reduction of NOx with ammonia over a platinum catalyst. A utility pilot plant treating a sl...

  10. Iridium-decorated multiwall carbon nanotubes and its catalytic activity with Shell 405 in hydrazine decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, V.; Vasanthkumar, M. S., E-mail: vasanth.physics@gmail.com [Indian Institute of Science, Department of Physics (India)

    2015-10-15

    Iridium-functionalized multiwalled carbon nanotubes (Ir-MWNT) are the future catalyst support material for hydrazine fuel decomposition. The present work demonstrates decoration of iridium particle on iron-encapsulated multiwalled carbon nanotubes (MWNT) by wet impregnation method in the absence of any stabilizer. Electron microscopy studies reveal the coated iridium particle size in the range of 5–10 nm. Elemental analysis by energy dispersive X-ray diffraction confirms 21 wt% of Ir coated over MWNT. X-ray photoelectron spectroscopy (XPS) shows 4f{sub 5/2} and 4f{sub 7/2} lines of iridium and confirms the metallic nature. The catalytic activity of Ir-MWNT/Shell 405 combination is performed in 1 N hydrazine micro-thrusters. The thruster performance shows increase in chamber pressure and decrease in chamber temperature when compared to Shell 405 alone. This enhanced performance is due to high thermal conducting nature of MWNTs and the presence of Ir active sites over MWNTs.

  11. Iridium-decorated multiwall carbon nanotubes and its catalytic activity with Shell 405 in hydrazine decomposition

    International Nuclear Information System (INIS)

    Iridium-functionalized multiwalled carbon nanotubes (Ir-MWNT) are the future catalyst support material for hydrazine fuel decomposition. The present work demonstrates decoration of iridium particle on iron-encapsulated multiwalled carbon nanotubes (MWNT) by wet impregnation method in the absence of any stabilizer. Electron microscopy studies reveal the coated iridium particle size in the range of 5–10 nm. Elemental analysis by energy dispersive X-ray diffraction confirms 21 wt% of Ir coated over MWNT. X-ray photoelectron spectroscopy (XPS) shows 4f5/2 and 4f7/2 lines of iridium and confirms the metallic nature. The catalytic activity of Ir-MWNT/Shell 405 combination is performed in 1 N hydrazine micro-thrusters. The thruster performance shows increase in chamber pressure and decrease in chamber temperature when compared to Shell 405 alone. This enhanced performance is due to high thermal conducting nature of MWNTs and the presence of Ir active sites over MWNTs

  12. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition

    Science.gov (United States)

    Ping, Dan; Wang, Chaoxian; Dong, Xinfa; Dong, Yingchao

    2016-04-01

    The co-production of COx-free hydrogen and carbon nanotubes (CNTs) was achieved on 3-dimensional (3D) macroporous nickel foam (NF) via methane catalytic decomposition (MCD) over nano-Ni catalysts using chemical vapor deposition (CVD) technique. By a simple coating of a NiO-Al2O3 binary mixture sol followed by a drying-calcination-reduction treatment, NF supported composite catalysts (denoted as NiyAlOx/NF) with Al2O3 transition-layer incorporated with well-dispersed nano-Ni catalysts were successfully prepared. The effects of Ni loading, calcination temperature and reaction temperature on the performance for simultaneous production of COx-free hydrogen and CNTs were investigated in detail. Catalysts before and after MCD were characterized by XRD, TPR, SEM, TEM, TG and Raman spectroscopy technology. Results show that increasing Ni loading, lowering calcination temperature and optimizing MCD reaction temperature resulted in high production efficiency of COx-free H2 and carbon, but broader diameter distribution of CNTs. Through detailed parameter optimization, the catalyst with a Ni/Al molar ratio of 0.1, calcination temperature of 550 °C and MCD temperature of 650 °C was favorable to simultaneously produce COx-free hydrogen with a growth rate as high as 10.3% and CNTs with uniform size on NF.

  13. Selective catalytic reduction of nitrogen oxides with ammonia over microporous zeolite catalysts

    OpenAIRE

    VENNESTROM, PETER NICOLAI RAVNBORG

    2014-01-01

    With increasing legislative demands to remove nitrogen oxides (NOx) from automotive diesel exhaust, new catalyst systems are investigated and intensely studied in industry as well in academia. The most prevailing catalytic method of choice is the selective catalytic reduction (SCR) where non-toxic urea is used as a reductant for practical reasons. Usually urea is stored in a separate tank and once injected into the exhaust system it hydrolyses into the more aggressive reductant NH3 and CO2. ...

  14. Effect of Preparation Method on Catalytic Properties of Co-Mn-Al Mixed Oxide for N2O Decomposition

    Czech Academy of Sciences Publication Activity Database

    Klyushina, A.; Obalová, L.; Karásková, K.; Jirátová, Květa

    Novosibirsk: Boreskov Institute of Catalysis SB RAS, 2015 - (Bukhtiyarov, V.; Stakheev, A.), s. 1904-1905 ISBN 978-5-906376-10-7. [European Congress on Catalysis – EuropaCat-XII /12./. Kazaň (RU), 30.08.2015-04.09.2015] R&D Projects: GA ČR GA14-13750S Institutional support : RVO:67985858 Keywords : nitrous oxide * catalytic decomposition * cobalt oxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://hdl.handle.net/11104/0250627

  15. N2O Catalytic Decomposition - Effect of Pelleting Pressure on Activity of Co-Mn-Al Mixed Oxide Catalyst

    Czech Academy of Sciences Publication Activity Database

    Galejová, K.; Obalová, L.; Jirátová, Květa; Pacultová, K.; Kovanda, F.

    2009-01-01

    Roč. 63, č. 2 (2009), s. 172-179. ISSN 0366-6352. [International Conference of the Slovak-Society-of-Chemical-Engineering /35./. Tatranske Matliare, 26.05.2008-30.05.2008] R&D Projects: GA ČR GA104/07/1400 Institutional research plan: CEZ:AV0Z40720504 Keywords : pelleting pressure * nitrous oxide * catalytic decomposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.791, year: 2009

  16. Testing of Performance of a Scroll Pump in Support of Improved Vapor Phase Catalytic Ammonia Removal (VPCAR) Mass Reduction

    Science.gov (United States)

    Nahra, Henry K.; Kraft, Thomas G.; Yee, Glenda F.; Jankovsky, Amy L.; Flynn, Michael

    2006-01-01

    This paper describes the results of ground testing of a scroll pump with a potential of being a substitute for the current vacuum pump of the Vapor Phase Catalytic Ammonia Reduction (VPCAR). Assessments of the pressure-time, pump-down time, pump power and the pump noise were made for three configurations of the pump the first of which was without the gas ballast, the second with the gas ballast installed but not operating and the third with the gas ballast operating. The tested scroll pump exhibited optimum characteristics given its mass and power requirements. The pump down time required to reach a pressure of 50 Torr ranged from 60 minutes without the ballast to about 120 minutes with the gas ballast operational. The noise emission and the pump power were assessed in this paper as well.

  17. [Fe-ZSM-5 catalysts with different silica-alumina ratios for N2O, catalytic decomposition].

    Science.gov (United States)

    Lu, Ren-Jie; Zhang, Xin-Yan; Hao, Zheng-Ping

    2014-01-01

    The Fe-ZSM-5 catalysts were prepared with H-ZSM-5 of different Si/Al ratios by wet ion exchange and chemical vapor deposition. Then the catalysts were investigated by XRD, BET, TEM, UV-vis and NH3-TPD technologies to analyze the iron states in Fe-ZSM-5 zeolites. The results showed that after H-ZSM-5 zeolites were prepared by chemical vapor deposition and heating wet ion exchange, the nano Fe2 O3 particles were uniformly dispersed with the sizes of 8 nm in the Fe-ZSM-5-25 (Si/A1-25). Moreover, there were more oligonuclear Fe3+ Oy clusters in the Fe-ZSM-5-25 catalysts than in Fe-ZSM-5-300 (Si/Al-300). The results of catalytic performance on N2O decomposition showed that Fe-ZSM-5-25 catalysts had higher catalytic activities than Fe-ZSM-5-300 catalysts. The Fe-ZSM-5 catalysts prepared by chemical vapor deposition achieved the best catalytic activity in N2O decomposition among the catalysts prepared by the three methods. Moreover, the presence of O2 only slightly reduced N2O conversion, while NO promoted the N2O decomposition. Finally, after reaction for more than 100 h, Fe-ZSM-5 catalyst showed no obvious deactivation under simulated emission conditions. PMID:24720229

  18. Synthesis of chrysalis-like CuO nanocrystals and their catalytic activity in the thermal decomposition of ammonium perchlorate

    Indian Academy of Sciences (India)

    Jun Wang; Shanshan He; Zhanshuang Li; Xiaoyan Jing; Milin Zhang; Zhaohua Jiang

    2009-11-01

    Chrysalis-like morphologies of CuO have been synthesized in large-quantity via a simple chemical deposition method without the use of any complex instruments and reagents. CuO nanocrystals showed a different morphology at three different temperatures, 25, 60 and 100°C. The particle size, morphology and crystal structure of the samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectra. The catalytic effect of CuO nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by STA 409 PC thermal analyzer at a heating rate of 10°C min-1 from 35 to 500°C. Compared with the thermal decomposition of pure AP, the addition of CuO nanoparticles decreased the decomposition temperature of AP by about 85°C.

  19. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl;

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac......For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling...... of the activation of NO by O2 with the fast SCR reaction, enabled by the release of NO2. According to the scheme, the SCR reaction can be divided in an oxidation of the catalyst by NO + O2 and a reduction by NO + NH3; these steps together constitute a complete catalytic cycle. Furthermore both NO and NH3...... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  20. Dynamics of ultrathin V-oxide layers on Rh(111) in catalytic oxidation of ammonia and CO.

    Science.gov (United States)

    von Boehn, B; Preiss, A; Imbihl, R

    2016-07-20

    Catalytic oxidation of ammonia and CO has been studied in the 10(-4) mbar range using a catalyst prepared by depositing ultra-thin vanadium oxide layers on Rh(111) (θV ≈ 0.2 MLE). Using photoemission electron microscopy (PEEM) as a spatially resolving method, we observe that upon heating in an atmosphere of NH3 and O2 the spatial homogeneity of the VOx layer is removed at 800 K and a pattern consisting of macroscopic stripes develops; at elevated temperatures this pattern transforms into a pattern of circular VOx islands. Under reaction conditions the neighboring VOx islands become attracted by each other and coalesce. Similar processes of pattern formation and island coalescence are observed in catalytic CO oxidation. Reoxidation of the reduced VOx catalyst proceeds via surface diffusion of oxygen adsorbed onto Rh(111). A pattern consisting of macroscopic circular VOx islands can also be obtained by heating a Rh(111)/VOx catalyst in pure O2. PMID:27380822

  1. Removal of ammonia from producer gas in biomass gasification: integration of gasification optimisation and hot catalytic gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hongrapipat, Janjira; Saw, Woei-Lean; Pang, Shusheng [University of Canterbury, Department of Chemical and Process Engineering, Christchurch (New Zealand)

    2012-12-15

    Ammonia (NH{sub 3}) is one of the main contaminants in the biomass gasification producer gas, which is undesirable in downstream applications, and thus must be removed. When the producer gas is used in integrated gasification combined cycle (IGCC) technology, NH{sub 3} is the main precursor of nitrogen oxides (NO{sub x}) formed in gas turbine, whereas in Fischer-Tropsch synthesis and in integrated gasification fuel cell (IGFC) technology, the NH{sub 3} gas poisons the catalysts employed. This paper presents a critical review on the recent development in the understanding of the NH{sub 3} formation in biomass gasification process and in the NH{sub 3} gas cleaning technologies. The NH{sub 3} gas concentration in the producer gas can firstly be reduced by the primary measures taken in the gasification process by operation optimisation and using in-bed catalytic materials. Further removal of the NH{sub 3} gas can be implemented by the secondary measures introduced in the post-gasification gas-cleaning process. Focus is given on the catalytic gas cleaning in the secondary measures and its advantages are analysed including energy efficiency, impacts on environment and recyclability of the catalyst. Based on the review, the most effective cleaning process is proposed with integration of both the primary and the secondary measures for application in a biomass gasification process. (orig.)

  2. Understanding ammonia selective catalytic reduction kinetics over Cu-SSZ-13 from motion of the Cu ions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Walter, Eric D.; Kollar, Marton; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2014-11-01

    Cu-SSZ-13 catalysts with three Si/Al ratios, at 6, 12 and 35, are synthesized with solution ion exchange. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), and electron paramagnetic resonance (EPR) spectroscopy. Catalytic properties are examined using NO oxidation, ammonia oxidation, and standard ammonia selective catalytic reduction (NH3-SCR) reactions. By varying Si/Al ratios and Cu loadings, it is possible to synthesize catalysts with one dominant type of isolated Cu2+ ion species. Prior to full dehydration of the zeolite catalyst, hydrated Cu2+ ions are found to be very mobile as judged from EPR. NO oxidation is catalyzed by O-bridged Cu-dimer species that form at relatively high Cu loadings and in the presence of O2. For NH3 oxidation and standard SCR reactions, transient Cu-dimers even form at much lower Cu loadings; and these are proposed to be the active sites for reaction temperatures ≤ 350 °C. These dimer species can be viewed as in equilibrium with monomeric Cu ion complexes. Between ~250 and 350 °C, these moieties become less stable causing SCR reaction rates to decrease. At temperatures above 350 °C and at low Cu loadings, Cu-dimers completely dissociate to regenerate isolated Cu2+ monomers that then locate at ion-exchange sites of the zeolite lattice. At low Cu loadings, these Cu species are the high-temperature active SCR catalytic centers. At high Cu loadings, on the other hand, both Cu-dimers and monomers are highly active in the high temperature kinetic regime, yet Cu-dimers are less selective in SCR. Brönsted acidity is also very important for SCR reactivity in the high-temperature regime. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national

  3. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  4. Catalytic oxidation of ammonia on RuO2(110) surfaces: mechanism and selectivity.

    Science.gov (United States)

    Wang, Y; Jacobi, K; Schöne, W-D; Ertl, G

    2005-04-28

    The selective oxidation of ammonia to either N2 or NO on RuO2(110) single-crystal surfaces was investigated by a combination of vibrational spectroscopy (HREELS), thermal desorption spectroscopy (TDS) and steady-state rate measurements under continuous flow conditions. The stoichiometric RuO2(110) surface exposes coordinatively unsaturated (cus) Ru atoms onto which adsorption of NH3 (NH3-cus) or dissociative adsorption of oxygen (O-cus) may occur. In the absence of O-cus, ammonia desorbs completely thermally without any reaction. However, interaction between NH3-cus and O-cus starts already at 90 K by hydrogen abstraction and hydrogenation to OH-cus, leading eventually to N-cus and H2O. The N-cus species recombine either with each other to N2 or with neighboring O-cus leading to strongly held NO-cus which desorbs around 500 K. The latter reaction is favored by higher concentrations of O-cus. Under steady-state flow condition with constant NH3 partial pressure and varying O2 pressure, the rate for N2 formation takes off first, passes through a maximum and then decreases again, whereas that for NO production exhibits an S-shape and rises continuously. In this way at 530 K almost 100% selectivity for NO formation (with fairly high reaction probability for NH3) is reached. PMID:16851919

  5. Selective catalytic reduction of nitric oxide by ammonia over Cu-exchanged Cuban natural zeolites

    International Nuclear Information System (INIS)

    The catalytic selective reduction of NO over Cu-exchanged natural zeolites (mordenite (MP) and clinoptilolite (HC)) from Cuba using NH3 as reducing agent and in the presence of excess oxygen was studied. Cu(II)-exchanged zeolites are very active catalysts, with conversions of NO of 95%, a high selectivity to N2 at low temperatures, and exhibiting good water tolerance. The chemical state of the Cu(II) in exchanged zeolites was characterized by H2-TPR and XPS. Cu(II)-exchanged clinoptilolite underwent a severe deactivation in the presence of SO2. However, Cu(II)-exchanged mordenite not only maintained its catalytic activity, but even showed a slight improvement after 20h of reaction in the presence of 100ppm of SO2

  6. Promoted Ru on high-surface area graphite for efficient miniaturized production of hydrogen from ammonia

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Klerke, Asbjørn; Quaade, Ulrich;

    2006-01-01

    Promoted Ru/C catalysts for decomposition of ammonia are incorporated into micro-fabricated reactors for the first time. With the reported preparation technique, the performance is increased more than two orders of magnitude compared to previously known micro-fabricated reactors for ammonia...... decomposition. The catalytic activities for production of hydrogen from ammonia are determined for different promoters and promoter levels on graphite supported ruthenium catalysts. The reactivity trends of the Ru/C catalysts promoted with Cs and Ba are in excellent agreement with those known from earlier...

  7. Synthesis and characterization of Fe–Ni/ɣ-Al2O3 egg-shell catalyst for H2 generation by ammonia decomposition

    DEFF Research Database (Denmark)

    Silva, Hugo José Lopes; Nielsen, Morten Godtfred; Fiordaliso, Elisabetta Maria;

    2015-01-01

    the active phase should match with the type of reaction. In this work, a novel synthesis route was developed for the preparation of a Fe–Ni/ɣ-Al2O3 egg-shell catalyst. Egg-shell is a preferred profile considering the highly endothermic nature of ammonia decomposition reaction. The high viscosity of......The Fe–Ni alloyed nanoparticles are a promising alternative to expensive ruthenium-based catalysts for a real-scale application of hydrogen generation by ammonia decomposition. In practical applications, millimeter-sized extrudates are used as catalyst supports, where the spatial distribution of....... The outer-shell region showed the presence of Fe and Ni alloyed nanoparticles with a size of approximately 5nm.. The egg-shell catalyst showed significant higher activity in ammonia decomposition by converting 3 times more ammonia to equilibrium conversion than either egg-white or catalyst with...

  8. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2014-01-01

    The presence of water often gives rise to oxygen adsorption on catalyst surfaces through decomposition of water and the adsorbed oxygen or hydroxide species often occupy important surfaces sites, resulting in a decrease or a total hindrance of other chemical reactions taking place at that site. In...... this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density...... oxygen over nitrogen and hydrogen at neutral bias, but under electrochemical reaction conditions needed for nitrogen reduction, oxygen adsorption is severely weakened and the adsorption energy is comparable to hydrogen and nitrogen adsorption. The potentials required to reduce oxygen offthe surface are...

  9. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems.

    Science.gov (United States)

    Lezcano-Gonzalez, I; Deka, U; Arstad, B; Van Yperen-De Deyne, A; Hemelsoet, K; Waroquier, M; Van Speybroeck, V; Weckhuysen, B M; Beale, A M

    2014-01-28

    Three different types of NH3 species can be simultaneously present on Cu(2+)-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4(+)), formed on the Brønsted acid sites, [Cu(NH3)4](2+) complexes, resulting from NH3 coordination with the Cu(2+) Lewis sites, and NH3 adsorbed on extra-framework Al (EFAl) species, in contrast to the only two reacting NH3 species recently reported on Cu-SSZ-13 zeolite. The NH4(+) ions react very slowly in comparison to NH3 coordinated to Cu(2+) ions and are likely to contribute little to the standard NH3-SCR process, with the Brønsted groups acting primarily as NH3 storage sites. The availability/reactivity of NH4(+) ions can be however, notably improved by submitting the zeolite to repeated exchanges with Cu(2+), accompanied by a remarkable enhancement in the low temperature activity. Moreover, the presence of EFAl species could also have a positive influence on the reaction rate of the available NH4(+) ions. These results have important implications for NH3 storage and availability in Cu-Chabazite-based NH3-SCR systems. PMID:24322601

  10. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NO(x) with ammonia.

    Science.gov (United States)

    Li, Junhua; Zhu, Ronghai; Cheng, Yisun; Lambert, Christine K; Yang, Ralph T

    2010-03-01

    Application of Fe-zeolites for urea-SCR of NO(x) in diesel engine is limited by catalyst deactivation with hydrocarbons. In this work, we investigated the effect of propene on the activity of Fe-ZSM-5 for selective catalytic reduction of NO(x) with ammonia (NH(3)-SCR), and proposed a deactivation mechanism of Fe(3+) active site blockage by propene residue. The NO conversion decreased in the presence of propene at various temperatures, while the effect was not significant when NO was replaced by NO(2) in the feed, especially at low temperatures (<300 degrees C). The surface area and pore volume were decreased due to carbonaceous deposition. The site blockage was mainly on Fe(3+) sites on which NO was to be oxidized to NO(2). The activity for NO oxidation to NO(2) was significantly inhibited on a propene poisoned catalyst below 400 degrees C. The adsorption of NH(3) on the Bronsted acid sites to form NH(4)(+) was not hindered even on the propene poisoned catalyst, and the amount of absorbed NH(3) was still abundant and enough to react with NO(2) to generate N(2). The hydrocarbon oxygenates such as formate, acetate, and containing nitrogen organic compounds were observed on catalyst surface, however, no graphitic carbonaceous deposit was formed. PMID:20136123

  11. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition

    International Nuclear Information System (INIS)

    Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work

  12. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Haydary, J., E-mail: juma.haydary@stuba.sk [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia); Susa, D.; Dudáš, J. [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia)

    2013-05-15

    Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.

  13. A novel hydrolysis method to synthesize chromium hydroxide nanoparticles and its catalytic effect in the thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Highlights: ► Synthesis of Cr(OH)3 nanoparticles in Cr3+–F− aqueous solution. ► The F− ion tailors coagulated materials, Cr(OH)3 nanoparticles are obtained. ► Adding nanosized Cr(OH)3, AP thermal decomposition temperature decreases to 200 °C. ► The nanosized Cr(OH)3 catalyzes NH3 oxidation, accelerating AP thermal decomposition. - Abstract: A procedure for the preparation of spherical Cr(OH)3 nanoparticles was developed based on the aging of chromium nitrate aqueous solutions in the presence of sodium fluoride, urea, and polyvinylpyrrolidone. Using scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy, the morphological characteristics of Cr(OH)3 were controlled by altering the molar ratio of fluoride ion to chromium ion, as well as the initial pH and chromium ion concentration. The prepared nanosized Cr(OH)3 decreased the temperature required to decompose ammonium perchlorate from 450 °C to about 250 °C as the catalyst. The possible catalytic mechanism of the thermal decomposition of ammonium perchlorate was also discussed.

  14. Synthesis, Characterization and Catalytic Properties of Attapulgite/CeO2 Nanocomposite Films for Decomposition of Rhodamine B.

    Science.gov (United States)

    Lu, Xiaowang; Li, Xiazhang; Qian, Junchao; Chen, Feng; Chen, Zhigang

    2015-08-01

    ATP(attapulgite)/CeO2 nanocomposite films were prepared on the glass substrates via a sol-gel and dip-coating route. The ATP/CeO2 nanocomposite films were characterized by Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and fourier transform infrared spectroscopy (FT-IR). The results showed that the ATP/CeO2 nanocomposite films were free from cracks and the nanoparticles were attached onto the surface of attapulgite. The ATP/CeO2 nanocomposite films displayed excellent catalytic activity for decomposition of Rhodamine B. The COD (chemical oxygen demand) removal rate of rhodamine B using ATP/CeO2 nanocomposite films as catalyst reached as high as 94% when the weight ratio of ATP to CeO2 was 2:1. PMID:26369164

  15. Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts. Effect of metal oxides addition and SO2

    International Nuclear Information System (INIS)

    The catalytic behavior of the V-M/AC (M=W, Mo, Zr, and Sn) catalysts were studied for the NO reduction with ammonia at low temperatures, especially in the presence of SO2. The presence of the metal oxides does not increase the V2O5/AC activity but decreases it. Except V-Mo/AC, the other catalysts are promoted by SO2 at 250C, especially for V-Sn/AC. However, the promoting effect of SO2 is gradually depressed by catalyst deactivation. Changes in catalyst preparation method can improve the catalyst stability in short-term but cannot completely prevent the catalyst from a long-term deactivation. Mechanisms of the promoting effect and the deactivation of V-Sn/AC catalyst by SO2 were studied using Fourier transform infrared spectroscopy (FT-IR) spectra and measurement of catalyst surface area and pore volume. The results showed that both the SO2 promotion and deactivation are associated with the formation of sulfate species on the catalyst surface. In the initial period of the selective catalytic reduction (SCR) reaction in the presence of SO2, the formed sulfate species provide new acid sites to enhance ammonia adsorption and thus the catalytic activity. However, as the SCR reaction proceeds, excess amount of sulfate species and then ammonium-sulfate salts are formed which is stabilized by the presence of tin oxide, resulting in gradual plugging of the pore structures and the catalyst deactivation

  16. Influence of Al distribution on catalytic activity of Fe-FER in N2O decomposition

    Czech Academy of Sciences Publication Activity Database

    Tabor, Edyta; Závěta, K.; Nováková, Jana; Dědeček, Jiří; Sathu, Naveen Kumar; Sazama, Petr; Štastný, P.; Wichterlová, Blanka; Sobalík, Zdeněk

    Prague: J. Heyrovský Institute of Physical Chemistry of the ASCR, v.v.i, 2011 - (Horáček, M.). O13 ISBN 978-80-87351-14-7. [Czech-Italian- Spanish Symposium on Molecular Sieves and Catalysis /4./. 15.06.2011-18.06.2011, Liblice] Institutional research plan: CEZ:AV0Z40400503 Keywords : N2O decomposition * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry

  17. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-01-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4+ generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process. PMID:27445009

  18. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-07-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4+ generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process.

  19. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia.

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-01-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4(+) generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process. PMID:27445009

  20. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    Science.gov (United States)

    Wicakso, Doni Rahmat; Sutijan, Rochmadi, Budiman, Arief

    2016-06-01

    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 - 600 °C and catalyst weight between 0 - 40 gram. The first step, tar was evaporated at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H2 productivity increased and calorimetric value of bio-oil increased.

  1. Photochemical fabrication of size-controllable gold nanoparticles on chitosan and their application on catalytic decomposition of acetaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chung-Chin [Department of Environmental Engineering, Vanung University, 1, Van Nung Road, Shuei-Wei Li, Chung-Li City, Taiwan (China); Nano Materials Applications R and D Center, Vanung University, 1, Van Nung Road, Shuei-Wei Li, Chung-Li City, Taiwan (China); Yang, Kuang-Hsuan, E-mail: khy@mail.vnu.edu.tw [Department of Chemical and Materials Engineering, Vanung University, 1, Van Nung Road, Shuei-Wei Li, Chung-Li City, Taiwan (China); Nano Materials Applications R and D Center, Vanung University, 1, Van Nung Road, Shuei-Wei Li, Chung-Li City, Taiwan (China); Liu, Yu-Chuan [Department of Chemical and Materials Engineering, Vanung University, 1, Van Nung Road, Shuei-Wei Li, Chung-Li City, Taiwan (China); Nano Materials Applications R and D Center, Vanung University, 1, Van Nung Road, Shuei-Wei Li, Chung-Li City, Taiwan (China); Chen, Bo-Chuen [Department of Chemical and Materials Engineering, Vanung University, 1, Van Nung Road, Shuei-Wei Li, Chung-Li City, Taiwan (China)

    2010-07-15

    In this work, we report a new pathway to prepare size-controllable gold nanoparticles (NPs) on chitosan (Ch) in aqueous solutions for improving catalytic decomposition of acetaldehyde by pure gold NPs at room temperature. First, Au substrates were cycled in deoxygenated aqueous solutions containing 0.1N NaCl and 1 g/L Ch from -0.28 to +1.22 V vs Ag/AgCl at 500 mV/s for 200 scans. Then the solutions were irradiated with UV lights of different wavelengths to prepare size-controllable Au NPs on Ch. Experimental results indicate that the particle sizes of prepared NPs are increased when UV lights with longer wavelengths were employed. The particle sizes of resulted Au NPs can be controlled from 10 to 50 nm. Moreover, the decomposition of acetaldehydes in wines can be significantly enhanced by ca. 190% of magnitude due to the contribution of the adsorption of Au NPs on Ch.

  2. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition.

    Science.gov (United States)

    Haydary, J; Susa, D; Dudáš, J

    2013-05-01

    Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work. PMID:23428565

  3. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Fe2O3/graphene nanocomposite was prepared by a facile hydrothermal method, during which graphene oxides (GOs) were reduced to graphene with hydrazine and Fe2O3 nanoparticles were simultaneously anchored on graphene sheets. The morphology of the obtained Fe2O3/graphene nanocomposite was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). It was revealed by TEM images that Fe2O3 nanoparticles grew well on the surfaces of graphene. As much as I know, this new nanocomposite has not been investigated as a catalyst on the thermal decomposition of AP yet. In this work, the catalytic performance of the synthesized material on the thermal decomposition of ammonium perchlorate (AP) was investigated creatively by differential scanning calorimetry (DSC). The results of DSC indicated that graphene obviously improved the catalytic activity of Fe2O3 on the thermal decomposition of AP due to its high specific area.

  4. Sol–gel method to prepare graphene/Fe{sub 2}O{sub 3} aerogel and its catalytic application for the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Yuanfei; Li, Xiaoyu; Li, Guoping; Luo, Yunjun, E-mail: yjluo@bit.edu.cn [Beijing Institute of Technology, School of Materials Science and Engineering (China)

    2015-10-15

    Graphene/Fe{sub 2}O{sub 3} (Gr/Fe{sub 2}O{sub 3}) aerogel was synthesized by a simple sol–gel method and supercritical carbon dioxide drying technique. In this study, the morphology and structure were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and nitrogen sorption tests. The catalytic performance of the as-synthesized Gr/Fe{sub 2}O{sub 3} aerogel on the thermal decomposition of ammonium perchlorate (AP) was investigated by thermogravimetric and differential scanning calorimeter. The experimental results showed that Fe{sub 2}O{sub 3} with particle sizes in the nanometer range was anchored on the Gr sheets and Gr/Fe{sub 2}O{sub 3} aerogel exhibits promising catalytic effects for the thermal decomposition of AP. The decomposition temperature of AP was obviously decreased and the total heat release increased as well.

  5. Mo-Bi系丙烯氨氧化催化剂上氨分解反应动力学的Monte Carlo模拟%Monte Carlo Simulation of Kinetics of Ammonia Oxidative Decomposition over the Commercial Propylene Ammoxidation Catalyst (Mo-Bi)

    Institute of Scientific and Technical Information of China (English)

    罗正鸿; 詹晓力; 陈丰秋; 阳永荣

    2003-01-01

    Monte Carlo method is applied to investigate the kinetics of ammonia oxidative decomposition overthe commercial propylene ammoxidation catalyst(Mo-Bi). The simulation is quite in agreement with experimentalresults. Monte Carlo simulation proves that the process of ammonia oxidation decomposition is a two-step reaction.

  6. Fabrication of aligned carbon nanotubes on Cu catalyst by dc plasma-enhanced catalytic decomposition

    International Nuclear Information System (INIS)

    Aligned multi-walled carbon nanotubes (ACNTs) are deposited using copper (Cu) catalyst on Chromium (Cr)-coated substrate by plasma-enhanced chemical vapor deposition at temperature of 700 deg. C. Acetylene gas has been used as the carbon source while ammonia is used for diluting and etching. The thicknesses of Cu films on Cr-coated Si (100) substrates are controlled by deposition time of magnetron sputtering. The growth behaviors and quality of ACNTs are investigated by scanning electron microscopy (SEM) and transmission electron microscopy. The different performance of ACNTs on various Cu films is explained by referring to the graphitic order as detected by Raman spectroscopy. The results indicate that the ACNTs are formed in tip-growth model where Cu is used as a novel catalyst, and the thickness of Cu films is responsible to the diameter and quality of synthesized CNTs.

  7. 钡离子对镍基钙钛矿分解氨的影响%Decomposition of ammonia by barium ions on the nickel-based perovskite

    Institute of Scientific and Technical Information of China (English)

    陈为强; 丁彤; 马智; 谢洪燕

    2015-01-01

    镍基钙钛矿分解氨制取氢气虽有稳定性好、价格低廉的优点,但也有完全分解温度偏高的缺点。为降低完全分解氨制取氢气的温度,实验采用柠檬酸络合法,通过改变A位掺杂离子与掺杂量对LaNiO3改性,并改变载体及负载量,制备一系列的催化剂。采用XRD、SEM、TEM表征技术进行表征,考察了Ba 含量对催化剂结构与性能的影响。实验表明在催化剂装填量为1mL、空速为10000h–1、原料气为纯氨的条件下,氨分解的最佳电子助剂离子为 Ba、最优催化剂为 w(NiO)=20%的 La0.9Ba0.1NiO3/MCM-41,氨气完全分解温度由650℃降为575℃。随着Ba掺杂量的增加,催化剂活性先增加,在x=0.1达到最大值,之后减小,掺杂Ba过多催化剂的结构由钙钛矿变为非钙钛矿,非钙钛矿结构的催化剂活性不如钙钛矿。%Nickel-based perovskite catalyst,for decomposing ammonia to produce hydrogen,has good stability and low cost,but also requires high decomposition temperature. In order to reduce the complete temperature decomposition of ammonia,experiments,using citrate method,by changing the A-site doping ions and doping amounts to modify LaNiO3,were conducted with changed carriers and load amounts to prepare a series of catalysts. With XRD,SEM,TEM characterization,the effects of Ba on the structure and properties of catalyst were studied. Under the conditions of catalyst loading amount of 1mL,space velocity of 10000h-1,and pure ammonia as feed gas,the best electronic aids ions of ammonia decomposition is Ba,the best catalyst isw(NiO) = 20% of La0.9Ba0.1NiO3/MCM-41,which can make the complete decomposition temperature decrease from 650℃ to 575℃. With the increase of Ba doping amount,catalyst activity first increased,reaches a maximum atx= 0.1,and then decreased. Due to too much Ba doping,the structure of the catalyst change from perovskite to non-perovskite. The catalyst activity of perovskite is

  8. Catalysts for Catalytic Decomposition of Nitrous Oxide%N_2O的催化分解研究

    Institute of Scientific and Technical Information of China (English)

    李孟丽; 杨晓龙; 唐立平; 熊绪茂; 任嗣利; 胡斌

    2012-01-01

    Nitrous oxide(N2O)originating from industrial and automotive emissions is accepted to be a major air pollutant. It contributes to the greenhouse effect and the depletion of stratospheric ozone. In recent years, elimination of N2O has attracted increasing attention for concerns from environment pollution. The necessity to reduce N2O emissions requires the development of catalytic technologies. Direct catalytic decomposition of N2O to N2 and O2 has been recognized as one of the most prospect methods for elimination pollution derived from N2O, since it does not require the addition of any reductant, without causing secondary pollution, and the process it concerned is simple and economical. This paper reviews the advance of several interesting catalysts that have been paid great attention in recent years, including metal oxides, noble metals and ion-exchanged zeolites catalyst systems. The advantages and disadvantages of the catalysts are also discussed in detail. This review also covers the research progress of reaction mechanism, molecular simulation and reaction kinetics on the surface of solid catalysts. Besides, the effects of moecular oxygen, water, sulfur dioxide and other species on the catalysts' activity, life and stability, are also included in this paper. The demerits exist both in these catalysts and theoretical research for the decomposition of N2O are pointed out. Finally, the trends in the catalyst system for direct catalytic decomposition of N2O are prospected.%N2O是主要的温室气体之一,它在对流层中具有破坏臭氧的作用,因此,N2O的消除越来越引起人们的重视。N2O的直接催化分解是公认的消除N2O污染的最有前景的方法之一,具有操作简单、成本低、不需引入其他杂质、不产生二次污染等特点。本文综述了近年来在N2O催化分解领域广受关注的几类催化剂的最新研究进展,包括金属氧化物催化剂、负载型贵金属催化剂

  9. COx Free Hydrogen Production by Catalytic Decomposition of Methane Over Porous Ni/Al2O3 Catalysts

    International Nuclear Information System (INIS)

    The prepared meso porous spherical alumina with high-surface area was employed as a support for nickel catalysts in methane decomposition reaction. It was observed that, the catalytic activity of Ni/Al2O3 catalysts was high at the initial times of reaction and decreased with time on stream, and finally reached a constant value. The deactivation rate of catalysts is dependent on the catalyst characteristics and the operating conditions. The activity results indicate that, the yield of hydrogen and the structure of deposited carbon are strongly dependent on the loading amount of Ni. The Scanning Electron Microscopy results showed that carbon formed on the catalysts in the form of filamentous carbon. Concerning hydrogen production, the 10% Ni/ Al2O3 catalyst leads to a higher yield, due to the higher amount of active phases which can catalyze further the number of methane molecules, while lesser amounts of filamentous carbon were observed on this catalyst than for 5 and 7.5% Ni/ Al2O3 catalysts at the same operating condition. The yield of hydrogen and structure of filamentous carbon also significantly depend on the reaction temperatures and residence time of gas in the reactor, as the 10% Ni/ Al2O3 catalyst showed a remarkable stability with a decrease of about 14% at 800degreeC and 25 ml/min after 240 min of reaction. The obtained results showed that the prepared Ni/ Al2O3 catalysts had a good activity in methane decomposition reaction, which is one of the highest activities among those for low nickel loaded catalysts reported up until now.

  10. Catalytic decomposition of organic anions in alkaline radioactive wastes. 1. Oxidation of EDTA

    International Nuclear Information System (INIS)

    Decomposition of ethylenediaminetetraacetate in alkaline solutions by means of H2O2, Na2S2O8, NaClO, NaBrO is investigated by titrimetric method. It is established that EDTA is oxidized in heated over 60 Deg C solutions in the presence of cobalt salts in the case of step-by-step addition of H2O2 excess. Interaction of persulfate with EDTA is characterized by available induction period, which decreases with NaOH concentration, temperature increase and initial EDTA content decrease or in the presence of AgNO3, K4Fe(CN)6, NaNO2. Mechanism of the process includes thermal dissociation of persulfate ions on ion-radicals and following evolution of the chain reaction. Hypochlorite ions oxidize EDTA in 0.5-5.0 mol/l NaOH solutions in temperature range 25-60 Deg C. Efficiency of the process increases in the case of fractional addition of oxidizer in the presence of Co(II) or Ni(II) salts. EDTA oxidation in alkaline solutions by hypobromite ions takes place only in the case of temperature increase up to 95 Deg C. Co(II), Ni(II), Cu(II) salts accelerates the process

  11. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.

    Science.gov (United States)

    Zahmakiran, Mehmet; Ayvalı, Tuğçe; Philippot, Karine

    2012-03-20

    The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH(3)BH(3)) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 °C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-η(2)-cyclooctadiene; cot = 1,3,5-η(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and (11)B, (15)N, and (1)H NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod)(cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc.2011, 133, 18889) by performing Hg(0), CS(2) poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru(n) cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru(n) clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H(2) at the complete conversion of AB to polyaminoborane (PAB; [NH(2)BH(2)](n)) and polyborazylene (PB; [NHBH](n)) units. PMID:22356554

  12. Synthesis of carbon nanotubes by catalytic vapor decomposition (CVD) method: Optimization of various parameters for the maximum yield

    Indian Academy of Sciences (India)

    Kanchan M Samant; Santosh K Haram; Sudhir Kapoor

    2007-01-01

    This paper describes an effect of flow rate, carrier gas (H2, N2 and Ar) composition, and amount of benzene on the quality and the yield of carbon nanotubes (CNTs) formed by catalytical vapour decomposition (CVD) method. The flow and mass control of gases and precursor vapors respectively were found to be interdependent and therefore crucial in deciding the quality and yield of CNTs. We have achieved this by modified soap bubble flowmeter, which controlled the flow rates of two gases, simultaneously. With the help of this set-up, CNTs could be prepared in any common laboratory. Raman spectroscopy indicated the possibilities of formation of single-walled carbon nanotubes (SWNTs). From scanning electron microscopy (SEM) measurements, an average diameter of the tube/bundle was estimated to be about 70 nm. The elemental analysis using energy dispersion spectrum (EDS) suggested 96 at.wt.% carbon along with ca. 4 at.wt. % iron in the as-prepared sample. Maximum yield and best quality CNTs were obtained using H2 as the carrier gas.

  13. Influence of preparation conditions of hollow titania–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    International Nuclear Information System (INIS)

    Highlights: • We study influence of preparation conditions on activity of hollow titania–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH3BH3 increases with increase of Ti + Ni content. • The activity depends on the amount of PS residue in the hollow spheres. - Abstract: The present work reports influence of preparation conditions of hollow titania–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane (NH3BH3). The as-prepared hollow titania–nickel composite spheres were characterized by transmission electron microscopy (TEM). Catalytic activities of the hollow spheres for hydrolytic dehydrogenation of aqueous NaBH4/NH3BH3 solution improve with the decrease of Ti + Ni content. From the results of FTIR spectra and elemental analysis, the amount of residual polystyrene (PS) templates is able to be reduced by increasing aging time for the preparation, and the catalytic activity of the hollow spheres increases when the amount of residual PS templates decreases. The carbon content in the hollow spheres prepared with aging time = 24 h is 17.3 wt.%, and the evolution of 62 mL hydrogen is finished in about 22 min in the presence of the hollow spheres from aqueous NaBH4/NH3BH3 solution. The molar ratio of the hydrolytically generated hydrogen to the initial NH3BH3 in the presence of the hollow spheres is 2.7

  14. Effect of Alkali Promoter Doping in Calcined Co-Mn-Al Layered Double Hydroxide on Catalytic Decomposition of N2O

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Karásková, K.; Jirátová, Květa; Kovanda, F.

    Jerusalem : -, 2009, s. 386. ISBN N. [EuropaCat IX: "Catalysis for Sustainable World". Salamanca (ES), 30.08.2009-04.09.2009] R&D Projects: GA ČR GA106/09/1664 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * catalytic decomposition * mixed oxide catalyst Subject RIV: CC - Organic Chemistry http://www.certh.gr/577CC7CC.en.aspx

  15. Catalytic Decomposition of N2O over Ni-Al Catalysts Prepared from Hydrotalcite-like Compounds: Effect of Precursor Crystallinity

    Czech Academy of Sciences Publication Activity Database

    Pacultová, K.; Obalová, L.; Kovanda, F.; Jirátová, Květa; Balabánová, Jana; Lacný, Z.; Rojka, T.

    Bratislava : Slovak Society of Chemical Engineering, 2006 - (Štefuca, V.; Markoš, J.), s. 287 ISBN 80-227-2409-2. [International Conference of Slovak Society of Chemical Engineering /33./. Tatranské Matliare (SK), 22.05.2006-26.05.2006] R&D Projects: GA ČR(CZ) GA106/05/0366 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * catalytic decomposition * mixed oxide catalysts Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Preparation of CoFe2O4 Nano crystallites by Solvo thermal Process and Its Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate

    International Nuclear Information System (INIS)

    Nanometer cobalt ferrite (CoFe2O4) was synthesized by polyol-medium solvo thermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). Further, the catalytic activity and kinetic parameters of CoFe2O4 nano crystallites on the thermal decomposition behavior of ammonium perchlorate (AP) have been investigated by thermogravimetry and differential scanning calorimetry analysis (TG-DSC). The results imply that the catalytic performance of CoFe2O4 nano crystallites is significant and the decrease in the activation energy and the increase in the rate constant for AP further confirm the enhancement in catalytic activity of CoFe2O4 nano crystallites. A mechanism based on an proton transfer process has also been proposed for AP in the presence of CoFe2O4 nano crystallites.

  17. Influence of preparation conditions of hollow silica–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Seki, Ayano [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-03-05

    Highlights: • We study influence of preparation conditions on activity of hollow silica–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Si+Ni content. • The particle size distribution affects the activity and reducibility of active nickel species. • The amount of PS residue in the hollow spheres decreases by treatment of as-prepared sample in toluene. -- Abstract: In this paper, we investigated influence of preparation conditions of hollow silica–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane. In the preparation method of this study, when silica–nickel composite shells were coated on polystyrene templates by the sol–gel method using L(+)-arginine as the promoter for the reaction to form silica–nickel composite shell, the polystyrene templates were dissolved subsequently, even synchronously, in the same medium to form hollow spheres. The as-prepared silica–nickel composite spheres were characterized by transmission electron microscopy and scanning electron microscopy. The effects of Si+Ni content on the morphology were systematically evaluated. All the as-prepared hollow silica–nickel composite spheres have the similar morphology as identified by SEM and TEM measurement. Homogeneity of the hollow silica–nickel composite spheres increases with the increase in the Si+Ni content as shown by the laser diffraction particle size analysis. The catalytic activities of the hollow silica–nickel composite spheres for hydrolytic dehydrogenation of ammonia borane prepared with different Si+Ni contents were compared. The catalytic activity for the hydrogen evolution in the presence of the hollow spheres increases with the increase of Si+Ni content. The results of FTIR spectra of the hollow silica–nickel composite spheres indicate that a certain amount of residual PS templates exists in hollow silica

  18. Influence of preparation conditions of hollow silica–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    International Nuclear Information System (INIS)

    Highlights: • We study influence of preparation conditions on activity of hollow silica–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH3BH3 increases with increase of Si+Ni content. • The particle size distribution affects the activity and reducibility of active nickel species. • The amount of PS residue in the hollow spheres decreases by treatment of as-prepared sample in toluene. -- Abstract: In this paper, we investigated influence of preparation conditions of hollow silica–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane. In the preparation method of this study, when silica–nickel composite shells were coated on polystyrene templates by the sol–gel method using L(+)-arginine as the promoter for the reaction to form silica–nickel composite shell, the polystyrene templates were dissolved subsequently, even synchronously, in the same medium to form hollow spheres. The as-prepared silica–nickel composite spheres were characterized by transmission electron microscopy and scanning electron microscopy. The effects of Si+Ni content on the morphology were systematically evaluated. All the as-prepared hollow silica–nickel composite spheres have the similar morphology as identified by SEM and TEM measurement. Homogeneity of the hollow silica–nickel composite spheres increases with the increase in the Si+Ni content as shown by the laser diffraction particle size analysis. The catalytic activities of the hollow silica–nickel composite spheres for hydrolytic dehydrogenation of ammonia borane prepared with different Si+Ni contents were compared. The catalytic activity for the hydrogen evolution in the presence of the hollow spheres increases with the increase of Si+Ni content. The results of FTIR spectra of the hollow silica–nickel composite spheres indicate that a certain amount of residual PS templates exists in hollow silica–nickel composite

  19. Cis-and Trans-Cinnamic Acids Have Different Effects on the Catalytic Properties of Arabidopsis Phenylalanine Ammonia Lyases PAL1, PAL2, PAL4

    Institute of Scientific and Technical Information of China (English)

    Ming-Jie CHEN; Veerappan VIJAYKUMAR; Bing-Wen LU; Bing XIA; Ning LI

    2005-01-01

    Cis-cinnamic acid (CA) is a naturally occurring compound, presumably converted from transCA in higher plants. To investigate the effect of cis-CA on the activity of Arabidopsis phenylalanine ammonia lyase (PAL), AtPAL1, AtPAL2, and AtPAL4 genes were isolated using reverse transcription polymerase chain reaction. These genes were fused to a glutathione S-transferase gene and overexpressed in a heterologous prokaryotic system of Escherichia coli. The purified PAL1, PAL2 and PAL4 enzymes were characterized biochemically to determine the effects of cis-CA on the kinetic parameter Km. The results showed that cis-CA is a competitive inhibitor for PAL1, but not PAL2 and PAL4, whereas trans-CA acts as a competitive inhibitor for all three PAL isomers, suggesting that cis- and trans-CA have different effects on the catalytic activity of PAL.

  20. Effects of calcination temperature on Mn species and catalytic activities of Mn/ZSM-5 catalyst for selective catalytic reduction of NO with ammonia

    International Nuclear Information System (INIS)

    A series of Mn/ZSM-5 catalysts for the selective catalytic reduction of NO with NH3 was prepared by precipitation method at different calcination temperature. X-ray diffraction, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction and N2 adsorption/desorption technologies were conducted to explore the effects of calcination temperature on the physical and chemical properties of Mn/ZSM-5 catalysts. Results suggested that when calcined at lower temperatures (x existed in the form of Mn3O4 and amorphous MnO2 on the catalyst surface. However, when calcined at 600 °C Mn2O3 species which is unfavorable for the SCR process were formed and became the major phase at 700 °C. On the other hand, with the increase of calcination temperatures, the surface Mn concentration and the specific surface area of catalysts both decreased. The catalytic activity test indicated that the Mn/ZSM-5 catalyst calcined at 300 °C demonstrated the best performance for NO removal, with almost 100% NO conversion in the range of 150–390 °C. According to the characterization results, the enrichment of surface Mn, surface Mn3O4 and amorphous MnO2 species may account for its superior catalytic activity.

  1. Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology.

    Science.gov (United States)

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Celo, Valbona

    2012-03-16

    The use of urea based selective catalytic reduction (SCR) technology for the reduction of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least six thermal decomposition by-products, ammonia, and unreacted urea from the tailpipe. These compounds may include: biuret, dicyandiamine, cyanuric acid, ammelide, ammeline and melamine. In the present study, a simple, sensitive and reliable hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization (ESI)/mass spectrometry (MS) method without complex sample pre-treatment was developed for identification and determination of urea decomposition by-products in diesel exhaust. Gradient separation was performed on a SeQuant ZIC-HILIC column with a highly polar zwitterionic stationary phase, and using a mobile phase consisting of acetonitrile (eluent A) and 15 mM ammonium formate (pH 6; eluent B). Detection and quantification were performed using a quadrupole ESI/MS operated simultaneously in negative and positive mode. With 10 μL injection volume, LODs for all target analytes were in the range of 0.2-3 μg/L. The method showed a good inter-day precision of retention time (RSD<0.5%) and peak area (RSD<3%). Satisfactory extraction recoveries from spiked blanks ranged between 96 and 98%. Analyses of samples collected during transient chassis dynamometer tests of a bus engine equipped with a diesel particulate filter (DPF) and urea based SCR technology showed the presence of five target analytes with cyanuric acid and ammelide the most abundant compounds in the exhaust. PMID:22318005

  2. Ozone decomposition

    Science.gov (United States)

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho

    2014-01-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  3. The role of oxygen during the catalytic oxidation of ammonia on Co3O4(1 0 0)

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Ammonia oxidation on Co3O4(1 0 0) surface is studied using Density Functional Theory. • The role of lattice O, on-surface O and OH in the dehydrogenation of ammonia is clarified. • NO and H2O are the main products of ammonia oxidation on Co3O4(1 0 0). • The Co3O4 surface is itself capable of oxidising NH3 to NO using the lattice O, opening the way for a Mars–van Krevelen mechanism of reaction. - Abstract: The adsorption selectivity and dehydrogenation energy barriers of NH3, NH2 and NH on the (1 0 0) surface planes of Co3O4 are determined by means of density functional methods. Stepwise hydrogen abstraction is effected by lattice O3o associated with octahedrally coordinated surface Co atoms. The final H-abstraction, from NH, leads directly to the formation of gaseous product NO with the creation of a lattice oxygen vacancy. Reaction of this vacancy with gas-phase O2 repairs the vacancy and creates surface-adsorbed O* which is also capable of abstracting H from NH3*, NH2* and NH*, the final step leading to directly again to NO formation. The mobile surface OH* formed from the O*-mediated abstraction steps is also capable of abstracting H from the NHx* species, leading ultimately to surface N* which then easily extracts a lattice O3o to form NO and a new vacancy. The overall mechanism to form NO is a complex cycle of lattice- and surface-mediated abstractions. The hydrogen budget in the reaction shows corresponding complexity. Surface H* (formed when lattice O3o abstracts H from NHx) is stable and immobile but it can be abstracted by surface OH* to form water. OH* disproportionation reaction also forms water

  4. Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group VIII catalysts

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Bimetallic of group VIII/MgO catalysts were tested for methane decomposition reaction. • Fe–Co/MgO catalyst showed superior activity and stability toward H2 production. • Both Ni–Fe and Ni–Co catalysts exhibited lower catalytic activities. • The formation of MgxNi(1−x)O leads to the inhibition of catalytic activity. • High quality MWCNTs were obtained over all binary catalysts. - Abstract: Bimetallic Ni–Fe, Ni–Co and Fe–Co supported on MgO catalysts with a total metals content of 50 wt.% were evaluated for decomposition of methane to CO/CO2 free hydrogen and carbon nanomaterials. The catalytic runs were carried out at 700 °C under atmospheric pressure using fixed bed horizontal flow reactor. The materials were characterized by XRD, TEM, Raman spectroscopy, surface analysis and TGA–DTG. The data showed that the bimetallic 25% Fe–25%Co/MgO catalyst exhibited remarkable higher activity and stability up to ∼10 h time-on-stream with respect to H2 production. However, the catalytic activity and durability was greatly declined after incorporating 25%Ni to either 25%Fe or 25%Co/MgO catalysts at all time on stream. The main reason for the catalytic inhibition of Ni containing catalysts is consuming NiO during the formation of rock-salt MgxNi(1−x)O solid solution. However, the almost complete segregation of Fe2O3 and Co3O4 oxides played an important role for the high activity of the Fe–Co based catalyst. TEM images illustrate that the accumulated carbon over all catalysts are multi-walled carbon nanotubes in nature. The TG data showed that a higher yield of MWCNTs was achieved over bimetallic Fe–Co catalyst compared to the Ni–Fe or Ni–Co containing catalysts

  5. Decomposition of ammonia and hydrogen sulfide in simulated sludge drying waste gas by a novel non-thermal plasma.

    Science.gov (United States)

    Lu, Shengyong; Chen, Lu; Huang, Qunxing; Yang, Liqin; Du, Changming; Li, Xiaodong; Yan, Jianhua

    2014-12-01

    To efficiently clean NH3 and H2S contained in municipal sewage sludge drying waste gas, experiments were conducted with a novel gliding arc discharge plasma reactor. Important parameters including applied voltage and gas velocity which can strongly influence the removal efficiency, energy cost and by-products yields were investigated. Maximum removal efficiencies were all obtained at the applied voltage of 11 kV and gas velocity of 4.72 m s−1. When NH3 and H2S were treated together, the total energy cost decreased by 38%. NO and SO2 were observed as main decomposition by-products, and the presence of NH3 may inhibit the production of SO2 whose yield decreased from 223.8 to 27.8 mg m−3. Tests performed on lab scale reactor showed that gliding arc discharge is efficient in decreasing the NH3 and H2S concentrations, and experiments will also be conducted on a larger scale reactor in the future. PMID:25461948

  6. Influence of preparation conditions of hollow titania–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Ohashi, Takato [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-04-01

    Highlights: • We study influence of preparation conditions on activity of hollow titania–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Ti + Ni content. • The activity depends on the amount of PS residue in the hollow spheres. - Abstract: The present work reports influence of preparation conditions of hollow titania–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}). The as-prepared hollow titania–nickel composite spheres were characterized by transmission electron microscopy (TEM). Catalytic activities of the hollow spheres for hydrolytic dehydrogenation of aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution improve with the decrease of Ti + Ni content. From the results of FTIR spectra and elemental analysis, the amount of residual polystyrene (PS) templates is able to be reduced by increasing aging time for the preparation, and the catalytic activity of the hollow spheres increases when the amount of residual PS templates decreases. The carbon content in the hollow spheres prepared with aging time = 24 h is 17.3 wt.%, and the evolution of 62 mL hydrogen is finished in about 22 min in the presence of the hollow spheres from aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution. The molar ratio of the hydrolytically generated hydrogen to the initial NH{sub 3}BH{sub 3} in the presence of the hollow spheres is 2.7.

  7. 叔胺分解氟化铵制氨气和氟化氢探索研究%Study of Decomposition of Ammonium Fluoride for Production of Ammonia and Hydrogen Fluoride by Tertiary Amine

    Institute of Scientific and Technical Information of China (English)

    李德高; 梁雪松; 周艳

    2015-01-01

    This paper studied the decomposition of ammonium fluoride for production of ammonia and hydrogen fluoride.Tertiary amine as extraction agent,in the presence of water,ammonium fluoride released ammonia in a polar solvent;then adding non -polar solvents with high -boiling point,polar solvents and wa-ter was distilled;finally,at higher temperature,the decomposition of tertiary amine fluoride was achieved,hy-drogen fluoride was released;eventually,the decomposition of ammonium fluoride was reached,and the am-monia and hydrogen fluoride were stepwise released.%探索了叔胺分解氟化铵制氨气和氟化氢的方法。以叔胺作为萃取剂,在极性溶剂、水的存在下分解氟化铵释放出氨气;然后,加入高沸点的非极性溶剂蒸发出水和极性溶剂;最后,在更高的温度下,实现叔胺氟化盐的分解,释放出氟化氢;最终,达到将氟化铵分解,并分步释放出氨气和氟化氢。

  8. Ru-N-C Hybrid Nanocomposite for Ammonia Dehydrogenation: Influence of N-doping on Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Bich Hien

    2015-06-01

    Full Text Available For application to ammonia dehydrogenation, novel Ru-based heterogeneous catalysts, Ru-N-C and Ru-C, were synthesized via simple pyrolysis of a mixture of RuCl3·6H2O and carbon black with or without dicyandiamide as a nitrogen-containing precursor at 550 °C. Characterization of the prepared Ru-N-C and Ru-C catalysts via scanning transmission electron microscopy, in conjunction with energy dispersive X-ray spectroscopy, indicated the formation of hollow nanocomposites in which the average sizes of the Ru nanoparticles were 1.3 nm and 5.1 nm, respectively. Compared to Ru-C, the Ru-N-C nanocomposites not only proved to be highly active for ammonia dehydrogenation, giving rise to a NH3 conversion of >99% at 550 °C, but also exhibited high durability. X-ray photoelectron spectroscopy revealed that the Ru active sites in Ru-N-C were electronically perturbed by the incorporated nitrogen atoms, which increased the Ru electron density and ultimately enhanced the catalyst activity.

  9. Nanosize Control on Porous β-MnO2 and Their Catalytic Activity in CO Oxidation and N2O Decomposition

    Directory of Open Access Journals (Sweden)

    Yu Ren

    2014-05-01

    Full Text Available A major challenge in the synthesis of porous metal oxides is the control of pore size and/or wall thickness that may affect the performance of these materials. Herein, nanoporous β-MnO2 samples were prepared using different hard templates, e.g., ordered mesoporous silica SBA-15 and KIT-6, disordered mesoporous silica, and colloidal silica. These samples were characterized by Powder X-Ray Diffraction (PXRD, Transmission Electron Microscopy (TEM, and N2 adsorption-desorption. The pore size distribution of β-MnO2 was tuned by the different hard templates and their preparation details. Catalytic activities in CO oxidation and N2O decomposition were tested and the mesoporous β-MnO2 samples demonstrated superior catalytic activities compared with their bulk counterpart.

  10. Advantages of Stainless Steel Sieves as Support for Catalytic N2O Decomposition over K-doped Co3O4.

    Czech Academy of Sciences Publication Activity Database

    Klyushina, A.; Pacultová, K.; Krejčová, S.; Slowik, G.; Jirátová, Květa; Kovanda, F.; Ryczkowski, J.; Obalová, L.

    2015-01-01

    Roč. 257, Part 1 (2015), s. 2-10. ISSN 0920-5861. [AWPAC2014 - International Symposium on Air & Water Pollution Abatement Catalysis. Krakow, 01.09.2014-05.09.2014] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : N2O catalytic decomposition * Co3O4 * stainless steel support * potassium promoter * TiO2 support Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.893, year: 2014

  11. Catalytic Decomposition of N2O over Co-Mn-Al Catalysts Prepared from Hydrotalcite-like Precursors with Different Mn/Al Ratio

    Czech Academy of Sciences Publication Activity Database

    Pacultová, K.; Obalová, L.; Balabánová, Jana; Jirátová, Květa; Valášková, M.

    Bratislava : Slovak Society of Chemical Engineering, 2005 - (Markroš, J.; Štefuca, V.), s. 107 ISBN 80-227-2224-3. [International Conference of Slovak Society of Chemical Engineering /32./. Tatranské Matliare (SK), 23.05.2005-27.05.2005] R&D Projects: GA ČR(CZ) GA106/05/0366; GA ČR(CZ) GA104/04/2116 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * catalytic decomposition * layered double hydroxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  12. Purification of Carbon Nanotubes Synthesized by Catalytic Decomposition of Methane using Bimetallic Fe-Co Catalysts Supported on MgO

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Beh Hoe; Ramli, Irmawati [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia 43400 UPM Serdang, Selangor (Malaysia); Yahya, Noorhana [Fundamental and Applied Science Department Universiti Teknologi Petronas, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Pah, Lim Kean, E-mail: irmawati@science.upm.edu.my [Physics department, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    This work reports the synthesis of carbon nanotubes by catalytic decomposition of methane using bimetallic Fe-Co catalysts supported on MgO. Transmission electron microscopy (TEM) results show the as-prepared carbon nanotubes are multi-walled carbon nanotubes (MWCNTs) with diameter in the range of 15nm to 45nm. Purification of as-prepared MWCNTs was carried out by acid and heat treatment method. EDX results show the Fe, Co and MgO catalysts were successfully removed by refluxing the as-prepared MWCNTs in 3M H{sub 2}SO{sub 4}.

  13. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Egeblad, Kresten; Kustova, Marina;

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnationmethod and tested in NO selective catalytic reduction (SCR) with NH3. It was found that mesoporous Fe-ZSM-5 catalysts exhibit higher SCR activities than comparable conventional...... catalysts. Furthermore, conventional Fe-ZSM-5 catalysts have maximum activity at ~2.5 wt% Fe while for the mesoporous system, optimal NO conversion is obtained for the catalysts with ~6 wt % Fe....

  14. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH3, N2O, NO2, and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  15. Fe-MCM-41 from Coal-Series Kaolin as Catalysts for the Selective Catalytic Reduction of NO with Ammonia

    Science.gov (United States)

    Li, Shuiping; Wu, Qisheng; Lu, Guosen; Zhang, Changsen; Liu, Xueran; Cui, Chong; Yan, Zhiye

    2013-12-01

    Fe-MCM-41, one kind of high-ordered mesoporous materials catalysts, with molar ratio of Fe/Si = 0.01-0.1, was synthesized by hydrothermal method from coal-series kaolin. Fe-MCM-41 catalysts were characterized by Fourier transform infrared spectroscopy, high resolution transmission electron microscopy, N2 adsorption-desorption, x-ray photoelectron spectroscopy, and UV-vis spectroscopy. The results clearly indicated that: (1) all the samples exhibited typical hexagonal arrangement of mesoporous structure; (2) the incorporation of tiny amount of Fe3+ onto the surface and pore channel of MCM-41 mesoporous materials could efficiently promote the deNO x activity of these catalysts. Moreover, the Fe-MCM-41 mesoporous materials were evaluated in the selective catalytic reduction of NO with NH3. The results showed that Fe-MCM-41 catalyst with Fe/Si = 0.05 showed the highest catalytic activity at 350 °C, a gas hourly space velocity of 5000 h-1, n(NH3)/ n(NO) = 1.1, and O2% = 2.5%.

  16. 铁卟啉催化叔丁基过氧化氢分解%Catalytic Decomposition of Tert - butyl Hydroperoxide by Iron Porphyrin

    Institute of Scientific and Technical Information of China (English)

    张效龙; 王志亮; 高文斌

    2012-01-01

    Meso- tetraphenylporphyrinatoiron( Ⅲ ) chloride were prepared by Adler method and used in the catalytic decomposition of tert - butyl hydroperoxide (TBHP). Including temperature, concentration of catalyst and the initial concentration of TBHP, a wide range of experimental conditions were invested to study their effects on the decomposition rate of TBHP and the composition of products. The results demonstrated that the decomposition were straight - chain reaction which was initiated by the coordination between porphyrin and TBHP. Selectivity of tert -butyl alcohol and acetone, as well as the decomposition rate, increased under a higher temperature or catalyst concentration. Moreover, the decomposition rate was proportional to the initial concentration of TBHP and stayed constant before TBHP reduced too much.%采用Adler法合成了四苯基卟啉铁,应用于催化叔丁基过氧化氢(TBHP)分解反应。详细考察了温度、催化剂浓度及TBHP初始浓度等反应条件对分解速率、产物组成的影响。研究结果表明,TBHP分饵是由四苯基卟啉铁配位引发的直链型连锁反应,提高温度或催化剂浓度均能增大分解速率、提高反应对叔丁醇及丙酮的选择性;TBHP分解速率与其初始浓度成正比且在一定浓度范围内基本不变。

  17. Preparation of Coaxial-Line and Hollow Mn2O3 Nanofibers by Single-Nozzle Electrospinning and Their Catalytic Performances for Thermal Decomposition of Ammonium Perchlorate.

    Science.gov (United States)

    Liang, Jiyuan; Yang, Jie; Cao, Weiguo; Guo, Xiangke; Guo, Xuefeng; Ding, Weiping

    2015-09-01

    Coaxial-line and hollow Mn2O3 nanofibers have been synthesized by a simple single-nozzle electrospinning method without using a complicated coaxial jet head, combined with final calcination. The crystal structure and morphology of the Mn2O3 nanofibers were investigated by using the X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results indicate that the electrospinning distance has important influence on the morphology and structure of the obtained Mn2O3 nanofibers, which changes from hollow fibers for short electrospinning distance to coaxial-line structure for long electrospinning distance after calcination in the air. The formation mechanisms of different structured Mn2O3 fibers are discussed in detail. This facile and effective method is easy to scale up and may be versatile for constructing coaxial-line and hollow fibers of other metal oxides. The catalytic activity of the obtained Mn2O3 nanofibers on thermal decomposition of ammonium perchlorate (AP) was studied by differential scanning calorimetry (DSC). The results show that the hollow Mn2O3 nanofibers have good catalytic activity to promote the thermal decomposition of AP. PMID:26716314

  18. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V – A DFT guide for experiments

    DEFF Research Database (Denmark)

    Abghoui, Younes; Garden, Anna L.; Howalt, Jakob Geelmuyden;

    2016-01-01

    A rapid and facile reduction of nitrogen to achieve a sustainable and energy efficient production of ammonia is critical to its use as a hydrogen storage medium, chemical feedstock and especially for manufacturing inorganic fertilizers. For a decentralization of catalytic ammonia production, small...... only a -0.5 V overpotential, thereby avoiding decomposition. We suggest that this is a promising step towards the development of a method for synthesizing ammonia cheaply, to prepare high-value-added nitrogenous compounds directly from air, water and electricity at ambient conditions. An additional...

  19. Preparation of a highly active Fe-ZSM-5 catalyst through solid-state ion exchange for the catalytic decomposition of N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, M.; Kesore, K.; Moennig, R.; Schwieger, W. [Institut fuer Technische Chemie und Makromolekulare Chemie, Martin-Luther-Universitaet Halle-Wittenberg, Schlossberg 2, D-06108 Halle/S (Germany); Tissler, A. [ALSI-PENTA Zeolithe GmbH, Alustrasse 50-52, D-92421 Schwandorf (Germany); Turek, T. [Institut fuer Chemische Verfahrenstechnik, Universitaet Karlsruhe TH, Kaiserstrasse 12, D-76128 Karlsruhe (Germany)

    1999-08-16

    This work describes a new and simple preparation method for Fe-ZSM-5 pentasil-zeolites through solid-state ion exchange process. The zeolite catalysts thus prepared exhibit high activity during the catalytic decomposition of N{sub 2}O in the absence of reducing agents. The aimed choice of using FeSO{sub 4}x7H{sub 2}O and NH{sub 4}-ZSM-5 as starting materials consisted of forming such products (ammonium salts) after the ion exchange process that can be completely removed through thermal treatment. The complete preparation process leading to the formation of catalytically active iron species inside the zeolite takes place in two steps at two distinguished temperatures, respectively. The first step during which the solid-state ion exchange takes place has been carried out through two different routes, in air and in vacuum, in search for an enhanced catalytic activity. The second step has to be necessarily done under anaerobic conditions. XRD measurements have revealed the presence of hematite in samples with a Fe(II)/Al ratio above 0.5. The different numbers of Broensted sites occupied by the iron species in the catalysts with different Fe contents have also been determined

  20. The Effect of Copper Loading on the Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Cu-SSZ-13

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ja Hun; Tran, Diana N.; Szanyi, Janos; Peden, Charles HF; Lee, Jong H.

    2012-03-01

    The effect of Cu loading on the selective catalytic reduction of NOx by NH3 was examined over 20-80% ion-exchanged Cu-SSZ-13 zeolite catalysts. High NO reduction efficiency (80-95%) was obtained over all catalyst samples between 250 and 500°C, and the gas hourly space velocity of 200,000 h-1. Both NO reduction and NH3 oxidation activities under these conditions were found to increase slightly with increasing Cu loading at low temperatures. However, NO reduction activity was suppressed with increasing Cu loadings at high temperatures (>500oC) due to excess NH3 oxidation. The optimum Cu ion exchange level appears to be ~40-60% as higher than 80% NO reduction efficiency was obtained over 50% Cu ion-exchanged SSZ-13 up to 600oC. The NO oxidation activity of Cu-SSZ-13 was found to be low regardless of Cu loading, although it was somewhat improved with increasing Cu ion exchange level at high temperatures. During the “fast” SCR (i.e., NO/NO2 =1), only a slight improvement in NOx reduction activity was obtained for Cu-SSZ-13. Regardless of Cu loading, near 100% selectivity to N2 was observed; only a very small amount of N2O was produced even in the presence of NO2. Based on the Cu loading, the apparent activation energies for NO oxidation and NO SCR were estimated to be ~58 kJ/mol and ~41 kJ/mol, respectively.

  1. Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition.

    Science.gov (United States)

    Labunov, Vladimir A; Basaev, Alexander S; Shulitski, Boris G; Shaman, Yuriy P; Komissarov, Ivan; Prudnikava, Alena L; Tay, Beng Kang; Shakerzadeh, Maziar

    2012-01-01

    Few-wall carbon nanotubes were synthesized by methane/acetylene decomposition over bimetallic Fe-Mo catalyst with MgO (1:8:40) support at the temperature of 900°C. No calcinations and reduction pretreatments were applied to the catalytic powder. The transmission electron microscopy investigation showed that the synthesized carbon nanotubes [CNTs] have high purity and narrow diameter distribution. Raman spectrum showed that the ratio of G to D band line intensities of IG/ID is approximately 10, and the peaks in the low frequency range were attributed to the radial breathing mode corresponding to the nanotubes of small diameters. Thermogravimetric analysis data indicated no amorphous carbon phases. Experiments conducted at higher gas pressures showed the increase of CNT yield up to 83%. Mössbauer spectroscopy, magnetization measurements, X-ray diffraction, high-resolution transmission electron microscopy, and electron diffraction were employed to evaluate the nature of catalyst particles. PMID:22300375

  2. Hydrogen production from catalytic decomposition of methane; Produccion de hidrogeno a partir de la descomposicion termica catalitica del biogas de digestion anaerobia

    Energy Technology Data Exchange (ETDEWEB)

    Belsue Echevarria, M.; Etxebeste Juarez, O.; Perez Gil, S.

    2002-07-01

    The need of substitution of part of the energy obtained from fossil fuels instead of energy from renewable sources, together with the minimal emissions of CO{sub ''} and CO that are expected with these technologies, make renewable sources a very attractive predecessor for the production of hydrogen. In this situation, a usable source for hydrogen production is the biogas achieved by means of technologies like the anaerobic digestion of different kinds of biomass (MSW, sewage sludge, stc.). In this article we suggest the Thermal Catalytic Decomposition of the methane contained in this biogas, after separation of pollutants like CO{sub ''}, H{sub 2}S. steam. This technology will give hydrogen, usable in fuel cells, and nanoestructured carbon as products. (Author) 7 refs.

  3. Effect of Precursor Synthesis on Catalytic Activity of Co3O4 in N2O Decomposition.

    Czech Academy of Sciences Publication Activity Database

    Chromčáková, Ž.; Obalová, L.; Kovanda, F.; Legut, D.; Titov, A.; Ritz, M.; Fridrichová, D.; Michalik, S.; Kustrowski, P.; Jirátová, Květa

    2015-01-01

    Roč. 257, Part 1 (2015), s. 18-25. ISSN 0920-5861. [AWPAC2014 - International Symposium on Air & Water Pollution Abatement Catalysis. Krakow, 01.09.2014-05.09.2014] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : cobalt spinel * Co3O4 * N2O decomposition * precursor synthesis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.893, year: 2014

  4. Catalytic Decomposition of CFC-12 over Heteropolyacids%杂多酸催化分解氟里昂-12

    Institute of Scientific and Technical Information of China (English)

    马臻; 华伟明; 唐颐; 高滋

    2000-01-01

    @@ Chlorine atoms from chlorofluorocarbons (CFCs) deplete stratospheric ozone and CFCs are green-house gases too. Owing to these environmental problems, many kinds of CFCs have been banned since the Montreal Protocol and two kinds of cleaning techniques have been developed. One is the synthesis of CFCs alternatives[1,2] and the other is the decomposition of banned CFCs in existing equipments[3,4].

  5. Catalytic Decomposition of Nitrous Oxide over Catalysts Prepared from Co/Mg-Mn/Al Hydrotalcite-like Compounds

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Kovanda, F.; Pacultová, K.; Lacný, Z.; Mikulová, Zuzana

    2005-01-01

    Roč. 60, 3-4 (2005), s. 289-297. ISSN 0926-3373 R&D Projects: GA ČR(CZ) GA106/05/0366; GA ČR(CZ) GA104/04/2116; GA ČR(CZ) GA106/02/0523 Institutional research plan: CEZ:AV0Z40720504 Keywords : decomposition of nitrous oxide * hydrotalcite-like compounds Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.809, year: 2005

  6. Basic research for nuclear energy : a study on photo-catalytic decomposition reactions of organics dissolved in water

    International Nuclear Information System (INIS)

    In an experiment on TiO2 photo-catalysis of five nitrogen-containing organic compounds, the changes of pH and total carbon contents were measured, and the dependence of their photo-catalytic characteristic upon their chemical structures were investigated. -- calculation of the effect of ionic carbon species in an aqueous solution on thermodynamic equilibrium, pH and conductivity showed a small quantity of organics could lead conductivity increase and pH reduction. -- Based on the results of photo-catalytic experiment of ethylamine, phenylhydrazine, pyridine, urea or EDTA, irradiated for 180 minutes after adsorption onto titanium dioxide for 60 minutes, relationship between nitrogen atomic charge and the first-order rate constant was as the following: R (1st - order rate constant) = δ (ε - a )1/3 + b where, ε : atomic charge of nitrogen in a molecular, δ, a and b : corrective coefficients

  7. Characterization and catalytic behavior of CuO rate at SiO{sub 2} nanocomposites towards NO oxidation and N{sub 2}O decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Tohidi, Seyed H.; Derhambakhsh, Maryam [Materials Research School, Karaj (Iran, Islamic Republic of). Nuclear Science and Technology Inst.; Grigoryan, Garnik L. [Yerevan State Univ. (Armenia). Inorganic Faculty

    2012-08-15

    A distinct concentration of copper was embedded into silica matrix to form xerogel using Cu(NO{sub 3}){sub 2} . 3H{sub 2}O as the copper source. The xerogel samples were prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS) by the sol-gel method. The new molar ratio of H{sub 2}O/TEOS was determined to be 11.67. Also the necessary amount of trihydrated copper nitrate was added into the solution such that the concentration of the copper oxide in the final solution reached 10 wt.%. After ambient drying, the xerogel samples were heated to 100, 400, 600, 800, and 1 000 C at a slow heating rate (50 K h{sup -1}). The structural properties were characterized by means of transmission electron microscopy, surface analysis and thermal program reduction methods at different temperatures. Finally, the catalytic behavior of nanocomposites was studied for nitrogen oxide (NO) oxidation and di-nitrogen oxide (N{sub 2}O) decomposition reactions. The results present a systematic reactivity study of NO oxidation and N{sub 2}O decomposition on the dispersed copper oxide nanocatalysts over silica supports in order to determine the ability of these materials to convert nitrogen oxide and di-nitrogen oxide into harmless species at different temperatures. (orig.)

  8. Methanol Decomposition over Palladium Particles Supported on Silica: Role of Particle Size and Co-Feeding Carbon Dioxide on the Catalytic Properties

    Energy Technology Data Exchange (ETDEWEB)

    Hokenek, Selma; Kuhn, John N. (USF)

    2012-10-23

    Monodisperse palladium particles of six distinct and controlled sizes between 4-16 nm were synthesized in a one-pot polyol process by varying the molar ratios of the two palladium precursors used, which contained palladium in different oxidation states. This difference permitted size control by regulation of the nucleation rate because low oxidation state metals ions nucleate quickly relative to high oxidation state ions. After immobilization of the Pd particles on silica by mild sonication, the catalysts were characterized by X-ray absorption spectroscopy and applied toward catalytic methanol decomposition. This reaction was determined as structure sensitive with the intrinsic activity (turnover frequency) increasing with increasing particle size. Moreover, observed catalytic deactivation was linked to product (carbon monoxide) poisoning. Co-feeding carbon dioxide caused the activity and the amount of deactivation to decrease substantially. A reaction mechanism based on the formation of the {pi}-bond between carbon and oxygen as the rate-limiting step is in agreement with antipathetic structure sensitivity and product poisoning by carbon monoxide.

  9. Effect of surface structure on the catalytic behavior of Ni:Cu/Al and Ni:Cu:K/Al catalysts for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    S.Tajammul Hussain; Sheraz Gul; Muhammed Mazhar; Dalaver H.Anjum; Faical Larachi

    2008-01-01

    Methane decomposition using nickel, copper, and aluminum (Ni:Cu/Al) and nickel, copper, potassium, and alu-minum (Ni:Cu:K/Al) modified nano catalysts has been investigated for carbon fibers, hydrogen and hydrocarbon production. X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectrometry (SSIMS), thermal gravimetric analysis (TGA),Fourier transform infrared (FT-IR), secondary electron microscopy/X-ray energy dispersive (SEM-EDX), and temperature pro-grammed desorption (TPD) were used to depict the chemistry of the catalytic results. These techniques revealed the changes in surface morphology and structure of Ni, Cu, Al, and K, and formation of bimetallic and trimetallic surface cationic sites with sifferent cationic species, which resulted in the production of graphitic form of pure carbon on Ni:Cu/Al catalyst. The addition of K has a marked effect on the product selectivity and reactivity of the catalyst system. K addition restricts the formation of carbon on the surface and increases the production of hydrogen and C2, C3 hydrocarbons during the catalytic reaction whereas no hydrocarbons are produced on the sample without K. This study completely maps the modified surface structure and its re-lationship with the catalytic behavior of both systems. The process provides a flexible route for the production of carbon fibers and hydrogen on Ni:Cu/Al catalyst and hydrogen along with hydrocarbons on Ni:Cu:K/Al catalyst. The produced carbon fibers are imaged using a transmission electron microscope (TEM) for diameter size and wall structure determination. Hydrogen produced is COx free, which can be used directly in the fuel cell system. The effect of the addition of Cu and its transformation and interaction with Ni and K is responsible for the production of CO/CO2 free hydrogen, thus producing an environmental friendly clean energy.

  10. A novel ammonia-assisted method for the direct synthesis of Mn3O4 nanoparticles at room temperature and their catalytic activity during the rapid degradation of azo dyes

    Science.gov (United States)

    Mansournia, Mohammadreza; Azizi, Fatemeh; Rakhshan, Narges

    2015-05-01

    In this study, we prepared trimanganese tetroxide nanoparticles from MnCl2 solution in an ammonia atmosphere using a new surfactant-free method at room temperature. We analyzed and characterized the effects of different processing conditions, such as the concentrations of manganese and the ammonia source, as well as the reaction time, on the structure, purity, and morphology of the products using powder X-ray diffraction (XRD), scanning electron microscopy, and Fourier transformation infrared spectroscopy (FTIR) techniques. The XRD and FTIR analyses confirmed that the prepared products comprised single phase Mn3O4. At room temperature, the paramagnetic characteristics were also verified by vibrating sample magnetometry. Furthermore, we tested the catalytic activity of the nanoparticles during the degradation of methyl orange and Congo red, which are organic pollutants. Our experiments demonstrated the rapid color removal and reduction in the chemical oxygen demand (>70% and >50% within 10 min, respectively) using aqueous solutions of azo dyes.

  11. Effect of Precursor Synthesis on Catalytic Activity of Co3O4 in N2O Decomposition

    Czech Academy of Sciences Publication Activity Database

    Pacultová, K.; Karásková, K.; Strakošová, J.; Matějka, V.; Študentová, S.; Jirátová, Květa; Obalová, L.

    Praha : Česká společnost chemická, 2014, s. 815. ISSN 0009-2770. [Sjezd asociací českých a slovenských chemických společností /66./. Ostrava (CZ), 07.09.2014-10.09.2014] R&D Projects: GA ČR GA14-13750S Grant ostatní: GA MŠMT(CZ) LO1208 Institutional support: RVO:67985858 Keywords : decomposition * catalysts * Co-Mn-Al Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  12. Study on Carbon Nanotubes Prepared from Catalytic Decomposition of CH4 over Lanthanum Containing Ni-Base Catalysts

    Institute of Scientific and Technical Information of China (English)

    Wang Minwei; Li Fengyi

    2004-01-01

    A series of lanthanum containing Ni-base catalysts were prepared by citric acid complex method.Carbon nanotubes (CNT) were synthesized bY catalytic decomposing CH4 over these catalysts and characterized by XRD, TEM and TGA.It is found that the addition of lanthanum can not increase the yield of carbon nanotube, but can make the diameter of carbon nanotube thinner and even.The more the lanthanum addsr, the thinner the diameter of CNTs becomes.With the CNTs prepared on Ni-Mg catalyst, the CNTs prepared on Ni-La-Mg catalyst has better crystallinity and thermal stability.

  13. Effect of Ni+2-substituted Fe2TiO5 on the H2-reduction and CO2 Catalytic Decomposition Reactions at 500℃

    Institute of Scientific and Technical Information of China (English)

    M.H.Khedr

    2006-01-01

    CO2 is a major component of the greenhouse gases, which causes the global warming. To reduce CO2 gas,high activity nanosized Ni+2 substituted Fe2TiO5 samples were synthesized by conventional ceramic method.The effect of the composition of the synthesized ferrite on the H2-reduction and CO2-catalytic decomposition was investigated. Fe2TiO5 (iron titanate) phase that has a nanocrystallite size of ~80 nm is formed as a result of heating Fe2O3 and TiO2 while the addition of NiO leads to the formation of new phases (~80 nm)NiTiO3 and NiFe2O4, but the mixed solid of NiO and Fe2O3 results in the formation of NiFe2O4 only.Samples with Ni+2=0 shows the lowest reduction extent (20%); as the extent of Ni+2 increases, the extent of reduction increases. The increase in the reduction percent is attributed to the presence of NiTiO3 and NiFe2O4 phases, which are more reducible phases than Fe2TiO5. The CO2 decomposition reactions were monitored by thermogravimetric analysis (TGA) experiments. The oxidation of the H2-reduced Ni+2 substituted Fe2TiO5 at 500℃ was investigated. As Ni+2 increases, the rate of reoxidation increases. Samples with the highest reduction extents gave the highest reoxidation extent, which is attributed to the highly porous nature and deficiency in oxygen due to the presence of metallic Fe, Ni and/or FeNi alloy. X-ray diffraction (XRD) and transmission electron microscopy (TEM) of oxidized samples show also the presence of carbon in the sample containing Ni+2>0, which appears in the form of nanotubes (25 nm).

  14. Catalytic Decomposition of Nitric Oxide over Nano-sized PbTiO3 Supported Cupric Oxide%纳米晶PbTiO3负载CuO催化NO分解

    Institute of Scientific and Technical Information of China (English)

    邢丽; 薛念华; 陈向科; 郭学锋; 丁维平; 陈懿

    2005-01-01

    A large specific surface area perovskite-type mixed oxide PbTiO3 supported cupric oxide was synthesized as a catalyst for NO decomposition and characterized by techniques such as XPS, XRD,H2-TPR before and after NO deconlposition reactions. The catalytic properties were tested with a fix-bed micro-reactor. The results showed that the PbTiO3 was inactive for the reactions, but 1wt % Cu/PbTiO3 catalyst gave fairly good activities for NO decomposition at temperature as low as 473K. Copper species were found well-dispersed but weakly interacted with the support before NO decomposition, and the NO decomposition caused significant change in the environment of the copper species, which became Cu(Ⅰ) and most probably incorporated into surface crystal lattice of the nano-sized PbTiO3. In NO reaction, a large amount of oxygen atoms from the decomposition of NO penetrated into the nano-sized PbTiO3 support and caused small expansion of crystal lattice. The transport of oxygen between the copper species and the catalyst support may be helpful to speed up the kinetic regeneration of active metal sites from oxygen occupancy and resulted in good catalytic performance.

  15. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chakraborty, Debasish; Chorkendorff, Ib;

    2012-01-01

    A rational design approach was used to develop an alloyed Ni-Fe/Al2O3 catalyst for decomposition of ammonia. The dependence of the catalytic activity is tested as a function of the Ni-to-Fe ratio, the type of Ni-Fe alloy phase, the metal loading and the type of oxide support. In the tests with hi...... smallest particles in terms of catalytic activity per active site. Compared with SiO2, ZrO2 and TiO2, the support materials Al2O3 or Mg-Al-spinel give the highest performance in the high temperature range....

  16. Dimensional effects in the radiation-catalytic processes of water decomposition and perspectives of application of nanocatalysts

    International Nuclear Information System (INIS)

    Full text : According to the value of the coefficient of energy sources of radiation, selectivity and productivity, radiation-heterogeneous processes are one of the promising areas of radioactive processes. Interest to radiating and heterogeneous processes increased in communication by development of nuclear power systems, transformations of nuclear energy and atomic-hydrogen energy. The physical stage of radiation-heterogeneous processes comprises the steps of absorption, transformation, transport and energy transfer radiation sources. The efficiency of radioactive processes in heterogeneous systems is largely dependent on the parameters of constituent phases. In this work, the examples of the radiation-catalytic processes for hydrogen production from water presents the results of investigations of the influence of particle size of catalysts on the efficiency of energy conversion of ionizing radiation. As objects of investigation were taken oxide compounds SiO2, BeO, Al2O3, and aluminosilicates, beryllium silicates. The physical stage of radiation-heterogeneous processes was investigated by using model-calculated experiments. Calculation for well-known model of given processes of interaction of ionizing radiation with solids having the radiation-catalytic activity shows that in most experiments the energy of ionizing radiation is converted into energy imbalance of charge carriers (electrons and holes) excited states, and other defective states of the oxides. Investigated the individual and complex oxide systems containing metal oxides II-IV of the periodic table of elements. There are positions of cat ions and anions, which are the centers of localization of no equilibrium charge carriers in the ground state charged and(where 2 = 2, 4). With the capture of no equilibrium charge carriers in [3] and [4], these centers pass into the state, as a clear signs of the charges of these centers does not change. Therefore, in these oxides, the recombination of free particles

  17. Silver-mordenite for radiologic gas capture from complex streams. Dual catalytic CH3I decomposition and I confinement

    International Nuclear Information System (INIS)

    The selective capture of radiological iodine (129I) is a persistent concern for safe nuclear energy. In these nuclear fuel reprocessing scenarios, the gas streams to be treated are extremely complex, containing several distinct iodine-containing molecules amongst a large variety of other species. Silver-containing mordenite (MOR) is a longstanding benchmark for radioiodine capture, reacting with molecular iodine (I2) to form AgI. However the mechanisms for organoiodine capture is not well understood. Here we investigate the capture of methyl iodide from complex mixed gas streams by combining chemical analysis of the effluent gas stream with in depth characterization of the recovered sorbent. Tools applied include infrared spectroscopy, thermogravimetric analysis with mass spectrometry, micro X-ray fluorescence, powder X-ray diffraction analysis, and pair distribution function analysis. Moreover, the MOR zeolite catalyzes decomposition of the methyl iodide through formation of surface methoxy species (SMS), which subsequently reacts with water in the mixed gas stream to form methanol, and with methanol to form dimethyl ether, which are both detected downstream in the effluent. The liberated iodine reacts with Ag in the MOR pore to the form subnanometer AgI clusters, smaller than the MOR pores, suggesting that the iodine is both physically and chemically confined within the zeolite

  18. Scanning electrochemical microscopy: surface interrogation of adsorbed hydrogen and the open circuit catalytic decomposition of formic acid at platinum.

    Science.gov (United States)

    Rodríguez-López, Joaquín; Bard, Allen J

    2010-04-14

    The surface interrogation mode of scanning electrochemical microscopy (SECM) is extended to the in situ quantification of adsorbed hydrogen, H(ads), at polycrystalline platinum. The methodology consists of the production, at an interrogator electrode, of an oxidized species that is able to react with H(ads) on the Pt surface and report the amounts of this adsorbate through the SECM feedback response. The technique is validated by comparison to the electrochemical underpotential deposition (UPD) of hydrogen on Pt. We include an evaluation of electrochemical mediators for their use as oxidizing reporters for adsorbed species at platinum; a notable finding is the ability of tetramethyl-p-phenylenediamine (TMPD) to oxidize (interrogate) H(ads) on Pt at low pH (0.5 M H(2)SO(4) or 1 M HClO(4)) and with minimal background effects. As a case study, the decomposition of formic acid (HCOOH) in acidic media at open circuit on Pt was investigated. Our results suggest that formic acid decomposes at the surface of unbiased Pt through a dehydrogenation route to yield H(ads) at the Pt surface. The amount of H(ads) depended on the open circuit potential (OCP) of the Pt electrode at the time of interrogation; at a fixed concentration of HCOOH, a more negative OCP yielded larger amounts of H(ads) until reaching a coulomb limiting coverage close to 1 UPD monolayer of H(ads). The introduction of oxygen into the cell shifted the OCP to more positive potentials and reduced the quantified H(ads); furthermore, the system was shown to be chemically reversible, as several interrogations could be run consecutively and reproducibly regardless of the path taken to reach a given OCP. PMID:20225806

  19. Vapor-phase synthesis of a solid precursor for α-alumina through a catalytic decomposition of aluminum triisopropoxide

    International Nuclear Information System (INIS)

    Highlights: ► A new solid precursor for α-alumina was prepared at about 200 °C from aluminum tri-isopropoxide vapor. ► The obtained precursor was calcined at 1200 °C to form α-alumina particles, 75 nm in surface area equivalent diameter. ► The weight loss of the precursor upon calcination was 24%, lower than that of Al(OH)3, a conventional alumina precursor. -- Abstract: A new solid precursor, hydrous aluminum oxide, for α-alumina nanoparticles was prepared by thermal decomposition of aluminum triisopropoxide (ATI) vapor in a 500 mL batch reactor at 170–250 °C with HCl as catalyst. The conversion of ATI increased with increasing temperature and catalyst content; it was nearly complete at 250 °C with the catalyst at 10 mol% of the ATI. The obtained precursor particles were amorphous, spherical and loosely agglomerated. The primary particle size is in the range 50–150 nm. The ignition loss of the precursor was 24%, considerably lower than 35% of Al(OH)3, the popular precursor for alumina particles. Upon calcination of the precursor at 1200 °C in the air with a heating rate of 10 °C/min and a holding time of 2 h, the phase was completely transformed into α. The spherical particles composing the precursor turned worm-like by the calcination probably due to sintering between neighboring particles. The surface area equivalent diameter of the resulting α-alumina was 75 nm.

  20. Carbon nanofibers: a versatile catalytic support

    Directory of Open Access Journals (Sweden)

    Nelize Maria de Almeida Coelho

    2008-09-01

    Full Text Available The aim of this article is present an overview of the promising results obtained while using carbon nanofibers based composites as catalyst support for different practical applications: hydrazine decomposition, styrene synthesis, direct oxidation of H2S into elementary sulfur and as fuel-cell electrodes. We have also discussed some prospects of the use of these new materials in total combustion of methane and in ammonia decomposition. The macroscopic carbon nanofibers based composites were prepared by the CVD method (Carbon Vapor Deposition employing a gaseous mixture of hydrogen and ethane. The results showed a high catalytic activity and selectivity in comparison to the traditional catalysts employed in these reactions. The fact was attributed, mainly, to the morphology and the high external surface of the catalyst support.

  1. 鸟粪石循环利用处理高氨氮废水的热解行为%Thermal decomposition behavior of struvite in recycling treatment of high ammonia-nitrogen wastewater

    Institute of Scientific and Technical Information of China (English)

    曾庆玲; 王露; 沈春花; 李飞

    2013-01-01

    In order to treat high ammonia-nitrogen wastewater by struvite reuse,the thermal decomposition of struvite was studied.The denitrification rates of struvite were studied by calcination and heat under alkali conditions separately.The thermal decomposition residues were analyzed by scanning electron microscope (SEM)and X-ray diffraction (XRD).The temperature for struvite calcination was between 100 ~225℃ ; calcination time ranged from 1 ~ 5 hours.When the struvite was heated under alkali conditions,the temperature was between 60 ~ 95 ℃ ; the molar ratio of OH-∶ NH4+ was 0.4 ~ 1.5 ; and heated time was 0.5 ~ 4 hours.Analysis with XRD showed that the characteristic peaks of struvite were absent in both the two kinds of thermal decomposition residues,but the alkali method was better.The denitrification rate of struvite could reach 95 % under alkali conditions,when OH-∶ NH4+ molar ratio was 1,temperature was 90℃ and being heated for 2 hours.SEM analysis showed that the thermal decomposition residues was porous surface and lost crystal structure completely under alkali conditions,but the crystal structure was not destroyed completely when struvite was calcined with a denitrification rate of 80% only.The struvite could be reused for six times for the high ammonia-nitrogen wastewater treatment under best condition,with a removal rate of ammonia-nitrogen over 80%,and the concentration of phosphate was lower than 8 mg/L.%为了循环利用鸟粪石处理高氨氮废水,探讨了鸟粪石煅烧与加碱热解的脱氮率,利用电镜扫描(SEM)和X射线衍射(XRD)对2种热解产物进行了分析.鸟粪石煅烧条件为:温度100~ 225℃,时间1~5h;加碱热解条件为:温度60~95℃,时间0.5~4h,加碱量OH-∶NH4摩尔比值0.4 ~1.5.结果表明,虽然XRD分析显示2种热解产物都已失去鸟粪石的特征峰,但是鸟粪石加碱热解效果更好,最佳热解条件为:加碱量OH-∶NH4摩尔比值1,温度90℃,时间2h

  2. Selective catalytic reduction of nitrogen oxide. Pt. 2. Side flow system for the provision of gaseous ammonia; Selektive katalytische Reduktion von Strickoxiden. T. 2. Nebenstromverfahren zur Bereitstellung gasfoermigen Ammoniaks

    Energy Technology Data Exchange (ETDEWEB)

    Heubuch, Alexander; Wachtmeister, Georg [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen; Toshev, Plamen [MAN Diesel and Turbo SE, Augsburg (Germany); Sattelmayer, Thomas [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Thermodynamik

    2012-12-01

    The limitation of NO{sub x} emissions from diesel engines has been significantly tightened, among other things by the introduction of Euro 5 and Euro 6. In numerous applications on passenger car diesel engines, SCR catalytic converters were introduced to reduce NO{sub x} emissions in order to comply with the strict standards. Insufficient properties make the use of the required aqueous urea solution more difficult. The first part of this article published in MTZ 11 reported on the findings achieved at the Paul Scherrer Institute on the use of guanidinium formiate (GuFo) and its properties as an alternative to established urea SCR technology. In the second part, the TU Munich presents the application on a diesel engine and the ammonia generator (NH{sub 3} generator) with a bypass system developed for this purpose.

  3. Selective catalytic reduction of NO by ammonia using mesoporous Fe-containing HZSM-5 and HZSM-12 zeolite catalysts: An option for automotive applications

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Hansen, T. W.; Kustova, Marina;

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 and ZSM-12 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnation method and tested in the selective catalytic reduction (SCR) of NO with NH3. It was found that for both Fe/HZSM-5 and Fe/HZSM-12 catalysts with similar Fe contents, the ac...

  4. Influence of the addition of transition metals (Cr, Zr, Mo) on the properties of MnOx-FeOx catalysts for low-temperature selective catalytic reduction of NOx by Ammonia.

    Science.gov (United States)

    Zhou, Changcheng; Zhang, Yaping; Wang, Xiaolei; Xu, Haitao; Sun, Keqin; Shen, Kai

    2013-02-15

    The co-precipitation and citric acid methods were employed to prepare MnO(x)-FeO(x) catalysts for the low-temperature selective catalytic reduction (SCR) of NO(x) by ammonia. It was found that the Mn-Fe (CP) sample obtained from the co-precipitation method, which exhibited low crystalline of manganese oxides on the surface, high specific surface area and abundant acid sites at the surface, had better catalytic activity. The effects of doping different transition metals (Mo, Zr, Cr) in the Mn-Fe (CP) catalysts were further investigated. The study suggested that the addition of Cr can obviously reduce the take-off temperature of Mn-Fe catalyst to 90°C, while the impregnation of Zr and Mo raised that remarkably. The texture and micro-structure analysis revealed that for the Cr-doped Mn-Fe catalysts, the active components had better dispersion with less agglomeration and sintering and the largest BET surface specific area. In situ FTIR study indicated that the addition of Cr can increase significantly the surface acidity, especially, the Lewis acid sites, and promote the formation of the intermediate -NH(3)(+). H(2)-TPR results confirmed the better low-temperature redox properties of Mn-Fe-Cr. PMID:23142012

  5. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  6. Direct observation of low-temperature catalytic decomposition of H{sub 3}BO{sub 3} shell in core/shell Ni/H{sub 3}BO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.F. [Dalian University of Technology, School of Materials Science and Engineering, Dalian, Liaoning (China); Industrial Materials Institute, National Research Council of Canada, Boucherville, Quebec (Canada); Guan, P.F. [Tohoku University, World Premier International Research Center, Advanced Institute for Materials Research, Sendai (Japan); Dong, X.L. [Dalian University of Technology, School of Materials Science and Engineering, Dalian, Liaoning (China)

    2012-08-15

    Decomposition of H{sub 3}BO{sub 3} to B{sub 2}O{sub 3} in core/shell Ni/H{sub 3}BO{sub 3} nanoparticles was in situ recorded by transmission electron microscope as the irradiation time. The direct observation provides compelling evidence of the synergetic effect of the Ni core and the H{sub 3}BO{sub 3} shell, revealing the catalytic mechanisms of metal nanostructures that induce the decomposition at 124 C, lower than the bulk counterpart at 300 C. This phenomenon can be theoretically explained by considering the weakening of B-O bond at the Ni-H{sub 3}BO{sub 3} interface, and has important implications in understanding the lubricant behavior of H{sub 3}BO{sub 3} in frictional wear. (orig.)

  7. The role of oxygen during the catalytic oxidation of ammonia on Co{sub 3}O{sub 4}(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Shojaee, Kambiz; Haynes, Brian S.; Montoya, Alejandro, E-mail: alejandro.montoya@sydney.edu.au

    2014-10-15

    Graphical abstract: - Highlights: • Ammonia oxidation on Co{sub 3}O{sub 4}(1 0 0) surface is studied using Density Functional Theory. • The role of lattice O, on-surface O and OH in the dehydrogenation of ammonia is clarified. • NO and H{sub 2}O are the main products of ammonia oxidation on Co{sub 3}O{sub 4}(1 0 0). • The Co{sub 3}O{sub 4} surface is itself capable of oxidising NH{sub 3} to NO using the lattice O, opening the way for a Mars–van Krevelen mechanism of reaction. - Abstract: The adsorption selectivity and dehydrogenation energy barriers of NH{sub 3}, NH{sub 2} and NH on the (1 0 0) surface planes of Co{sub 3}O{sub 4} are determined by means of density functional methods. Stepwise hydrogen abstraction is effected by lattice O{sup 3o} associated with octahedrally coordinated surface Co atoms. The final H-abstraction, from NH, leads directly to the formation of gaseous product NO with the creation of a lattice oxygen vacancy. Reaction of this vacancy with gas-phase O{sub 2} repairs the vacancy and creates surface-adsorbed O{sup *} which is also capable of abstracting H from NH{sub 3}{sup *}, NH{sub 2}{sup *} and NH{sup *}, the final step leading to directly again to NO formation. The mobile surface OH{sup *} formed from the O{sup *}-mediated abstraction steps is also capable of abstracting H from the NH{sub x}{sup *} species, leading ultimately to surface N{sup *} which then easily extracts a lattice O{sup 3o} to form NO and a new vacancy. The overall mechanism to form NO is a complex cycle of lattice- and surface-mediated abstractions. The hydrogen budget in the reaction shows corresponding complexity. Surface H{sup *} (formed when lattice O{sup 3o} abstracts H from NH{sub x}) is stable and immobile but it can be abstracted by surface OH{sup *} to form water. OH{sup *} disproportionation reaction also forms water.

  8. Catalytic distillation water recovery subsystem

    Science.gov (United States)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  9. Catalytic decomposition of gaseous 1,2-dichlorobenzene over CuOx/TiO₂ and CuOx/TiO₂-CNTs catalysts: Mechanism and PCDD/Fs formation.

    Science.gov (United States)

    Wang, Qiu-lin; Huang, Qun-xing; Wu, Hui-fan; Lu, Sheng-yong; Wu, Hai-long; Li, Xiao-dong; Yan, Jian-hua

    2016-02-01

    Gaseous 1,2-dichlorobenzene (1,2-DCBz) was catalytically decomposed in a fixed-bed catalytic reactor using composite copper-based titanium oxide (CuOx/TiO2) catalysts with different copper ratios. Carbon nanotubes (CNTs) were introduced to produce novel CuOx/TiO2-CNTs catalysts by the sol-gel method. The catalytic performances of CuOx/TiO2 and CuOx/TiO2-CNTs on 1,2-DCBz oxidative destruction under different temperatures (150-350 °C) were experimentally examined and the correlation between catalyst structure and catalytic activity was characterized and the role of oxygen in catalytic reaction was discussed. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) generation during 1,2-DCBz catalytic oxidation by CuOx/TiO2-CNTs composite catalyst was also examined. Results indicate that the 1,2-DCBz destruction/removal efficiencies of CuOx (4 wt%)/TiO2 catalyst at 150 °C and 350 °C with a GHSV of 3400 h(-1) are 59% and 94% respectively and low-temperature (150 °C) catalytic activity of CuOx/TiO2 on 1,2-DCBz oxidation can be improved from 59 to 77% when CNTs are introduced. Furthermore, oxygen either in catalyst or from reaction atmosphere is indispensible in reaction. The former is offered to activate and oxidize the 1,2-DCBz adsorbed on catalyst, thus can be generally consumed during reaction and the oxygen content in catalyst is observed lost from 39.9 to 35.0 wt% after reacting under inert atmosphere; the latter may replenish the vacancy in catalyst created by the consumed oxygen thus extends the catalyst life and raises the destruction/removal efficiency. The introduction of CNTs also increases the Cu(2+)/Cu(+) ratio, chemisorbed oxygen concentration and surface lattice oxygen binding energy which are closely related with catalytic activity. PCDD/Fs is confirmed to be formed when 1,2-DCBz catalytically oxidized by CuOx/TiO2-CNTs composite catalyst with sufficient oxygen (21%), proper temperature (350 °C) and high concentration of 1,2-DCBz feed (120 ppm

  10. Catalytic N 2O decomposition on Pr 0.8Ba 0.2MnO 3 type perovskite catalyst for industrial emission control

    Czech Academy of Sciences Publication Activity Database

    Kumar, S.; Vinu, A.; Šubrt, Jan; Bakardjieva, Snejana; Rayalu, S.; Teraoka, Y.; Labhsetwar, N.

    2012-01-01

    Roč. 198, 1-SI (2012), s. 125-132. ISSN 0920-5861 R&D Projects: GA MŠk LC523 Institutional support: RVO:61388980 Keywords : Ba substituted perovskite * catalyst * honeycomb * N 2O decomposition * perovskite * praseodymium manganate Subject RIV: CA - Inorganic Chemistry Impact factor: 2.980, year: 2012

  11. Influence of Al distribution on the nature of iron species and catalytic activity of Fe-FER in N2O decomposition

    Czech Academy of Sciences Publication Activity Database

    Tabor, Edyta; Závěta, K.; Dědeček, Jiří; Vondrová, Alena; Nováková, Jana; Sobalík, Zdeněk

    Glasgow : University of Glasgow, 2011. PM81 – 1709039. [EuropaCat X Glasgow 2011. 29.08.2011-02.09.2011, Glasgow] Institutional research plan: CEZ:AV0Z40400503 Keywords : N2O decomposition * Fe- FER Subject RIV: CF - Physical ; Theoretical Chemistry

  12. Identification of the arsenic resistance on MoO3 doped CeO2/TiO2 catalyst for selective catalytic reduction of NOx with ammonia.

    Science.gov (United States)

    Li, Xiang; Li, Xiansheng; Li, Junhua; Hao, Jiming

    2016-11-15

    Arsenic resistance on MoO3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 (NH3-SCR) is investigated. It is found that the activity loss of CeO2-MoO3/TiO2 caused by As oxide is obvious less than that of CeO2/TiO2 catalysts. The fresh and poisoned catalysts are compared and analyzed using XRD, Raman, XPS, H2-TPR and in situ DRIFTS. The results manifest that the introduction of arsenic oxide to CeO2/TiO2 catalyst not only weakens BET surface area, surface acid sites and adsorbed NOx species, but also destroy the redox circle of Ce(4+) to Ce(3+) because of interaction between Ce and As. When MoO3 is added into CeO2/TiO2 system, the main SCR reaction path are found to be changed from the reaction between coordinated NH3 and ad-NOx species to that between an amide and gaseous NO. Additionally, for CeO2-MoO3/TiO2 catalyst, As toxic effect on active sites CeO2 can be released because of stronger As-Mo interaction. Moreover, not only are the reactable Brønsted and Lewis acid sites partly restored, but the cycle of Ce(4+) to Ce(3+) can also be free to some extent. PMID:27474851

  13. Application of transition metal ferrites AFe2O4 (A= Co, Ni, Cu) for the catalytic decomposition of sulphuric acid involved in sulphur-iodine thermochemical cycle for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Spinel ferrites with general formula AFe2O4 (A= Co, Ni, Cu) were prepared by glycine-nitrate gel combustion method and characterized using powder XRD, FTIR, SEM and Mossbauer spectroscopy. The redox properties of the samples were studied by recording multiple TPR/O cycles. The copper ferrite sample was found to be the most easily reducible sample with Tmax for reduction occurring at the lowest temperature among all samples. The catalytic activity of all the samples were evaluated for sulphuric acid decomposition reaction in the temperature range of 650 deg C-825 deg C. Copper ferrite was found to be the most active catalyst for the reaction with ∼ 78% conversion at 800 deg C. (author)

  14. Characterization and catalytic behavior of MoO3/V2O5/Nb2 O5 systems in isopropanol decomposition

    OpenAIRE

    J. B. de Paiva Jr; Monteiro, W R; M. A. Zacharias; J. A. J. Rodrigues; G. G. Cortez

    2006-01-01

    The influence of molybdenum oxide as a promoter on the V2O5/Nb2O5 system was investigated. A series of MoO3/V2O5/Nb2 O5 catalysts, with MoO3 loading ranging from 1 to 3 wt% MoO3 and fixed V2O5 content (21 wt%), were prepared by impregnation of the Nb2O5 support with an aqueous solution of ammonium metavanadate and ammonium molybdate. The acid-base properties of the catalysts were investigated to determine of the selectivity of the isopropanol decomposition reaction. The X-ray diffraction resu...

  15. Decomposição catalítica de óxidos de nitrogênio Catalytic decomposition of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    Julia María Díaz Cónsul

    2004-06-01

    Full Text Available Contaminant gases in the atmosphere constitute an important problem to be solved in the world. The NOx gases produced as a consequence of engine high temperatures are deleterious to environment and human health, as they promote acid rain and can act in the same way as freons in the destruction of the ozone layer in the stratosphere. In this review, three way and selective reduction catalysts for decomposition of these contaminant gases are described. Details about conditions and problems, such as catalyst poisoning, and the search for new catalysts are shown.

  16. Characterization and catalytic behavior of MoO3/V2O5/Nb2 O5 systems in isopropanol decomposition

    Directory of Open Access Journals (Sweden)

    J. B. de Paiva Jr

    2006-12-01

    Full Text Available The influence of molybdenum oxide as a promoter on the V2O5/Nb2O5 system was investigated. A series of MoO3/V2O5/Nb2 O5 catalysts, with MoO3 loading ranging from 1 to 3 wt% MoO3 and fixed V2O5 content (21 wt%, were prepared by impregnation of the Nb2O5 support with an aqueous solution of ammonium metavanadate and ammonium molybdate. The acid-base properties of the catalysts were investigated to determine of the selectivity of the isopropanol decomposition reaction. The X-ray diffraction results showed the presence of the beta-(Nb,V2O5 phase. The temperature-programmed reduction profiles showed that the reducibility of vanadium was affected by the presence of molybdenum oxide. Activity results for isopropanol decomposition revealed that the acid-base properties of V2O5/Nb2O5 catalysts are affected upon incorporation of MoO3, specifically for loadings of 3 wt %. For this catalyst composition both propylene and acetone formation rates decreased.

  17. Studies on the catalytic hydrogenative decomposition of residues stemming from crude oil. Untersuchungen zum katalytisch-hydrierenden Spalten von erdoelstaemmigen Rueckstaenden mit verschiedenen Zusaetzen

    Energy Technology Data Exchange (ETDEWEB)

    Sourkouni-Argirusi, G.

    1993-01-01

    The aim of the work was to determine the effects of Rotmasse-based catalysts on the hydrogenative decomposition of short residues stemming from crude oil. All the experiments were performed in lots anenable to comparison using a shaking autoclave. For this purpose five different short residues were examined. First the operating parameters pressure (60 to 150 bar), temperature (440 C to 475 C), and retention time (0, 15, 30, 60 min) weree varied. Besides the experiments on oil alone additives such as coke and the commercial catalyst CoMo M810 of the BASF company were used. Variation of the process parameters with the 30% molybdenum-coated Rotmasse revealed that for this educt combination a mild temperature of 440 C at a pressure of 120 bar for a retention time of 30 minutes is optimal. Addition of sulphur slightly improves oil yield in terms of overall quantity and quality of the recovered heavy oils. At any rate, sulphur does not increase the sulphur content of the product heavy oils and therefore Rotmasse can safely be sulphurized. This, Rottmasse-based catalysts are very active in terms of hydrogenative decomposition of short residues stemming form crude oil. As they can be produced from waste materials via relatively simple chemical procedures, they can serve as an inexpensive alternative to commercial catalysts. (EF). 28 tabs. in annex

  18. Contribution to the study of the catalytic properties of stoichiometric and non- stoichiometric alumina. Catalysis of the hydrogenation of ethylene and of the formic acid decomposition

    International Nuclear Information System (INIS)

    The alumina, of the delta crystalline form and composed of non-porous spherical grains of 150 A diameter, is cold pressed in a die at a pressure of 4 metric tons/sp.cm. On heating to 500 deg C in a high vacuum, the surface lattice of the alumina loses oxygen and becomes an n-type semi-conductor. The same treatment at 800 deg C causes a loss of aluminium and the appearance of p-type semi-conductivity. These samples are used as catalysts for reactions involving the hydrogenation of ethylene and the decomposition of formic acid. The kinetic study of the ethylene hydrogenation reaction at 500 deg C shows that when this gas is not in excess in the reaction mixture, the rate of reaction is proportional to the partial pressure of the hydrogen. The rate constants at 500 deg C are of the same order of magnitude, irrespective of the previous treatment of the alumina. This result is due to a compensation effect between the pre-exponential factor and the apparent activation energy. The nature of the various hydrogen adsorption sites is described in each case. The apparent activation energy is a minimum each time that the hydrogen is adsorbed covalently; it is a maximum for an ionic adsorption. All the samples show a strong activity for the decomposition of formic acid and direct this reaction towards the dehydration. The dehydrogenation represents only 5 per cent of the total reaction and is not influenced by the nature of the prior treatment of the alumina. But even in this case, the activation energy for the dehydrogenation is lowered when the hydrogen is adsorbed covalently, without the liberation of electrons. (author)

  19. The structure-function relationship for alumina supported platinum during the formation of ammonia from nitrogen oxide and hydrogen in the presence of oxygen.

    Science.gov (United States)

    Adams, Emma Catherine; Merte, Lindsay Richard; Hellman, Anders; Skoglundh, Magnus; Gustafson, Johan; Bendixen, Eva Charlotte; Gabrielsson, Pär; Bertram, Florian; Evertsson, Jonas; Zhang, Chu; Carlson, Stefan; Carlsson, Per-Anders

    2016-04-20

    We study the structure-function relationship of alumina supported platinum during the formation of ammonia from nitrogen oxide and dihydrogen by employing in situ X-ray absorption and Fourier transform infrared spectroscopy. Particular focus has been directed towards the effect of oxygen on the reaction as a model system for emerging technologies for passive selective catalytic reduction of nitrogen oxides. The suppressed formation of ammonia observed as the feed becomes net-oxidizing is accompanied by a considerable increase in the oxidation state of platinum as well as the formation of surface nitrates and the loss of NH-containing surface species. In the presence of (excess) oxygen, the ammonia formation is proposed to be limited by weak interaction between nitrogen oxide and the oxidized platinum surface. This leads to a slow dissociation rate of nitrogen oxide and thus low abundance of the atomic nitrogen surface species that can react with the adsorbed hydrogen species. In this case the consumption of hydrogen through the competing water formation reaction and decomposition/oxidation of ammonia are of less importance for the net ammonia formation. PMID:27039829

  20. Synthesis of TiO₂-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition.

    Science.gov (United States)

    Zuo, Yong; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2016-04-01

    P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO2-loaded Co0.85Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co0.85Se nanofilms, and the NH3 · H2O plays an important role in the generation and crystallization of TiO2 nanoparticles. Brunauer-Emmett-Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m(2) g(-1)) than that of Co0.85Se nanofilms (55.17 m(2) g(-1)) and TiO2 nanoparticles (19.49 m(2) g(-1)). The catalytic tests indicate Co0.85Se-TiO2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co0.85Se nanofilms and TiO2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction. PMID:26903086

  1. Synthesis of TiO2-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition

    Science.gov (United States)

    Zuo, Yong; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2016-04-01

    P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO2-loaded Co0.85Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co0.85Se nanofilms, and the NH3 · H2O plays an important role in the generation and crystallization of TiO2 nanoparticles. Brunauer-Emmett-Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m2 g-1) than that of Co0.85Se nanofilms (55.17 m2 g-1) and TiO2 nanoparticles (19.49 m2 g-1). The catalytic tests indicate Co0.85Se-TiO2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co0.85Se nanofilms and TiO2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction.

  2. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  3. Characteristics of La-modified Ni-Al2O3 and Ni-SiO2 catalysts for COx-free hydrogen production by catalytic decomposition of methane

    Institute of Scientific and Technical Information of China (English)

    Chatla; Anjaneyulu; Velisoju; Vijay; Kumar; Suresh; K.Bhargava; Akula; Venugopal

    2013-01-01

    Hydrotalcite precursors of La modified Ni-Al2O3 and Ni-SiO2 catalysts prepared by co-precipitation method and the catalytic activities were examined for the production of COx-free H2 by CH4 decomposition. Physico-chemical characteristics of fresh, reduced and used catalysts were evaluated by XRD, TPR and O2 pulse chemisorptions, TEM and BET-SA techniques. XRD studies showed phases due to hydrotalcite-like precursors in oven dried form produced dispersed NiO species upon calcination in static air above 450 C. Raman spectra of deactivated samples revealed the presence of both ordered and disordered forms of carbon. Ni-La-Al2O3catalyst with a mole ratio of Ni : La : Al = 2 : 0.1 : 0.9 exhibited tremendously high longevity with a hydrogen production rate of 1300 molH2 mol 1 Ni. A direct relationship between Ni metal surface area and hydrogen yields was established.

  4. Ammonia synthesis at low temperatures

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2000-01-01

    contrast to the biological process, the industrial process requires high temperatures and pressures to proceed, and an explanation of this important difference is discussed. The possibility of a metal surface catalyzed process running at low temperatures and pressures is addressed, and DFT calculations...... have been carried out to evaluate its feasibility. The calculations suggest that it might be possible to catalytically produce ammonia from molecular nitrogen at low temperatures and pressures, in particular if energy is fed into the process electrochemically. (C) 2000 American Institute of Physics....

  5. Long-term real-time monitoring catalytic synthesis of ammonia in a microreactor by VUV-lamp-based charge-transfer ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Xie, Yuanyuan; Hua, Lei; Hou, Keyong; Chen, Ping; Zhao, Wuduo; Chen, Wendong; Ju, Bangyu; Li, Haiyang

    2014-08-01

    With respect to massive consumption of ammonia and rigorous industrial synthesis conditions, many studies have been devoted to investigating more environmentally benign catalysts for ammonia synthesis under moderate conditions. However, traditional methods for analysis of synthesized ammonia (e.g., off-line ion chromatography (IC) and chemical titration) suffer from poor sensitivity, low time resolution, and sample manipulations. In this work, charge-transfer ionization (CTI) with O2(+) as the reagent ion based on a vacuum ultraviolet (VUV) lamp in a time-of-flight mass spectrometer (CTI-TOFMS) has been applied for real-time monitoring of the ammonia synthesis in a microreactor. For the necessity of long-term stable monitoring, a self-adjustment algorithm for stabilizing O2(+) ion intensity was developed to automatically compensate the attenuation of the O2(+) ion yield in the ion source as a result of the oxidation of the photoelectric electrode and contamination on the MgF2 window of the VUV lamp. A wide linear calibration curve in the concentration range of 0.2-1000 ppmv with a correlation coefficient (R(2)) of 0.9986 was achieved, and the limit of quantification (LOQ) for NH3 was in ppbv. Microcatalytic synthesis of ammonia with three catalysts prepared by transition-metal/carbon nanotubes was tested, and the rapid changes of NH3 conversion rates with the reaction temperatures were quantitatively measured with a time resolution of 30 s. The high-time-resolution CTI-TOFMS could not only achieve the equilibrium conversion rates of NH3 rapidly but also monitor the activity variations with respect to investigated catalysts during ammonia synthesis reactions. PMID:24968116

  6. Investigation of Catalytic NOx, reduction with transient techniques, isotopic exchange and FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Emissions from vehicles are suppressed by catalytic conversion, i.e. total oxidation of carbon monoxide and hydrocarbons and reduction of nitrogen oxides. The on-going demand for lower emissions requires more detailed knowledge about the catalytic reaction mechanisms and kinetics on the level of elementary steps, especially because of the mutual interactions in the complex reaction mixture. The reaction mechanisms for the abatement of nitrogen oxides (NOx) are of particular interest, since they are environmentally very unfriendly compounds. Transient experimental techniques can be used as a tool to understand the reaction mechanisms and to develop mathematical models allowing simulation and optimisation of the behaviour of three-way catalyst converters. In chemical kinetics, isotope-labelled reactants are frequently employed to follow reaction pathways and to determine reaction mechanisms. The kinetics and mechanisms of the catalytic reduction of nitrogen oxide (NO) by hydrogen as well as self-decomposition of NO and N2O were studied over alumina based palladium and rhodium-alumina monoliths. In addition, NO reduction with H2 and D2, isotope exchange of hydrogen atoms in water, ammonia and hydrogen with deuterium, as well as adsorption of ammonia and water on the Pd-monolith were studied with transient experiments. Transient step-response experiments, isotopic jumping techniques, steady- state isotopic-transient analysis, temperature programmed desorption (TPD) and Fourier-transformed infrared spectroscopy (FT-IR) were used as experimental techniques. The catalysts were characterised by carbon monoxide chemisorption, nitrogen physisorption and X-ray photoelectron spectroscopy (XPS). Nitrogen, nitrous oxide, ammonia, and water were detected as reaction products in NO reduction by hydrogen. The transient and FT-IR experiments yielded information about the surface reaction mechanisms. The dissociation of NO on the catalyst surface is the crucial step, dominating the

  7. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  8. The influence of sulphate on the catalytic properties of V{sub 2}O{sub 5}-TiO{sub 2} and WO{sub 3}-TiO{sub 2} in the reduction of nitric oxide with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Ciambelli, P.; Fortuna, M.E.; Sannino, D. [Dipartimento di Ingegneria Chimica e Alimentare, Universita di Salerno, Fisciano (Italy); Baldacci, A. [ENEL-CRT, Pisa (Italy)

    1996-05-31

    The effect of sulphate on the catalytic properties of V{sub 2}O{sub 5}/TiO{sub 2} and WO{sub 3}/TiO{sub 2} in the selective reduction of NO with NH{sub 3} has been investigated. For both catalytic systems, the presence of sulphate results in the enhancement of catalytic activity without reduction of selectivity to nitrogen. The rate of NO reduction depends on the sulphate content, which is affected by the original composition of titania, the method of catalyst preparation and the metal oxide loading

  9. Catalytic hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas that contains particulates can be purified from tars and ammonia by using nickel monolith catalysts. Temperatures over 900 deg C are required at 20 bar pressure to avoid deactivation by H{sub 2}S and carbon. Dolomites and limestones are effective tar decomposing catalysts only when calcined. Tar decomposition in gasification conditions can take place by steam or dry (CO{sub 2}) reforming reactions. These reactions follow apparent first order kinetics with respect to hydrocarbons in gasification conditions. (author) (16 refs.)

  10. Development of catalytic gas cleaning in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P.; Kurkela, E.; Staahlberg, P.; Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas containing dust can be efficiently purified from tars and ammonia with a nickel monolith catalyst. Temperatures of >900 deg C and a residence time of about 1 s (SV 2 500 1/h) were needed at 5 bar pressure to achieve complete tar decomposition and 80 % ammonia conversion. Catalyst deactivation was not observed during test runs of 100 h. At lower pressures dolomites and limestones can also be applied for tar removal at about 900 deg C temperatures. (orig.) 12 refs.

  11. Unsteady catalytic processes and sorption-catalytic technologies

    International Nuclear Information System (INIS)

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  12. Composition decomposition

    DEFF Research Database (Denmark)

    Dyson, Mark

    2003-01-01

    only have design tools changed character, but also the processes associated with them. Today, the composition of problems and their decomposition into parcels of information, calls for a new paradigm. This paradigm builds on the networking of agents and specialisations, and the paths of communication...

  13. Influences of ammonia contamination on leaching from air-pollution-control residues

    DEFF Research Database (Denmark)

    Guan, Zhenzhen; Chen, Dezhen; Astrup, Thomas Fruergaard

    2014-01-01

    Application of selective non-catalytic reduction systems at municipal solid waste incinerators (MSWIs) often involves over-stoichiometric injection of ammonia into flue gases. Un-reacted ammonia may be deposited on fly ash particles and can ultimately influence the leaching behaviour of air-pollution-control...

  14. Influences of ammonia contamination on leaching from air-pollution-control residues

    DEFF Research Database (Denmark)

    Guan, Zhenzhen; Chen, Dezhen; Astrup, Thomas Fruergaard

    2014-01-01

    Application of selective non-catalytic reduction systems at municipal solid waste incinerators (MSWIs) often involves over-stoichiometric injection of ammonia into flue gases. Un-reacted ammonia may be deposited on fly ash particles and can ultimately influence the leaching behaviour of air-pollu...

  15. Cobalt-Nickel-Boron Supported over Polypyrrole-Derived Activated Carbon for Hydrolysis of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Yongjin Zou

    2016-07-01

    Full Text Available In this study, polypyrrole (PPy nanofibers were used to synthesize a super-activated carbon material. A highly-dispersed Co-Ni-B catalyst was supported on PPy nanofiber-derived activated carbon (PAC by chemical reduction. The Co-Ni-B/PAC hybrid catalyst exhibited excellent catalytic performance for the decomposition of ammonia borane (AB in an aqueous alkaline solution at room temperature. The size of the metal particles, morphology of Co-Ni-B/PAC, and catalytic activity of the supported catalyst were investigated. Ni-B, Co-B, and Co-Ni-B catalysts were also synthesized in the absence of PAC under similar conditions for comparison. The maximum hydrogen generation rate (1451.2 mL−1·min−1·g−1 at 25 °C was obtained with Co-Ni-B/PAC. Kinetic studies indicated that the hydrolysis reaction of AB was first order with respect to Co-Ni-B/PAC, and the activation energy was 30.2 kJ·mol−1. Even after ten recycling experiments, the catalyst showed good stability owing to the synergistic effect of Co-Ni-B and PAC.

  16. Development of a Novel Catalyst for No Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Ates Akyurtlu; Jale Akyurtlu

    2007-06-22

    Air pollution arising from the emission of nitrogen oxides as a result of combustion taking place in boilers, furnaces and engines, has increasingly been recognized as a problem. New methods to remove NO{sub x} emissions significantly and economically must be developed. The current technology for post-combustion removal of NO is the selective catalytic reduction (SCR) of NO by ammonia or possibly by a hydrocarbon such as methane. The catalytic decomposition of NO to give N{sub 2} will be preferable to the SCR process because it will eliminate the costs and operating problems associated with the use of an external reducing species. The most promising decomposition catalysts are transition metal (especially copper)-exchanged zeolites, perovskites, and noble metals supported on metal oxides such as alumina, silica, and ceria. The main shortcoming of the noble metal reducible oxide (NMRO) catalysts is that they are prone to deactivation by oxygen. It has been reported that catalysts containing tin oxide show oxygen adsorption behavior that may involve hydroxyl groups attached to the tin oxide. This is different than that observed with other noble metal-metal oxide combinations, which have the oxygen adsorbing on the noble metal and subsequently spilling over to the metal oxide. This observation leads one to believe that the Pt/SnO{sub 2} catalysts may have a potential as NO decomposition catalysts in the presence of oxygen. This prediction is also supported by some preliminary data obtained for NO decomposition on a Pt/SnO{sub 2} catalyst in the PI's laboratory. The main objective of the research that is being undertaken is the evaluation of the Pt/SnO{sub 2} catalysts for the decomposition of NO in simulated power plant stack gases with particular attention to the resistance to deactivation by O{sub 2}, H{sub 2}O, and elevated temperatures. Temperature programmed desorption (TPD) and temperature programmed reaction (TPRx) studies on Pt/SnO{sub 2} catalysts having

  17. 纳米SiO2负载的过渡金属硼化物对AP热分解的催化作用%Catalytic Activity of Nano-silica Supported Transition-metal Borides on the Thermal Decomposition of Ammonium Perchlorate

    Institute of Scientific and Technical Information of China (English)

    李茸; 刘祥萱; 王煊军

    2012-01-01

    采用化学还原法制备纳米NiB/SiO2、CoB/SiO2、MoB/SiO2催化剂,通过热重-差热分析(TG-DTA)研究了其对AP热分解过程的催化作用.结果表明,负载过渡金属硼化物催化剂对AP分解的催化活性顺序为:CoB/SiO2>NiB/SiO2> MoB/SiO2;加入质量分数5%的CoB/SiO2使AP高温热分解峰温度降低166.2℃;SiO2载体将CoB晶型转化推迟了 110℃左右,改善了催化剂的热稳定性.%The nano-silica supported transition metal catalysts NiB/SiO2 , CoB/SiO2 , MoB/SiO2 were prepared by chemical reduction method. Their catalytic activity on the thermal decomposition of ammonium perchlorate (AP) was studied by TG-DTA. Results show that catalytic activity of nano-silica supported transition metal borides for the thermal decomposition of AP decreases in the order: CoB/SiO2 > NiB/SiO2 >MoB/SiO2. The CoB/SiO2 (mass ration of 5%) catalyst makes the high-temperature thermal decomposition temperature of AP decrease by 166. 2℃. The SiO2 carrier makes the crystal transformation temperature delay about 110℃, revealling the improvement of thermal stability of the catalyst.

  18. Ammonia sensor for closed-loop SCR control

    NARCIS (Netherlands)

    Wang, D.Y.; Yao, S.; Shost, M.; Yoo, J.H.; Cabush, D.; Racine, D.; Cloudt, R.P.M.; Willems, F.P.T.

    2009-01-01

    Selective Catalytic Reduction (SCR) is the dominant solution for meeting future NOx reduction regulations for heavy-duty diesel powertrains. SCR systems benefit from closed-loop control if an appropriate exhaust gas sensor were available. An ammonia sensor has recently been developed for use as a fe

  19. Ammonia production in nitrogen seeded plasma discharges in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, V., E-mail: Volker.Rohde@ipp.mpg.de; Oberkofler, M.

    2015-08-15

    In present tokamaks nitrogen seeding is used to reduce the power load onto the divertor tiles. Some fraction of the seeded nitrogen reacts with hydrogen to form ammonia. The behaviour of ammonia in ASDEX Upgrade is studied by mass spectrometry. Injection without plasma shows strong absorption at the inner walls of the vessel and isotope exchange reactions. During nitrogen seeding in H-mode discharges the onset of a saturation of the nitrogen retention is observed. The residual gas consists of strongly deuterated methane and ammonia with almost equal amounts of deuterium and protium. This confirms the role of surface reactions in the ammonia formation. The results are consistent with findings in previous investigations. A numerical decomposition of mass spectra is under development and will be needed for quantitative evaluation of the results obtained.

  20. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  1. Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review

    Directory of Open Access Journals (Sweden)

    TsungYu Lee

    2016-05-01

    Full Text Available The removals of NOx by catalytic technology at low temperatures (100–300 °C for industrial flue gas treatment have received increasing attention. However, the development of low temperature catalysts for selective catalytic reduction (SCR of NOx with ammonia is still a challenge especially in the presence of SO2. The current status of using Mn-based catalysts for low temperature SCR of NOx with ammonia (NH3-SCR is reviewed. Reaction mechanisms and effects of operating factors on low temperature NH3-SCR are addressed, and the SCR efficiencies of Mn-based metal oxides with and without SO2 poisoning have also been discussed with different supports and co-metals. The key factors for enhancing low temperature NH3-SCR efficiency and SO2 resistance with Mn-based catalysts are identified to be (1 high specific surface area; (2 high surface acidity; (3 oxidation states of manganese; (4 well dispersion of manganese oxide metals; (5 more surface adsorbed oxygen; (6 more absorbed NO3− on the catalyst surface; (7 easier decomposition of ammonium sulfates. Moreover, the regenerative methods such as water washing, acid and/or alkali washing and heat treatment to the poisoned catalysts could help to recover the low temperature SCR efficiency to its initial level.

  2. 不同MgO担体对Ba-Ru/MgO氨合成催化剂物化性质和反应性能的影响%Effect of Different Supports on Physical and Chemical Properties and Catalytic Activity over Ba-Ru/MgO Ammonia Synthesis Catalysts

    Institute of Scientific and Technical Information of China (English)

    杨晓龙; 唐立平; 夏春谷; 熊绪茂; 慕新元; 胡斌

    2012-01-01

    MgO supports were prepared by different precipitants and further examined as the supports for barium-promoted ruthenium catalyst for ammonia synthesis.The reason resulting in their difference of catalytic activity were explored by X-ray diffraction,N2 adsorption-desorption,X-ray fluorescence spectroscopy,transmission electron microscopy,H2 temperature-programmed reduction,CO2 temperature-programmed desorption,H2 temperature-programmed desorption and N2 temperature-programmed desorption.It was found that MgO prepared by(NH4)2CO3 precipitant facilitated the reduction of ruthenium oxide for Ba-Ru/MgO catalyst,and the weak basic sites of Ba-Ru/MgO((NH4)2CO3 as precipitant) appeared at lower temperature and showed higher weak basic site densities compared with the others.At 450 ℃、 5.0 MPa and 5 000 h-1,catalytic activity of Ba-Ru/MgO catalyst employing(NH4)2CO3 as the precipitant was higher than that of the catalyst prepared by other precipitants under the same reaction conditions,the ammonia concentration in the effluent reached 3.74%.The addition of Ba promoter significantly decreased the amount of hydrogen chemisorption,increased the number of dissociatively adsorbed N* on the Ru surface and thus accelerated the reaction rate of ammonia synthesis.%采用不同沉淀剂制备了MgO材料,以其为载体制备了Ba-Ru/MgO氨合成催化剂,考察了沉淀剂种类和BaO助剂对其氨合成性能的影响.通过X射线衍射(XRD)、N2物理吸附、X射线荧光光谱(XRF)、透射电镜(TEM)、H2程序升温还原(H2-TPR)、CO2程序升温脱附(CO2-TPD)、H2程序升温脱附(H2-TPD)和N2程序升温脱附(N2-TPD)表征手段,对不同沉淀剂影响Ba-Ru/MgO催化剂氨合成性能的原因进行了探索.结果表明:采用(NH4)2CO3作沉淀剂制备的Ba-Ru/MgO催化剂表面Ru物种易于在低温下还原,催化剂表面在低温区具有较多数量的弱碱性吸附位,在450℃、5.0 MPa和5 000 h-1

  3. Ammonia Clouds on Jupiter

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  4. Catalytic denitrification control process and system for combustion flue gases

    International Nuclear Information System (INIS)

    This patent describes a process for controlling the catalytic dentrification of flue gases by ammonia addition to the flue gas. It comprises withdrawing from a combustion process a flue gas stream containing at least about 20 volume parts NOx per million of flue gas, and controllably adding ammonia gas to the flue gas stream; passing the flue gas and ammonia mixture through a catalytic dentrification unit containing a dentrification catalyst material and reducing the NOx concentration in the flue gas; obtaining a control signal based on process parameter signals including the volume flow rate of the flue gas, and determining the quantity of ammonia initially added to the flue gas so that it is less than the amount theoretically required to reduce all of the NOx in the flue gas; obtaining a trim signal based on comparing the NOx concentration measured in the flue gas downstream of the catalytic dentrification unit and a desired NOx concentration; and providing additional ammonia injection based on the trim signal by adjusting the ammonia addition flow rate as needed to provide the desired reduced NOx concentration being emitted to the atmosphere and to avoid excess ammonia injection and system oscillation

  5. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    S. Wu; Z. Fan; R. Herman

    2004-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the January 1 to March 31, 2004 time period.

  6. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2004-09-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the July 1 to September 30, 2004 time period.

  7. Computing Cylindrical Algebraic Decomposition via Triangular Decomposition

    OpenAIRE

    Chen, Changbo; Maza, Marc Moreno; Xia, Bican; Yang, Lu

    2009-01-01

    Cylindrical algebraic decomposition is one of the most important tools for computing with semi-algebraic sets, while triangular decomposition is among the most important approaches for manipulating constructible sets. In this paper, for an arbitrary finite set $F \\subset {\\R}[y_1, ..., y_n]$ we apply comprehensive triangular decomposition in order to obtain an $F$-invariant cylindrical decomposition of the $n$-dimensional complex space, from which we extract an $F$-invariant cylindrical algeb...

  8. Investigation of nitriding and reduction processes in a nanocrystalline iron-ammonia-hydrogen system at 350 °C.

    Science.gov (United States)

    Bartłomiej, Wilk; Arabczyk, Walerian

    2015-08-21

    In this paper, the series of phase transitions occurring during the gaseous nitriding of nanocrystalline iron was studied. The nitriding process of nanocrystalline iron and the reduction process of the obtained nanocrystalline iron nitrides were carried out at 350 °C in a tubular differential reactor equipped with systems for thermogravimetric measurements and analysis of gas phase composition. The samples were reduced with hydrogen at 500 °C in the above mentioned reactor. Then the sample was nitrided at 350 °C in a stream of ammonia-hydrogen mixtures of various nitriding potentials, P = pNH3/pH2(3/2). At each nitriding potential stationary states were obtained - the nitriding reaction rate is zero and the catalytic ammonia decomposition reaction rate is constant. The reduction process of the obtained nanocrystalline iron nitrides was studied at 350 °C in the stationary states as well. The phase composition of products obtained in both reaction directions (nitriding and reduction) was different despite the identical concentration of nitrogen in the nitriding mixture. The hysteresis phenomenon, occurring at the iron nitriding degree - nitriding potential system, was explained. In the single-phase areas of α-Fe(N), γ'-Fe4N or ε-Fe3-2N, a state of chemical equilibrium between the ammonia-hydrogen mixture, nanocrystalline iron surface and volume was observed. In the multi-phase areas, between the gas phase and the iron surface a state of chemical equilibrium holds, but between the gas phase and solid phase volume a state of quasi-equilibrium exists. The model of the nitriding process of nanocrystalline iron to iron nitride (γ'-Fe4N) was presented. It was found that nanocrystallites reacted in the order of their sizes from the largest to the smallest. PMID:26182186

  9. Liberation of ammonia by cyanobacteria

    International Nuclear Information System (INIS)

    Photoheterotrophic nitrogen-fixing cyanobacteria release ammonia when treated with methionine sulfoximine (MSX) to inhibit nitrogen incorporation into protein. This released ammonia can be derived from recently fixed nitrogen (nitrogen atmosphere) or endogenous reserves (argon atmosphere). Anaerobic ammonia release requires light and is stimulated by the photosystem II herbicides DCMU and Atrazine, regardless of the source of ammonia. As much as one quarter of the total cellular nitrogen can be released as ammonia by cyanbacteria treated with MSX and DCMU under argon in light. Chromatography of cell extracts indicates that virtually all cellular proteins are degraded. DCMU and Atrazine, at very low concentration, inhibit sustained uptake of the ammonia analog 14C methylamine. These data indicate that the herbicides interrupt ammonia uptake and retention by the cells, and support a role for photosystem II in ammonia metabolism

  10. Ammonia volatilization from crop residues and frozen green manure crops

    Science.gov (United States)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  11. AMMONIA-FREE NOx CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2006-06-01

    This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

  12. Effect of Zr{sup 4+} doping on the stabilization of ZnCo-mixed oxide spinel system and its catalytic activity towards N{sub 2}O decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Basahel, S.N.; El-Maksod, I.H. Abd [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21569 (Saudi Arabia); Abu-Zied, B.M. [Chemistry Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mokhtar, M., E-mail: mmokhtar2000@yahoo.co [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21569 (Saudi Arabia)

    2010-03-18

    Cobalt-zinc hydroxycarbonate precursor with nominal Co/Zn atomic ratio of 2 and 0.05-0.15 mol% ZrO{sub 2}-doped precursors have been synthesized from their metal nitrate and sodium carbonate by coprecipitation route. ZnCo{sub 2}O{sub 4} spinel oxide was formed during the precipitation process as complemented by FTIR. Decomposition of the Co/Zn precursor at 350 {sup o}C resulted in the formation of ZnCo{sub 2}O{sub 4} as evidenced by XRD technique. Zr{sup 4+}-doped samples stabilized the ZnCo{sub 2}O{sub 4} phase and suppressed the formation of ZnO phase at 550 and 750 {sup o}C. The highest surface areas (S{sub BET}) were attained for the samples doped with 0.15 mol% ZrO{sub 2}. Activation energy of sintering derived from XRD and S{sub BET} data was directly proportional to the dopant concentration. ESR results revealed that the addition of increased amounts of Zr{sup 4+} enhances the formation of Co{sup 2+} ions. The activity of the 350 and 750 {sup o}C calcined catalysts was tested for N{sub 2}O direct decomposition. The observed activities were related to the presence of Co{sup 2+}-Co{sup 3+} ion pairs which were enhanced by the addition of Zr{sup 4+} ions.

  13. Ammonia in Archives.

    Czech Academy of Sciences Publication Activity Database

    Mašková, Ludmila

    -: -, 2016, s. 58-59. ISBN N. [Indoor Air Quality - in Heritage and Historic Environment s. Birmingham (GB), 03.03.2016-04.03.2016] R&D Projects: GA MK DF11P01OVV020 Keywords : ammonia * diffusive sampling * indoor source Subject RIV: CF - Physical ; Theoretical Chemistry

  14. Preparation of graphite-like carbon nitride and its catalytic performance for thermal decomposition of ammonium perchlorate%类石墨型氮化碳的制备及其对AP热分解催化性能研究∗

    Institute of Scientific and Technical Information of China (English)

    谈玲华; 杭祖圣; 寇波; 徐建华; 郏永强; 王善斌

    2015-01-01

    The g-C3 N4 was synthesized melamine used as precursor via semi-closed method.The structure and morphology of g-C3 N4 were characterized by means of X-ray diffraction(XRD),transmission electron microsco-py(SEM)and Fourier transform infrared spectroscopy(FT-IR).The catalysis of g-C3 N4 on thermal decomposi-tion of ammonium perchlorate(AP)was investigated bythermal gravimetric analysis (TG)and differential ther-mal analysis (DTA).The results show that the g-C3 N4 has layered structure.The g-C3 N4 make the two decom-position peaks of AP combine and the high-temperature decomposition peak value of AP decrease by 73.8 ℃, which exhibits good catalytic performance.The g-C3 N4 has excellent conductive properties and can accelerate the electron transfer in the process of oxidation-reduction cycle to make the decomposition of AP at a much lower temperature.%以三聚氰胺为前驱体、半封闭法制备出类石墨型氮化碳(g-C3 N4),采用 X 射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶红外光谱(FT-IR)对其结构和形貌进行表征,利用热失重(TG )、差热分析(DTA)研究g-C3 N4对高氯酸铵(AP)热分解的影响.结果表明,制备出的 g-C3 N4为层状结构. g-C3 N4对AP有较强的催化效果,可使 AP 的高低温分解峰合并,高温分解温度下降73.8℃.g-C3 N4优异的导电性能,在氧化还原循环中能加速电子转移,使 AP 在更低的温度下分解.

  15. Enhancement of Alkene Epoxidation Activity of Titanosilicates by Gas-Phase Ammonia Modification

    Institute of Scientific and Technical Information of China (English)

    张里艳; 徐乐; 孙晶晶; 蒋金刚; 刘月明; 吴海虹; 吴鹏

    2012-01-01

    Novel ammonia-treated titanosilicates have been prepared by heating the samples of Ti-MWW, TS-l and Ti-Beta under pure ammonia gas flow at 673 K for a period of time. The ammonia modification improved their catalytic performance in liquid-phase oxidations. Especially, the catalytic activities of ammonified Ti-MWW, N-Ti-MWW, were enhanced greatly in the epoxidation of 1-hexene with H2O2. The reason that the ammonia treat- ment played such an important role in post-modification of titanosilicate was investigated in details. In comparison to the parent Ti-MWW catalyst, N-Ti-MMW was more robust and produced less coke in oxidation reactions.

  16. Selective Catalytic Oxidation of NH3 to N2 for Catalytic Combustion of Low Heating Value Gas under Lean/Rich Conditions

    Czech Academy of Sciences Publication Activity Database

    Kušar, H.M.J.; Ersson, A.G.; Vosecký, Martin; Järas, S.G.

    2005-01-01

    Roč. 58, 1-2 (2005), s. 25-32. ISSN 0926-3373 Institutional research plan: CEZ:AV0Z40720504 Keywords : catalytic combustion * selective catalytic oxidation * ammonia Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.809, year: 2005

  17. Experimental and modelling evaluation of an ammonia-fuelled microchannel reactor for hydrogen generation / Steven Chiuta

    OpenAIRE

    Chiuta, Steven

    2015-01-01

    In this thesis, ammonia (NH3) decomposition was assessed as a fuel processing technology for producing on-demand hydrogen (H2) for portable and distributed fuel cell applications. This study was motivated by the present lack of infrastructure to generate H2 for proton exchange membrane (PEM) fuel cells. An overview of past and recent worldwide research activities in the development of reactor technologies for portable and distributed hydrogen generation via NH3 decomposition wa...

  18. Ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2012-01-01

    The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the...... technology is adopted quicker and that the farm has the right location. It is concluded that the new application process so far has not lived up to the high expectations at the outset. Despite this, the paper concludes that Denmark is likely to reduce emission by 50% from 1990 to 2020 and reach the likely...

  19. Impact of the spray-wall-interaction-model on the prediction of the ammonia homogenization in automotive SCR systems; Einfluss des Tropfen-Wand-Interaktions-Modells auf die Vorhersage der Ammoniak-Homogenisierung in PKW-SCR-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.; Smith, H.; Lauer, T.; Geringer, B. [Technische Univ. Wien (Austria). Inst. fuer Fahrzeugantriebe und Automobiltechnik; Pessl, G.; Krenn, C. [BMW Motoren GmbH, Steyr (Austria)

    2012-11-01

    Nitrogen oxide emissions of diesel engine powered vehicles have to be significantly reduced in order to meet future international legislative restrictions. The Selective Catalytic Reduction (SCR) has meanwhile been established as a promising technology to cope with the challenging limits in the sector of mid-sized and large passenger cars. Despite its successful market launch, high optimization potentials remain for the automotive SCR system with respect to the fast preparation of the injected urea-water solution (UWS) and a sufficient ammonia homogenization at the SCR catalyst. In cooperation with BMW Motoren GmbH Steyr, the Institute for Powertrains and Automotive Technology from Vienna University of Technology implemented a CFD-simulation model of the UWS preparation and mixing processes upstream of the SCR-catalyst. A series type passenger car SCR system with a swirl mixing element has been investigated, to analyze the impact of the droplet-wall-interaction and liquid-film formation on the ammonia homogenization for a wide range of exhaust gas conditions. An optimized numerical description of the UWS-droplet-interaction with the hot surfaces of the exhaust system has been established and validated with engine test bed measurements of the ammonia homogenization. A remarkable correlation between a fast formation of ammonia and a high degree of uniformity at the catalyst was proven by the CFD. Especially for high exhaust temperatures an early UWS decomposition was hindered by the Leidenfrost effect, which leads to a high amount of droplets that reach the catalyst and a relatively low level of homogenization. (orig.)

  20. Ammonia caramels: specifications and analysis.

    Science.gov (United States)

    Patey, A L; Shearer, G; Knowles, M E; Denner, W H

    1985-01-01

    Twenty three UK commercially produced ammonia caramels and eight experimentally produced ammonia caramels have been analysed by a range of physical and chemical tests, which include solids content, nitrogen levels, colour intensity and pH. A statistical treatment of the results is reported. PMID:4018316

  1. Modeling N2O Reduction and Decomposition in a Circulating Fluidized bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars-Erik; Dam-Johansen, Kim;

    1996-01-01

    combustion chamber and the cyclone was calculated taking three mechanisms into account: Reduction by char, catalytic decomposition over bed material and thermal decomposition. The calculated destruction rate was in good agreement with the measured destruction of N2O injected at different levels in the boiler...... decomposition over bed material, and homogeneous thermal decomposition was negligible. However, at higher levels in the combustor the solids concentration is lower: at the top 60% of the N2O destruction was due to thermal decomposition and in the cyclone heterogeneous destruction of N2O was insignificant. It...

  2. Influences of ammonia contamination on leaching from air-pollution-control residues.

    Science.gov (United States)

    Guan, Zhenzhen; Chen, Dezhen; Astrup, Thomas Fruergaard

    2014-12-01

    Application of selective non-catalytic reduction systems at municipal solid waste incinerators (MSWIs) often involves over-stoichiometric injection of ammonia into flue gases. Un-reacted ammonia may be deposited on fly ash particles and can ultimately influence the leaching behaviour of air-pollution-control (APC) residues. Batch tests were conducted to investigate the impacts of ammonia levels on leaching of a range of metals (sodium, potassium, calcium, aluminium, chromium, iron, lead, cadmium, copper, nickel and zinc), as well as chloride and dissolved organic carbon (DOC). Specific conductivity was also identified to reflect the soluble components. The results showed that with ammonia concentrations rising from a background level of 4 to 26,400 mg l(-1), the specific conductivity increased by 2-7 times as pH varied from alkaline to acidic values. DOC release was also significantly enhanced with high ammonia levels of 1400 mg l(-1) or higher at pH > 9; however at these high ammonia concentrations, the role of DOC in cadmium, copper, nickel and zinc leaching was negligible. Based on the experimental data, chloride, sodium and potassium were leached at high concentrations regardless of pH and ammonia concentrations. For aluminium, chromium, iron and lead, ammonia had little impact on their leaching behaviour. With respect to cadmium, copper, nickel and zinc, high ammonia concentrations significantly increased leaching in the pH range of 8-12 due to the formation of metal-ammonia complexes, which was also proved in the speciation calculations. However, the overall results suggest that typical levels of ammonia injection in MSWIs are not likely to affect metal leaching from APC residues. PMID:25147306

  3. Heterogeneous Catalytic Ozonization of Sulfosalicylic Acid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper describes the potential of heterogeneous catalytic ozonization of sulfo-salicylic acid (SSal). It was found that catalytic ozonization in the presence of Mn-Zr-O (a modified manganese dioxide supported on silica gel) had significantly enhanced the removal rate (72%) of total organic carbon (TOC) compared with that of ozonization alone (19%). The efficient removal rate of TOC was probably due to increasing the adsorption ability of catalyst and accelerating decomposition of ozone to produce more powerful oxidants than ozone.

  4. Co-Mn-Al Mixed Oxides as Catalysts for Ammonia Oxidation to N2O.

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jablońska, M.; Jirátová, Květa; Chmielarz, L.; Balabánová, Jana; Kovanda, F.; Obalová, L.

    2016-01-01

    Roč. 42, č. 3 (2016), s. 2669-2690. ISSN 0922-6168 R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : Co-Mn-Al mixed oxides * catalytic ammonia oxidation * N2O production * mechanochemical production Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.221, year: 2014

  5. Alteration of the Diastereoselectivity of 3-Methylaspartate Ammonia Lyase by Using Structure-Based Mutagenesis

    NARCIS (Netherlands)

    Raj, Hans; Weiner, Barbara; Puthan Veetil, Vinod; Reis, Carlos R.; Quax, Wim J.; Janssen, Dick B.; Feringa, Ben L.; Poelarends, Gerrit J.

    2009-01-01

    3-Methylaspartate ammonia-lyase (MAL) catalyzes the reversible amination of mesaconate to give both (2S,3S)-3-methylaspartic acid and (2S,3R)-3-methylaspartic acid as products. The deamination mechanism of MAL is likely to involve general base catalysis, in which a catalytic base abstracts the C3 pr

  6. Lattice dynamics of ammonia

    International Nuclear Information System (INIS)

    The frequencies of selected intermolecular modes of vibration and libration in a single crystal of deuterated ammonia (ND3) have been measured by the technique of coherent inelastic neutron scattering, at temperatures of 20 and 95K. The results are compared with the previous optical measurements at the Γ point, and with calculations based on two different models for the intermolecular potential function. A detailed assessment of these data leads to a set of mode frequencies for the Γ, R, and M points. The elastic constants are calculated from the measured acoustic mode dispersion curves propagating along the three major symmetry directions. The existing intermolecular force models are in good qualitative agreement with experiment, but significant discrepancies remain to be resolved by future theoretical refinements. (author)

  7. STUDIES ON THE CATALYTIC REACTION OF NITROGEN OXIDE ON METAL MODIFIED ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    FU Ruowen; DU Xiuying; LIN Yuansheng; XU Hao; HU Yiongjun

    2003-01-01

    The catalytic reaction of NO with CO and decomposition of NO over metal modified ACFs were investigated and compared with other carriers supported catalysts. It is demonstrated that Pd/ACF and Pd/Cu/ACF have high catalytic activity for the reaction of NO/CO, while Pt/ACF.Pt/Cu/ACF and Co/Cu/ACF have very Iow catalytic activity in similar circumstance. Pd-modified ACF possesses high catalytic decomposition of NO at 300 ℃. Pd/CB and Pd/GAC present good catalytic decomposition ability for NO only at low flowrate. Pd/G, Pd/ZMS and Pd/A however, do not show any catalytic activity for NO decomposition even at 400 ℃. Catalytic temperature, NO flowrate and loading of metal components affect the decomposition rate of NO. The coexistence of Cu with Pd on Cu/Pd/ACF leads to crystalline of palladium to more unperfected so as to that increase the catalytic activity.

  8. Lethal concentration (CL50 of un-ionized ammonia for pejerrey larvae in acute exposure

    Directory of Open Access Journals (Sweden)

    Piedras Sérgio Renato Noguez

    2006-01-01

    Full Text Available Ammonia results from decomposition of effluents organic matter, e.g. feed wastes and fish faeces. Its un-ionized form can be toxic because diffuses easily through fish respiratory membranes, damaging gill epithelium and impairing gas exchanges. The objective of this work was determining the 96-hour CL50 of un-ionized ammonia for newly hatched pejerrey Odontesthes bonariensis larvae. Trials were set up completely randomized design, with three different concentration of un-ionized ammonia (0.57, 0.94, and 1.45 mg L-1 NH3-N and a control treatment (n = 3. Experimental units were 20-L, aerated aquaria stocked with 20 larvae (average weight 3.9 mg. Pejerrey larvae exposed to un-ionized ammonia during 96 hours present 50% mortality at 0.71 mg L-1 NH3-N.

  9. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  10. Ammonia Ice Clouds on Jupiter

    Science.gov (United States)

    2007-01-01

    The top cloud layer on Jupiter is thought to consist of ammonia ice, but most of that ammonia 'hides' from spectrometers. It does not absorb light in the same way ammonia does. To many scientists, this implies that ammonia churned up from lower layers of the atmosphere 'ages' in some way after it condenses, possibly by being covered with a photochemically generated hydrocarbon mixture. The New Horizons Linear Etalon Imaging Spectral Array (LEISA), the half of the Ralph instrument that is able to 'see' in infrared wavelengths that are absorbed by ammonia ice, spotted these clouds and watched them evolve over five Jupiter days (about 40 Earth hours). In these images, spectroscopically identified fresh ammonia clouds are shown in bright blue. The largest cloud appeared as a localized source on day 1, intensified and broadened on day 2, became more diffuse on days 3 and 4, and disappeared on day 5. The diffusion seemed to follow the movement of a dark spot along the boundary of the oval region. Because the source of this ammonia lies deeper than the cloud, images like these can tell scientists much about the dynamics and heat conduction in Jupiter's lower atmosphere.

  11. Photochemical decomposition of H2O and HN3 using colloidal semiconductor catalysts as a method of tritium recovery from water

    International Nuclear Information System (INIS)

    Colloidal semiconductor redox catalysts were used to accelerate the photodecomposition of water and ammonia in aqueous solution. Parameters that affect overall catalytic efficiency, e.g. support material, doping and surface modification, were investigated

  12. Iron-Catalyzed Boron Removal from Molten Silicon in Ammonia

    Science.gov (United States)

    Chen, Zhiyuan; Morita, Kazuki

    2016-05-01

    A high-temperature process of refining metallurgical-grade silicon to solar-grade silicon was developed. In this gas purging treatment, boron impurity in silicon reacts with ammonia and the products are removed as volatiles at high temperature. 1 mass pct metallic iron was added to molten silicon as a catalyst, improving the boron removal ratio from 14 to 80 pct at 1723 K (1450 °C). At 1823 K (1550 °C), this reaction could reduce boron concentration from more than 120 ppmw to <1 ppmw within 6 hours, meeting the purity requirement of solar-grade silicon. Nickel was tested in place of iron but showed no catalytic effect on boron removal. The result confirmed the catalytic role of iron in boron removal from molten silicon in ammonia. Possible mechanisms of catalysis, influence from iron concentration, and temperature effect on the catalytic reaction were explored. An apparent activation energy of 329 ± 129 kJ mol-1 was calculated from experimental data.

  13. Theoretical models for NO decomposition in Cu-exchanged zeolites

    CERN Document Server

    Tsekov, R

    2015-01-01

    A unified description of the catalytic effect of Cu-exchanged zeolites is proposed for the decomposition of NO. A general expression for the rate constant of NO decomposition is obtained by assuming that the rate-determining step consists of the transferring of a single atom associated with breaking of the N-O bond. The analysis is performed on the base of the generalized Langevin equation and takes into account both the potential interactions in the system and the memory effects due to the zeolite vibrations. Two different mechanisms corresponding to monomolecular and bimolecular NO decomposition are discussed. The catalytic effect in the monomolecular mechanism is related to both the Cu+ ions and zeolite O-vacancies, while in the case of the bimolecular mechanism the zeolite contributes through dissipation only. The comparison of the theoretically calculated rate constants with experimental results reveals additional information about the geometric and energetic characteristics of the active centers and con...

  14. Influence of ammonia on leaching behaviors of incineration fly ash and its geochemical modeling

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Guan, Zhen Zhen; Chen, De Zhen

    2013-01-01

    Incineration fly ash could be contaminated with NH3 that was slipped from the ammonia-based selective non-catalytic reduction(SNCR) process and from evaporation of municipal solid wastes' leachate involved in the wastes. This research was conducted to investigate the impacts of ammonia on leaching...... impacts. It was proved that at pH>9, the leaching of DOC increased significantly in the presence of high concentrations of ammonia (≥1357 mg·L-1), but there was little effect when the ammonia level in eluates was not higher than 537 mg·L-1. At pH12, for Cd, Cu, Ni and Zn, their leaching species were...

  15. Sustainable Ammonia Synthesis – Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production

    Energy Technology Data Exchange (ETDEWEB)

    Nørskov, Jens [Stanford Univ., CA (United States); ; SLAC National Accelerator Lab., Menlo Park, CA (United States); Chen, Jingguang [Columbia Univ., New York, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Miranda, Raul [Dept. of Energy (DOE), Washington DC (United States). Office of Science; Fitzsimmons, Tim [Dept. of Energy (DOE), Washington DC (United States). Office of Science; Stack, Robert [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2016-02-18

    Ammonia (NH3) is essential to all life on our planet. Until about 100 years ago, NH3 produced by reduction of dinitrogen (N2) in air came almost exclusively from bacteria containing the enzyme nitrogenase.. DOE convened a roundtable of experts on February 18, 2016. Participants in the Roundtable discussions concluded that the scientific basis for sustainable processes for ammonia synthesis is currently lacking, and it needs to be enhanced substantially before it can form the foundation for alternative processes. The Roundtable Panel identified an overarching grand challenge and several additional scientific grand challenges and research opportunities: -Discovery of active, selective, scalable, long-lived catalysts for sustainable ammonia synthesis. -Development of relatively low pressure (<10 atm) and relatively low temperature (<200 C) thermal processes. -Integration of knowledge from nature (enzyme catalysis), molecular/homogeneous and heterogeneous catalysis. -Development of electrochemical and photochemical routes for N2 reduction based on proton and electron transfer -Development of biochemical routes to N2 reduction -Development of chemical looping (solar thermochemical) approaches -Identification of descriptors of catalytic activity using a combination of theory and experiments -Characterization of surface adsorbates and catalyst structures (chemical, physical and electronic) under conditions relevant to ammonia synthesis.

  16. AMMONOX-Ammonia for enhancing biogas yield & reducing NOx

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Kristensen, P.G.; Paamand, K.;

    2013-01-01

    The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Due to the animal production intensification, manure is being used as the primary feedstock for most of the biogas plants. However......, biogas plants digesting liquid manure alone are not economically viable due to the relatively low organic content of the manure, usually 3-5%.Thus, their economical profitable operation relies partly on increasing the methane yield from manure, and especially of its solid fraction, usually called...... of innovative ammonia recovery technology and c) the coupling of the excess ammonia obtained from manure with the catalytic elimination of NOx emissions when the biogas is used for subsequent electricity generation with gas engines....

  17. Solid state synthesis, characterization, surface and catalytic properties of Pr2CoO4 and Pr2NiO4 catalyst

    International Nuclear Information System (INIS)

    Full text: The most interesting non-stoichiometric oxides are found in transition metal and rare earth oxides at higher temperatures. The role of Solid State properties in the catalysis using mixed metal oxide as catalyst have wide applications in fertilizer, Petro-chemical, Pharmaceutical, cosmetic, paint detergents, plastics and food-stuff industries and these are also resistive towards acids and alkalies. The use of catalyst has opened up new process routes or revolutioned the existing process in terms of economics and efficiency and has radically changed the industrial scenario. The use of catalyst is so pervasive today that nearly 70 % of modern chemical processes are based on it at some stage or other and 90% new processes developed are catalytic nature. A series of non-stoichiometric spinel type of oxide catalyst of Praseodymium with cobalt and nickel were synthesized by their oxalates through Solid State reaction technique at different activation temperatures i.e. 600, 700, 800 and 900 deg C. The characterization of catalyst was done by XRD, FTIR and ESR methods. X-ray powder diffraction study shows that catalysts are made up of well grown crystallinities mostly in single phase crystal and system is of orthorhombic structure. FTIR is related to inadequate decomposition of oxalate ion from the Catalyst. The kinetic decomposition of Urea was employed as a model reaction to study the catalytic potentiality of different catalysts. Surface and Catalytic Properties of catalysts were measured. A relation between activation temperature and surface properties like excess surface oxygen (E.S.O.), surface acidity and surface area was observed. A linear relationship between the surface area of the catalyst and the amount of ammonia gas evolved per gm of the sample was observed also. Nickel containing catalysts were found a bit more catalytic active in comparison to cobalt oxide catalysts. Transition metal ions (i.e. Ni2+and Co2+ ions) are mainly responsible for

  18. Absorption and Decomposition of CO2 by Active Ferrites Prepared by Atmospheric Plasma Spraying

    Science.gov (United States)

    Li, Shaowei; He, Zhida; Zheng, Yanjun; Chen, Changfeng

    2015-12-01

    Active ferrites, which play an important role in the catalytic decomposition of CO2, have been fabricated by atmospheric plasma spraying to incorporate FeO and anoxic iron oxide [Fe3O4-δ (0 powder a greater ability to decompose CO2 when compared to hydrogen-reduced Fe3O4 or Fe2O3 particles. Spraying distance is found to play an important role in modulating the decomposition ability of the powders, while elevated temperatures can also enhance the catalytic decomposition of CO2.

  19. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

    OpenAIRE

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2011-01-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA...

  20. Inhibition of Direct Electrolytic Ammonia Oxidation Due to a Change in Local pH

    International Nuclear Information System (INIS)

    Electrochemical ammonia oxidation has gained a lot of attention recently as an efficient method for ammonia removal from wastewater, for the use in ammonia-based fuel cells and the production of high purity hydrogen. Thermally decomposed iridium oxide films (TDIROF) have been shown to be catalytically active for direct ammonia oxidation in aqueous solutions if NH3 is present. However, the process was reported to be rapidly inhibited on TDIROF. Herein, we show that this fast inhibition of direct ammonia oxidation does not result from surface poisoning by adsorbed elemental nitrogen (Nads). Instead, we propose that direct ammonia oxidation and oxygen evolution can lead to a drop of the local pH at the electrode resulting in a low availability of the actual reactant, NH3. The hypothesis was tested with cyclic voltammetry (CV) experiments on stagnant and rotating disk electrodes (RDE). The CV experiments on the stagnant electrode revealed that the decrease of the ammonia oxidation peaks was considerably reduced by introducing an idle phase at open circuit potential between subsequent scans. Furthermore, the polarization of the TDIROF electrode into the hydrogen evolution region (HER) resulted in increased ammonia oxidation peaks in the following anodic scans which can be explained with an increased local pH after the consumption of protons in the HER. On the RDE, the ammonia oxidation peaks did not decrease in immediately consecutive scans. These findings would not be expected if surface poisoning was responsible for the fast inhibition but they are in good agreement with the proposed mechanism of pH induced limitation by the reactant, NH3. The plausibility of the mechanism was also supported by our numerical simulations of the processes in the Nernstian diffusion layer. The knowledge about this inhibition mechanism of direct ammonia oxidation is especially important for the design of electrochemical cells for wastewater treatment. The mechanism is not only valid for

  1. Solubility of ammonia in rainwater

    OpenAIRE

    G. P. Ayers; Gras, J. L.; Adriaansen, A.; Gillett, R. W.

    2011-01-01

    Partitioning of ammonia between the gaseous and rainwater phases has been investigated at theAustralian Baseline Air Pollution Station during in-situ experiments in which rainwater andammonia gas were sampled concurrently. The relationship between ammonia concentrations inthe gaseous and aqueous phases did not follow either traditional solubility theory based onHenry’s Law, or a recent modified theory that includes secondary equilibria between dissolvedammonia and carbon dioxide.DOI: 10.1111/...

  2. Forced convection of ammonia. 2. part.: gaseous ammonia - very high wall temperatures (1000 to 3000 K)

    International Nuclear Information System (INIS)

    Heat transfer coefficients and pressure drop of gaseous ammonia in forced convection are experimentally determined. The fluid flows (mass flow rate 0.6 to 2.4 g/s) in a long tungsten tube (di = 2.8 mm, de = 5.1 mm, L = 700 mm) electrically heated. The temperature of the wall reaches 3000 deg. K and the fluid 2500 deg. K; maximum heat flux 530 w/cm2. Ammonia is completely dissociated and the power necessary for dissociation reaches 30 per cent of the total power exchanged. Inlet pressure varies between 6 and 16 bars and the maximum pressure drop in the tube reaches 15 bars. Two regimes of dissociation have been shown: catalytic and homogeneous and the variation of dissociation along the length of the tube is studied. The measured heat transfer coefficients may be about 10 times these calculated by the means of classical formulae. A correlation of experimental results using enthalpy as a driving force for heat transmission is presented. Pressure drops may be calculated by the means of a classical friction factor. (authors)

  3. Vanadia supported on zeolites for SCR of NO by ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2010-01-01

    in the selective catalytic reduction (SCR) of NO with ammonia. The SCR activity was found to correlate directly with the total acidity of the catalysts and showed high poisoning resistivity after doping with potassium oxide (100 mu mol/g). The poisoning resistance was due to unique combination of high surface area......, acidity and micropore structure of the support. Apparently the support hosted the potassium oxide on the acid sites, thereby protecting the active vanadium species from poisoning. Zeolite based catalysts might therefore prove useful for SCR of NO in alkali-containing flue gases from, e.g. biomass fired...

  4. The effect of soot on ammonium nitrate species and NO2 selective catalytic reduction over Cu-zeolite catalyst-coated particulate filter.

    Science.gov (United States)

    Mihai, Oana; Tamm, Stefanie; Stenfeldt, Marie; Olsson, Louise

    2016-02-28

    A selective catalytic reduction (SCR)-coated particulate filter was evaluated by means of dynamic tests performed using NH3, NO2, O2 and H2O. The reactions were examined both prior to and after soot removal in order to study the effect of soot on ammonium nitrate formation and decomposition, ammonia storage and NO2 SCR. A slightly larger ammonia storage capacity was observed when soot was present in the sample, which indicated that small amounts of ammonia can adsorb on the soot. Feeding of NO2 and NH3 in the presence of O2 and H2O at low temperature (150, 175 and 200°C) leads to a large formation of ammonium nitrate species and during the subsequent temperature ramp using H2O and argon, a production of nitrous oxides was observed. The N2O formation is often related to ammonium nitrate decomposition, and our results showed that the N2O formation was clearly decreased by the presence of soot. We therefore propose that in the presence of soot, there are fewer ammonium nitrate species on the surface due to the interactions with the soot. Indeed, we do observe CO2 production during the reaction conditions also at 150°C, which shows that there is a reaction with these species and soot. In addition, the conversion of NOx due to NO2 SCR was significantly enhanced in the presence of soot; we attribute this to the smaller amount of ammonium nitrate species present in the experiments where soot is available since it is well known that ammonium nitrate formation is a major problem at low temperature due to the blocking of the catalytic sites. Further, a scanning electron microscopy analysis of the soot particles shows that they are about 30-40 nm and are therefore too large to enter the pores of the zeolites. There are likely CuxOy or other copper species available on the outside of the zeolite crystallites, which could have been enhanced due to the hydrothermal treatment at 850°C of the SCR-coated filter prior to the soot loading. We therefore propose that soot is

  5. Radiation decomposition of alcohols and chloro phenols in micellar systems

    International Nuclear Information System (INIS)

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  6. Study of the acceleration of ammonia generation process from poultry residues aiming at hydrogen production

    International Nuclear Information System (INIS)

    The hydrogen, utilized in fuel cells, can be produced from a variety of intermediate chemicals, between them, the ammonia. The ammonia gas as a raw material for the hydrogen production has been used due to its high energetic content, facility of decomposition, high availability, low prices, low storage pressure and its by-products are environmentally correct. One of the sources of ammonia is poultry and egg production systems. In these systems the ammonia is produced from the decomposition of uric acid present in the excreta of birds. The residue from the poultry-rearing farms is the broiler litter and from the egg production system is the excreta without any substrate. The characterization of these residues was performed using the Wavelength-Dispersive X-Ray Fluorescence (WDXRF), Elementary Analysis (CHN), Thermogravimetry and GC/MS - Gas chromatography/ Mass spectrometry. The studied factors which influence the ammonia volatilization were: nitrogen content, raising period, urease enzyme, temperature, pH and moisture content. The experiment results with poultry litter and excreta allow to conclude that the manipulation of the following parameters increased the ammonia emission: pH, nitrogen content, raising period, age of birds and excreta accumulation, urease enzyme and the temperature. The addition of different amounts of sand in the excreta and different volumes of water in the poultry litter inhibited the emission of ammonia. The variation of the quantity of material (broiler litter or excreta) and the volume of the flask used as incubator chamber showed no significant alterations to be chosen as a variable. The excreta was considered more appropriate than poultry litter for the objectives of this work due to the higher ammonia concentrations determined in this material. Due to the large amount of poultry litter and excreta from the production processes, the reuse of poultry residues to obtain ammonia is necessary to improve the quality of the local

  7. Catalytic thermal decomposition of polyethylene determined by thermogravimetric treatment

    International Nuclear Information System (INIS)

    In this study low density polyethylene (LDPE) has been studied by thermogravimetric analysis (TGA) using commercially available oxides as catalysts. TGA experiments were used to evaluate the activity of different catalysts on low density polyethylene (LDPE) degradation and to study the effect in terms of type and amount of catalyst used. All the catalysts used improved the pyrolysis of LDPE. The reaction rates were found to increase with increase in amount of catalyst. Among the catalysts used, alumina acidic active catalyst performed better at all four fractions. Moreover, alumina acidic active reduced weight loss temperature better than others tested catalysts. The effect of alumina neutral catalyst on the pyrolysis of LDPE is less pronounced due to its small surface area and pore size. The effect of these catalysts showed that surface area, number of acidic sites and pore size were found as the key factors for the energy efficient degradation of polymers. (author)

  8. Reaction of hydroxyl radicals with ammonia in liquid water at elevated temperatures

    DEFF Research Database (Denmark)

    Hickel, B.; Sehested, K.

    1992-01-01

    The reaction of hydroxyl radical with ammonia in aqueous solutions has been studied by pulse radiolysis in the temperature range 20-200-degrees-C. The rate constant of the reaction was determined by monitoring the decay of the OH radical absorption at 260 nm for different concentrations of ammonia....... At room temperature the rate constant is (9.7 +/- 1) x 10(7) dm3 mol-1 s-1. In the whole range of temperatures the Tate constant follows Arrhenius law with an activation energy of (5.7 +/- 1) kJ mol-1. The protective effect of dissolved hydrogen on the radiolytic decomposition of ammon a is discussed....

  9. Global Seabird Ammonia Emissions

    Science.gov (United States)

    Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Daunt, F. H.; Braban, C. F.; Tang, Y. S.; Trathan, P.; Wanless, S.; Sutton, M. A.

    2010-12-01

    Seabird colonies represent a major source of atmospheric ammonia (NH3) in remote coastal and marine systems in temperate, tropical and polar regions. Previous studies have shown that NH3 emissions from Scottish seabird colonies were substantial - of similar magnitude to the most intensive agricultural point source emissions. The UK data were used to model global seabird NH3 emissions and suggested that penguins are a major source of emissions on and around the Antarctic continent. The largest seabird colonies are in the order of millions of seabirds. Due to the isolation of these colonies from anthropogenic nitrogen sources, they may play a major role in the nitrogen cycle within these ecosystems. A global seabird database was constructed and used in conjunction with a species-specific seabird bioenergetics model to map the locations of NH3 emissions from seabird colonies. The accuracy of the modelled emissions was validated with field data of NH3 emissions measured at key seabird colonies in different climatic regions of the world: temperate (Isle of May, Scotland), tropical (Ascension Island) and polar (Signy Island, South Georgia). The field data indicated good agreement between modelled and measured NH3 emissions. The measured NH3 emissions also showed the variability of emission with climate. Climate dependence of seabird NH3 emissions may have further implications under a changing global climate. Seabird colonies represent NH3 emission ‘hotspots’, often far from anthropogenic sources, and are likely to be the major source of nitrogen input to these remote coastal ecosystems. The direct manuring by seabirds at colony locations may strongly influence species richness and biodiversity. The subsequent volatilisation and deposition of NH3 increases the spatial extent of seabird influence on nitrogen cycling in their local ecosystem. As many seabird populations are fluctuating due to changing food supply, climate change or anthropogenic pressures, these factors

  10. Spectral proper orthogonal decomposition

    CERN Document Server

    Sieber, Moritz; Paschereit, Christian Oliver

    2015-01-01

    The identification of coherent structures from experimental or numerical data is an essential task when conducting research in fluid dynamics. This typically involves the construction of an empirical mode base that appropriately captures the dominant flow structures. The most prominent candidates are the energy-ranked proper orthogonal decomposition (POD) and the frequency ranked Fourier decomposition and dynamic mode decomposition (DMD). However, these methods fail when the relevant coherent structures occur at low energies or at multiple frequencies, which is often the case. To overcome the deficit of these "rigid" approaches, we propose a new method termed Spectral Proper Orthogonal Decomposition (SPOD). It is based on classical POD and it can be applied to spatially and temporally resolved data. The new method involves an additional temporal constraint that enables a clear separation of phenomena that occur at multiple frequencies and energies. SPOD allows for a continuous shifting from the energetically ...

  11. Contact handle decompositions

    OpenAIRE

    Özbağcı, Burak

    2009-01-01

    We review Giroux’s contact handles and contact handle attachments in dimension three and show that a bypass attachment consists of a pair of contact 1 and 2-handles. As an application we describe explicit contact handle decompositions of infinitely many pairwise non-isotopic overtwisted 3-spheres. We also give an alternative proof of the fact that every compact contact 3-manifold (closed or with convex boundary) admits a contact handle decomposition, which is a result originally due to Giroux.

  12. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature promis

  13. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    'Full text': Ammonia borane (NH3BH3) has been of great interest owing to its ideal combination of low molecular weight and high H2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 oC at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  14. Equations of state of detonation products: ammonia and methane

    Science.gov (United States)

    Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian

    2015-06-01

    Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.

  15. Ammonia Volatilization from Urea Applied to Acid Paddy Soil in Southern China and Its Control

    Institute of Scientific and Technical Information of China (English)

    CAIGUI-XIN; PENGGUANG-HAO; 等

    1992-01-01

    Results showed that ammonia loss from urea broadcast into floodwater and incorporated into soil at transplanting was as high as 40% of applied N,and the corresponding total nitrogen (N) loss was 56%.Ammonia loss was measured with simplified micrometeorological method (ammonia sampler),and total N loss was concurrently measured using 15N balance technique.The experiment was conducted under strong sunshine conditions on acid paddy soil derived from Quaternary red clay.The ammonia loss in this particular condition was much greater than those obtained from previous studies when urea was also applied to acid paddy soil but under cloudy conditions.It is concluded that the strong sunshine conditions with high temperature and shallow floodwater during the period of present experiment favoured ammonia volatilization.Application of stearyl alcohol on the surface of the floodwater reduced ammonia loss to 23% of applied N.However,the effect of stearyl alcohol was short-lived,probably due to the microbiological decomposition.

  16. Catalytic pyrolysis of Pubescens to phenols over Ni/C catalyst

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pyrolysis of Pubescens over Ni/C catalyst was studied at 350°C in H2 flow.The presence of Ni/C catalyst efficiently improved the degradation of raw materials,and produced bio-oil with high content of phenols but low contents of acetic acid,furfural and water.In the reaction,Ni/C catalyst plays the role of catalytic decomposition and catalytic hydrogenation.The existence of the carbon carrier favors the formation of active Ni in small sizes with more defects,which results in high catalytic activity of Ni in biomass decomposition and selective production of phenols.

  17. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  18. Thermal decomposition of cyclotriborazane

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberg, R. [Technische Universitaet Bergakademie Freiberg, Institute of Physical Chemistry, Leipziger Str. 29, 09599 Freiberg (Germany)]. E-mail: Rene.Schellenberg@chemie.tu-freiberg.de; Kriehme, J. [Technische Universitaet Bergakademie Freiberg, Institute of Physical Chemistry, Leipziger Str. 29, 09599 Freiberg (Germany); Wolf, G. [Technische Universitaet Bergakademie Freiberg, Institute of Physical Chemistry, Leipziger Str. 29, 09599 Freiberg (Germany)

    2007-06-15

    Cyclotriborazane (CTB), B{sub 3}N{sub 3}H{sub 12}, is a crystalline white solid, which decomposes above 400 K to hydrogen and a few other products, depending on the reaction conditions. In this work we present investigations of the thermal decomposition of both the neat compound and CTB dissolved in diglyme and tetraglyme. Several thermophysical and analytical methods, such as differential scanning calorimetry (DSC), thermogravimetry (TG), mass spectroscopy (QMS), and {sup 11}B nuclear magnetic resonance spectroscopy (NMR) have been used for this investigation. The decomposition of the neat substance releases 3.1 mol H{sub 2}/mol CTB and leads to a polymeric products and borazine. In open vessels, sublimation as a competing process also occurs. The enthalpy of the decomposition process ({delta}{sub R} H {sub s}) has been determined as {delta}{sub R} H {sub s} = -34.0 {+-} 2.9 kJ/mol. In contrast to the thermal decomposition of the pure substance, the decomposition in polyethers, such as diglyme and tetraglyme, leads above 370 K to borazine and small amounts of soluble oligomeric borazine species. Also BH{sub 3} group containing species are occurring as intermediates. In these systems no precipitation was detected. DSC measurements show for the decomposition in solution several strong exothermic effects. The overall decomposition enthalpy in diglyme is given by {delta}{sub R} H {sub d} = -32.0 {+-} 2.8 kJ/mol and in tetraglyme by {delta}{sub R} H {sub t} = -48.0 {+-} 4.7 kJ/mol. The enthalpy of solution of cyclotriborazane was determined in diglyme and in tetraglyme with the values {delta}{sub D} H {sub d} = -2.1 {+-} 0.2 kJ/mol and {delta}{sub D} H {sub t} = -4.6 {+-} 0.5 kJ/mol, respectively.

  19. Catalytic method for the production of nitriles from alcohols

    OpenAIRE

    Bañares González, Miguel Ángel; Guerrero Pérez, María Olga; Calvino Casilda, Vanesa

    2009-01-01

    The invention relates to a catalytic method for the production of nitriles form alcohols, such as polyols, for example glycerol, a reaction known as ammoxidation. For this purpose, the alcohol is reacted with a nitrogen source, such as, for example, ammonia, in the presence of an oxidising agent, such as oxygen or hydrogen peroxide, and in the presence of a catalyst. Alumina-supported catalysts containing oxides of V, Nb and Sb achieve yields above 48% in ammoxidation of glycerol to acrylonit...

  20. DETERMINATION OF AMMONIA IN EAR-LOBE CAPILLARY BLOOD IS AN ALTERNATIVE TO ARTERIAL BLOOD AMMONIA

    NARCIS (Netherlands)

    HUIZENGA, [No Value; GIPS, CH; CONN, HO; JANSEN, PLM

    1995-01-01

    Blood ammonia determination is a laboratory test to diagnose hepatic encephalopathy. Arterial blood is superior to peripheral venous blood ammonia because of ammonia metabolism in muscle. We have compared capillary with arterial whole blood ammonia as capillary sampling is an attractive alternative.

  1. Niche specialization of terrestrial archaeal ammonia oxidizers

    OpenAIRE

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C.; James, Phillip; Schloter, Michael; Robert I. Griffiths; Prosser, James I.; Nicol, Graeme W.

    2011-01-01

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were...

  2. About sorption-catalytic air cleaning in premises for people habitation in megapolises

    Directory of Open Access Journals (Sweden)

    A.V. Cрechevichkin

    2011-01-01

    Full Text Available The basic sources of pollution of the air environment in megapolises, and also of internal atmosphere of premises for people habitation, in respect of their possible clearing by sorption-catalytic methods are systematized. Design and principle of action of the room sorption-catalytic three-chambered filter for clearing of turnaround air of a thermo premise of gaseous ammonia, hydrogen sulfide, carbon dioxide and organic substances are described.

  3. Parameter Optimization on Experimental Study to Reduce Ammonia Escape in CO2 Absorption by Ammonia Scrubbing

    Institute of Scientific and Technical Information of China (English)

    Hao Leng; Jianmin Gao; Mingyue He; Min Xie; Qian Du; Rui Sun; Shaohua Wu

    2016-01-01

    In order to research ammonia escape in CO2 absorption by ammonia scrubbing, ammonia escape was studied in CO2 absorption process using the bubbling reactor in different conditions as gas flow rate, CO2 ratio, absorbent temperature and ammonia concentration and quantity of escaped ammonia was measured by chemical titration. The results indicated that, the amount of ammonia escape can be around 20% of original amount in 90 min and the escaped amount will increase with the rise of gas flow rate, absorbent temperature, concentration of ammonia while decrease as CO2 ratio goes up. Through the analysis of the law of ammonia escape, at the same time, combined with ammonia escape and the influence of the relationship between the CO2 absorption efficiency, reducing ammonia escape working condition parameter optimization is given.

  4. Inhibiting Wet Oxidation of Ammonia

    Science.gov (United States)

    Onisko, D. B. L.

    1985-01-01

    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  5. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard;

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables of...... polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation of the...... decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  6. Decomposing Nekrasov decomposition

    Science.gov (United States)

    Morozov, A.; Zenkevich, Y.

    2016-02-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair "interaction" is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  7. Decomposing Nekrasov Decomposition

    CERN Document Server

    Morozov, A

    2015-01-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions - this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition - into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair "interaction" is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  8. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    Directory of Open Access Journals (Sweden)

    Mauro Tiso

    Full Text Available The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in

  9. Thermal Decomposition of Gelled UO3

    International Nuclear Information System (INIS)

    The thermal decomposition behavior of gelled UO3 microspheres have beenstudied. The thermal analysis included DTA and TG with XRD analysisexamination. The gelled were prepared by reacting uranyl nitrate with urea +HMTA, then dropped into a column containing paraffin oil at temperature of 95oC. The obtained gel were washed using NH40H and then dried. There wereanalyzed their thermal behavior using STA (Simultaneous Thermal Analyzer) upto 700 oC and were prepared for XRD analysis by heating at 200 oC, 400 oC,500 oC and 600 oC. The results showed that thermal decomposition of gelledUO3 microsphere consisted of five steps. The first and second steps wereendothermic reaction of the removal of the physics absorbed water started at100 oC, and the removal of chemically bounded water. The third and fourthsteps were exothermic reactions of the ammonia removal and the last steps wasexothermic reaction of change of compound UO3.xNH3 to U3O8. The XRDpatterns showed that compound of gelled UO3, which had been heated at 600oC give an indication the form of U3O8 compound, so that the minimumtemperature of calcination was 600 oC. (author)

  10. Final Report, "Molecular Design of Hydrocarbon Oxidation Catalytic Processes"

    Energy Technology Data Exchange (ETDEWEB)

    Professor Francisco Zaera

    2007-08-09

    production of small amounts of ethylene and water, most likely via the concerted decomposition or disproportionation of the adsorbed molecular species. The bulk of the 2-iodoethanol decomposes at about 150 K via an initial carbon-iodine scission to form –O(H)CH2CH2– (~80%) and 2-hydroxyethyl (~20%) intermediates. Two competing reactions are involved with the subsequent conversion of the 2-hydroxyethyl species around 160 K, a reductive elimination with surface hydrogen to yield ethanol, and a β-H elimination to surface vinyl alcohol. The –O(H)CH2CH2–, on the other hand, dehydrogenates to a –OCH2CH2– oxametallacycle species about the same temperature. Both 2-hydroxyethyl and oxametallacycle species tautomerize to acetaldehyde, around 210 K and above 250 K, respectively, and some of that acetaldehyde desorbs while the rest decomposes to hydrogen and carbon monoxide. We contend that a better understanding of the surface chemistry of oxygen-containing surfaces can lead to better selectivities in catalysis. This is arguably the most important issue in the field of catalysis in the near future, and one that impacts several technologies of interest to DOE such as the manufacturing of speciality chemicals and the control and removal of pollutants. Additional work was performed on the characterization of the chemistry of methyl and methylene adsorbed species on oxygen-treated nickel surfaces. Complex chemistry was observed involving not only hydrogenation and dehydrogenation steps, but also C-C couplings and methylene insertions to produce heavier hydrocarbons, and oxygen insertion reactions that yield oxygenates. Finally, a dual titration technique employing xenon and a chemically sensitive probe was developed to identify minority catalytic sites on oxide surfaces. In the case of oxygen-treated Ni(110) single crystals, it was found that both hydrogen transfer with adsorbed water or ammonia and certain hydrocarbon hydrogenation reactions take place at the end of the

  11. Effect of the solvent nature on the kinetics of the thermal decomposition of peroxides in the presence of aerosil

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, N.S.; Dutka, V.S.; Markovskaya, R.F.; Ostapovich, B.B.

    1985-09-01

    This paper presents a study on the catalytic action of aerosil on the decomposition of diacyl mono-, di-, and polyperoxides in organic solvents. The contribution of the heterogeneous catalytic reaction increases in the series lauroyl peroxide, di-captrinyl diperadipinate, sebacic acid polyperoxide and with a decrease in the peroxide concentration in the reaction mixture. The kinetic parameters were found for the primary, induced radical and heterogeneous catalytic processes in the decomposition of peroxides in benzene solution in the presence of aerosil, and the quantitative data obtained were compared with the results obtained upon change in the nature of the solvent.

  12. Synthesis, characterization and catalytic activity of CdO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G., E-mail: gsingh4us@yahoo.com [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India); Kapoor, I.P.S.; Dubey, Reena; Srivastava, Pratibha [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India)

    2011-02-15

    In this paper, we report the synthesis of nanocrystalline cadmium oxide (CdO) and its characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Its catalytic activity was investigated on the thermal decomposition of 1,2,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), ammonium perchlorate (AP), hydroxyl terminated polybutadiene (HTPB) and composite solid propellants (CSPs) using thermogravimetric analysis (TG), simultaneous thermogravimerty and differential scanning calorimetry (TG-DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + CdO has also been investigated using model free (isoconversional) and model-fitting approaches which have been applied to data for isothermal TG decomposition. All these studies show enhancement in the rate of decomposition of AP, HTPB and CSPs but no effect on HMX. The burning rate of CSPs has also been found to be increased with CdO nanocrystals.

  13. Using advanced electron microscopy for the characterization of catalytic materials

    Science.gov (United States)

    Pyrz, William D.

    -corrected electron microscopy was used to systematically examine, atomic column by atomic column, the effect of elemental substitution on the long-range crystalline order, atomic coordinates, and site occupancies of the various formulations such that trends could be developed linking these properties to catalytic yields. To accomplish this task, an algorithm was developed that enabled the direct extraction of atomic coordinates and site occupancies from high-angle annular dark-field (HAADF) images to within 1% and 15% uncertainty, respectively. Furthermore, this general method could be applied to various crystalline systems and may dramatically improve the quality of initial structural models used in Rietveld refinements. Improvement in the quality of starting models may increase the structural and chemical complexity of inorganic structures that can be solved by using "powder methods" alone. In addition to the development of these trends, HAADF analyses also revealed the presence of coherent compositional miscibility gaps, rotational twin domains, and structural intergrowths in the complex Mo-V-M-O oxide system. Other catalytic systems that are addressed in this dissertation include Pd, Ag, and bimetallic Pd-Ag catalysts for the selective hydrogenation of acetylene in excess ethylene, alkali and alkaline earth promoted Ru catalysts for the production of clean hydrogen through the decomposition of ammonia, the production of Pt nanoparticles using dendrimer templates, and Pt-Re bimetallic catalysts for the conversion of glycerol to hydrocarbons and syn gas. In each of these studies, electron microscopy was used as a complimentary tool to synthetic and reaction studies to better understand interactions between the nanoparticles and the support/template, to determine the effect of adding various promoters, or to understand the nanoscale structural and chemical changes associated with the formation of bimetallic nanoparticles. A final area addressed in this dissertation is the

  14. ENVIRONMENTAL ASSESSMENT OF A RECIPROCATING ENGINE RETROFITTED WITH SELECTIVE CATALYTIC REDUCTION. VOLUME 2. DATA SUPPLEMENT

    Science.gov (United States)

    The report gives results of comprehensive emission measurements and 15-day continuous emission monitoring for a 1,500 kW (2000 hp) gas-fired, four-stroke turbocharged reciprocating engine equipped with an ammonia-based selective catalytic reduction system for NOx control.

  15. ENVIRONMENTAL ASSESSMENT OF A RECIPROCATING ENGINE RETROFITTED WITH SELECTIVE CATALYTIC REDUCTION. VOLUME 1. TECHNICAL RESULTS

    Science.gov (United States)

    The report gives results of comprehensive emission measurements and 15-day continuous emission monitoring for a 1,500 kW (2000 hp) gas-fired, four-stroke turbocharged reciprocating engine equipped with an ammonia-based selective catalytic reduction system for NOx control.

  16. Sulfate Promoted Zirconia as Promising Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Kustov, Arkadii; Christensen, Claus H.;

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant ...

  17. Decomposition of silane on tungsten or other materials

    Science.gov (United States)

    Wiesmann, H.J.

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, from a W or foil heated to a temperature of about 1400 to 1600/sup 0/C, in a vacuum of about 10-/sup 6/ to 10-/sup 4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate independent of and outside the source of thermal decomposition. Hydrogenated amorphous silicon is formed. The presence of an ammonia atmosphere in the vacuum chamber enhances the photoconductivity of the hydrogenated amorphous silicon film.

  18. Superionic water-ammonia mixtures

    Science.gov (United States)

    Bethkenhagen, M.; Cebulla, D.; Redmer, R.; Hamel, S.

    2014-12-01

    The interior of the Giant Planets Uranus and Neptune contains large amounts of water, ammonia and methane (referred to as planetary ices). Many observable properties of these planets, such as luminosity, gravitational moments and magnetic fields, are thought to be determined by the physical and chemical properties of matter within this ice layer. Hence, the phase diagrams, equations of state and structural properties of these materials and their respective mixtures are of great interest.Especially the phase diagrams of water and ammonia gained much attention since Cavazzoni et al. [1] proposed superionic phases for these materials, which are characterized by highly mobile hydrogen ions in a lattice of oxygen and nitrogen ions, respectively. For water, the influence of such a phase on the properties of the Giant Planets as well as on exoplanets has been discussed widely. [2,3] Nevertheless, it is an open question how the properties of such a water layer change when another compound, e.g., ammonia is introduced. Considering a 1:1 mixture, we have performed ab initio simulations based on density functional theory using the VASP code [4] heating up structures which we had found from evolutionary random structure search calculations with XtalOpt [5]. We propose possible superionic water-ammonia structures present up to several Mbar. Moreover, we investigate the equation of state and transport properties of this mixture such as diffusion coefficients in order to compare with the pure compounds. These results are essential to construct new interior models for Neptune-like planets.[1] C. Cavazzoni et al., Science 283, 44 (1999).[2] R. Redmer et al., Icarus 211, 798 (2011).[3] L. Zeng and D. Sasselov, ApJ 784, 96 (2014).[4] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).[5] D. C. Lonie and E. Zurek, Comput. Phys. Commun. 182, 372 (2011).

  19. Ammonia Production, Excretion, Toxicity, and Defense in Fish: A Review

    OpenAIRE

    Ip, Yuen K.; Chew, Shit F.

    2010-01-01

    Many fishes are ammonotelic but some species can detoxify ammonia to glutamine or urea. Certain fish species can accumulate high levels of ammonia in the brain or defense against ammonia toxicity by enhancing the effectiveness of ammonia excretion through active NH 4 + transport, manipulation of ambient pH, or reduction in ammonia permeability through the branchial and cutaneous epithelia. Recent reports on ammonia toxicity in mammalian brain reveal the importance of permeation of ammonia thr...

  20. Fiber-Optic Ammonia Sensors

    Science.gov (United States)

    Carter, Michael T.

    2003-01-01

    Reversible, colorimetric fiber-optic sensors are undergoing development for use in measuring concentrations of ammonia in air at levels relevant to human health [0 to 50 parts per million (ppm)]. A sensor of this type includes an optical fiber that has been modified by replacing a portion of its cladding with a polymer coat that contains a dye that reacts reversibly with ammonia and changes color when it does so. The change in color is measured as a change in the amount of light transmitted from one end of the fiber to the other. Responses are reversible and proportional to the concentration of ammonia over the range from 9 to 175 ppm and in some cases the range of reversibility extends up to 270 ppm. The characteristic time for the response of a sensor to rise from 10 to 90 percent of full scale is about 25 seconds. These sensors are fully operational in pure carbon dioxide and are not adversely affected by humidity. This work was done by Michael T. Carter

  1. Planar waveguide sensor of ammonia

    Science.gov (United States)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  2. Fluorographene based Ultrasensitive Ammonia Sensor.

    Science.gov (United States)

    Tadi, Kiran Kumar; Pal, Shubhadeep; Narayanan, Tharangattu N

    2016-01-01

    Single molecule detection using graphene can be brought by tuning the interactions via specific dopants. Electrostatic interaction between the most electronegative element fluorine (F) and hydrogen (H) is one of the strong interactions in hydrogen bonding, and here we report the selective binding of ammonia/ammonium with F in fluorographene (FG) resulting to a change in the impedance of the system. Very low limit of detection value of ~0.44 pM with linearity over wide range of concentrations (1 pM-0.1 μM) is achieved using the FG based impedance sensor, andthisscreen printed FG sensor works in both ionized (ammonium) and un-ionized ammonia sensing platforms. The interaction energies of FG and NH3/NH4(+) are evaluated using density functional theory calculations and the interactions are mapped. Here FGs with two different amounts of fluorinecontents -~5 atomic% (C39H16F2) and ~24 atomic% (C39H16F12) - are theoretically and experimentally studied for selective, high sensitive and ultra-low level detection of ammonia. Fast responding, high sensitive, large area patternable FG based sensor platform demonstrated here can open new avenues for the development of point-of-care devices and clinical sensors. PMID:27142522

  3. Production of filamentous carbon and H{sub 2} by solarthermal catalytic cracking of CH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V.; Kuvshinov, G. [Boreskov Inst. of Catalysis (Russian Federation); Reller, A. [Hamburg Univ., Hamburg (Germany); Steinfeld, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The catalytic thermal decomposition of methane has been experimentally studied using high-temperature solar process heat. Nickel catalyst particles, fluidized in methane, were directly irradiated at the PSI solar furnace. Carbon deposition consisted of randomly interlaced filaments that grew as fibers and hollow nanotubes (of approx. 30 nm diameter) originating at each catalytic particle. (author) 4 figs., 7 refs.

  4. Decompositions of Proper Scores

    CERN Document Server

    Bröcker, Jochen

    2008-01-01

    Scoring rules are an important tool for evaluating the performance of probabilistic forecasts. A popular example is the Brier score, which allows for a decomposition into terms related to the sharpness (or information content) and to the reliability of the forecast. This feature renders the Brier score a very intuitive measure of forecast quality. In this paper, it is demonstrated that all strictly proper scoring rules allow for a similar decomposition into reliability and sharpness related terms. This finding underpins the importance of proper scores and yields further credence to the practice of measuring forecast quality by proper scores. Furthermore, the effect of averaging multiple probabilistic forecasts on the score is discussed. It is well known that the Brier score of a mixture of several forecasts is never worse that the average score of the individual forecasts. This property hinges on the convexity of the Brier score, a property not universal among proper scores. Arguably, this phenomenon portends...

  5. Decomposition of semigroup algebras

    CERN Document Server

    Boehm, Janko; Nitsche, Max Joachim

    2011-01-01

    Let A \\subseteq B be cancellative abelian semigroups, and let R be an integral domain. We show that the semigroup ring R[B] can be decomposed, as an R[A]-module, into a direct sum of R[A]-submodules of the quotient ring of R[A]. In the case of a finite extension of positive affine semigroup rings we obtain an algorithm computing the decomposition. When R[A] is a polynomial ring over a field we explain how to compute many ring-theoretic properties of R[B] in terms of this decomposition. In particular we obtain a fast algorithm to compute the Castelnuovo-Mumford regularity of homogeneous semigroup rings. As an application we confirm the Eisenbud-Goto conjecture in a range of new cases. Our algorithms are implemented in the Macaulay2 package MonomialAlgebras.

  6. Catalytic cracking process

    Science.gov (United States)

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  7. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  8. On vorticity decomposition

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    Beijing: Tsinghua University Press - Springer, 2007 - (Zhuang, F.; Li, J.), s. 722-725 ISBN 978-7-89486-552-6. [International Conference on Fluid Mechanics /5./. Shanghai (CN), 15.08.2007-19.08.2007] R&D Projects: GA AV ČR IAA2060302 Institutional research plan: CEZ:AV0Z20600510 Keywords : vorticity decomposition * flow kinematics Subject RIV: BK - Fluid Dynamics

  9. Minimum Error Tree Decomposition

    OpenAIRE

    Liu, L; Ma, Y.; Wilkins, D.; Bian, Z.; Ying, X

    2013-01-01

    This paper describes a generalization of previous methods for constructing tree-structured belief network with hidden variables. The major new feature of the described method is the ability to produce a tree decomposition even when there are errors in the correlation data among the input variables. This is an important extension of existing methods since the correlational coefficients usually cannot be measured with precision. The technique involves using a greedy search algorithm that locall...

  10. Oscillation pattern decomposition

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav

    Praha : Ústav termomechaniky AV ČR, v. v. i, 2012 - (Šimurda, D.; Kozel, K.), s. 109-112 ISBN 978-80-87012-40-6. [Topical Problems of Fluid Mechanics 2012. Praha (CZ), 15.02.2012-17.02.2012] R&D Projects: GA ČR GA101/08/1112; GA ČR GAP101/10/1230 Institutional support: RVO:61388998 Keywords : oscolation pattern decomposition * stability * turbulent flow Subject RIV: BK - Fluid Dynamics

  11. Randomized LU Decomposition

    OpenAIRE

    Shabat, Gil; Shmueli, Yaniv; Aizenbud, Yariv; Averbuch, Amir

    2013-01-01

    We present a fast randomized algorithm that computes a low rank LU decomposition. Our algorithm uses random projections type techniques to efficiently compute a low rank approximation of large matrices. The randomized LU algorithm can be parallelized and further accelerated by using sparse random matrices in its projection step. Several different error bounds are proven for the algorithm approximations. To prove these bounds, recent results from random matrix theory related to subgaussian mat...

  12. BIF. Balanced Incomplete Decomposition

    Czech Academy of Sciences Publication Activity Database

    Tůma, Miroslav

    Liberec : Technical University, 2008. s. 129-130. ISBN 978-80-7372-298-2. [SNA '08 - Seminar on numerical analysis: modelling and simulation of challenging engineering problems. 28.01.2008-01.02.2008, Liberec] R&D Projects: GA AV ČR 1ET400300415; GA AV ČR IAA100300802 Institutional research plan: CEZ:AV0Z10300504 Keywords : preconditioning * sparse linear systems * incomplete decomposition * iterative methods Subject RIV: BA - General Mathematics

  13. Thermic decomposition of biphenyl

    International Nuclear Information System (INIS)

    Liquid and vapour phase pyrolysis of very pure biphenyl obtained by methods described in the text was carried out at 400 C in sealed ampoules, the fraction transformed being always less than 0.1 per cent. The main products were hydrogen, benzene, terphenyls, and a deposit of polyphenyls strongly adhering to the walls. Small quantities of the lower aliphatic hydrocarbons were also found. The variation of the yields of these products with a) the pyrolysis time, b) the state (gas or liquid) of the biphenyl, and c) the pressure of the vapour was measured. Varying the area and nature of the walls showed that in the absence of a liquid phase, the pyrolytic decomposition takes place in the adsorbed layer, and that metallic walls promote the reaction more actively than do those of glass (pyrex or silica). A mechanism is proposed to explain the results pertaining to this decomposition in the adsorbed phase. The adsorption seems to obey a Langmuir isotherm, and the chemical act which determines the overall rate of decomposition is unimolecular. (author)

  14. Decomposition methods for unsupervised learning

    DEFF Research Database (Denmark)

    Mørup, Morten

    2008-01-01

    This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding to their genera......This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding...... in the decompositions. Thus, it is demonstrated how a wide range of decomposition methods explicitly or implicitly strive to attain this goal. Applications of the derived decompositions are given ranging from multi-media analysis of image and sound data, analysis of biomedical data such as electroencephalography...... to the analysis of social network data....

  15. Ammonia Process by Pressure Swing Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Dr Felix Jegede

    2010-12-27

    The overall objective of the project is to design, develop and demonstrate a technically feasible and commercially viable system to produce ammonia along with recovery of the products by adsorption separation methods and significantly decrease the energy requirement in ammonia production. This is achieved through a significantly more efficient ammonia psa recovery system. The new ammonia recovery system receives the reactor effluents and achieves complete ammonia recovery, (which completely eliminates the energy intensive refrigeration and condensation system currently used in ammonia production). It also recovers the unused reactants and recycles them back to the reactor, free of potential reactor contaminants, and without the need for re-compression and re-heat of recycle stream thereby further saving more energy. The result is a significantly lower energy consumption, along with capital cost savings.

  16. Preparation of metal nitrides via laser induced photolytic decomposition of metal-amides

    International Nuclear Information System (INIS)

    Irradiation of {[(CH3)3Si]2N}3Y, Zr[N(C2H5)2]4, and Nb[N(C2H5)2]4 by the 1.064 microm line of a pulsed Nd:YAG laser results in the decomposition of Zr[N(C2H5)2]4 and Nb[N(C2H5)2]4 while {[(CH3)3Si]2N}3Y remains unaffected. The decomposition is photolytic and is accompanied by a visible emission tracing the path of the incident beam. The decomposition products form corresponding carbide/nitrides on pyrolysis in vacuum and nitrides on pyrolysis in an ammonia atmosphere. The spectroscopic investigation of the visible emission, and the pyrolysis of the decomposition products to metal nitrides is described

  17. Analysis of Ammonia Toxicity in Landfill Leachates

    OpenAIRE

    Takuya Osada; Keisuke Nemoto; Hiroki Nakanishi; Ayumi Hatano; Ryo Shoji; Tomohiro Naruoka; Masato Yamada

    2011-01-01

    Toxicity identification evaluation (TIE) phase I manipulations and toxicity test with D. magna were conducted on leachates from an industrial waste landfill site in Japan. Physicochemical analysis detected heavy metals at concentrations insufficient to account for the observed acute toxicity. The graduated pH and aeration manipulations identified the prominent toxicity of ammonia. Based on joint toxicity with additive effects of unionized ammonia and ammonium ions, the unionized ammonia toxic...

  18. Autotrophic ammonia oxidation by soil thaumarchaea

    OpenAIRE

    Zhang, Li-Mei; Offre, Pierre R.; He, Ji-Zheng; Verhamme, Daniel T.; Nicol, Graeme W.; Prosser, James I.

    2010-01-01

    Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, bu...

  19. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J.; Driscoll, James J.; Coleman, Gerald N.; Knox, Kevin J.

    2009-06-30

    A power source is provided for use with selective catalytic reduction systems for exhaust-gas purification. The power source includes a first cylinder group with a first air-intake passage and a first exhaust passage, and a second cylinder group with a second air-intake passage and a second exhaust passage. The second air-intake passage is fluidly isolated from the first air-intake passage. A fuel-supply device may be configured to supply fuel into the first exhaust passage, and a catalyst may be disposed downstream of the fuel-supply device to convert at least a portion of the exhaust stream in the first exhaust passage into ammonia.

  20. Cylinder supplied ammonia scrubber testing in IDMS

    International Nuclear Information System (INIS)

    This report summarizes the results of the off-line testing the Integrated DWPF Melter System (IDMS) ammonia scrubbers using ammonia supplied from cylinders. Three additional tests with ammonia are planned to verify the data collected during off-line testing. Operation of the ammonia scrubber during IDMS SRAT and SME processing will be completed during the next IDMS run. The Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) scrubbers were successful in removing ammonia from the vapor stream to achieve ammonia vapor concentrations far below the 10 ppM vapor exit design basis. In most of the tests, the ammonia concentration in the vapor exit was lower than the detection limit of the analyzers so results are generally reported as <0.05 parts per million (ppM). During SRAT scrubber testing, the ammonia concentration was no higher than 2 ppM and during SME testing the ammonia concentration was no higher than 0.05 m

  1. Tetraammineplatinum(II dichloride ammonia tetrasolvate

    Directory of Open Access Journals (Sweden)

    Tobias Grassl

    2014-07-01

    Full Text Available The title compound, [Pt(NH34]Cl2·4NH3, was crystallized in liquid ammonia from the salt PtCl2. The platinum cation is coordinated by four ammonia molecules, forming a square-planar complex. The chloride anions are surrounded by nine ammonia molecules, either bound within the platinum complex or solvent molecules. The solvent ammonia molecules are packed in such a way that an extended network of N—H...N and N—H...Cl hydrogen bonds is formed. The structure is isotypic with [Pd(NH34]Cl2·4NH3 [Grassl & Korber (2014. Acta Cryst. E70, i32].

  2. Photocatalytic decomposition of cortisone acetate in aqueous solution.

    Science.gov (United States)

    Romão, Joana Sobral; Hamdy, Mohamed S; Mul, Guido; Baltrusaitis, Jonas

    2015-01-23

    The photocatalytic decomposition of cortisone 21-acetate (CA), a model compound for the commonly used steroid, cortisone, was studied. CA was photocatalytically decomposed in a slurry reactor with the initial rates between 0.11 and 0.46 mg L(-1)min(-1) at 10 mg L(-1) concentration, using the following heterogeneous photocatalysts in decreasing order of their catalytic activity: ZnO>Evonik TiO2 P25>Hombikat TiO2>WO3. Due to the lack of ZnO stability in aqueous solutions, TiO2 P25 was chosen for further experiments. The decomposition reaction was found to be pseudo-first order and the rate constant decreased as a function of increasing initial CA concentration. Changing the initial pH of the CA solution did not affect the reaction rate significantly. The decomposition reaction in the presence of the oxidizing sacrificial agent sodium persulfate showed an observed decomposition rate constant of 0.004 min(-1), lower than that obtained for TiO2 P25 (0.040 min(-1)). The highest photocatalytic degradation rate constant was obtained combining both TiO2 P25 and S2O8(2-) (0.071 min(-1)) showing a synergistic effect. No reactive intermediates were detected using LC-MS showing fast photocatalytic decomposition kinetics of CA. PMID:24953705

  3. Reducing ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    The NEC directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the largest reductions since 1990...... not lived up to the high expectations at the outset. Despite this, the paper concludes that Denmark is likely to reduce emission by 50% from 1990 to 2020 and reach the likely 2020 NEC ceiling....

  4. RuCu nanoparticles supported on graphene: A highly efficient catalyst for hydrolysis of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Nan; Hu, Kai [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072 (China); Luo, Wei, E-mail: wluo@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072 (China); Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123 (China); Cheng, Gongzhen, E-mail: gzcheng@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072 (China)

    2014-03-25

    Graphical abstract: Well dispersed RuCu/graphene nanoparticles exerted satisfied catalytic activity and recycle stability towards the hydrolysis of ammonia borane. Highlights: • One-step in situ synthesis of graphene supported RuCu NPs. • The catalysts exhibit excellent catalytic activity toward hydrolysis of AB. • Graphene supported NPs exhibit the highest catalytic activity. -- Abstract: Well dispersed RuCu nanoparticles (NPs) supported on graphene were in situ synthesized by a one-step co-reduction of aqueous solution of ruthenium (III) chloride, cupric (II) chloride, and graphite oxide (GO) with ammonia borane (AB) under ambient condition. The nature of the NPs was fully characterized by TEM, HRTEM, XRD, energy dispersive spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The as-synthesized NPs exhibit much higher catalytic activity for hydrolytic dehydrogenation of AB than the monometallic Ru and Cu, bimetallic RuCu/graphene reduced by NaBH{sub 4}, and graphene free RuCu counterparts. Additionally, the as-synthesized NPs supported on graphene exhibit higher catalytic activity than the catalysts with other conventional supports, such as SiO{sub 2}, γ-Al{sub 2}O{sub 3}, and carbon black. The activity of Ru{sub 1}Cu{sub 7.5}/graphene NPs in terms of turnover frequency (TOF) is 135 mol H{sub 2} min{sup −1} (mol Ru){sup −1}, which is higher than Ru/graphene, and most reported Ru-based or other noble metal-based NPs for the catalytic hydrolysis of AB. The activation energy for hydrolysis of AB in the presence of Ru{sub 1}Cu{sub 7.5}/graphene NPs was determined as 30.59 kJ mol{sup −1}, which is lower than most of the reported catalysts. Furthermore, the as-prepared NPs exert satisfied durable stability for the hydrolytic dehydrogenation of AB.

  5. Adaptive Integrand Decomposition

    CERN Document Server

    Mastrolia, Pierpaolo; Primo, Amedeo; Bobadilla, William J Torres

    2016-01-01

    We present a simplified variant of the integrand reduction algorithm for multiloop scattering amplitudes in $d = 4 - 2\\epsilon$ dimensions, which exploits the decomposition of the integration momenta in parallel and orthogonal subspaces, $d=d_\\parallel+d_\\perp$, where $d_\\parallel$ is the dimension of the space spanned by the legs of the diagrams. We discuss the advantages of a lighter polynomial division algorithm and how the orthogonality relations for Gegenbauer polynomilas can be suitably used for carrying out the integration of the irreducible monomials, which eliminates spurious integrals. Applications to one- and two-loop integrals, for arbitrary kinematics, are discussed.

  6. Clustering via Kernel Decomposition

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan

    2006-01-01

    Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....

  7. Selective catalytic burning of graphene by SiOx layer depletion.

    Science.gov (United States)

    Lee, Kyoung-Jae; Ihm, Kyuwook; Kumar, Yogesh; Baik, Jaeyoon; Yang, Mihyun; Shin, Hyun-Joon; Kang, Tai-Hee; Chung, Sukmin; Hong, Byung Hee

    2014-01-01

    We report catalytic decomposition of few-layer graphene on an Au/SiOx/Si surface wherein oxygen is supplied by dissociation of the native SiOx layer at a relatively low temperature of 400 °C. The detailed chemical evolution of the graphene covered SiOx/Si surface with and without gold during the catalytic process is investigated using a spatially resolved photoelectron emission method. The oxygen atoms from the native SiOx layer activate the gold-mediated catalytic decomposition of the entire graphene layer, resulting in the formation of direct contact between the Au and the Si substrate. The notably low contact resistivity found in this system suggests that the catalytic depletion of a SiOx layer could realize a new way to micromanufacture high-quality electrical contact. PMID:24316816

  8. Decomposition and reduction of N2O over Limestone under FBC Conditions

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker; Vaaben, Rikke;

    1997-01-01

    The addition of limestone for sulfur retention in FBC has in many cases been observed to influence the emission of N2O. The catalytic activity of N2O over calcined Stevns Chalk for decomposition of N2O in a laboratory fixed bed quartz reactor was measured. It was found that calcined Stevns Chalk ...

  9. Effect of Promoters in Co-Mn-Al Mixed Oxide Catalyst on N2O Decomposition

    Czech Academy of Sciences Publication Activity Database

    Karásková, K.; Obalová, L.; Jirátová, Květa; Kovanda, F.

    2010-01-01

    Roč. 160, č. 2 (2010), s. 480-487. ISSN 1385-8947 R&D Projects: GA ČR GA106/09/1664 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * catalytic decomposition * promoter effect Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.074, year: 2010

  10. A theoretical study on the catalytic effect of nanoparticle confined in carbon nanotube

    Science.gov (United States)

    Qin, Wu; Li, Xin

    2011-01-01

    We investigated the catalytic effect of CuO nanoparticles confined in carbon nanotubes using molecular dynamics simulations and density functional theory calculations. Ozone decomposition and hydroxyl radical generation were used as the probe reactions to investigate the catalytic behavior of catalyst. The effects of the confined environment of carbon nanotubes induced more reactants into the channel. Interface interactions between reactants and CuO nanoparticles in the channel and charge transfer accelerated the decomposition of ozone into oxygen molecule and atomic oxygen species. The atomic oxygen species then interacted to water molecule to generate hydroxyl radicals, which were truly identified by electron paramagnetic resonance (EPR) technique.

  11. Catalytic Synthesis Lactobionic Acid

    Directory of Open Access Journals (Sweden)

    V.G. Borodina

    2014-07-01

    Full Text Available Gold nanoparticles are obtained, characterized and deposited on the carrier. Conducted catalytic synthesis of lactobionic acid from lactose. Received lactobionic acid identify on the IR spectrum.

  12. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  13. Information Decomposition on Structured Space

    OpenAIRE

    Sugiyama, Mahito; Nakahara, Hiroyuki; Tsuda, Koji

    2016-01-01

    We build information geometry for a partially ordered set of variables and define the orthogonal decomposition of information theoretic quantities. The natural connection between information geometry and order theory leads to efficient decomposition algorithms. This generalization of Amari's seminal work on hierarchical decomposition of probability distributions on event combinations enables us to analyze high-order statistical interactions arising in neuroscience, biology, and machine learning.

  14. Dihydrogen Phosphate Stabilized Ruthenium(0 Nanoparticles: Efficient Nanocatalyst for The Hydrolysis of Ammonia-Borane at Room Temperature

    Directory of Open Access Journals (Sweden)

    Feyyaz Durap

    2015-07-01

    Full Text Available Intensive efforts have been devoted to the development of new materials for safe and efficient hydrogen storage. Among them, ammonia-borane appears to be a promising candidate due to its high gravimetric hydrogen storage capacity. Ammonia-borane can release hydrogen on hydrolysis in aqueous solution under mild conditions in the presence of a suitable catalyst. Herein, we report the synthesis of ruthenium(0 nanoparticles stabilized by dihydrogenphosphate anions with an average particle size of 2.9 ± 0.9 nm acting as a water-dispersible nanocatalyst in the hydrolysis of ammonia-borane. They provide an initial turnover frequency (TOF value of 80 min−1 in hydrogen generation from the hydrolysis of ammonia-borane at room temperature. Moreover, the high stability of these ruthenium(0 nanoparticles makes them long-lived and reusable nanocatalysts for the hydrolysis of ammonia-borane. They provide 56,800 total turnovers and retain ~80% of their initial activity even at the fifth catalytic run in the hydrolysis of ammonia-borane at room temperature.

  15. Ammonia Synthesis using Ti and Nb Nitride Nano-particles Prepared by Mesoporous Graphitic C3N4

    KAUST Repository

    Kumagai, Hiromu

    2015-01-22

    TiN and NbN nanoparticles were synthesized from mesoporous graphitic C3N4 (mpg-C3N4) as a reactive template and used as the catalyst for ammonia synthesis. The obtained TiN and NbN nanoparticles possess high surface areas of 299 and 275 m2 g-1, respectively, making them attractive in the use of catalysis and support. Although most of the TiN and NbN particles show no measurable activity for ammonia formation, the nanoparticles enabled an ammonia synthesis rate of 31 μmol h-1 g-cat-1 at 673 K and 0.1 MPa of synthesis gas (N2 + 3H2) for both TiN and NbN catalysts. It is evident that the formation of nanoparticles with high nitride surface area is essential for the materials to function as catalysts in ammonia synthesis. The addition of Fe to TiN enhanced the ammonia synthesis activity, whereas it had detrimental effects on the catalytic activity of NbN. The properties of these catalysts in ammonia synthesis are discussed.

  16. Catalytic Coanda combustion

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.D.; Smith, A.G.; Kopmels, M.

    1992-09-16

    A catalytic reaction is enhanced by the use of the Coanda effect to maximise contact between reactant and catalyst. A device utilising this principle comprises a Coanda surface which directs the flow of fuel from a slot to form a primary jet which entrains the surrounding ambient air and forms a combustible mixture for reaction on a catalytic surface. The Coanda surface may have an internal or external nozzle which may be axi-symmetric or two-dimensional. (author)

  17. Ammonia Solubility in High Concentration Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  18. Evaluation of ammonia emissions from broiler litter

    Science.gov (United States)

    Ammonia emissions from poultry litter results in air pollution and can cause high levels of ammonia in poultry houses, which negatively impacts bird performance. The objectives of this study were to: (1) conduct a nitrogen (N) mass balance in broiler houses by measuring the N inputs (bedding, chick...

  19. Ammonia Solubility in High Concentration Salt Solutions

    International Nuclear Information System (INIS)

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks

  20. Ammonia Sensor Using Wavelength Modulation Spectroscopy

    KAUST Repository

    Farooq, Aamir

    2015-09-01

    An ammonia sensor can include a laser detector configured to provide stable sample readings. The sensor can implement a method including processing the recorded intensity of the laser beam to determine a first harmonic component and a second harmonic component and the amount of ammonia in the sample.

  1. Ammonia and hydrogen sulfide removal using biochar

    Science.gov (United States)

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  2. Hydrogen iodide decomposition

    Science.gov (United States)

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  3. Exploring the decomposition pathways of iron asymmetric transfer hydrogenation catalysts.

    Science.gov (United States)

    Lagaditis, Paraskevi O; Sues, Peter E; Lough, Alan J; Morris, Robert H

    2015-07-21

    Our group has developed a series of iron-based asymmetric transfer hydrogenation (ATH) catalysts for the reduction of polar double bonds. The activation of the precatalysts as well as the catalytic mechanism have been thoroughly investigated, but the decomposition pathways of these systems are poorly understood. Herein, we report a study of the deactivation pathways for an iron ATH catalyst under catalytically relevant conditions. The decomposition pathways were examined using experimental techniques and density functional theory (DFT) calculations. The major decomposition products that formed, Fe(CO)((Et)2PCH2CH2CHCHNCH2CH2P(Et)2) (3a) and Fe(CO)((Et)2PCH2CH2C(Ph)C(Ph)NCH2CH2P(Et)2) (3b), had two amido donors as well as a C=C bond on the diamine backbone of the tetradentate ligand. These species were identified by NMR studies and one was isolated as a bimetallic complex with Ru(II)Cp*. Two minor iron hydride species also formed concurrently with 3a, as determined by NMR studies, one of which was isolated and contained a fully saturated ligand as well as a hydride ligand. None of the compounds that were isolated were found to be active ATH catalysts. PMID:25373607

  4. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas

    2009-01-01

    /arginine region, and an exclusively water-permeable aquaporin can be transformed into an ammonia-permeable aquaporin by single point mutations in this region. The ammonia-permeable aquaporins fall into two groups: those that are permeable (AQP3, 7, 9, 10) and those that are impermeable (AQP8) to glycerol. The two......The human aquaporins,AQP3,AQP7, AQP8,AQP9, and possibly AQP10, are permeable to ammonia, and AQP7, AQP9, and possibly AQP3, are permeable to urea. In humans, these aquaporins supplement the ammonia transport of the Rhesus (Rh) proteins and the urea transporters (UTs). The mechanism by which...... significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic...

  5. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  6. A high-density ammonia storage/delivery system based on Mg(NH3)6Cl2 for SCR-DeNOx in vehicles

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Sørensen, Rasmus Zink; Quaade, Ulrich;

    2006-01-01

    In this paper, we present a new benchmark for the automobile selective catalytic reduction of NO(x): Mg(NH(3))(6)Cl(2). This solid complex releases ammonia upon heating and can be compacted into a dense shape which is both easy to handle and safe. Furthermore, the material has a high volumetric a...

  7. Enhancing Biogas Production from Anaerobically Digested Wheat Straw Through Ammonia Pretreatment

    Institute of Scientific and Technical Information of China (English)

    杨懂艳; 庞云芝; 袁海荣; 陈树林; 马晶伟; 郁亮; 李秀金

    2014-01-01

    Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia (2%, 4%, and 6%, dry matter) and three moisture contents (30%, 60%, and 80%, dry matter) were applied to pretreat wheat straw for 7 days. The pretreated wheat straws were anaerobically digested at three loading rates (50, 65, and 80 g·L-1) to produce biogas. The results indi-cated that the wheat straw pretreated with 80%moisture content and 4%ammonia achieved the highest methane yield of 199.7 ml·g-1 (based on per unit volatile solids loaded), with shorter digestion time (T80) of 25 days at the loading rate of 65 g·L-1 compared to untreated one. The main chemical compositions of wheat straw were also ana-lyzed. The cellulose and hemicellulose contents were decomposed by 2%-20%and 26%-42%, respectively, while the lignin content was hardly removed, cold-water and hot-water extracts were increased by 4%-44%, and 12%-52%, respectively, for the ammonia-pretreated wheat straws at different moisture contents. The appropriate C/N ratio and decomposition of original chemical compositions into relatively readily biodegradable substances will improve the biodegradability and biogas yield.

  8. Gas Turbine Combustion and Ammonia Removal Technology of Gasified Fuels

    Directory of Open Access Journals (Sweden)

    Takeharu Hasegawa

    2010-03-01

    Full Text Available From the viewpoints of securing a stable supply of energy and protecting our global environment in the future, the integrated gasification combined cycle (IGCC power generation of various gasifying methods has been introduced in the world. Gasified fuels are chiefly characterized by the gasifying agents and the synthetic gas cleanup methods and can be divided into four types. The calorific value of the gasified fuel varies according to the gasifying agents and feedstocks of various resources, and ammonia originating from nitrogenous compounds in the feedstocks depends on the synthetic gas clean-up methods. In particular, air-blown gasified fuels provide low calorific fuel of 4 MJ/m3 and it is necessary to stabilize combustion. In contrast, the flame temperature of oxygen-blown gasified fuel of medium calorie between approximately 9–13 MJ/m3 is much higher, so control of thermal-NOx emissions is necessary. Moreover, to improve the thermal efficiency of IGCC, hot/dry type synthetic gas clean-up is needed. However, ammonia in the fuel is not removed and is supplied into the gas turbine where fuel-NOx is formed in the combustor. For these reasons, suitable combustion technology for each gasified fuel is important. This paper outlines combustion technologies and combustor designs of the high temperature gas turbine for various IGCCs. Additionally, this paper confirms that further decreases in fuel-NOx emissions can be achieved by removing ammonia from gasified fuels through the application of selective, non-catalytic denitration. From these basic considerations, the performance of specifically designed combustors for each IGCC proved the proposed methods to be sufficiently effective. The combustors were able to achieve strong results, decreasing thermal-NOx emissions to 10 ppm (corrected at 16% oxygen or less, and fuel-NOx emissions by 60% or more, under conditions where ammonia concentration per fuel heating value in unit volume was 2.4 × 102 ppm

  9. Heterogeneous-catalytic redox reactions in nitrate - formate systems

    International Nuclear Information System (INIS)

    It was found that an intensive destruction of various organic and mineral substances - usual components of aqueous waste solutions (oxalic acid, complexones, urea, hydrazine, ammonium nitrate, etc.) takes place under the conditions of catalytic denitration. Kinetics and mechanisms of urea and ammonium nitrate decomposition in the system HNO3 - HCOOH - Pt/SiO2 are comprehensively investigated. The behaviour of uranium, neptunium and plutonium under the conditions of catalytic denitration is studied. It is shown, that under the certain conditions the formic acid is an effective reducer of the uranium (VI), neptunium (VI, V) and plutonium (VI, IV) ions. Kinetics of heterogeneous-catalytic red-ox reactions of uranium (VI), neptunium (VI, V) and plutonium (VI, IV) with formic acid are investigated. The mechanisms of the appropriate reactions are evaluated. (authors)

  10. Ammonia abatement by slurry acidification

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Hutchings, Nicholas John; Hafner, Sasha;

    2016-01-01

    Livestock production systems can be major sources of trace gases including ammonia (NH3), the greenhouse gases methane (CH4) and nitrous oxide (N2O), and odorous compounds such as hydrogen sulphide (H2S). Short-term campaigns have indicated that acidification of livestock slurry during in....... The effect of acidification on emissions of H2S differed between experiments. Implications of slurry acidification for subsequent field application, including N and S availability, and soil pH, are discussed....... rates were generally high. It was concluded that the contribution from floors to NH3 emissions was <50%. There was some evidence for reduced CH4 emissions from acidified slurry, but CH4 emissions were generally low and apparently dominated by enteric fermentation. No effect on N2O emissions was observed...

  11. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  12. Autonomous Gaussian Decomposition

    CERN Document Server

    Lindner, Robert R; Murray, Claire E; Stanimirović, Snežana; Babler, Brian L; Heiles, Carl; Hennebelle, Patrick; Goss, W M; Dickey, John

    2014-01-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21cm absorption spectra from the 21cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the HI line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the up...

  13. Generalized Filtering Decomposition

    CERN Document Server

    Grigori, Laura

    2011-01-01

    This paper introduces a new preconditioning technique that is suitable for matrices arising from the discretization of a system of PDEs on unstructured grids. The preconditioner satisfies a so-called filtering property, which ensures that the input matrix is identical with the preconditioner on a given filtering vector. This vector is chosen to alleviate the effect of low frequency modes on convergence and so decrease or eliminate the plateau which is often observed in the convergence of iterative methods. In particular, the paper presents a general approach that allows to ensure that the filtering condition is satisfied in a matrix decomposition. The input matrix can have an arbitrary sparse structure. Hence, it can be reordered using nested dissection, to allow a parallel computation of the preconditioner and of the iterative process.

  14. A low energy aqueous ammonia CO2 capture process

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Waseem Arshad, Muhammad; Blaker, Eirik Ask;

    2014-01-01

    The most pressing challenges regarding the use of ammonia for CO2 capture are the precipitation limitation and the energy penalty of solvent regeneration. Precipitation-free operation is a vital task since solids may cause the shutdown of the plant. Precipitation and slurry formation can be avoided...... by increasing temperature and L/G ratio but this leads to higher heat consumption, jeopardizing the economic feasibility. Here we developed, investigated, and optimized a novel CO2 capture process design using aqueous ammonia as solvent. The proposed configuration replaces the traditional stripper...... for solvent based CO2 capture with a thermal decomposition reactor. The overall energy penalty is reduced at the expense of introducing a solid handling section which consists of a saturation reactor, a crystallizer and a belt filter. The feasibility of the present approach is demonstrated by...

  15. Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions

    Science.gov (United States)

    Perrino, C.; Catrambone, M.; Di Menno Di Bucchianico, A.; Allegrini, I.

    The atmospheric concentration of gaseous ammonia has been measured during selected field campaigns from the spring of 2001 to the spring of 2002 in the urban area of Rome, at many traffic sites and at an urban background site. The concentration level at the traffic sites was in all cases about five times the background level and always much higher than the concentration in a rural near-city area. The time trend of ammonia is well correlated with the trend of a primary low-reactivity pollutant such as carbon monoxide. The concentration values of both pollutants depend on the intensity of traffic emission and on the atmospheric mixing in the boundary layer. Ammonia concentration is also dependent on the air temperature. A close link between NH 3 and CO air values has been confirmed at all the measurement stations of the Air Quality Network of Rome. These results indicate that the emissions from petrol-engine vehicles equipped with catalytic converters can be an important source of ammonia in urban areas. The implications of these findings for the chemistry of the urban atmosphere need to be carefully considered.

  16. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex.

    Science.gov (United States)

    Pool, Jaime A; Lobkovsky, Emil; Chirik, Paul J

    2004-02-01

    Molecular nitrogen is relatively inert owing to the strength of its triple bond, nonpolarity and high ionization potential. As a result, the fixation of atmospheric nitrogen to ammonia under mild conditions has remained a challenge to chemists for more than a century. Although the Haber-Bosch process produces over 100 million tons of ammonia annually for the chemical industry and agriculture, it requires high temperature and pressure, in addition to a catalyst, to induce the combination of hydrogen (H2) and nitrogen (N2). Coordination of molecular nitrogen to transition metal complexes can activate and even rupture the strong N-N bond under mild conditions, with protonation yielding ammonia in stoichiometric and even catalytic yields. But the assembly of N-H bonds directly from H2 and N2 remains challenging: adding H2 to a metal-N2 complex results in the formation of N2 and metal-hydrogen bonds or, in the case of one zirconium complex, in formation of one N-H bond and a bridging hydride. Here we extend our work on zirconium complexes containing cyclopentadienyl ligands and show that adjustment of the ligands allows direct observation of N-H bond formation from N2 and H2. Subsequent warming of the complex cleaves the N-N bond at 45 degrees C, and continued hydrogenation at 85 degrees C results in complete fixation to ammonia. PMID:14765191

  17. CFD modelling of flow mal-distribution in an industrial ammonia oxidation reactor: A case study

    International Nuclear Information System (INIS)

    Ammonia oxidation reactor is widely used in nitric acid plant to cause the catalytic reaction between air and ammonia to produce nitrous gases. In this work, the flow distribution inside the ammonia oxidation reactor at Shiraz Petrochemical Complex (SPC) has been simulated using Computational Fluid Dynamics (CFD) code. The CFD results showed that the flow is non-uniformly distributed inside the reactor due to improper header design of the reactor. Measuring of the temperature distribution around the skin of the reactor has been carried out using thermograph. The thermograph experiment showed a considerable temperature difference between the left and right side of the reactor. It was found that the mal-distribution of the gas flow inside the reactor can directly affect the performance of the reactor. - Highlights: •A failure has been observed in an industrial ammonia oxidation reactor. •CFD code helps to simulate the flow inside the reactor. •The flow becomes non-uniformly distributed due to the reactor header mal-design. •The flow mal-distribution results in some drawbacks

  18. Expression, crystallization and preliminary X-ray crystallographic study of ethanolamine ammonia-lyase from Escherichia coli

    International Nuclear Information System (INIS)

    Ethanolamine ammonia-lyase from E. coli has been overexpressed, purified and crystallized. The crystals diffracted to 2.2 Å resolution using synchrotron radiation. Ethanolamine ammonia-lyase (EAL) catalyzes the adenosylcobalamin-dependent conversion of ethanolamine to acetaldehyde and ammonia. The wild-type enzyme shows a very low solubility. N-terminal truncation of the Escherichia coli EAL β-subunit dramatically increases the solubility of the enzyme without altering its catalytic properties. Two deletion mutants of the enzyme [EAL(βΔ4–30) and EAL(βΔ4–43)] have been overexpressed, purified and crystallized using the sitting-drop vapour-diffusion method. Crystals of EAL(βΔ4–30) and EAL(βΔ4–43) diffracted to approximately 8.0 and 2.1 Å resolution, respectively

  19. Catalytic fast pyrolysis of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  20. Ammonia synthesis using magnetic induction method (MIM)

    Science.gov (United States)

    Puspitasari, P.; Razak, J. Abd; Yahya, N.

    2012-09-01

    The most challenging issues for ammonia synthesis is to get the high yield. New approach of ammonia synthesis by using Magnetic Induction Method (MIM) and the Helmholtz Coils has been proposed. The ammonia detection was done by using Kjeldahl Method and FTIR. The system was designed by using Autocad software. The magnetic field of MIM was vary from 100mT-200mT and the magnetic field for the Helmholtz coils was 14mT. The FTIR result shows that ammonia has been successfully formed at stretching peaks 1097,1119,1162,1236, 1377, and 1464 cm-1. UV-VIS result shows the ammonia bond at 195nm of wavelength. The ammonia yield was increase to 244.72μmole/g.h by using the MIM and six pairs of Helmholtz coils. Therefore this new method will be a new promising method to achieve the high yield ammonia at ambient condition (at 25δC and 1atm), under the Magnetic Induction Method (MIM).

  1. Resveratrol prevents ammonia toxicity in astroglial cells.

    Directory of Open Access Journals (Sweden)

    Larissa Daniele Bobermin

    Full Text Available Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS. Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS, GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA and extracellular signal-regulated kinase (ERK pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity.

  2. WOOD COLOR CHANGES BY AMMONIA FUMING

    Directory of Open Access Journals (Sweden)

    Josip Miklečić,

    2012-06-01

    Full Text Available This paper studies the influence of ammonia gas on wood color changes in response to an increasing demand for dark colored wood specimens. The darker wood color in ammonia fuming is accomplished through chemical reactions between ammonia gas and wood compounds. We exposed oak, maple, spruce, and larch wood samples to ammonia gas for 16 days. During fuming, the color changes were studied using CIE L*a*b* parameters. After fuming, the changes in extractives content, tannin, and nitrogen content were analyzed. The chemical changes of wood and residues of wood extractives after fuming were analyzed by FTIR spectroscopy. Oak wood reacted intensively with ammonia gas in a very short time, and the darkening was prominent for all the investigated wood species. It was established that tannin had no major influence on color changes of maple and larch wood in the ammonia-fuming process. The FTIR spectra of fumed wood indicated involvement of carbonyl groups, and the FTIR spectra of wood extractives indicated involvement of carbonyl, aromatic, and alcohol groups in reaction with ammonia gas.

  3. Catalytic coherence transformations

    Science.gov (United States)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  4. Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx

    NARCIS (Netherlands)

    Deka, U.; Lezcano-Gonzalez, I.; Weckhuysen, B.M.; Beale, A.M.

    2013-01-01

    Cu-exchanged zeolites have demonstrated widespread use as catalyst materials in the abatement of NOx, especially from mobile sources. Recent studies focusing on Cu-exchanged zeolites with the CHA structure have demonstrated them to be excellent catalysts in the ammonia-assisted selective catalytic r

  5. Lyoluminescence of luminol in aqueous ammonia

    International Nuclear Information System (INIS)

    The emission spectrum of lyoluminescence of luminol in aqueous ammonia was recorded on a Fuess spectrograph. A continuous emission band from 370 to 600 nm, on resolution, showed three-banded emission with peaks at 413, 463 and 545 nm. The resolved fluorescence spectrum of luminol in ammonia showed two peaks, at 407 and 446 nm. The fluorescence lifetime of luminol in aqueous ammonia solution is 0.7 ns. The lyoluminescence emission bands are explained on the basis of the reactions of colour centres with luminol during the dissolution of irradiated NaCl crystals in an aqueous ammoniated solution of luminol. (author)

  6. Radwaste solidification modifications by means of nitrogen oxides catalytic abatement

    International Nuclear Information System (INIS)

    In the treatment and solidification of medium and high level radioactive wastes, large amounts of NO /sub x/ are produced, which are normally scrubbed with nitric acid or alkaline solutions. In this way big volumes of secondary wastes containing high nitrate concentrations which cannot be easily discharged are produced. The application of the NO /sub x/ catalytic abatement with selective ammonia reduction would permit to avoid this problem, with large cost savings. Two practical examples have been examined: a bituminization plant and a pot vitrification plant referred to the Italian EUREX Reprocessing Pilot Plant. 416,000 and 362,000 $/y respectively would be saved by replacing scrubbing towers with a catalytic reactor

  7. Molecular Characterization of Soil Ammonia-Oxidizing Bacteria Based on the Genes Encoding Ammonia Monooxygenase

    OpenAIRE

    Alzerreca, Jose Javier

    1999-01-01

    Ammonia-oxidizing bacteria (AOB) are chemolithotrophs that oxidize ammonia/ammonium to nitrite in a two-step process to obtain energy for survival. AOB are difficult to isolate from the environment and iso lated strains may not represent the diversity in soil. A genetic database and molecular tools were developed based on the ammonia monooxygenase (AMO) encoding genes that can be used to assess the diversity of AOB that exist in soil and aquatic environments without the isolation of pure cult...

  8. Hydrogen peroxide decomposition on a two-component CuO-Cr2O3 catalyst

    International Nuclear Information System (INIS)

    Some physical and catalytic properties of the two-component copper(II)oxide-chromium(III)oxide catalysts with different content of both components were studied using the decomposition of the aqueous solution of hydrogen peroxide as a test reaction. It was found that along to both basic components, the system under study also contained the spinel structure CuCr2O4, chromate washable by water and hexavalent ions of chromium unwashable by water. The soluble chromate was catalytically active. During the first period of the reaction the equilibrium was being established in both homogeneous and heterogeneous catalytic systems. The catalytic activity as well as the specific surface area of the washed solid is a non-monotonous function of its composition. It seems highly probable that the extreme values of both these quantities are not connected with the detected admixtures in the catalytic system. The system under study is very insensitive with regard to the applied doses of gamma radiation. Its catalytic properties change rather significantly after thermal treatment and particularly after the partial reduction to low degree by hydrogen. The observed changes of the catalytic activity of the system under study are very probably connected with the changes in the valence state of the catalytically active components of the catalyst. (author). 5 figs., 4 tabs., 16 refs

  9. Ammonia as a Suitable Fuel for Fuel Cells

    OpenAIRE

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel ...

  10. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    ShanwenTao

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  11. Síntese, caracterização e avaliação catalítica de Vo x/Mg yAlo x na reação de decomposição do isopropanol Synthesis, characterization and catalytic evaluation of Vo x/Mg yAlo x in the decomposition of isopropanol

    OpenAIRE

    Gilberto G. Cortez; Débora M. Meira

    2008-01-01

    Vanadium oxide supported on hydrotalcite-type precursors was studied in the decomposition of isopropanol. Hydrotalcite-type compounds with different y = Mg+2/Al+3 ratios were synthesized by the method of coprecipitating nitrates of Mg+2 and Al+3 cations with K2CO3 as precipitant. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active...

  12. Ammonia manipulates the ammonia-oxidizing archaea and bacteria in the coastal sediment-water microcosms.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Dai, Tianjiao; Sun, Renhua; Wen, Donghui

    2015-08-01

    Ammonia was observed as a potential significant factor to manipulate the abundance and activity of ammonia-oxidizing microorganisms (AOMs) in water environments. For the first time, this study confirmed this phenomenon by laboratory cultivation. In a series of estuarine sediment-coastal water microcosms, we investigated the AOM's phylogenetic composition and activity change in response to ammonia concentration. Increase of ammonia concentration promoted bacterial amoA gene abundance in a linear pattern. The ratio of transcribed ammonia-oxidizing bacteria (AOB) amoA gene/ammonia-oxidizing archaea (AOA) amoA gene increased from 0.1 to 43 as NH4 (+)-N increased from less than 0.1 to 12 mg L(-1), and AOA amoA transcription was undetected under 20 mg NH4 (+)-N L(-1). The incubation of stable isotope probing (SIP) microcosms revealed a faster (13)C-NaHCO3 incorporation rate of AOA amoA gene under 0.1 mg NH4 (+)-N L(-1) and a sole (13)C-NaHCO3 utilization of the AOB amoA gene under 20 mg NH4 (+)-N L(-1). Our results indicate that ammonia concentration manipulates the structure of AOM. AOA prefers to live and perform higher amoA transcription activity than AOB in ammonia-limited water environments, and AOB tends to take the first contributor place in ammonia-rich ones. PMID:25797330

  13. Transformation of ammonia i biological airfilters

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Sørensen, Karen; Andersen, Mathias;

    2007-01-01

    Ammonia is a major compound in ventilation air from animal houses. In biological filters it is with varying efficiency transformed by physical, biological, and chemical processes and ends up as ammonium, nitrate, and nitrite dissolved in water and as dinitrogen, nitrous oxide and nitric oxide emi...... removal without too much energy consumption, waste water production, green house gas emission, or suppression of the filters odor removal efficiency.......Ammonia is a major compound in ventilation air from animal houses. In biological filters it is with varying efficiency transformed by physical, biological, and chemical processes and ends up as ammonium, nitrate, and nitrite dissolved in water and as dinitrogen, nitrous oxide and nitric oxide...... nitrite oxidation only appeared in locations with minimal ammonia and nitrite levels. Nitrous oxide emission depended on anoxic microsites, and nitric oxide production was associated with nitrite accumulation. Water and biomass management appear to be the important tools for optimization of ammonia...

  14. Assimilation of ammonia in Paracoccus denitrificans.

    Science.gov (United States)

    Mikes, V; Chválová, H; Mátlová, L

    1991-01-01

    Two pathways serve for assimilation of ammonia in Paracoccus denitrificans. Glutamate dehydrogenase (NADP+) catalyzes the assimilation at a high NH4+ concentration. If nitrate serves as the nitrogen source, glutamate is synthesized by glutamate-ammonia ligase and glutamate synthase (NADPH). At a very low NH4+ concentration, all three enzymes are synthesized simultaneously. No direct relationship exists between glutamate dehydrogenase (NADP+) and glutamate-ammonia ligase in P. denitrificans, while the glutamate synthase (NADPH) activity changes in parallel with that of the latter enzyme. Ammonia does not influence the induction or repression of glutamate dehydrogenase (NADP+). The inner concentration of metabolites indicates a possible repression of glutamate dehydrogenase (NADP+) by the high concentration of glutamine or its metabolic products as in the case when NH4+ is formed by assimilative nitrate reduction. No direct effect of the intermediates of nitrate assimilation on the synthesis of glutamate dehydrogenase (NADP+) was observed. PMID:1688163

  15. INVESTIGATION OF THE ORION RESEARCH AMMONIA MONITOR

    Science.gov (United States)

    The Orion Research ammonia monitor was investigated using the Orion specifications and environmental considerations as a guide. Laboratory tests under controlled environmental conditions showed the electronic stability (drift) to be well within + or - 10 percent of reading over t...

  16. Mitigate emissions of Ammonia from Nitrogen fertilizers

    International Nuclear Information System (INIS)

    Ammonia emissions are one of the main causes of acidification and eutrophication processes, and one of the most important contributors to the formation of secondary PM. The European NEC Directive 2001/81/CE introduced compulsory national emission ceiling for different pollutants and fixed for each countries a national ceiling for ammonia emissions to be reached in 2010. Agriculture plays a crucial role by emitting more than 90% of the total ammonia emissions. The main sources are livestock and fertilizer uses. In our activities we have studied the effects of different strategies to reduce Nitrogen fertilizer use and specifically Urea in Italy at the year 2010 and 2020. Different measures and techniques have been evaluated to estimate their effects as a potential options to mitigate emissions: fertilization, controlled release of fertilizers and biological agriculture. Each one of this option has been evaluated in terms of NH3 emission abatement showing that they could together provide good result in reducing ammonia air emission

  17. Ammonia Affects Astroglial Proliferation in Culture.

    Directory of Open Access Journals (Sweden)

    Guillermo Bodega

    Full Text Available Primary cultures of rat astroglial cells were exposed to 1, 3 and 5 mM NH4Cl for up to 10 days. Dose- and time-dependent reductions in cell numbers were seen, plus an increase in the proportion of cells in the S phase. The DNA content was reduced in the treated cells, and BrdU incorporation diminished. However, neither ammonia nor ammonia plus glutamine had any effect on DNA polymerase activity. iTRAQ analysis showed that exposure to ammonia induced a significant reduction in histone and heterochromatin protein 1 expression. A reduction in cell viability was also noted. The ammonia-induced reduction of proliferative activity in these cultured astroglial cells seems to be due to a delay in the completion of the S phase provoked by the inhibition of chromatin protein synthesis.

  18. Ultrafast dynamics of electrons in ammonia.

    Science.gov (United States)

    Vöhringer, Peter

    2015-04-01

    Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron. PMID:25493716

  19. Autonomous Gaussian Decomposition

    Science.gov (United States)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-04-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  20. Nitrocarburizing in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammonia-propene-hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere and...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  1. Sanitisation of faecal sludge by ammonia

    OpenAIRE

    Fidjeland, Jörgen

    2015-01-01

    Faecal sludge contains valuable plant nutrients and can be used as a fertiliser in agriculture, instead of being emitted as a pollutant. As this involves a risk of pathogen transmission, it is crucial to inactivate the pathogens in faecal sludge. One treatment alternative is ammonia sanitisation, as uncharged ammonia (NH₃) inactivates pathogens. The aim of this thesis was to study how the pathogen inactivation depends on treatment factors, mainly NH₃ concentration, temperature and storage tim...

  2. Study of Ammonia Emissions in a Ventilated Pig Pen

    OpenAIRE

    Rong, Li

    2011-01-01

    Pig productions cause a wide emission of odors, such as ammonia (NH3), hydrogen sulfide (H2S), and methane (CH4). Ammonia is one of the most important emissions for evaluating the air quality either in animal buildings or atmospheric environment. In studies of ammonia emission from animal buildings reported in literature, little effort has been made to investigate the accuracy of current Henry’s law constant for modeling ammonia mass transfer process and study ammonia emissions in a full scal...

  3. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  4. Catalytic Phosphination and Arsination

    Institute of Scientific and Technical Information of China (English)

    Kwong Fuk Yee; Chan Kin Shing

    2004-01-01

    The catalytic, user-friendly phosphination and arsination of aryl halides and triflates by triphenylphosphine and triphenylarsine using palladium catalysts have provided a facile synthesis of functionalized aryl phosphines and arsines in neutral media. Modification of the cynaoarisne yielded optically active N, As ligands which will be screened in various asymmetric catalysis.

  5. Monolithic catalytic igniters

    Science.gov (United States)

    La Ferla, R.; Tuffias, R. H.; Jang, Q.

    1993-01-01

    Catalytic igniters offer the potential for excellent reliability and simplicity for use with the diergolic bipropellant oxygen/hydrogen as well as with the monopropellant hydrazine. State-of-the-art catalyst beds - noble metal/granular pellet carriers - currently used in hydrazine engines are limited by carrier stability, which limits the hot-fire temperature, and by poor thermal response due to the large thermal mass. Moreover, questions remain with regard to longevity and reliability of these catalysts. In this work, Ultramet investigated the feasibility of fabricating monolithic catalyst beds that overcome the limitations of current catalytic igniters via a combination of chemical vapor deposition (CVD) iridium coatings and chemical vapor infiltration (CVI) refractory ceramic foams. It was found that under all flow conditions and O2:H2 mass ratios tested, a high surface area monolithic bed outperformed a Shell 405 bed. Additionally, it was found that monolithic catalytic igniters, specifically porous ceramic foams fabricated by CVD/CVI processing, can be fabricated whose catalytic performance is better than Shell 405 and with significantly lower flow restriction, from materials that can operate at 2000 C or higher.

  6. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    Science.gov (United States)

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  7. Using ammonia as a sustainable fuel

    Science.gov (United States)

    Zamfirescu, C.; Dincer, I.

    In this study, ammonia is identified as a sustainable fuel for mobile and remote applications. Similar to hydrogen, ammonia is a synthetic product that can be obtained either from fossil fuels, biomass, or other renewable sources. Some advantages of ammonia with respect to hydrogen are less expensive cost per unit of stored energy, higher volumetric energy density that is comparable with that of gasoline, easier production, handling and distribution with the existent infrastructure, and better commercial viability. Here, the possible ways to use ammonia as a sustainable fuel in internal combustion engines and fuel-cells are discussed and analysed based on some thermodynamic performance models through efficiency and effectiveness parameters. The refrigeration effect of ammonia, which is another advantage, is also included in the efficiency calculations. The study suggests that the most efficient system is based on fuel-cells which provide simultaneously power, heating and cooling and its only exhaust consists of water and nitrogen. If the cooling effect is taken into consideration, the system's effectiveness reaches 46% implying that a medium size car ranges over 500 km with 50 l fuel at a cost below 2 per 100 km. The cooling power represents about 7.2% from the engine power, being thus a valuable side benefit of ammonia's presence on-board.

  8. Livestock wastewater treatment: ammonia removal

    International Nuclear Information System (INIS)

    Livestock wastewater contains high concentration of ammonia. Removal of this inorganic species of nitrogen could be achieved through nitrification and de-nitrification. Nitrification process was conducted in the laboratory using activated sludge process with HRT of three and five days. After wastewater undergone nitrification process at Livestock Wastewater Treatment Plant the concentration of influent for N-NH4+ reduced from 400 mg/l to 0 mg/l and concentration of N-NO3- increased from 11 mg/l to 300 mg/l. Nitrification using lab-scale activated sludge process also recorded similar result. Concentration of N-NH4+ reduced from 400 mg/l to 2 mg/l and 380 mg/l to 1.1 mg/l for HRT=5 days and HRT=3 days respectively. N-NO3- was increased from 11 mg/l to 398 mg/l and 14 mg/l to 394 mg/l for HRT=5 days and HRT=3 days, respectively. However changes of N-NH4+ and N=NO3- were not observed using gamma irradiation. The combination of gamma irradiation with activated sludge process indicated difference and its contribution is still investigated

  9. Probing Reversible Chemistry in Coenzyme B12-Dependent Ethanolamine Ammonia Lyase with Kinetic Isotope Effects

    OpenAIRE

    Rentergent, Julius; Scruton, Nigel S; Hay, Sam; Jones, Alex R.

    2015-01-01

    Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5′-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5′-deoxyadenosyl radical and substrate duri...

  10. Preparation of mesoporous activated carbons from coal liquefaction residue for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    Jianbo Zhang; Lijun Jin; Shengwei Zhu; Haoquan Hu

    2012-01-01

    Mesoporous activated carbons were prepared from direct coal liquefaction residue (CLR) by KOH activation method,and the experiments were carried out to investigate the effects of KOH/CLR ratio,solvent for mixing the CLR and KOH,and carbonization procedure on the resultant carbon texture and catalytic activity for catalytic methane decomposition (CMD).The results showed that optimal KOH/CLR ratio of 2 ∶ 1;solvent with higher solubility to KOH or the CLR,and an appropriate carbonization procedure are conductive to improving the carbon pore structure and catalytic activity for CMD.The resultant mesoporous carbons show higher and more stable activity than microporous carbons.Additionally,the relationship between the carbon textural properties and the catalytic activity for CMD was also discussed.

  11. Some nonlinear space decomposition algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  12. Bridge Decomposition of Restriction Measures

    CERN Document Server

    Alberts, Tom

    2009-01-01

    Motivated by Kesten's bridge decomposition for two-dimensional self-avoiding walks in the upper half plane, we show that the conjectured scaling limit of the half-plane SAW, the SLE(8/3) process, also has an appropriately defined bridge decomposition. This continuum decomposition turns out to entirely be a consequence of the restriction property of SLE(8/3), and as a result can be generalized to the wider class of restriction measures. Specifically we show that the restriction hulls with index less than one can be decomposed into a Poisson Point Process of irreducible bridges in a way that is similar to Ito's excursion decomposition of a Brownian motion according to its zeros.

  13. Zariski decompositions on arithmetic surfaces

    OpenAIRE

    Moriwaki, Atsushi

    2009-01-01

    In this paper, we establish the Zariski decompositions of arithmetic R-divisors of continuous type on arithmetic surfaces and investigate several properties. We also develop the general theory of arithmetic R-divisors on arithmetic varieties.

  14. Decomposition Techniques for Subgraph Matching

    CERN Document Server

    Zampelli, Stephane; Deville, Yves; Backofen, Rolf

    2008-01-01

    In the constraint programming framework, state-of-the-art static and dynamic decomposition techniques are hard to apply to problems with complete initial constraint graphs. For such problems, we propose a hybrid approach of these techniques in the presence of global constraints. In particular, we solve the subgraph isomorphism problem. Further we design specific heuristics for this hard problem, exploiting its special structure to achieve decomposition. The underlying idea is to precompute a static heuristic on a subset of its constraint network, to follow this static ordering until a first problem decomposition is available, and to switch afterwards to a fully propagated, dynamically decomposing search. Experimental results show that, for sparse graphs, our decomposition method solves more instances than dedicated, state-of-the-art matching algorithms or standard constraint programming approaches.

  15. Decomposition Approaches for Optimization Problems

    OpenAIRE

    Kinable, Joris

    2014-01-01

    This dissertation encompasses the development of decomposition approaches for a variety of both real-world and fundamental optimization problems. Many optimization problems comprise of multiple interconnected subproblems, often rendering them too large or too complicated to solve as a single integral problem. Decomposition approaches are required to deal with these problems efficiently. By decomposing a problem into multiple subproblems, efficient dedicated procedures can be employed to solve...

  16. Additive decompositions with interaction effects

    OpenAIRE

    Biewen, Martin

    2012-01-01

    This paper proposes a comprehensive, path-independent decomposition formula of changes into ceteris paribus effects and interaction effects. The formula implies a reassessment of sequential decomposition methods that are widely used in the literature and that are restrictive in how they treat interaction effects. If counterfactual outcomes are correctly specified, it may also be viewed as a description of certain aspects of causality in the situation where more than one causal influence is pr...

  17. Greedy Friensdhip Decompositions of Graphs

    OpenAIRE

    Teresa Sousa

    2011-01-01

    A graph that consists of t cliques sharing a vertex v is said to be a t-friendship graph with center v. A friendship graph is a graph that is t-friendship for some . We solve the problem of finding the best upper bound for the size of a greedy 2-friendship decomposition and a greedy friendship decomposition of graphs of order n.

  18. Pants decompositions of random surfaces

    OpenAIRE

    Guth, Larry; Parlier, Hugo; Young, Robert

    2010-01-01

    Our goal is to show, in two different contexts, that "random" surfaces have large pants decompositions. First we show that there are hyperbolic surfaces of genus $g$ for which any pants decomposition requires curves of total length at least $g^{7/6 - \\epsilon}$. Moreover, we prove that this bound holds for most metrics in the moduli space of hyperbolic metrics equipped with the Weil-Petersson volume form. We then consider surfaces obtained by randomly gluing euclidean triangles (with unit sid...

  19. TREE DECOMPOSITIONS OF MULTIGRAPHS

    Institute of Scientific and Technical Information of China (English)

    SHI Minyong

    1999-01-01

    For a graph G, ifE(G) can be partitioned into several pairwise disjointsets as { E1, E2,……,El} such thatthe subgraph induced by Ei is a tree of orderki, (i=1,2, ……, l), then G is said to have a {k1,k2,……, kl}-tree-decomposition, denoted by {k1,k2,……, kl}∈G.For k≥1 and l≥0, a collection(G)(k,l) is the setof multigraphs such that G∈(G)(k,l) if and only if ε(G) = k(|G|-1)-l and ε(H)≤max{(k-1)(|H|-1), k(|H|-1)-l} for any subgraph H of G.We prove that (1) If k≥2, 0≤l≤3 and G∈(G)(k,l) of order n≥l+1, then {n,n,……, n-l}∈ G. (2) If k≥2 and G∈(G)(k,2) oforder n≥3, then {n,n,……, n,n-2}∈G and {n,n,……, n,n-1,n-1}∈G. (3) If k3 and G∈(G)(k,3) oforder n≥4, then {n,n,……, n,n-3}∈G ,{ n,n,……, n,n-1,n-2}∈ G and {n,n, ……, n,n-1,n-1,n-1}∈G.

  20. Decompositions of general quantum gates

    CERN Document Server

    Möttönen, M P

    2005-01-01

    Quantum algorithms may be described by sequences of unitary transformations called quantum gates and measurements applied to the quantum register of n quantum bits, qubits. A collection of quantum gates is called universal if it can be used to construct any n-qubit gate. In 1995, the universality of the set of one-qubit gates and controlled NOT gate was shown by Barenco et al. using QR decomposition of unitary matrices. Almost ten years later the decomposition was improved to include essentially fewer elementary gates. In addition, the cosine-sine matrix decomposition was applied to efficiently implement decompositions of general quantum gates. In this chapter, we review the different types of general gate decompositions and slightly improve the best known gate count for the controlled NOT gates to (23/48)4^n in the leading order. In physical realizations, the interaction strength between the qubits can decrease strongly as a function of their distance. Therefore, we also discuss decompositions with the restr...

  1. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2010-01-01

    °C. Full conversion to Lu2O3 is achieved at about 1000 °C. Whereas the temperatures and solid reaction products of the first two decomposition steps are similar to those previously reported for the thermal decomposition of lanthanum(III) propionate monohydrate, the final decomposition of the......The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous...... propionate to Lu2O2CO3 with evolution of CO2 and 3-pentanone (C2H5COC2H5) between 300 °C and 400 °C. The further decomposition of Lu2O2CO3 to Lu2O3 is characterized by an intermediate constant mass plateau corresponding to a Lu2O2.5(CO3)0.5 overall composition and extending from approximately 550 °C to 720...

  2. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  3. Thermoelectric Efficiency Improvement in Vacuum Tubes of Decomposing Liquid Lithium-Ammonia Solutions

    International Nuclear Information System (INIS)

    Lithium-ammonia (Li-NH3) solutions are possible to be successfully made under the vacuum condition but there still remains a problem of undergoing stable and reliable decomposition in vacuum for high-efficiency thermoelectric power generation. This paper describes a new method for improving the thermoelectric conversion efficiency of Li-NH3 solutions in vacuum. The proposed method uses a ‘U’-shaped Pyrex vacuum tube for the preparation and decomposition of pure fluid Li-NH3 solutions. The tube is shaped so that a gas passageway (‘U’) connecting both legs of the ‘U’ helps to balance pressure inside both ends of the tube (due to NH3 gasification) during decomposition on the hot side. Thermoelectric experimental results show that solution reaction in the ‘U’-shaped tube proceeds more stably and efficiently than in the ‘U’-shaped tube, and consequently, thermoelectric conversion efficiency is improved. It is also proved that the proposed method can provide a reversible reaction, which can rotate between synthesis and decomposition in the tube, for deriving the long-time, high-efficiency thermoelectric power

  4. Thermoelectric Efficiency Improvement in Vacuum Tubes of Decomposing Liquid Lithium-Ammonia Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungyoon; Kim, Miae; Shim, Kyuchol; Kim, Jibeom; Jeon, Joonhyeon [Dongguk University, Seoul (Korea, Republic of)

    2013-06-15

    Lithium-ammonia (Li-NH{sub 3}) solutions are possible to be successfully made under the vacuum condition but there still remains a problem of undergoing stable and reliable decomposition in vacuum for high-efficiency thermoelectric power generation. This paper describes a new method for improving the thermoelectric conversion efficiency of Li-NH{sub 3} solutions in vacuum. The proposed method uses a ‘U’-shaped Pyrex vacuum tube for the preparation and decomposition of pure fluid Li-NH{sub 3} solutions. The tube is shaped so that a gas passageway (‘U’) connecting both legs of the ‘U’ helps to balance pressure inside both ends of the tube (due to NH{sub 3} gasification) during decomposition on the hot side. Thermoelectric experimental results show that solution reaction in the ‘U’-shaped tube proceeds more stably and efficiently than in the ‘U’-shaped tube, and consequently, thermoelectric conversion efficiency is improved. It is also proved that the proposed method can provide a reversible reaction, which can rotate between synthesis and decomposition in the tube, for deriving the long-time, high-efficiency thermoelectric power.

  5. Sulfate Promoted Zirconia as Promising Alkali-Resistant Support for Catalytic NOx Removal

    OpenAIRE

    Due-Hansen, Johannes; Kustov, Arkadii; Christensen, Claus H.; Fehrmann, Rasmus

    2007-01-01

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant is the most efficient method to eliminate NOx from flue gases in stationary sources. The traditional SCR catalyst suffers significant deactivation with time due to the presence of relative large amoun...

  6. Sulfated Zirconia as Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant ...... interact with potassium stronger than active metal species. Among potential carriers, sulfated zirconia is of high interest because its acidic and textural properties can be modified by varying preparation conditions....

  7. Kinetic modeling of Pt catalyzed and computation-driven catalyst discovery for ethylene glycol decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Salciccioli, M.; Vlachos, D. G.

    2011-10-07

    Knowledge of the underlying mechanisms controlling oxygenate catalytic decomposition to synthesis gas can lead to the design of better catalysts and reactors, enabling the utilization of biomass feedstock for fuels and chemicals. This work studies the decomposition of ethylene glycol, as a simple surrogate to biomass-derived polyols, through the analysis of two catalytic kinetic models. First, a density functional theory (DFT) and statistical mechanical parametrized model of 81 reversible, elementary-like reactions is used to predict and understand ethylene glycol decomposition on Pt. Reaction path analysis indicates that while the majority of decomposition occurs through initial O–H bond breaking, initial C–H bond breaking is active at temperatures around 500 K. Further, sensitivity analysis shows that early dehydrogenation reactions (specifically HOCH₂CH₂O* → HOCH₂CHO* + H*) are kinetically important reactions, rather than C–C bond breaking. We show that steady state reactor conditions open up new reaction pathways not seen in surface science (temperature programmed desorption) experiments. The second model, parametrized based on semiempirical linear scaling and linear free energy relationships, consists of 250 reversible, elementary-like reactions and maps the dependence of ethylene glycol decomposition rate and selectivity to various products versus atomic binding energy descriptors. The results show that an optimal catalyst that maximizes the H₂ production rate should have binding energies of 58, 116, and 145 kcal/mol for atomic hydrogen, oxygen, and carbon, respectively. These models can be used to guide future experimental efforts in developing catalysts for polyol reforming.

  8. Catalytic upgrading of lignin

    OpenAIRE

    Garza Treviño, Ricardo

    2015-01-01

    In the broadest vision to contribute to sustainability, with focus on the use of lignin as a sustainable source for the production of chemicals, experiments were performed to find which chemicals may potentially be produced from isolated (organosolv-extracted) lignin through its decomposition by hydrodeoxygenation, as well as to describe the properties and composition of the product as a whole. Catalyst screening was implemented to evaluate the optimal catalyst to obtain low molecular weight ...

  9. Síntese, caracterização e avaliação catalítica de Vo x/Mg yAlo x na reação de decomposição do isopropanol Synthesis, characterization and catalytic evaluation of Vo x/Mg yAlo x in the decomposition of isopropanol

    Directory of Open Access Journals (Sweden)

    Gilberto G. Cortez

    2008-01-01

    Full Text Available Vanadium oxide supported on hydrotalcite-type precursors was studied in the decomposition of isopropanol. Hydrotalcite-type compounds with different y = Mg+2/Al+3 ratios were synthesized by the method of coprecipitating nitrates of Mg+2 and Al+3 cations with K2CO3 as precipitant. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.

  10. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    methanogens are more robust to ammonia toxicity effect. It has been shown that bioaugmentation of a pure strain of a hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) in an ammonia inhibited continuous anaerobic reactor can improve methane production more than 30%. Nevertheless, cultivation......Ammonia is the most common inhibitor of anaerobic digestion (AD) process, resulting in suboptimal exploitation of the biogas potential of the feedstocks, causing significant economic losses to the biogas plants. Ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...

  11. Water Quality of NPP Secondary Side with Combined Water Chemistry of Ammonia and Ethanolamine

    International Nuclear Information System (INIS)

    Ammonia (AM) and Ethanolamine (ETA), as pH control additive agents, were injected to the secondary side in a Korean NPP for the even pH in the entire secondary system including the wet region and the condensate. Ammonia and ETA are dominant in the vapor and liquid phases, respectively, since the former and latter are more and less volatile than water in the temperature range of 30 to 300 . pH of 9.5 to 9.7 was maintained in the water-steam cycle at the concentrations of ammonia with ∼1.0 ppm and ETA of ∼1.8 ppm. From the standpoint of corrosion, i.g, concentration of Fe, the water quality of secondary side was improved by the combined water treatment of ammonia and ETA, compared to all volatile treatment of ammonia. The electrical conductivity was increased from 6 to 10 μS/cm due to the presence of organic carboxylates produced by the decomposition of ETA. ETA was broken down by <5% in steam generator and converted into formate, acetate, and glycolate, among which acetate was largely formed. But inorganic ions such as Na+, Cl-, and SO42- are not changed because their ingress was not made and the selectivity of resin over those ions was not fairly altered. The runtime of demineralizer in steam generator blowdown was shortened by a third for a mixture of ammonia and ETA. Most of Fe was originated from the shell side of heat exchangers including the condenser as a result of corrosion. Fe was only eliminated by ion exchange demineralizers, i.e., 46% at CPP and 3% at SG BD and 70% of Fe oxides were accumulated at the steam generator, on the basis of Fe concentration at the final feedwater. In conclusion, ETA is preferable to ammonia for the enhancement of pH in the liquid phase of water-steam mixture such as the shell side of heat exchanger and also the full-flow operation of CPP is more desirable than partial-flow operation for the improved removal of corrosion products, regardless of hydrogen- or amine-type operation. (authors)

  12. Real interest parity decomposition

    Directory of Open Access Journals (Sweden)

    Alex Luiz Ferreira

    2009-09-01

    Full Text Available The aim of this paper is to investigate the general causes of real interest rate differentials (rids for a sample of emerging markets for the period of January 1996 to August 2007. To this end, two methods are applied. The first consists of breaking the variance of rids down into relative purchasing power pariety and uncovered interest rate parity and shows that inflation differentials are the main source of rids variation; while the second method breaks down the rids and nominal interest rate differentials (nids into nominal and real shocks. Bivariate autoregressive models are estimated under particular identification conditions, having been adequately treated for the identified structural breaks. Impulse response functions and error variance decomposition result in real shocks as being the likely cause of rids.O objetivo deste artigo é investigar as causas gerais dos diferenciais da taxa de juros real (rids para um conjunto de países emergentes, para o período de janeiro de 1996 a agosto de 2007. Para tanto, duas metodologias são aplicadas. A primeira consiste em decompor a variância dos rids entre a paridade do poder de compra relativa e a paridade de juros a descoberto e mostra que os diferenciais de inflação são a fonte predominante da variabilidade dos rids; a segunda decompõe os rids e os diferenciais de juros nominais (nids em choques nominais e reais. Sob certas condições de identificação, modelos autorregressivos bivariados são estimados com tratamento adequado para as quebras estruturais identificadas e as funções de resposta ao impulso e a decomposição da variância dos erros de previsão são obtidas, resultando em evidências favoráveis a que os choques reais são a causa mais provável dos rids.

  13. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  14. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  15. Regeneration of ammonia borane spent fuel

    International Nuclear Information System (INIS)

    A necessary target in realizing a hydrogen (H2) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical H2 storage has been dominated by one appealing material, ammonia borane (H3N-BH3, AB), due to its high gravimetric capacity of H2 (19.6 wt %) and low molecular weight (30.7 g mol-1). In addition, AB has both hydridic and protic moieties, yielding a material from which H2 can be readily released in contrast to the loss of H2 from C2H6 which is substantially endothermic. As such, a number of publications have described H2 release from amine boranes, yielding various rates depending on the method applied. The viability of any chemical H2 storage system is critically dependent on efficient recyclability, but reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. Our group is currently engaged in trying to find and fully demonstrate an energy efficient regeneration process for the spent fuel from H2 depleted AB with a minimum number of steps. Although spent fuel composition depends on the dehydrogenation method, we have focused our efforts on the spent fuel resulting from metal-based catalysis, which has thus far shown the most promise. Metal-based catalysts have produced the fastest rates for a single equivalent of H2 released from AB and up to 2.5 equiv. of H2 can be produced within 2 hours. While ongoing work is being carried out to tailor the composition of spent AB fuel, a method has been developed for regenerating the predominant product, polyborazylene (PB) which can be obtained readily from the decomposition of borazine or from nickel

  16. Molecular modelling of the decomposition of NH{sub 3} over CoO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Shojaee, Kambiz; Haynes, Brian S.; Montoya, Alejandro, E-mail: alejandro.montoya@sydney.edu.au

    2015-04-15

    Spin-polarised density functional theory using the PBE + U approach are used to determine reaction pathways of successive NH{sub 3} dehydrogenation on the CoO(100) surface. NH{sub 3} dehydrogenation promotes noticeable displacements of the surface CoO sites, in particular due to the binding of NH{sub 2} and H species. Surface lattice O has low activity towards dehydrogenation, reflected in energy barriers that are in the range of 292 kJ mol{sup −1} to 328 kJ mol{sup −1}. There is a preference of surface NH{sub 3} dehydrogenation to N{sub 2} rather than towards NO, due to a high-energy penalty of surface O vacancy formation. The presence of CoO in cobalt oxide catalysts not only may decline the ammonia conversion but also alter the selectivity towards N{sub 2} rather than NO. - Highlights: • Minimum reactions pathways of ammonia decomposition were studied using density functional theory. • The bonding characteristics of NH{sub x} and H on the CoO(100) surface were analysed using Layer-projected density of states. • Dehydrogenations of NH{sub 3}, NH{sub 2} and NH are highly activated. • The presence of strongly bound lattice oxygen favours the ammonia decomposition towards N{sub 2}.

  17. Molecular modelling of the decomposition of NH3 over CoO(100)

    International Nuclear Information System (INIS)

    Spin-polarised density functional theory using the PBE + U approach are used to determine reaction pathways of successive NH3 dehydrogenation on the CoO(100) surface. NH3 dehydrogenation promotes noticeable displacements of the surface CoO sites, in particular due to the binding of NH2 and H species. Surface lattice O has low activity towards dehydrogenation, reflected in energy barriers that are in the range of 292 kJ mol−1 to 328 kJ mol−1. There is a preference of surface NH3 dehydrogenation to N2 rather than towards NO, due to a high-energy penalty of surface O vacancy formation. The presence of CoO in cobalt oxide catalysts not only may decline the ammonia conversion but also alter the selectivity towards N2 rather than NO. - Highlights: • Minimum reactions pathways of ammonia decomposition were studied using density functional theory. • The bonding characteristics of NHx and H on the CoO(100) surface were analysed using Layer-projected density of states. • Dehydrogenations of NH3, NH2 and NH are highly activated. • The presence of strongly bound lattice oxygen favours the ammonia decomposition towards N2

  18. Decomposition mechanism of melamine borate in pyrolytic and thermo-oxidative conditions

    International Nuclear Information System (INIS)

    Highlights: • Decomposition of melamine borate in pyrolytic and thermo-oxidative conditions was investigated. • With increasing temperature, orthoboric acid forms boron oxide releasing water. • Melamine decomposes evolving melamine, ammonia and other fragments. • Boron oxide is transformed into boron nitride and boron nitride-oxide structures through presence of ammonia. - Abstract: Decomposition mechanism of melamine borate (MB) in pyrolytic and thermo-oxidative conditions is investigated in the condensed and gas phases using solid state NMR (13C and 11B), X-ray photoelectron spectroscopy (XPS), pyrolysis-gas chromatography–mass spectrometry (py-GCMS) and thermogravimetric analysis coupled with a Fourier transform infrared spectrometer (TGA–FTIR). It is evidenced that orthoboric acid dehydrates to metaboric and then to boron oxide. The melamine is partially sublimated. At the same time, melamine condensates, i.e., melem and melon are formed. Melon is only formed in thermo-oxidative conditions. At higher temperature, melem and melon decompose releasing ammonia which reacts with the boron oxide to form boron nitride (BN) and BNO structures

  19. On the robustness of the ammonia thermometer

    CERN Document Server

    Maret, Sebastien; Scifoni, Emanuele; Wiesenfeld, Laurent

    2009-01-01

    Ammonia inversion lines are often used as probes of the physical conditions in the dense ISM. The excitation temperature between the first two para metastable (rotational) levels is an excellent probe of the gas kinetic temperature. However, the calibration of this ammonia thermometer depends on the accuracy of the collisional rates with H2. Here we present new collisional rates for ortho-NH3 and para-NH3 colliding with para-H2 (J=0) and we investigate the effects of these new rates on the excitation of ammonia. Scattering calculations employ a new, high accuracy, potential energy surface computed at the coupled-cluster CCSD(T) level with a basis set extrapolation procedure. Rates are obtained for all transitions involving ammonia levels with J <= 3 and for kinetic temperatures in the range 5-100 K. We find that the calibration curve of the ammonia thermometer -- which relates the observed excitation temperature between the first two para metastable levels to the gas kinetic temperature -- does not change ...

  20. Ammonia/Hydrogen Mixtures in an SI-Engine

    DEFF Research Database (Denmark)

    Mørch, Christian Sandersen; Bjerre, Andreas; Gøttrup, Morten Piil;

    2011-01-01

    In recent years there has been increasing focus on using metal ammine complexes for ammonia storage. In this paper a fuel system for ammonia fuelled internal combustion engines using metal ammine complexes as ammonia storage is analyzed. The use of ammonia/hydrogen mixtures as an SI-engine fuel is...... investigated in the same context. Ammonia and hydrogen were introduced into the intake manifold of a CFR-engine. Series of experiments with varying excess air ratio and different ammonia to hydrogen ratios was conducted. This showed that a fuel mixture with 10 vol.% hydrogen performs best with respect to...

  1. The effect of outside conditions on anaerobic ammonia oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Shu-bo

    2016-01-01

    Organic carbon, inorganic carbon, temperature, pH and ORP are all to have a certain influence on the anaerobic ammonia oxidation reaction. We can draw some conclusions on the optimum conditions of anaerobic ammonia oxidation reaction. The optimum temperature of the anaerobic ammonia oxidation reaction is 30-35℃. And the optimum pH of the anaerobic ammonia reaction is 7.5-8.3. The presence of organic matters can affect the anaerobic ammonia reaction, and different organic matters have different influence on it. The concentration of the inorganic carbon also exist great influence on the reaction. High inorganic carbon concentration also can inhibit anaerobic ammonia oxidation reaction.

  2. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels

    International Nuclear Information System (INIS)

    The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na2CO3) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor and characterized for water content and heating value. The oil composition was analyzed by GC-MS. Pretreatment of chlorella with Na2CO3 influences the primary conversion of chlorella by shifting the decomposition temperature to a lower value. In the presence of Na2CO3, gas yield increased and liquid yield decreased when compared with non-catalytic pyrolysis at the same temperatures. However, pyrolysis oil from catalytic runs carries higher heating value and lower acidity. Lower content of acids in the bio-oil, higher aromatics, combined with higher heating value show promise for production of high-quality bio-oil from algae via catalytic pyrolysis, resulting in energy recovery in bio-oil of 40%. -- Highlights: → The pyrolytic catalytic conversion of chlorella algae to liquid fuel precursor. → Na2CO3 as a catalyst for the primary conversion of chlorella. → Pyrolysis oil from catalytic runs carries higher heating value and lower acidity. → High-quality bio-oil from algae via catalytic pyrolysis with energy recovery in bio-oil of 40%.

  3. Thermal decomposition of biphenyl (1963)

    International Nuclear Information System (INIS)

    The rates of formation of the decomposition products of biphenyl; hydrogen, methane, ethane, ethylene, as well as triphenyl have been measured in the vapour and liquid phases at 460 deg. C. The study of the decomposition products of biphenyl at different temperatures between 400 and 460 deg. C has provided values of the activation energies of the reactions yielding the main products of pyrolysis in the vapour phase. Product and Activation energy: Hydrogen 73 ± 2 kCal/Mole; Benzene 76 ± 2 kCal/Mole; Meta-triphenyl 53 ± 2 kCal/Mole; Biphenyl decomposition 64 ± 2 kCal/Mole; The rate of disappearance of biphenyl is only very approximately first order. These results show the major role played at the start of the decomposition by organic impurities which are not detectable by conventional physico-chemical analysis methods and the presence of which accelerates noticeably the decomposition rate. It was possible to eliminate these impurities by zone-melting carried out until the initial gradient of the formation curves for the products became constant. The composition of the high-molecular weight products (over 250) was deduced from the mean molecular weight and the dosage of the aromatic C - H bonds by infrared spectrophotometry. As a result the existence in tars of hydrogenated tetra, penta and hexaphenyl has been demonstrated. (author)

  4. Ammonia emission time profiles based on manure transport data improve ammonia modelling across north western Europe

    Science.gov (United States)

    Hendriks, C.; Kranenburg, R.; Kuenen, J. J. P.; Van den Bril, B.; Verguts, V.; Schaap, M.

    2016-04-01

    Accurate modelling of mitigation measures for nitrogen deposition and secondary inorganic aerosol (SIA) episodes requires a detailed representation of emission patterns from agriculture. In this study the meteorological influence on the temporal variability of ammonia emissions from livestock housing and application of manure and fertilizer are included in the chemistry transport model LOTOS-EUROS. For manure application, manure transport data from Flanders (Belgium) were used as a proxy to derive the emission variability. Using improved ammonia emission variability strongly improves model performance for ammonia, mainly by a better representation of the spring maximum. The impact on model performance for SIA was negligible as explained by the limited, ammonia rich region in which the emission variability was updated. The contribution of Flemish agriculture to modelled annual mean ammonia and SIA concentrations in Flanders were quantified at respectively 7-8 and 1-2 μg/m3. A scenario study was performed to investigate the effects of reducing ammonia emissions from manure application during PM episodes by 75%, yielding a maximum reduction in modelled SIA levels of 1-3 μg/m3 during episodes. Year-to-year emission variability and a soil module to explicitly model the emission process from manure and fertilizer application are needed to further improve the modelling of the ammonia budget.

  5. Selective catalytic reduction of NO in a reverse-flow reactor: Modelling and experimental validation

    International Nuclear Information System (INIS)

    Highlights: • Reverse-flow reactors easily overcome feed concentration disturbances. • Central feeding improves ammonia adsorption in reverse-flow reactors. • Dynamic heterogeneous model validated with bench-scale experiments. • Optimum reverse-flow reactor design improves efficiency and reduces reactor size. - Abstract: The abatement of nitrogen oxides produced in combustion processes and in the chemical industry requires efficient and reliable technologies capable of fulfilling strict environmental regulations. Selective catalytic reduction (SCR) with ammonia in fixed-bed (monolithic) reactors has stood out among other techniques in the last decades. In this work, the use of reverse-flow reactors, operated under the forced un-steady state generated by the periodic reversal of the flow direction, is studied for improving the SCR performance. This reactor can take advantage of ammonia adsorption in the catalyst to enhance concentration profiles in the reactor, increasing reaction rate, efficiency and reducing the emission of un-reacted ammonia. The process has been studied experimentally in a bench-scale device using a commercial monolithic catalyst. The optimum operating conditions, best ammonia feed configuration (side or central) and capacity of the reactor to deal with feed concentration disturbances is analysed. The experiments have also been used for validating a mathematical model of the reactor based on mass conservation equations, and the model has been used to design a full-size reverse-flow reactor able of operating at industrial conditions

  6. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store

    Science.gov (United States)

    Kitano, Masaaki; Inoue, Yasunori; Yamazaki, Youhei; Hayashi, Fumitaka; Kanbara, Shinji; Matsuishi, Satoru; Yokoyama, Toshiharu; Kim, Sung-Wng; Hara, Michikazu; Hosono, Hideo

    2012-11-01

    Industrially, the artificial fixation of atmospheric nitrogen to ammonia is carried out using the Haber-Bosch process, but this process requires high temperatures and pressures, and consumes more than 1% of the world's power production. Therefore the search is on for a more environmentally benign process that occurs under milder conditions. Here, we report that a Ru-loaded electride [Ca24Al28O64]4+(e-)4 (Ru/C12A7:e-), which has high electron-donating power and chemical stability, works as an efficient catalyst for ammonia synthesis. Highly efficient ammonia synthesis is achieved with a catalytic activity that is an order of magnitude greater than those of other previously reported Ru-loaded catalysts and with almost half the reaction activation energy. Kinetic analysis with infrared spectroscopy reveals that C12A7:e- markedly enhances N2 dissociation on Ru by the back donation of electrons and that the poisoning of ruthenium surfaces by hydrogen adatoms can be suppressed effectively because of the ability of C12A7:e- to store hydrogen reversibly.

  7. Biochemistry of Ammonia Monoxygenase from Nitrosomonas

    Energy Technology Data Exchange (ETDEWEB)

    Alan Hooper

    2009-07-15

    Major results. 1. CytochromecM552, a protein in the electron transfer chain to ammonia monooxygenase. Purification, modeling of protein structure based on primary structure, characterization of 4 hemes by magnetic spectroscopy, potentiometry, ligand binding and turnover. Kim, H. J., ,Zatsman, et al. 2008). 2. Characterization of proteins which thought to be involved in the AMO reaction or to protect AMO from toxic nitrogenous intermediates such as NO. Nitrosocyanin is a protein present only in bacteria which catalyze the ammonia monoxygenase reaction (1). Cytochrome c P460 beta and cytochrome c’ beta.

  8. Chilled Ammonia Process for CO2 Capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; Well, Willy J.M. van;

    2010-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2–10°C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good...... pressure up to 100bars. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The heat requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that a heat requirement for the desorber lower than 2GJ/ton CO2...

  9. Chilled ammonia process for CO2 capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; van Well, Willy J. M;

    2009-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2-10 degrees C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows...... C and pressure up to 100 bars [1]. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The energy requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that an energy requirement for the desorber...

  10. Enrichment of high ammonia tolerant methanogenic culture

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Proietti, Nicolas; Angelidaki, Irini

    population was derived from a full scale biogas reactor (Hashøj, Denmark), fed with 75% animal manure and 25% food industries organic waste. Basal anaerobic medium was used for the enrichment along with sodium acetate (1 g HAc L-1) as a carbon source. Fluorescence insitu hybridization (FISH) was used to...... of the current study was to isolate and identify methanogenic cultures tolerant to high ammonia concentrations. A mixed methanogenic population was stepwise exposed to ammonia concentrations (1 to 9.26 g NH4+-N L-1) during an enrichment process with successive batch cultivations. The methanogenic...

  11. Facile synthesis and catalytic property of porous tin dioxide nanostructures.

    Science.gov (United States)

    Zhao, Qingrui; Zhang, Zhigao; Dong, Ting; Xie, Yi

    2006-08-10

    Porous tin dioxide (SnO(2)) nanostructures consisting of nanoplates are prepared through thermal decomposition of the mixed solution composed of dibutyltin dilaurate and acetic acid. The aggregations of the nanoplates give rise to large macropores with the size of about 100-300 nm. These nanoplates have a wormhole-like porous structure with the size of about 4 nm and possess high surface area. X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy, infrared spectroscopy, and nitrogen sorption have been employed to characterize the obtained porous structures. It is found that the obtained nanostructures exhibit excellent catalytic activity toward methanol decomposition. Such porous structures with high surface area have promising industrial applications as catalysts. PMID:16884229

  12. Decomposition and Reduction of N2O over Limestone under FBC Conditions

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker; Vaaben, Rikke;

    1997-01-01

    The addition of limestone for sulfur retention in fluidized bed combustion (FBC) has in many cases been observed to influence the emission of N2O. The catalytic activity of N2O over calcined Stevns Chalk for decomposition of N2O in a laboratory fixed bed quartz reactor was measured. It was found...... that calcined Stevns Chalk is an active catalyst for N2O decomposition in an inert atmosphere at FBC temperatures, and the presence of 3 vol% CO increased the rate of N2O destruction by a factor of 5 due to the catalytic reduction of N2O by CO. The activity decreased with increasing CO2 concentration...... reaction between N2O and CaS takes place and SO2 is released....

  13. Dehydrogenation of ammonia borane through the third equivalent of hydrogen.

    Science.gov (United States)

    Zhang, Xingyue; Kam, Lisa; Williams, Travis J

    2016-05-01

    Ammonia borane (AB) has high hydrogen density (19.6 wt%), and can, in principle, release up to 3 equivalents of H2 under mild catalytic conditions. A limited number of catalysts are capable of non-hydrolytic dehydrogenation of AB beyond 2 equivalents of H2 under mild conditions, but none of these is shown directly to derivatise borazine, the product formed after 2 equivalents of H2 are released. We present here a high productivity ruthenium-based catalyst for non-hydrolytic AB dehydrogenation that is capable of borazine dehydrogenation, and thus exhibits among the highest H2 productivity reported to date for anhydrous AB dehydrogenation. At 1 mol% loading, (phen)Ru(OAc)2(CO)2 () effects AB dehydrogenation through 2.7 equivalents of H2 at 70 °C, is robust through multiple charges of AB, and is water and air stable. We further demonstrate that catalyst has the ability both to dehydrogenate borazine in isolation and dehydrogenate AB itself. This is important, both because borazine derivatisation is productivity-limiting in AB dehydrogenation and because borazine is a fuel cell poison that is commonly released in H2 production from this medium. PMID:27052687

  14. Rectangular Decomposition of Binary Images

    Czech Academy of Sciences Publication Activity Database

    Suk, Tomáš; Höschl, Cyril; Flusser, Jan

    Berlin : Springer, 2012 - (Blanc-Talon, J.; Popescu, D.; Philips, W.; Scheunders, P.), s. 213-224 ISBN 978-3-642-33139-8. - (Lecture Notes in Computer Science. 7517). [Advanced Concepts for Intelligent Vision Systems (Acivs 2012). Brno (CZ), 04.09.2012-07.09.2012] R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : binary image decomposition * generalized delta-method * distance transformation * quadtree * bipartite graph * image compression * fast convolution Subject RIV: IN - Informatics, Computer Science http://library.utia.cas.cz/separaty/2012/ZOI/suk-rectangular decomposition of binary images.pdf

  15. Process design for wastewater treatment: catalytic ozonation of organic pollutants.

    Science.gov (United States)

    Derrouiche, S; Bourdin, D; Roche, P; Houssais, B; Machinal, C; Coste, M; Restivo, J; Orfão, J J M; Pereira, M F R; Marco, Y; Garcia-Bordeje, E

    2013-01-01

    Emerging micropollutants have been recently the target of interest for their potential harmful effects in the environment and their resistance to conventional water treatments. Catalytic ozonation is an advanced oxidation process consisting of the formation of highly reactive radicals from the decomposition of ozone promoted by a catalyst. Nanocarbon materials have been shown to be effective catalysts for this process, either in powder form or grown on the surface of a monolithic structure. In this work, carbon nanofibers grown on the surface of a cordierite honeycomb monolith are tested as catalyst for the ozonation of five selected micropollutants: atrazine (ATZ), bezafibrate, erythromycin, metolachlor, and nonylphenol. The process is tested both in laboratorial and real conditions. Later on, ATZ was selected as a target pollutant to further investigate the role of the catalytic material. It is shown that the inclusion of a catalyst improves the mineralization degree compared to single ozonation. PMID:24056437

  16. Thermal decomposition of biphenyl (1963); Decomposition thermique du biphenyle (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Clerc, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The rates of formation of the decomposition products of biphenyl; hydrogen, methane, ethane, ethylene, as well as triphenyl have been measured in the vapour and liquid phases at 460 deg. C. The study of the decomposition products of biphenyl at different temperatures between 400 and 460 deg. C has provided values of the activation energies of the reactions yielding the main products of pyrolysis in the vapour phase. Product and Activation energy: Hydrogen 73 {+-} 2 kCal/Mole; Benzene 76 {+-} 2 kCal/Mole; Meta-triphenyl 53 {+-} 2 kCal/Mole; Biphenyl decomposition 64 {+-} 2 kCal/Mole; The rate of disappearance of biphenyl is only very approximately first order. These results show the major role played at the start of the decomposition by organic impurities which are not detectable by conventional physico-chemical analysis methods and the presence of which accelerates noticeably the decomposition rate. It was possible to eliminate these impurities by zone-melting carried out until the initial gradient of the formation curves for the products became constant. The composition of the high-molecular weight products (over 250) was deduced from the mean molecular weight and the dosage of the aromatic C - H bonds by infrared spectrophotometry. As a result the existence in tars of hydrogenated tetra, penta and hexaphenyl has been demonstrated. (author) [French] Les vitesses de formation des produits de decomposition du biphenyle: hydrogene, methane, ethane, ethylene, ainsi que des triphenyles, ont ete mesurees en phase vapeur et en phase liquide a 460 deg. C. L'etude des produits de decomposition du biphenyle a differentes temperatures comprises entre 400 et 460 deg. C, a fourni les valeurs des energies d'activation des reactions conduisant aux principaux produits de la pyrolyse en phase vapeur. Produit et Energie d'activation: Hydrogene 73 {+-} 2 kcal/Mole; Benzene 76 {+-} 2 kcal/Mole; Metatriphenyle, 53 {+-} 2 kcal/Mole; Decomposition du biphenyle 64 {+-} 2

  17. Catalytic reforming process

    Energy Technology Data Exchange (ETDEWEB)

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  18. Decomposition of N2o on Cs Modified Co-spinel Catalysts

    Czech Academy of Sciences Publication Activity Database

    Michalik, S.; Obalová, L.; Jirátová, Květa

    Bratislava : Slovak Society of Chemical Engineering, 2013 - (Markoš, J.), s. 291 ISBN 978-80-89475-09-4. [International Conference of Slovak Society of Chemical Engineering /40./. Tatranské Matliare (SK), 27.05.2013-31.05.2013] R&D Projects: GA TA ČR TA01020336 Grant ostatní: MŠMT(CZ) SP2013/110 Institutional support: RVO:67985858 Keywords : nitrous oxide * catalytic decomposition * promoter effect Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  19. Diffusion of ammonia gas in PDMS characterized by ATR spectroscopy

    Science.gov (United States)

    Levinský, Petr; Kalvoda, Ladislav; Aubrecht, Jan; Fojtíková, Jaroslava

    2015-01-01

    The kinetic parameters of a chemo-optical transducer layer sensitive to gaseous ammonia are characterized by means of attenuation total reflection method. The tested layer consists of cross-linked polydimethylsiloxane matrix sensitized by quinoline-based organometallic dye showing the selective chemical reaction with ammonia. Upper and lower limits of the ammonia diffusion coefficient and the ammonia-dye reaction constant are derived from the obtained experimental data and compared with other data available in literature and obtained from computer simulations.

  20. Detection of Ammonia in Liquids Using Millimeter Wave Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hilmi Ozturk

    2012-01-01

    Full Text Available Detection of ammonia plays a vital role for counter-bioterrorism applications. Using millimeter wave absorption measurements, ammonia dissolved in water solution is analyzed and compared to water-only solution. The inversion of ammonia molecule results in split rotational spectral lines and transitions of these lines can be detected. Two-port measurements were carried out with vector network analyzer and measurements revealed that ammonia presence can be identified, especially between 30–35 GHz.

  1. Ammonia production, excretion, toxicity, and defense in fish: A Review

    Directory of Open Access Journals (Sweden)

    Alex Y K Ip

    2010-10-01

    Full Text Available Many fishes are ammonotelic but some species can detoxify ammonia to glutamine or urea. Certain fish species can accumulate high levels of ammonia in the brain or defense against ammonia toxicity by enhancing the effectiveness of ammonia excretion through active NH4+ transport, manipulation of ambient pH, or reduction in ammonia permeability through the branchial and cutaneous epithelia. Recent reports on ammonia toxicity in mammalian brain reveal the importance of permeation of ammonia through the blood-brain barrier and passages of ammonia and water through transporters in the plasmalemma of brain cells. Additionally, brain ammonia toxicity could be related to the passage of glutamine through the mitochondrial membranes into the mitochondrial matrix. On the other hand, recent reports on ammonia excretion in fish confirm the involvement of Rhesus glycoproteins in the branchial and cutaneous epithelia. Therefore, this review focuses on both the earlier literature and the up-to-date information on the problems and mechanisms concerning the permeation of ammonia, as NH3, NH4+ or proton-neutral nitrogenous compounds, across mitochondrial membranes, the blood-brain barrier, the plasmalemma of neurons, and the branchial and cutaneous epithelia of fish. It also addresses how certain fishes with high ammonia tolerance defend against ammonia toxicity through the regulation of the permeation of ammonia and related nitrogenous compounds through various types of membranes. It is hoped that this review would revive the interests in investigations on the passage of ammonia through the mitochondrial membranes and the blood-brain barrier of ammonotelic fishes and fishes with high brain ammonia-tolerance, respectively.

  2. Modelling of ammonia emissions from dairy cow houses

    OpenAIRE

    Monteny, G.J.

    2000-01-01

    Dairy cow husbandry contributes to environmental acidification through the emission of ammonia. In-depth knowledge on the processes and variable factors that play a role in the emission of ammonia from dairy cow houses benefits the production of emission data, the development of low emission housing systems, and evaluation of emission levels in a farming system approach. A mechanistic simulation model for the ammonia emission from dairy cow houses was developed to facilitate this.An ammonia p...

  3. High-pressure catalytic reactions over single-crystal metal surfaces

    Science.gov (United States)

    Rodriguez, JoséA.; Wayne Goodman, D.

    1991-11-01

    Studies dealing with high-pressure catalytic reactions over single-crystal surfaces are reviewed. The coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis allows detailed study of structure sensitivity, the effects of promoters and inhibitors on catalytic activity, and, in certain cases, identification of reaction intermediates by post-reaction surface analysis. Examples are provided which demonstrate the relevance of single-crystal studies for modeling the behaviour of high-surface-area supported catalysts. Studies of CO methanation and CO oxidation over single-crystal surfaces provide convincing evidence that these reactions are structure insensitive. For structure-sensitive reactions (ammonia synthesis, alkane hydrogenolysis, alkane isomerization, water-gas shift reaction, etc.) model single-crystal studies allow correlations to be established between surface structure and catalytic activity. The effects of both electronegative (S and P) and electropositive (alkali metals) impurities upon the catalytic activity of metal single crystals for ammonia synthesis, CO methanation, alkane hydrogenolysis, ethylene epoxidation and water-gas shift are discussed. The roles of "ensemble" and "ligand" effects in bimetallic catalysts are examined in light of data obtained using surfaces prepared by vapor-depositing one metal onto a crystal face of a dissimilar metal.

  4. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    Science.gov (United States)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  5. Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process

    International Nuclear Information System (INIS)

    This paper reports the preparation and photocatalytic performance of Bismuth vanadate (BiVO4) by a facile and inexpensive approach. An amorphous BiVO4 was first prepared by a co-precipitation process from aqueous solutions of Bi(NO3)3 and NH4VO3 using ammonia. Followed by heating treatment at various temperatures, the amorphous phase converted to crystalline BiVO4 with a structure between monoclinic and tetragonal scheelite. The crystallization of BiVO4 occurred at about 523 K, while the nanocrystalline BiVO4 were formed with a heat-treatment of lower than 673 K. However, when the heat-treatment was carried out at 773 K, the accumulation of nanocrystals to bulk particles was observed. The photocatalytic performances of the materials were investigated by O2 evolution under visible-light, and MB decomposition under solar simulator. The results demonstrated that the crystalline structure is still the vital factor for the activities of both reactions. However, the crystallinity of BiVO4 gives a major influence on the activity of O2 evolution, whereas the surface area, plays an important role for photocatalytic MB decomposition. - Abstract: BiVO4 was prepared by a co-precipitation process using aqueous ammonia solution, followed by heating treatment at various temperatures. The crystalline structure and crystallization process, and their influences on photocatalytic O2 evolution and organic pollutants degradation were investigated. It demonstrated that the crystalline structure is still the vital factor for the activities of both reactions. However, the crystallinity of BiVO4 gives a major influence on the activity of O2 evolution, whereas the surface area, plays an important role for photocatalytic MB decomposition. Display Omitted

  6. Nitrite as a stimulus for ammonia-starved Nitrosomonas europaea

    NARCIS (Netherlands)

    Laanbroek, H.J.; Bär-Gilissen, M.J.; Hoogveld, H.L.

    2002-01-01

    Ammonia-starved cells of Nitrosomonas europaea are able to preserve a high level of ammonia-oxidizing activity in the absence of ammonium. However, when the nitrite-oxidizing cells that form part of the natural nitrifying community do not keep pace with the ammonia-oxidizing cells, nitrite accumulat

  7. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  8. Microbial interactions during carrion decomposition

    Science.gov (United States)

    This addresses the microbial ecology of carrion decomposition in the age of metagenomics. It describes what is known about the microbial communities on carrion, including a brief synopsis about the communities on other organic matter sources. It provides a description of studies using state-of-the...

  9. DECOMPOSITION OF THE LOGISTICS PURPOSES

    OpenAIRE

    Nefedov, N.

    2009-01-01

    The matter concerning the decomposition of logistics system global criterion onto the local function of a supply chain typical link has been considered. The approach to definition of a supply chain typical link configuration which provides material flow moving has been offered. The qualitative characteristics of interrelation between elements of a typical link has been offered.

  10. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  11. Ammonia transformation in a biotrickling air filter

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Nielsen, Marie Louise; Andersen, Mathias; Nielsen, Anders M.

    outlet / water inlet, and only 8% of the nitrite was turned into nitrate. Water supply only exceeded evaporation by 20% but modelling indicated that additional watering would have limited effect on filter efficiency. The filter was also robust to varying loading, as a 4-fold increase in ammonia inlet...

  12. Assesment methods for ammonia hot-spot

    Czech Academy of Sciences Publication Activity Database

    Cellier, P.; Theobald, M. R.; Asman, W.; Bealey, W.; Bittmann, S.; Dragosits, U.; Fudala, J.; Jones, M.; Loefstroem, P.; Loubet, B.; Misselbrook, T.; Rihm, B.; Smith, K.; Střižík, M.; van der Hoek, K.; van Jaarsveld, H.; Walker, J.; Zelinger, Zdeněk

    Dordrecht: Springer, 2009 - (Sutton, M.; Reis, S.; Baker, S.), s. 391-407 ISBN 978-1-4020-9120-9 R&D Projects: GA MŠk OC 111 Institutional research plan: CEZ:AV0Z40400503 Keywords : ammonia * NH3 dispersion * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry

  13. Modelling of Ammonia Heat Pump Desuperheaters

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix;

    2015-01-01

    This paper presents a study of modelling desuperheating in ammonia heat pumps. Focus is on the temperature profile of the superheated refrigerant. Typically, the surface area of a heat exchanger is estimated using the Log Mean Temperature Difference (LMTD) method. The assumption of this method is...

  14. Fiber Optic Detection of Ammonia Gas

    Directory of Open Access Journals (Sweden)

    L. Kalvoda

    2006-01-01

    Full Text Available Bathochromic shifts accompanying the formation of several bivalent metallic complexes containing 5-(4’-dimethylaminophenylimino quinolin-8-one (L1, and 7-chlore-5(4’-diethylamino-2-methylphenylimino quinolin-8-one (L2 ligands in ethanol solutions were evaluated by VIS-NIR spectroscopy. The [L1-Cu-L1] sulphide complex was selected as a reagent for further tests on optical fibres. Samples of multimode siloxane-clad fused-silica fibre were sensitized by diffusing an ethanol/chloroform solution of the dye into the cladding polymer, and tested by VIS-NIR optical spectroscopy (12 cm long fibre sections, and optical time domain reflectometry (OTDR; 20 ns laser pulses, wavelength 850 nm, 120 m long fibre sensitized within the interval 104–110 m. A well-resolved absorption band of the reagent could be identified in the absorption spectra of the fibres. After exposure to dry ammonia/nitrogen gas with increasing ammonia concentration (0–4000 ppm, the short fibre samples showed subsequent decay of NIR optical absorption; saturation was observed for higher ammonia levels. The concentration resolution r ? 50 ppm and forward response time t90 ? 30 sec were obtained within the interval 0–1000 ppm. The OTDR courses showed an enhancement of the back-scattered light intensity coming from the sensitized region after diffusion of the initial reagent, and decay after exposure to concentrated ammonia/nitrogen gas (10000 ppm.

  15. A porous SiC ammonia sensor

    NARCIS (Netherlands)

    Connolly, E.J.; Timmer, B.H.; Pham, H.T.M.; Groeneweg, J.; Sarro, P.M.; Olthuis, W.; French, P.J.

    2005-01-01

    When used as the dielectric in a capacitive sensing arrangement, porous SiC has been found to be extremely sensitive to the presence of ammonia (NH3) gas. The exact sensing method is still not clear, but NH3 levels as low as 0.5 ppm could be detected. We report the fabrication and preliminary charac

  16. Radiation chemistry in ammonia-water ices

    International Nuclear Information System (INIS)

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H2, N2, NO, and N2O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete (∼97% destroyed) after a fluence of 1016 ions/cm2. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N2 and H2, which are seen to be ejected from the ice at all temperatures.

  17. 21 CFR 573.180 - Anhydrous ammonia.

    Science.gov (United States)

    2010-04-01

    ... of manufacture; a statement that additional protein should not be fed to lactating dairy cows... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... 16 to 17 percent ammonia, with molasses, minerals, and not less than 83 percent crude protein....

  18. Catalytic upgrading of gas from biofuels and implementation of electricity production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Espenaes, Bengt-Goeran; Frostaeng, Sten [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    components concerned are typically aromatic hydrocarbons. These investigations were done using basic oxides (e.g. dolomite), and nickel-based catalysts. Data were collected at different gas compositions and temperatures. Interdependence of reaction rates of some most stable tar components was investigated with dolomite as catalyst. New insights were obtained concerning the reaction mechanism of the decomposition of aromatic compounds catalysed by dolomite. Among issues studied were relations between pore structure and catalytic ability, and influences from the conditions during calcination. The role of intermediate carbon formation on dolomite during decomposition of aromatic hydrocarbons was investigated. Several suggested kinetic rate model equations were evaluated. Internal surface areas of calcined dolomite of different origin were investigated and correlated to their catalytic activity. Kinetics of tar conversion with dolomite and nickel catalysts was included in reactor models. Different models were formulated and tested for different types of reactors. A model for the physical degradation behaviour of dolomite and carry-over of fines in fluidized beds was formulated. A number of new suggested catalysts and catalyst combinations were tested. One interesting new approach is to use a SiO{sub 2} material with large surface area in combination with another catalyst, e.g. dolomite. Another novel catalyst gave very good conversion of benzene at 480 deg C in a 'clean' synthetic gas mixture. Further testing of this catalyst at realistic conditions will be needed. Relations between raw materials and tar formation was investigated in experiments with thermal and catalytic treatment in a secondary reactor after a pyrolyser and comparisons were done with results from gasification. Tar products distribution and amounts were found to be influenced by feedstock. These differences decrease with increasing cracking temperature and efficiency of the catalyst. The sampling and

  19. Quantitative comparison of power decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Erhan Balci, M.; Hakan Hocaoglu, M. [Gebze Institute of Technology, Department of Electronics Engineering, Kocaeli 41400 (Turkey)

    2008-03-15

    This paper presents a comparison on power decompositions in a simple single phase circuit with nonsinusoidal waveforms of voltage and/or currents by giving particular emphasis to Reactive Power compensation. The experimental circuit is analysed by using exact analytical expressions for current and voltages determined via considering source impedance and nonlinearity, which is introduced due to supply side harmonics. Results demonstrate that; power decompositions proposed by Kusters and Moore, Fryze, Shepherd and Zakikhani, Sharon, and Czarnecki provide correct information regarding Power Factor improvement with passive compensation in nonsinusoidal voltage source-linear load, nonsinusoidal voltage source-nonlinear load and sinusoidal voltage source-nonlinear load cases. In these cases, Reactive component of Kusters and Moore's power decomposition can completely be compensated when Power Factor is maximum if there is no resonance or significant changes on load voltages in the case of compensation capacitance is inserted. The Reactive components of Fryze, Shepherd and Zakikhani, Sharon, Czarnecki's power decompositions attain minimum value when power factor is maximum. Furthermore, Kusters and Moore's Reactive Power could directly be related to the power of optimum compensation capacitance. On the other hand, power decompositions proposed by Budeanu, Kimbark and Depenbrock do not provide any useful information about optimum Reactive Power compensation with a basic capacitance in the cases nonsinusoidal voltage source-linear load and nonsinusoidal voltage source-nonlinear load although they can completely be compensated in these cases. An important observation is that; Distortion Powers of Budeanu and Kimbark, and Depenbrock's Residual Power have compensable parts; on the other hand, Kusters and Moore's Residual Reactive Power, Sharon's Complementary Power, Depenbrock's In Phase Power and Czarnecki's Scattered Power are almost

  20. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara (SSRL); (Maryland)

    2012-08-31

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

  1. Ammonia downstream from HH 80 North

    Science.gov (United States)

    Girart, Jose M.; Rodriguez, Luis F.; Anglada, Guillem; Estalella, Robert; Torrelles, Jose, M.; Marti, Josep; Pena, Miriam; Ayala, Sandra; Curiel, Salvador; Noriega-Crespo, Alberto

    1994-01-01

    HH 80-81 are two optically visible Herbig-Haro (HH) objects located about 5 minutes south of their exciting source IRAS 18162-2048. Displaced symmetrically to the north of this luminous IRAS source, a possible HH counterpart was recently detected as a radio continuum source with the very large array (VLA). This radio source, HH 80 North, has been proposed to be a member of the Herbig-Haro class since its centimeter flux density, angular size, spectral index, and morphology are all similar to those of HH 80. However, no object has been detected at optical wavelengths at the position of HH 80 North, possibly because of high extinction, and the confirmation of the radio continuum source as an HH object has not been possible. In the prototypical Herbig-Haro objects HH 1 and 2, ammonia emission has been detected downstream of the flow in both objects. This detection has been intepreted as a result of an enhancement in the ammonia emission produced by the radiation field of the shock associated with the HH object. In this Letter we report the detection of the (1,1) and (2,2) inversion transitions of ammonia downstream HH 80 North. This detection gives strong suppport to the interpretation of HH 80 North as a heavily obscured HH object. In addition, we suggest that ammonia emission may be a tracer of embedded Herbig-Haro objects in other regions of star formation. A 60 micrometer IRAS source could be associated with HH 80 North and with the ammonia condensation. A tentative explanation for the far-infrared emission as arising in dust heated by their optical and UV radiation of the HH object is presented.

  2. AMMONIA CONCENTRATION IN SALTSTONE HEADSPACE SUMMARY REPORT

    International Nuclear Information System (INIS)

    The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar into Tank 50. Saltstone samples were prepared with an 'MCU' type salt solution spiked with ammonia. The ammonia released from the saltstone was captured and analyzed. The ammonia concentration found in the headspace of samples maintained at 95 C and 1 atm was, to 95% confidence, less than or equal to 3.9 mg/L. Tank 50 is fed by several influent streams. The salt solution from Tank 50 is pumped to the salt feed tank (SFT) in the Saltstone Production Facility (SPF). The premix materials cement, slag and fly ash are blended together prior to transfer to the grout mixer. The premix is fed to the grout mixer in the SPF and the salt solution is incorporated into the premix in the grout mixer, yielding saltstone slurry. The saltstone slurry drops into a hopper and then is pumped to the vault. The Saltstone Facility Documented Safety Analysis (DSA) is under revision to accommodate changes in the Composite Lower Flammability Limit (CLFL) from the introduction of Isopar(regsign) L into Tank 50. Waste Solidification-Engineering requested that the Savannah River National Laboratory (SRNL) perform testing to characterize the release of ammonia in curing saltstone at 95 C. The test temperature represents the maximum allowable temperature in the Saltstone Disposal Facility (SDF). Ammonia may be present in the salt solution and premix materials, or may be produced by chemical reactions when the premix and salt solution are combined. A final report (SRNS-STI-2008-00120, Rev. 0) will be issued that will cover in more depth the information presented in this report

  3. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  4. Ammonia regeneration for a combined lime/ammonia spray dryer for SO[sub 2] control

    Energy Technology Data Exchange (ETDEWEB)

    Xinjian, Yang (Cincinnati Univ., OH (United States). Dept. of Civil and Environmental Engineering)

    1992-12-23

    A research project designed to study the feasibility of ammonia regeneration for a combined lime/ammonia FGD process was conducted at the University of Cincinnati. The major objective for this project was to regenerate ammonia from a combined ammonia/calcium hydroxide spray dryer FGD byproduct for reuse which would reduce the operating cost of this FGD process. This final report covers the six phases of the project: (1) generation of original feedstock, (2) batch regeneration studies, (3) continuous regeneration studies, (4) waste characteristic analysis, (5) pilot scale demonstration and (6) economic analysis. This research has shown that regeneration of ammonia is feasible at a reasonable cost. The effects on Ohio coal use from the results of this research could be substantial, depending on the Phase II application of FGD systems for controlling SO[sub 2] emissions. In conclusion, experiments in this study have shown that ammonia recovery efficiencies greater than 90% are technically and economically feasible. In addition, the sludge produced from the regeneration process is stable and will meet existing Federal standards.

  5. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia...

  6. Photocatalytic decomposition of cortisone acetate in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Romão, Joana Sobral; Hamdy, Mohamed S.; Mul, Guido, E-mail: g.mul@utwente.nl; Baltrusaitis, Jonas, E-mail: j.baltrusaitis@utwente.nl

    2015-01-23

    Graphical abstract: - Highlights: • Most efficient photocatalysts for cortisone 21-acetate (CA) degradation were ZnO and TiO{sub 2} (P25). • The decomposition rate increased at low CA concentrations. • No pH dependence was observed allowing CA photocatalytic degradation at native pH. • Synergistic CA degradation effects between TiO{sub 2} and S{sub 2}O{sub 8}{sup 2−} were found. • LC–MS confirmed a decrease in CA concentration, but no intermediate products were detected. - Abstract: The photocatalytic decomposition of cortisone 21-acetate (CA), a model compound for the commonly used steroid, cortisone, was studied. CA was photocatalytically decomposed in a slurry reactor with the initial rates between 0.11 and 0.46 mg L{sup −1} min{sup −1} at 10 mg L{sup −1} concentration, using the following heterogeneous photocatalysts in decreasing order of their catalytic activity: ZnO > Evonik TiO{sub 2} P25 > Hombikat TiO{sub 2} > WO{sub 3}. Due to the lack of ZnO stability in aqueous solutions, TiO{sub 2} P25 was chosen for further experiments. The decomposition reaction was found to be pseudo-first order and the rate constant decreased as a function of increasing initial CA concentration. Changing the initial pH of the CA solution did not affect the reaction rate significantly. The decomposition reaction in the presence of the oxidizing sacrificial agent sodium persulfate showed an observed decomposition rate constant of 0.004 min{sup −1}, lower than that obtained for TiO{sub 2} P25 (0.040 min{sup −1}). The highest photocatalytic degradation rate constant was obtained combining both TiO{sub 2} P25 and S{sub 2}O{sub 8}{sup 2−} (0.071 min{sup −1}) showing a synergistic effect. No reactive intermediates were detected using LC–MS showing fast photocatalytic decomposition kinetics of CA.

  7. Colorimetric polymer-metal nanocomposite sensor of ammonia for the agricultural industry of confined animal feeding operations

    Science.gov (United States)

    Sarkisov, Sergey S.; Czarick, Michael; Fairchild, Brian D.; Liang, Yi; Kukhtareva, Tatiana; Curley, Michael J.

    2014-02-01

    The proposed colorimetric sensor of ammonia for the confined animal feeding industry uses the method of optoelectronic spectroscopic measurement of the reversible change of the color of a nanocomposite reagent film in response to ammonia. The film is made of a gold nanocolloid in a polymer matrix with an ammonia-sensitive indicator dye additive. The response of the indicator dye (increase of the optical absorption between 550 and 650 nm) is enhanced by the nanoparticles (˜8 nm in size) in two ways: (a) concentration of the optical field near the nanoparticle due to the plasmon resonance and (b) catalytic acceleration of the chemical reaction of deprotonization of the indicator dye in the presence of ammonia and water vapor. This enhancement helps to miniaturize the sensing element without compromising its sensitivity of <1 parts per million (ppm) for the range 0 to 100 ppm. The sensor underwent field tests in commercial poultry farms in Georgia and Arkansas and was compared against a scientific-grade photoacoustic gas analyzer. The coefficient of correlation between the sensor and the photoacoustic data for several weeks of continuous side-by-side operation in a commercial poultry house was ˜0.9 and the linear regression slope was 1.0. The conclusions on the necessary improvements were made.

  8. Effect of Activated Carbon as a Support on Metal Dispersion and Activity of Ruthenium Catalyst for Ammonia Synthesis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10.0 MPa and 10 000 h-1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13.17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1.37% over 4%Ru-BaO/AC10 catalyst.

  9. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.

    Science.gov (United States)

    Akbayrak, Serdar; Tonbul, Yalçın; Özkar, Saim

    2016-07-01

    Ruthenium(0) nanoparticles supported on ceria (Ru(0)/CeO2) were in situ generated from the reduction of ruthenium(iii) ions impregnated on ceria during the hydrolysis of ammonia borane. Ru(0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by ICP-OES, BET, XRD, TEM, SEM-EDS and XPS techniques. All the results reveal that ruthenium(0) nanoparticles were successfully supported on ceria and the resulting Ru(0)/CeO2 is a highly active, reusable and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value of 361 min(-1). The reusability tests reveal that Ru(0)/CeO2 is still active in the subsequent runs of hydrolysis of ammonia borane preserving 60% of the initial catalytic activity even after the fifth run. Ru(0)/CeO2 provides a superior catalytic lifetime (TTO = 135 100) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 ± 0.1 °C before deactivation. The work reported here includes the formation kinetics of ruthenium(0) nanoparticles. The rate constants for the slow nucleation and autocatalytic surface growth of ruthenium(0) nanoparticles were obtained using hydrogen evolution as a reporter reaction. An evaluation of rate constants at various temperatures enabled the estimation of activation energies for both the reactions, Ea = 60 ± 7 kJ mol(-1) for the nucleation and Ea = 47 ± 2 kJ mol(-1) for the autocatalytic surface growth of ruthenium(0) nanoparticles, as well as the activation energy of Ea = 51 ± 2 kJ mol(-1) for the catalytic hydrolysis of ammonia borane. PMID:27302302

  10. Gini Decomposition by Gender :Turkish Case

    OpenAIRE

    Kaya, Ezgi; Senesen, Umit

    2010-01-01

    The aim of this paper is to reveal the gender inequalities in income distribution for Turkey by using decomposition of Gini coefficient, a common income inequality measure. A new decomposition method, Dagum's approach for decomposition of the Gini coefficient is used in the study. In the analysis, the decomposition of the Gini coefficient by gender is applied to Turkish individuals twice. First Gini coefficient for total disposable income is decomposed to examine the gender disparities in ind...

  11. Radiation decomposition of alcohols and chloro phenols in micellar systems; Descomposicion por irradiacion de alcoholes y clorofenoles en sistemas micelares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J

    1998-12-31

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  12. Decomposition Mechanism and Decomposition Promoting Factors of Waste Hard Metal for Zinc Decomposition Process (ZDP)

    Energy Technology Data Exchange (ETDEWEB)

    Pee, J H; Kim, Y J; Kim, J Y; Cho, W S; Kim, K J [Whiteware Ceramic Center, KICET (Korea, Republic of); Seong, N E, E-mail: pee@kicet.re.kr [Recytech Korea Co., Ltd. (Korea, Republic of)

    2011-10-29

    Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc steam pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 hrs at 650 deg. C, which 100% decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of {gamma}-{beta}1 phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at 1000 deg. C. The small amount of zinc remaining in the tungsten carbide-cobalt powder which was completely decomposed was fully removed by using phosphate solution which had a slow cobalt dissolution speed.

  13. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens...... to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic cultivated strains of SAOB and hydrogenotrophic methanogens was...... tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleus thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation, were...

  14. Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis

    DEFF Research Database (Denmark)

    Dahl, Søren; Logadottir, Ashildur; Jacobsen, C.J.H.; Nørskov, Jens Kehlet

    industrial conditions can be determined as a function of the nitrogen-surface interaction energy by combining the calculated adsorption energy-activation energy relation with a micro-kinetic model. The result is a volcano curve and we illustrate such relationships for both the non-promoted and alkali metal...

  15. High performance vanadia-anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas; Riisager, Anders;

    2011-01-01

    Highly active nanoparticle SCR deNO(x) catalysts composed of amorphous vanadia on crystalline anatase have been prepared by a sol-gel, co-precipitation method using decomposable crystallization seeds. The catalysts were characterized by means of XRPD, TEM/SEM, FT-IR, nitrogen physisorption and NH(3......) catalysts reported in the literature in the examined temperature range of 200-400 degrees C. The catalysts showed very high resistivity towards potassium poisoning maintaining a 15-30 times higher activity than the equally poisoned industrial reference catalyst, upon impregnation by 280 mu mole potassium...

  16. Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis

    DEFF Research Database (Denmark)

    Dahl, Søren; Logadottir, Ashildur; Jacobsen, C.J.H.;

    2001-01-01

    industrial conditions can be determined as a function of the nitrogen-surface interaction energy by combining the calculated adsorption energy-activation energy relation with a micro-kinetic model. The result is a volcano curve and we illustrate such relationships for both the non-promoted and alkali metal...

  17. Gauss decomposition for quantum groups and duality

    CERN Document Server

    Damaskinsky, E V; Lyakhovsky, V D; Sokolov, M A

    1995-01-01

    The Gauss decomposition of quantum groups and supergroups are considered. The main attention is paid to the R-matrix formulation of the Gauss decomposition and its properties as well as its relation to the contraction procedure. Duality aspects of the Gauss decomposition are also touched. For clarity of exposition a few simple examples are considered in some details.

  18. SPATIAL DECOMPOSITION OF POVERTY IN RURAL NIGERIA: SHAPLEY DECOMPOSITION APPROACH

    OpenAIRE

    OLUWAKEMI ADEOLA OBAYELU

    2014-01-01

    Poverty is largely a rural phenomenon in sub-Saharan Africa and the key contributors to poverty are low mean per capita income and its inequitable distributions. The contribution of mean income and inequality to spatial variations in rural poverty were investigated in this study using the 2003/04 National Living Standard Survey by the National Bureau of Statistics (NBS). The data were analyzed using descriptive statistics and Shapley Decomposition (SD) techniques. Results showed that across t...

  19. Evolution of random catalytic networks

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.M. [Santa Fe Inst., NM (United States); Reidys, C.M. [Santa Fe Inst., NM (United States)]|[Los Alamos National Lab., NM (United States)

    1997-06-01

    In this paper the authors investigate the evolution of populations of sequences on a random catalytic network. Sequences are mapped into structures, between which are catalytic interactions that determine their instantaneous fitness. The catalytic network is constructed as a random directed graph. They prove that at certain parameter values, the probability of some relevant subgraphs of this graph, for example cycles without outgoing edges, is maximized. Populations evolving under point mutations realize a comparatively small induced subgraph of the complete catalytic network. They present results which show that populations reliably discover and persist on directed cycles in the catalytic graph, though these may be lost because of stochastic effects, and study the effect of population size on this behavior.

  20. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    Science.gov (United States)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  1. Bifunctional catalytic electrode

    Science.gov (United States)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  2. Hydrothermal treatment of incineration fly ash for PCDD/Fs decomposition: the effect of iron addition.

    Science.gov (United States)

    Chen, De-Zhen; Hu, Yu-Yan; Zhang, Peng-Fei

    2012-12-01

    The catalytic effect of Fe addition on the decomposition of polychlorinated dibenzo-dioxins and polychlorinated dibenzofurans (PCDD/Fs) contained in municipal solid waste incineration (MSWI) fly ash during the hydrothermal process was investigated. Influencing factors, such as Fe addition mode, reaction time and cooling procedure after reaction, were tested to evaluate their effects. Experimental results indicated that Fe addition in the form of a mixture of ferrous sulphate and ferric sulphate enhanced decomposition of PCDD/Fs contained in the MSWI fly ash, particularly for the decomposition of 2,3,7,8-tetrachlorodibenzo-dioxin and 2,3,7,8-tetrachlorodibenzo-furan under the reaction temperature of 563 K. The decomposition rate of PCDD/Fs reached 90.33% by international toxicity equivalent (I-TEQ) when Fe was added as a mixture of ferrous and ferric sulphates by 5% (wt/wt) with the Fe (III)/Fe (II) ratio being 2; without Fe addition, the decomposition rate of PCDD/Fs was only 46.17% by I-TEQ in the same process. Fe addition in the form of ferrous sulphate alone also showed an enhancing effect on PCDD/Fs decomposition, but the associated decomposition rates were relatively lower, suggesting iron oxides formed from the mixture of ferric and ferrous sulphates are more favourable catalysts. At the same time, the cooling procedure after the hydrothermal reaction became more flexible if Fe was added in the form of a mixture of ferric and ferrous sulphates. Although a longer reaction time was helpful to increase decomposition rates of PCDD/Fs, 1 h was proved to be a reasonable time under this condition. PMID:23437649

  3. Catalytic pyrolysis-gc/ms of spirulina: evaluation of a highly proteinaceous biomass source for production of fuels and chemicals

    Science.gov (United States)

    Pyrolysis of microalgae offers a pathway towards the production of compounds derived from the thermal decomposition of triglycerides, proteins as well as lignocelluloses and their combinations thereof. When catalytically induced, this could lead to the production of fuels and chemicals including aro...

  4. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  5. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    Science.gov (United States)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  6. Catalytic hydrolysis of CFC-12 over solid acid Ti(SO4)2

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The catalytic hydrolysis of dichlorodifluoromethane (CFC-12) was investigated over solid acid Ti(SO4)2. The catalytic activity decreased with the calcination temperature. When space velocity was 6 l h-1 g-cat-1, the CFC-12 conversion at 310oC over Ti(SO4)2 calcined at 350oC remained about 98.5% during 360 h on stream, and the selectivity to by-products remained zero. The findings enlarged the scope of traditional catalyst systems for the CFCs decomposition.

  7. Positive margins and primary decomposition

    CERN Document Server

    Kahle, Thomas; Sullivant, Seth

    2012-01-01

    We study random walks on contingency tables with fixed marginals, corresponding to a (log-linear) hierarchical model. If the set of allowed moves is not a Markov basis, then there exist tables with the same marginals that are not connected. We study linear conditions on the values of the marginals that ensure that all tables in a given fiber are connected. We show that many graphical models have the positive margins property, which says that all fibers with strictly positive marginals are connected by the quadratic moves that correspond to conditional independence statements. The property persists under natural operations such as gluing along cliques, but we also construct examples of graphical models not enjoying this property. Our analysis of the positive margins property depends on computing the primary decomposition of the associated conditional independence ideal. The main technical results of the paper are primary decompositions of the conditional independence ideals of graphical models of the N-cycle a...

  8. Modelling volatility by variance decomposition

    DEFF Research Database (Denmark)

    Amado, Cristina; Teräsvirta, Timo

    In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the...... conditional and unconditional variances where the transition between regimes over time is smooth. The main focus is on the multiplicative decomposition that decomposes the variance into an unconditional and conditional component. A modelling strategy for the time-varying GARCH model based on the...... multiplicative decomposition of the variance is developed. It is heavily dependent on Lagrange multiplier type misspecification tests. Finite-sample properties of the strategy and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns...

  9. Spinodal decomposition and giant magnetoresistance

    International Nuclear Information System (INIS)

    We explore the relation of nanostructures with the appearance of giant magnetoresistance (GMR) in melt-spun CuCo ribbons. We find by energy-filtered transmission electron microscopy that the ribbons are composed of a periodic distribution of Co within the Cu, as in spinodal decomposition. The lamellar structure should thus be associated with GMR, as only a small percentage of the Co is present in the form of grains. This is counterintuitive, for no clear interfaces are present as required by standard models, and the period of the composition oscillation (43-52 nm) is an order of magnitude larger than the mean free paths for electrons. Upon annealing, a secondary spinodal decomposition appears following the same direction as the original

  10. Variance decomposition in stochastic simulators

    International Nuclear Information System (INIS)

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models

  11. Sparsity-certifying Graph Decompositions

    CERN Document Server

    Streinu, Ileana

    2007-01-01

    We describe a new algorithm, the $(k,\\ell)$-pebble game with colors, and use it obtain a characterization of the family of $(k,\\ell)$-sparse graphs and algorithmic solutions to a family of problems concerning tree decompositions of graphs. Special instances of sparse graphs appear in rigidity theory and have received increased attention in recent years. In particular, our colored pebbles generalize and strengthen the previous results of Lee and Streinu and give a new proof of the Tutte-Nash-Williams characterization of arboricity. We also present a new decomposition that certifies sparsity based on the $(k,\\ell)$-pebble game with colors. Our work also exposes connections between pebble game algorithms and previous sparse graph algorithms by Gabow, Gabow and Westermann and Hendrickson.

  12. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maître, O. P.

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  13. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  14. Regeneration of ammonia borane spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew David [Los Alamos National Laboratory; Davis, Benjamin L [Los Alamos National Laboratory; Gordon, John C [Los Alamos National Laboratory

    2009-01-01

    A necessary target in realizing a hydrogen (H{sub 2}) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical H{sub 2} storage has been dominated by one appealing material, ammonia borane (H{sub 3}N-BH{sub 3}, AB), due to its high gravimetric capacity of H{sub 2} (19.6 wt %) and low molecular weight (30.7 g mol{sup -1}). In addition, AB has both hydridic and protic moieties, yielding a material from which H{sub 2} can be readily released in contrast to the loss of H{sub 2} from C{sub 2}H{sub 6} which is substantially endothermic. As such, a number of publications have described H{sub 2} release from amine boranes, yielding various rates depending on the method applied. The viability of any chemical H{sub 2} storage system is critically dependent on efficient recyclability, but reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. Our group is currently engaged in trying to find and fully demonstrate an energy efficient regeneration process for the spent fuel from H{sub 2} depleted AB with a minimum number of steps. Although spent fuel composition depends on the dehydrogenation method, we have focused our efforts on the spent fuel resulting from metal-based catalysis, which has thus far shown the most promise. Metal-based catalysts have produced the fastest rates for a single equivalent of H{sub 2} released from AB and up to 2.5 equiv. of H{sub 2} can be produced within 2 hours. While ongoing work is being carried out to tailor the composition of spent AB fuel, a method has been developed for regenerating the predominant product

  15. A nonenzymatic biosensor based on gold electrodes modified with peptide self-assemblies for detecting ammonia and urea oxidation.

    Science.gov (United States)

    Bianchi, Roberta C; da Silva, Emerson Rodrigo; Dall'Antonia, Luiz H; Ferreira, Fabio Furlan; Alves, Wendel Andrade

    2014-09-30

    We have developed a nonenzymatic biosensor for the detection of ammonia and urea oxidation based on the deposition of peptide microstructures onto thiolated gold electrodes. FF-MNSs/MCP/Au assemblies were obtained by modifying gold substrates with 4-mercaptopyridine (MCP), followed by coating with l,l-diphenylalanine micro/nanostructures (FF-MNSs) grown in the solid-vapor phase. Benzene rings and amide groups with peptide micro/nanostructures interact with synthetic NH4(+) receptors through cation-π and hydrogen bonding. AuOH clusters on the Au surface provided the catalytic sites. The application of a predetermined concentration of analytes at the peptide interfaces activated the catalytic sites. We observed a relationship between the stability of films and the crystal structure of peptides, and we organized the FF-MNSs into an orthorhombic symmetry that was the most suitable assembly for creation of our biosensors. At 0.1 mol L(-1) NaOH, these FF-MNSs/MCP/Au electrodes have electrocatalytic properties regarding ammonia and urea oxidation that are comparable to those of enzyme-based architectures. Under optimal conditions, the electrocatalytic response is proportional to the ammonia and urea concentration in the range 0.1-1.0 mmol L(-1). The sensitivity was calculated as 2.83 and 81.3 μA mmol L(-1) cm(-2) for ammonia and urea, respectively, at +0.40 V (vs SCE). Our detection method is easy to follow, does not require a mediator or enzyme, and has strong potential for detecting urea via nonenzymatic routes. PMID:25188339

  16. Thermal decomposition of allylbenzene ozonide

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, J.C.; Church, D.F.; Pryor, W.A. (Louisiana State Univ., Baton Rouge (USA))

    1989-07-19

    Thermal decomposition of allylbenzene ozonide (ABO) at 98{degree}C in the liquid phase yields toluene, bibenzyl, phenylacetaldehyde, formic acid, and (benzyloxy)methyl formate as major products; benzyl chloride is formed when chlorinated solvents are employed. These products, as well as benzyl formate, are formed when ABO is decomposed at 37{degree}C. When the decomposition of ABO is carried out in the presence of 1-butanethiol, the product distribution changes: yields of toluene increase, no bibenzyl is formed, and decreases in yields of (benzyloxy)methyl formate, phenylacetladehyde, and benzyl chloride are observed. The decomposition of 1-octene ozonide (OTO) also was studied for comparison. The activation parameters for both ABO and OTO are similar (28.2 kcal/mol, log A = 13.6 and 26.6 kcal/mol, log A = 12.5, respectively); these data suggest that ozonides decompose by homolysis of the O-O bond, rather than by an alternative synchronous two-bond scission process. When ABO is decomposed at 37{degree}C in the presence of the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) or 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M{sub 4}PO), ESR signals are observed that are consistent with the trapping of benzyl and other carbon- and oxygen-centered radicals. A mechanism for the thermal decomposition of ABO that involves peroxide bond homolysis and subsequent {beta}-scission is proposed. Thus, Criegee ozonides decompose to give free radicals at quite modest temperatures.

  17. Modelling volatility by variance decomposition

    OpenAIRE

    Amado, Cristina; Teräsvirta, Timo

    2011-01-01

    In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the conditional and unconditional variances where the transition between regimes over time is smooth. The main focus is on the multiplicative decomposition that decomposes the variance into an unconditional and...

  18. Local structure of Pb2 ion catalysts anchored within zeolite cavities and their photo-catalytic reactivity for the elimination of N2O

    International Nuclear Information System (INIS)

    The Pb2+/ZSM-5 catalyst was prepared by an ion-exchange method and its photo-catalytic activity for the decomposition of N2O under UV irradiation was investigated. In-situ UV-Vis absorption spectroscopy and XAFS (XANES and FT-EXAFS) investigations revealed that the Pb2+ ions exist in a highly dispersed state within the pores of the zeolites. UV irradiation of the catalysts in the presence of N2O led to the photo-catalytic decomposition of N2O into N2 at temperatures as low as 298κ. The effective wavelength of the irradiated UV light indicated that the excited state of the Pb2+ ions included within the zeolite cavities plays a significant role in the photo-catalytic decomposition of N2O molecules. (au)

  19. A Lagrangian Dynamic Mode Decomposition

    CERN Document Server

    Sesterhenn, Jörn

    2016-01-01

    Temporal or spatial structures are readily extracted from complex data by modal decompositions like POD or DMD. Subspaces of that decompositions serve as reduced order models and define spatial structures in time or temporal structures in space. Convecting phenomena pose a major problem to those decompositions. A structure travelling with a certain group velocity will be perceived as a plethora of modes in time or space respectively. This manifests itself for example in poorly decaying Singular Values when using a POD. The poor decay is very counter-intuitive, since we expect a single structure to be represented by a few modes. The intuition proves to be correct and we show that in a properly chosen reference frame along the characteristic defined by the group velocity, a POD or DMD reduces moving structures to a few modes, as expected. Beyond serving as a reduced model, the re- sulting entity can be used to define a constant or minimally changing structure in turbulent flows. This can be interpreted as an em...

  20. Thermal decomposition of natural dolomite

    Indian Academy of Sciences (India)

    S Gunasekaran; G Anbalagan

    2007-08-01

    Thermal decomposition behaviour of dolomite sample has been studied by thermogravimetric (TG) measurements. Differential thermal analysis (DTA) curve of dolomite shows two peaks at 777.8°C and 834°C. The two endothermic peaks observed in dolomite are essentially due to decarbonation of dolomite and calcite, respectively. The TG data of the decomposition steps have also been analysed using various differential, difference-differential and integral methods, viz. Freeman–Carroll, Horowitz–Metzger, Coats–Redfern methods. Values of activation entropy, Arrhenius factor, and order of reaction have been approximated and compared. Measured activation energies vary between 97 and 147 kJ mol-1. The large fluctuation in activation energy is attributed to the presence of impurities such as SiO2, Al2O3, Fe2O3, Cl- etc in the samples. FTIR and XRD analyses confirm the decomposition reaction. SEM observation of the heat-treated samples at 950°C shows cluster of grains, indicating the structural transformation.