WorldWideScience

Sample records for catalysts

  1. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  2. Homogeneous catalysts

    CERN Document Server

    Chadwick, John C; Freixa, Zoraida; van Leeuwen, Piet W N M

    2011-01-01

    This first book to illuminate this important aspect of chemical synthesis improves the lifetime of catalysts, thus reducing material and saving energy, costs and waste.The international panel of expert authors describes the studies that have been conducted concerning the way homogeneous catalysts decompose, and the differences between homogeneous and heterogeneous catalysts. The result is a ready reference for organic, catalytic, polymer and complex chemists, as well as those working in industry and with/on organometallics.

  3. Bimetallic Catalysts.

    Science.gov (United States)

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  4. Photo-oxidation catalysts

    Science.gov (United States)

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  5. Catalyst composition

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, T.; Sakai, T.; Sumitani, K.; Yamasaki, Y.

    1984-11-27

    A catalyst composition comprising a crystalline aluminosilicate selected from the group consisting of zeolite ZSM-5, zeolite ZSM-11, zeolite ZSM-12, zeolite ZSM-35 and zeolite ZSM-38 and having a silica/alumina mole ratio of 20 to 1,000; and at least two metals which are platinum and at least one other metal selected from the group consisting of titanium, chromium, zinc, gallium, germanium, strontium, yttrium, zirconium, molybdenum, palladium, tin, barium, cerium, tungsten, osmium, lead, cadmium, mercury, indium, lanthanum and beryllium. This catalyst composition is useful particularly for the isomerization of aromatic hydrocarbons and reforming of naphtha.

  6. Catalyst Architecture

    DEFF Research Database (Denmark)

    Kiib, Hans; Marling, Gitte; Hansen, Peter Mandal

    2014-01-01

    How can architecture promote the enriching experiences of the tolerant, the democratic, and the learning city - a city worth living in, worth supporting and worth investing in? Catalyst Architecture comprises architectural projects, which, by virtue of their location, context and their combinatio...... meaningful for everyone. The exhibited works are designed by SANAA, Diller Scofidio + Renfro, James Corner Field Operation, JBMC Arquitetura e Urbanismo, Atelier Bow-Wow, Ateliers Jean Nouvel, COBE, Transform, BIG, Topotek1, Superflex, and by visual artist Jane Maria Petersen....

  7. Electrochemical catalyst recovery method

    Science.gov (United States)

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  8. Foundation Flash Catalyst

    CERN Document Server

    Goralski, Greg

    2010-01-01

    This book offers an introduction to Flash Catalyst for designers with intermediate to advanced skills. It discusses where Catalyst sits within the production process and how it communicates with other programs. It covers all of the features of the Flash Catalyst workspace, teaching you how to create designs from scratch, how to build application designs and add functionality, and how to master the Catalyst/Flex workflow. * Introduces Flash Catalyst * Focuses on production process * Covers the interrelation between Flash Catalyst and Photoshop/Illustrator/Flex/Flash What you'll learn Starting f

  9. Pd Close Coupled Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhong Hua SHI; Mao Chu GONG; Yao Qiang CHEN

    2006-01-01

    A catalyst comprised novel high surface area alumina support was prepared to control emission of automobiles. The results showed that prepared catalyst could satisfy the requirements of a high performance close coupled catalyst for its good catalytic activity at low temperature and good stability at high temperature.

  10. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  11. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  12. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    2001-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the particles.

  13. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  14. Heterogeneous hydrogenation catalysts

    International Nuclear Information System (INIS)

    The main types of heterogeneous catalysts used for hydrogenation, the methods for their preparation, and the structure and chemistry of their surfaces are considered, as well as the catalytic activity and the mechanism of action in the hydrogenation of unsaturated and aromatic compounds, of CO, and of carbonyl compounds and in the hydrorefining of fuels. Chief attention is paid to supported Ni catalysts, to the methods for their preparation and physicochemical studies, and to the development of novel catalytic systems through modification. A novel type of catalyst for hydrogenation, viz. metal carbides, is described. Some aspects of the mechanochemical treatment of hydrogenation catalysts, including in situ methods, are discussed. Sulfide catalysts for hydrotreating are also discussed in detail. The bibliography includes 340 references.

  15. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    . Previously it has been shown that calcination of cobalt catalyst in a NO/He mixture resulted in improved catalytic activity compared to standard air calcined samples, since more homogenous cobalt particles with a narrow particle size distribution were formed. Unfortunately the C5+ selectivity decreased....... Since Mn is known to improve C5+ selectivity the addition of this promoter, combined with NO calcination, was studied. The influence of parameters such as Co:Mn ratio, drying conditions, and reduction temperatures on the catalytic performance were investigated. The promotion strategy turned out to work...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  16. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  17. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  18. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  19. Catalyst for microelectromechanical systems microreactors

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Jeffrey D. (Martinez, CA); Sopchak, David A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Reynolds, John G. (San Ramon, CA); Satcher, Joseph H. (Patterson, CA); Gash, Alex E. (Brentwood, CA)

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  20. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  1. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  2. STUDIES ON HYDROISOMERIZATION CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    C5/C6 alkane hydroisomerization is one of the most economical technologies for octane enhancement and has potential application in China in the next decade. The work about choice of hydroisomerization catalyst systems and scale-up in catalyst preparation was presented. Performance and regeneration behaviors tested in different laboratory reactors and a 1000 t/a pilot plant were discussed, which offers the information for commercial use of this process. Mechanism for coke formation was also proposed.

  3. New Catalysts for ROMP

    Institute of Scientific and Technical Information of China (English)

    H. Berke; C. Frech; A. Lhamazares; O. Blacque; H.W. Schmalle; C. Adlhart; P. Chen

    2005-01-01

    @@ 1Introduction Ring Opening Metathesis Polymerization (ROMP) is based on the olefin metathesis reaction, which requires transition metal catalysts. Mainly molybdenum, tungsten and ruthenium based catalysts have up to now been used. The "in-between" metal rhenium was only rarely applied in olefin metathesis reactions, and not at all in ROMP processes.We have found that cationic phosphine substituted dinitrosyl rhenium complexes[1]1a and 1b effectively catalyze ROMP of norbonene, dicyclopentadiene and of cyclooctene. See Fig. 1.

  4. Supported organoiridium catalysts for alkane dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  5. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    OpenAIRE

    Jensen, Anker Degn; Castellino, Francesco; Rams, Per Donskov; Pedersen, Jannik Blaabjerg; Putluru, Siva Sankar Reddy

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treat...

  6. Olefin metathesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S.G.; Banks, R.L.

    1986-05-20

    A process is described for preparing a disproportionation catalyst comprising admixing a catalytically effective amount of a calcined and activated catalyst consisting essentially of at least one metal oxide selected from molybdenum oxide and tungsten oxide and a support containing a major proportion of silica or alumina with a promoting amount of a methylating agent selected from the group consisting of dimethyl sulfate, dimethylsulfoxide, trimethyloxonium tetrafluorborate, methyl iodide, and methyl bromide, and subjecting same to inert atmospheric conditions for the methylating agent to promote the activity of the calcined molybdenum and tungsten oxides for the disproportionation of olefins.

  7. Aerogel derived catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  8. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...... and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...

  9. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  10. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  11. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-05-14

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory oxide support containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one methylating agent under conditions suitable for the methylating agent compounds to promote the activity of tungsten and molybdenum oxides for the disproportionation reaction.

  12. Tight bifunctional hierarchical catalyst.

    Science.gov (United States)

    Højholt, Karen T; Vennestrøm, Peter N R; Tiruvalam, Ramchandra; Beato, Pablo

    2011-12-28

    A new concept to prepare tight bifunctional catalysts has been developed, by anchoring CoMo(6) clusters on hierarchical ZSM-5 zeolites for simultaneous use in HDS and hydrocracking catalysis. The prepared material displays a significant improved activity in HDS catalysis compared to the impregnated counterpart. PMID:22048337

  13. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  14. Nanopore and nanoparticle catalysts.

    Science.gov (United States)

    Thomas, J M; Raja, R

    2001-01-01

    The design, atomic characterization, performance, and relevance to clean technology of two distinct categories of new nanocatalysts are described and interpreted. Exceptional molecular selectivity and high activity are exhibited by these catalysts. The first category consists of extended, crystallographically ordered inorganic solids possessing nanopores (apertures, cages, and channels), the diameters of which fall in the range of about 0.4 to about 1.5 nm, and the second of discrete bimetallic nanoparticles of diameter 1 to 2 nm, distributed more or less uniformly along the inner walls of mesoporous (ca. 3 to 10 nm diameter) silica supports. Using the principles and practices of solid-state and organometallic chemistry and advanced physico-chemical techniques for in situ and ex situ characterization, a variety of powerful new catalysts has been evolved. Apart from those that, inter alia, simulate the behavior of enzymes in their specificity, shape selectivity, regio-selectivity, and ability to function under ambient conditions, many of these new nanocatalysts are also viable as agents for effecting commercially significant processes in a clean, benign, solvent-free, single-step fashion. In particular, a bifunctional, molecular sieve nanopore catalyst is described that converts cyclohexanone in air and ammonia to its oxime and caprolactam, and a bimetallic nanoparticle catalyst that selectively converts cyclic polyenes into desirable intermediates. Nanocatalysts in the first category are especially effective in facilitating highly selective oxidations in air, and those in the second are well suited to effecting rapid and selective hydrogenations of a range of organic compounds.

  15. Fluorination process using catalysts

    Science.gov (United States)

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  16. Fluorination process using catalyst

    Science.gov (United States)

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  17. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-03-12

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory material containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one treating agent selected from chlorinated silicon compounds, thionyl chloride, and sulfuryl chloride under conditions suitable for the treating agent to promote the activity of tungsten and molybdenum oxides for the disporoportionation reaction.

  18. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  19. Catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S.; Holmgreen, Erik M.; Yung, Matthew M.

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  20. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  1. Privileged chiral ligands and catalysts

    CERN Document Server

    Zhou, Qi-Lin

    2011-01-01

    This ultimate ""must have"" and long awaited reference for every chemist working in the field of asymmetric catalysis starts with the core structure of the catalysts, explaining why a certain ligand or catalyst is so successful. It describes in detail the history, the basic structural characteristics, and the applications of these ""privileged catalysts"". A novel concept that gives readers a much deeper insight into the topic.

  2. Hydrodewaxing with mixed zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chester, A.W.; McHale, W.D.; Yen, J.H.

    1986-03-11

    A process is described for catalytically dewaxing a hydrocarbon lubricating oil feedstock comprising contacting the feedstock with a dewaxing catalyst, the dewaxing catalyst comprising, in combination: (a) a zeolite catalyst having a Constraint Index not less than 1, (b) an acidic catalytic material selected from the group consisting of Mordenite, TEA Mordenite, Dealuminized Y, Ultrastable Y, Rare Earth Y, amorphous silica-alumina chlorinated alumina, ZSM-4 and ZSM-20, and (c) a hydrogenation component, and recovering a dewaxed product. A process is also described for catalytically dewaxing a hydrocarbon lubricating oil feedstock comprising contacting the feedstock with a dewaxing catalyst, the dewaxing catalyst comprising, in combinations: (a) a first zeolite catalyst selected from the group consisting of ZSM-5, ZMS-11, ZSM-12, ZSM-22, ZSM-23, ZSM-34, ZSM-35, ZSM-38, ZSM-48, TMA Offretite and Erionite, (b) a second catalyst selected from the group consisting of ZSM-12, ZSM-22, ZSM-38 and ZSM-48, the second zeolite catalyst being different from the first zeolite catalyst, and (c) a hydrogenation component, and recovering a dewaxed product.

  3. DEHYDROGENATION CATALYST FOR PRODUCTION OF MTBE

    Science.gov (United States)

    The objectives of this project were to better understand the effect of different catalyst preparation parameters, the effect of different catalyst treatment parameters, and the mechanism of deactivation. Accordingly, catalysts were made using various preparation methods and with...

  4. REACTOR FILLED WITH CATALYST MATERIAL, AND CATALYST THEREFOR

    NARCIS (Netherlands)

    Sie, S.T.

    1995-01-01

    Abstract of WO 9521691 (A1) Described is a reactor (1) at least partially filled with catalyst granules (11), which is intended for catalytically reacting at least one gas and at least one liquid with each other. According to the invention the catalyst granules (11) are collected in agglomerates

  5. Catalyst regeneration by circulating catalyst in a hydrotreating oil process

    Energy Technology Data Exchange (ETDEWEB)

    Kanbier, D.; Goudriaan, F.

    1978-02-14

    A process is disclosed for catalytic hydrotreating of a heavy hydrocarbon oil and a light hydrocarbon oil in separate reactors, wherein the hydrotreating catalyst is circulated through both reactors. The process is particularly suited to obtaining long catalyst life when operating at low hydrogen pressures.

  6. Novel Reforming Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, Lisa D; Haller, Gary L

    2012-10-16

    Aqueous phase reforming is useful for processing oxygenated hydrocarbons to hydrogen and other more useful products. Current processing is hampered by the fact that oxide based catalysts are not stable under high temperature hydrothermal conditions. Silica in the form of structured MCM-41 is thermally a more stable support for Co and Ni than conventional high surface area amorphous silica but hydrothermal stability is not demonstrated. Carbon nanotube supports, in contrast, are highly stable under hydrothermal reaction conditions. In this project we show that carbon nanotubes are stable high activity/selectivity supports for the conversion of ethylene glycol to hydrogen.

  7. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  8. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    industrial reference catalyst. Furthermore long-term activity measurements at normal operating temperature revealed that the catalyst did not display any sign of deactivation. The catalyst showed very high resistance towards potassium poisoning maintaining a 16 times higher activity than the equally poisoned...... industrial reference catalyst, after impregnation of 225 mole potassium/g of catalyst. A catalyst plate was synthesised using 20 wt.% sepiolite mixed with nano catalyst, supported by a SiO2-fibre mesh. Realistic potassium poisoning was performed on the catalyst plate, by exposure in a potassium aerosol...

  9. Doped palladium containing oxidation catalysts

    Science.gov (United States)

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  10. Catalysts for low temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  11. Catalyst design for biorefining.

    Science.gov (United States)

    Wilson, Karen; Lee, Adam F

    2016-02-28

    The quest for sustainable resources to meet the demands of a rapidly rising global population while mitigating the risks of rising CO2 emissions and associated climate change, represents a grand challenge for humanity. Biomass offers the most readily implemented and low-cost solution for sustainable transportation fuels, and the only non-petroleum route to organic molecules for the manufacture of bulk, fine and speciality chemicals and polymers. To be considered truly sustainable, biomass must be derived from resources which do not compete with agricultural land use for food production, or compromise the environment (e.g. via deforestation). Potential feedstocks include waste lignocellulosic or oil-based materials derived from plant or aquatic sources, with the so-called biorefinery concept offering the co-production of biofuels, platform chemicals and energy; analogous to today's petroleum refineries which deliver both high-volume/low-value (e.g. fuels and commodity chemicals) and low-volume/high-value (e.g. fine/speciality chemicals) products, thereby maximizing biomass valorization. This article addresses the challenges to catalytic biomass processing and highlights recent successes in the rational design of heterogeneous catalysts facilitated by advances in nanotechnology and the synthesis of templated porous materials, as well as the use of tailored catalyst surfaces to generate bifunctional solid acid/base materials or tune hydrophobicity. PMID:26755755

  12. Stereospecific olefin polymerization catalysts

    Science.gov (United States)

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  13. Ceramic catalyst materials

    Energy Technology Data Exchange (ETDEWEB)

    Sault, A.G.; Gardner, T.J. [Sandia National Laboratories, Albuquerque, NM (United States); Hanprasopwattanna, A.; Reardon, J.; Datye, A.K. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-08-01

    Hydrous titanium oxide (HTO) ion-exchange materials show great potential as ceramic catalyst supports due to an inherently high ion-exchange capacity which allows facile loading of catalytically active transition metal ions, and an ability to be cast as thin films on virtually any substrate. By coating titania and HTO materials onto inexpensive, high surface area substrates such as silica and alumina, the economics of using these materials is greatly improved, particularly for the HTO materials, which are substantially more expensive in the bulk form than other oxide supports. In addition, the development of thin film forms of these materials allows the catalytic and mechanical properties of the final catalyst formulation to be separately engineered. In order to fully realize the potential of thin film forms of titania and HTO, improved methods for the deposition and characterization of titania and HTO films on high surface area substrates are being developed. By varying deposition procedures, titania film thickness and substrate coverage can be varied from the submonolayer range to multilayer thicknesses on both silica and alumina. HTO films can also be formed, but the quality and reproducibility of these films is not nearly as good as for pure titania films. The films are characterized using a combination of isopropanol dehydration rate measurements, point of zero charge (PZC) measurements, BET surface area, transmission electron microscopy (TEM), and elemental analysis. In order to assess the effects of changes in film morphology on catalytic activity, the films are being loaded with MoO{sub 3} using either incipient wetness impregnation or ion-exchange of heptamolybdate anions followed by calcining. The MoO{sub 3} is then sulfided to form MOS{sub 2}, and tested for catalytic activity using pyrene hydrogenation and dibenzothiophene (DBT) desulfurization, model reactions that simulate reactions occurring during coal liquefaction.

  14. Magnetically Recoverable Ruthenium Catalysts in Organic Synthesis

    OpenAIRE

    Dong Wang; Didier Astruc

    2014-01-01

    Magnetically recyclable catalysts with magnetic nanoparticles (MNPs) are becoming a major trend towards sustainable catalysts. In this area, recyclable supported ruthenium complexes and ruthenium nanoparticles occupy a key place and present great advantages compared to classic catalysts. In this micro-review, attention is focused on the fabrication of MNP-supported ruthenium catalysts and their catalytic applications in various organic syntheses.

  15. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  16. Alumina supported iridium catalysts - preparation

    International Nuclear Information System (INIS)

    This report describes the method employed in the preparation of alumina supported iridium catalysts, with metal contents between 30 and 40%, that will be used for hydrazine monopropellant decomposition. (author)

  17. Duplex steam reformer: alternate catalyst

    International Nuclear Information System (INIS)

    The manufacturing feasibility of a duplex steam reformer tube for potential use in a high temperature gas cooled reactor has been successfully demonstrated. This technique consists of explosively expanding the inner tube into the outer tube. To successfully achieve the desired 0 to 3 mil radial gap between the tubes it is necessary to perform the expansion in two steps with an intermediate anneal. A catalyst design that would have replaced the conventional Raschig rings with a metal supported catalyst has been evaluated and it has been concluded that further development and testing are needed before fabrication of a full scale prototype is warranted. Consequently, the immediate efforts are directed towards reevaluating the incentives for developing a catalyst and the probability of successfully developing a catalyst that could be used for steam reforming

  18. Copper containing hydrocarbon cracking catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lussier, R.J.; Magee, J.S. Jr.

    1975-12-30

    A copper-exchanged zeolite cracking catalyst capable of producing high octane gasoline of increased aromatic and olefinic content is described. Mixtures of copper and hydrogen ions are exchanged into a Y-type zeolite using a combination of exchange and calcination steps. The exchanged zeolite is advantageously combined with a major portion of inorganic oxide matrix to produce a catalyst suitable for use in standard commercial fluid and moving bed cat-cracking units. (auth)

  19. The innovation catalysts.

    Science.gov (United States)

    Martin, Roger L

    2011-06-01

    A few years ago the software development company Intuit realized that it needed a new approach to galvanizing customers. The company's Net Promoter Score was faltering, and customer recommendations of new products were especially disappointing. Intuit decided to hold a two-day, off-site meeting for the company's top 300 managers with a focus on the role of design in innovation. One of the days was dedicated to a program called Design for Delight. The centerpiece of the day was a PowerPoint presentation by Intuit founder Scott Cook, who realized midway through that he was no Steve Jobs: The managers listened dutifully, but there was little energy in the room. By contrast, a subsequent exercise in which the participants worked through a design challenge by creating prototypes, getting feedback, iterating, and refining, had them mesmerized. The eventual result was the creation of a team of nine design-thinking coaches--"innovation catalysts"--from across Intuit who were made available to help any work group create prototypes, run experiments, and learn from customers. The process includes a "painstorm" (to determine the customer's greatest pain point), a "soljam" (to generate and then winnow possible solutions), and a "code-jam" (to write code "good enough" to take to customers within two weeks). Design for Delight has enabled employees throughout Intuit to move from satisfying customers to delighting them. PMID:21714388

  20. The innovation catalysts.

    Science.gov (United States)

    Martin, Roger L

    2011-06-01

    A few years ago the software development company Intuit realized that it needed a new approach to galvanizing customers. The company's Net Promoter Score was faltering, and customer recommendations of new products were especially disappointing. Intuit decided to hold a two-day, off-site meeting for the company's top 300 managers with a focus on the role of design in innovation. One of the days was dedicated to a program called Design for Delight. The centerpiece of the day was a PowerPoint presentation by Intuit founder Scott Cook, who realized midway through that he was no Steve Jobs: The managers listened dutifully, but there was little energy in the room. By contrast, a subsequent exercise in which the participants worked through a design challenge by creating prototypes, getting feedback, iterating, and refining, had them mesmerized. The eventual result was the creation of a team of nine design-thinking coaches--"innovation catalysts"--from across Intuit who were made available to help any work group create prototypes, run experiments, and learn from customers. The process includes a "painstorm" (to determine the customer's greatest pain point), a "soljam" (to generate and then winnow possible solutions), and a "code-jam" (to write code "good enough" to take to customers within two weeks). Design for Delight has enabled employees throughout Intuit to move from satisfying customers to delighting them.

  1. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  2. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  3. Novel Fischer-Tropsch catalysts. [DOE patent

    Science.gov (United States)

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  4. Catalyst for Decomposition of Nitrogen Oxides

    Science.gov (United States)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  5. Rhenium Nanochemistry for Catalyst Preparation

    Directory of Open Access Journals (Sweden)

    Vadim G. Kessler

    2012-08-01

    Full Text Available The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

  6. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2013-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds

  7. Quick Guide to Flash Catalyst

    CERN Document Server

    Elmansy, Rafiq

    2011-01-01

    How do you transform user interface designs created in Photoshop or Illustrator into interactive web pages? It's easier than you think. This guide shows you how to use Adobe Flash Catalyst to create interactive UIs and website wireframes for Rich Internet Applications-without writing a single line of code. Ideal for web designers, this book introduces Flash Catalyst basics with detailed step-by-step instructions and screenshots that illustrate every part of the process. You'll learn hands-on how to turn your static design or artwork into working user interfaces that can be implemented in Fla

  8. EFFECTS OF CATALYST MORPHOLOGY ON HYDROTREATING REACTIONS

    OpenAIRE

    TYE CHING THIAN

    2008-01-01

    Due to the new environmental regulations for fuel quality, refineries need to process cleaner fuel. This requires an improvement in performance of hydrotreating catalysts. Improvements in catalyst activity require knowledge of the relationships between catalyst morphology and activity. Molybdenum sulfide, the generally agreed catalysts that give the best performance in hydrocracking and hydrotreating was investigated for its morphology effects on hydrotreating reactions. Three types of MoS2 c...

  9. Colloidal nanoparticles as catalysts and catalyst precursors for nitrite hydrogenation

    NARCIS (Netherlands)

    Zhao, Yingnan

    2015-01-01

    The most distinguished advantage to use colloidal methods for catalyst preparation is that the size and the shape of nanoparticles can be manipulated easily under good control, which is normally difficult to achieve by using traditional methods, such as impregnation and precipitation. This facilitat

  10. Efficient epoxidation of propene using molecular catalysts

    DEFF Research Database (Denmark)

    Markovits, Iulius I. E.; Anthofer, Michael H.; Kolding, Helene;

    2014-01-01

    The epoxidation of propene is performed in homogeneous phase using various molecular catalysts and H2O2 or tert-butyl hydroperoxide as oxidants. A comparison between some molybdenum catalysts and methyltrioxorhenium (MTO) shows that the well known Re catalyst is the best among the examined...

  11. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  12. Silver doped catalysts for treatment of exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Park, Paul Worn (Peoria, IL); Hester, Virgil Raymond (Edelstein, IL); Ragle, Christie Susan (Havana, IL); Boyer, Carrie L. (Shiloh, IL)

    2009-06-02

    A method of making an exhaust treatment element includes washcoating a substrate with a slurry that includes a catalyst support material. At least some of the catalyst support material from the slurry may be transferred to the substrate, and silver metal (Ag) is dispersed within the catalyst support material.

  13. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes;

    2012-01-01

    Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared...

  14. Biodiesel production using heterogenous catalyst

    Science.gov (United States)

    The current transesterification of triacylglycerides (TAG) to produce biodiesel is based on the homogenous catalyst method using strong base such as hydroxides or methoxides. However, this method results in a number of problems: (1) acid pre-treatment is required of feedstocks high in free fatty ac...

  15. MECHANICAL STRENGTH AND RELIABILITY OF SOLID CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    Yongdan Li; Dongfang Wu; Y.S. Lin

    2004-01-01

    The mechanical strength of solid catalysts is one of the key parameters for reliable and efficient performance of a fixed bed reactor. Some recent developments and their basic mechanics within this context are reviewed. The main concepts discussed are brittle fracture which leads to the mechanical failure of the catalyst pellets, measurement and statistical properties of the catalyst strength data, and mechanical reliability of the catalyst pellets and their packed bed. The scientific basis for the issues on the catalyst mechanical properties calls yet for further elucidation and advancement.

  16. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  17. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  18. Catalysts for decomposing ozone tail gas

    Institute of Scientific and Technical Information of China (English)

    LIU Chang-an; SUN De-zhi; WANG Hui; LI Wei

    2003-01-01

    The preparation of immobilizing-catalysts for decomposing ozone by using dipping method was studied. XRD, XPS and TEM were used to characterize the catalysts. The three kinds of catalysts were selected preferentially, and their catalytic activities were investigated. The results showed that the catalyst with activated carbon dipping acetate (active components are Mn: Cu = 3:2, active component proportion in catalyst is 15%, calcination temperature is 200℃ ) has the best catalytic activity for ozone decomposing. One gram of catalyst can decompose 17.6 g ozone at initial ozone concentration of 2.5 g/m3 and the residence time in reactor of 0.1 s. The experimental results also indicated that humidity of reaction system had negative effect on catalytic activity.

  19. EFFECTS OF CATALYST MORPHOLOGY ON HYDROTREATING REACTIONS

    Directory of Open Access Journals (Sweden)

    TYE CHING THIAN

    2008-08-01

    Full Text Available Due to the new environmental regulations for fuel quality, refineries need to process cleaner fuel. This requires an improvement in performance of hydrotreating catalysts. Improvements in catalyst activity require knowledge of the relationships between catalyst morphology and activity. Molybdenum sulfide, the generally agreed catalysts that give the best performance in hydrocracking and hydrotreating was investigated for its morphology effects on hydrotreating reactions. Three types of MoS2 catalysts with different morphology were studied. They are crystalline MoS2, exfoliated MoS2 and MoS2 derived from a precursor, molybdenum naphthenate. Exfoliated MoS2 with minimal long range order, with much higher rim edges has shown relative higher hydrogenation activity. Generally, results of MoS2 catalyst activities in hydrogenation, hydrodesulfurization, hydrodenitrogenation and hydrideoxy¬gena¬tion are in agreement with the rim-edge model.

  20. Organic synthesis with olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1995-12-31

    Over the past nine years, early transition metal catalysts for the ring opening metathesis polymerization of cyclic olefins have been developed. These catalysts are simple organometallic complexes containing metal carbon multiple bonds that in most cases polymerize olefins by a living process. These catalysts have been used to prepare a family of near monodispersed and structurally homogeneous polymers. A series of group VII ROMP catalysts that allow a wide range of functionality to be incorporated into the polymer side chains have been prepared. The most important member of this family of complexes are the bisphosphinedihalo-ruthenium carbene complexes. These polymerization catalysts can also be used in the synthesis of fine chemicals by ring closing (RCM) and vinyl coupling reactions. The availability of the group VII catalysts allow metathesis to be carried out on highly functionalized substrates such as polypeptides and in unusual environments such as in aqueous emulsions.

  1. Highly Selective Ruthenium Metathesis Catalysts for Ethenolysis

    OpenAIRE

    Thomas, Renee M.; Keitz, Benjamin K.; Champagne, Timothy M.; Grubbs, Robert H.

    2011-01-01

    N-aryl, N-alkyl N-heterocyclic carbene (NHC) ruthenium metathesis catalysts are highly selective toward the ethenolysis of methyl oleate, giving selectivity as high as 95% for the kinetic, ethenolysis products over the thermodynamic, self-metathesis products. The examples described herein represent some of the most selective NHC-based ruthenium catalysts for ethenolysis reactions to date. Furthermore, many of these catalysts show unusual preference and stability toward propagating as a methyl...

  2. Examining the surfaces in used platinum catalysts

    OpenAIRE

    Trumić B.; Stanković D.; Trujić V.

    2009-01-01

    For the purpose of finding more advanced platinum catalyst manufacturing technologies and achieving a higher degree of ammonia oxidation, metallographic characterization has been done on the surface of catalyst gauzes and catalyst gripper gauzes made from platinum and palladium alloys. For the examined samples of gauzes as well as the cross section of the wires, a chemical analysis was provided. The purpose of this paper is the metallographic characterization of examined alloys carried out by...

  3. Manufacture of Catalyst Systems for Ammonia Conversion

    Institute of Scientific and Technical Information of China (English)

    GAKH S.V.; SAVENKOV D.A.

    2012-01-01

    Platinum catalyst gauzes have been in use since the moment of development of the process of catalyst oxidation of ammonia for production of nitric acid or hydrocyanic acid.Catalyst gauzes are usually made of platinum or its alloys with rhodium and palladium.These precious metals have remarkable properties that make them ideal catalysts for acceleration of the ammonia/oxygen reaction.In 2008,OJSC "SIC ‘Supermetal’" and Umicore AG&Co.KG launched a production line for Pt-alloy-based catalyst systems to be used for ammonia oxidation in the production of weak nitric acid.Catalyst systems consist of a pack of catalyst gauzes and a pack of catchment gauzes,which are made using flat-bed knitting machines and wire-cloth looms.Today,up-to-date catalyst systems MKSpreciseTM are being manufactured,the basic advantages of which are an individual structure of gauzes and composition of the material,which allows to define precisely the position of each gauze in the catalyst pack,a high activity of the catalyst pack,direct catching of platinum and rhodium in the catalyst system,and a reasonable combination of single- and multilayer types of gauzes.This makes it possible to vary the configuration of the catalyst and select an optimum composition of the system to ensure the maximum efficiency of the ammonia oxidation process.We also produce the catchment systems that allow to find the best decision from the economic point view for each individual case.

  4. Catalysts for Dehydrogenation of ammonia boranes

    Energy Technology Data Exchange (ETDEWEB)

    Heinekey, Dennis M.

    2014-12-19

    Several effective homogeneous catalysts for the dehydrogenation of amine boranes have been developed. The best catalyst uses an iridium complex, and is capable of dehydrogenating H3NBH3 (AB) and CH3NH2BH3 (MeAB) at comparable rates. Thermodynamic measurements using this catalyst demonstrate that the dehydrogenation of AB and MeAB is substantially exothermic, which has important implications for regeneration.

  5. Thermally Stable, Latent Olefin Metathesis Catalysts

    OpenAIRE

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.; Grubbs, Robert H.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to i...

  6. POLYMER-SUPPORTED LEWIS ACID CATALYSTS. VI. POLYSTYRENE-BONDED STANNIC CHLORIDE CATALYST

    Institute of Scientific and Technical Information of China (English)

    RAN Ruicheng; FU Diankui

    1991-01-01

    A polystyrene-bonded stannic chloride catalyst was synthesized by the method of lithium polystyryl combined with stannic chloride. This catalyst is a polymeric organometallic compound containing 0.25 mmol Sn(IV)/g catalyst. The catalyst showed sufficient stability and catalytic activity in organic reaction such as esterification, acetalation and ketal formation, and it could be reused many times without losing its catalytic activity.

  7. Cationic ruthenium alkylidene catalysts bearing phosphine ligands

    OpenAIRE

    Endo, Koji; Grubbs, Robert H.

    2016-01-01

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bear-ing bulky phosphine ligands. Simple ligand exchange using silver(I) salts of non-coordinating or weakly coordinating anions pro-vided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported...

  8. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil;

    2007-01-01

    , we report a more detailed catalytic study aimed at optimizing the catalyst performance. For this purpose, two series of mono and bimetallic Ni-Fe catalysts supported on MgAl2O4 and Al2O3, respectively, were prepared. All catalysts were tested in the CO methanation reaction in the temperature interval...

  9. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  10. Thermodynamic Properties of Supported Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  11. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  12. Catalyst. Volume 8, Number 2, Winter 2007

    Science.gov (United States)

    Ryan, Barbara E., Ed.

    2007-01-01

    The U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes "Catalyst," a newsletter covering current Alcohol and Other Drug Abuse and Violence (AODV) prevention issues at institutions of higher education. "Catalyst" discusses emerging issues and highlights innovative efforts on…

  13. Catalyst. Volume 8, Number 3, Spring 2007

    Science.gov (United States)

    Ryan, Barbara E., Ed.

    2007-01-01

    The U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes "Catalyst," a newsletter covering current Alcohol and Other Drug Abuse and Violence (AODV) prevention issues at institutions of higher education. "Catalyst" discusses emerging issues and highlights innovative efforts on…

  14. Catalyst. Volume 9, Number 2, Fall 2007

    Science.gov (United States)

    Ryan, Barbara E., Ed.

    2007-01-01

    The U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes "Catalyst," a newsletter covering current Alcohol and Other Drug Abuse and Violence (AODV) prevention issues at institutions of higher education. "Catalyst" discusses emerging issues and highlights innovative efforts on…

  15. Advances in Catalyst Deactivation and Regeneration

    OpenAIRE

    Calvin H. Bartholomew; Morris D. Argyle

    2015-01-01

    Catalyst deactivation, the loss over time of catalytic activity and/or selectivity, is a problem of great and continuing concern in the practice of industrial catalytic processes. Costs to industry for catalyst replacement and process shutdown total tens of billions of dollars per year. [...

  16. Advances in Catalyst Deactivation and Regeneration

    Directory of Open Access Journals (Sweden)

    Calvin H. Bartholomew

    2015-06-01

    Full Text Available Catalyst deactivation, the loss over time of catalytic activity and/or selectivity, is a problem of great and continuing concern in the practice of industrial catalytic processes. Costs to industry for catalyst replacement and process shutdown total tens of billions of dollars per year. [...

  17. Immobilized Ruthenium Catalyst for Carbon Dioxide Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Ying Min YU; Jin Hua FEI; Yi Ping ZHANG; Xiao Ming ZHENG

    2006-01-01

    Three kinds of cross linked polystyrene resin (PS) supported ruthenium complexes were developed as catalysts for the synthesis of formic acid from carbon dioxide hydrogenation. Many factors, such as the functionalized supports, solvents and ligands, could influence their activities and reuse performances greatly. These immobilized catalysts also offer the industrial advantages such as easy separation.

  18. Catalyst, Volume 9, Number 3, Winter 2008

    Science.gov (United States)

    Ryan, Barbara E., Ed.

    2008-01-01

    The U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes "Catalyst," a newsletter covering current Alcohol and Other Drug Abuse and Violence (AODV) prevention issues at institutions of higher education. "Catalyst" discusses emerging issues and highlights innovative efforts on…

  19. Catalyst, Volume 10, Number 1, Spring 2008

    Science.gov (United States)

    Ryan, Barbara E., Ed.

    2008-01-01

    The U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes "Catalyst," a newsletter covering current Alcohol and Other Drug Abuse and Violence (AODV) prevention issues at institutions of higher education. "Catalyst" discusses emerging issues and highlights innovative efforts on…

  20. NEW REFORMING CATALYST DEVELOPED BY RIPP

    Institute of Scientific and Technical Information of China (English)

    PUZhong-ying

    2003-01-01

    To meet the demands for high-octane gasoline and aromatics,catalytic reforming process has been advancing quickly in China.The reforming catalysts developed by RIPP have been used in more than 80% capacity of domestic CCR and SR units.This paper introduces the properties of PSVI CCR catalyst developed by RIPP in recent years and also the result from commercial units.The PS-VI catalyst has high activity and good selectivity,under the same reaction conditions,the carbon on catalyst was lowered by 26% in mass as compared with that of the reference catalyst.Among the SR reforming catalysts,the new type of PRT series catalysts have excellent performance at low reaction pressure compared with the ref.Cat A.The aromatics and reformate mass yields of PRT catalyst were 2%-3% and 3%,respectively ,higher than those of Cat A,and the run length was 30%-40% longer as well,which exhibits good prospect of application.

  1. Catalyst, Volume 10, Number 2, Fall 2008

    Science.gov (United States)

    Ryan, Barbara E., Ed.

    2008-01-01

    The U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes "Catalyst," a newsletter covering current Alcohol and Other Drug Abuse and Violence (AODV) prevention issues at institutions of higher education. "Catalyst" discusses emerging issues and highlights innovative efforts on…

  2. Magnetically retrievable catalysts for organic synthesis

    Science.gov (United States)

    The use of magnetic nanoparticles (MNPs) as a catalyst in organic synthesis has become a subject of intense investigation. The recovery of expensive catalysts after catalytic reaction and reusing it without losing its activity is an important feature in the sustainable process de...

  3. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  4. Olefin polymerization over supported chromium oxide catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    1999-01-01

    Cr/SiO2 or Phillips-type catalysts are nowadays responsible for a large fraction of all polyethylene (HDPE and LLDPE) worldwide produced. In this review, several key-properties of Cr/SiO2 catalysts will be discussed in relation to their polymerization characteristics. It will be shown how the polyol

  5. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  6. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2008-08-05

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  7. New catalysts for clean environment

    Energy Technology Data Exchange (ETDEWEB)

    Maijanen, A.; Hase, A. [eds.] [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    VTT launched a Research Programme on Chemical Reaction Mechanisms (CREAM) in 1993. The three-year programme (1993-1995) has focused on reaction mechanisms relevant to process industries and aimed at developing novel catalysts and biocatalysts for forest, food, and specialty chemicals industries as well as for energy production. The preliminary results of this programme have already been presented in the first symposium organized in Espoo in September 1994. To conclude the programme the second symposium is organized in Otaniemi, Espoo on January 29 - 30, 1996. Papers by 19 speakers and 17 poster presentations of the 1996 Symposium are included in this book. The Symposium consists of four sessions: Biotechnology for Natural Fibers Processing, New Biocatalysts, Catalysts for Clean Energy, and New Opportunities for Chemical Industry. The CREAM programme has tried to foresee solutions for the problems challenged by the public concern on environmental aspects, especially dealing with industrial processes and novel use of raw materials and energy. The programme has followed the basic routes that can lead to natural and simple solutions to develop processes in the fields of forest, food fine chemicals, and energy industry. This symposium presents the results of the programme to learn and further discuss together with the international experts that have been invited as keynote speakers. (author)

  8. Nanostructured Basic Catalysts: Opportunities for Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Conner, William C; Huber, George; Auerbach, Scott

    2009-06-30

    This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  9. Theoretical investigations of olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cundari, T.R.; Gordon, M.S. [North Dakota State Univ., Fargo, ND (United States)

    1992-01-01

    An ab initio analysis of the electronic structure of high-valent, transition-metal alkylidenes as models for olefin metathesis catalysts is presented. The catalyst models studied fall into three categories: {open_quotes}new{close_quotes} metathesis catalyst models-tetrahedral M(OH){sup 2}(XH)(CH{sub 2}) complexes; {open_quotes}old{close_quotes} metathesis catalyst models-tetrahedral MCl{sub 2}(Y)(CH{sub 2}) complexes and alkylidene-substituted Mo metathesis catalysts, Mo(OH){sub 2}(NH)(=C(H)Z). The effect on the bonding caused by modification of either the metal, ligands, or alkylidene substitutents is considered. 21 refs., 2 figs., 5 tabs.

  10. Sulphur condensation influence in Claus catalyst performance.

    Science.gov (United States)

    Mora, R L

    2000-12-01

    The Claus process is an efficient way of removing H(2)S from acid gas streams and this is widely practised in industries such as natural gas processing, oil refining and metal smelting. Increasingly strict pollution control regulations require maximum sulphur recovery from the Claus unit in order to minimise sulphur-containing effluent. The most widely used Claus catalyst in sulphur recovery units is non-promoted spherical activated alumina. Properties associated with optimum non-promoted Claus catalyst performance include high surface area, appropriate pore size distribution and enhanced physical properties. The objective of this paper is to outline a procedure in order to estimate Claus catalyst effectiveness after pore plugging due to sulphur condensation. Catalyst deactivation due to pore plugging by sulphur is modelled employing a Bethe lattice and its corresponding performance is described by means of a modified effectiveness factor. Model results show an improvement in the modified effectiveness factor due to modifications in catalyst porous structure.

  11. Catalysts for complete oxidation of gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Neyestanaki, A.K.

    1995-12-31

    This thesis presents a study on the complete oxidation of propane, natural gas and the conversion of car exhaust gases over two types of catalysts: (a) knitted silica-fibre supported catalysts and (b) metal-modified ZSM zeolite catalysts. A hybrid textile made up of an organic-inorganic hybrid fibre containing 70 % cellulose and 30 % silicic acid was used as the raw material for preparation of the fibre support for combustion catalysts. The hybrid textile was burnt to obtain a knitted silica-fibre. The changes in the surface area, pore volume and the crystallinity of the obtained support were studied as a function of burning temperature. The stability of the support in steam-rich atmospheres was tested. The knitted silica-fibre obtained by burning the hybrid textile at 1223 K was found to have sufficient strength and high BET specific surface area (140 m{sub 2}/g) to be used as a catalyst support. A series of knitted silica-fibre supported metal oxides (oxides of Co, Ni, Mn, Cr and Cu) and combinations of them, platinum-activated metal oxides (Pt-Co{sub 3}O{sub 4}, Pt-NiO, Pt-MnO{sub 2} and Pt-Cr{sub 2}O{sub 3}) as well as noble metal (Pt, Pd) catalysts were prepared. The location of the metal oxides on the catalyst was studied by SEM equipped with EDXA. The metal oxide was found to be located mostly inside the pores rather than on the exterior surface of the silica-fibre. The catalysts were characterized by XRD, N{sub 2}-physisorption, O{sub 2}-TPD and the chemisorption of propane, carbon monoxide and hydrogen. The activity of the catalysts was tested in the combustion of propane, natural gas and in the conversion of automobile exhaust gases. The effect of residence time and stoichiometry on the conversion behaviour of the catalysts was studied

  12. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  13. An EXAFS study of oxide and suphided catalysts

    Science.gov (United States)

    Zamaraev, K. I.; Kochubey, D. I.

    1989-10-01

    This review article summarizes the results of EXAFS studies, mainly carried out in the USSR, on the structure of oxide and sulphided chemical compounds formed on surfaces of various heterogeneous catalysts. It describes supported metallic catalysts in the presence of oxygen, supported oxide catalysts at different preparation and activation conditions, and supports, modified by transition metal oxides and catalysts for hydrodesulphurization processes.

  14. Efficient Nd Promoted Rh Catalysts for Vapor Phase Methanol Carbonylation

    Institute of Scientific and Technical Information of China (English)

    Shu Feng ZHANG; Qing Li QIAN; Ping Lai PAN; Yi CHEN; Guo Qing YUAN

    2005-01-01

    A Nd promoted-Rh catalysts supported on polymer-derived carbon beads for vapor-phase methanol carbonylation was developed. Rh-Nd bimetallic catalysts obviously have higher activity than that of supported Rh catalyst under similar reaction condition. The difference between the activity of above two catalyst systems is clearly caused by the intrinsic properties generated by the introduction of Nd.

  15. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst...

  16. Oxide catalysts for oxidation of xylene

    OpenAIRE

    Kusman Dossumov; Dina Churina; E. Tulibaev

    2013-01-01

    Polioxide granulated catalysts based on transition and rare earth metals for oxidative conversion of xylene by oxygen have been investigated. It was defined the effect of the composition and concentration of the active phase of oxide catalysts: Cu-Mn-Ln; Cu-Mn-Ce and Cu-Mn-Nd on the o-xylene oxidation. It was found that the Cu-Mn-Ce catalyst has the highest activity at the concentrations of metals: copper – 3.0%; manganese – 3.0%; cerium – 1.0%.

  17. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Laboratory, TN (United States); LaBarge, W. [General Motors-AC Delco Systems, Flint, MI (United States)] [and others

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  18. Tungsten imido catalysts for selective ethylene dimerisation.

    Science.gov (United States)

    Wright, Christopher M R; Turner, Zoë R; Buffet, Jean-Charles; O'Hare, Dermot

    2016-02-14

    A tungsten imido complex W(NDipp)Me3Cl (Dipp = 2,6-(i)Pr-C6H3) is active for the selective dimerisation of ethylene to yield 1-butene under mild conditions. Immobilisation and activation of W(NDipp)Cl4(THF) on layered double hydroxides, silica or polymethylaluminoxane yields active solid state catalysts for the selective dimerisation of ethylene. The polymethylaluminoxane-based catalyst displays a turnover frequency (4.0 molC2H4 molW(-1) h(-1)) almost 7 times that of the homogeneous catalyst. PMID:26779579

  19. Tungsten imido catalysts for selective ethylene dimerisation.

    Science.gov (United States)

    Wright, Christopher M R; Turner, Zoë R; Buffet, Jean-Charles; O'Hare, Dermot

    2016-02-14

    A tungsten imido complex W(NDipp)Me3Cl (Dipp = 2,6-(i)Pr-C6H3) is active for the selective dimerisation of ethylene to yield 1-butene under mild conditions. Immobilisation and activation of W(NDipp)Cl4(THF) on layered double hydroxides, silica or polymethylaluminoxane yields active solid state catalysts for the selective dimerisation of ethylene. The polymethylaluminoxane-based catalyst displays a turnover frequency (4.0 molC2H4 molW(-1) h(-1)) almost 7 times that of the homogeneous catalyst.

  20. Towards the computational design of solid catalysts

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Rossmeisl, Jan;

    2009-01-01

    Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably...... with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts...

  1. LC-finer catalyst testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garg, D.; Bronfenbrenner, J.C.

    1983-09-01

    The activity and aging rate of modified Shell 324 Ni-Mo-Al catalyst were studied in ICRC's process development unit (PDU) under SRC-I Demonstration Plant hydroprocessing conditions. The studies determined variations in SRC conversion, hydrocarbon gas production, hydrogen consumption, and heteroatom removal at both constant and increasing reaction temperatures. Samples of spent catalyst were analyzed to ascertain the reasons for catalyst deactivation. Finally, the PDU hydroprocessing results were compared with those generated at Lummus and Wilsonville pilot plants. 14 references, 25 figures, 16 tables.

  2. Supported catalyst systems and method of making biodiesel products using such catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  3. Development and Commercial Application of Third Generation Resid Hydrotreating Catalysts

    Institute of Scientific and Technical Information of China (English)

    Hu Dawei; Yang Qinghe; Dai Lishun; Zhao Xinqiang

    2013-01-01

    Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and application re-quirements, the third-generation series catalysts for residue hydrotreating have been developed by Research Institute of Petroleum Processing, SINOPEC. The new series RHT catalysts possess higher activity for HDS, HDM and HDCCR per-formance as well as longer run length. The commercial results for application of these catalysts have demonstrated that the new catalyst system performs better than the reference ones.

  4. Synthesis of Organic Compounds over Selected Types of Catalysts

    Directory of Open Access Journals (Sweden)

    Omar Mohamed Saad Ismail

    2011-05-01

    Full Text Available This study provides an overview for the utilization of different catalytic material in the synthesis of organic compounds for important reactions such as heck reaction, aldol reaction, Diels- Alder and other reactions. Comparisons between multiple catalysts for the same reaction and justifications for developing new catalyzed materials are discussed. The following topics are introduced in this work; (1 solid base catalysts, (2 clay catalysts, (3 palladium catalysts, and (4 catalysts to produce organic compound from CO2. The features of these catalysts a long with the conjugated reactions and their selectivity are explained in details, also, some alternatives for toxic or polluting catalysts used in industry are suggested.

  5. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  6. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    OpenAIRE

    Samira Bagheri; Nurhidayatullaili Muhd Julkapli; Sharifah Bee Abd Hamid

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanopa...

  7. FCC Catalysts to Meet Demand of New Era

    Institute of Scientific and Technical Information of China (English)

    Yu Daping

    2008-01-01

    The CGP series FCC catalysts for manufacture of clean gasoline and propylene and the catalyst RSC-2006 for processing inferior residuum with high yield of light distillates are novel catalysts jointly developed by Qilu Catalyst Branch Company of SINOPEC Corp. and the Research Institute of Petroleum Processing (RIPP). The results of commercial application of these catalysts have revealed that they can satisfactorily meet the requirements for environmental protection, good economic benefits and capability for processing inferior FCC feed under new circumstances.

  8. Assessment on Commercial Application of Novel S-RHT Catalysts

    Institute of Scientific and Technical Information of China (English)

    Bian Fengming; Wen Huixin

    2004-01-01

    This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.

  9. Preparative characteristics of hydrophobic polymer catalyst for the tritium removal

    International Nuclear Information System (INIS)

    The optimum method for the fabrication of hydrophobic catalyst was selected and the apparatuses for the preparation of catalyst support with high yield was developed for the large scale production. Also, we summarized the method of improving the physical property of the catalyst support, the loading characteristics of Pt metal as a catalyst, and the characteristics of the apparatus for the fabrication of the catalysts on a large scale

  10. Highly sensitive silicon microreactor for catalyst testing

    DEFF Research Database (Denmark)

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard;

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  11. Synthesis and Understanding of Novel Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Stair, Peter C. [Northwestern University

    2013-07-09

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supported metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.

  12. Moderated ruthenium fischer-tropsch synthesis catalyst

    Science.gov (United States)

    Abrevaya, Hayim

    1991-01-01

    The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  13. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  14. Alternative deNOx catalysts and technologies

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    in the flue gas when biomass is combusted. By co-firing with large amounts of CO2-neutral straw or wood (tomeet stringent CO2 emission legislation), the lifetime of the traditional SCR catalyst is thus significantly reduced due to the presence of deactivating species originating from the fuel. To develop......The present thesis entitled Alternative deNOx Catalysts and technologies revolves around the topic of removal of nitrogen oxides. Nitrogen oxides, NOx, are unwanted byproducts formed during combustion (e.g. in engines or power plants). If emitted to the atmosphere, they are involved...... a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different...

  15. Coating powdered copper catalyst with yttria sol

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuan-Ying [Department of Chemical and Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan (China); Fuel Cell Center, Yuan Ze University, Chung-Li, Taiwan (China); Shen, Chia-Chieh, E-mail: ccshen@saturn.yzu.edu.tw [Fuel Cell Center, Yuan Ze University, Chung-Li, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Chung-Li, Taiwan (China); Graduate School of Renewable Energy Engineering, Yuan Ze University, Chung-Li, Taiwan (China); Lee, Chi-Yuan; Lee, Shuo-Jen [Fuel Cell Center, Yuan Ze University, Chung-Li, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Chung-Li, Taiwan (China); Graduate School of Renewable Energy Engineering, Yuan Ze University, Chung-Li, Taiwan (China); Leu, Chih-Hsing [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Wang, Jung-Hui [Fuel Cell Center, Yuan Ze University, Chung-Li, Taiwan (China); Yeh, Chuin-Tih [Department of Chemical and Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan (China); Fuel Cell Center, Yuan Ze University, Chung-Li, Taiwan (China)

    2011-07-15

    Research highlights: {yields} The neutral Y{sub 2}O{sub 3} sol is an effective binder for coating powders of CuZnAl catalyst. {yields} A particle size ratio of 15 for catalyst to binder is suggested for stable coating. {yields} Sufficient stirring is an important step in the catalyst slurry preparation. - Abstract: A commercial Y{sub 2}O{sub 3} sol was tested as a binder for coating CuZnAl catalyst powder onto microchannels of a stainless steel plate (SSP). Coated plates were used to fabricate microchannel reactors that generate hydrogen via the steam reforming of methanol (SRM). Washcoating slurries were prepared by suspending catalyst powders into the sol. Slurry parameters, such as solid content, binder content, pH value, and stir time, were optimized to achieve a stable catalyst coating and good SRM performance. The expected stable coating could be obtained from neutral (pH 7) Y{sub 2}O{sub 3} slurry that is required for a negligible dissolution of the copper component of the catalyst. The experimental coating stability generally improved with the slurry stir time. Observed improvements were attributed to a dispersion of catalyst powders in the slurry through a two-step mechanism: the mechanical disassembly of agglomerated CuZnAl powders into primary particles, and the repelling of dissembled particles through adsorption of positively charged Y{sub 2}O{sub 3} binders. A reasonable reaction temperature of 280 deg. C was found for 95% conversion of methanol in SRM from the resulted microchannel reactors. A low CO fraction of 0.3% was also found in the hydrogen-rich gas reformed.

  16. Innovative synthetic rubbers via ruthenium catalyst systems

    OpenAIRE

    Tuba, Robert; Grubbs, Robert H.

    2013-01-01

    The trans-polypentenamer has unique relevance among the synthetic rubbers since it has similar phys. properties to the natural rubber. The polypentenamer additives have propitious effect on the tire properties and have been studied extensively for this application. Polypentenamer synthetic rubber was synthesized by ringopening metathesis polymn. (ROMP) using ruthenium catalyst systems. It was found that the cyclopentene conversion does not depend on the catalyst activity and catal...

  17. Catalyst Deactivation: Control Relevance of Model Assumptions

    OpenAIRE

    Bernt Lie; David M. Himmelblau

    2000-01-01

    Two principles for describing catalyst deactivation are discussed, one based on the deactivation mechanism, the other based on the activity and catalyst age distribution. When the model is based upon activity decay, it is common to use a mean activity developed from the steady-state residence time distribution. We compare control-relevant properties of such an approach with those of a model based upon the deactivation mechanism. Using a continuous stirred tank reactor as an example, we show t...

  18. Heterogeneous Catalyst Deactivation and Regeneration: A Review

    OpenAIRE

    Morris D. Argyle; Calvin H. Bartholomew

    2015-01-01

    Deactivation of heterogeneous catalysts is a ubiquitous problem that causes loss of catalytic rate with time. This review on deactivation and regeneration of heterogeneous catalysts classifies deactivation by type (chemical, thermal, and mechanical) and by mechanism (poisoning, fouling, thermal degradation, vapor formation, vapor-solid and solid-solid reactions, and attrition/crushing). The key features and considerations for each of these deactivation types is reviewed in detail with referen...

  19. Method for manufacturing a hydrorefining catalyst

    International Nuclear Information System (INIS)

    A method for the manufacture of a highly active and, at the same time, activity-stable hydrorefining catalyst is presented. The catalyst consisting of the combination of nickel-molybdenum(VI) oxide/aluminium oxide achieves an almost complete degradation of sulphur and nitrogen and a hydrogenation of olefins, consuming only little hydrogen. It is used for selective sulphur/nitrogen removal and olefin elimination from hydrocarbon fractions

  20. Atomistic Processes of Catalyst Degradation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-27

    The purpose of this cooperative research and development agreement (CRADA) between Sasol North America, Inc., and the oak Ridge National Laboratory (ORNL) was to improve the stability of alumina-based industrial catalysts through the combination of aberration-corrected scanning transmission electron microscopy (STEM) at ORNL and innovative sample preparation techniques at Sasol. Outstanding progress has been made in task 1, 'Atomistic processes of La stabilization'. STEM investigations provided structural information with single-atom precision, showing the lattice location of La dopant atoms, thus enabling first-principles calculations of binding energies, which were performed in collaboration with Vanderbilt University. The stabilization mechanism turns out to be entirely due to a particularly strong binding energy of the La tom to the {gamma}-alumina surface. The large size of the La atom precludes incorporation of La into the bulk alumina and also strains the surface, thus preventing any clustering of La atoms. Thus highly disperse distribution is achieved and confirmed by STEM images. la also affects relative stability of the exposed surfaces of {gamma}-alumina, making the 100 surface more stable for the doped case, unlike the 110 surface for pure {gamma}-alumina. From the first-principles calculations, they can estimate the increase in transition temperature for the 3% loading of La used commercially, and it is in excellent agreement with experiment. This task was further pursued aiming to generate useable recommendations for the optimization of the preparation techniques for La-doped aluminas. The effort was primarily concentrated on the connection between the boehmitre-{gamma}-Al{sub 2}O{sub 3} phase transition (i.e. catalyst preparation) and the resulting dispersion of La on the {gamma}-Al{sub 2}O{sub 3} surface. It was determined that the La distribution on boehmite was non-uniform and different from that on the {gamma}-Al{sub 2}O{sub 3} and thus

  1. Synchrotron radiation studies of supported metal catalysts

    International Nuclear Information System (INIS)

    Metallic clusters supported on refractory oxides have been used extensively for several decades in the production of chemicals and petroleum derived transportation fuels. Catalysts containing more than one metal component are of particular interest since the addition of a second metal provides a method of controlling the selectivity of the catalyst. That is, the second metal can alter the rates of competing reactions in a complex reaction sequence and thus alter the final product distribution of the reaction. In this work the reactions of cyclohexane in hydrogen over silica supported ruthenium and osmium catalysts were studied. Bimetallic catalysts represent an important class of materials that are of interest both scientifically and technologically. Despite the importance and long-standing use of supported metal catalysts, detailed information on the structure of the metal clusters has been difficult to obtain. The development of x-ray absorption spectroscopy with the increasing availability of synchrotron radiation, however, has provided a powerful and versatile tool for studying the structure of these complex systems. Using the Extended X-ray Absorption Fine Structure (EXAFS) technique, it is possible to obtain information on the local atomic structure of supported monometallic catalytic metals and their interaction with the support. In the discussion that follows the authors will focus on results that have been obtained on the structure of supported bimetallic cluster catalysts

  2. Reforming gasoline over catalyst Kr-104

    Energy Technology Data Exchange (ETDEWEB)

    Sen' kov, G.M.; Pushkarev, V.P.; Kozlov, N.S.; Varshavskiy, O.M.; Pryakhina, N.Ya.; Glinchak, S.I.; Gorbatsevich, M.F.

    KR-104 is a widely used domestic polymetallic (Pt, Re, Cd, Fe) catalyst for making high octane components of motor fuel. The start-up and performance results of this catalyst on a high capacity LK-6u unit have been presented previously. In the present work, a further study was made of the performance and regeneration characteristics of the catalyst during reforming of a broad cut gasoline fraction in a one million ton per year industrial unit for 45 months. In the first stage of regeneration, the catalyst was reduced at 768 K for 9 hours and then oxychlorinated. During the second stage, the KR-104 was first treated for 8 hours with a hydrogen-containing gas at 768 K and then cooled and blown through with nitrogen. No change in Pt or Re content was observed, although the Cd content dropped markedly after 11 months and then remained constant. The octane number of the catalyzate was 80.4 (motor method, without TEL) and the catalyst lost both activity and selectivity and had to be regenerated after 5 months. The poor performance of the catalyst and its drop in activity are attributed to the high moisture content in the system during the start-up period. 10 references, 3 figures.

  3. Interaction between Nafion ionomer and noble metal catalyst for PEMFCs

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    The implement of polymer impregnation in electrode structure (catalyst layer) decreasing the noble metal catalyst loading by a factor of ten , , is one of the essential mile stones in the evolution of Proton Exchange Membrane Fuel Cells’ development among the application of catalyst support...... and electrode deposition etc. In fuel cell reactions, both electrons and protons are involved. Impregnation of Nafion ionomer in catalyst layer effectively increases the proton-electron contact, enlarge the reaction zone, extend the reaction from the surface to the entire electrode. Therefore, the entire...... catalyst layer conducts both electrons and protons so that catalyst utilization in the layer is improved dramatically. The catalyst layer will in turn generate and sustain a higher current density. One of the generally adapted methods to impregnate Nafion into the catalyst layer is to mix the catalysts...

  4. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  5. Development of Novel Resid Hydrometallization Catalyst RDM-3

    Institute of Scientific and Technical Information of China (English)

    Hu Dawei; Niu Chuanfeng; Yang Qinghe; Liu Tao

    2007-01-01

    Based on the reaction mechanism of resid hydrodemetallization,a new catalyst carrier was designed and prepared.As compared with the similar type of catalyst carder,the said new carrier featured a higher pore volume,a larger pore diameter and a weaker surface acidity,which could improve the diffusion performance and stable reaction performance of the catalyst.The active metal components were loaded on the said carrier by a new technique for better metal dispersion,thus the impurity removal rate of the new catalyst,RDM-3,was improved significantly.The commercial test of the RDM-3 catalyst showed that the process of catalyst preparation was stable,the catalyst performance was slightly better than the catalyst prepared in the lab,therefore,the catalyst could be manufactured in commercial scale.

  6. Advances in HDS catalysts design: relation between catalyst structure and feed composition

    NARCIS (Netherlands)

    Kagami, Narinobu

    2006-01-01

    The aim of this work is to propose a better understanding of ultra deep HDS for diesel, to contribute to the development of advanced catalysts. The characterization of catalyst structure was examined by XRD, TPR, TPS and Raman spectroscopy. The ranking of catalytic activities were tested using vario

  7. Towards the Rational Design of Nanoparticle Catalysts

    Science.gov (United States)

    Dash, Priyabrat

    This research is focused on development of routes towards the rational design of nanoparticle catalysts. Primarily, it is focused on two main projects; (1) the use of imidazolium-based ionic liquids (ILs) as greener media for the design of quasi-homogeneous nanoparticle catalysts and (2) the rational design of heterogeneous-supported nanoparticle catalysts from structured nanoparticle precursors. Each project has different studies associated with the main objective of the design of nanoparticle catalysts. In the first project, imidazolium-based ionic liquids have been used for the synthesis of nanoparticle catalysts. In particular, studies on recyclability, reuse, mode-of-stability, and long-term stability of these ionic-liquid supported nanoparticle catalysts have been done; all of which are important factors in determining the overall "greenness" of such synthetic routes. Three papers have been published/submitted for this project. In the first publication, highly stable polymer-stabilized Au, Pd and bimetallic Au-Pd nanoparticle catalysts have been synthesized in imidazolium-based 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) ionic liquid (Journal of Molecular Catalysis A: Chemical, 2008, 286, 114). The resulting nanoparticles were found to be effective and selective quasi-homogeneous catalysts towards a wide-range of hydrogenation reactions and the catalyst solution was reused for further catalytic reactions with minimal loss in activity. The synthesis of very pure and clean ILs has allowed a platform to study the effects of impurities in the imidazolium ILs on nanoparticle stability. In a later study, a new mode of stabilization was postulated where the presence of low amounts of 1-methylimidazole has substantial effects on the resulting stability of Au and Pd-Au nanoparticles in these ILs (Chemical Communications, 2009, 812). In further continuation of this study, a comparative study involving four stabilization protocols for nanoparticle

  8. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  9. Steam dealkylation catalyst and a method for its activation

    International Nuclear Information System (INIS)

    The method of activating a supported catalyst containing oxides of a group viii metal and of a group 1 a metal which comprises heating said catalyst at a rate of 100 to 5000F/hr to a temperature of 6500 to 14000F in a hydrogen atmosphere; maintaining said heated catalyst in a hydrogen atmosphere at 6500 to 14000F for 2 to 30 hours thereby forming a hydrogen-treated catalyst; and maintaining the hydrogen-treated catalyst in a steam-hydrogen atmosphere at 6500 to 14000F for 2 to 20 hours thereby forming a steamed hydrogen-treated catalyst

  10. Thermal decomposition of supported lithium nitrate catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Maria Lucia [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Lick, Ileana Daniela [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina); Ponzi, Marta Isabel [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Castellon, Enrique Rodriguez; Jimenez-Lopez, Antonio [Departamento de Quimica Inorganica, Cristalografia y Mineralogia. Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Ponzi, Esther Natalia, E-mail: eponzi@quimica.unlp.edu.ar [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina)

    2010-02-20

    New catalysts for soot combustion were prepared by impregnation of different supports (SiO{sub 2}, ZrO{sub 2} and ZrO{sub 2}.nH{sub 2}O) with a LiNO{sub 3} solution and then characterized by means of FTIR, XPS, TGA and UV-vis spectroscopy, whereby the presence of lithium nitrate in the prepared catalysts was identified and quantified. The soot combustion rate using this series of catalysts (LiNO{sub 3}/support) was compared with the activity of a series of impregnated catalysts prepared using LiOH (Li{sub 2}O/supports). Catalysts prepared using LiNO{sub 3} are found to be more active than those prepared using LiOH. The catalytic performance was also studied with a NO/O{sub 2} mixture in the feed, demonstrating that NO increases the combustion rate of soot, probably as a consequence of lithium oxide forming an 'in situ' nitrate ion.

  11. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  12. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Lab., TN (United States); LaBarge, W. [Delphi Automotive Systems, Flint, MI (United States)] [and others

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  13. Thermally Stable, Latent Olefin Metathesis Catalysts

    Science.gov (United States)

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652

  14. Thermally Stable, Latent Olefin Metathesis Catalysts.

    Science.gov (United States)

    Thomas, Renee M; Fedorov, Alexey; Keitz, Benjamin K; Grubbs, Robert H

    2011-12-26

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652

  15. Productions of palm oil bio diesel whit heterogeneous basic catalysts compared to conventional homogeneous catalysts

    International Nuclear Information System (INIS)

    The conventional process to produce biodiesel involves the presence of homogeneous basic catalysts. However, these catalysts have disadvantages associated to the need of purification steps, which increase the cost of the final product and generate pollution problems caused by the effluents. This paper compares different homogeneous and heterogeneous catalysts for the biodiesel production from palm oil. For this, heterogeneous catalysts supported on alumina were prepared and characterized by nitrogen adsorption, scanning electron microscopy, energy dispersive X ray spectroscopy and X ray diffraction. Transesterification of palm oil with methanol was accomplished at 60 celsius degrade and one hour, varying methanol/oil ratio, the type of catalyst and its concentration. Yields of the reaction and purity of the so obtained biodiesel were evaluated. Comparing the catalysts performance, based on the amount, was found that sodium methoxide (CH3 ONa) and potassium carbonate supported on alumina (K2 CO3 /Al2O3) were the catalysts that give the higher purity of biodiesel (96.8 and 95.85% respectively). When was determined the active site quality, by dividing the performance by each mole of active sites, it was found that calcined Na2SO4 /Al2O3 has the most active sites.

  16. Examining the surfaces in used platinum catalysts

    Directory of Open Access Journals (Sweden)

    Trumić B.

    2009-01-01

    Full Text Available For the purpose of finding more advanced platinum catalyst manufacturing technologies and achieving a higher degree of ammonia oxidation, metallographic characterization has been done on the surface of catalyst gauzes and catalyst gripper gauzes made from platinum and palladium alloys. For the examined samples of gauzes as well as the cross section of the wires, a chemical analysis was provided. The purpose of this paper is the metallographic characterization of examined alloys carried out by way of electronic microscopic scanning, X-rays as well as chemical assays which contributed greatly to a better understanding of the surface deactivation, in other words a better consideration of structural changes occurring on the wire surface.

  17. Heterogeneous Catalyst Deactivation and Regeneration: A Review

    Directory of Open Access Journals (Sweden)

    Morris D. Argyle

    2015-02-01

    Full Text Available Deactivation of heterogeneous catalysts is a ubiquitous problem that causes loss of catalytic rate with time. This review on deactivation and regeneration of heterogeneous catalysts classifies deactivation by type (chemical, thermal, and mechanical and by mechanism (poisoning, fouling, thermal degradation, vapor formation, vapor-solid and solid-solid reactions, and attrition/crushing. The key features and considerations for each of these deactivation types is reviewed in detail with reference to the latest literature reports in these areas. Two case studies on the deactivation mechanisms of catalysts used for cobalt Fischer-Tropsch and selective catalytic reduction are considered to provide additional depth in the topics of sintering, coking, poisoning, and fouling. Regeneration considerations and options are also briefly discussed for each deactivation mechanism.

  18. Polypropylene obtained through zeolite supported catalysts

    Directory of Open Access Journals (Sweden)

    Queli C. Bastos

    2004-01-01

    Full Text Available Propylene polymerizations were carried out with f2C(Flu(CpZrCl2 and SiMe2(Ind2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM and acid mordenite (HM. The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]. The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu(CpZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereoregularity.

  19. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  20. Photocatalytic Denitrogenation over Modiifed Waste FCC Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zheng Liuping; Lin Mei; Huang Yingying; Yan Guiyang; Zheng Binquan; Li Ling

    2013-01-01

    The strontium modiifed waste FCC catalyst was prepared by magnetic stirring method and characterized by X-ray diffractometry (XRD), UV-Vis diffuse relfectance spectrometry (DRS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Meanwhile, its photocatalytic denitrogenation performance was evaluated in terms of its ability to degrade the N-containing simulation oil under visible light. A mixture of strontium nitrate solution (with a concentration of 0.5 mol/L) and waste FCC catalyst was calcined at 400℃for 5 h prior to taking part in the photocatalytic denitrogenation reaction. The test results showed that the photocatalytic degradation rate of pyridine contained in simulation oil in the presence of the strontium modiifed FCC catalyst could reach 92.0%under visible light irradiation for 2.5 h.

  1. Polypropylene obtained through zeolite supported catalysts

    International Nuclear Information System (INIS)

    Propylene polymerizations were carried out with φ2C(Flu)(Cp)ZrCl2 and SiMe2(Ind)2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM) and acid mordenite (HM). The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]). The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu)(Cp)ZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereo regularity. (author)

  2. Catalyst dispersion and activity under conditions of temperature- staged liquefaction. [Catalyst precursors for molybdenum-based catalyst and iron-based catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1992-07-01

    Two coals, a Texas subbituminous C and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling and catalyst impregnation on liquefaction conversion behavior in temperature staged reactions for 30 minutes each at 275{degree} and 425{degree}C in H{sub 2} and 95:5 H{sub 2}:H{sub 2}S atmospheres. Methanol, pyridine, tetrahydrofuran, and tetrabutylammonium hydroxide were used as swelling agents. Molybdenum-based catalyst precursors were ammonium tetrathiomolybdate, molybdenum trisulfide, molybdenum hexacarbonyl, and bis(tricarbonylcyclopentadienyl-molybdenum). Ferrous sulfate and bis(dicarbonylcyclo-pentadienyliron) served as iron-based catalyst precursors. In addition, ion exchange was used for loading iron onto the subbituminous coal. For most experiments, liquefaction in H{sub 2}:H{sub 2}S was superior to that in H{sub 2}, regardless of the catalyst precursor. The benefit of the H{sub 2}S was greater for the subbituminous, presumably because of its higher iron content relative to the hvab coal. Tetrabutylammonium hydroxide was the only swelling agent to enhance conversion of the hvab coal significantly; it also caused a remarkable increase in conversion of the subbituminous coal. The combined application of solvent swelling and catalyst impregnation also improves liquefaction, mainly through increased oil yields from the hvab coal and increased asphaltenes from the subbituminous. A remarkable effect from use of ammonium tetrathiomolybdate as a catalyst precursor is substantial increase in pristane and phytane yields. Our findings suggest that these compounds are, at least in part, bound to the coal matrix.

  3. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of combinatorial methods is proposed to rapidly screen catalyst formulations for the advanced development of aqueous phase oxidation catalysts with greater...

  4. Highly Durable Catalysts for Ignition of Advanced Monopropellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Monopropellants are readily ignited or decomposed over a bed of solid catalyst. A serious limitation of existing catalysts in the ignition of advanced...

  5. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.;

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...... along with our recent in situ TEM studies on the sintering of Ni/MgAl2O4 catalysts. These results suggest that the rapid loss of catalyst activity in the earliest stages of catalyst sintering could result from Ostwald ripening rather than through particle migration and coalescence. The smallest...

  6. Method of performing sugar dehydration and catalyst treatment

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  7. Asymmetric synthesis of polypiperylene on a lanthanide-containing catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Monakov, Yu.B.; Marina, N.G.; Kozlova, O.I.; Kanzafarov, F.Ya.; Tolstikov, G.A.

    1987-07-01

    The authors study the polymerization of piperylene and subsequent synthesis of polypiperylene on a neodymium chloride catalyst containing a sulfoxide and an aluminium complex. Specifics of the catalyst preparation and activity are given.

  8. Application of Ion Beam Processing Technology in Production of Catalysts

    Directory of Open Access Journals (Sweden)

    Mykola G. Bannikov, Javed A. Chattha

    2012-08-01

    Full Text Available In this paper, the applicability of Ion Beam Processing Technology for making catalysts has been inves-tigated. Ceramic substrates of different shapes and metal fibre tablets were implanted by platinum ions and tested in nitrogen oxides (NOx and carbon monoxide (CO conversion reactions. Effectiveness of the implanted catalysts was compared to that of the commercially produced platinum catalysts made by impregnation. Platinum-implanted catalyst having fifteen times less platinum content showed the same CO conversion efficiency as the commercially pro-duced catalyst. It was revealed that the effectiveness of the platinum-implanted catalyst has complex dependence on the process parameters and the optimum can be achieved by varying the ions energy and the duration of implantation. Investigation of the pore structure showed that ion implantation did not decrease the specific surface area of the catalyst.Key Words: Catalyst, Ion Implantation, Noble metals.

  9. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J.; Pennline, Henry W.

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  10. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    Science.gov (United States)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  11. Preliminary toxicological study of Silastic 386 catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.M.; Drake, G.A.; Holland, L.M.; Jackson, D.E.; London, J.E.; Prine, J.R.; Thomas, R.G.

    1978-06-01

    The calculated acute oral LD/sub 50//sup 30/ values for Silastic 386 catalyst were 1225 mg/kg in mice and 4350 mg/kg in rats. According to classical guidelines, the compound would be slightly to moderately toxic in both species. Skin application studies in the rabbit demonstrated the compound to be mildly irritating. The eye irritation study disclosed the compound to be a severe irritant causing conjunctivitis, photophobia, corneal edema, corneal ulceration, anterior uveitis, and keratitis. The sensitization study in the guinea pig did not show Silastic 386 catalyst to be deleterious in this regard.

  12. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne;

    2014-01-01

    . In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...... compared to other potential nickel transport species. The relation between experimental catalyst sintering data and the effective mass diffusion constant for Ni-OH is established by numerical modelling of the particle migration and coalescence process. Using this relation, the effective mass diffusion...

  13. Method for the production of methanation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, H.; Hakim, I.

    1976-11-18

    A methanation catalyst is claimed which is produced by precipitation of nickel salts from alcoholic solutions. At the same time, these solutions contain aluminium or magnesium compounds and, in some cases, also a carrier medium. The precipitation agents are alkali boron hydride solutions and alkali carbonate solutions. The precipitate, which is preferably obtained at temperatures between -5 and +5/sup 0/C, consists of a fine mixture of nickel boride, oxide hydrates, and hydroxides of nickel, magnesium, or aluminium. In contrast to the known nickel catalyst masses, it may be processed in air without inert gas. Four examples of preparations with suitable methanation tests are given.

  14. Catalysis by nonmetals rules for catalyst selection

    CERN Document Server

    Krylov, Oleg V

    1970-01-01

    Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-ba

  15. Ruthenium-Aryloxide Catalysts for Olefin Metathesis

    Science.gov (United States)

    Monfette, Sebastien; Blacquiere, Johanna M.; Conrad, Jay C.; Beach, Nicholas J.; Fogg, Deryn E.

    : Advances in design of ruthenium aryloxide catalysts for olefin metathesis are described. The target complexes are accessible on reaction of RuCl2(NHC)(py)2 (CHPh) (NHC - N-heterocyclic carbene) with electron-deficient, monodentate aryl- oxides, or aryloxides that yield small, rigid chelate rings. The best of these catalysts offer activity comparable to or greater than that of the parent chloride (Grubbs) systems in ring-closing metathesis (RCM). Preliminary studies of the electronic nature of the Ru-X bond suggest that the metal center is more electropositive in the aryloxide complexes than in the Grubbs systems.

  16. Production of olefins from bioethanol. Catalysts, mechanism

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2012-12-01

    Full Text Available This review describes methods of catalytic obtaining from bioethanol of valuable industrial products – olefins, particularly ethylene. Аmong olefins, ethylene is the most popular key raw material of petrochemical synthesis. The scope of appllication of ethylene is almost unlimited in petrochemical products: polyethylene, ethylbenzene, styrene, ethylene dichloride, vinyl chloride etc. It also examines catalysts for the production of olefins and their properties. The most promising and commercially advantageous process of ethylene production by catalytic dehydration of ethanol on catalysts based on modified alumina. And this review discusses the mechanisms of catalytic conversion of ethanol to ethylene.

  17. Nickel catalysts for internal reforming in molten carbonate fuel cells

    OpenAIRE

    Berger, R.J.; Doesburg, E.B.M.; Ommen, van, B.; Ross, J.R.H.

    1996-01-01

    Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In order to find suitable types of nickel catalysts and to obtain more knowledge about the deactivation mechanism(s) occurring during internal reforming, a series of nickel catalysts was prepared and subj...

  18. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    CanXiongGUO; YanLIU; 等

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD,IR,XPS,pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  19. Thief carbon catalyst for oxidation of mercury in effluent stream

    Science.gov (United States)

    Granite, Evan J.; Pennline, Henry W.

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  20. Modelling cathode catalyst degradation in polymer electrolyte fuel cells

    OpenAIRE

    Rinaldo, Steven Giordano

    2013-01-01

    Nano-sized Pt particles in the cathode catalyst layer of a polymer electrolyte fuel cell afford a high initial electrochemically active surface-area. However, the gain in active surface area for desired surface reactions is offset in part by enhanced rates of degradation processes that cause losses in catalyst mass, catalyst surface-area, and electrocatalytic activity. The loss of electrochemically active surface-area of the catalyst causes severe performance degradation over relevant lifetim...

  1. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD, IR, XPS, pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  2. Nano Catalysts for Diesel Engine Emission Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  3. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  4. Shining X-rays on catalysts at work

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk

    2009-01-01

    Structure-performance relationships gained by studying catalysts at work are considered the key to further development of catalysts underlined here by a brief overview on our research in this area. The partial oxidation of methane to hydrogen and carbon monoxide over Pt- and Rh-based catalysts an...

  5. Moessbauer study of function of magnesium in iron oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    YangJie-Xin; MaoLian-Sheng; 等

    1997-01-01

    Moessbauer spectroscopy has been utilized for studying the action of Mg element in iron oxide catalysts used for the dehydrogenation of ethylbenzene to sytrene.The experimental results show that the presence of opportune amount of Mg can enhance the stability and dispersion of catalysts,i.e.Mg is an sueful structure promoter in this kind of catalysts.

  6. 40 CFR 90.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for thermally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000...

  7. Monte Carlo simulation of the PEMFC catalyst layer

    Institute of Scientific and Technical Information of China (English)

    WANG Hongxing; CAO Pengzhen; WANG Yuxin

    2007-01-01

    The performance of the polymer electrolyte membrane fuel cell (PEMFC) is greatly controlled by the structure of the catalyst layer.Low catalyst utilization is still a significant obstacle to the commercialization of the PEMFC.In order to get a fundamental understanding of the electrode structure and to find the limiting factor in the low catalyst utilization,it is necessary to develop the mechanical model on the effect of catalyst layer structure on the catalyst utilization and the performance of the PEMFC.In this work,the structure of the catalyst layer is studied based on the lattice model with the Monte Carlo simulation.The model can predict the effects of some catalyst layer components,such as Pt/C catalyst,electrolyte and gas pores,on the utilization of the catalyst and the cell performance.The simulation result shows that the aggregation of conduction grains can greatly affect the degree of catalyst utilization.The better the dispersion of the conduction grains,the larger the total effective area of the catalyst is.To achieve higher utilization,catalyst layer components must be distributed by means of engineered design,which can prevent aggregation.

  8. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  9. 40 CFR 91.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10 °C. (b)...

  10. Hydrogenation of cottonseed oil with nickel, palladium and platinum catalysts

    Science.gov (United States)

    A number of commercial catalysts have been used to study hydrogenation of cottonseed oil, with the goal of minimizing trans fatty acid (TFA) content. Despite the different temperatures used, catalyst levels, and reaction times, the data from each catalyst type fall on the same curve when the TFA le...

  11. New improved hydrophobic Pt-catalyst for hydrogen isotope separation

    International Nuclear Information System (INIS)

    This paper presents the studies on preparation methods and applications of the hydrophobic catalysts in deuterium and tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; (2) to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation; (3) to assess and to find a new procedure for preparation of a new improved hydrophobic catalyst. Unlike the conventional hydrophilic catalysts, the hydrophobic catalysts maintain a high catalytic activity and stability even under the direct contact to liquid water or in the presence of saturated humidity. A large diversity of catalyst types (over 100 catalysts) was prepared and tested for hydrogen isotope separation. The impregnation modes, the type of precursor of active metal, conditions of reduction and waterproofing methods are in detail analysed. As result of this assessment, platinum appears to be the most active catalytic metal and TEFLON is the most hydrophobic agent. A method for preparation of new improved hydrophobic Pt-catalysed has been proposed. The main steps and experimental conditions are largely discussed. The advantages of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. Some suggestions concerning the deuterium and tritium enrichment by means of hydrophobic catalysts are also discussed.The extension of hydrophobic Pt-catalysts' applications in environmental field is proposed. (author)

  12. Coke Accumulation on Catalysts used in a Fluidized Bed Pyrolyzer

    Science.gov (United States)

    We have examined the impact of various solid catalysts on the product distribution resulting from the pyrolysis of biomass. Though catalysts do have a discernible impact, this impact is small. In our bench-top pyrolyzer designed as a catalyst screening tool, we measure bulk product distribution as...

  13. Hydrogenation of xylose to xylitol on sponge nickel catalyst: a study of the process and catalyst deactivation kinetics

    OpenAIRE

    Mikkola J.-P.; Salmi T.; Villela A.; Vainio H.; Mäki-Arvela P.; Kalantar A.; Ollonqvist T.; Väyrynen J.; Sjöholm R.

    2003-01-01

    The kinetics of hydrogenation of xylose to xylitol on a sponge nickel catalyst (commonly referred to as Raney Ni catalyst) and of catalyst deactivation were studied. Plausible explanations for the decrease in catalytic activity by means of surface studies, nitrogen adsorption and thermogravimetric analyses of the fresh and spent catalysts are presented. The kinetic parameters of the process were estimated by the use of a semi-competitive model, which allows full competition between the organi...

  14. SOME PRELIMINARY INFORMATION ON SYNDIOTACTIC POLYSTYRENE CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    Adolfo Zambelli; Claudio Pellecchia; Leone Oliva; HAN Shimin

    1988-01-01

    Syndiotactic specific polymerization of styrene has been investigated by 13C NMR analysis and isotopic labelling methods. The value of the activation energy involved in the sterie control has been determined. Some information of the number of the active sites and on the life of the catalysts is reported.

  15. Pt/C Fuel Cell Catalyst Degradation

    DEFF Research Database (Denmark)

    Zana, Alessandro

    This thesis investigates the degradation behavior of Pt/C catalysts under simulated automotive conditions. By using the “tool box” synthesis method the Pt loading has been changed from low to high Pt loadings, therefore permitting to study the role of Pt on the degradation of high surface area (H...

  16. Manipulating the reactivity of nanoscale catalysts

    DEFF Research Database (Denmark)

    Conradsen, Christian Nagstrup

    . The dynamical changes of an industrial Cu/ZnO/Al2O3 catalyst are investigated by three adsorption methods and XPS. A deviation in the copper surface area measured by H2-TPD and N2O-RFC is explained by the appearance of metallic zinc measured by XPS. The pretreatment in hydrogen resulted in a surface decoration...

  17. Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase

    Directory of Open Access Journals (Sweden)

    Alessandra Magistrato

    2011-01-01

    Full Text Available The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via an iron molybdenum cofactor (FeMo-co under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N2 to various degrees. However, to date Mo(N2(HIPTN3N with (HIPTN3N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N2. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  18. Process for Functionalizing Biomass using Molybdenum Catalysts

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention concerns a process for converting biomass into useful organic building blocks for the chemical industry. The process involves the use of molybdenum catalysts of the formula Aa+a(MovXxR1yR2zR3e)a*3-, which may be readily prepared from industrial molybdenum compounds....

  19. Alkane dehydrogenation over supported chromium oxide catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    1999-01-01

    The dehydrogenation of alkanes over supported chromium oxide catalysts in the absence of oxygen is of high interest for the industrial production of propene and isobutene. In this review, a critical overview is given of the current knowledge nowadays available about chromium-based dehydrogenation ca

  20. Determination of platinum in Adam's catalyst

    Directory of Open Access Journals (Sweden)

    Anđelić Brankica Č.

    2003-01-01

    Full Text Available Adams's catalyst PtO2 x H2O has an important application in the chemical industry. The method for determination of platinum in Adam's catalyst has been elaborated. It includes the combination of cupellation and gravimetry methods. Considering that platinum oxide is practically insolvent in mineral acids, the sample is alloyed with lead by cupellation method and the separated balls solution procedure has been tested. The ball, platinum and lead alloy, is soluble in mineral acid. The platinum was settled by amonium chloride from solution, and obtained deposit treated by amonium acetate with addition of ethanol for lead removing. The retained platinum was determined by atomic absorption spctrophotometry method in the filtrate (after the platinum separation and the final result of platinum content corrected. It was shown how the combined gravimetric and AAS-Pt determination methods might be used for solving determination of Pt content in practically unsoluble sample of catalyst. Applied procedure enables testing the catalyst quality and proving its characteristics required for chemical industry.

  1. Catalyst Activity Comparison of Alcohols over Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  2. Catalyst. Volume 10, Number 3, Spring 2009

    Science.gov (United States)

    Ryan, Barbara E., Ed.

    2009-01-01

    "Catalyst" is a publication of the U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention. This issue contains the following articles: (1) The National Study of Student Hazing Initial Findings; (2) The Social Norms Marketing Research Project--An Update; (3) Message From William Modzeleski,…

  3. Overview of Support Effects in Hydrotreating Catalysts

    Institute of Scientific and Technical Information of China (English)

    Michèle Breysse

    2004-01-01

    @@ Industrial hydrotreating (HDT) catalysts are composed of a molybdenum sulfide (or tungsten sulfide) phase promoted by cobalt or nickel and usually supported on alumina. The origin of the almost exclu1sive use of alumina as support has to be ascribed to its outstanding textural and mechanical properties and its relatively low cost[1].

  4. On the degradation of fuel cell catalyst. From model systems to high surface area catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Arenz, M. [Copenhagen Univ. (Denmark). Dept. of Chemistry

    2010-07-01

    In the presented work, as an alternative accelerated degradation tests in the form of half-cell measurements combined with identical location transmission electron microscopy (IL-TEM){sup 10,} {sup 11} are presented. It is demonstrated that for different catalysts the degradation mechanism can be scrutinized in detail. Thus this approach enables the systematic investigation of fuel cell catalyst degradation in a reduced period of time. (orig.)

  5. Catalysts for biobased fuels. New catalyst formulations for vehicles fuelled by biobased motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, L.J.; Wahlberg, A.M.; Jaeraas, S.G. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Technology

    1997-12-01

    The long-term objective for the project is to develop tailor-made exhaust gas catalysts for heavy-duty vehicles fuelled by biobased motor fuels operating in urban traffic. In this report an experimental study of catalytic oxidation of ethanol in a laboratory flow reactor is presented. The miniature catalyst samples consisted of monolithic cordierite substrates onto which various combinations of washcoat material and active material were applied. Oxides of Cu and Cu-Mn, as well as different combinations of precious metals were evaluated as active material supported on various washcoat materials. The experimental conditions were chosen in order to simulate the exhaust from a diesel engine fuelled by neat ethanol. Catalyst characterization included measurements of BET surface area and pore size distribution as well as temperature programmed reduction (TPR) analysis. When comparing the TPR profiles with the light-off curves from the ethanol oxidation experiments, we have found an indication of a correlation between activity and reducibility of the catalyst. There also seems to be a correlation between TPR profile and pore size distribution for titania-supported catalysts. When combining two precious metals as active material, a positive synergistic effect has been observed. The light-off temperature (T{sub 50}) is considerably lower for some of these combinations than for the corresponding monometallic catalysts. The base metal oxide catalysts tested were more selective for oxidation of ethanol to carbon dioxide and water than the precious metal catalysts. The results also indicate that the oxidation of nitric oxide to the more hazardous nitrogen dioxide can be suppressed by using a suitable combination of active material and washcoat material 45 refs, 97 figs, 4 tabs

  6. Design strategies for the molecular level synthesis of supported catalysts.

    Science.gov (United States)

    Wegener, Staci L; Marks, Tobin J; Stair, Peter C

    2012-02-21

    Supported catalysts, metal or oxide catalytic centers constructed on an underlying solid phase, are making an increasingly important contribution to heterogeneous catalysis. For example, in industry, supported catalysts are employed in selective oxidation, selective reduction, and polymerization reactions. Supported structures increase the thermal stability, dispersion, and surface area of the catalyst relative to the neat catalytic material. However, structural and mechanistic characterization of these catalysts presents a formidable challenge because traditional preparations typically afford complex mixtures of structures whose individual components cannot be isolated. As a result, the characterization of supported catalysts requires a combination of advanced spectroscopies for their characterization, unlike homogeneous catalysts, which have relatively uniform structures and can often be characterized using standard methods. Moreover, these advanced spectroscopic techniques only provide ensemble averages and therefore do not isolate the catalytic function of individual components within the mixture. New synthetic approaches are required to more controllably tailor supported catalyst structures. In this Account, we review advances in supported catalyst synthesis and characterization developed in our laboratories at Northwestern University. We first present an overview of traditional synthetic methods with a focus on supported vanadium oxide catalysts. We next describe approaches for the design and synthesis of supported polymerization and hydrogenation catalysts, using anchoring techniques which provide molecular catalyst structures with exceptional activity and high percentages of catalytically significant sites. We then highlight similar approaches for preparing supported metal oxide catalysts using atomic layer deposition and organometallic grafting. Throughout this Account, we describe the use of incisive spectroscopic techniques, including high

  7. Endurance testing of a WDS catalyst

    International Nuclear Information System (INIS)

    Full text: The Water Detritiation System (WDS) of ITER is a safety related component since it is the final barrier against tritium discharge into the environment. Therefore, its subcomponents have to be qualified and predictions on the time evolution of performances have to be made. During the activities devoted to JET WDS, test at lower concentrations of tritium and at small scale have been performed. The goal of this work is to extend the endurance testings and to check early results by tests under relevant conditions. The degradation of the WDS catalyst can strongly affect its separation performances and consequently it will entail a raise of the tritium releases into the environment. If a catalyst based on Teflon material is used for the LPCE column of WDS, the fluoride that may be formed and released due to the tritium presence causes the corrosion of the LPCE column with unpredictable effects. Therefore the quantification of catalyst degradation and the amount of fluoride released is needed for planning the maintenance activities and to predict the operation life time of the WDS components. The manufacturing of hydrophobic catalysts with activity that is not lowered by liquid water determined the rise of interest for the isotopes separation techniques in the hydrogen - water system. The active component of these catalysts is Pt (the only material to be further discussed) that enhances the exchange between the hydrogen and water vapors. The hydrophobic support does not allow the wetting and blocking by water of the active surface. Hydrophobic catalysts were manufactured by two methods: - direct deposition of Pt into the pores of a hydrophobic support (Teflon, carbon monofluoride, poly styrene, styrene di-vinyl benzene, etc.); - deposition on a hydrophilic support, most common charcoal, followed by hydrophobization by silicon oil or by homogenizing with hydrophobic polymer (Teflon, silicon resins). This type of catalysts is one of the most studied groups due to

  8. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  9. Nitroaldol reaction over solid base catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Akutu, Kazumasa; Kabashima, Hajime; Seki, Tsunetake; Hattori, Hideshi [Center for Advanced Research of Energy Technology, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2003-07-10

    Nitroaldol reaction of a nitro compound with a carbonyl compound was carried out over a variety of solid base catalysts to elucidate the activity-determining factors in the nature of the catalysts and in the nature of nitro and carbonyl compounds. Among the catalysts examined, MgO, CaO, Ba(OH){sub 2}, KOH/alumina, KF/alumina, Sr(OH){sub 2}, hydrotalcite, and MgCO{sub 3} exhibited high activity for nitroaldol reaction of nitromethane with propionaldehyde, the activities being in this order. Over these catalysts, the yields exceeded 20% at a reaction temperature of 313K and a reaction time of 1h. Mg(OH){sub 2}, {gamma}-alumina, SrO, Ca(OH){sub 2}, BaCO{sub 3}, SrCO{sub 3}, BaO, and La{sub 2}O{sub 3} exhibited moderate activites; the yield were in the range 20-2%. CaCO{sub 3}, ZrO{sub 2}, and ZnO scarcely showed the activity. It is suggested that strongly basic sites are not required for the reaction because the abstraction of a proton from a nitro compound is easy. The reactivities of the nitro compounds were nitroethane > nitromethane > 2-nitropropane, and those of carbonyl compounds were propionaldehyde>isobutyraldehyde>pivalaldehyde>acetone>benzaldehyde>methylpro pionate. On the basis of IR study of adsorbed reactants and the reactivities of the reactants, the reaction mechanisms are proposed. The reaction proceeds by the nucleophilic addition of the carbanion formed by the abstraction of a proton from nitro compounds to the cationic species formed by the adsorption of carbonyl compounds on the acidic sites (metal cations). The nitroaldol reaction of nitromethane with propionaldehyde over MgO was scarcely poisoned by carbon dioxide and water; nitromethane is so acidic that it is able to be adsorbed on the catalyst on which carbon dioxide or water was preadsorbed.

  10. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  11. XPS studies of Pt catalysts supported on porous carbon

    Science.gov (United States)

    Tyagi, Deepak; Varma, Salil; Bharadwaj, S. R.

    2016-05-01

    Pt catalysts supported on porous carbon were prepared by hard templating route and used for HI decomposition reaction of Sulfur Iodine thermochemical cycle. These catalysts were characterized by X-ray photoelectron spectroscopy for oxidation state of platinum as well as nature of carbon present in the catalysts. It was found that platinum is present in metallic state and carbon is present in both sp2 and sp3 hybridization states. The catalysts were evaluated for their activity and stability for liquid phase HI decomposition reaction and it was observed that mesoporous carbon based catalysts were more active and stable under the reaction conditions.

  12. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders;

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  13. Phosphine-Free EWG-Activated Ruthenium Olefin Metathesis Catalysts

    Science.gov (United States)

    Grela, Karol; Szadkowska, Anna; Michrowska, Anna; Bieniek, Michal; Sashuk, Volodymyr

    Hoveyda-Grubbs catalyst has been successfully fine-tuned by us in order to increase its activity and applicability by the introduction of electron-withdrawing groups (EWGs) to diminish donor properties of the oxygen atom. As a result, the stable and easily accessible nitro-substituted Hoveyda-Grubbs catalyst has found a number of successful applications in various research and industrial laboratories. Some other EWG-activated Hoveyda-type catalysts are commercially available. The results described herewith demonstrate that the activity of ruthenium (Ru) metathesis catalysts can be enhanced by introduction of EWGs without detriment to catalysts stability. Equally noteworthy is the observation that different Ru catalysts turned out to be optimal for different applications. This shows that no single catalyst outperforms all others in all possible applications.

  14. Near Critical Catalyst Reactant Branching Processes with Controlled Immigration

    CERN Document Server

    Budhiraja, Amarjit

    2012-01-01

    Near critical catalyst-reactant branching processes with controlled immigration are studied. The reactant population evolves according to a branching process whose branching rate is proportional to the total mass of the catalyst. The bulk catalyst evolution is that of a classical continuous time branching process; in addition there is a specific form of immigration. Immigration takes place exactly when the catalyst population falls below a certain threshold, in which case the population is instantaneously replenished to the threshold. Such models are motivated by problems in chemical kinetics where one wants to keep the level of a catalyst above a certain threshold in order to maintain a desired level of reaction activity. A diffusion limit theorem for the scaled processes is presented, in which the catalyst limit is described through a reflected diffusion, while the reactant limit is a diffusion with coefficients that are functions of both the reactant and the catalyst. Stochastic averaging principles under ...

  15. Monolayer dispersion thresholds and threshold effect displayed by supported catalysts

    Institute of Scientific and Technical Information of China (English)

    Cun DENG

    2008-01-01

    The principle of spontaneous monolayer dis-persion holds that active components of many supported catalysts will disperse spontaneously onto the surface of the carrier. The monolayer dispersion threshold of the active component on the surface of the carrier can be measured by X-ray diffraction phase-quantitative extra-polation method, etc. By measuring the monolayer disper-sion threshold, beneficial information on the surface structure and dispersion of supported catalysts can be obtained, and the optimal preparative processing condi-tions of the catalysts can be chosen. The proportion of the active component of many supported catalysts can be optimized while its monolayer dispersion threshold is observed. Mutation values of many physicochemical properties of supported catalysts are related to monolayer dispersion thresholds; the threshold effect on catalysts is apparent, and the proposal regarding the threshold effect provides instruction for the research on catalysts.

  16. Concluding remarks: progress toward the design of solid catalysts.

    Science.gov (United States)

    Gates, Bruce C

    2016-07-01

    The 2016 Faraday Discussion on the topic "Designing New Heterogeneous Catalysts" brought together a group of scientists and engineers to address forefront topics in catalysis and the challenge of catalyst design-which is daunting because of the intrinsic non-uniformity of the surfaces of catalytic materials. "Catalyst design" has taken on a pragmatic meaning which implies the discovery of new and better catalysts on the basis of fundamental understanding of the catalyst structure and performance. The presentations and discussion at the meeting illustrate the rapid progress in this understanding linked with improvements in spectroscopy, microscopy, theory, and catalyst performance testing. The following text includes a statement of recurrent themes in the discussion and examples of forefront science that evidences progress toward catalyst design. PMID:27222485

  17. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    DEFF Research Database (Denmark)

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also revealed...... much higher alkali resistivity than that of commercial V2O5/WO3-TiO2 (VWT) SCR catalyst which is currently used for NOx abatement in stationary installations. Unique support properties like high surface area and surface acidity, which are not available in the commercial VWT catalyst, seem...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  18. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  19. Catalyst Kinetics Analytical Method Study of Ruthenium

    Institute of Scientific and Technical Information of China (English)

    Kou ming-ze; Zhan hui-ying; Kou zong-yan

    2004-01-01

    Color reactions are used to determine ruthenium utilizing spectrophotometer, but the process need high temperature, long time pyrogenation and miscellaneous extraction and it contaminates the enviroment. As the sensitive degree and simple apparatus of catalyst kinetics analytical method, it was extensively attentcd. The fundmental principle means to determinn a certain chemistry reaction rate accelerated by homogeneous catalyst and determine substantial content using the function of the numerical value of of its and the catalyst concentration. Color acid double azo-reagents (chloro-phosphor group, arsenic group and carboxylic acid group) are sensitive color reagent determining uranium and thorium of lanthanon, but the report is few that it is used to determine ruthenium. Since 1990s, the author studied that the ruthenium was possessed evident catalysis to the fade reaction of oxidant (KIO4, KBrO3) oxidating color acid double azo-reagent in acitidy medium and provided the catalyst kinetics analytical method to determine trace ruthenium.sensitive degree was increased 1 ~2 amount than color reaction. The reaction as:The original concentration of color acid double azo-reagents is A. The instantaneous absorbency after t reaction time is At. In homogeneous catalyst reaction: log(A0/At) = KCRu3+t. Reaction time t is invarible, so log(A0/At) = K' CRu3+t.Color acid double azo-reagents, such as: chlor-azochlorphosphor(CPA-TC),bromic-azochlorphosphor (CPA-TB), DBS-azochlorphosphor(DBS-CPA), DBC-azochlorphosphor (DBC-CPA), DBOK-azochlorpho sphor (DBOK-CPA), p-iodineazochlorphosphor(CPA-PI),p-acetylazochlorphosphor (CPA-PA), azochlorpho sphorⅢ(CPAⅢ), chlor-azoarsenic (TC-AsA),bromic-azoarsenic (TB-AsA), DBS-azoarsenic(DCS-AsA), DCS-azoarsenic(DCS-AsA),azoarsenicⅢ(AsAⅢ), bromicnityrlazoarsenic (DBN-AsA), P-acetylcarboxy lazo-p,P-acetylcarboxylazo, were utilized in catalyst kinetics system. The author obtains the satisfactory results that color acid double azo-rea gents

  20. Catalyst Deactivation: Control Relevance of Model Assumptions

    Directory of Open Access Journals (Sweden)

    Bernt Lie

    2000-10-01

    Full Text Available Two principles for describing catalyst deactivation are discussed, one based on the deactivation mechanism, the other based on the activity and catalyst age distribution. When the model is based upon activity decay, it is common to use a mean activity developed from the steady-state residence time distribution. We compare control-relevant properties of such an approach with those of a model based upon the deactivation mechanism. Using a continuous stirred tank reactor as an example, we show that the mechanistic approach and the population balance approach lead to identical models. However, common additional assumptions used for activity-based models lead to model properties that may deviate considerably from the correct one.

  1. Pursuing DNA catalysts for protein modification.

    Science.gov (United States)

    Silverman, Scott K

    2015-05-19

    Catalysis is a fundamental chemical concept, and many kinds of catalysts have considerable practical value. Developing entirely new catalysts is an exciting challenge. Rational design and screening have provided many new small-molecule catalysts, and directed evolution has been used to optimize or redefine the function of many protein enzymes. However, these approaches have inherent limitations that prompt the pursuit of different kinds of catalysts using other experimental methods. Nature evolved RNA enzymes, or ribozymes, for key catalytic roles that in modern biology are limited to phosphodiester cleavage/ligation and amide bond formation. Artificial DNA enzymes, or deoxyribozymes, have great promise for a broad range of catalytic activities. They can be identified from unbiased (random) sequence populations as long as the appropriate in vitro selection strategies can be implemented for their identification. Notably, in vitro selection is different in key conceptual and practical ways from rational design, screening, and directed evolution. This Account describes the development by in vitro selection of DNA catalysts for many different kinds of covalent modification reactions of peptide and protein substrates, inspired in part by our earlier work with DNA-catalyzed RNA ligation reactions. In one set of studies, we have sought DNA-catalyzed peptide backbone cleavage, with the long-term goal of artificial DNA-based proteases. We originally anticipated that amide hydrolysis should be readily achieved, but in vitro selection instead surprisingly led to deoxyribozymes for DNA phosphodiester hydrolysis; this was unexpected because uncatalyzed amide bond hydrolysis is 10(5)-fold faster. After developing a suitable selection approach that actively avoids DNA hydrolysis, we were able to identify deoxyribozymes for hydrolysis of esters and aromatic amides (anilides). Aliphatic amide cleavage remains an ongoing focus, including via inclusion of chemically modified DNA

  2. Catalyst for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  3. Relating FTS Catalyst Properties to Performance

    Science.gov (United States)

    Ma, Wenping; Ramana Rao Pendyala, Venkat; Gao, Pei; Jermwongratanachai, Thani; Jacobs, Gary; Davis, Burton H.

    2016-01-01

    During the reporting period June 23, 2011 to August 31, 2013, CAER researchers carried out research in two areas of fundamental importance to the topic of cobalt-based Fischer-Tropsch Synthesis (FTS): promoters and stability. The first area was research into possible substitute promoters that might be used to replace the expensive promoters (e.g., Pt, Re, and Ru) that are commonly used. To that end, three separate investigations were carried out. Due to the strong support interaction of ?-Al2O3 with cobalt, metal promoters are commonly added to commercial FTS catalysts to facilitate the reduction of cobalt oxides and thereby boost active surface cobalt metal sites. To date, the metal promoters examined have been those up to and including Group 11. Because two Group 11 promoters (i.e., Ag and Au) were identified to exhibit positive impacts on conversion, selectivity, or both, research was undertaken to explore metals in Groups 12 - 14. The three metals selected for this purpose were Cd, In, and Sn. At a higher loading of 25%Co on alumina, 1% addition of Cd, In, or Sn was found to-on average-facilitate reduction by promoting a heterogeneous distribution of cobalt consisting of larger lesser interacting cobalt clusters and smaller strongly interacting cobalt species. The lesser interacting species were identified in TPR profiles, where a sharp low temperature peak occurred for the reduction of larger, weakly interacting, CoO species. In XANES, the Cd, In, and Sn promoters were found to exist as oxides, whereas typical promoters (e.g., Re, Ru, Pt) were previously determined to exist in an metallic state in atomic coordination with cobalt. The larger cobalt clusters significantly decreased the active site density relative to the unpromoted 25%Co/Al2O3 catalyst. Decreasing the cobalt loading to 15%Co eliminated the large non-interacting species. The TPR peak for reduction of strongly interacting CoO in the Cd promoted catalyst occurred at a measurably lower temperature

  4. Pursuing DNA catalysts for protein modification.

    Science.gov (United States)

    Silverman, Scott K

    2015-05-19

    Catalysis is a fundamental chemical concept, and many kinds of catalysts have considerable practical value. Developing entirely new catalysts is an exciting challenge. Rational design and screening have provided many new small-molecule catalysts, and directed evolution has been used to optimize or redefine the function of many protein enzymes. However, these approaches have inherent limitations that prompt the pursuit of different kinds of catalysts using other experimental methods. Nature evolved RNA enzymes, or ribozymes, for key catalytic roles that in modern biology are limited to phosphodiester cleavage/ligation and amide bond formation. Artificial DNA enzymes, or deoxyribozymes, have great promise for a broad range of catalytic activities. They can be identified from unbiased (random) sequence populations as long as the appropriate in vitro selection strategies can be implemented for their identification. Notably, in vitro selection is different in key conceptual and practical ways from rational design, screening, and directed evolution. This Account describes the development by in vitro selection of DNA catalysts for many different kinds of covalent modification reactions of peptide and protein substrates, inspired in part by our earlier work with DNA-catalyzed RNA ligation reactions. In one set of studies, we have sought DNA-catalyzed peptide backbone cleavage, with the long-term goal of artificial DNA-based proteases. We originally anticipated that amide hydrolysis should be readily achieved, but in vitro selection instead surprisingly led to deoxyribozymes for DNA phosphodiester hydrolysis; this was unexpected because uncatalyzed amide bond hydrolysis is 10(5)-fold faster. After developing a suitable selection approach that actively avoids DNA hydrolysis, we were able to identify deoxyribozymes for hydrolysis of esters and aromatic amides (anilides). Aliphatic amide cleavage remains an ongoing focus, including via inclusion of chemically modified DNA

  5. Carbon Fiber Composite Monoliths as Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL; Pickel, Joseph M [ORNL; Blom, Douglas Allen [ORNL; Burchell, Timothy D [ORNL

    2006-01-01

    Carbon fiber composite monoliths are rigid bodies that can be activated to a large surface area, have tunable porosity, and proven performance in gas separation and storage. They are ideal as catalyst supports in applications where a rigid support, with open structure and easy fluid access is desired. We developed a procedure for depositing a dispersed nanoparticulate phase of molybdenum carbide (Mo2C) on carbon composite monoliths in the concentration range of 3 to 15 wt% Mo. The composition and morphology of this phase was characterized using X-ray diffraction and electron microscopy, and a mechanism was suggested for its formation. Molybdenum carbide is known for its catalytic properties that resemble those of platinum group metals, but at a lower cost. The materials obtained are expected to demonstrate catalytic activity in a series of hydrocarbon reactions involving hydrogen transfer. This project demonstrates the potential of carbon fiber composite monoliths as catalyst supports.

  6. Carbon Fiber Composite Monoliths for Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL; Pickel, Joseph M [ORNL; Blom, Douglas Allen [ORNL; Burchell, Timothy D [ORNL

    2006-01-01

    Carbon fiber composite monoliths are rigid bodies that can be activated to a large surface area, have tunable porosity, and proven performance in gas separation and storage. They are ideal as catalyst supports in applications where a rigid support, with open structure and easy fluid access is desired. We developed a procedure for depositing a dispersed nanoparticulate phase of molybdenum carbide (Mo2C) on carbon composite monoliths in the concentration range of 3 to 15 wt% Mo. The composition and morphology of this phase was characterized using X-ray diffraction and electron microscopy, and a mechanism was suggested for its formation. Molybdenum carbide is known for its catalytic properties that resemble those of platinum group metals, but at a lower cost. The materials obtained are expected to demonstrate catalytic activity in a series of hydrocarbon reactions involving hydrogen transfer. This project demonstrates the potential of carbon fiber composite monoliths as catalyst supports.

  7. Homogeneously dispersed multimetal oxygen-evolving catalysts.

    Science.gov (United States)

    Zhang, Bo; Zheng, Xueli; Voznyy, Oleksandr; Comin, Riccardo; Bajdich, Michal; García-Melchor, Max; Han, Lili; Xu, Jixian; Liu, Min; Zheng, Lirong; García de Arquer, F Pelayo; Dinh, Cao Thang; Fan, Fengjia; Yuan, Mingjian; Yassitepe, Emre; Chen, Ning; Regier, Tom; Liu, Pengfei; Li, Yuhang; De Luna, Phil; Janmohamed, Alyf; Xin, Huolin L; Yang, Huagui; Vojvodic, Aleksandra; Sargent, Edward H

    2016-04-15

    Earth-abundant first-row (3d) transition metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials substantially above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxyhydroxides materials with an atomically homogeneous metal distribution. These gelled FeCoW oxyhydroxides exhibit the lowest overpotential (191 millivolts) reported at 10 milliamperes per square centimeter in alkaline electrolyte. The catalyst shows no evidence of degradation after more than 500 hours of operation. X-ray absorption and computational studies reveal a synergistic interplay between tungsten, iron, and cobalt in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER. PMID:27013427

  8. Catalytic Acylation of Ethylidenecyclohexane over Zeolite Catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some environmentally friendly catalysts such as HY and H-β zeolites,various cation-exchanged β zeolites,and some other solids have been used in the acylation reaction of ethylidenecyclohexane with acetic anhydride at room temperature to synthesize 3-(1-cyclohexenyl)-2-butanone instead of conventional catalysts.The effect of the amount of HY zeolite used on the acylation reaction was investigated.The yield of the acylated product was 72% in the case of n(ethylidenecyclohexane)∶n(acetic anhydride)∶m(HY zeolite)=1 mmol∶10 mmol∶0.100 g,reaction temperature:25 ℃,and reaction time:2 h.The regenerated HY zeolite showed almost the same catalytic activity as the fresh zeolite.

  9. Environmentally benign production of biodiesel using heterogeneous catalysts.

    Science.gov (United States)

    Hara, Michikazu

    2009-01-01

    Fuelling the future: The production of esters of higher fatty acids from plant materials is of great interest for the manufacture of biodiesel. Heterogeneous catalysts can provide new routes for the environmentally benign production of biodiesel. Particulate heterogeneous catalysts can be readily separated from products following reaction allowing the catalyst to be reused, generating less waste, and consuming less energy. Diesel engines are simple and powerful, and exhibit many advantages in energy efficiency and cost. Therefore, the production of higher fatty acid esters from plant materials has become of interest in recent years for the manufacture of biodiesel, a clean-burning alternative fuel. The industrial production of biodiesel mostly proceeds in the presence of "soluble" catalysts such as alkali hydroxides and liquid acids. A considerable amount of energy is required for the purification of products and catalyst separation, and furthermore these catalysts are not reusable. This process results in substantial energy wastage and the production of large amounts of chemical waste. Particulate heterogeneous catalysts can be readily separated from products following reaction, allowing the catalyst to be reused and consuming less energy. This Minireview describes the environmentally benign production of biodiesel using heterogeneous catalysts such as solid bases, acid catalysts, and immobilized enzymes. PMID:19180600

  10. Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming

    Directory of Open Access Journals (Sweden)

    Antonios Tribalis

    2016-01-01

    Full Text Available Nickel catalysts are the most popular for steam reforming, however, they have a number of drawbacks, such as high propensity toward coke formation and intolerance to sulfur. In an effort to improve their behavior, a series of Ni-catalysts supported on pure and La-, Ba-, (La+Ba- and Ce-doped γ-alumina has been prepared. The doped supports and the catalysts have been extensively characterized. The catalysts performance was evaluated for steam reforming of n-hexadecane pure or doped with dibenzothiophene as surrogate for sulphur-free or commercial diesel, respectively. The undoped catalyst lost its activity after 1.5 h on stream. Doping of the support with La improved the initial catalyst activity. However, this catalyst was completely deactivated after 2 h on stream. Doping with Ba or La+Ba improved the stability of the catalysts. This improvement is attributed to the increase of the dispersion of the nickel phase, the decrease of the support acidity and the increase of Ni-phase reducibility. The best catalyst of the series doped with La+Ba proved to be sulphur tolerant and stable for more than 160 h on stream. Doping of the support with Ce also improved the catalytic performance of the corresponding catalyst, but more work is needed to explain this behavior.

  11. Study on Olefins Yield from Methanol Conversion over Different Catalysts

    Institute of Scientific and Technical Information of China (English)

    Munib Shahda; Yan Dengchao; Wang Zhihe; Wen Huixin

    2006-01-01

    Conversion of Methanol to Olefins (MTO) under different reaction conditions was experimentally investigated over different catalysts, and comparison was made between the SAPO-34 and GOR-MLC catalysts. Optimization of reaction conditions has been explored. Conversion of methanol to olefins over these catalysts under different reaction temperatures was experimentally studied. In a fixed bed micro-reactor, the influence of temperature was found to be one of the major factors. For both catalysts the olefins yield was increased significantly when water was added to the methanol feed. A temperature range of 460-480 ℃ appeared to be the optimum range suitable for methanol conversion with appropriate catalyst activity and C2-C3 olefins yield. Some other hydrocarbons appeared during the MTO reaction in the presence of the SAPO-34 catalyst, while a lot of dimethylether was formed when the GOR-MLC catalyst was used. In the course of the MTO reaction, the GOR-MLC catalyst was found to have a faster catalyst deactivation rate compared to the SAPO-34 catalyst.

  12. New ruthenium catalysts for asymmetric hydrogenation

    OpenAIRE

    Diaz Valenzuela, Maria Belen

    2007-01-01

    A review on catalytic asymmetric hydrogenation of C=O double bonds is presented in the first chapter. Noyori’s pioneering research on ruthenium complexes containing both phosphine and diamine ligands using [i superscript]PrOH and [t superscript]BuOK is described, this system gave impressive highly chemeo-selectivity for C=O bonds and extremely high enantioselectivity for a range of acetophenone derivatives. Numerous groups have been inspired by Noyori’s catalyst of the ty...

  13. Ruthenium olefin metathesis catalysts containing fluoride

    OpenAIRE

    Guidone, Stefano; Songis, Olivier; Falivene, Laura; Nahra, Fady; Slawin, Alexandra Martha Zoya; Jacobsen, Heiko; Cavallo, Luigi; Cazin, Catherine S. J.

    2015-01-01

    The authors gratefully acknowledge the EC through the 7th framework program (grant CP-FP 211468-2 EUMET), the Royal Society (University Research Fellowship to CSJC) for financial support. The reaction of the ruthenium complex cis-Caz-1 with silver fluoride affords the first example of an active olefin metathesis pre-catalyst containing fluoride ligands. The cis geometry of the precursor complex is key to the successful fluoride exchange reaction. Computational studies highlight the stabili...

  14. deNOx catalysts for biomass combustion

    OpenAIRE

    Kristensen, Steffen Buus; Riisager, Anders; Fehrmann, Rasmus; Nørklit Jensen, Jørgen

    2013-01-01

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks,hence a more alkali resistant catalys...

  15. Transformation of methylcyclohexane on an FCC catalyst

    Directory of Open Access Journals (Sweden)

    A. Rabeharitsara

    2003-06-01

    Full Text Available The transformation of methylcyclohexane at 723 K over on a USHY sample and on an FCC catalyst composed of 30% USHY and 70% matrix containing 25% Al2O3 was studied. With both samples, C2-C7 alkenes and alkanes, cyclopentane and methylcyclopentane (cracking products, dimethylcyclopentanes and ethylcyclopentane (isomers and aromatics appeared as primary products. The activity and selectivity of fresh samples as well as the influence of coke deposits on porosity and selectivity are discussed.

  16. Hydrolysis of isocyanic acid on SCR catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, M.; Kleemann, M.; Koebel, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Standard SCR catalysts possess high activity for the hydrolysis of HNCO and thus explain the suitability of urea as a selective reducing agent for NO{sub x}. At high space velocities HNCO-slip can get perceptible over the entire temperature range. This can be attributed to the fact that the temperature dependence is strong for the SCR reaction, but weak for the hydrolysis reaction. (author) 3 figs., 5 refs.

  17. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  18. Redox Equilibria in SO2 Oxidation Catalysts

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Boghosian, Soghomon;

    1999-01-01

    The catalyst used for sulfuric acid production is well described by the molten salt-gas system M2S2O7-V2O5/SO2-O2-SO3-N2 (M=Na, K, Cs) at 400 - 600°C.In order to understand the mechanism of the oxidation of SO2 by O2 to SO3, catalyzed by the above mentioned system, rather intensive research has...

  19. Rape oil transesterification over heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Encinar, J.M.; Martinez, G. [Dpto. Ingenieria Quimica y Quimica Fisica, UEX, Avda. Elvas s/n, 06071-Badajoz (Spain); Gonzalez, J.F. [Dpto. Fisica Aplicada, UEX, Avda Elvas s/n, 06071-Badajoz (Spain); Pardal, A. [Dpto. Ciencias do Ambiente, ESAB, IPBeja, Rua Pedro Soares s/n, 7800-Beja (Portugal)

    2010-11-15

    This work studies the application of KNO{sub 3}/CaO catalyst in the transesterification reaction of triglycerides with methanol. The objective of the work was characterizing the methyl esters for its use as biodiesel in compression ignition motors. The variables affecting the methyl ester yield during the transesterification reaction, such as, amount of KNO{sub 3} impregnated in CaO, the total catalyst content, reaction temperature, agitation rate, and the methanol/oil molar ratio, were investigated to optimize the reaction conditions. The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by its density, viscosity, cetane index, saponification value, iodine value, acidity index, CFPP (cold filter plugging point), flash point and combustion point, according to ISO norms. The results showed that calcium oxide, impregnated with KNO{sub 3}, have a strong basicity and high catalytic activity as a heterogeneous solid base catalyst. The biodiesel with the best properties was obtained using an amount of KNO{sub 3} of 10% impregnated in CaO, a methanol/oil molar ratio of 6:1, a reaction temperature of 65 C, a reaction time of 3.0 h, and a catalyst total content of 1.0%. In these conditions, the oil conversion was 98% and the final product obtained had very similar characteristics to a no. 2 diesel, and therefore, these methyl esters might be used as an alternative to fossil fuels. (author)

  20. Oxidation of soot on iron oxide catalysts

    OpenAIRE

    Waglöhner, Steffen

    2012-01-01

    This thesis addresses the rational development of an iron oxide based catalyst for soot oxidation. The approach of this development process comprises three research methods, namely mechanistic and kinetic experiments, kinetic and fluid dynamic modelling and structure-activity relations of different types of iron oxides. A combination of this enables the synthesis of an advanced catalytic material, which is transferred to a real DPF system and tested under real diesel exhaust conditions.

  1. Shareholder Returns for a Catalyst Award

    OpenAIRE

    Arthur, M. M.; Cook, Alison

    2009-01-01

    Using an event study methodology, we examine firm share price reactions to the designation of a Catalyst Award. We find a positive relationship between the human resource award and share price reactions. In addition, we find varying degrees of support that timing, firm size, and labor force composition moderate share price reactions. Specifically, we find that earlier award announcements generate larger share price reactions than more recent award announcements. We also find support that larg...

  2. Surface coatings and catalyst production by electrodeposition

    Science.gov (United States)

    May, Chester B.; Riley, Clyde; Coble, H. Dwain; Loo, Boon H.

    1987-01-01

    Electrodeposition and electrocodeposition in low gravity are discussed. The goal is to provide a better understanding of the role of convection and buoyancy in the mechanisms of formation of some electrodeposited surfaces, fluid flow in the vicinity of electrodepositing surfaces, the influence of a moving medium upon codeposition, the effect of gravity upon the dispersion (coagulation) of neutral particles that are desired for codeposition and preparation of improved surface coatings and metal catalysts.

  3. Intermediate Ethanol Blends Catalyst Durability Program

    Energy Technology Data Exchange (ETDEWEB)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  4. Development of radioactive platinum group metal catalysts

    International Nuclear Information System (INIS)

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m2/g. The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs

  5. Catalyst preactivation using EURECAT TOTSUCAT CFP technology

    Energy Technology Data Exchange (ETDEWEB)

    Brahma, N.; Alexander, R.; Robinson, J. [Eurecat US Inc., Houston, TX (United States)

    2009-07-01

    This presentation described EURECAT's newly developed and patented technology that allows the start up of a hydrotreating process without the introduction of sulphur containing chemicals. This ex-situ process known as TOTSUCAT ensures complete activation and sulphiding of the catalyst prior to loading in the reactor. The benefits of TOTSUCAT include the elimination of sour water formation; the prevention of potential exotherms; minimal hydrogen sulphide (H{sub 2}) pressure; and no need for additional hydrogen. TOTSUCAT can be used in cases where the unit has temperature limitations that prevent a complete activation of the catalyst. The TOTSUCAT cracked feed protection (CFP) is an enhanced treatment that combines the advantages of preactivation with the ability to start up a unit with cracked stocks. It eliminates the need to delay the introduction of cracked feeds for 3 to 5 days after start-up, as is typical in commercial hydroprocessing units. The acidity of the catalyst is reduced in the CFP treatment, making it suitable for early introduction of cracked stocks. As such, the technology has potential use in the field of residual hydrocracking. The technology has been successfully applied in several commercial refineries in North America. tabs., figs.

  6. Highly Dispersed Alloy Catalyst for Durability

    Energy Technology Data Exchange (ETDEWEB)

    Murthi, Vivek S.; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  7. Development of radioactive platinum group metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E. [and others

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m{sup 2}/g.The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs.

  8. Influence of hydrogen treatment on SCR catalysts

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    reduction (SCR) process, i.e. the catalytic removal of NOx from the flue gas. A series of experiments was conducted to reveal the impact on the NO SCR activity of a industrial DeNOX catalyst (3%V2O5-7%WO3/TiO2) by treatment of H2. Standard conditions were treatment of the SCR catalyst for 60 min with three...... different concentrations of H2 (0-2%) in a 8% O2/N2 mixture, where the SCR activity was measured before and after the hydrogen treatment. The results show that the activity of the SCR catalyst is only negligible affected during exposure to the H2/O2 gas and in all cases it returned reversibly to the initial...... NOx conversion (temporarily higher) after reexposure to the standard NO SCR gas. Electron paramagnetic resonance (EPR) suggests that a fraction of both V(IV) and V(V) were reduced to V(III) during exposure to 2% H2 + 8% O2. However, the distribution of vanadium in oxidation state V(III)-V(V) quickly...

  9. PGM-free Fe-N-C catalysts for oxygen reduction reaction: Catalyst layer design

    Science.gov (United States)

    Stariha, Sarah; Artyushkova, Kateryna; Workman, Michael J.; Serov, Alexey; Mckinney, Sam; Halevi, Barr; Atanassov, Plamen

    2016-09-01

    This work studies the morphology of platinum group metal-free (PGM-free) iron-nitrogen-carbon (Fe-N-C) catalyst layers for the oxygen reduction reaction (ORR) and compares catalytic performance via polarization curves. Three different nitrogen-rich organic precursors are used to prepare the catalysts. Using scanning electron microscopy (SEM) and focused ion beam (FIB) tomography, the porosity, Euler number (pore connectivity), overall roughness, solid phase size and pore size are calculated for catalyst surfaces and volumes. Catalytic activity is determined using membrane electrode assembly (MEA) testing. It is found that the dominant factor in MEA performance is transport limitations. Through the 2D and 3D metrics it is concluded that pore connectivity has the biggest effect on transport performance.

  10. Regeneration of commercial selective catalyst reduction catalysts deactivated by Pb and other inorganic elements.

    Science.gov (United States)

    Yu, Yanke; Wang, Jinxiu; Chen, Jinsheng; He, Xinjiang; Wang, Yujing; Song, Kai; Xie, Zongli

    2016-09-01

    The regeneration of commercial SCR (Selective Catalyst Reduction) catalysts deactivated by Pb and other elements was studied. The deactivated catalyst samples were prepared by chemical impregnation with mixed solution containing K2SO4, Na2SO4, CaSO4, Pb(NO3)2 and NH4H2PO4. A novel method combining Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and H2SO4 solution (viz. catalysts treated by dilute EDTA-2Na and H2SO4 solution in sequence) was used to recover the activity of deactivated samples, and the effect was compared with single H2SO4, oxalic acid, acetic acid, EDTA or HNO3 solutions. The surface structure, acidity and reducibility of samples were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectrometer (ICP-OES), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), H2-temperature programmed section (H2-TPR), NH3-temperature programmed desorption (NH3-TPD) and in situ DRIFTS. Impurities caused a decrease of specific surface area and surface reducibility, as well as Brønsted acid sites, and therefore led to severe deactivation of the SCR catalyst. The use of an acid solution alone possibly eliminated the impurities on the deactivated catalyst to some extent, and also increased the specific surface area and Brønsted acid sites and promoted the surface reducibility, thus recovered the activity partially. The combination of EDTA-2Na and H2SO4 could remove most of the impurities and improve the activity significantly. The removal of Pb should be an important factor for regeneration. Due to a high removal rate for Pb and other impurities, the combination of EDTA-2Na and H2SO4 solutions provided the best efficiency. PMID:27593277

  11. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation.

    Science.gov (United States)

    Lange, Jean-Paul

    2015-11-01

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in long-term catalyst stability, discusses some fundamentals, and presents options for their mitigation. Three main challenges are discussed: catalyst fouling, catalyst poisoning, and catalyst destruction. Fouling is generally related to the deposition of insoluble components present in the feed or formed by degradation of the feed or intermediates. Poisoning is related to the deposition of electropositive contaminants (e.g. alkali and alkaline earth metals) on acid sites or of electronegative contaminants (e.g. N and S) at hydrogenation sites. Catalyst destruction results from the thermodynamic instability of most oxidic supports, solid acids/bases, and hydrogenation functions under hydrothermal conditions. PMID:26457585

  12. A clamp-like biohybrid catalyst for DNA oxidation

    Science.gov (United States)

    van Dongen, Stijn F. M.; Clerx, Joost; Nørgaard, Kasper; Bloemberg, Tom G.; Cornelissen, Jeroen J. L. M.; Trakselis, Michael A.; Nelson, Scott W.; Benkovic, Stephen J.; Rowan, Alan E.; Nolte, Roeland J. M.

    2013-11-01

    In processive catalysis, a catalyst binds to a substrate and remains bound as it performs several consecutive reactions, as exemplified by DNA polymerases. Processivity is essential in nature and is often mediated by a clamp-like structure that physically tethers the catalyst to its (polymeric) template. In the case of the bacteriophage T4 replisome, a dedicated clamp protein acts as a processivity mediator by encircling DNA and subsequently recruiting its polymerase. Here we use this DNA-binding protein to construct a biohybrid catalyst. Conjugation of the clamp protein to a chemical catalyst with sequence-specific oxidation behaviour formed a catalytic clamp that can be loaded onto a DNA plasmid. The catalytic activity of the biohybrid catalyst was visualized using a procedure based on an atomic force microscopy method that detects and spatially locates oxidized sites in DNA. Varying the experimental conditions enabled switching between processive and distributive catalysis and influencing the sliding direction of this rotaxane-like catalyst.

  13. Characteristics of Titanocene Catalyst Supported on Palygorskite for Ethylene Polymerization

    Institute of Scientific and Technical Information of China (English)

    Xiao Wei YAN; Jing Dai WANG; Yi Bing SHAN; Yong Rong YANG

    2006-01-01

    A series of heterogeneous catalysts with Cp2TiCl2 supported on palygorskite were prepared and evaluated by ethylene slurry polymerizations. The so-called direct supported catalyst, for which the pretreatment of palygorskite with MAO or Al(i-Bu)3 was not necessary,gave the highest activity among these supported catalysts and could be more robust than homogeneous Cp2TiCl2. With the direct supported catalyst, no significant activity loss was observed under low Al/Ti molar ratios (Al/Ti=300) and the decay of polymerization rate was slower when compared to the other supported catalysts. It was found that the surface Lewis acidity of palygorskite after thermal treatment played an important role in activation of metallocene compound and resulted in high catalyst activity.

  14. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  15. Application of aromatization catalyst in synthesis of carbon nanotubes

    Indian Academy of Sciences (India)

    Song Rongjun; Yang Yunpeng; Ji Qing; Li Bin

    2012-02-01

    In a typical chemical vapour deposition (CVD) process for synthesizing carbon nanotubes (CNTs), it was found that the aromatization catalysts could promote effectively the formation of CNT. The essence of this phenomenon was attributed to the fact that the aromatization catalyst can accelerate the dehydrogenation–cyclization and condensation reaction of carbon source, which belongs to a necessary step in the formation of CNTs. In this work, aromatization catalysts, H-beta zeolite, HZSM-5 zeolite and organically modified montmorillonite (OMMT) were chosen to investigate their effects on the formation of multi-walled carbon nanotubes (MWCNTs) via pyrolysis method when polypropylene and 1-hexene as carbon source and Ni2O3 as the charring catalyst. The results demonstrated that the combination of those aromatization catalysts with nickel catalyst can effectively improve the formation of MWCNTs.

  16. Ceria-based catalysts for soot oxidation:a review

    Institute of Scientific and Technical Information of China (English)

    刘爽; 吴晓东; 翁端; 冉锐

    2015-01-01

    Developments in ceria-based soot oxidation catalysts, especially during the last decade, are reviewed. Based on the com-parisons of the activity, durability and cost-efficiency of different soot oxidation catalysts, four kinds of applicable ceria-based cata-lysts have been screened out, which are: (1) CexZr1–xO2 catalyst with high cerium content (x>0.76), (2) rare-earth metals (especially Pr) modified ceria, (3) transition metals (especially Mn and Cu) modified ceria, and (4) Ag/CeO2. Moreover, a general review of recent developments on the morphology-controlled ceria-based catalysts, as well as that on the soot oxidation mechanisms over different ceria-based catalysts, is also presented.

  17. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Science.gov (United States)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg

    2016-01-01

    The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al2O3 model catalysts, and near-ambient pressure (NAP) measurements on real core-shell Pt/Al2O3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al2O3 model catalyst and core-shell pellet were only partially restored under the applied reaction conditions. Whereas partial regeneration on facet-like sites on supported catalysts is more facile than on Pt(111), carbonaceous deposits adsorbed at low-coordinated defect sites impede full regeneration of the Pt/Al2O3 catalysts.

  18. Poisoning of vanadia based SCR catalysts by potassium:influence of catalyst composition and potassium mobility

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Kügler, Frauke; Jensen, Anker Degn

    2016-01-01

    The deactivation of V2O5–(WO3)/TiO2 catalysts for selective catalytic reduction (SCR) of NOx upon exposure to aerosols of KCl or K2SO4, at different temperatures, has been studied. All samples exposed for more than 240 hours lost a substantial fraction of their initial activity although lower...... the transport of potassium. Using a newly developed experimental protocol consisting of two-layer pellets of SCR catalysts, where one side is impregnated with KCl or K2SO4, the potassium transport in such systems, which is assumed to take place through reactionand diffusion over acid sites, was investigated...

  19. Design and Synthesis of Ruthenium based Olefin Metathesis Catalysts

    OpenAIRE

    Singstad, Åsmund

    2010-01-01

    The present Master thesis seeks to develop new unsymmetrical ruthenium-based olefin metathesis catalysts and therein a better understanding of olefin metathesis catalysis with unsymmetrical active complexes. Such catalysts have a potential for chemoselectivity and in best case, stereoselectivity. Two different classes of catalysts, coordinated by a hemilabile amine ligand and by a novel N-heterocyclic carbene (NHC) ligand respectively, have been investigated. Two new amine-based olefin metath...

  20. Phosphine-Based Z‑Selective Ruthenium Olefin Metathesis Catalysts

    OpenAIRE

    Smit, Wietse; Koudriavtsev, Vitali; Occhipinti, Giovanni; Törnroos, Karl Wilhelm; Jensen, Vidar Remi

    2016-01-01

    Whereas a number of highly Z-selective ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands have been reported in recent years, Zselectivity has so far been difficult to achieve for phosphinebased catalysts. Guided by predictive density functional theory (DFT) calculations, we have developed phosphine-based ruthenium olefin metathesis catalysts giving 70−95% of the Zisomer product in homocoupling of terminal alkenes such as allylbenzene, 1...

  1. Carbon Nanofibers as Catalyst Support for Noble Metals

    OpenAIRE

    Toebes, M.L.

    2004-01-01

    In the quest for new and well-defined support materials for heterogeneous catalysts we explored the potential of carbon nanofibers (CNF). CNF belongs to the by now extensive family of synthetic graphite-like carbon materials with advantageous and tunable physico-chemical properties. Aim of the work described in this thesis has been the exploration of the potential of CNF as catalyst support material, notably for platinum and ruthenium, and its role in the performance of these catalysts in hyd...

  2. Bimetallic Palladium Catalysts for Methane Combustion in Gas Turbines

    OpenAIRE

    Persson, Katarina

    2006-01-01

    Catalytic combustion is a promising combustion technology for gas turbines, which results in ultra low emission levels of nitrogen oxides (NOx), carbon monoxide (CO) and unburned hydrocarbons (UHC). Due to the low temperature achieved in catalytic combustion almost no thermal NOx is formed. This thesis is concentrated on the first stage in a catalytic combustion chamber, i.e. the ignition catalyst. The catalyst used for this application is often a supported palladium based catalyst due to its...

  3. Method for filling a reactor with a catalyst

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for filling a reactor with a catalyst for the carbonylation of carbonylated compounds in the gas phase. According to said method, a SILP catalyst is covered with a filling agent which is liquid under normal conditions and is volatile under carbonylation reaction...... conditions, and a thus-treated catalyst is introduced into the reactor and the reactor is sealed....

  4. Study on Disproportionation Reaction of FCC Gasoline on Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    Xu Youhao; Wang Xieqing

    2004-01-01

    Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of disproportionation reaction of FCC gasoline on acid catalyst and the network of disproportionation reaction have been identified. Study has also shown that different reaction temperatures can result in different pathways of disproportionation reactions on acid catalyst.

  5. Collaboration between primitive cell membranes and soluble catalysts

    OpenAIRE

    Adamala, Katarzyna P.; Engelhart, Aaron E.; SZOSTAK, JACK W.

    2016-01-01

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg2+, which is required for ribozyme...

  6. Catalysts and process for liquid hydrocarbon fuel production

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark G.; Ranaweera, Samantha A.; Henry, William P.

    2016-08-02

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.

  7. Mesoporous Molecular Sieves as Supports for Metathesis Catalysts

    Science.gov (United States)

    Balcar, Hynek; Cejka, Jirí

    Mesoporous molecular sieves represent a new family of inorganic oxides with regular nanostructure, large surface areas, large void volumes, and narrow pore size distribution of mesopores. These materials offer new possibilities for designing highly active and selective catalysts for olefin metathesis and metathesis polymerization. Siliceous sieves MCM-41, MCM-48, SBA-15, and organized mesoporous alumina (OMA) were used as supports for preparation of new molybdenum and rhenium oxide catalysts, as well as for heterogenization of well-defined homogeneous catalysts.

  8. Catalysis by coke deposits: synthesis of isoprene over solid catalysts.

    Science.gov (United States)

    Ivanova, Irina; Sushkevich, Vitaly L; Kolyagin, Yury G; Ordomsky, Vitaly V

    2013-12-01

    A help rather than a hindrance: Carbonaceous deposits have been found to play a key role in the selective synthesis of isoprene from formaldehyde and isobutene over solid catalysts. They accumulate on the catalyst surface during the induction period and promote the interaction of the substrates at the steady state. The proposed mechanism shows the way forward for the design of efficient solid catalysts for the synthesis of isoprene. PMID:24129943

  9. Solid Catalysts and theirs Application in Biodiesel Production

    OpenAIRE

    Ramli Mat; Rubyatul Adawiyah Samsudin; Mahadhir Mohamed; Anwar Johari

    2012-01-01

    The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development ...

  10. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    OpenAIRE

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan

    2015-01-01

    The ability to precisely control nanoscale features is increasingly exploited to develop and improve monofunctional catalysts1–4. Striking effects might also be expected in the case of bifunctional catalysts, which play an important role in hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel5–7. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called ‘intimacy criterion’8 has dictated the ...

  11. Methane dehydroaromatisation and methanol activation over zeolite catalysts: an overview

    OpenAIRE

    J.S.J. Hargreaves

    2016-01-01

    A brief overview of methane dehydroaromatisation over MoO3/H-ZSM-5 derived catalysts, the deposition of carbonaceous residues from methanol over H-mordenite and the role of binders in zeolite catalysed reactions is presented. The selective poisoning of methane cracking catalysts is proposed as a potential strategy for the development of methane dehydroaromatisation catalysts. In the case of methanol conversion over H-mordenite, evidence is presented for the formation of larger alkylated aroma...

  12. An improved method of preparation of nanoparticular metal oxide catalysts

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns an improved method of preparation of nanoparticular vanadium oxide/anatase titania catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular vanadium oxide/anatase titania catalyst precursors comprising...... combustible crystallization seeds upon which the catalyst metal oxide is coprecipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step....

  13. Iron Contamination Mechanism and Reaction Performance Research on FCC Catalyst

    OpenAIRE

    Zhaoyong Liu; Zhongdong Zhang; Pusheng Liu; Jianing Zhai; Chaohe Yang

    2015-01-01

    FCC (Fluid Catalytic Cracking) catalyst iron poisoning would not only influence units’ product slate; when the poisoning is serious, it could also jeopardize FCC catalysts’ fluidization in reaction-regeneration system and further cause bad influences on units’ stable operation. Under catalytic cracking reaction conditions, large amount of iron nanonodules is formed on the seriously iron contaminated catalyst due to exothermic reaction. These nodules intensify the attrition between catalyst pa...

  14. An attempt to selectively oxidize methane over supported gold catalysts

    OpenAIRE

    Hereijgers, B.P.C.; Weckhuysen, B. M.

    2011-01-01

    The potential of supported gold catalysts for the selective gas-phase oxidation of methane to methanol with molecular oxygen was investigated. A broad range of supported gold-based catalyst materials was synthesized using reducible and non-reducible support materials. Although the formation of small gold nanoparticles was established for all catalyst materials, only a very low activity for the total oxidation of methane was observed, at temperatures[250 C. Since no traces of partial oxidation...

  15. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  16. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Combinatorial methods are proposed to develop advanced Aqueous Oxidation Catalysts (AOCs) with the capability to mineralize organic contaminants present in...

  17. Autothermal reforming of propane over Ni-based hydrotalcite catalysts.

    Science.gov (United States)

    Park, Sun-Young; Kim, Jong-Ho; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2010-05-01

    Ni-based hydrotalcite catalysts were investigated for ATR of propane in a fixed-bed flow reactor. The reactions were carried out with a H2O/C/O2 stream ratio of 3/1/0.73 at temperatures ranging from 300 to 700 degrees C. The solvents used in the manufacture of Ni-based catalysts noble metal/Ni/MgAl catalysts or substituted active material were changed in order to decrease the level of catalyst deactivation. The use of a mixture of ethanol and water during the formation of the Pd-Ni/MgAl catalyst produced a higher hydrogen yield than that using water only. In addition, the use of acetone in the synthesis of Ru-Ni/MgAl catalyst produced a higher hydrogen yield than using water only. This shows that the solvents used for the noble metals affect the degree of dispersion and particle size of the nickel and prevented carbon deposition resulting in the enhanced hydrogen selectivity and catalyst activity. Active metals were substituted during the preparation of hydrotalcite catalysts. Among the catalysts prepared with various ratio (Ni:Fe) tested at high temperature, the ratio, Ni:Fe = 75:25, showed best performance. There was less sintering of Ni particles due to substitution of the active metal at the optimal ratio. PMID:20358916

  18. Application of Rare Earth Oxides in Diesel Exhaust Purification Catalysts

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhaoliang; Yu Pengfei; Wang Shilong; Li Chunfeng; Dai Hua

    2004-01-01

    Diesel oxide catalysts and soot combustion catalysts were reported in this paper.The former was manufactured in mass last year, and enhanced performance is under development now.The later is screened out and further research is under way.The best soot combustion catalyst could ignite soot combustion even at 350 ℃, which is within the range of temperatures reached in diesel exhaust, and shows the catalytic combustion velocity nearly one time faster compared with non-catalytic combustion of soot, which is of benefit to rapid regeneration of diesel particulate filter, thus it might be an excellent practicable catalyst.

  19. DEVELOPMENT OF SUPERIOR RESID DEMETALLIZATION CATALYST AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of the pore structure of the bimodal catalyst on the residue hydrodemetallization were studied. The simulation of the intra-particle reaction model suggested that an increase in the diffusivity of the macro pore increase the demetallization. The activity tests of several catalyst samples with different pore structure supported the predicted results. The new bimodal dematallization catalyst with high demetallization activity as well as large metal uptake capacity was developed, by improving the pore structure and the hydrogenation activity. The pilot runs demonstrated that the new catalyst possesses longer catalytic life as well as higher demetallization activity in the residue desulfurization process.

  20. Multi-stage catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S.; Holmgreen, Erik M.; Yung, Matthew M.

    2009-02-10

    Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).

  1. First Commercial Application of Upflow Residuum Hydrotreating Catalyst

    Institute of Scientific and Technical Information of China (English)

    Mu Haitao; Sun Zhenguang

    2004-01-01

    This article refers to the first commercial application of upflow residuum hydrotreating serial catalyst, developed by Fushun Research Institute of Petroleum and Petrochemicals (FRIPP), in the residuum hydrotreating unit at Shengli refinery of Qilu Petrochemical Company. This catalyst features large pore volume and large pore diameter. The production practice for more than one year has revealed that the domestic upflow residuum hydrotreating catalyst has shown good performance and stability over the whole period of operation despite its high activity at the start of run, and has basically reached the level of similar imported catalyst.

  2. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    Energy Technology Data Exchange (ETDEWEB)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  3. Improvements in NOx reduction by carbon using bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Illan-Gomez, M.J.; Brandan, S.; Salinas-Martinez de Lecea, C.; Linares-Solano, A. [Universidad de Alicante, Alicante (Spain). Departamento de Quimica Inorganica

    2001-11-30

    A catalysis of the C-NOx reaction has been studied to optimize the composition of the catalysts in order to decrease the carbon consumption by oxygen. Both the metal content and the composition of the catalysts have been investigated. The activity of bimetallic (KNi, NiCo and NiCu) catalysts for NOx reduction by carbon has been studied using both isothermal reactions at 300{sup o}C and temperature programmed reaction up to 500{sup o}C. It has been found that the experimental variables (i.e. amount of catalysts and nature of the bimetallic catalysts) determine the selectivity against carbon combustion by oxygen. Thus, it has been observed that the amount of catalyst greatly affects the C-O{sub 2} reaction but only lightly the C-NOx reaction and, consequently, modifies the selectivity of the catalyst for NOx reduction. Among the bimetallic catalysts tested, NiCu catalyst presents the best performance, at a temperature as low as 250{sup o}C, a high de-NOx activity and a high NOx selectivity due to a low carbon burn-off, with the additional advantage of the absence of N{sub 2}O and CO in the reaction products. Thus, the results obtained in this study show, in comparison with our previous results, that better selectivities are achieved. 20 refs., 3 figs., 2 tabs.

  4. Highly Durable Catalysts for Ignition of Advanced Monopropellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed SBIR Phase I addresses the development of catalysts and technology for the ignition of advanced monopropellants consisting of mixtures of...

  5. Preparation of biodiesel from soybean oil by using heterogeneous catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, Kaniz; Rakib Uddin, M.; Islam, M.A. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Khan, Maksudur R. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2013-07-01

    The predicted shortage of fossil fuels and related environmental concerns has recently attracted significant attention to search alternative fuel. Biodiesel is one of the alternatives to fossil fuel. Now-a-days, most biodiesel is produced by the transesterification of oils using methanol and a homogeneous base catalyst. The use of homogeneous catalysts is normally limited to batch mode processing followed by a catalyst separation step. The immiscible glycerol phase, which accumulates during the course of the reaction, solubilizes the homogeneous base catalyst and therefore, withdraws from the reaction medium. Moreover, other difficulties of using homogeneous base catalysts relate to their sensitivity to free fatty acid (FFA) and water and resulting saponification phenomenon. High energy consumption and costly separation of the catalyst from the reaction mixture have inspired the use of heterogeneous catalyst. The use of heterogeneous catalysts does not lead to the formation of soaps through neutralization of FFA and saponification of oil. In the present paper, biodiesel was prepared from crude (soybean) oil by transesterification reaction using heterogeneous base catalyst name calcium oxide (CaO). Various reaction parameters were optimized and the biodiesel properties were evaluated.

  6. Preparation of biodiesel from soybean oil by using heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Kaniz Ferdous, M. Rakib Uddin, Maksudur R. Khan, M. A. Islam

    2013-01-01

    Full Text Available The predicted shortage of fossil fuels and related environmental concerns has recently attracted significant attention to search alternative fuel. Biodiesel is one of the alternatives to fossil fuel. Now-a-days, most biodiesel is produced by the transesterification of oils using methanol and a homogeneous base catalyst. The use of homogeneous catalysts is normally limited to batch mode processing followed by a catalyst separation step. The immiscible glycerol phase, which accumulates during the course of the reaction, solubilizes the homogeneous base catalyst and therefore, withdraws from the reaction medium. Moreover, other difficulties of using homogeneous base catalysts relate to their sensitivity to free fatty acid (FFA and water and resulting saponification phenomenon. High energy consumption and costly separation of the catalyst from the reaction mixture have inspired the use of heterogeneous catalyst. The use of heterogeneous catalysts does not lead to the formation of soaps through neutralization of FFA and saponification of oil. In the present paper, biodiesel was prepared from crude (soybean oil by transesterification reaction using heterogeneous base catalyst name calcium oxide (CaO. Various reaction parameters were optimized and the biodiesel properties were evaluated.

  7. Improving Stability of Gasoline by Using Ionic Liquid Catalyst

    Institute of Scientific and Technical Information of China (English)

    Gao Zhirong; Liu Daosheng; Liao Kejian; Jian Heng

    2003-01-01

    The composition, characteristics and preparation of ionic liquids are presented. The factors influencing the stability of gasoline and the significance of improving gasoline stability are discussed. A novel way to improve the stability of gasoline by using ionic liquid catalyst is developed. The contents of olefin, basic nitrogen and sulfur in gasoline are determined and the optimal experimental conditions for improving gasoline stability are established.The ionic liquid catalyst, which is environmentally friendly, can reduce the olefin content in gasoline, and such process is noted for mild reaction conditions, simple operation, short reaction time, easy recycling of the ionic liquid catalyst and ready separation of products and catalyst.

  8. High pressure CO hydrogenation over bimetallic Pt-Co catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Medford, Andrew James; Studt, Felix;

    2014-01-01

    The potential of bimetallic Pt-Co catalysts for production of higher alcohols in high pressure CO hydrogenation has been assessed. Two catalysts (Pt3Co/SiO2 and PtCo/SiO2) were tested, and the existing literature on CO hydrogenation over Pt-Co catalysts was reviewed. It is found that the catalysts...... produce mainly methanol in the Pt-rich composition range andmainly hydrocarbons (and to a modest extent higher alcohols) in the Co-rich composition range. The transition between the two types of behavior occurs in a narrow composition range around a molar Pt:Co ratio of 1:1....

  9. A New Reaction-controlled Phase-transfer Catalyst System

    Institute of Scientific and Technical Information of China (English)

    Ming Qiang LI; Xi Gao JIAN; Gui Mei WANG; Yan YU

    2004-01-01

    A new reaction-controlled phase-transfer catalyst system was designed and synthesized. In this system, heteropolytungstate [C7H7N(CH3)3]9PW9O34 was used for catalytic epoxidation of cyclohexene with H2O2 as the oxidant. The conversion of H2O2 was 100% and the yield of cyclohexene oxide was 87.1% based on cyclohexene. Infrared spectra showed that both fresh catalyst and the recovered catalyst do have completely same absorption peak, indicating the structure of catalyst is very stability and can be recycled.

  10. Functionalized Graphitic Supports for Improved Fuel Cell Catalyst Stability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) together with the University of Connecticut (UCONN) proposes to demonstrate the improved fuel cell catalyst support durability offered...

  11. Microchannel Reactors for ISRU Applications Using Nanofabricated Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and USRA propose to develop microchannel reactors for In-Situ Resources Utilization (ISRU) using nanofabricated catalysts. The...

  12. Heterogeneous catalysis of mixed oxides perovskite and heteropoly catalysts

    CERN Document Server

    Misono, M

    2014-01-01

    Mixed oxides are the most widely used catalyst materials for industrial catalytic processes. The principal objective of this book is to describe systematically the mixed oxide catalysts, from their fundamentals through their practical applications.  After describing concisely general items concerning mixed oxide and mixed oxide catalysts, two important mixed oxide catalyst materials, namely, heteropolyacids and perovskites, are taken as typical examples and discussed in detail. These two materials have several advantages: 1. They are, respectively, typical examples of salts of oxoacids an

  13. A CATALYST, A PROCESS FOR SELECTIVE HYDROGENATION OF ACETYLENE TO ETHYLENE AND A METHOD FOR THE MANUFACTURE OF THE CATALYST

    DEFF Research Database (Denmark)

    2009-01-01

    A catalyst comprising a mixture of metal A selected from the group of Fe, Co and Ni and metal B selected from the group of Zn and Ga, and a support material, wherein the two metals are present in an intermetallic composition; A method for the manufacture of the catalyst; and the use of above...... mentioned catalyst for the selective hydrogenation of acetylene to ethylene in a gas mixture comprising acetylenic impurities and hydrogen and one or more of, ethylene and carbon monoxide. The catalyst has a high selectivity and is based on easily available metal compounds....

  14. Monitoring catalysts at work in their final form: spectroscopic investigations on a monolithic catalyst

    DEFF Research Database (Denmark)

    Rasmussen, Søren B.; Bañares, Miguel A.; Bazin, Philippe;

    2012-01-01

    A monolithic vanadia–titania based catalyst has been subjected to studies with in situ FTIR spectroscopy coupled with mass spectrometry, during the SCR (Selective Catalytic Reduction) reaction. A device based on a transmission reactor cell for monolithic samples was constructed, dedicated to the...

  15. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.;

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...

  16. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    International Nuclear Information System (INIS)

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400 C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts

  17. Synthesis, characterization and hydrotreating performance of supported tungsten phosphide catalysts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H2 and characterized by X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS).The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined.The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene,pyridine,dibenzothiophene,carbazole and diesel oil as the feed-stock.The TiO2,γ-Al2O3 supports and the Ni,Co promoters could remarkably increase and stabilize active W species on the catalyst surface.A suitable amount of Ni (3%-5%),Co (5%-7%) and V (1%-3%) could increase dispersivity of the W species and the BET surface area of the WP/γ-Al2O3 catalyst.The WP/γ-Al2O3 catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities.The Ni,Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/γ-Al2O3 catalyst.The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/γ-Al2O3 catalyst.In general,a support or promoter in the WP/γ-Al2O3 catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.

  18. Characterization of deactivated bio-oil hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Wang, Yong

    2016-01-18

    Deactivation of bio-oil hydrotreating catalysts remains a significant challenge because of the poor quality of pyrolysis bio-oil input for hydrotreating and understanding their deactivation mode is critical to developing improved catalysts and processes. In this research, we developed an understanding of the deactivation of two-step bio-oil hydrotreating catalysts (sulfided Ru/C and sulfided CoMo/C) through detailed characterization of the catalysts using various complimentary analytical techniques. Severe fouling of both catalysts by carbonaceous species was the major form of deactivation, which is consistent with the significant loss of surface area and pore volume of both deactivated catalysts and the significant increase of the bulk density. Further analysis of the carbonaceous species by thermogravimetric analysis and x-ray photoelectron spectroscopy indicated that the carbonaceous species was formed by condensation reaction of active species such as sugars and sugar derivatives (aldehydes and ketones) in bio-oil feedstock during bio-oil hydrotreating under the conditions and catalysts used. Microscopy results did not show metal sintering of the Ru/C catalyst. However, X-ray diffraction indicated a probable transformation of the highly-active CoMoS phase in the sulfided CoMo/C catalyst to Co8S9 and MoS2 phase with low activity. Loss of the active site by transport of inorganic elements from the bio-oil and the reactor construction material onto the catalyst surface also might be a cause of deactivation as indicated by elemental analysis of spent catalysts.

  19. Catalyst-referred etching of silicon

    Directory of Open Access Journals (Sweden)

    Hideyuki Hara et al

    2007-01-01

    Full Text Available A Si wafer and polysilicon deposited on a Si wafer were planarized using catalyst-referred etching (CARE. Two apparatuses were produced for local etching and for planarization. The local etching apparatus was used to planarize polysilicon and the planarization apparatus was used to planarize Si wafers. Platinum and hydrofluoric acid were used as the catalytic plate and the source of reactive species, respectively. The processed surfaces were observed by optical interferometry, atomic force microscopy (AFM and scanning electron microscopy (SEM. The results indicate that the CARE-processed surface is flat and undamaged.

  20. Selective catalyst reduction light-off strategy

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-10-18

    An emissions control system includes a temperature determination module and an emissions control module. The temperature determination module determines a first temperature of a heater element of a diesel particulate filter (DPF) assembly in an exhaust system and determines a second temperature of a catalyst of the DPF assembly. The emissions control module selectively activates the heater element, selectively initiates a predefined combustion process in an engine based upon the first temperature, and selectively starts a reductant injection process based upon the second temperature.

  1. Cooperative catalysis designing efficient catalysts for synthesis

    CERN Document Server

    Peters, René

    2015-01-01

    Written by experts in the field, this is a much-needed overview of the rapidly emerging field of cooperative catalysis. The authors focus on the design and development of novel high-performance catalysts for applications in organic synthesis (particularly asymmetric synthesis), covering a broad range of topics, from the latest progress in Lewis acid / Br?nsted base catalysis to e.g. metal-assisted organocatalysis, cooperative metal/enzyme catalysis, and cooperative catalysis in polymerization reactions and on solid surfaces. The chapters are classified according to the type of cooperating acti

  2. Methyltrioxorhenium as catalyst for olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, W.A. (Technische Univ. Muenchen, Garching (Germany). Anorganisch-Chemisches Inst.); Wagner, W. (Consortium fuer Elektrochemische Industrie GmbH, Muenchen (Germany)); Flessner, U.N.; Volkhardt, U.; Komber, H. (Institut fuer Technologie der Polymere, Dresden (Germany))

    1991-12-01

    No cocatalysts are needed as additives when methyltrioxorhenium (MTO) supported on acidic carriers is employed to catalyze the metathesis of functionalized olefins. A typical system is MTO/Al{sub 2}O{sub 3}-SiO{sub 2}, which is active, for instance, in the metathesis of allyl halides, allylsilanes, unsaturated carboxylates, and nitriles. MTO in combination with R{sub n}AlCl{sub 3-n} is a homogeneous catalyst in ring-opening polymerizations (R = CH{sub 3}, C{sub 2}H{sub 5}; n = 1,2). (orig.).

  3. Modelling Catalyst Surfaces Using DFT Cluster Calculations

    Directory of Open Access Journals (Sweden)

    Oliver Kröcher

    2009-09-01

    Full Text Available We review our recent theoretical DFT cluster studies of a variety of industrially relevant catalysts such as TiO2, γ-Al2O3, V2O5-WO3-TiO2 and Ni/Al2O3. Aspects of the metal oxide surface structure and the stability and structure of metal clusters on the support are discussed as well as the reactivity of surfaces, including their behaviour upon poisoning. It is exemplarily demonstrated how such theoretical considerations can be combined with DRIFT and XPS results from experimental studies.

  4. Modelling catalyst surfaces using DFT cluster calculations.

    Science.gov (United States)

    Czekaj, Izabela; Wambach, Jörg; Kröcher, Oliver

    2009-11-20

    We review our recent theoretical DFT cluster studies of a variety of industrially relevant catalysts such as TiO(2), gamma-Al(2)O(3), V(2)O(5)-WO(3)-TiO(2) and Ni/Al(2)O(3). Aspects of the metal oxide surface structure and the stability and structure of metal clusters on the support are discussed as well as the reactivity of surfaces, including their behaviour upon poisoning. It is exemplarily demonstrated how such theoretical considerations can be combined with DRIFT and XPS results from experimental studies.

  5. Model catalysts for Fischer-Tropsch synthesis

    OpenAIRE

    Nieto-Sandoval Rodriguez, Julia

    2014-01-01

    Today, Fischer-Tropsch synthesis is the key process in the production of liquid fuels from synthesis gas (a mixture of CO + H2). This mixture can be obtained from fossil fuels (oil, natural gas or coal) and from renewable sources such as biomass. Catalysis has an important role in the reaction since the catalysts can vary the activity and selectivity towards a wide range of products (i.e. methane, olefins, paraffins and alcohols, among others). The scope of this Master s thesis has been t...

  6. Hydrogen recombiner catalyst test supporting data

    Energy Technology Data Exchange (ETDEWEB)

    Britton, M.D.

    1995-01-19

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.

  7. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  8. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  9. Low metal loading catalysts used for the selective hydrogenation of styrene

    OpenAIRE

    Juan Badano; Cecilia Lederhos; Mónica Quiroga; Pablo L'Argentière; Fernando Coloma-Pascual

    2010-01-01

    A series of Group VIII metal catalysts was obtained for the semi-hydrogenation of styrene. Catalysts were characterized by Hydrogen Chemisorption, TPR and XPS. Palladium, rhodium and platinum low metal loading prepared catalysts presented high activity and selectivity (ca. 98%) during the semi-hydrogenation of styrene, being palladium the most active catalyst. The ruthenium catalyst also presented high selectivity (ca. 98%), but the lowest activity. For the palladium catalyst, the influence o...

  10. Characterization of the impregnated iron based catalyst for direct coal liquefaction by EXAFS

    Institute of Scientific and Technical Information of China (English)

    JianliYang; JishengZhun; 等

    2001-01-01

    Catalyst plays an important role in direct cola liquefaction(DCL)[1],Due to relatively high activity,low cost and environmentally benign for disposal,iron catalysts are regarded as the most attractive catalysts for DCL.To maximize catalytic effect and minimize catalyst usage,ultra-fine size catalysts are preferred.The most effective catalysts are found to be those impregnated onto coal because of their high dispersion on coal surface and intimate contact with coal particles.

  11. Preparation and evaluation of sulfided NiMo/γ-Al2O3 hydrotreating catalysts

    OpenAIRE

    KAMYAB, ALI

    2016-01-01

      Four nickel-molybdenum catalysts were synthesized on gamma alumina with higher surface area and on NiMo catalyst was prepared using gamma alumina with lower surface area. Catalysts with higher-surface-area support were prepared by co-impregnation, sequential impregnation and adding phosphorous. Theses catalysts were calcined at 500  ͦC. Effect of higher calcination temperature was investigated by preparation of one catalyst calcined at 700 ͦC. Catalysts were thoroughly characterized via fou...

  12. Development and Commercial Application of DZC Ⅱ-1 Type Catalyst for Hydrogenation of Pyrolysis Gasoline

    Institute of Scientific and Technical Information of China (English)

    Zhao Ye; Wang Fucun

    2006-01-01

    Commercial application of the DZC Ⅱ-1 catalyst developed on the basis of the DZ-1 catalyst was introduced. The application tests of the catalyst under overload had proved that this catalyst demon-strated satisfactory adaptability to feedstock after continued operation for 20 months with little changes in the bed pressure drop, the reactor inlet temperature and the bed temperature rise. The DZC Ⅱ-1 catalyst was regarded as the best catalyst for the second-stage hydrogenation of pyrolysis gasoline.

  13. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    OpenAIRE

    Jakkrit Suriboot; Hassan S. Bazzi; Bergbreiter, David E.

    2016-01-01

    Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing th...

  14. Novel Sol-Gel Based Pt Nanocluster Catalysts for Propane Dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Boespflug, Elaine; Kawola, Jeffrey S.; Martino, Anthony; Sault, Allen G.

    1999-08-09

    We report propane dehydrogenation behavior of catalysts prepared using two novel synthesis strategies that combine inverse micelle Pt nanocluster technology with silica and alumina sol-gel processing. Unlike some other sol-gel catalyst preparations. Pt particles in these catalysts are not encapsulated in the support structure and the entire Pt particle surface is accessible for reaction. Turnover frequencies (TOF) for these catalysts are comparable to those obtained over Pt catalysts prepared by traditional techniques such as impregnation, yet the resistance to deactivation by carbon poisoning is much greater in our catalysts. The deactivation behavior is more typical of traditionally prepared PtSn catalysts than of pure Pt catalysts.

  15. Bifunctional anode catalysts for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Ferrin, Peter; Tritsaris, Georgios;

    2012-01-01

    Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties...

  16. SURFACE STRUCTURE AND COMPOSITION CHANGES ON PLATINUM - RHODIUM ALLOY CATALYSTS

    OpenAIRE

    McCabe, A.; Smith, G.

    1984-01-01

    Platinum-rhodium gauze catalysts used in the manufacture of nitric acid undergo an extensive surface reconstruction process. This has been investigated using a miniature catalytic reactor, FIM atom probe, electron microscopy and X-ray techniques. A mechanism involving vapour transport is proposed to explain the main features of the variation in catalyst behaviour with operating conditions.

  17. Graphene: A Promising Two-Dimensional Support for Heterogeneous Catalysts

    OpenAIRE

    Fan, Xiaobin

    2015-01-01

    Graphene has many advantages that make it an attractive two-dimensional (2D) support for heterogeneous catalysts. It not only allows the high loading of targeted catalytic species but also facilitates the mass transfer during the reaction processes. These advantages, along with its unique physical and chemical properties, endow graphene great potential as catalyst support in heterogeneous catalysis.

  18. Operation of FCC with mixtures of regenerated and deactivated catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Spretz, R.; Sedran, U. [INCAPE, FIQ, UNL - CONICET, Instituto de Investigaciones en Catalisis y Petroquimica, Santiago del Estero 2654, 3000 Santa Fe (Argentina)

    2001-07-13

    The operation of FCC with mixtures of coked and regenerated catalyst was studied with a riser simulator reactor on two equilibrium catalysts at 550C. The coked catalysts maintain an activity level that enables them to be used in the mixtures. The catalytic performances of the regenerated catalysts were used as references against which the behaviors of 25:75 and 50:50 (coked:regenerated) mixtures were compared. It was observed that overall catoil has to be increased to maintain conversion. While the yields of gases, gasoline and LCO showed to be independent of the operative mode, changes were observed in the selectivity to light olefins C4-C6 that are mainly due to changes in the yields of the isoparaffins in the groups. In turn, these changes could be the consequence of the resulting density of paired acid sites in the zeolite components on hydrogen transfer reactions, due to the contributions by the coked and regenerated portions of catalysts. Coke yields in mixtures of coked and regenerated catalysts are not higher, which would allow increasing catalyst circulation without impacting on heat balance. The particularities of this new operation of FCC are very dependent on catalyst properties.

  19. A Catalyst-for-Change Approach to Evaluation Capacity Building

    Science.gov (United States)

    Garcia-Iriarte, Edurne; Suarez-Balcazar, Yolanda; Taylor-Ritzler, Tina; Luna, Maria

    2011-01-01

    Evaluation capacity building (ECB) has become a popular approach for helping community-based organizations (CBOs) to meet their funders' demands for accountability. This case study reports the ECB process with one staff member using a catalyst-for-change approach. The authors analyzed the role of the catalyst in diffusing evaluation knowledge and…

  20. Catalyst studies on the hydrotreatment of fast pyrolysis oil

    NARCIS (Netherlands)

    Wildschut, J.; Melian-Cabrera, I.; Heeres, H. J.

    2010-01-01

    Catalytic hydrotreatment is considered an attractive technology for fast pyrolysis oil upgrading to liquid transportation fuels. We here report an experimental study to gain insights in catalyst stability when using Ru/C catalysts for the hydrotreatment of fast pyrolysis oil (350 degrees C and 200 b

  1. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    Science.gov (United States)

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  2. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    NARCIS (Netherlands)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-01-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts(1-4). Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon source

  3. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O' Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  4. Nickel catalysts for internal reforming in molten carbonate fuel cells

    NARCIS (Netherlands)

    Berger, R.J.; Doesburg, E.B.M.; Ommen, van J.G.; Ross, J.R.H.

    1996-01-01

    Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In orde

  5. Ethylene Polymerization with Palygorskite Supported Nickel-Diimine Catalyst

    Institute of Scientific and Technical Information of China (English)

    严小伟; 王靖贷; 阳永荣; 张雷

    2005-01-01

    A nickel-diimine catalyst IN, N′-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylaluminoxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42 × 105 g PE·molNi-l·h-1 was achieved at ethylene pressure of 6.87 × 105 Pa and polymerization temperature of 20℃ In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.

  6. Highly active water-soluble olefin metathesis catalyst.

    Science.gov (United States)

    Hong, Soon Hyeok; Grubbs, Robert H

    2006-03-22

    A novel water-soluble ruthenium olefin metathesis catalyst supported by a poly(ethylene glycol) conjugated saturated 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligand is reported. The catalyst displays improved activity in ring-opening metathesis polymerization, ring-closing metathesis, and cross-metathesis reactions in aqueous media. PMID:16536510

  7. Discovery of technical methanation catalysts based on computational screening

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Kasper Emil; Kustov, Arkadii;

    2007-01-01

    Methanation is a classical reaction in heterogeneous catalysis and significant effort has been put into improving the industrially preferred nickel-based catalysts. Recently, a computational screening study showed that nickel-iron alloys should be more active than the pure nickel catalyst and at ...

  8. Propane Dehydrogenation on Metal and Metal Oxide Catalysts

    NARCIS (Netherlands)

    Sattler, Jesper

    2014-01-01

    In this PhD thesis, the catalytic performance and deactivation of various propane dehydrogenation catalysts is studied. First of all, a literature study is performed, where the three most commonly used formulations, namely Pt-, CrOx- and GaOx-based catalysts are compared in terms of yield relative t

  9. Fine particle clay catalysts for coal liquefaction. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, E.S.

    1995-08-01

    In an effort to develop new disposable catalysts for direct coal liquefaction, several types of clay-supported pyrrhotite catalysts were prepared and tested. These included iron-pillared montmorillonite, mixed iron/alumina-pillared montmorillonite, iron-impregnated montmorillonite, and iron oxometallate-impregnated montmorillonite.

  10. The epoxidation of propene over gold nanoparticle catalysts

    NARCIS (Netherlands)

    Nijhuis, T.A.; Sacaliuc, E.; Weckhuysen, B.M.

    2008-01-01

    Different gold nanoparticle catalysts on titania, silica, and titanosilicate supports are compared in the hydro-epoxidation of propene. All catalysts tested were active in the propene epoxidation, with Au/TiO2 showing the highest activity at low temperature, but also a high rate of deactivation. It

  11. An attempt to selectively oxidize methane over supported gold catalysts

    NARCIS (Netherlands)

    Hereijgers, B.P.C.; Weckhuysen, B.M.

    2011-01-01

    The potential of supported gold catalysts for the selective gas-phase oxidation of methane to methanol with molecular oxygen was investigated. A broad range of supported gold-based catalyst materials was synthesized using reducible and non-reducible support materials. Although the formation of small

  12. Ceramic wash-coat for catalyst support

    Science.gov (United States)

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  13. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    Energy Technology Data Exchange (ETDEWEB)

    HALGREN DL

    2008-07-30

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.

  14. Studies of Heterogeneous Catalyst Selectivity and Stability for Biorefining Applications

    Science.gov (United States)

    O'Neill, Brandon J.

    The conversion of raw resources into value-added end products has long underlain the importance of catalysts in economic and scientific development. In particular, the development of selective and stable heterogeneous catalysts is a challenge that continues to grow in importance as environmental, sociological, and economic concerns have motivated an interest in sustainability and the use of renewable raw materials. Within this context, biomass has been identified as the only realistic source of renewable carbon for the foreseeable future. The development of processes to utilize biomass feedstocks will require breakthroughs in fundamental understanding and practical solutions to the challenges related to selectivity and stability of the catalysts employed. Selectivity is addressed on multiple fronts. First, the selectivity for C-O bond scission reactions of a bifunctional, bimetallic RhRe/C catalyst is investigated. Using multiple techniques, the origin of Bronsted acidity in the catalyst and the role of pretreatment on the activity, selectivity, and stability are explored. In addition, reaction kinetics experiments and kinetic modeling are utilized to understand the role of chemical functional group (i.e. carboxylic acid versus formate ester) in determining the decarbonylation versus decarboxylation selectivity over a Pd/C catalyst. Finally, kinetic studies over Pd/C and Cu/gamma-Al2O3 were performed so that that may be paired with density functional theory calculations and microkinetic modeling to elucidate the elementary reaction mechanism, identify the active site, and provide a basis for future rational catalyst design. Next, the issue of catalyst stability, important in the high-temperature, liquid-phase conditions of biomass processing, is examined, and a method for stabilizing the base-metal nanoparticles of a Cu/gamma-Al2O 3 catalyst using atomic layer deposition (ALD) is developed. This advancement may facilitate the development of biorefining by enabling

  15. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    Energy Technology Data Exchange (ETDEWEB)

    Andrew W. Wang

    2002-01-01

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is shown below: 2H{sub 2} + CO = CH{sub 3}OH; 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O; H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a

  16. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    Energy Technology Data Exchange (ETDEWEB)

    Andrew W. Wang

    2002-05-15

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is: 2H{sub 2} + CO = CH{sub 3}OH 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a scaleup project

  17. Graphene supported heterogeneous catalysts for Li-O2 batteries

    Science.gov (United States)

    Alaf, M.; Tocoglu, U.; Kartal, M.; Akbulut, H.

    2016-09-01

    In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO2/graphene, (iii) Pt/graphene (iv) α-MnO2/Pt/graphene composite cathodes for Li-air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N2 adsorption-desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li-air batteries.

  18. On the nature of active centres of propylene disproportionation catalysts

    International Nuclear Information System (INIS)

    The effect of acid-alkali treatment on the activity of the MoO3 - Al2O3, MoO3 - SiO2, Mo(CO)6 - Al2O3, WO3 - Al2O3, WO3 - SiO2 catalysts of propylene disproportionation was studied. It has been established that preliminary treatment of aluminium oxide with KOH increases the catalytic activity of the catalyst MoO3 - Al2O3. The dependence of the specimen activity on the amount of alkai passes a maximum. Treatment with HCl vapours activates the catalyst WO3 - SiO2 and deactivates the catalyst MoO3 - Al2O3 in the propylene disproportionation reaction. According to the data of infrared spectra, in adsorption on a catalyst obtained by applying Mo(CO)6 on Al2O3 propylene is coordinated by the molybdenum atom

  19. Formulation of cracking catalyst based on zeolite and natural clays

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, R.R.; Lupina, M.I.

    1995-11-01

    Domestically manufactured cracking catalysts are based on a synthetic amorphous aluminosilicate matrix and Y zeolite. A multistage {open_quotes}gel{close_quotes} technology is used in manufacturing the catalysts. The process includes mixing solutions of sodium silicate and acidic aluminum sulfate, forming, syneresis, and activation of the beaded gel. In the manufacture of bead catalysts, the next steps in the process are washing, drying, and calcining; in the manufacture of microbead catalysts, the next steps are dispersion and formation of a hydrogel slurry, spray-drying, and calcining. The Y zeolite is either introduced into the alumina-silica sol in the stage of forming the beads, or introduced in the dispersion stage. With the aim of developing an active and selective cracking catalyst based on Y zeolite and natural clays, with improved physicomechanical properties, the authors carried out a series of studies, obtaining results that are set forth in the present article.

  20. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  1. Progress in Bimodal Polyethylene Produced by Metallocene Catalyst

    Institute of Scientific and Technical Information of China (English)

    FENG YuTao

    2001-01-01

    @@ The external new ways, kinds and recant advances of bimodal Polyethylene produced by metallocene catalyst were reviewed. For example, U.S.Pat.No 4939217 discloses an olefin polymerization supported catalyst comprising at least two different metallocenes each having different olefin polymerization termination rate constants in the presence of hydrogen. U.S.Pat. No.5077255 discloses an olefin polymerization supported catalyst comprising at least one metallocene of a metal, a non-metallocene transition metal and an alumoxane. The supported product is highly useful for the polymerization of olefins especially ethylene and especially for the copolymerization of ethylene and other mono and diolefins. U.S.Pat.No.5986024 discloses a process is provided for preparing polymer compositions which are multimodal in nature. The process involves contacting, under polymerization conditions, a selected addition polymerizable monomer with a metallocene catalyst having two or more distinct and chemically different active sites, and a catalyst activator.

  2. Progress in Bimodal Polyethylene Produced by Metallocene Catalyst

    Institute of Scientific and Technical Information of China (English)

    FENG; YuTao

    2001-01-01

    The external new ways, kinds and recant advances of bimodal Polyethylene produced by metallocene catalyst were reviewed. For example, U.S.Pat.No 4939217 discloses an olefin polymerization supported catalyst comprising at least two different metallocenes each having different olefin polymerization termination rate constants in the presence of hydrogen. U.S.Pat. No.5077255 discloses an olefin polymerization supported catalyst comprising at least one metallocene of a metal, a non-metallocene transition metal and an alumoxane. The supported product is highly useful for the polymerization of olefins especially ethylene and especially for the copolymerization of ethylene and other mono and diolefins. U.S.Pat.No.5986024 discloses a process is provided for preparing polymer compositions which are multimodal in nature. The process involves contacting, under polymerization conditions, a selected addition polymerizable monomer with a metallocene catalyst having two or more distinct and chemically different active sites, and a catalyst activator.  ……

  3. Commercial Application of the ICR Series Lube Isodewaxing Catalysts

    Institute of Scientific and Technical Information of China (English)

    Wang Sijue

    2008-01-01

    This article illustrates the application of the ICR series lube oil isodewaxing catalysts in commercial scale and proposes the strategy on long cycle operation and optimization of catalysts. The results of commercial application of the catalyst have revealed that the catalyst after pretreatment including drying, sulfidation and reduction can process VGO into base oils meeting the HVI Ⅱ and HVI Ⅱ+ standards, and can manufacture base oils meeting the HVI Ⅲ standard after incorporating the filtrate oil or gatch from acetone-benzene solvent dewaxing unit. The nitrogen content of the feed oil to the IDW reactor should be controlled at 1.0-1.5 ppm, while the CO and CO2 contents in fresh hydrogen is strictly controlled to avoid poisoning of the IDW-HDF catalysts.

  4. Olefin Epoxidation in Aqueous Phase Using Ionic-Liquid Catalysts.

    Science.gov (United States)

    Cokoja, Mirza; Reich, Robert M; Wilhelm, Michael E; Kaposi, Marlene; Schäffer, Johannes; Morris, Danny S; Münchmeyer, Christian J; Anthofer, Michael H; Markovits, Iulius I E; Kühn, Fritz E; Herrmann, Wolfgang A; Jess, Andreas; Love, Jason B

    2016-07-21

    Hydrophobic imidazolium-based ionic liquids (IL) act as catalysts for the epoxidation of unfunctionalized olefins in water using hydrogen peroxide as oxidant. Although the catalysts are insoluble in both the substrate and in water, surprisingly, they are very well soluble in aqueous H2 O2 solution, owing to perrhenate-H2 O2 interactions. Even more remarkably, the presence of the catalyst also boosts the solubility of substrate in water. This effect is crucially dependent on the cation design. Hence, the imidazolium perrhenates enable both the transfer of hydrophobic substrate into the aqueous phase, and serve as actual catalysts, which is unprecedented. At the end of the reaction and in absence of H2 O2 the IL catalyst forms a third phase next to the lipophilic product and water and can easily be recycled.

  5. Catalysts Efficiency Evaluation by using CC Analysis Test

    Directory of Open Access Journals (Sweden)

    Arina Negoitescu

    2011-10-01

    Full Text Available The study emphasizes the necessity of the catalysts efficiency testing. Diagnosis systems using lambda probes are based on the capacity of the catalyst oxygen storage. Comparing the lambda probe signals upstream and downstream of catalyst provides an indication on catalyst activity, although the correlation between oxygen storage capacity and catalyst efficiency is still difficult. Diagnosis for the 1.4 Renault Clio Symbol was accomplished in the Road Vehicles Lab at the Politehnica University of Timisoara using AVL Dicom 4000. The tests showed that the engine worked with lean mixture being necessary a fuel mixture correction calculated by the control unit ECU. A compensation of 0.14 % vol is required for the engine correct operation and emissions integration within permissible limits

  6. Synthesis of substituted guanidines using Zn-Al hydrotalcite catalyst

    Indian Academy of Sciences (India)

    Lakshmi Kantam Mannepalli; Venkanna Dupati; Swarna Jaya Vallabha; Manorama Sunkara V

    2013-11-01

    Substituted guanidines were synthesized by the guanylation of amines with carbodiimides using Zn-Al hydrotalcite (Zn-Al HT) catalyst. Zn-Al HT was prepared by co-precipitation method and characterized by X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman and Thermogravimetric-Differential Thermal Analysis (TG-DTA). The heterogeneous catalyst afforded moderate to good yields (∼ 50-60 %) of substituted guanidines in toluene at 110°C in 12 h. The catalyst was recovered quantitatively by simple filtration and reused for three cycles with consistent activity. The XRD and FTIR studies of the used catalyst shows no variation in the structure of the catalyst even after three recycles.

  7. Ziegler-Natta catalyst for polypropylene and polyethylene nanocomposites preparation

    International Nuclear Information System (INIS)

    Polypropylene and polyethylene nanocomposites are well known for their improved properties when compared with the neat polymers. In this work we report the preparation, characterization and the activity studies of a fourth generation Ziegler-Natta catalyst for the preparation of polyolefin/clay nanocomposites. The catalyst was prepared treating an organo-modified silicate with magnesium and titanium compounds. The content of titanium and that of the magnesium of the catalyst were determined by UV-vis spectroscopy and atomic absorption respectively. The first results show that the catalyst is active for propylene polymerization being suitable for polypropylene/clay nanocomposite preparation. The catalyst activity for ethylene polymerization was also investigated. The X-ray diffraction patterns of the polyethylene samples suggest the clay exfoliation occurs in the in situ polymerization, even with high clay loading (about 9 %) indicating that a nanocomposite was formed. (author)

  8. Method of Heating a Foam-Based Catalyst Bed

    Science.gov (United States)

    Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

    2009-01-01

    A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

  9. A New Hydrophobic Catalyst for Tritium Separation from Nuclear Effluents

    International Nuclear Information System (INIS)

    The hydrophobic catalysts were originally conceived in Canada for the deuterium enrichment and tritium separation by hydrogen-liquid water isotopic exchange in nuclear field. Unlike the conventional hydrophilic catalysts, which becomes inefficient to direct contact with liquid water, the hydrophobic catalysts kept a high catalytic activity and stability, even under the direct contact with liquid water or in presence of humid gas. Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes, (2) to asses and to find a new procedure for preparation of a new improved hydrophobic catalyst. From reviewed references we consider that platinum remains the most active and efficient catalytic metal and the TEFLON is the best wetproofing agent. A new improved hydrophobic Pt-catalyst has been proposed and is now underway. The main steps and experimental conditions of preparation are largely discussed. A new wet-proofing agent and a new binding agents (titanium oxide, cerium oxide, zirconium oxide) with catalytic role are proposed and tested. The physico-structural parameters of new improved catalyst have been determined and are discussed in details. The new proposal is a promising idea to improve the performances of conventional hydrophobic Pt-catalysts

  10. A New hydrophobic catalyst for tritium separation from nuclear effluents

    International Nuclear Information System (INIS)

    Full text: The hydrophobic catalysts were originally conceived in Canada for the deuterium enrichment and tritium separation by hydrogen-liquid water isotopic exchange in nuclear field. Unlike the conventional hydrophilic catalysts, which becomes inefficient to direct contact with liquid water, the hydrophobic catalysts kept a high catalytic activity and stability, even under the direct contact with liquid water or in presence of humid gas. Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents current R and D activities on the preparation methods and applications of the hydrophobic catalysts, in tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; (2) to find and to asses a new procedure for preparation of a new improved hydrophobic catalyst. Based on reviewed references we concluded that platinum appears to be the most active and efficient catalytic metal while the Teflon is the best wet-proofing agent. A new improved hydrophobic Pt-catalyst has been proposed and its study is now underway. The main steps and experimental conditions of preparation are largely discussed. A new wet-proofing agent and new binding agents (titanium oxide, cerium oxide, zirconium oxide) with catalytic role were proposed and now are tested. The physico-structural parameters of newly improved catalyst have been determined and are discussed in details. The new proposal is a promising idea to improve the performances of conventional hydrophobic Pt-catalysts. (authors)

  11. Industrial catalysts as a source of valuable metals

    Directory of Open Access Journals (Sweden)

    A. Fornalczyk

    2012-12-01

    Full Text Available Purpose: Catalyst are used in all sector of the chemical industry: in basic chemistry (synthesis of sulfuric and nitric acid, ammonia, methanol and aromactics; in petrochemistry; in polymerization chemistry; in refining, in reactions of fluid catalytic cracking (FCC, resid fluid cracking catalyst (RFCC, hydrodesulfurization (HDS and hydrotreatment; in auto industry for reduce of pollution, for removal of NO, CO and hydrocarbons in exhaust emissions; in variety of industrial processes. Recovery of metals and precious metals from spent catalysts has been an important topic not only from economic aspect but also for recycling rare natural sources and reducing the catalyst waste to prevent the environmental pollution. Various methods for recovering metals form spent auto catalyst, petroleum reforming and other industrial catalysts are reviewed.Design/methodology/approach: The article presents the methods used in the world for metals recovery from spent industrial catalysts.Findings: To recover precious metals from spent catalysts many hydro- and pyrometallurgical methods are used. But none of these methods is an universal method that can be used to recover all type of spent catalysts. These recovery methods have also some disadvantages: pyrometallurgical methods require special equipment, reaching the desired temperature, and they are not only expensive but also highly energy consuming. The application of hydrometallurgical methods requires to solve the problem of harmful waste solutions generated during the process.Practical implications: The paper presents the possibilities of industrial catalysis as a source of valuable metals.Originality/value: The present work is a review about industrial catalysts as a source of valuable metals.

  12. Supported Molten Metal Catalysis. A New Class of Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra Datta; Ajeet Singh; Manuela Serban; Istvan Halasz

    2006-06-02

    We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to conventional catalysts for this reaction. A discussion is also provided on the characterization of the active surface area and dispersion of these novel supported catalysts. It is clear based on the results described that the development of new active and selective supported molten metal catalysts for practical applications is entirely plausible.

  13. Oxidative desulfurization of synthetic diesel using supported catalysts. Part 3. Support effect on vanadium-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno-Caero, Luis; Gomez-Bernal, Hilda; Fraustro-Cuevas, Adriana; Guerra-Gomez, Hector D.; Cuevas-Garcia, Rogelio [UNICAT, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria 04510, Mexico D.F. (Mexico)

    2008-04-15

    Oxidesulfurization (ODS) of benzothiophenic compounds prevailing in diesel was conducted with hydrogen peroxide in presence of various catalysts, using a model diesel and actual diesel fuel. ODS activities of dibenzothiophenes (DBTs) in hexadecane for a series of V{sub 2}O{sub 5} catalysts supported on alumina, titania, ceria, niobia and silica, were evaluated. Results show that the oxidation activity of DBTs depends on the support used. It was observed that the sulfone yield is not proportional to textural properties or V content. For all catalysts, ODS of benzothiophene (BT), dibenzothiophene (DBT), 4-methyl dibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) decreased in the following order: DBT > 4-MDBT > 4,6-DMDBT > BT. This trend does not depend on the catalyst used or the textural properties of the catalysts and supports. In presence of indole ODS activities diminish, except with catalysts supported on alumina-titania mixed oxide, whereas with V{sub 2}O{sub 5}/TiO{sub 2} catalyst the performance is the highest. ODS of Mexican diesel fuel was carried out in presence of this catalyst and S level was diminished in about 99%. (author)

  14. Ruthenium Bisphosphine Catalyst on Functionalized Silica:Novel Efficient Catalyst for Carbon Dioxide Hydrogenation to Formic Acid

    Institute of Scientific and Technical Information of China (English)

    Yi Ping ZHANG; Jin Hua FEI; Ymg Min YU; Xiao Ming ZHENG

    2006-01-01

    A novel efficient catalyst for the hydrogenation of carbon dioxide to formic acid ruthenium bisphosphine on functionalized silica was in situ synthesized, affording turnover frequency (TOF) of 1190 h-1 at 100% selectivity under 80C with total pressure of 16.0 MPa. The catalyst can be separated from the reaction mixture easily and reused with moderate loss of activity.

  15. Hydrogenation of xylose to xylitol on sponge nickel catalyst: a study of the process and catalyst deactivation kinetics

    Directory of Open Access Journals (Sweden)

    J.-P. Mikkola

    2003-09-01

    Full Text Available The kinetics of hydrogenation of xylose to xylitol on a sponge nickel catalyst (commonly referred to as Raney Ni catalyst and of catalyst deactivation were studied. Plausible explanations for the decrease in catalytic activity by means of surface studies, nitrogen adsorption and thermogravimetric analyses of the fresh and spent catalysts are presented. The kinetic parameters of the process were estimated by the use of a semi-competitive model, which allows full competition between the organic species and the hydrogen atoms for the adsorption sites on the catalyst surface (competitive case. In the model, a competitiveness factor (alpha is introduced to take into account that even after complete coverage of the surface by the organic species, interstitial sites remain for the adsorption of the hydrogen atoms.

  16. Biomimetic catalysts responsive to specific chemical signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan [Iowa State Univ., Ames, IA (United States)

    2015-03-04

    Part 1. Design of Biomimetic Catalysts Based on Amphiphilic Systems The overall objective of our research is to create biomimetic catalysts from amphiphilic molecules. More specifically, we aim to create supramolecular systems that can be used to control the microenvironment around a catalytic center in a biomimetic fashion and apply the learning to construct supramolecular catalysts with novel functions found in enzymatic catalysts. We have prepared synthetic molecules (i.e., foldamers) that could fold into helical structures with nanometer-sized internal hydrophilic cavities. Cavities of this size are typically observed only in the tertiary and quaternary structures of proteins but were formed in our foldamer prepared in just a few steps from the monomer. Similar to many proteins, our foldamers displayed cooperativity in the folding/unfolding equilibrium and followed a two-state conformational transition. In addition, their conformational change could be triggered by solvent polarity, pH, or presence of metal ions and certain organic molecules. We studied their environmentally dependent conformational changes in solutions, surfactant micelles, and lipid bilayer membranes. Unlike conventional rigid supramolecular host, a foldamer undergoes conformational change during guest binding. Our study in the molecular recognition of an oligocholate host yielded some extremely exciting results. Cooperativity between host conformation and host–guest interactions was found to “magnify” weak binding interactions. In other words, since binding affinity is determined by the overall change of free energy during the binding, guest-induced conformational change of the host, whether near or far from the binding site, affects the binding. This study has strong implications in catalysis because enzymes have been hypothesized to harvest similar intramolecular forces to strengthen their binding with the transition state of an enzyme-catalyzed reaction. The supramolecular and

  17. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. X. Lang; Dr. S. Chokkaram; Dr. L. Nowicki; G. Wei; Dr. Y. Ding; Dr. B. Reddy; Dr. S. Xiao

    1999-07-22

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration

  18. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant

  19. Catalyst Additives to Enhance Mercury Oxidation and Capture

    Energy Technology Data Exchange (ETDEWEB)

    Thomas K. Gale

    2006-06-30

    Catalysis is the key fundamental ingredient to convert elemental mercury in coal-fired power stations into its oxidized forms that are more easily captured by sorbents, ESPs, baghouses, and wet scrubbers, whether the catalyst be unburned carbon (UBC) in the ash or vanadium pentoxide in SCR catalysts. This project has investigated several different types of catalysts that enhance mercury oxidation in several different ways. The stated objective of this project in the Statement of Objectives included testing duct-injection catalysts, catalyst-sorbent hybrids, and coated low-pressure-drop screens. Several different types of catalysts were considered for duct injection, including different forms of iron and carbon. Duct-injection catalysts would have to be inexpensive catalysts, as they would not be recycled. Iron and calcium had been shown to catalyze mercury oxidation in published bench-scale tests. However, as determined from results of an on-going EPRI/EPA project at Southern Research, while iron and calcium did catalyze mercury oxidation, the activity of these catalysts was orders of magnitude below that of carbon and had little impact in the short residence times available for duct-injected catalysts or catalyst-sorbent hybrids. In fact, the only catalyst found to be effective enough for duct injection was carbon, which is also used to capture mercury and remove it from the flue gas. It was discovered that carbon itself is an effective catalyst-sorbent hybrid. Bench-scale carbon-catalyst tests were conducted, to obtain kinetic rates of mercury adsorption (a key step in the catalytic oxidation of mercury by carbon) for different forms of carbon. All carbon types investigated behaved in a similar manner with respect to mercury sorption, including the effect of temperature and chlorine concentration. Activated carbon was more effective at adsorbing mercury than carbon black and unburned carbon (UBC), because their internal surface area of activated carbon was

  20. Selective recovery of catalyst layer from supporting matrix of ceramic-honeycomb-type automobile catalyst.

    Science.gov (United States)

    Kim, Wantae; Kim, Boungyoung; Choi, Doyoung; Oki, Tatsuya; Kim, Sangbae

    2010-11-15

    Natural resources of platinum group metals (PGMs) are limited and their demand is increasing because of their extensive uses in industrial applications. The low rate of production of PGMs due to low concentration in the related natural ores and high cost of production have made the recovery of PGMs from previously discarded catalytic converters a viable proposition. The ceramic-honeycomb-type automobile catalytic converter contains appreciable amount of PGMs. These valuable substances, which are embedded in the catalyst layer and covered on the surface of the supporting matrix, were selectively recovered by attrition scrubbing. The attrition scrubbing was effective for the selective recovery of catalyst layer. The process was convinced as the comminution and separation process by physical impact and shearing action between particles in the scrubbing vessel. The catalyst layer was dislodged from the surface of the supporting matrix into fine particles by attrition scrubbing. The recovery of Al(2)O(3) and total PGMs in the fraction less than 300 μm increased with the residence time whereas their contents in the recovered materials slightly decreased. The interparticle scrubbing became favorable when the initial input size increased. However, the solid/liquid ratio in the mixing vessel was slightly affected by the low density of converter particles. PMID:20728274

  1. Synthetic rubbers prepared by lanthanide coordination catalysts

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China is rich in rare earth resources. Rare earth elements, also named lanthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coordination compounds. In the early 1960s, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAC) found the catalytic activities of lanthanide compounds in stereospecific polymerization of conjugated dienes, and published the first paper on this topic in 1964. On the basis of this finding, CIAC launched extensive research activities on lanthanide compounds as diene polymerization catalysts, from a series of fundamental research to the efforts of industrializing the rare earth catalyzed cis-1,4-polybutatine rubber and cis-1,4-polyisoprene rubber. This review aims to summarize the progress in this field in the past half century.

  2. Can Ni phosphides become viable hydroprocessing catalysts?

    Energy Technology Data Exchange (ETDEWEB)

    Soled, S.; Miseo, S.; Baumgartner, J.; Guzman, J.; Bolin, T.; Meyer, R.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventional supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).

  3. Octahedral molecular sieve sorbents and catalysts

    Science.gov (United States)

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2010-04-20

    Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

  4. Synthetic rubbers prepared by lanthanide coordination catalysts

    Institute of Scientific and Technical Information of China (English)

    CHEN WenQi; WANG FoSong

    2009-01-01

    China is rich in rare earth resources. Rare earth elements, also named Ianthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coordination compounds. In the early 1960s, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAC) found the catalytic activities of lanthanide compounds in stereospecific polymerization of conjugated dienes, and published the first paper on this topic in 1964. On the basis of this finding, CIAC launched extensive research activities on lanthanide compounds as diene polymerization catalysts, from a series of fundamental research to the efforts of industrializing the rare earth catalyzed cis~(-1),4-polybutatine rubber and cis~(-1),4-polyisoprene rubber. This review aims to summarize the progress in this field in the past half century.

  5. Perfluorocarbon-soluble Catalysts and Reagent

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, F. [Milan Univ. (Italy). Dipt. di Chimica organica e industriale; Pozzi, G.; Quici, S. [CNR, Milan (Italy). Centro sulla sintesi e stereochimica di speciali sistemi organici

    1998-05-01

    The new phase-separation and immobilization technique known as FBS (Fluorous Biphase System) is rapidly becoming popular among researchers, both in industry and in academia. The FBS approach takes advantage of the immiscibility of perfluorocarbons with most organic solvents and water. This allows the easy recover and recycle of catalysts and reagents selectively soluble perfluorocarbons. The present review describes the major results obtained in this field up to 1997. [Italiano] La nuova tecnica di immobilizzazione e separazione denominata FBS (Fluorous Biphase System) sta attirando l`interesse di numerosi gruppi di ricerca, sia in ambito industriale sia in quello accademico. Nei sistemi FBS l`immiscibilita` dei fluidi perfluorurati con la maggior parte dei solventi organici e con l`acqua consente il facile recupero e riciclo di catalizzatori e reagenti selettivemente solubili nella fase fluorurata. Questa rassegna prende in esame i principali risultati finora conseguiti in questo campo.

  6. Isomerization of -carotene by titanium tetrachloride catalyst

    Indian Academy of Sciences (India)

    V Rajendran; B H Chen

    2007-05-01

    Isomerization of all-trans--carotene occurs during shaking with 0.5% of titanium tetrachloride catalyst in methylene chloride at room temperature. In the present study we compared two types of columns C18 and C30 and various solvent systems for the separation of -carotene and its cis isomers by high performance liquid chromatography (HPLC). Results showed that -carotene isomers were resolved by employing a C30 column with a mobile phase of methanol (100%) (A) and methylene chloride (100%) (B) under a gradient elution condition. A total of eleven cis isomers and one all-trans--carotene isomer were resolved within 50 min at a flow rate of 1 ml/min and detection wave-length of 470 nm.

  7. Improving performance of catalysts for water electrolysis

    DEFF Research Database (Denmark)

    Frydendal, Rasmus

    reports include little information about stability, which is evaluated solely from short term electrochemical testing. The first part of this project was therefore dedicated to designing a meaningful stability protocol. Manganese oxide thin films were prepared with sputter deposition and the stability....... The results indicate that the stability could be improved with more than 40 %, while the activity decreased with 10 %. Finally, for MnO2 to be useful as an OER catalyst in PEM cells, the activity should be improved. Mixtures of manganese oxide and gold have been reported to exhibit activity enhancements and......-ray Absorption Spectroscopy study it was found that Mn oxidises at a more cathodic potential when Au is nearby. This experimental study serves as a starting point for understanding the beneficial interaction between gold and manganese oxides....

  8. Platinum nanophase electro catalysts and composite electrodes for hydrogen production

    Science.gov (United States)

    Petrik, L. F.; Godongwana, Z. G.; Iwuoha, E. I.

    Nanophase Pt electro catalysts were prepared by impregnating a Pt salt containing solution upon a high surface area hexagonal mesoporous silica (HMS) matrix, which was then carbonized to varying degree by chemical vapour deposition of liquid petroleum gas (LPG). Thereafter the HMS Si matrix could be removed by chemical etching with NaOH to immediately form a Pt containing carbon analogue or ordered mesoporous carbon (OMC) with a porous structure similar to the parent HMS. Nanoparticles of Pt electro catalysts were thus successfully stabilized without agglomeration on both HMS and upon the porous HMS carbon analogue or OMC, which was graphitic in nature. The catalysts were electro active for the hydrogen evolution reaction and their activity compared favourable with an industry standard. Such nanophase Pt electro catalysts could be incorporated successfully in a composite electrode by sequential deposition, upon a suitable substrate and the catalysts in electrodes so formed proved to be stable and active under high-applied potential in high electrolyte environment for hydrogen production by electrolysis of water. This route to preparing a nanophase Pt OMC catalyst may be applicable to prepare active electro catalysts for polymer electrolyte fuel cells and solid polymer electrolyte electrolyzers.

  9. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  10. Design criteria for stable Pt/C fuel cell catalysts

    Directory of Open Access Journals (Sweden)

    Josef C. Meier

    2014-01-01

    Full Text Available Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS. All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  11. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  12. Routes for deactivation of different autothermal reforming catalysts

    Science.gov (United States)

    Pasel, Joachim; Wohlrab, Sebastian; Kreft, Stefanie; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2016-09-01

    Fuel cell systems with integrated autothermal reforming units require active and robust catalysts for H2 production. In pursuit of this, an experimental screening of catalysts utilized in the autothermal reforming of commercial diesel fuels is performed. The catalysts incorporate a monolithic cordierite substrate, an oxide support (γ-Al2O3, La-Al2O3, CeO2, Gd-CeO2, ZrO2, Y-ZrO2) and Rh as the active phase. Experiments are run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. In most cases, this provokes accelerated catalyst deactivation and permits an informative comparison of the catalysts. Fresh and aged catalysts are characterized by temperature-programmed methods, thermogravimetry and transmission electron microscopy to find correlations with catalytic activity and stability. Using this approach, routes for catalyst deactivation are identified, together with causes of different catalytic activities. Suitable reaction conditions can be derived from our results for the operation of reactors for autothermal reforming at steady-state and under transient reaction conditions, which helps improve the efficiency and the stability of fuel cell systems.

  13. Hydrogenation Conversion of Phenanthrene over Dispersed Mo-based Catalysts

    Institute of Scientific and Technical Information of China (English)

    Hu Yiwen; Da Zhijian; Wang Zijun

    2015-01-01

    With oil-soluble molybdenum compound and sublimed sulfur serving as raw materials, two dispersed Mo-based catalysts were prepared, characterized and then applied to the hydrogenation conversion of phenanthrene. The test results showed that under the conditions speciifed by this study, the catalyst prepared in a higher sulifding atmosphere was more catalytically active due to its higher content of MoS2 and stronger intrinsic catalytic activity of MoS2 unit, which demon-strated that the sulifding atmosphere for the preparation of catalysts not only could inlfuence the yield of MoS2 but also the structure of MoS2. The analysis on the selectivity of octahydrophenanthrene isomers revealed that the catalyst prepared in a lower sulifding atmosphere had a relatively higher catalytic selectivity to the hydrogenation of outer aromatic ring and the structure of catalysts could be modiifed under the speciifc reaction conditions. Moreover, the selectivity between the isomers of as-octahydrophenanthrene at different reaction time and temperature was analyzed and, based on the results, a hydroge-nation mechanism over dispersed Mo-based catalysts was suggested, with monatomic hydrogen transfer and catalytic sur-face desorption of the half-addition intermediates functioning as the key points. In addition, it is concluded that the catalyst prepared in a lower sulifding atmosphere was more capable of adsorption than the other one.

  14. Characterization of hydrophobic catalysts for hydrogen isotope exchange

    International Nuclear Information System (INIS)

    Domestic hydrophobic catalysts, KC-1 and KC-2, which were developed for the liquid phase catalytic exchange process separating hydrogen isotopes, were tested against Japanese catalyst, Kogel, which is being used in the Fugen's heavy water upgrader in Japan. KC-1 and KC-2 have different characteristics due to the differences of the solvent and solvent composition used. The test results of domestic hydrophobic catalysts characteristics such as pore distribution, specific surface area, platinum loading, and platinum dispersion from AECL agreed well with the results obtained by KEPRI/KAERI. The shape of KC-1 and KC-2 were 4x4 mm cylindrial pellet and that of Kogel catalyst was 4∼5.5mm sphere. The platinum loading of all catalysts were 0.8 wt%. The BET surface areas were 442, 247, 514m2 ·g-1 for KC-1, KC-2, and Kogel respectively, among which the BET surface area of KC-2 was the smallest. The platinum dispersion area was 2.47, 2.07, 1.90 m2g-1 and the platinum dispersion was 100, 100, 92% for KC-1, KC-2, and Kogel respectively, which showed domestic catalysts had higher values than Kogel catalyst. The average pore size was the largest in KC-2

  15. Characteristics improvement of hydrophobic polytetrafluoroethylene - platinum catalysts for tritium separation

    International Nuclear Information System (INIS)

    Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts in tritium separation. The objectives of the paper are: (1) how to improve the characteristics and performance of platinum hydrophobic catalysts; (2) to assess and find a new procedure for the preparation of a new improved hydrophobic catalyst. From reviewed references platinum appears to be the most active and efficient metal and that polytetrafluoroethylene is the best wet proof agent. A new improved hydrophobic Pt-catalyst has been proposed and underway is tested. The main steps and experimental conditions of preparation are largely discussed. A new wet proof agent and new binding agents (titanium dioxide, cerium dioxide, zirconium dioxide) with a catalytic function are proposed and tested. The physico-structural parameters of the improved catalyst have been determined and are discussed in detail. The new proposal is a promising solution for improving the performance of conventional hydrophobic Pt-catalysts. (authors)

  16. Application of solid ash based catalysts in heterogeneous catalysis.

    Science.gov (United States)

    Wang, Shaobin

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe2O3 could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H2 production, deSO(x), deNO(x), hydrocarbon oxidation,and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. PMID:18939526

  17. Deactivation by carbon of iron catalysts for indirect liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, C.H.

    1991-01-10

    Although promoted cobalt and iron catalysts for Fischer-Tropsch (FT) synthesis of gasoline feedstock were first developed more than three decades ago, a major technical problem still limiting the commercial use of these catalysts today is carbon deactivation. This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which are to: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; and model the rates of deactivation of the same catalysts in fixed-bed reactors. To accomplish the above objectives, the project is divided into the following tasks: (1) determine the kinetics of reaction and of carbon deactivation during CO hydrogenation on Fe and Fe/K catalysts coated on monolith bodies. (2) Determine the reactivities and types of carbon deposited during reaction on the same catalysts from temperature-programmed-surface-reaction spectroscopy (TPSR) and transmission electron microscopy (TEM). Determine the types of iron carbides formed at various temperatures and H{sub 2}/CO ratios using x-ray diffraction and Moessbauer spectroscopy. (3) Develop mathematical deactivation models which include heat and mass transport contributions for FT synthesis is packed-bed reactors. Progress to date is described. 48 refs., 3 figs., 1 tab.

  18. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    K. Jothimurugesan; James G. Goodwin, Jr.; Santosh K. Gangwal

    1999-10-01

    Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of FeFT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction.

  19. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  20. Technology development for iron Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.J.; Raje, A.; Keogh, R.A. [and others

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  1. A biomimetic methane-oxidising catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, H. [Warwick Univ., Coventry (United Kingdom). Dept. of Biological Sciences

    1996-12-31

    The diminishing resources of petroleum oil has meant that there has been considerable efforts in recent years to find a suitable substitute for gasoline as a transportation fuel. Methanol has been identified as a suitable substitute since it is a readily combustible fuel which can be manufactured from a number of different sources. Methane is commonly used as a starting material for the production of synthesis gas (CO + H{sub 2}) and hence methanol. It is well known that the cleavage of the C-H bond of methane is extremely difficult (bond energy is around 104 kcal/mol) and that fairly drastic conditions are required to convert methane into methanol. Temperatures around 1200 deg C and pressures of up to 100 atmospheres over metal catalysts in a series of reactions are required to effect this process. Efforts have been made to reduce the temperature and the number of steps by using lanthanide ruthenium oxide catalyst but such reactions are still thermodynamically endothermic. An energetically more efficient reaction would be the direct conversion of methane to methanol using oxygen as the oxidant: CH{sub 4} + 1/2O{sub 2} -> CH{sub 3}OH {Delta}H deg = - 30.7 kcal/mol. Such a direct oxidation route is manifest in the bacterially-mediated oxidation of methane by methanotrophic bacteria. These organisms effect the direct oxidation of methane to methanol by the enzyme methane monooxygenase (MMO) as part of the reaction sequences to oxidize methane to carbon dioxide. (14 refs.)

  2. Fast olefin metathesis at low catalyst loading.

    Science.gov (United States)

    Peeck, Lars H; Savka, Roman D; Plenio, Herbert

    2012-10-01

    Reactions of the Grubbs 3rd generation complexes [RuCl(2)(NHC)(Ind)(Py)] (N-heterocyclic carbene (NHC)=1,3-bis(2,4,6-trimethylphenylimidazolin)-2-ylidene (SIMes), 1,3-bis(2,6-diisopropylphenylimidazolin)-2-ylidene (SIPr), or 1,3-bis(2,6-diisopropylphenylimidazol)-2-ylidene (IPr); Ind=3-phenylindenylid-1-ene, Py=pyridine) with 2-ethenyl-N-alkylaniline (alkyl=Me, Et) result in the formation of the new N-Grubbs-Hoveyda-type complexes 5 (NHC=SIMes, alkyl=Me), 6 (SIMes, Et), 7 (IPr, Me), 8 (SIPr, Me), and 9 (SIPr, Et) with N-chelating benzylidene ligands in yields of 50-75 %. Compared to their respective, conventional, O-Grubbs-Hoveyda complexes, the new complexes are characterized by fast catalyst activation, which translates into fast and efficient ring-closing metathesis (RCM) reactivity. Catalyst loadings of 15-150 ppm (0.0015-0.015 mol %) are sufficient for the conversion of a wide range of diolefinic substrates into the respective RCM products after 15 min at 50 °C in toluene; compounds 8 and 9 are the most catalytically active complexes. The use of complex 8 in RCM reactions enables the formation of N-protected 2,5-dihydropyrroles with turnover numbers (TONs) of up to 58,000 and turnover frequencies (TOFs) of up to 232,000 h(-1); the use of the N-protected 1,2,3,6-tetrahydropyridines proceeds with TONs of up to 37,000 and TOFs of up to 147,000 h(-1); and the use of the N-protected 2,3,6,7-tetrahydroazepines proceeds with TONs of up to 19,000 and TOFs of up to 76,000 h(-1), with yields for these reactions ranging from 83-92 %.

  3. High-Performance Monopropellants and Catalysts Evaluated

    Science.gov (United States)

    Reed, Brian D.

    2004-01-01

    The NASA Glenn Research Center is sponsoring efforts to develop advanced monopropellant technology. The focus has been on monopropellant formulations composed of an aqueous solution of hydroxylammonium nitrate (HAN) and a fuel component. HAN-based monopropellants do not have a toxic vapor and do not need the extraordinary procedures for storage, handling, and disposal required of hydrazine (N2H4). Generically, HAN-based monopropellants are denser and have lower freezing points than N2H4. The performance of HAN-based monopropellants depends on the selection of fuel, the HAN-to-fuel ratio, and the amount of water in the formulation. HAN-based monopropellants are not seen as a replacement for N2H4 per se, but rather as a propulsion option in their own right. For example, HAN-based monopropellants would prove beneficial to the orbit insertion of small, power-limited satellites because of this propellant's high performance (reduced system mass), high density (reduced system volume), and low freezing point (elimination of tank and line heaters). Under a Glenn-contracted effort, Aerojet Redmond Rocket Center conducted testing to provide the foundation for the development of monopropellant thrusters with an I(sub sp) goal of 250 sec. A modular, workhorse reactor (representative of a 1-lbf thruster) was used to evaluate HAN formulations with catalyst materials. Stoichiometric, oxygen-rich, and fuelrich formulations of HAN-methanol and HAN-tris(aminoethyl)amine trinitrate were tested to investigate the effects of stoichiometry on combustion behavior. Aerojet found that fuelrich formulations degrade the catalyst and reactor faster than oxygen-rich and stoichiometric formulations do. A HAN-methanol formulation with a theoretical Isp of 269 sec (designated HAN269MEO) was selected as the baseline. With a combustion efficiency of at least 93 percent demonstrated for HAN-based monopropellants, HAN269MEO will meet the I(sub sp) 250 sec goal.

  4. Sewage sludge gasification characteristics and tar reduction using catalysts

    International Nuclear Information System (INIS)

    This study tested various types of catalysts such as dolomite steel slag and quicklime for tar reduction in the sewage sludge gasification process. For the experiments of sewage sludge gasification reaction characteristics and tar reduction using the catalysts a fixed bed of lab scale experimental apparatus was set up. The reactor was made of quartz glass using electric muffle furnaces. The sewage sludge samples were used with moisture content less than 6%. The catalysts were prepared using Dolomite (Seongshin Inc.) Steel slag (Hyundai Steel Co. Ltd.) Quicklime (Tae young EMC Co. LTD.). The experimental conditions were as follows sample weight was 20 g and reaction time was 10 minutes gasification reaction temperature was from 600 degree Celsius to 800 degree Celsius and the equivalence ratio was 0.2. Mass of catalysts were 2 g, 4 g, 6 g and temperatures of catalyst layer were 500 to 700 degree Celsius. The gas was analyzed for yield composition of product gas by GC/TCD(carbogen 1000 column) and tar composition of product gas by GC-mass(HP-Plan Al2O3/ KCl column). As reaction temperature increased up 800 degree Celsius yields of gaseous products and liquid products increased while char and tar products decreased which had effect on gas product compositions. These results were considered due to the increase of water gas reaction and Boudouard reaction. In the case of experiments with catalyst mass of catalysts were determined dolomite (4 g) steel slag (6 g) and quicklime (6 g) by previous experiments. When temperature of catalyst increased, weight of tar produced decreased with different cracking performance by catalysts. Reforming reaction on the surface of dolomite steel slag CaO of quicklime occurred caused by cracking of hydrocarbon structure. (author)

  5. Catalyst Deactivation and Regeneration in Low Temperature Ethanol Steam Reforming with Rh/CeO2-ZrO2 Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hyun-Seog; Platon, Alex; Wang, Yong; King, David L.

    2006-08-01

    Rh/CeO2-ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.

  6. Comparison of Tungsten and Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Oleic Acid

    NARCIS (Netherlands)

    Hollak, S.A.W.; Gosselink, R.J.A.; Es, van D.S.; Bitter, J.H.

    2013-01-01

    Group 6 (W, Mo) metal carbide catalysts are promising alternatives to hydrodesulfurization (NiMo, CoMo) catalysts and group 10 (Pd) type catalysts in the deoxygenation of vegetable fats/oils. Herein, we report a comparison of carbon nanofiber-supported W2C and Mo2C catalysts on activity, selectivity

  7. Characterization and Regeneration of Pt-Catalysts Deactivated in Municipal Waste Flue Gas

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Kustov, Arkadii; Due-Hansen, Johannes;

    2006-01-01

    Severe deactivation was observed for industrially aged catalysts used in waste incineration plants and tested in lab-scale. Possible compounds that cause deactivation of these Pt-based CO oxidation catalysts have been studied. Kinetic observations of industrial and model catalysts showed that sil...... the activity of the deactivated catalysts. (c) 2006 Elsevier B.V. All rights reserved....

  8. Re/HZSM-5: a new catalyst for ethane aromatization with improved stability

    DEFF Research Database (Denmark)

    Krogh, Anne; Hansen, Thomas W.; Christensen, Claus Hviid;

    2003-01-01

    Rhenium-impregnated HZSM-5 is found to be a promising catalyst for ethane aromatization. The Re–HZSM-5 catalyst deactivates significantly slower than well-known ethane aromatization Zn–HZSM-5 catalyst. Product selectivities for the two catalysts are similar, indicating that the shape selectivity...

  9. New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon

    DEFF Research Database (Denmark)

    Hagen, Stefan; Barfod, Rasmus; Fehrmann, Rasmus;

    2002-01-01

    Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia......Barium-promoted cobalt catalysts supported on carbon exhibit higher ammonia activities at synthesis temperatures than the commercial, multipromoted iron catalyst and also a lower ammonia...

  10. Reduction of a Ni/Spinel Catalyst for Methane Reforming

    DEFF Research Database (Denmark)

    Kehres, Jan; Andreasen, Jens Wenzel; Fløystad, Jostein Bø;

    2015-01-01

    A nickel/spinel (Ni/MgAl2O4) catalyst, w(Ni) = 22 wt%, was investigated in situ during reduction with wide angle X-ray scattering (WAXS) in a laboratory setup and with anomalous small angle X-ray scattering (ASAXS) at a synchrotron source. Complementary high resolution transmission electron...... microscopy (HRTEM) was performed on the fresh catalyst sample. The Ni particles in the fresh catalyst sample were observed to exhibit a Ni/NiO core/shell structure. A decrease of the Ni lattice parameter is observed during the reduction in a temperature interval from 413 – 453 K, which can be related...

  11. Properties of the FCC Catalyst Additive Prepared from Guizhou Kaoline

    Directory of Open Access Journals (Sweden)

    Xianlun Xu

    2006-09-01

    Full Text Available The properties of a FCC catalyst additive prepared from Guizhou kaoline were extensively investigated. The samples were characterized by N2 adsorption, X-ray diffraction, IR spectrometry, and scanning electron microscope (SEM. The results showed that the crystallinity of NaY zeolite synthesized from this kaoline was 25% and the silica alumina ratio was rk/s ˇ m = 5.05. The catalyst additive prepared from above crystallization product exhibited excellent performance of nickel and vanadium passivation, offered 21% lower coke versus base catalyst, while maintaining high bottoms upgrading selectivity.

  12. Stability and resistance of nickel catalysts for hydrodeoxygenation

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Gardini, Diego; de Carvalho, Hudson W. P.;

    2014-01-01

    deactivation with complete loss of activity due to the formation of nickel sulfide. Exposing Ni/ZrO2 to chlorine-containing compounds (at a concentration of 0.05 wt% Cl) on-stream led to a steady decrease in activity over 40 h of exposure. Removal of the chlorine species from the feed led to the regaining...... of activity. Analysis of the spent catalyst revealed that the adsorption of chlorine on the catalyst was completely reversible, but chlorine had caused sintering of nickel particles. In two experiments, potassium, as either KCl or KNO3, was impregnated on the catalyst prior to testing. In both cases...

  13. Diameter Modification of Si Nanowires via Catalyst Size

    Institute of Scientific and Technical Information of China (English)

    邢英杰; 奚中和; 薛增泉; 俞大鹏

    2003-01-01

    Si nanowires with different diameters are grown on catalyst coated Si substrates via a solid-liquid-solid mechanism. It is found that the thickness and type of catalyst film can modify the average diameter of Si nanowires obviously. The nanowires prepared on substrates deposited with Ni film of 40, 10, and 4nm thick have a mean diameter around 41, 36, and 24nm, respectively. Si nanowires with the smallest average diameter (~ 16 nm) are grown with a gold catalyst. Studies of diameter distributions show that the minimum diameter of nanowires does not shift with the average diameters spontaneously and has the same size of 10nm.

  14. States of Carbon Nanotube Supported Mo-Based HDS Catalysts

    Institute of Scientific and Technical Information of China (English)

    Hongyan Shang; Chenguang Liu; Yongqiang Xu; Jieshan Qiu; Fei Wei

    2006-01-01

    The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were investigated by TPR, while the sulfided Co-Mo/CNT catalysts were characterized by means of the XRD and LRS techniques. The activity and selectivity with respect to the hydrodesulfurization (HDS) performances on carbon nanotube supported Co-Mo catalysts were evaluated. It was found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, but not MoO3, as generally expected. The maximum loading before the formation of the bulk phase was lower than 6% (percent by mass, based on MoO3). TPR studies revealed that the active species in the oxide state Co-Mo/CNT catalysts were reduced more easily at relatively lower temperatures in comparison to those of the Co-Mo/γ-Al2O3 catalysts, indicating that the CNT support promoted or favored the reduction of the active species. The active species of a Co-Mo-0.7/CNT catalyst were more easily reduced than those of the Co-Mo/CNT catalysts with Co/Mo atomic ratios of 0.2, 0.35, and 0.5, respectively, suggesting that the Co/Mo atomic ratio has a great effect on the reducibility of the active species. It was found that the incorporation of cobalt improved the dispersion of the molybdenum species on the support, and a phenomenon of mobilization and re-dispersion had occurred during the sulfurization process, resulting in low valence state Mo3S4 and Co-MoS2.17 active phases. HDS measurements showed that the Co-Mo/CNT catalysts were more active than the Co-Mo/γ-Al2O3 ones for the desulfurization of DBT, and the hydrogenolysis/hydrogenation selectivity of the Co-Mo/CNT catalysts was also much higher than those of the Co-Mo/γ-Al2O3. The Co-Mo/CNT catalyst with a Co/Mo atomic ratio of 0.7 showed the highest activity, whereas the catalyst with a Co/Mo atomic ratio of 0.35 had the highest selectivity.

  15. Synthesis of Tricyclopentadiene Over Nanoporous MCM-41 Catalysts.

    Science.gov (United States)

    Park, Eunseo; Kim, Jinhan; Yim, Jin-Heong; Han, Jeongsik; Park, Young-Kwon; Jeon, Jong-Ki

    2015-07-01

    The objective of this study is to evaluate the catalytic potential of metal oxide/MCM-41 catalysts in dicyclopentadiene oligomerization/dicyclopentadiene oligomer isomerization. Molybdenum oxide, tungsten oxide, and titanium oxide were loaded on MCM-41 using the modified atomic layer deposition method. The amount of the acid site with weak strength has been increased through metal oxide deposition. The oligomer yield in dicyclopentadiene oligomerization/dicyclopentadiene oligomer isomerization did not change with increasing of the amount of acid site. The highest tricyclopentadiene isomer selectivity over the MoO3/MCM-41 catalyst could be attributed to having the highest overall number of acid sites among the catalysts. PMID:26373142

  16. Building Indenylidene-Ruthenium Catalysts for Metathesis Transformations

    Science.gov (United States)

    Clavier, Hervé; Nolan, Steven P.

    Ruthenium-mediated olefin metathesis has emerged as an indispensable tool in organic synthesis for the formation carbon-carbon double bonds, attested by the large number of applications for natural product synthesis. Among the numerous catalysts developed to mediate olefin metathesis transformations, ruthenium-indenylidene complexes are robust and powerful pre-catalysts. The discovery of this catalyst category was slightly muddled due to a first mis-assignment of the compound structure. This report provides an overview of the synthetic routes for the construction of the indenylidene pattern in ruthenium complexes. The parameters relating to the indenylidene moiety construction will be discussed as well as the mechanism of this formation

  17. The activation mechanism of Fe-based olefin metathesis catalysts

    Science.gov (United States)

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts.

  18. Reactivation of a Ruthenium-Based Olefin Metathesis Catalyst

    Science.gov (United States)

    Tabari, Daniel S.; Tolentino, Daniel R.; Schrodi, Yann

    2013-01-01

    1st Generation Hoveyda-Grubbs olefin metathesis catalyst was purposely decomposed in the presence of ethylene yielding inorganic species that are inactive in the ring-closing metathesis (RCM) of benchmark substrate diethyldiallyl malonate (DEDAM). The decomposed catalyst was treated with 1-(3,5-diisopropoxyphenyl)-1-phenylprop-2-yn-1-ol (3) to generate an olefin metathesis active ruthenium indenylidene-ether complex in 43 % yield. This complex was also prepared independently by reacting RuCl2(p-cymene)(PCy3) with organic precursor 3. The activity of the isolated reactivated catalyst in the RCM of DEDAM is similar to that of the independently prepared complex. PMID:23355756

  19. Reactivation of a Ruthenium-Based Olefin Metathesis Catalyst.

    Science.gov (United States)

    Tabari, Daniel S; Tolentino, Daniel R; Schrodi, Yann

    2013-01-14

    1(st) Generation Hoveyda-Grubbs olefin metathesis catalyst was purposely decomposed in the presence of ethylene yielding inorganic species that are inactive in the ring-closing metathesis (RCM) of benchmark substrate diethyldiallyl malonate (DEDAM). The decomposed catalyst was treated with 1-(3,5-diisopropoxyphenyl)-1-phenylprop-2-yn-1-ol (3) to generate an olefin metathesis active ruthenium indenylidene-ether complex in 43 % yield. This complex was also prepared independently by reacting RuCl(2)(p-cymene)(PCy(3)) with organic precursor 3. The activity of the isolated reactivated catalyst in the RCM of DEDAM is similar to that of the independently prepared complex.

  20. Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus

    1997-01-01

    Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de......NOx'ed flue gas. The vanadium (IV) compound K4(VO)3(SO4)5 precipitated during all the investigated conditions hence causing catalyst deactivation. Hysteresis behavior of both the catalytic activity and the V(IV) content was observed during reheating....

  1. In Situ XAS of Ni-W Hydrocracking Catalysts

    Science.gov (United States)

    Yang, N.; Mickelson, G. E.; Greenlay, N.; Kelly, S. D.; Bare, Simon R.

    2007-02-01

    Ni-W based catalysts are very attractive in hydrotreating of heavy oil due to their high hydrogenation activity. In the present research, two catalyst samples, prepared by different methods, that exhibit significant differences in activity were sulfided in situ, and the local structure of the Ni and W were studied using X-ray absorption spectroscopy (XAS). The Ni XANES spectra were analyzed using a linear component fitting, and the EXAFS spectra of the WS2 platelets in the sulfided catalysts were modeled. The Ni and W are fully sulfided in the higher activity sample, and there are both unsulfided Ni (˜25%) and W (<10%) in the lower activity sample.

  2. Effect of vanadium on the deactivation of FCC catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roncolatto, R.E.; Lam, Y.L. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Div. de Catalisadores]. E-mail: roncolatto@cenpes.petrobras.com.br; y12@cenpes.petrobras.com.br

    1998-06-01

    This work provides concrete evidence that causes the destruction of the zeolite in the FCC catalysts by a mechanism of acid attack or solid-solid transformation, as well as additional dealumination of the zeolite framework in the presence of steam and at high temperature. While these effects resulted in the reduction in crystallinity (zeolite Y content), specific area and unit cell size of the Y zeolite as the amount of vanadium in the catalysts increased, the reduction in activity was the most pronounced. The differences in these behaviors were interpreted and the model can be used for better catalyst formulation or screening. (author)

  3. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... catalyst. Other factors like medium acidity, chloride content and oxygen partial pressure all turned out to influence the noble metal dissolution. The degradation of the polyfluorinated sulfonic acid membrane electrolyte was also found to be an important source of increased acidity in the Three......-Phase-Boundary (TPB), and consequently the dissolution of the noble metal catalysts. (C) 2010 Elsevier B.V. All rights reserved....

  4. Influence of Steam Treating on Deethylating Type Isomerization Catalyst

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This article mainly worked on methods to reduce side reactions of the de-ethylating type catalyst for xylene isomerization. In laboratory the de-ethylating type catalyst for xylene isomerization was subjected to steam treatment at different temperatures and durations to achieve dealumination of the ZSM-5 zeolite to some extent, which could affect the change in Bronsted acid content to decrease xylene loss along with reduction of side reactions. Test results showed that the degree for reducing side reactions by steam treatment depended upon two important parameters-treating temperature and duration. The optimal condition required treating the catalyst at 500℃ for 8 hours.

  5. EFFECT OF VANADIUM ON THE DEACTIVATION OF FCC CATALYSTS

    Directory of Open Access Journals (Sweden)

    Roncolatto R.E

    1998-01-01

    Full Text Available This work provides concrete evidence that vanadium causes the destruction of the zeolite in the FCC catalysts by a mechanism of acid attack or solid-solid transformation, as well as additional dealumination of the zeolite framework in the presence of steam and at high temperature. While these effects resulted in the reduction in crystallinity (zeolite Y content, specific area and unit cell size of the Y zeolite as the amount of vanadium in the catalysts increased, the reduction in activity was the most pronounced. The differences in these behaviors were interpreted and the model can be used for better catalyst formulation or screening.

  6. Thermal behaviors of deactivation catalysts for synthesizing 2, 3, 5-trimethylhydroquinone

    Institute of Scientific and Technical Information of China (English)

    QIAN Dong; SHI Ai-hua; CHEN Qi-yuan; LIU Zhi-jian

    2005-01-01

    The thermal behaviors of the deposits on supported noble metal catalysts for synthesizing 2, 3, 5-trimethylhydroquinone by DSC were studied. The results show that the supported Pd catalysts have two exothermic peaks at around 312 ℃ and 435 ℃ in the DSC thermograms, respectively, while the supported Pt catalysts have one exothermic peak at approximately 345 ℃. Therefore, it is supposed that the adsorptive states of deposits on supported Pt catalysts and supported Pd catalysts are different, which may be one reason leading to the stability difference between supported Pt catalysts and supported Pd catalysts.

  7. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    Science.gov (United States)

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

  8. Study on the Performance of Regenerated Catalyst for Ammonoximation of Cyclohexanone

    Institute of Scientific and Technical Information of China (English)

    Sun Bin; Wu Wei; Min Enze; Xiong Ye

    2007-01-01

    The study on the deactivated catalyst and the regenerated catalyst for the 70 kt/a cyclohexanone ammonoximation commercial test unit had revealed that addition of a proper amount of silicon additive could suppress the solubilization-induced loss of silicon in catalyst while providing protection to the catalyst. Compared to the direct calcination method for catalyst regeneration, adoption of the regeneration method through pretreatment-calcination of catalyst could be more beneficial to the restoration of catalyst channels and enhancement of the performance of the regenerated catalyst, which could be repeatedly regenerated and utilized. The outcome of commercial scale testing of the catalyst had indicated the good performance of the regenerated catalyst, which could be used for four times,resulting in a reduction of the production cost of cyclohexanone-oxime in big chunks.

  9. Pilot plant evaluation of hydrotreating catalysts for heavy gas oil conversion

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y.; Chen, S.; Chen, J. [CanmetENERGY, Natural Resources Canada (Canada)

    2011-07-01

    As world reserves of oil are depleted, most of the oil remaining is heavy and sour and improvements in the technology are thus required to process it and produce transportation fuels. In terms of catalysts, alumina supported hydrotreating catalysts are commonly used; but activated carbon (AC) could also be a catalyst support option with its high microporosity and surface area combined with its thermal stability and resistance to coke deposition. This paper aims at determining the effect of the catalyst support on heavy crude oil processing. Experiments were conducted using two AC based catalysts, an alumina supported catalyst and two hydrotreating catalysts; results were then analyzed by scanning electron microscopy and transmission electron microscope. Results demonstrated that the AC based catalysts provide a better hydrotreating performance than the other catalysts. This study finds that the use of activated carbon based catalysts can provide better heavy oil conversion than others.

  10. An overview of recent development in composite catalysts from porous materials for various reactions and processes.

    Science.gov (United States)

    Xie, Zaiku; Liu, Zhicheng; Wang, Yangdong; Yang, Qihua; Xu, Longya; Ding, Weiping

    2010-01-01

    Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts. PMID:20559508

  11. An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    Directory of Open Access Journals (Sweden)

    Zaiku Xie

    2010-05-01

    Full Text Available Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT, etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts.

  12. Preparation and Cracking Performance of FCC Co-Catalyst for Enhancing Light Oil Production

    Institute of Scientific and Technical Information of China (English)

    Wu Feiyue; Shi Li; Weng Huixin; Wang Xin

    2008-01-01

    In this paper,a FCC co-catalyst for enhancing the light oil production was prepared by the sol-gel method,and its effect on the performance of residue cracking catalysts was evaluated in a CCFFB reactor.The test results indicated that the liquid product yield increased obviously,after the surface of FCC equilibrium catalyst was impregnated with the co-catalyst.The yields of dry gas,slurry and coke decreased,while the diesel yield changed slightly.And the crackability of residue was increased; the rate of coke deposition on catalyst surface was decreased,with the thermal cracking reactions inhibited.All these results showed that the co-catalyst could improve the density of acid sites and change the catalyst acidity,which could promote to prolong the catalyst activity by depositing the co-catalyst on the surface of FCC equilibrium catalysts.

  13. Idea of environmental catalyst and its application; Kankyo shokubai no hasso to sono riyo

    Energy Technology Data Exchange (ETDEWEB)

    Inumaru, K. [The University of Tokyo, Tokyo (Japan)

    1997-10-20

    The catalyst creating environmental conservation and comfortable environment is generally named an `environmental catalyst (EC).` EC is roughly classified into direct and indirect type ECs. Purification catalysts for automobile exhaust gas, and catalysts for chemical production process are under investigation as direct and indirect type ECs, respectively. The catalyst was found which can remove NOx under the coexistence of oxygen by using hydrocarbon as reductant. In addition, the practical exhaust gas purification catalyst was also developed for lean-burn engines by combining noble metal catalysts with NOx absorbing materials or zeolite superior in reductant adsorbing power. {epsilon}-caprolactam as raw material of nylon 6 is synthesized from cyclohexanoneoxime through Beckmann` rearrangement reaction. Zeolite system solid catalysts using no ammonia are under investigation. An environment-friendly synthesis method using not phosgene but catalyst was proposed for production of dimethyl carbonate. How to utilize catalysts for global material circulation remains unsolved for the future study. 5 refs.

  14. Molecular Simulation of Naphthenic Acid Removal on Acidic Catalyst Ⅱ. Experimental results of catalytic decarboxylation over acidic catalysts

    Institute of Scientific and Technical Information of China (English)

    Fu Xiaoqin; Tian Songbai; Hou Shuandi; Longjun; Wang Xieqing

    2008-01-01

    The energy barriers of thermal decarboxylation reactions of petroleum acids and catalytic decarboxylation reactions of Br(o)nsted acid and Lewis acid were analyzed using molecular simulation technology.Compared with thermal decarboxylation reactions of petroleum acids, the decarboxylation reactions by acid catalysts were easier to occur. The decarboxylaton effect by Lewis acid was better than Br(o)nsted acid. The mechanisms of catalytic decarboxylation over acid catalyst were also verified by experiments on a fixed bed and a fluidized bed, the experimental results showed that the rate of acid removal could reach up to 97% over the acidic catalyst at a temperature above 400℃.

  15. Life Cycle Assessment of Biochar versus Metal Catalysts Used in Syngas Cleaning

    OpenAIRE

    Robert S. Frazier; Enze Jin; Ajay Kumar

    2015-01-01

    Biomass gasification has the potential to produce renewable fuels, chemicals and power at large utility scale facilities. In these plants catalysts would likely be used to reform and clean the generated biomass syngas. Traditional catalysts are made from transition metals, while catalysts made from biochar are being studied. A life cycle assessment (LCA) study was performed to analyze the sustainability, via impact assessments, of producing a metal catalyst versus a dedicated biochar catalyst...

  16. Dehalogenation of Aryl Halides Catalyzed by Montmorillonite Immobilized Bimetal Catalyst in Aqueous System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel bisupported bimetal catalyst PVP-PdCl2-FeSO4/Al-Mont-PEG600 was prepared by immobilization of PVP (poly (N-vinyl-2-pyrrolidone)) supported bimetallic catalyst using alumina pillared inartificial montmorillonite as the carrier. This catalyst has good dehalogenation activity and selectivity to aryl halides-o-chlorotoluene in aqueous system in the presence of phase transfer catalyst (PEG) and sodium formate as hydrogen source. The catalyst also shows good reusability.

  17. Copper Replaces Tin: A Copper based Gelling Catalyst for Poly-Urethane from Discarded Motherboard

    OpenAIRE

    Parasar, Bibudha; Jing, Gao Wen; Yuan, Dandan; KUN, Wang; WANG, Peng; Dasgupta, Arijit; Sahasrabudhe, Atharva; Barman, Soumitra; Yuan, Rongxin; Roy, Soumyajit

    2013-01-01

    A discarded motherboard based eco-friendly copper catalyst has been programmed to replace the industrially used tin based catalyst DBTDL. The catalyst has been characterized by UV-Vis spectroscopy, FT-IR and TEM. Using the catalyst reaction conditions is optimized and under the optimized condition, both polyurethane and polyurethane foam are prepared, thus proving the generality of the catalyst to be used in industries. A possible mechanism has also been proposed.

  18. Characterization and Dehydrogenation Activity of SBA-15 and HMS Supported Chromia Catalysts

    Institute of Scientific and Technical Information of China (English)

    YUE,Hong-Yong(乐洪咏); ZHENG,Bo(郑波); YUE,Ying-Hong(乐英红); ZHANG,Xue-Zheng(张雪峥); HUA,Wei-Ming(华伟明); GAO,Zi(高滋)

    2002-01-01

    SBA-15 and HMS supported chromia catalysts were prepared and characterized. Chromia is highly dispersed on the mesoporous supports when its loading is ≤7 wt%. The supported catalysts display high activity, selectivity and stability for dehydrogenation of ethyibenzene and propane. ESR measurement of the catalysts before and after reaction shows that the active species for dehydrogenation reaction might be Cr3 + species on the catalyst surface, and the activity of the catalyst is probably correlated with the dispersion of Cr3+ species.

  19. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  20. Modified silica-based heterogeneous catalysts for etherification of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Gholami, Zahra, E-mail: zahra.gholami@petronas.com.my [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Gholami, Fatemeh, E-mail: fgholami59@gmail.com [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus,14300 Nibong Tebal, Penang (Malaysia); Vakili, Mohammadtaghi, E-mail: farshid3601@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-07-22

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca{sub 1.6}La{sub 0.6}/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.

  1. Coke deactivation of catalysts for hydroprocessing of heavy petroleum feedstocks

    International Nuclear Information System (INIS)

    Harwell's principal contribution to the study of the role of coke in the deactivation of catalysts for hydroprocessing of heavy petroleum feedstocks has been the development and application of nuclear microprobe methods to measure the distributions of hydrogen, carbon, nitrogen and other elements in coked catalyst pellets. Nuclear microprobe methods have been developed that allow the measurement of the distribution of carbon, hydrogen, nitrogen and heavier elements in coked catalyst pellets. At present analysis by both deuteron and helium-4 ion beams is necessary to cover the complete range of elements. The potential of using helium-3 irradiation alone to measure all elements is as yet unrealised. Applications have included studies of the variability of profiles in batches of used pellets, investigation of interrelationships between coke components and limited kinetic studies. Many of these applications have proved to be successful and nuclear microprobe methods should continue to be exploited studies of catalyst coking. (au)

  2. Modified silica-based heterogeneous catalysts for etherification of glycerol

    International Nuclear Information System (INIS)

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca1.6La0.6/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%

  3. GROUP TRANSFER POLYMERIZATION OF ETHYL ACRYLATE WITH LEWIS ACID CATALYST

    Institute of Scientific and Technical Information of China (English)

    XU Linyun; Wang Lei

    1989-01-01

    This paper reports the kinetics of group transfer polymerization (GTP) of ethyl acrylate (EA) with zinc iodide catalyst in 1,2- dichloroethane using dimethyl ketene methyl trimethylsilyl acetal ( MTS ) as initiator at 0 ℃ and above 0 ℃ . The amount of catalyst used was studied. When zinc iodide catalyst used is more than 10mol% relative to monomer, the rate of polymerization is proportional to the concentration of monomer, whereas zinc iodide catalyst used is less than 10 mol% of the monomer, the rate of polymerization is independent of the monomer concentration. In the GTP of EA an induction period was observed when the zinc iodide contents are less than 10 mol%. If the reaction temperature is over 0 ℃ , living species become unstable and diminish, leading to incomplete monomer conversion. The reaction curves equations are obtained. The polymers have narrow molecular weight distributions which are not changed as decreasing zinc iodide contents. The polydispersity is about 1.2.

  4. Visible Light Responsive Catalyst for Air Water Purification Project

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Investigate and develop viable approaches to render the normally UV-activated TIO2 catalyst visible light responsive (VLR) and achieve high and sustaining catalytic activity under the visible region of the solar spectrum.

  5. The use of niobium based catalysts for liquid fuel production

    Directory of Open Access Journals (Sweden)

    Reguera Frank Martin

    2004-01-01

    Full Text Available The catalytic properties of niobium based catalysts were investigated in the conversion of oleic acid to liquid fuels at atmospheric pressure and at 623 K. The catalytic tests were performed in a fixed bed and continuous flow reactor using an acid to catalyst ratio equal to 4 and N2 as carrier gas. The reaction products were analyzed by gas chromatography and acidity measurements. NH3 temperature programmed desorption, N2 adsorption-desorption (BET method and Xray diffraction were also performed in order to determine the structural and acidic properties of the catalysts. From the catalytic tests, it was detected the formation of compounds in the range of gasoline, diesel and lubricant oils. Higher catalytic activity and selectivity for diesel fuel were observed for the catalysts NbOPO4 and H3PO4/Nb2O5 that possesses higher acidities and surface areas.

  6. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Haibin Jiang

    2016-06-01

    Full Text Available Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  7. Perovskite Catalysts—A Special Issue on Versatile Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Yu-Chuan Lin

    2014-08-01

    Full Text Available Perovskite-type catalysts have been prominent oxide catalysts for many years due to attributes such as flexibility in choosing cations, significant thermal stability, and the unique nature of lattice oxygen. Nearly 90% metallic elements of the Periodic Table can be stabilized in perovskite’s crystalline framework [1]. Moreover, by following the Goldschmidt rule [2], the A- and/or B-site elements can be partially substituted, making perovskites extremely flexible in catalyst design. One successful example is the commercialization of noble metal-incorporated perovskites (e.g., LaFe0.57Co0.38Pd0.05O3 for automotive emission control used by Daihatsu Motor Co. Ltd. [3]. Thus, growing interest in, and application of perovskites in the fields of material sciences, heterogeneous catalysis, and energy storage have prompted this Special Issue on perovskite catalysts. [...

  8. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    Energy Technology Data Exchange (ETDEWEB)

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  9. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions.

    Science.gov (United States)

    Jiang, Haibin; Lu, Shuliang; Zhang, Xiaohong; Dai, Wei; Qiao, Jinliang

    2016-01-01

    Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol) in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  10. Sample preparation and electron microscopy of hydrocracking catalysts

    Science.gov (United States)

    Husain, S.; McComb, D. W.; Perkins, J. M.; Haswell, R.

    2008-08-01

    This work focuses on the preparation of zeolite and alumina hydrocracking catalysts for investigation by electron energy-loss spectroscopy (EELS). EELS can potentially give new insights into the location and structure of coke which can result in catalyst deactivation. Three sample preparation techniques have been used - microtoming, focussed ion beam milling (LIB) and conventional ion beam milling. Crushing and grinding the catalyst pellets has been discounted as a preparation technique as the spatial relationship between the coke and the catalyst is lost using this method. Microtomed sections show some mechanical damage while sections milled in a single beam LIB microscope show gallium decoration in pores and were too thick for EELS. Conventional ion beam milling has proved to be most successful as it results in extensive thin regions and maintains the spatial distribution of the zeolite and alumina phases.

  11. Synthesis Gas Production from Natural Gas on Supported Pt Catalysts

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Auto-thermal reforming of methane, combining partial oxidation and reforming of methane with CO2 or steam, was carried out with Pt/Al2O3, Pt/ZrO2 and Pt/CeO2 catalysts, in a temperature range of 300-900 ℃. The auto-thermal reforming occurs in two simultaneous stages, namely, total combustion of methane and reforming of the unconverted methane with steam and CO2, with the O2 conversion of 100% starting from 450 ℃. For combination with CO2 reforming, the Pt/CeO2 catalyst showed the lowest initial activity at 800 ℃, and the highest stability over 40 h on-stream. This catalyst also presented the best performance for the reaction with steam at 800 ℃. The higher resistance to coke formation of the catalyst supported on ceria is due to the metal-support interactions and the higher mobility of oxygen in the oxide lattice.

  12. Site-Selective Acylations with Tailor-Made Catalysts.

    Science.gov (United States)

    Huber, Florian; Kirsch, Stefan F

    2016-04-18

    The acylation of alcohols catalyzed by N,N-dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate-specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor-made catalysts for the site-specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site-selectivity compared with only DMAP. Furthermore, substrate-optimized catalysts of this type can be used to selectively convert "their" substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances. PMID:26970553

  13. Down-flow moving-bed gasifier with catalyst recycle

    Science.gov (United States)

    Halow, John S.

    1999-01-01

    The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

  14. Synthesis of carbon nanotubes with Ni/CNTs catalyst

    Institute of Scientific and Technical Information of China (English)

    LI; Chunhua; (李春华); YAO; Kefu; (姚可夫); RUAN; Dianbo; (阮殿波); LIANG; Ji; (梁; 吉); XU; Cailu; (徐才录); WU; Dehai; (吴德海)

    2003-01-01

    Carbon nanotubes (CNTs), owing to their large specific area, good chemical stability and modifiable surface properties after acidic or basic treatment, can be used as catalytic support materials. In this paper, the activities and selectivities of two catalysts, i. e. Ni catalyst supported by carbon nanotubes (Ni/CNTs) and that supported by diatomite (Ni/SiO2), are compared. It is found that the quality of the carbon nanotubes synthesized by the two catalysts is similar, but the yield of the former is 1.5 times higher than that of the latter. The excellent performance of the Ni/CNTs catalyst should be ascribed to the larger specific surface area and proper pore distribution and the structure of the carbon nanotube support.

  15. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions.

    Science.gov (United States)

    Jiang, Haibin; Lu, Shuliang; Zhang, Xiaohong; Dai, Wei; Qiao, Jinliang

    2016-01-01

    Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol) in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed. PMID:27347922

  16. Selective propene oxidation on mixed metal oxide catalysts

    CERN Document Server

    James, D W

    2002-01-01

    Selective catalytic oxidation processes represent a large segment of the modern chemical industry and a major application of these is the selective partial oxidation of propene to produce acrolein. Mixed metal oxide catalysts are particularly effective in promoting this reaction, and the two primary candidates for the industrial process are based on iron antimonate and bismuth molybdate. Some debate exists in the literature regarding the operation of these materials and the roles of their catalytic components. In particular, iron antimonate catalysts containing excess antimony are known to be highly selective towards acrolein, and a variety of proposals for the enhanced selectivity of such materials have been given. The aim of this work was to provide a direct comparison between the behaviour of bismuth molybdate and iron antimonate catalysts, with additional emphasis being placed on the component single oxide phases of the latter. Studies were also extended to other antimonate-based catalysts, including coba...

  17. Mapping Reactive Flow Patterns in Monolithic Nanoporous Catalysts

    CERN Document Server

    Falcucci, Giacomo; Montessori, Andrea; Melchionna, Simone; Prestininzi, Pietro; Barroo, Cedric; Bell, David C; Biener, Monika M; Biener, Juergen; Zugic, Branko; Kaxiras, Efthimios

    2016-01-01

    The development of high-efficiency porous catalyst membranes critically depends on our understanding of where the majority of the chemical conversions occur within the porous structure. This requires mapping of chemical reactions and mass transport inside the complex nano-scale architecture of porous catalyst membranes which is a multiscale problem in both the temporal and spatial domain. To address this problem, we developed a multi-scale mass transport computational framework based on the Lattice Boltzmann Method (LBM) that allows us to account for catalytic reactions at the gas-solid interface by introducing a new boundary condition. In good agreement with experiments, the simulations reveal that most catalytic reactions occur near the gas-flow facing side of the catalyst membrane if chemical reactions are fast compared to mass transport within the porous catalyst membrane.

  18. Support effects on hydrotreating activity of NiMo catalysts

    International Nuclear Information System (INIS)

    The effect of the gamma alumina particle size on the catalytic activity of NiMoSx catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts

  19. Catalyst dispersion and activity under conditions of temperature- staged liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1992-02-01

    The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation.

  20. Deactivation of SCR catalysts in biomass fired power plants

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard

    in such biomass fuels, however, causes enhanced strain on the different equipment in these power plants. One of the affected units is the catalyst for selective catalytic reduction (SCR) of nitrogen oxides, which undergoes accelerated deactivation due to deposition of potassium rich particles and subsequent...... poisoning. The potassium poisoning of commercial vanadia based SCR catalysts have been studied for more than two decades, and a broad understanding have been obtained. However, more detailed information on the overall mechanism of deposition, reaction and transport of potassium, and its function of catalyst...... composition and operating conditions, is not available. The main objective of the work presented in this thesis has been to conduct an in depth investigation of the deactivation mechanism of vanadia based SCR catalysts, when subjected to potassium rich aerosols. It has furthermore been a goal to suggest...

  1. Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.

    Energy Technology Data Exchange (ETDEWEB)

    Libera, J.A.; Snyder, S.W.; Mane, A.; Elam, J.W.; Cronauer, D.C.; Muntean, J.A.; Wu, T.; Miller, J.T. (Chemical Sciences and Engineering Division); ( ES)

    2012-08-27

    Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The

  2. States of carbon nanotube supported Mo-based HDS catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Hongyan; Liu, Chenguang; Xu, Yongqiang [Key Laboratory of Catalysis, CNPC, College of Chemistry and Chemical Engineering, University of Petroleum, Dongying 257061 (China); Qiu, Jieshan [Carbon Research Laboratory, Center for Nano Materials and Science, Dalian University of Technology, 158 Zhongshan Road, P. O. Box 49, Dalian 116012 (China); Wei, Fei [Department of Chemical Engineering, Tsinghua University, Being, 100084 (China)

    2007-02-15

    As HDS catalysts, the supported catalysts including oxide state Mo, Co-Mo and sulfide state Mo on carbon nanotube (CNT) were prepared, while the corresponding supported catalysts on {gamma}-Al{sub 2}O{sub 3} were prepared as comparison. Firstly, the dispersion of the active phase and loading capacity of Mo species on CNT was studied by XRD and the reducibility properties of Co-Mo catalysts in oxide state over CNTs were investigated by TPR while the sulfide Co-Mo/CNT catalysts were characterized by XRD and LRS techniques. Secondly, the activity and selectivity of hydrodesulfurization (HDS) of dibenzothiophene with Co-Mo/CNT and Co-Mo/{gamma}-Al{sub 2}O{sub 3} were studied. It has been found that the main active molybdenum species in the oxide state MoO{sub 3}/CNT catalysts were MoO{sub 2}, rather than MoO{sub 3} as generally expected. The maximum loading before formation of the bulk phase was lower than 6%m (calculated in MoO{sub 3}). The TPR studies revealed that that active species in oxide state Co-Mo/CNT catalysts were more easily reduced at relatively lower temperatures in comparison to those in Co-Mo/{gamma}-Al{sub 2}O{sub 3}, indicating that the CNT support promoted the reduction of active species. Among 0-1.0 Co/Mo atomic ratio on Co-Mo/CNT, 0.7 has the highest reducibility. It shows that the Co/Mo atomic ratio has a great effect on the reducibility of active species on CNT and their HDS activities and that the incorporation of cobalt improved the dispersion of molybdenum species on CNT and mobilization. It was also found that re-dispersion could occur during the sulfiding process, resulting in low valence state Mo{sub 3}S{sub 4} and Co-MoS{sub 2.17} active phases. The HDS of DBT showed that Co-Mo/CNT catalysts were more active than Co-Mo/{gamma}-Al{sub 2}O{sub 3} and the hydrogenolysis/hydrogenation selectivity of Co-Mo/CNT catalyst was also much higher than Co-Mo/{gamma}-Al{sub 2}O{sub 3}. For the Co-Mo/CNT catalysis system, the catalyst with Co/Mo atomic

  3. Catalytic Dehydrogenation of n-Butane over V/SiO2 Catalyst: A Comparison with Cr/SiO2 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Xu Yuebing; Fu Wenting; Lu Jiangyin; Wang Jide

    2008-01-01

    V/SiO2 catalysts compared to Cr/SiO2 catalysts were studied for dehydrogenation of n-butane to butenes.Several methods for characterization of catalysts such as FT-IR,UV-vis and Raman spectroscopies were used.Some differences between two catalysts were showed,including the performances of catalysts,distribution of products and mechanism of reactions.The results showed that prepared catalysts with 12m% of active component loading all demonstrated best conversion of n-butane to butene at a reaction temperature of around 590℃.Two different reaction mechanisms were mentioned to well explain why iso-butene was produced on V/SiO2 catalysts but not on Cr/SiO2 catalysts.

  4. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  5. Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

    Science.gov (United States)

    Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.

    2011-01-01

    NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.

  6. Nonproductive Events in Ring-Closing Metathesis Using Ruthenium Catalysts

    OpenAIRE

    Stewart, Ian C.; Keitz, Benjamin K.; Kuhn, Kevin M.; Thomas, Renee M.; Grubbs, Robert H.

    2010-01-01

    The relative TONs of productive and nonproductive metathesis reactions of diethyl diallylmalonate are compared for eight different ruthenium-based catalysts. Nonproductive cross metathesis is proposed to involve a chain-carrying ruthenium methylidene. A second more-challenging substrate (dimethyl allylmethylallylmalonate) that forms a trisubstituted olefin product is used to further delineate the effect of catalyst structure on the relative efficiencies of these processes. A steric model is p...

  7. Improved Ruthenium Catalysts for Z-Selective Olefin Metathesis

    OpenAIRE

    Keitz, Benjamin K.; Endo, Koji; Patel, Paresma R.; Herbert, Myles B.; Grubbs, Robert H.

    2011-01-01

    Several new C-H activated ruthenium catalysts for Z-selective olefin metathesis have been synthesized. Both the carboxylate ligand and the aryl group of the N-heterocyclic carbene have been altered and the resulting catalysts were evaluated using a range of metathesis reactions. Substitution of bidentate with monodentate X-type ligands led to a severe attenuation of metathesis activity and selectivity, while minor differences were observed between bidentate ligands within the same family (e.g...

  8. Decomposition Pathways of Z-Selective Ruthenium Metathesis Catalysts

    OpenAIRE

    Herbert, Myles B.; Lan, Yu; Keitz, Benjamin K.; Liu, Peng; Endo, Koji; Day, Michael W.; Houk, K. N.; Grubbs, Robert H.

    2012-01-01

    The decomposition of a Z-selective ruthenium metathesis catalyst and structurally similar analogues has been investigated utilizing X-ray crystallography and density functional theory. Isolated X-ray crystal structures suggest that recently reported C–H activated catalysts undergo decomposition via insertion of the alkylidene moiety into the chelating ruthenium–carbon bond followed by hydride elimination, which is supported by theoretical calculations. The resulting ruthenium hydride intermed...

  9. Methanol dehydration on carbon-based acid catalysts

    OpenAIRE

    Valero-Romero, Mª José; Calvo-Muñoz, Elisa Mª; Ruiz-Rosas, Ramiro; Rodríguez-Mirasol, José; Cordero, Tomás

    2013-01-01

    Methanol dehydration to produce dimethyl ether (DME) is an interesting process for the chemical industry since DME is an important intermediate and a promising clean alternative fuel for diesel engines. Pure or modified γ-aluminas (γ-Al2O3) and zeolites are often used as catalysts for this reaction. However, these materials usually yield non desirable hydrocarbons and undergo fast deactivation. In this work, we study the catalytic conversion of methanol over an acid carbon catalyst obtaine...

  10. Heterogeneous Catalysts in Pictet-Spengler-Type Reactions

    Directory of Open Access Journals (Sweden)

    Rodolfo Quevedo

    2013-01-01

    Full Text Available Several solid catalysts were evaluated as an alternative for 1,2,3,4-tetrahydroisoquinoline synthesis by means of the Pictet-Spengler reaction. The reaction catalysed by a mixed oxide (Mg and Al led to the best yield and good regioselectivity; using an Al-pillared bentonite led to good yields and total regioselectivity. The results revealed no direct relationship between catalyst acidity and yield.

  11. Chromium oxide catalysts in the dehydrogenation of alkanes

    OpenAIRE

    Airaksinen, Sanna

    2005-01-01

    Light alkenes, such as propene and butenes, are important intermediates in the manufacture of fuel components and chemicals. The direct catalytic dehydrogenation of the corresponding alkanes is a selective way to produce these alkenes and is frequently carried out using chromia/alumina catalysts. The aim of this work was to obtain structure–activity information, which could be utilised in the optimisation of this catalytic system. The properties of chromia/alumina catalysts were investigated ...

  12. Perfluorooxasulphonates of metals – the catalysts of esters manufacture

    OpenAIRE

    Melnyk, Stepan

    2013-01-01

    The process of obtaining of aliphatic dibasic esters from dicarboxylic acids and C4-C5 alcohols in the presence of perfluoro(4–methyl–3,6–dioxaoctane)sulphonates of different metals has been researched. For the comparative estimation of catalysts their concentration was chosen identical and of such value that the rate of the process was limited exactly by the rate of chemical reaction. The dependences of technological characteristics of esterification process on catalyst nature and c...

  13. Catalysts for CO2/epoxide ring-opening copolymerization

    OpenAIRE

    G. Trott; Saini, P. K.; Williams, C. K.

    2016-01-01

    This article summarizes and reviews recent progress in the development of catalysts for the ring-opening copolymerization of carbon dioxide and epoxides. The copolymerization is an interesting method to add value to carbon dioxide, including from waste sources, and to reduce pollution associated with commodity polymer manufacture. The selection of the catalyst is of critical importance to control the composition, properties and applications of the resultant polymers. This review highlights an...

  14. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    OpenAIRE

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis.

  15. Design of a surface alloy catalyst for steam reforming

    DEFF Research Database (Denmark)

    Besenbacher, F.; Chorkendorff, Ib; Clausen, B.S.;

    1998-01-01

    Detailed studies of elementary chemical processes on well-characterized single crystal surfaces have contributed substantially to the understanding of heterogeneous catalysis. insight into the structure of surface alloys combined with an understanding of the relation between the surface compositi...... and reactivity is shown to lead directly to new ideas for catalyst design, The feasibility of such an approach is illustrated by the synthesis, characterization, and tests of a high-surface area gold-nickel catalyst for steam reforming....

  16. Reactions of synthesis gas on silica supported transition metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Niemelae, M. [VTT Chemical Technology, Espoo (Finland). Lab. of Industrial Chemistry

    1997-12-31

    The effect of catalyst precursor and composition on the activation of CO was investigated using CO hydrogenation as a test reaction. The interrelations of preparation, pretreatment, characteristics and activity were clarified. For Co/SiO{sub 2} catalyst, MgO promotion increased the CO adsorption capacity and the hydrogen uptake, although the extent of reduction for cobalt remained the same or decreased. The conversion per active metallic cobalt site consequently increased in conjunction with MgO promotion, while the effect on overall performance per 1 g of catalyst remained moderate. The precursor affected the performance of Co/SiO{sub 2} considerably. CO was more strongly adsorbed on catalysts of carbonyl origin than on those derived from cobalt nitrate, the activity thus being higher. Although the nitrate derived Co/SiO{sub 2} appeared both to retain its activity and to regain its adsorption capacity better than the catalysts of carbonyl origin, the performance of the latter was superior with time on stream. For tetranuclear cluster based Co-Ru and Co-Rh catalysts, rhodium or ruthenium was in contact with the support and cobalt was enriched on top. On Co-Ru/SiO{sub 2} ruthenium enhanced deactivation, and no benefits in activity or oxygenate selectivity were achieved relative to the monometallic catalysts of cluster origin. The Co-Rh/SiO{sub 2} catalysts were also less active than those derived from monometallic clusters, but they exhibited higher selectivities to oxygenated compounds due to the presence of active sites on the perimeter of the cobalt particles located on rhodium. The highest selectivity to oxygenates was achieved by changing the decomposition atmosphere of Rh{sub 4}(CO){sub 12}/SiO{sub 2} from hydrogen to carbon monoxide. The results also showed two types of active sites to be operative in the formation of oxygenates - one for ethanol and another for aldehydes. (orig.) 69 refs.

  17. Method of forming supported doped palladium containing oxidation catalysts

    Science.gov (United States)

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  18. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis. PMID:21563826

  19. Integrated process and dual-function catalyst for olefin epoxidation

    Science.gov (United States)

    Zhou, Bing; Rueter, Michael

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of olefin oxides such as propylene oxide without formation of undesired co-products.

  20. Noble metal catalysts for the hydrocracking of FT waxes

    OpenAIRE

    Suárez París, Rodrigo

    2012-01-01

    Bifunctional catalysts consisting of palladium or platinum and supported on amorphous silica-alumina were prepared and tested in the hydrocracking of n-hexadecane, which is considered to be representative of n-paraffins in hydrocracker feeds. In addition to the evaluation of the  physicochemical properties, a comprehensive study on catalyst activity and selectivity has been conducted, in the full range of conversions. A theoretical model was proposed to fit the experimental conversion-selecti...

  1. Leaching of vanadium from sulphuric acid manufacture spent catalysts

    OpenAIRE

    García, Diego Juan; Lozano Blanco, Luis Javier; Mulero Vivancos, María Dolores

    2001-01-01

    Recovery of vanadium contained in spent catalysts from the manufacture of sulphuric acid has been studied in this work, resulting in an industrial multistage process for the treatment of them avoiding direct deposition or dumping. Characterization of supplied spent catalysts samples, confirmed vanadium levels showed in the literature. The study of variables influencing leaching process: type of leaching agent, leaching agent concentration, S/L ratio, stirring speed and temperature, allows to ...

  2. Spent FCC catalyst for improving early strength Portland cement

    OpenAIRE

    Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Paya Bernabeu, Jorge Juan; Vunda, Christian; VELÁZQUEZ RODRÍGUEZ, SERGIO; Soriano Martinez, Lourdes

    2014-01-01

    Spent fluid catalytic cracking (FCC) catalyst from the petrol industry has proven to be a very active pozzolanic material. This behavior leads to an additional increase in the strength of the mortar that contains this catalyst. Pozzolanic effects tend to be considered for periods above three days, whereas in shorter times, the influence of pozzolan is usually negligible. The reactivity of FCC is so high, however, that both pozzolanic effects and acceleration of cement hydration are evident in...

  3. The selective hydrogenation of crotonaldehyde over bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schoeb, A.M.

    1997-02-01

    The selective hydrogenation of crotonaldehyde has been investigated over a monometallic Pt/SiO{sub 2} catalyst and platinum bimetallic catalysts where the second metal was either silver, copper, or tin. The effects of addition of a second metal to the Pt/SiO{sub 2} system on the selectivity to crotyl alcohol were investigated. The Pt-Sn bimetallic catalysts were characterized by hydrogen chemisorption, {sup 1}H NMR and microcalorimetry. The Pt-Ag/SiO{sub 2} and Pt-Cu/SiO{sub 2} catalysts were characterized by hydrogen chemisorption. Pt-Sn/SiO{sub 2} catalysts selectively hydrogenated crotonaldehyde to crotyl alcohol and the method of preparation of these catalysts affected the selectivity. The most selective Pt-Sn/SiO{sub 2} catalysts for the hydrogenation of crotonaldehyde to crotyl alcohol were those in which the Sn precursor was dissolved in a HCl solution. Sn increased both the rate of formation of butyraldehyde and the rate of formation of crotyl alcohol. The Pt/SiO{sub 2}, Pt-Ag/SiO{sub 2} and Pt-Cu/SiO{sub 2} catalysts produced only butyraldehyde. Initial heats of adsorption ({approximately}90 kJ/mol) measured using microcalorimetry were not affected by the presence of Sn on Pt. We can conclude that there is no through metal electronic interaction between Pt and Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn had similar initial heats of adsorption coupled with the invariance of the {sup 1}H NMR Knight shift.

  4. A Dual Site Catalyst for Mild, Selective Nitrile Reduction

    OpenAIRE

    Lu, Zhiyao; Williams, Travis J.

    2014-01-01

    We report a novel ruthenium bis(pyrazolyl)borate scaffold that enables cooperative reduction reactivity in which boron and ruthenium centers work in concert to effect selective nitrile reduction. The pre-catalyst compound {[κ3-(1-pz)2HB(N=CHCH3)]Ru(cymene)}+ TfO− (pz = pyrazolyl) was synthesized from readily-available materials through a straightforward route, thus making it an appealing catalyst for a number of reactions.

  5. A dual site catalyst for mild, selective nitrile reduction.

    Science.gov (United States)

    Lu, Zhiyao; Williams, Travis J

    2014-05-25

    We report a novel ruthenium bis(pyrazolyl)borate scaffold that enables cooperative reduction reactivity in which boron and ruthenium centers work in concert to effect selective nitrile reduction. The pre-catalyst compound [κ(3)-(1-pz)2HB(N = CHCH3)]Ru(cymene)(+) TfO(-) (pz = pyrazolyl) was synthesized using readily-available materials through a straightforward route, thus making it an appealing catalyst for a number of reactions. PMID:24409456

  6. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with

  7. Catalytic deactivation of methane steam reforming catalysts. I. Activation

    Energy Technology Data Exchange (ETDEWEB)

    Agnelli, M.E.; Demicheli, M.C.; Ponzi, E.N.

    1987-08-01

    An alumina-supported catalyst was studied both in its original state and after activation and sintering. Chemical composition and textural properties were determined, and crystalline compounds were identified. Active-phase and support transformations occurring during activation were determined by differential thermoanalysis (DTA), temperature-programmed reduction (TPR), and X-ray diffraction. The catalyst activated by means of various procedures was characterized by measuring crystallite size.

  8. Nickel/ruthenium catalyst and method for aqueous phase reactions

    Science.gov (United States)

    Elliott, Douglas C.; Sealock, John L.

    1998-01-01

    A method of hydrogenation using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions.

  9. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  10. Examination of alternative catalysts for biomass direct liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Tran, A.D.; Rogers, D.Z.

    1985-08-01

    We have now completed a survey study of several water-soluble salts of transition metals that are deemed likely to have utility as catalysts for direct biomass liquefaction in a carbon monoxide steam process. Certain salts of molybdenum and nickel are the most effective catalysts, and are the only species for which some catalytic activity independent of the ligand can be shown. The most effective forms of the nickel and molybdenum are cyanide and oxyanion complexes. 30 refs., 5 figs., 4 tabs.

  11. Synthesis of PET and Its Copolymer with Rare Earth Catalysts

    Institute of Scientific and Technical Information of China (English)

    张天骄; 武荣瑞

    2003-01-01

    A new catalyst system was used in the synthesis of polyethylene terephthalate(PET) and its copolymers, which involved a Ln3+ containing compound. The catalytic effects were studied, and it was found that the direct esterification reaction of terephthalate acid(TPA) with ethylene glycol(EG) can be accelerated by the addition of Ln3+ containing compound, which acts as a promoter of the catalyst Sb2O3 in polycondensation of bis hydroxyethyl terephthalate(BHET).

  12. Nanostructured carbide catalysts for the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Ram Seshadri, Susannah Scott, Juergen Eckert

    2008-07-21

    The above quote, taken from the executive summary of the Report from the US DOE Basic Energy Sciences Workshop held August 6–8, 2007,[1] places in context the research carried out at the University of California, Santa Barbara, which is reported in this document. The enormous impact of heterogeneous catalysis is exemplified by the Haber process for the synthesis of ammonia, which consumes a few % of the world’s energy supply and natural gas, and feeds as many as a third of the world’s population. While there have been numerous advances in understanding the process,[2] culminating in the awarding of the Nobel Prize to Gerhard Ertl in 2007, it is interesting to note that the catalysts themselves have changed very little since they were discovered heuristically in the the early part of the 20th century. The thesis of this report is that modern materials chemistry, with all the empirical knowledge of solid state chemistry, combined with cutting edge structural tools, can help develop and better heterogeneous catalysis. The first part of this report describes research in the area of early transition metal carbides (notably of Mo and W), potentially useful catalysts for water gas shift (WGS) and related reactions of use to the hydrogen economy. Although these carbides have been known to be catalytically useful since the 1970s,[3] further use of these relatively inexpensive materials have been plagued by issues of low surface areas and ill-defined, and often unreactive surfaces, in conjunction with deactivation. We have employed for the first time, a combination of constant-wavelength and time-of-flight neutron scattering, including a total scattering analysis of the latter data, to better understand what happens in these materials, in a manner that for the first time, reveals surface graphitic carbon in these materials in a quantitative manner. Problems of preparation, surface stability, and irreversible reactivity have become manifest in this class of materials

  13. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe(sub 3)O(sub 4). Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to(epsilon)(prime)-Fe(sub 2.2)C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to(chi)-Fe(sub 5)C(sub 2) and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe(sub 3)O(sub 4); however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94%(chi)-Fe(sub 5)C(sub 2), deactivated rapidly as the carbide was oxidized to Fe(sub 3)O(sub 4). No difference in activity, stability or deactivation rate was found for(chi)-Fe(sub 5)C(sub 2) and(epsilon)(prime)-Fe(sub 2.2)C

  14. Discovery, Development, and Commercialization of Gold Catalysts for Acetylene Hydrochlorination.

    Science.gov (United States)

    Johnston, Peter; Carthey, Nicholas; Hutchings, Graham J

    2015-11-25

    Vinyl chloride monomer (VCM) is a major chemical intermediate for the manufacture of polyvinyl chloride (PVC), which is the third most important polymer in use today. Hydrochlorination of acetylene is a major route for the production of vinyl chloride, since production of the monomer is based in regions of the world where coal is abundant. Until now, mercuric chloride supported on carbon is used as the catalyst in the commercial process, and this exhibits severe problems associated with catalyst lifetime and mercury loss. It has been known for over 30 years that gold is a superior catalyst, but it is only now that it is being commercialized. In this Perspective we discuss the use and disadvantages of the mercury catalyst and the advent of the gold catalysts for this important reaction. The nature of the active site and the possible reaction mechanism are discussed. Recent advances in the design and preparation of active gold catalysts containing ultralow levels of gold are described. In the final part, a view to the future of this chemistry will be discussed as well as the possible avenues for the commercial potential of gold catalysis. PMID:26529366

  15. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    Science.gov (United States)

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone. PMID:26608162

  16. Role of clay as catalyst in Friedel–Craft alkylation

    Indian Academy of Sciences (India)

    Tanushree Choudhury; Nirendra M Misra

    2011-10-01

    Solid acids have become increasingly important for many liquid-phase industrial reactions these days. Montmorillonite clays (2:1 clay mineral) have been used as efficient solid acid catalysts for a number of organic and liquid phase reactions and offer several advantages over classic acids. Tailor made catalysts can be prepared from clays by suitably adjusting their acidity and surface area by acid activation. In the present work, preparation, characterization and performance of Pt (II) clays, Cu (II) clays, acid clay, and sol–gel hybrids of Cu (II) clays as solid catalysts in a test Friedel–Craft alkylation reaction of benzyl chloride with toluene using differential scanning calorimeter (DSC) are reported. Product formation has been analysed by FTIR spectroscopy. The main objective of this work is to show how clay as a solid catalyst affects reaction rates and activation energies. Acidity and dispersion of solid catalysts are twomain factors which govern a catalysis reaction. Kinetic parameter analysis and XRD studies confirm that acid Pt (II) clay and Pt (II) clay dispersed by natural dispersants aremore effective catalysts. In contrast to the reactions using AlCl3, the experimental conditions are non-polluting and the final work up does not require any aqueous treatment.

  17. Activity of Catalyst for Liquid Phase Methanol Synthesis

    Institute of Scientific and Technical Information of China (English)

    WANGYuefa; JanezLevec

    2002-01-01

    The effects of reduction procedure, reaction temperature and composition of feed gas on the activity of a CuO-ZnO-Al2O3 catalyst for liquid phase methanol synthesis were studied. An optimized procedure different from conventional ones was developed to obtain higher activity and better stability of the catalyst. Both CO and CO2 in the feed gas were found to be necessary to maintain the activity of catalyst in the synthesis process. Reaction temperature was limited up to 523K, otherwise the catalyst will be deactivated rapidly. Experimental results show that the catalyst deactivation is caused by sintering and fouling, and the effects of CO and CO2 on the catalyst activity are also investigated. The experimental results indicate that the formation of water in the methanol synthesis is negligible when the feed gas contains both CO and CO2. The mechanism for liquid-phase methanol synthesis was discussed and it differed slightly from that for gas-phase synthesis.

  18. Preparation and Commercial Application of ZHC-01 Hydrocracking Catalyst

    Institute of Scientific and Technical Information of China (English)

    Xu Xuejun; Liu Dongxiang; Wang Haitao; Feng Xiaoping; Wang Jifeng

    2007-01-01

    The ZHC-01 hydrocracking catalyst,characterized by high hydrogenation activity,good selectivity for middle distillates,strong resistance to nitrogen poisoning,was prepared by co-gelling.The catalyst is not only suited to the single-stage hydrocracking process,but also to the first stage of serial hydrocracking process.In parallel with the fully loaded operation of the 1.4 Mt/a hydrocracking unit at the SINOPEC Qilu Petrochemical Company,a pilot test of the ZHC-01 catalyst was also carried out on the hydrocracking unit.The test results indicated that the activity,the yield of major target products and quality of the ZHC-01 catalyst could comply with the design requirements for the hydrocracking unit,and this catalyst could be applied in the hydrocracking unit.The commercial test results showed that the ZHC-01 catalyst,featuring good activity,stability,and flexibility in production,not only could meet the demand for producing environmentally friendly middle distillates,but could also increase the resource of optimized steam cracking feedstock.

  19. Reactivity of metal catalysts in glucose-fructose conversion.

    Science.gov (United States)

    Loerbroks, Claudia; van Rijn, Jeaphianne; Ruby, Marc-Philipp; Tong, Qiong; Schüth, Ferdi; Thiel, Walter

    2014-09-15

    A joint experimental and computational study on the glucose-fructose conversion in water is reported. The reactivity of different metal catalysts (CrCl3, AlCl3, CuCl2, FeCl3, and MgCl2) was analyzed. Experimentally, CrCl3 and AlCl3 achieved the best glucose conversion rates, CuCl2 and FeCl3 were only mediocre catalysts, and MgCl2 was inactive. To explain these differences in reactivity, DFT calculations were performed for various metal complexes. The computed mechanism consists of two proton transfers and a hydrogen-atom transfer; the latter was the rate-determining step for all catalysts. The computational results were consistent with the experimental findings and rationalized the observed differences in the behavior of the metal catalysts. To be an efficient catalyst, a metal complex should satisfy the following criteria: moderate Brønsted and Lewis acidity (pKa = 4-6), coordination with either water or weaker σ donors, energetically low-lying unoccupied orbitals, compact transition-state structures, and the ability for complexation of glucose. Thus, the reactivity of the metal catalysts in water is governed by many factors, not just the Lewis acidity.

  20. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    Science.gov (United States)

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone.

  1. Monopropellant Thruster Firing Test using KC12GA Catalyst

    Science.gov (United States)

    Goto, D.; Kagawa, H.; Hattori, A.; Kajiwara, K.

    2004-10-01

    Many monopropellant thrusters use a catalyst for decomposing the propellant, hydrazine. The catalyst directly affects the thruster performance and lifetime. Therefore, it is important to confirm that the catalyst is suitable for our thrusters. Until 2002, we used Shell405 catalyst for satellite and H-IIA launch vehicle upperstage RCS thrusters. In 2002, however, Shell Chemical Inc. ceased manufacturing Shell405 catalyst and transferred the product to AEROJET, where it was renamed S405. We found KC12GA (Hydrazine decomposition catalyst, manufactured by Solvay, Belgium) as well as S405 and checked physical properties of KC12GA and S405. We then conducted a series of spontaneous tests, including life firing tests on various monopropellant thrusters (20N, 4N and 1N) loaded with KC12GA. The result showed that KC12GA was compatible with Shell 405, and that thrusters with KC12GA might have longer life than thrusters with Shell 405. This paper reports our comparison of Shell 405 and KC12GA applied to JAXA/lA monopropellant thrusters.

  2. Solid Catalysts and theirs Application in Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2012-12-01

    Full Text Available The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012. Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 142-149. doi:10.9767/bcrec.7.2.3047.142-149] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ] | View in 

  3. Propane Aromatization over Mo/HZSM-5 Catalysts

    Institute of Scientific and Technical Information of China (English)

    Junwei Wang; Maoqing Kang; Zhixin Zhang; Xinkui Wang

    2002-01-01

    Impregnation, mechanical mixing and hydrothermal treatment methods were used to introducemolybdenum species into the HZSM-5 zeolite. The structure and surface acidity of the catalysts werestudied by means of XRD, FT-IR, NH3-TPD, TPR and XPS. The effects of Mo content and reaction timeon stream on the aromatization of propane were investigated. It was found that the performance of theMo/HZSM-5 catalyst prepared by the hydrothermal treatment method was much better than that of theother two catalysts. For example, under the reaction conditions of 823 K and 600 h-1, propane conversionand aromatics selectivity over the catalyst prepared by hydrothermal pretreatment could reach 89.17%and 78.56%, respectively. XRD and XPS results showed that the Mo species in the catalysts preparedby hydrothermal treatment were highly dispersed on the surface of the HZSM-5, and larger amounts ofthem could penetrate into the HZSM-5 channel, as compared with the other two kinds of catalysts. Thesefactors may be responsible for their high activities for propane aromatization. IR and NH3-TPD studiesindicated that the number of Bronsted acid centers decreased and the Lewis acid centers increased afterMo was introduced into the HZSM-5 zeolite.

  4. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  5. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan, Song; Kirby, S.; Schmidt, E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  6. Hydroformylation of 1-Hexene over Rh/Nano-Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Sari Suvanto

    2013-03-01

    Full Text Available The effect of nanostructured supports on the activity of Rh catalysts was studied by comparing the catalytic performance of nano- and bulk-oxide supported Rh/ZnO, Rh/SiO2 and Rh/TiO2 systems in 1-hexene hydroformylation. The highest activity with 100% total conversion and 96% yield of aldehydes was obtained with the Rh/nano-ZnO catalyst. The Rh/nano-ZnO catalyst was found to be more stable and active than the corresponding rhodium catalyst supported on bulk ZnO. The favorable morphology of Rh/nano-ZnO particles led to an increased metal content and an increased number of weak acid sites compared to the bulk ZnO supported catalysts. Both these factors favored the improved catalytic performance. Improvements of catalytic properties were obtained also with the nano-SiO2 and nano-TiO2 supports in comparison with the bulk supports. All of the catalysts were characterized by scanning electron microscope (SEM, inductively coupled plasma mass spectrometry (ICP-MS, BET, powder X-ray diffraction (PXRD and NH3- temperature-programmed desorption (TPD.

  7. STUDY ON POLYMER-Ru-Co-BIMETALLIC COMPLEXES CATALYSTS I. SYNTHESIS OF CATALYSTS AND THEIR USE FOR THE HYDROFORMYLATION

    Institute of Scientific and Technical Information of China (English)

    TANG Qi; ZONG Huijuan; CHEN Zonghan; JIANG Yingyan

    1991-01-01

    Six kinds of polymer ligands, supported on SiO2, containing coordinating atoms P, S and N respectively, have been synthesized. The Ru(Ⅲ)-Co(Ⅱ) bimetallic complexes of these polymer ligands have been obtained and examined as catalysts for the hydroformylation of cyclohexene. The effects of reaction temperature, pressure and Co/Ru ratio etc. on the activities of catalysts were investigated in detail. The catalysts are all polymer-noncarbonyl-metal complexes, easily to be prepared, active and stable. From the experimental results it can be suggested that under reaction conditions such polymer-noncarbonyl-metal complexes convert "in situ" to polymer-carbonyl-metal complexes, thus become active catalysts. The course of this conversion is supposed as a preliminary approach.

  8. Hydroxyalkylation of phenol to bisphenol F over heteropolyacid catalysts: The effect of catalyst acid strength on isomer distribution and kinetics.

    Science.gov (United States)

    Wu, Xianzhang; Liu, Yutang; Liu, Ran; Wang, Longlu; Lu, Yanbing; Xia, Xinnian

    2016-11-01

    Hydroxyalkylation of phenol with formaldehyde to bisphenol F over heteropolyacid impregnated on clay was investigated. These catalysts displayed excellent catalytic performance for this reaction, especially that the effects of acid sites on the isomer distribution are obvious. Various solid catalysts were prepared by impregnating heteropolyacid on different kind of clay matrices, and their chemical compositions, textural properties, and acid strength of the heteropolyacid catalysts were characterized by EDX, BET, NH3-TPD, XRD, and FT-IR. Moreover, the effects of acid sites and reaction temperature on the yield and 4,4'-isomer distribution were launched by comparing the data obtained from the two kinds of catalysts. Furthermore, the kinetics of the hydroxyalkylation of phenol to BPF was established. PMID:27451037

  9. Catalytic cracking process exploying a zeolite as catalysts and catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Lussier, R.J.; Surland, G.J.

    1989-06-06

    This patent describes a method for cracking hydrocarbons which comprises reacting a hydrocarbon feedstock under catalytic cracking conditions in the presence of a cracking catalyst composition which comprises a crystalline zeolite, an inorganic oxide matrix, and a finely divided, calcined caustic leached aluminum silicon spinel/mullite component having a silica to alumina mole ratio of from about 0.5 to 1.7 and an acid site retention of from about 70 to 95 percent after treating at 1350{sup 0}F in the presence of saturated steam and a X-ray diffraction pattern as set forth in Tables A or B.

  10. Development of a stable cobalt-ruthenium Fisher-Tropsch catalyst. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, R.R.; Gala, H.B.

    1995-02-01

    The reverse micelle catalyst preparation method has been used to prepare catalysts on four supports: magnesium oxide, carbon, alumina- titania and steamed Y zeolite. These catalysts were not as active as a reference catalyst prepared during previous contracts to Union Carbide Corp. This catalyst was supported on steamed Y zerolite support and was impregnated by a pore-filling method using a nonaqueous solvent. Additional catalysts were prepared via pore- filling impregnation of steamed Y zeolites. These catalysts had levels of cobalt two to three and a half times as high as the original Union Carbide catalyst. On a catalyst volume basis they were much more active than the previous catalyst; on an atom by atom basis the cobalt was about of the same activity, i.e., the high cobalt catalysts` cobalt atoms were not extensively covered over and deactivated by other cobalt atoms. The new, high activity, Y zerolite catalysts were not as stable as the earlier Union Carbide catalyst. However, stability enhancement of these catalysts should be possible, for instance, through adjustment of the quantity and/or type of trace metals present. A primary objective of this work was determination whether small amounts of ruthenium could enhance the activity of the cobalt F-T catalyst. The reverse micelle catalysts were not activated by ruthenium, indeed scanning transmission electronic microscopy (STEM) analysis provided some evidence that ruthenium was not present in the cobalt crystallites. Ruthenium did not seem to activate the high cobalt Y zeolite catalyst either, but additional experiments with Y zeolite-supported catalysts are required. Should ruthenium prove not to be an effective promoter under the simple catalyst activation procedure used in this work, more complex activation procedures have been reported which are claimed to enhance the cobalt/ruthenium interaction and result in activity promotion by ruthenium.

  11. Metal-ion pillared clays as hydrocracking catalysts (I): Catalyst preparation and assessment of performance at short contact times

    Energy Technology Data Exchange (ETDEWEB)

    Bodman, S.D.; McWhinnie, W.R.; Begon, V.; Suelves, I.; Lazaro, M.-J.; Morgan, T.J.; Herod, A.A.; Kandiyoti, R. [Aston University, Birmingham (United Kingdom). Dept. of Chemical Engineering and Applied Chmiestry

    2002-03-01

    A set of pillared clay catalysts based on montmorillonite (a natural clay) and laponite (a synthetic clay) have been prepared. The new catalyst have been pillared with tin, chromium and aluminium pillars as well as layered double hydroxides based on polyoxo-vanadate and molybdate. The activities of these novel catalysts have been compared with that of a commercial support NiMo/Al{sub 2}O{sub 3} catalyst and with sulphided Mo(CO){sub 6} during short (10 min) contact runs. A coal extract sample was reacted at 440{sup o}C in a microbomb reactor in the presence of tetralin and 19 MPa hydrogen. Products were compared by size exclusion chromatography, using NMP as eluent, and by UV-fluorescence. Boiling point distributions of hydrocracked products were determined by a TGA based method; 'conversions' were defined as the decrease in the fraction of material with boiling points >450{sup o}C during the reaction. Previous work at 440{sup o}C and 19 MPa H{sub 2}, indicates extensive thermal (pyrolytic) cracking during the first 10 min; in the absence of catalyst recombination reactions rapidly take over. Results with several of the new catalysts did not show any improvement compared to the absence of catalyst with {approx}39% conversion. The highest conversion ({approx}70%) was obtained with the Sn laponite pillared clay. The Cr montmorillonite catalyst, pre-calcined at 500{sup o}C, gave the greatest overall shift to smaller molecular masses even though the observed conversion of >450{sup o}C boiling material was relatively poor. 63 refs., 7 figs., 2 tabs.

  12. Transition metal-free olefin polymerization catalyst

    Science.gov (United States)

    Sen, Ayusman; Wojcinski, II, Louis M.; Liu, Shengsheng

    2001-01-01

    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  13. Dynamic structural disorder in supported nanoscale catalysts.

    Science.gov (United States)

    Rehr, J J; Vila, F D

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale. PMID:24712802

  14. Advanced NMR characterization of zeolite catalysts

    Science.gov (United States)

    Welsh, L. B.

    1985-04-01

    The program discussed in this report is a two-year two-phase joint UOP-University of Illinois study of the application of improved high resolution solid state nuclear magnetic resonance (NMR) techniques to the characterization of zeolite catalysts. During the first phase of this program very pure, and in some cases isotopically enriched faujasites will be prepared and studied by magic angle sample spinning NMR (MASS NMR) and variable engine sample spinning NMR (VASS NMR) on 500 and 360 MHz (proton frequency) NMR spectrometers. The NMR techniques that will be emphasized are the measurement and analysis of the (17)O NMR properties, (27)Al NMR intensity quantitation, and (27)Al and (29)Si NMR relaxation rates. During the second phase of this program these NMR techniques will be used to study the effects of impurity concentration, dealumination treatments and cation exchange on the NMR properties of faujasites. The initial emphasis of this program during Phase I is on the preparation and measurement of the NMR properties of (17)O enriched Na-Y faujasties.

  15. Organic dyestuffs as catalysts for fuel cells.

    Science.gov (United States)

    Jahnke, H; Schönborn, M; Zimmermann, G

    1976-01-01

    Electrocatalysis in fuel cells requires as well substances capable of catalyzing the anodic oxidation of fuels as catalysts for the cathodic reduction of oxygen. Several dyestuffs that catalyze oxygen reduction are known, but up to now only one has been described as active in anodic reactions. All these dyestuffs are N4-chelates. Comparative studies have shown that chelates with other types of coordination, in particular N202-, 04-, N2S2- and S4-chelates, are able to catalyze the reduction of oxygen, though they are considerably less active than the N4-compounds. With a given type of coordination, the nature of the central atom has a decisive influence on the catalytic activity of the dyestuff, whereas substitution on the organic skeleton has only a slight effect. Thermal pretreatment of the N4-chelates can considerably increase their stability in electrolytes containing sulfuric acid. All the experimental results point to the conclusion that, with electrocatalysts, as with natural oxygen carriers, the interaction essential for catalysis takes place between the oxygen and the central metal ion. Various assumptions may be made as to the nature of the rate-determining step. The cathodic reduction of oxygen can be regarded as redox catalysis, or it can be considered from the standpoint of molecular orbital theory. The models hitherto suggested for the mechanism of oxygen reduction are tested against the experimental results and a modified model based on MO theory is put forward. PMID:7032

  16. Chemical interactions in multimetal/zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sachtler, W.M.H.

    1992-02-07

    Mechanistic explanations have been found for the migration of atoms and ions through the zeolite channels leading to specific distribution of ions and the metal clusters. In this report, we summarize the state of understanding attained on a number of topics in the area of mono- and multimetal/zeolite systems, to which our recent research has made significant contributions. The following topics are discussed: (1) Formation of isolated metal atoms in sodalite cages; (2) differences of metal/zeolite systems prepared by ion reduction in channels or via isolated atoms; (3) rejuvenation of Pd/NaY and Pd/HY catalysts by oxidative redispersion of the metal; (4) formation of mono- or bimetal particles in zeolites by programmed reductive decomposition of volatile metal complexes; (5) cation-cation interaction as a cause of enhanced reducibility; (6) formation of palladium carbonyl clusters in supercages; (7) enhanced catalytic activity of metal particle-proton complexes for hydrocarbon conversion reactions; (8) stereoselectivity of catalytic reactions due to geometric constraints of particles in cages.

  17. The precursor phase composition of iron catalyst and discovery of FeO based catalyst for ammonia synthesis

    Institute of Scientific and Technical Information of China (English)

    刘化章; 李小年

    1995-01-01

    The relationship between the activity and the precursor phase composition of the molten iron catalyst for ammonia synthesis has been studied with high pressure testing equipment and XRD. A humped curve between the activity and Fe2+/Fe3+ has been obtained. It is found that the unicity of the iron oxidate phase in precursor is an essential condition of the high activity of the iron catalyst and that the uniform distribution of the adominant phase and the promoters is the key to preparing a catalyst with better performance The humped curve is interpreted using the ratio f of the phase compositions in precursor. A new idea has been obtained that the activity change of the molten iron catalyst depends essentially on the molecule ratio of the different iron oxidates in precursor under the certain promoters, and it is found that the FeO based catalyst for ammonia synthesis with Wustite phase structure (Fe1-xO, 0.04≤x≤0.10) has the highest activity of all the molten iron catalysts for ammonia synthesis.

  18. A New Concept for Advanced Heterogeneous Metal Catalysts

    Institute of Scientific and Technical Information of China (English)

    Xu Bo-Qing

    2004-01-01

    Oxide-supported metal catalysts, having always nano-sized structures in which the metal catalysts are prepared as highly dispersed nano-crystals (typically 1-20 nm) on support oxide particles that are often one to several orders of magnitude larger than the metal nano-particles, are an important class of heterogeneous metal catalysts that finds many applications in chemical/petrochemical industries, in environmental protection, in chemical sensors and in the manufacture of fine and special chemicals. It is believed that catalysis by supported metals is the oldest application of nanotechnology. The literature has been rich in nano-size effect of metal nanoparticles in the metal/oxide catalysts. However, it is until recently that the development of size-controlled synthesis of oxide nanoparticles has made it possible to study the nano-size effect of oxide-support particles. When the particle sizes of an oxide support are reduced to become comparable to the sizes of the active metal nanoparticles, the oxide could deviate dramatically from its function as a conventional support. Such metal/oxide catalysts consisting of comparably sized metal and oxide nanocrystals are better called metal/oxide nanocomposite catalysts or catalytic nanoarchitectures.In this presentation, several attempts with reducing the particle size of oxide supports (ZrO2, TiO2,MgO, Al2O3) to approach the metal/oxide nanocomposite concept will be discussed to emphasize the importance of the support size effect. Examples will be given on characteristics of nanocomposite Ni/oxide catalysts for the reforming of natural gas with CO2 and/or steam, and on Au/oxide catalysts for CO oxidation and hydrogenation of unsaturated organic compounds. It will be emphasized that systematic investigations into the size effects of both the metal and oxide nanoparticles approaching the metal/oxide nanocomposite concept can lead to advanced heterogeneous metal catalysts.Moreover, intensive practice of the nanocomposite

  19. Comparison of coke burning on catalysts coked in a commericial plant and in the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pieck, C.L.; Parera, J.M. (Instituto de Investigaciones en Catalisis y Petroquimica, Santiago del Estero 2654, 3000 Santa Fe (AR))

    1989-12-01

    This paper reports a commercial catalyst coked in a commercial naphtha reforming unit compared with a laboratory catalyst and the fresh commercial one coked during laboratory experiments at pressures lower than the commercial one. The carbon concentration on the catalyst and hydrogen/carbon ratio of the coke were measured. Temperature-programmed oxidation and test reactions for metallic and acidic functions of the coked catalysts were performed. The main difference is in the coke composition and its distribution over the catalytic functions of the catalyst. Compared to the commercially coked catalyst, the coke on the laboratory coked catalysts is richer in hydrogen, covers the metallic function in a higher proportion, and is burnt faster. The catalytic activity for hydrogenation (metallic reaction) of the laboratory-coked catalyst is decreased more, but it is partially recovered by increasing the hydrogen pressure. The decrease on the acidic activity produced by coking is similar on both catalysts.

  20. Deep Hydrodesulfurization of Diesel Fuel over Diatomite-dispersed NiMoW Sulifde Catalyst

    Institute of Scientific and Technical Information of China (English)

    Liu Di; Liu Chenguang

    2013-01-01

    Diatomite-dispersed NiMoW catalyst was prepared and characterized,and the activity of catalyst samples was tested during the HDS reaction of FCC diesel. Sulfur compounds in the feedstock and the hydrogenated products obtained over different catalysts were determined by GC-PFPD. The test results showed that the diatomite-dispersed NiMoW catalyst had high hydrodesulfurization activity for FCC diesel, which could be contributed to the excellent hydrogenation perfor-mance of the said catalyst. Characterization of catalyst by TEM and XRD indicated that the diatomite-dispersed NiMoW catalyst possessed higher layer stacking, larger curvature of MoS2 or WS2, and segregated Ni3S2 crystals relative to the sup-ported catalyst. This kind of structure leads to high hydrogenation activity of the diatomite-dispersed NiMoW catalyst.