WorldWideScience

Sample records for catalysts industrial

  1. SPARTNIK: Engineering catalyst for government and industry

    Science.gov (United States)

    Prass, James D.; Romano, Thomas C.; Hunter, Jeanine M.

    1995-09-01

    Industrial demands for highly motivated and competent technical personnel to carry forward with the technological goals of the US has posed a significant challenge to graduating engineers. While curricula has improved and diversified over time to meet these industry demands, relevant industry experience is not always available to undergraduates. The microsatellite development program at San Jose State University (SJSU) has allowed an entire undergraduate senior class to utilize a broad range of training and education to refine their engineering skills, bringing them closer to becoming engineering professionals. Close interaction with industry mentors and manufacturers on a real world project provides a significant advantage to educators and students alike. With support from companies and government agencies, the students have designed and manufactured a microsatellite, designed to be launched into a low Earth orbit. This satellite will gather telemetry for characterizing the state of the spacecraft. This will enable the students to have a physical check on their predicted value of spacecraft subsystem performance. Additional experiments will also be undertaken during the two year lifetime, including micro-meteorite impact sensing and capturing digital color images of the Earth. This paper will detail the process whereby students designed, prototype and manufactured a small satellite in a large team environment, along with the experiments that will be performed on board. With the project's limited funds, it needed the support of many industry companies to help with technical issues and hardware acquisition. Among the many supporting companies, NASA's space shuttle small payloads program could be used for an affordable launch vehicle for the student project. The paper address these collaborations between the student project and industry support, as well as explaining the benefits to both. The paper draws conclusion on how these types of student projects can be used

  2. Development of industrial catalysts for sustainable chlorine production.

    Science.gov (United States)

    Mondelli, Cecilia; Amrute, Amol P; Moser, Maximilian; Schmidt, Timm; Pérez-Ramírez, Javier

    2012-01-01

    The heterogeneously catalyzed gas-phase oxidation of HCl to Cl(2) offers an energy-efficient and eco- friendly route to recover chlorine from HCl-containing byproduct streams in the chemical industry. This process has attracted renewed interest in the last decade due to an increased chlorine demand and the growing excess of byproduct HCl from chlorination processes. Since its introduction (by Deacon in 1868) and till recent times, the industrialization of this reaction has been hindered by the lack of sufficiently active and durable materials. Recently, RuO(2)-based catalysts with outstanding activity and stability have been designed and they are being implemented for large-scale Cl(2) recycling. Herein, we review the main limiting features of traditional Cu-based catalysts and survey the key steps in the development of the new generation of industrial RuO(2)-based materials. As the expansion of this technology would benefit from cheaper, but comparably robust, alternatives to RuO(2)-based catalysts, a nov el CeO(2)-based catalyst which offers promising perspectives for application in this field has been introduced.

  3. Used solid catalysts from chemical and petrochemical industries; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    A comprehensive survey of the solid catalysts used in the chemical and petrochemical industries is presented; information on solid catalyst market demand prospective for 1998, the nature of solid catalysts used in the various industrial sectors and for the various chemical products production, the european catalysts manufacturers, solid catalyst poisons and inhibitors according to the various types of chemical reactions, mean compositions of used solid catalysts, an assessment of the volume of used solid catalysts generated by chemical and petrochemical industries, the various ways of solid catalyst regeneration and disposal, the potential for off-site regeneration of used catalysts, and French and European regulations, is presented

  4. FY 1997 report on the development of excellent catalysts for creation of new industries. New frontier catalyst 21; 1997 nendo chosa hokokusho (shinsangyo sosei no tame no excellence catalyst no kaihatsu). New frontier catalyst 21

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Survey was made for establishment of an effective fast search technique of practical catalysts. Catalyst technology is an important basic technology for industrial fields such as energy and environment fields. In many cases, catalysts have been developed by trial and error consuming a long time and huge research cost. Study was made on efficient analysis and measurement techniques, and systematic production technique of advanced catalysts based on these techniques. This survey was effective in finding a guidance for improving catalysts used in the previous processes, and facilitating searches for fields previously slow in development of catalysts. Advanced catalysts possible to actively selectively produce target products under high pressure/temperature conditions are much in demand. Recently in-situ analysis technology for observing molecules and material surfaces under ultrahigh-pressure/temperature conditions has been studied. Observational study was made on catalytic behavior under catalytic reaction condition using partial oxidation, selective hydrogenation and isomerization as model reactions. 111 refs., 103 figs., 9 tabs.

  5. XAFS characterization of industrial catalysts: in situ study of phase transformation of nickel sulfide

    Science.gov (United States)

    Wang, J.; Jia, Z.; Wang, Q.; Zhao, S.; Xu, Z.; Yang, W.; Frenkel, A. I.

    2016-05-01

    The online sulfiding process for nickel-contained catalyst often ends up with a nickel sulfide mixture in refinery plant. To elucidate the local environment of nickel and its corresponding sulfur species, a model catalyst (nickel sulfide) and model thermal process were employed to explore the possibilities for characterization of real catalysts in industrial conditions. The present investigation shows effectiveness of in situ XANES and EXAFS measurements for studying the phase stability and phase composition in these systems, which could be used to simulate real sulfiding process in industrial reactions, such as hydrodesulfurizations of oil.

  6. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...

  7. New insides in the characterization of HDS industrial catalysts by HAADF-STEM

    Science.gov (United States)

    Del Angel, Paz; Ponce, Arturo; Arellano, Josefina; Yacaman, Miguel J.; Hernandez-Pichardo, Martha; Montoya, J. Ascencion; Escobar, Jose

    2015-03-01

    Hydrodesulfurization (HDS) catalysts are of great importance in the petroleum industry. Transition metal sulphides catalysts of Ni(Co)Mo(W)/Al2O3 are widely used for hydrotreating reactions, like hydrodenitrogenation and HDS. One of the main issue in these catalysts is to understand the mechanism of the reaction, where MoS2 plays the most important role in the catalytic activity. We studied an industrial NiMo/Alumina sulfide catalyst highly active by using aberration-corrected HAADF-STEM techniques. The used catalysts was a state-of- the art commercial nickel-molybdenum alumina-supported formulation, including organic agent modifier. This type of material belongs to a novel family of catalysts specially designed for ultra-low sulfur production from straight-run gas oil (SRGO), cycle oil, coker gas oil, or their combinations at operating conditions of commercial interest in hydrotreating units at industrial scale. Aberration corrected HAADF-STEM allowed to observe the nanostructure and location of MoS2 and his interaction with the alumina. The results indicate that the MoS2 is highly dispersed on the alumina, however the location of Ni is one of the task of this kind of catalyst.

  8. Foreign Direct Investment as a Catalyst for Industrial Development

    OpenAIRE

    Markusen, James R.; Venables, Anthony J

    1997-01-01

    How does an FDI project affect local firms in the same industry? Competition in the" product and factor markets tends to reduce profits of local firms, but linkage effects to supplier" industries may reduce input costs and raise profits. This paper develops an analytical framework" to assess these effects. Circumstances in which FDI is complementary to local industry are" established, and it is shown how FDI may lead to the establishment of local industrial sectors. " These sectors may grow t...

  9. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    Science.gov (United States)

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  10. Carbon-supported platinum alloy catalysts for phenol hydrogenation for making industrial chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.T.; Song, C.

    1999-07-01

    Phenol is available in large quantities in liquids derived from coal and biomass. Phenol hydrogenation is an industrially important reaction to produce cyclohexanone and cyclohexanol. Cyclohexane, cyclohexene and benzene are obtained as minor products in this reaction. Cyclohexanone is an important intermediate in the production of caprolactam for nylon 6 and cyclohexanol for adipic acid production. In USA, cyclohexanol and cyclohexanone are produced by benzene hydrogenation to cyclohexane over nickel or noble metal catalysts, followed by oxidation of cyclohexane to produce a mixture of cyclohexanol and cyclohexanone. Then cyclohexanol is dehydrogenated in the presence of Cu-Zn catalyst to cyclohexanone. Usually phenol hydrogenation is also carried out by using Ni catalyst in liquid phase. However, a direct single-step vapor phase hydrogenation of phenol to give cyclohexanone selectively is more advantageous in terms of energy savings and process economics, since processing is simplified and the endothermic step of cyclohexanol dehydrogenation can be avoided, as demonstrated by Montedipe and Johnson Matthey using promoted Pd/Al{sub 2}O{sub 3} catalyst. While it is not the purpose of this paper to dwell on the relative merits of these routes, it is necessary to mention that while using monometallic catalysts, generally the problem of catalyst deactivation of sintering as well as coking is frequently encountered. Addition and alloying of noble metal (e.g. Pt) with a second metal can result in a catalyst with better selectivity and activity in the reaction which is more resistant to deactivation. This paper presents the results on the single-step vapor phase hydrogenation of phenol over carbon-supported Pt-M (M=Cr, V, Zr) alloy catalysts to yield mainly cyclohexanone or cyclohexanol.

  11. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, January 1--April 1, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1998-04-20

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. The research is focused on the following areas: (1) Random mutagenesis of pNB esterase: improved activity and stability; (2) Directed evolution of subtilisin E to enhance thermostability; and (3) Methods for in vitro recombination.

  12. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, April 1--July 1, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1998-07-08

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. Progress on three tasks are described: Random mutagenesis of pNB esterase--improved activity and stability; Directed evolution of subtilisin E to enhance thermostability; and Methods for invitro recombination.

  13. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, April 1--June 28, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1996-07-22

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempted to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. The paper describes the progress in two projects: (a) Random mutagenesis of pNB esterase: Improved activity and stability; and (2) Subtilisin mutants exhibiting improved ligase activity in organic solvents.

  14. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Moses, Poul Georg; Sehested, Jens;

    2014-01-01

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel.1 Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO...... as a promoter for this type of catalyst is still under intense debate.2 Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides...

  15. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Moses, Poul Georg; Sehested, Jens;

    2014-01-01

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO...... as a promoter for this type of catalyst is still under intense debate. Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides a consistent...

  16. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A.; Briand, Y.

    1996-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  17. Why Does Industry Not Use Immobilized Transition Metal Complexes as Catalysts?

    NARCIS (Netherlands)

    Huebner, Sandra; de Vries, Johannes G.; Farina, Vittorio

    2016-01-01

    Much effort has gone into the immobilization of homogeneous catalysts based on the idea that in this way the catalysts could be not only separated more easily from the product but also reused several times, thus reducing the cost of the catalyst use. So far none of these immobilized catalysts have b

  18. Evaluation of potential for reuse of industrial wastewater using metal-immobilized catalysts and reverse osmosis.

    Science.gov (United States)

    Choi, Jeongyun; Chung, Jinwook

    2015-04-01

    This report describes a novel technology of reusing the wastewater discharged from the display manufacturing industry through an advanced oxidation process (AOP) with a metal-immobilized catalyst and reverse osmosis (RO) in the pilot scale. The reclaimed water generated from the etching and cleaning processes in display manufacturing facilities was low-strength organic wastewater and was required to be recycled to secure a water source. For the reuse of reclaimed water to ultrapure water (UPW), a combination of solid-phase AOP and RO was implemented. The removal efficiency of TOC by solid-phase AOP and RO was 92%. Specifically, the optimal acid, pH, and H2O2 concentrations in the solid-phase AOP were determined. With regard to water quality and operating costs, the combination of solid-phase AOP and RO was superior to activated carbon/RO and ultraviolet AOP/anion polisher/coal carbon.

  19. Metallocene Catalysts Technology,Academic Aspects,Industrial Challenges, Environmental Implication

    Institute of Scientific and Technical Information of China (English)

    Abbas Razavi; Vincenzo Bellia; Didier Baekelmans; Sabine Sirol; Martine Slawinsky; Liliane Peters; Margo Lopez; Vladimir Marin

    2004-01-01

    @@ Single site catalysts related polypropylene exhibit large diversity in their polymer chain microstructures far exceeding the tactic varieties observed with the polypropylene obtained with native, multiple site,heterogeneous TiCl3 based Ziegler -Natta type catalysts.

  20. Characterization of Industrial Pt-Sn/Al2O3 Catalyst and Transient Product Formations during Propane Dehydrogenation

    Directory of Open Access Journals (Sweden)

    Kah Sing Ho

    2013-06-01

    Full Text Available The major problem plaguing propane dehydrogenation process is the coke formation on the Pt-Sn/Al2O3 catalyst which leads to catalyst deactivation. Due to information paucity, the physicochemical characteristics of the commercially obtained regenerated Pt-Sn/Al2O3 catalyst (operated in moving bed reactor and coke formation at different temperatures of reaction were discussed. The physicochemical characterization of regenerated catalyst gave a BET surface area of 104.0 m2/g with graphitic carbon content of 8.0% indicative of incomplete carbon gasification during the industrial propylene production. Effect of temperatures on coke formation was identified by studying the product yield via temperature-programmed reaction carried out at 500oC, 600oC and 700oC. It was found that ethylene was precursor to carbon laydown while propylene tends to crack into methane. Post reaction, the spent catalyst possessed relatively lower surface area and pore radius whilst exhibited higher carbon content (31.80% at 700oC compared to the regenerated catalyst. Significantly, current studies also found that higher reaction temperatures favoured the coke formation. Consequently, the propylene yield has decreased with reaction temperature. © 2013 BCREC UNDIP. All rights reservedReceived: 10th March 2013; Revised: 28th April 2013; Accepted: 6th May 2013[How to Cite: Kah, S.H., Joanna Jo, E.C., Sim, Y.C., Chin, K.C. (2013. Characterization of Industrial Pt-Sn/Al2O3 Catalyst and Transient Product Formations during Propane Dehydrogenation. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 77-82. (doi:10.9767/bcrec.8.1.4569.77-82][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4569.77-82] | View in  |

  1. Laboratory evaluation of FCC commercial catalysts. Analysis of products of industrial importance

    Energy Technology Data Exchange (ETDEWEB)

    Passamonti, Francisco J.; De la Puente, Gabriela; Sedran, Ulises [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE, FIQ, UNL-CONICET), Santiago del Estero 2654, 3000 Santa Fe (Argentina)

    2008-04-15

    The results of the conversion of a VGO over six equilibrium commercial FCC catalysts with different formulations in a batch CREC Riser Simulator laboratory reactor at 500 and 550 C, catalyst to oil ratio 6.1 and reaction times from 3 to 30 s, were analyzed. It was possible to define the main catalyst characteristics in terms of various evaluation items, such as activity, gasoline yield and quality, LPG yield and coke yield, or the yields of particular compounds like, e.g., isobutane. Important differences in activity between catalysts were not observed, but catalyst properties reflected clearly as significant differences in gasoline, LPG or coke selectivities. Particularly, catalyst's hydrogen transfer properties impacted on gasoline composition and isobutane yield. The results showed that the CREC Riser Simulator reactor is an important tool for the evaluation of both commercial catalysts and feedstocks and process conditions. (author)

  2. Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes

    Directory of Open Access Journals (Sweden)

    Paolo Zucca

    2016-07-01

    Full Text Available Synthetic and bioinspired metalloporphyrins are a class of redox-active catalysts able to emulate several enzymes such as cytochromes P450, ligninolytic peroxidases, and peroxygenases. Their ability to perform oxidation and degradation of recalcitrant compounds, including aliphatic hydrocarbons, phenolic and non-phenolic aromatic compounds, sulfides, and nitroso-compounds, has been deeply investigated. Such a broad substrate specificity has suggested their use also in the bleaching of textile plant wastewaters. In fact, industrial dyes belong to very different chemical classes, being their effective and inexpensive oxidation an important challenge from both economic and environmental perspective. Accordingly, we review here the most widespread synthetic metalloporphyrins, and the most promising formulations for large-scale applications. In particular, we focus on the most convenient approaches for immobilization to conceive economical affordable processes. Then, the molecular routes of catalysis and the reported substrate specificity on the treatment of the most diffused textile dyes are encompassed, including the use of redox mediators and the comparison with the most common biological and enzymatic alternative, in order to depict an updated picture of a very promising field for large-scale applications.

  3. Accelerating process and catalyst development in reforming reactions with high throughput technologies under industrially relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, S.A.; Bollmann, G.; Froescher, A.; Kaiser, H.; Lange de Oliveira, A.; Roussiere, T.; Wasserschaff, G. [hte Aktiengesellschaft, Heidelberg (Germany); Domke, I. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    The generation of hydrogen via reforming of a variety of carbon containing feed-stocks in the presence of water is up to date one of the most versatile technologies for the production of hydrogen and syngas. Although these reforming technologies are in principle well established, understood and commercialized, there are still a number of technological challenges that are not solved up to a satisfactorily degree and there is a constant demand for appropriate answers to the challenges posed. High throughput experimentation can be a valuable tool in helping accelerate the development of suitable solutions on the catalyst and process development side. In order to be able to generate test data that are close or identical to process relevant conditions, hte has developed a new technology portfolio of test technologies named Stage-IV technology. In contrast to earlier developments which address more small scale testing on the basis of catalyst volumes of 1ml up to 10 ml under isothermal conditions, our new technology portfolio offers the advantage of test volumes at sub-pilot scale also realizing reactor dimensions close to technical applications. This does not only ensure a good mimic of the hydrodynamic conditions of the technical scale, but also allows a fingerprinting of features like temperature gradients in the catalyst bed which play a large role for catalyst performance. Apart from catalyst tests with granulates when screening for optimized catalyst compositions, the units are designed to accommodate tests with shaped catalysts. In order to demonstrate how these technologies can accelerate catalyst and process development we have chosen technically challenging application examples: (I) Pre-reforming and reforming of methane based feeds which accelerate coking and catalyst deactivation. Higher reaction pressures, high CO{sub 2} contents in the feedgas (which occur typically in sources like bio-gas or certain types of natural gas), the presence of higher alkanes

  4. High-resolution electron tomography study of an industrial Ni-Mo/gamma-Al2O3 hydrotreating catalyst.

    Science.gov (United States)

    de Jong, Krijn P; van den Oetelaar, Leon C A; Vogt, Eelco T C; Eijsbouts, Sonja; Koster, Abraham J; Friedrich, Heiner; de Jongh, Petra E

    2006-06-01

    The growing demand for high-quality transportation fuels requires their cost-effective production by hydrodesulfurization of crude oils using heterogeneous catalysts. To study the three-dimensional (3D) structure of such a commercial, sulfided Ni-Mo/gamma-Al2O3 catalyst, electron tomography was applied. The MoS2 particles form an interconnected complex structure within the mesopores of the alumina support. Spatial organization, morphology, and orientation of the MoS2 particles in the pores were resolved with sufficient accuracy to display the 6-A-spaced MoS2 crystal planes. The proximity of the MoS2 edge planes and more loosely interacting MoS2 basal planes to the alumina support showed the presence of pores smaller than 3 nm, which was confirmed by physisorption experiments. The actual shape of the MoS2 particles cannot be described by simple models as derived from studies on model catalysts. Electron tomography is a unique tool to study the actual 3D structure of complex industrial catalysts with sub-nanometer resolution.

  5. Homogeneous catalysts

    CERN Document Server

    Chadwick, John C; Freixa, Zoraida; van Leeuwen, Piet W N M

    2011-01-01

    This first book to illuminate this important aspect of chemical synthesis improves the lifetime of catalysts, thus reducing material and saving energy, costs and waste.The international panel of expert authors describes the studies that have been conducted concerning the way homogeneous catalysts decompose, and the differences between homogeneous and heterogeneous catalysts. The result is a ready reference for organic, catalytic, polymer and complex chemists, as well as those working in industry and with/on organometallics.

  6. Visualizing the stoichiometry of industrial-style Co-Mo-S catalysts with single-atom sensitivity.

    Science.gov (United States)

    Zhu, Yuanyuan; Ramasse, Quentin M; Brorson, Michael; Moses, Poul G; Hansen, Lars P; Kisielowski, Christian F; Helveg, Stig

    2014-09-26

    The functional properties of transition metal dichalcogenides (TMDs) may be promoted by the inclusion of other elements. Here, we studied the local stoichiometry of single cobalt promoter atoms in an industrial-style MoS2-based hydrotreating catalyst. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy show that the Co atoms occupy sites at the (-100) S edge terminations of the graphite-supported MoS2 nanocrystals in the catalyst. Specifically, each Co atom has four neighboring S atoms that are arranged in a reconstructed geometry, which reflects an equilibrium state. The structure agrees with complementary studies of catalysts that were prepared under vastly different conditions and on other supports. In contrast, a small amount of residual Fe in the graphite is found to compete for the S edge sites, so that promotion by Co is strongly sensitive to the purity of the raw materials. The present single-atom-sensitive analytical method therefore offers a guide for advancing preparative methods for promoted TMD nanomaterials.

  7. Bridging the Time Gap: A Copper/Zinc Oxide/Aluminum Oxide Catalyst for Methanol Synthesis Studied under Industrially Relevant Conditions and Time Scales.

    Science.gov (United States)

    Lunkenbein, Thomas; Girgsdies, Frank; Kandemir, Timur; Thomas, Nygil; Behrens, Malte; Schlögl, Robert; Frei, Elias

    2016-10-01

    Long-term stability of catalysts is an important factor in the chemical industry. This factor is often underestimated in academic testing methods, which may lead to a time gap in the field of catalytic research. The deactivation behavior of an industrially relevant Cu/ZnO/Al2 O3 catalyst for the synthesis of methanol is reported over a period of 148 days time-on-stream (TOS). The process was investigated by a combination of quasi in situ and ex situ analysis techniques. The results show that ZnO is the most dynamic species in the catalyst, whereas only slight changes can be observed in the Cu nanoparticles. Thus, the deactivation of this catalyst is driven by the changes in the ZnO moieties. Our findings indicate that methanol synthesis is an interfacially mediated process between Cu and ZnO.

  8. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, September 29--December 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1998-01-15

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. In this report attention is focused on random mutagenesis of pNB esterase -- improved activity and stability. The most thermostable esterases obtained by sequential random mutagenesis (6H7) and random mutagenesis plus recombination (6sF9) each contain 9 amino acid mutations and a number of silent mutations, relative to the wild-type sequence. Eight of the mutations are present in both genes, for a total of ten potentially adaptive mutations. Because several of these mutations occurred in the same generation, it is difficult to identify the mutations responsible for the increases in activity and stability. In order to aid in this identification, the thermostable genes were recombined with the wild-type gene, in hopes of removing neutral mutations. The gene from the first-generation variant, with five amino acid substitutions was also recombined with wild-type.

  9. Aquathermolysis of crude oils and natural bitumen: chemistry, catalysts and prospects for industrial implementation

    Science.gov (United States)

    Tumanyan, B. P.; Petrukhina, N. N.; Kayukova, G. P.; Nurgaliev, D. K.; Foss, L. E.; Romanov, G. V.

    2015-11-01

    The results of studies of alterations in the elemental and SARA compositions and physicochemical and rheological properties of highly viscous heavy crude oils upon catalytic and non-catalytic aquathermolysis are generalized. The chemistry of transformations of model hydrocarbons and heteroatomic compounds in aqueous media at high temperature, including subcritical and supercritical conditions, is considered. Comparative analysis of methods for activation of oil conversion via aquathermolysis using hydrogen donors, oil-soluble and water-soluble nanodispersed catalysts, ionic hydrogenation processes and various ways for reservoir heating is presented. Problems and prospects of oil-field implementation of catalytic aquathermolysis for upgrading heavy oils and natural bitumen are discussed. The bibliography includes 234 references.

  10. Distinguishing between chemical and physical promotion mechanisms by CeO{sub 2} in Pt, Rh three-way automotive catalysts under practical industrial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Robota, H.J.; Nunan, J.G. [Allied-Signal Research and Technology, Des Plains, IL (United States)

    1993-12-31

    Under practical industrial conditions, aged, rather than fresh, catalyst performances is required to meet various regulatory emissions levels. While CeO{sub 2} is recognized as critical in allowing practically aged Pt, Rh catalysts to meet these performance targets, debate continues concerning the physicochemical mechanisms responsible for the performance enhancement. Suppressed precious metal sintering and stabilization of support {gamma}-Al{sub 2}O{sub 3} against surface area loss and structural phase changes are the principle physical mechanisms suggested. Chemical promotion by CeO2 has been attributed to oxygen storage, enhanced water gas shift activity, and enhanced CO oxidation activity through a precious metal-CeO2 coupling mechanisms. The authors have attempted to distinguish the relative contributions of these physical and chemical mechanisms to the performance of practical Pt, Rh catalysts. Two catalysts were aged in tandem using standard dynamometer methods. One was a fully formulated reference catalyst and the other was a CeO{sub 2}-free catalyst. Several potential chemical promotional mechanisms of CO oxidation via a more facile reaction pathway involving coupling between the precious metals and CeO{sub 2}.

  11. Electrochemical catalyst recovery method

    Science.gov (United States)

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  12. Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control

    KAUST Repository

    Somekawa, Shouichi

    2011-12-01

    Volatile organic compounds (VOCs) present at ppm levels were decomposed over the catalyst CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45 in mol) in an attempt to scale up for industrial odor control. In addition to enhancing the catalytic activity, CuO-Co3O4 and CeO2 helped, respectively, to maintain the strength of the pelleted catalysts and inhibit their sintering. Using toluene as a VOC model compound, kinetic analysis of the total oxidation to carbon dioxide was conducted. The odor emitted from paint-drying processes could be eliminated effectively using CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45) pelleted catalysts (188 ml) in a large-scale system. © 2011 Elsevier B.V. All rights reserved.

  13. APPLICATION OF MAGNETIC CATALYSTS TO THE CATALYTIC WET PEROXIDE OXIDATION (CWPO OF INDUSTRIAL WASTEWATER CONTAINING NON BIODEGRADABLE ORGANIC POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Macarena Munoz

    2014-03-01

    Full Text Available A new ferromagnetic -Al2O3-supported iron catalyst has been prepared and its activity and stability have been compared with those of a previous iron-based conventional catalyst and with the traditional homogeneous Fenton process in the oxidation of chlorophenols. The use of solid catalysts improved significantly the efficiency on the use of H2O2, achieving higher mineralization degrees. The magnetic catalyst led to significantly higher oxidation rates than the conventional one due to the presence of both Fe (II and Fe (III. On the other hand, the use of a catalyst with magnetic properties is of interest, since it allows rapid recovery after treatment using a magnetic field. Moreover, it showed a high stability with fairly low iron leaching (<1% upon CWPO runs. An additional clear advantage of this new catalyst is its easy separation and recovery from the reaction medium by applying an external magnetic field.

  14. RSC-2006催化剂的研发及工业应用%The Development and Industrial Application of RSC-2006 Catalyst

    Institute of Scientific and Technical Information of China (English)

    刘汉坡

    2016-01-01

    RSC-2006 catalyst,which is developed by SINOPEC Research Institute of Petroleum Processing and produced by SINOPEC Catalyst Co.,Ltd.Qilu Division,has been successfully applied in the HOFCC unit of SINOPEC Jingmen Petrochemical. RSC-2006 catalyst shows excellent heavy oil converting ability and coke selectivity.The industrial application of RSC-2006 catalyst has brought considerable economic benefits to SINOPEC Jingmen Petrochemical.%由中国石油化工股份有限公司石油化工科学研究院研制、齐鲁催化剂分公司生产的RSC-2006催化剂在荆门重油催化裂化装置上进行了成功的工业应用。RSC-2006催化剂具有优异的重油转化能力和焦炭选择性,RSC-2006催化剂的工业应用为荆门分公司带来了可观的经济效益。

  15. Mn-Na{sub 2}WO{sub 4}/SiO{sub 2}. An industrial catalyst for methane coupling?

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, M.; Arndt, S.; Otremba, T.; Thomas, A.; Schomaeker, R. [Technische Univ. Berlin (Germany). Dept. of Chemistry; Simon, U.; Berthold, A.; Goerke, O.; Schubert, H. [Technische Univ. Berlin (Germany). Dept. of Materials Science; Aksu, Y. [Akdeniz Univ. (Turkey). Dept. of Material Science and Engineering

    2012-07-01

    The oxidative coupling of methane (OCM) is one of the best reactions for the direct conversion of methane. Despite all efforts, a suitable OCM process has not been put into practice yet, due to a lack of active, selective and stable catalyst. Mn-Na{sub 2}WO{sub 4}/SiO{sub 2} has attracted great interest because of its proven long term stability and its highly suitable catalytic performance. In spite of the large number of studies on this catalyst, structural characterizations are very difficult due to its complex trimetallic and multiphase nature. Previously, we studied a broad variety of support materials for the Mn-Na{sub 2}WO{sub 4}/SiO{sub 2} catalyst, e.g. Al{sub 2}O{sub 3}, TiO{sub 2}, ZrO{sub 2} and MgO. We found that SiO{sub 2} is the most suitable support material. A variation of the SiO{sub 2} materials showed that the catalytic performance does not differ substantially. However, the performance of SBA-15 supported Mn-Na{sub 2}WO{sub 4} catalyst was outstanding in comparison to all other silica supported catalysts. The reason of this substantial increase in the activity could be the ordered mesoporous structure of its support material. To understand the reaction mechanism, the kinetic isotope effect (KIE) with CD{sub 4} over Mn-Na{sub 2}WO{sub 4}/SiO{sub 2} was studied, we found that the consecutive oxidation of the C{sub 2} products is an important constraint as described in the literature for other catalysts. In order to apply this catalyst in a miniplant, we developed an upscaled preparation procedure via a fluidized bed granulation, allowing the preparation of large amounts of this catalyst. (orig.)

  16. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  17. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  18. Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis.

    Science.gov (United States)

    Alley, William M; Hamdemir, Isil K; Wang, Qi; Frenkel, Anatoly I; Li, Long; Yang, Judith C; Menard, Laurent D; Nuzzo, Ralph G; Özkar, Saim; Yih, Kuang-Hway; Johnson, Kimberly A; Finke, Richard G

    2011-05-17

    Ziegler-type hydrogenation catalysts are important for industrial processes, namely, the large-scale selective hydrogenation of styrenic block copolymers. Ziegler-type hydrogenation catalysts are composed of a group 8-10 transition metal precatalyst plus an alkylaluminum cocatalyst (and they are not the same as Ziegler-Natta polymerization catalysts). However, for ∼50 years two unsettled issues central to Ziegler-type hydrogenation catalysis are the nature of the metal species present after catalyst synthesis, and whether the species primarily responsible for catalytic hydrogenation activity are homogeneous (e.g., monometallic complexes) or heterogeneous (e.g., Ziegler nanoclusters defined as metal nanoclusters made from combination of Ziegler-type hydrogenation catalyst precursors). A critical review of the existing literature (Alley et al. J. Mol. Catal. A: Chem. 2010, 315, 1-27) and a recently published study using an Ir model system (Alley et al. Inorg. Chem. 2010, 49, 8131-8147) help to guide the present investigation of Ziegler-type hydrogenation catalysts made from the industrially favored precursors Co(neodecanoate)(2) or Ni(2-ethylhexanoate)(2), plus AlEt(3). The approach and methods used herein parallel those used in the study of the Ir model system. Specifically, a combination of Z-contrast scanning transmission electron microscopy (STEM), matrix assisted laser desorption ionization mass spectrometry (MALDI MS), and X-ray absorption fine structure (XAFS) spectroscopy are used to characterize the transition metal species both before and after hydrogenation. Kinetic studies including Hg(0) poisoning experiments are utilized to test which species are the most active catalysts. The main findings are that, both before and after catalytic cyclohexene hydrogenation, the species present comprise a broad distribution of metal cluster sizes from subnanometer to nanometer scale particles, with estimated mean cluster diameters of about 1 nm for both Co and Ni. The

  19. Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Malato, S.; Blanco, J.; Campos, A.; Caceres, J. [Plataforma Solar de Almeria-CIEMAT, Ctra. Senes Km. 4, Tabernas, 04200 Almeria (Spain); Guillard, C.; Herrmann, J.M. [Laboratoire d' Application de la Chimie a l' Environnement, LACE-CNRS-UMR5634, Universite Claude Bernard Lyon 1, 43 Blvd. du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Fernandez-Alba, A.R. [Pesticide Residue Research Group, University of Almeria, 04071 Almeria (Spain)

    2003-06-10

    A new granulated version of the well-known P-25 titanium dioxide (VP AEROPERL P-25/20 (Aeroperl)) has been tested to determine whether its photocatalytic efficiency is good enough for use in photocatalytic water purification and to find out if it can be separated from water more easily than its well-known homologue, powdered Degussa P-25, a significant technical improvement that might eliminate the tedious final filtration necessary with a slurry. Furthermore, a new commercial catalyst (PC-100 from Millennium Inorganic Chemicals), having a surface area and structure that are both different from Degussa P-25, has also been studied. All the experiments were carried out in sunlight in the pilot compound parabolic collector (CPC) plant at the Plataforma Solar de Almeria. Three different substrates were chosen as model molecules for this study: dichloracetic acid, phenol and the pesticide imidacloprid. Results show that Degussa Aeroperl is not a good alternative to powdered Degussa P-25 because of its spontaneous sedimentation during photocatalysis. Millennium PC-100 efficiency seems to be in the same range as that of Degussa P-25. In this work we also attempt to demonstrate that the comparison of efficiencies of different photocatalysts is not a trivial matter. Many factors are involved and interfere in the testing of photocatalyst behaviour during the degradation of a contaminant. A thorough comparison of photocatalyst activity should include reactions with several different substrates under varied experimental conditions.

  20. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    Science.gov (United States)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  1. From surface science to catalysis: The importance of methoxy and formate species on Cu single crystals and industrial catalysts

    Science.gov (United States)

    Bowker, M.; Waugh, K. C.

    2016-08-01

    Early work from the Madix group identified a number of simple surface intermediate species which have proved to be of significance for industrial catalytic processes. Two of these intermediates are the methoxy and formate surface species. We discuss the formation and behavior of these on copper surfaces, and go on to highlight their role in two important industrial reactions, namely methanol synthesis and the selective oxidation of methanol to formaldehyde. The formate is the pivotal intermediate for methanol synthesis and is formed from the reaction of CO2 and H2, whereas it is important to avoid the formation of that intermediate for selective methanol oxidation, which proceeds through dehydrogenation of the methoxy species.

  2. Study on the Recovery of Rhodium from Spent Organic Rhodium Catalysts of Acetic Acid Industry Using Pyrometallurgical Process

    Institute of Scientific and Technical Information of China (English)

    HE Xiaotang; WANG Huan; WU Xilong; LI Yong; ZHAO Yu; HAN Shouli; LI Kun; GUO Junmei

    2012-01-01

    A new process recycling rhodium from organic waste containing rhodium in acetic acid industry is developed.Use the special affinity of base metal sulfides (FeS,Ni2S3,CuS,etc.) on platinum group metals,adopting high nickel matte trapping-aluminothermic activation method to recovery rhodium from incinerator residue of organic rhodium waste.The method is shorter process,lower equipment requirement,and the higher activity of rhodium black.In pyrometallurgy enrichment process,the recovery rate of rhodium reached 94.65%,the full flow of rhodium recovery rate was 92.04%.

  3. Enzyme catalysts for a biotechnology-based chemical industry. Final report, September 29, 1993--September 28, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1998-11-16

    Enzymes have enormous potential for reducing energy requirements and environmental problems in the chemicals and pharmaceutical industries. The explosion of tools that has come out of molecular biology during the last 20 years has made it possible to evolve enzymes for features never required in nature. Scientists can speed up the rate and channel the direction of evolution by controlling mutagenesis and the accompanying selection pressures. Darwinian evolution carried out in the test tube offers a unique opportunity for biotechnology: the ability to tailor enzymes for optimal performance in a wide range of applications. Thus it is possible, for example, to evolve enzymes that carry out reactions on nonnatural substrates or even to carry out reactions for which there is no counterpart in nature. Due to the vast size of the potential sequence space, however, explorations by directed evolution must be guided by sound principles and workable strategies. During the course of this group, this laboratory has continued to make significant progress in the evolution of industrial enzymes as well as in developing general methods for in vitro evolution.

  4. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  5. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  6. The adsorption of benzene on industrially important nanostructured catalysts (H-BEA, H-ZSM-5, and H-FAU): confinement effects

    Science.gov (United States)

    Rungsirisakun, Ratana; Jansang, Bavornpon; Pantu, Piboon; Limtrakul, Jumras

    2005-01-01

    The structure of industrially important zeolitic catalysts (H-BEA, H-ZSM-5, and H-FAU) and their interactions with benzene have been investigated within the framework of our-own-N-layered integrated molecular orbital+molecular mechanics (ONIOM) approach utilizing the three-layer ONIOM scheme (B3LYP/6-31G(d,p):HF/3-21G:UFF). Inclusion of the extended zeolitic framework covering the nanocavity has an effect on adsorption properties and leads to differentiation of different types of zeolite, unlike the small cluster models which are not able to make this differentiation. The ONIOM adsorption energies of benzene on ZSM-5, BEA, and FAU zeolites are -19.23, -16.11, and -15.22 kcal/mol, respectively, which agrees well with the known adsorption trend of these three zeolites. On the other hand, the small cluster models underestimate the adsorption energies and even yield an unreasonable trend of adsorption energies (-8.09, -8.48, and -8.93 kcal/mol for ZSM-5, BEA, and FAU, respectively). With the inclusion of basis set superposition error (BSSE) and the MP2 corrections, the ONIOM3(MP2/6-31G(d,p):HF/3-21G:UFF) adsorption energies are predicted to be -18.96, -16.34, and -15.18 kcal/mol, for ZSM-5, BEA, and FAU, respectively. The last value can be compared well with the experimental data (-15.31 kcal/mol) for benzene adsorption on a FAU zeolite. The results derived in this study suggest that the ONIOM3(MP2/6-31G(d,p):HF/3-21G:UFF) scheme provides a more accurate method for investigating the adsorption of aromatic hydrocarbons on these zeolites.

  7. Feasibility evaluation of using spent FCC catalyst for metals treatment from industrial waste; Avaliacao do potencial de recuperacao de niquel de catalisadores equilibrados (E-CAT) atraves da tecnica de remediacao eletrocinetica

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Adalberto; Ponte, Haroldo de Araujo [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)

    2004-07-01

    The purpose of this work is to describe the feasibility evaluation using FCC catalyst for treatment from industrial wastes increasing the life time of the spent catalysts and reducing the environmental impact. Evaluated the reutilization of catalyst in process recovery of nickel adsorbed. The technique used was the Electrokinetic Remediation. This technique is based in application of a direct current of low intensity or low potential between the electrodes located in soil. The pollutants are mobilized how loaded species or particles. It used a electrokinetic reactor with approximated volume of 1200 cm{sup 3}, where the residue is placed. In your extremity are adapted two cameras of acrylic, being one anodic, with steel inox 304 electrode, and other cathodic, with lead electrode. In anodic camera, it was injected, with aid a bomb, a solution of sulfuric acid, which work as electrolyte, to a flow rate of 20 ml/h. Was evaluated the desorption of Nickel in the equilibrium catalyst submitting a variation of the conditions of the concentration and potential. (author)

  8. 城市旅游文化创意产业链的触媒效应研究——兼论《印象大红袍》的创意触媒过程%The Catalyst Effect of Urban Tourism and Cultural Creative Industry Chain --Also on the Process of the Impression DaHongPao's Creative Catalyst

    Institute of Scientific and Technical Information of China (English)

    黄明霞; 黄安民; 郑彬

    2011-01-01

    In the process of city management, it should have enough connotation for support and foster the corresponding industry chain, which forms the industrial agglomeration advantages and scale advantage, to improve the competition of the city and comprehensive economic strength. This paper analyzes the catalyst essence and characteristics of urban cultural creative industries based on catalyst theory and has mode analysis through the introduction of the industry chain. And it takes a typical example Impression DaHongpao subject-live performance of this type as a case to analyze the main operation process of its industry chain media and finally summarize its catalyst value and significance to Wuyi Mountain City.%在经营城市的过程中,必须要有足够的内涵作支持,注重培育相应的产业链,形成产业集聚优势和规模优势,以提高城市竞争力和综合经济实力。本文基于触媒理论对城市文化创意产业的触媒本质及特征入手进行分析,通过引入产业链理论对《印象系列》进行模式分析,并以其典型范例《印象大红袍》文化创意产业为研究对象,解析其产业链触媒体的主要运作过程,进而总结其对武夷山市的触媒价值和意义。

  9. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  10. Aerogel derived catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  11. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...... and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...

  12. Introdução de catalisadores metalocênicos como estratégia competitiva da indústria de termoplásticos The introduction of metallocene catalysts as a competitive strategy of the thermoplastic industry

    Directory of Open Access Journals (Sweden)

    Francisco A. Ribeiro Fº

    1997-09-01

    Full Text Available Recentes inovações tecnológicas no setor de polímeros levaram a novos catalisadores que poderão mudar a estrutura de toda a indústria. É feita uma análise das estratégias competitivas adotadas pelas empresas do setor e do impacto que a adoção dos catalisadores metalocênicos vêm causando.Recent technological innovation in the polymer sector has produced new catalysts, which may change the structure of the industry. Competitive strategies adopted by these companies are analysed as well as the impact caused by the adoption of metallocene catalysts.

  13. Landscape of Industry: Transformation of (Eco Industrial Park through history

    Directory of Open Access Journals (Sweden)

    Archana Sharma

    2013-11-01

    Full Text Available The landscape of industry has been changing over time. Industry has transformed and many tangents have emerged from the sporadic home-based cottage industries to geographically scattered large manufacturing industries to co-located industrial parks to environment friendly eco-industrial parks. Curiosity about the catalysts that bring about the transformation of industrial landscape is the motivation of this article. Through the narrative on Industrial Park and the gradual shift towards Eco-Industrial Park, this article aims to shed light on the context and conditions that act as catalysts for industrial transformations, so as to serve as a reference for predicting future changes in industrial landscape.

  14. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    industrial reference catalyst, after impregnation of 225 mole potassium/g of catalyst. A catalyst plate was synthesised using 20 wt.% sepiolite mixed with nano catalyst, supported by a SiO2-fibre mesh. Realistic potassium poisoning was performed on the catalyst plate, by exposure in a potassium aerosol...... for 632 hours at 350 C. Owing to physical blocking of potassium by sepiolite fibres the composite catalyst showed a further increase in potassium resistance compared with the unsupported catalyst. Finally a refined mechanism was proposed for the nano particle SCR catalyst explaining insitu FTIR...... observation done on the system. Most importantly it indicated that the V=O bond did not break during the SCR reaction, suggesting that another oxygen is responsible for the activity of the active vanadia site....

  15. Synthesis of Organic Compounds over Selected Types of Catalysts

    Directory of Open Access Journals (Sweden)

    Omar Mohamed Saad Ismail

    2011-05-01

    Full Text Available This study provides an overview for the utilization of different catalytic material in the synthesis of organic compounds for important reactions such as heck reaction, aldol reaction, Diels- Alder and other reactions. Comparisons between multiple catalysts for the same reaction and justifications for developing new catalyzed materials are discussed. The following topics are introduced in this work; (1 solid base catalysts, (2 clay catalysts, (3 palladium catalysts, and (4 catalysts to produce organic compound from CO2. The features of these catalysts a long with the conjugated reactions and their selectivity are explained in details, also, some alternatives for toxic or polluting catalysts used in industry are suggested.

  16. Catalyst mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Rosen, Brian A.

    2017-02-14

    Catalysts that include at least one catalytically active element and one helper catalyst can be used to increase the rate or lower the overpotential of chemical reactions. The helper catalyst can simultaneously act as a director molecule, suppressing undesired reactions and thus increasing selectivity toward the desired reaction. These catalysts can be useful for a variety of chemical reactions including, in particular, the electrochemical conversion of CO.sub.2 or formic acid. The catalysts can also suppress H.sub.2 evolution, permitting electrochemical cell operation at potentials below RHE. Chemical processes and devices using the catalysts are also disclosed, including processes to produce CO, OH.sup.-, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, O.sub.2, H.sub.2, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  17. Photo-oxidation catalysts

    Science.gov (United States)

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  18. 化工废催化剂中钯的回收%Recovery of Palladium from Spent Catalyst in Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    顾华祥; 陆跃华; 贺小塘

    2016-01-01

    采用火法富集-湿法工艺相结合的工艺,从Pd/Al2O3废催化剂中回收钯,介绍了工艺流程及控制参数。%With the combination of pyrometallurgy and hydrometallurgy, palladium was recovered from spent catalyst of Pd/Al2O3. The technological process and control parameters were briefly introduced.

  19. Methane Tri-reforming over nickel catalysts

    OpenAIRE

    García Vargas, José Manuel

    2014-01-01

    The present work is part of a research program carried out in the Department of Chemical Engineering at the University of Castilla-La Mancha, focused in the preparation, characterization and evaluation of catalysts that can be applied in industrially relevant reactions. In this way, the PhD work reported here was aimed to study and improve nickel catalysts applied to the tri-reforming process, evaluating the role of support, precursor and promoter and optimizing the catalyst preparation. Furt...

  20. Highly dispersed metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  1. Immobilized Ruthenium Catalyst for Carbon Dioxide Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Ying Min YU; Jin Hua FEI; Yi Ping ZHANG; Xiao Ming ZHENG

    2006-01-01

    Three kinds of cross linked polystyrene resin (PS) supported ruthenium complexes were developed as catalysts for the synthesis of formic acid from carbon dioxide hydrogenation. Many factors, such as the functionalized supports, solvents and ligands, could influence their activities and reuse performances greatly. These immobilized catalysts also offer the industrial advantages such as easy separation.

  2. Photo catalyst; Ko shokubai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    While titanium oxide is excited by the light, electrons of titanium oxide are taken away by the light energy to form positive holes. Water will be decomposed into hydrogen ion and hydroxy radical (OH) by these positive holes. This hydroxy radical is a strong reactive substance called active oxygen, it decomposes organisms. Besides this photo- catalyst function, the titanium oxide can also make surface of a substance superhydrophilic. The super hydrophilicity results in not forming water drops on the glass surface but spreading all over the surface to prevent a covering of fog on the glass surface. The published patents concerning the photo catalysts were 593 from Jan. 1998 to Jan. 1999. The applicant order is the first TOTO 143, the second Daikin Industry 19, the third Toshiba Raitech, Nitto Denko, Hitachi 17 respectively. (NEDO)

  3. Copper Replaces Tin: A Copper based Gelling Catalyst for Poly-Urethane from Discarded Motherboard

    OpenAIRE

    Parasar, Bibudha; Jing, Gao Wen; Yuan, Dandan; Kun, Wang; Wang, Peng; Dasgupta, Arijit; Sahasrabudhe, Atharva; Barman, Soumitra; Yuan, Rongxin; Roy, Soumyajit

    2013-01-01

    A discarded motherboard based eco-friendly copper catalyst has been programmed to replace the industrially used tin based catalyst DBTDL. The catalyst has been characterized by UV-Vis spectroscopy, FT-IR and TEM. Using the catalyst reaction conditions is optimized and under the optimized condition, both polyurethane and polyurethane foam are prepared, thus proving the generality of the catalyst to be used in industries. A possible mechanism has also been proposed.

  4. Heterogeneous Catalysts

    NARCIS (Netherlands)

    Dakka, J.; Sheldon, R.A.; Sanderson, W.A.

    1997-01-01

    Abstract of GB 2309655 (A) Heterogeneous catalysts comprising one or more metal compounds selected from the group consisting of tin, molybdenum, tungsten, zirconium and selenium compounds deposited on the surface of a silicalite are provided. Preferably Sn(IV) and/or Mo(VI) are employed. The cat

  5. Silica deactivation of bead VOC catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Libanati, C.; Pereira, C.J. [Research Division, W. R. Grace and Co., Columbia, MD (United States); Ullenius, D.A. [Grace TEC Systems, De Pere, WI (United States)

    1998-01-15

    Catalytic oxidation is a key technology for controlling the emissions of Volatile Organic Compounds (VOCs) from industrial plants. The present paper examines the deactivation by silica of bead VOC catalysts in a flexographic printing application. Post mortem analyses of field-aged catalysts suggest that organosilicon compounds contained in the printing ink diffuse into the catalyst and deposit as silica particles in the micropores. Laboratory activity evaluation of aged catalysts suggests that silica deposition is non-selective and that silica masks the noble metal active site

  6. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes;

    2012-01-01

    Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared...... by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  7. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  8. Catalyst Architecture

    DEFF Research Database (Denmark)

    Kiib, Hans; Marling, Gitte; Hansen, Peter Mandal

    2014-01-01

    of programs, have a role in mediating positive social and/or cultural development. In this sense, we talk about architecture as a catalyst for: sustainable adaptation of the city’s infrastructure appropriate renovation of dilapidated urban districts strengthening of social cohesiveness in the city development...... meaningful for everyone. The exhibited works are designed by SANAA, Diller Scofidio + Renfro, James Corner Field Operation, JBMC Arquitetura e Urbanismo, Atelier Bow-Wow, Ateliers Jean Nouvel, COBE, Transform, BIG, Topotek1, Superflex, and by visual artist Jane Maria Petersen....

  9. Molecular simulations of adsorption and diffusion of NO and NH3 over zeolite catalysts with various structure configurations%Industrial Catalysis

    Institute of Scientific and Technical Information of China (English)

    李懿; 刘宁; 张润铎; 李英霞

    2016-01-01

    基于巨正则蒙特卡洛和分子动力学,对NH3-SCR反应体系中吸附质分子( NO与NH3)在不同拓扑结构沸石分子筛( LTL、FER、LEV、BEA、MOR、FAU、CHA和MFI)上的吸附和扩散特性进行系统研究。结果表明,对于全硅分子筛而言,其分子筛的拓扑结构影响NO与NH3在分子筛上的吸附,综合吸附量及吸附作用能发现,MFI和LEV分子筛对NO具有较优的吸附特性;MFI和BEA分子筛对NH3具有较优的吸附特性。研究了Si与Al物质的量比对BEA分子筛吸附性能影响,结果表明,随着Si与Al物质的量比降低,分子筛自由体积逐渐增加,进而有助于分子筛催化剂对NO和NH3的吸附。采用分子动力学模拟计算NO与NH3在不同构型全硅分子筛上的扩散系数,发现具有三维直通道且孔径较大的分子筛催化剂有利于NO和NH3在其孔道内部的扩散,MFI虽然具备三维孔道结构,但由于存在Z型交叉通道,一定程度阻碍了反应物分子的扩散。%The adsorption and diffusion of NO and NH3 as the reactant of NH3-SCR reaction system over various kinds of zeolite catalysts( LTL,FER,LEV,BEA,MOR,FAU,CHA,MFI)were investigated by employing molecule simulation methods of Monte Carlo and Molecular Dynamics. The results indicated that the zeolitic topology greatly influenced the adsorption of NO and NH3 molecules according to the sim-ulation results of adsorption amount and adsorption energy. Accordingly,it was found that MFI and LEV were efficient for NO adsorption,and MFI and BEA were efficient for NH3 adsorption. The effects of Si/Al molar ratio on the adsorption of NO and NH3 over BEA zeolite were also studied. The study showed that the free volume of zeolite catalysts gradually increased along with the decrease of Si/Al molar ratios, which facilitated the adsorption of NO and NH3 . The molecular dynamics was further employed for the cal-culations of diffusion coefficient of NO and NH3 on all

  10. An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    Directory of Open Access Journals (Sweden)

    Zaiku Xie

    2010-05-01

    Full Text Available Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT, etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts.

  11. Sulphur condensation influence in Claus catalyst performance.

    Science.gov (United States)

    Mora, R L

    2000-12-01

    The Claus process is an efficient way of removing H(2)S from acid gas streams and this is widely practised in industries such as natural gas processing, oil refining and metal smelting. Increasingly strict pollution control regulations require maximum sulphur recovery from the Claus unit in order to minimise sulphur-containing effluent. The most widely used Claus catalyst in sulphur recovery units is non-promoted spherical activated alumina. Properties associated with optimum non-promoted Claus catalyst performance include high surface area, appropriate pore size distribution and enhanced physical properties. The objective of this paper is to outline a procedure in order to estimate Claus catalyst effectiveness after pore plugging due to sulphur condensation. Catalyst deactivation due to pore plugging by sulphur is modelled employing a Bethe lattice and its corresponding performance is described by means of a modified effectiveness factor. Model results show an improvement in the modified effectiveness factor due to modifications in catalyst porous structure.

  12. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  13. 双氧水行业含钯废催化剂回收工艺的研究%Study on the Recovery of Palladium from Spent Hydrogen Peroxide Industry Catalyst

    Institute of Scientific and Technical Information of China (English)

    王欢; 邰盛彪; 贺小塘; 韩守礼; 吴喜龙; 李勇; 刘文; 马明涛; 谭明亮

    2013-01-01

    The recovery process of palladium from spent hydrogen peroxide industry catalyst was investigated. By two steps hydrometallurgy process to achieve the enrichment of palladium, the enrichment was refined to obtain high purity palladium powder; the whole process of recovery was 98.66%. In addition, the key process was discussed, including sampling, remove organics and residue treatment, the optimized process was proposed on this basis.%对双氧水行业含钯废催化剂的回收工艺作了研究。采用湿法工艺分两步实现了钯的高效富集,富集物精炼得到99.95%的钯粉,全流程钯的回收率为98.66%。此外,对取样、除有机物、渣的处理等关键过程做了讨论,提出了优化的工艺流程。

  14. Latent catalyst; Senzaisei shokubai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Epoxy resin, an important function material to support such main industries as electric and electronic devices, automobiles, civil engineering, and building construction, is demanded of development of single liquid type resin having excellent quick hardening performance and storage stability. This requirement comes from environmental problems with an intention of saving energies and reducing resin wastes. The Company, using freely its independent phase separation technology that controls molecular structure of catalysts, developed a latent catalyst having excellent storage stability and high-temperature quick hardening performance. Its major features may be summarized as follows: (1) excellent storage stability at room temperature keeping the product stable for 2.5 months or longer (2 days in conventional products); (2) quick hardening performance hardening the resin in seven seconds at 150 degrees C (equivalent to conventional products); and (3) excellent insulation performance of hardened resin at 140 degrees C of 7 times 10 {sup 13} (ohm) (center dot) cm (2 times 10 {sup 12} (ohm) (center dot) cm in conventional products) (translated by NEDO)

  15. New catalysts for clean environment

    Energy Technology Data Exchange (ETDEWEB)

    Maijanen, A.; Hase, A. [eds.] [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    VTT launched a Research Programme on Chemical Reaction Mechanisms (CREAM) in 1993. The three-year programme (1993-1995) has focused on reaction mechanisms relevant to process industries and aimed at developing novel catalysts and biocatalysts for forest, food, and specialty chemicals industries as well as for energy production. The preliminary results of this programme have already been presented in the first symposium organized in Espoo in September 1994. To conclude the programme the second symposium is organized in Otaniemi, Espoo on January 29 - 30, 1996. Papers by 19 speakers and 17 poster presentations of the 1996 Symposium are included in this book. The Symposium consists of four sessions: Biotechnology for Natural Fibers Processing, New Biocatalysts, Catalysts for Clean Energy, and New Opportunities for Chemical Industry. The CREAM programme has tried to foresee solutions for the problems challenged by the public concern on environmental aspects, especially dealing with industrial processes and novel use of raw materials and energy. The programme has followed the basic routes that can lead to natural and simple solutions to develop processes in the fields of forest, food fine chemicals, and energy industry. This symposium presents the results of the programme to learn and further discuss together with the international experts that have been invited as keynote speakers. (author)

  16. Phosphine-Free EWG-Activated Ruthenium Olefin Metathesis Catalysts

    Science.gov (United States)

    Grela, Karol; Szadkowska, Anna; Michrowska, Anna; Bieniek, Michal; Sashuk, Volodymyr

    Hoveyda-Grubbs catalyst has been successfully fine-tuned by us in order to increase its activity and applicability by the introduction of electron-withdrawing groups (EWGs) to diminish donor properties of the oxygen atom. As a result, the stable and easily accessible nitro-substituted Hoveyda-Grubbs catalyst has found a number of successful applications in various research and industrial laboratories. Some other EWG-activated Hoveyda-type catalysts are commercially available. The results described herewith demonstrate that the activity of ruthenium (Ru) metathesis catalysts can be enhanced by introduction of EWGs without detriment to catalysts stability. Equally noteworthy is the observation that different Ru catalysts turned out to be optimal for different applications. This shows that no single catalyst outperforms all others in all possible applications.

  17. Foundation Flash Catalyst

    CERN Document Server

    Goralski, Greg

    2010-01-01

    This book offers an introduction to Flash Catalyst for designers with intermediate to advanced skills. It discusses where Catalyst sits within the production process and how it communicates with other programs. It covers all of the features of the Flash Catalyst workspace, teaching you how to create designs from scratch, how to build application designs and add functionality, and how to master the Catalyst/Flex workflow. * Introduces Flash Catalyst * Focuses on production process * Covers the interrelation between Flash Catalyst and Photoshop/Illustrator/Flex/Flash What you'll learn Starting f

  18. Carbon-based metal-free catalysts

    Science.gov (United States)

    Liu, Xien; Dai, Liming

    2016-11-01

    Metals and metal oxides are widely used as catalysts for materials production, clean energy generation and storage, and many other important industrial processes. However, metal-based catalysts suffer from high cost, low selectivity, poor durability, susceptibility to gas poisoning and have a detrimental environmental impact. In 2009, a new class of catalyst based on earth-abundant carbon materials was discovered as an efficient, low-cost, metal-free alternative to platinum for oxygen reduction in fuel cells. Since then, tremendous progress has been made, and carbon-based metal-free catalysts have been demonstrated to be effective for an increasing number of catalytic processes. This Review provides a critical overview of this rapidly developing field, including the molecular design of efficient carbon-based metal-free catalysts, with special emphasis on heteroatom-doped carbon nanotubes and graphene. We also discuss recent advances in the development of carbon-based metal-free catalysts for clean energy conversion and storage, environmental protection and important industrial production, and outline the key challenges and future opportunities in this exciting field.

  19. Discovery of technical methanation catalysts based on computational screening

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Kasper Emil; Kustov, Arkadii

    2007-01-01

    Methanation is a classical reaction in heterogeneous catalysis and significant effort has been put into improving the industrially preferred nickel-based catalysts. Recently, a computational screening study showed that nickel-iron alloys should be more active than the pure nickel catalyst...

  20. Adsorption, Diffusion and Reaction Studies of Hydrocarbons on Zeolite Catalysts

    NARCIS (Netherlands)

    Donk, Sander van

    2002-01-01

    Zeolites are crystalline microporous materials that are widely applied as catalysts in industries like oil refining, basic petrochemistry and fine chemistry. The major benefit of the use of zeolites as catalysts lies in their unique microporous structures. However, in some cases the presence of micr

  1. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution.

    Science.gov (United States)

    Morales-Guio, Carlos G; Stern, Lucas-Alexandre; Hu, Xile

    2014-09-21

    Progress in catalysis is driven by society's needs. The development of new electrocatalysts to make renewable and clean fuels from abundant and easily accessible resources is among the most challenging and demanding tasks for today's scientists and engineers. The electrochemical splitting of water into hydrogen and oxygen has been known for over 200 years, but in the last decade and motivated by the perspective of solar hydrogen production, new catalysts made of earth-abundant materials have emerged. Here we present an overview of recent developments in the non-noble metal catalysts for electrochemical hydrogen evolution reaction (HER). Emphasis is given to the nanostructuring of industrially relevant hydrotreating catalysts as potential HER electrocatalysts. The new syntheses and nanostructuring approaches might pave the way for future development of highly efficient catalysts for energy conversion.

  2. Pd Close Coupled Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhong Hua SHI; Mao Chu GONG; Yao Qiang CHEN

    2006-01-01

    A catalyst comprised novel high surface area alumina support was prepared to control emission of automobiles. The results showed that prepared catalyst could satisfy the requirements of a high performance close coupled catalyst for its good catalytic activity at low temperature and good stability at high temperature.

  3. Spatial heterogeneities within an individual catalyst particle during reaction as revealed by in-situ micro-spectroscopy

    NARCIS (Netherlands)

    Kox, M.H.F.

    2009-01-01

    Heterogeneous catalysts are solids, which are of fundamental importance in (petro-) chemical, pharmaceutical and environmental industries. The majority (> 85%) of all chemicals and transportation fuels have come into contact with at least one catalyst material during their manufacturing process. In

  4. Process for Functionalizing Biomass using Molybdenum Catalysts

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention concerns a process for converting biomass into useful organic building blocks for the chemical industry. The process involves the use of molybdenum catalysts of the formula Aa+a(MovXxR1yR2zR3e)a*3-, which may be readily prepared from industrial molybdenum compounds.......The present invention concerns a process for converting biomass into useful organic building blocks for the chemical industry. The process involves the use of molybdenum catalysts of the formula Aa+a(MovXxR1yR2zR3e)a*3-, which may be readily prepared from industrial molybdenum compounds....

  5. Heterogeneous catalysis of mixed oxides perovskite and heteropoly catalysts

    CERN Document Server

    Misono, M

    2014-01-01

    Mixed oxides are the most widely used catalyst materials for industrial catalytic processes. The principal objective of this book is to describe systematically the mixed oxide catalysts, from their fundamentals through their practical applications.  After describing concisely general items concerning mixed oxide and mixed oxide catalysts, two important mixed oxide catalyst materials, namely, heteropolyacids and perovskites, are taken as typical examples and discussed in detail. These two materials have several advantages: 1. They are, respectively, typical examples of salts of oxoacids an

  6. Use of Intraparticle Mass Transfer Parameters as a Design Tool for Catalyst Pellets

    Institute of Scientific and Technical Information of China (English)

    L. PETROV; M. DAOUS; Y. ALHAMED; A. AL-ZAHRANI; Kh. MAXIMOV

    2012-01-01

    A chromatographic method and a dynamic Wicke-Kallenbach method (DMWK) were used to determine the diffusion characteristics of two industrial copper containing catalysts.The first catalyst was used in nitrobenzene hydrogenation to aniline and the second was used in a low temperature water-gas shift reaction.Experimental results show that application of these two methods leads to similar results.Experimental data obtained allow for monitoring changes in the texture of the catalyst grains and intraparticle diffusivity of gaseous reagents at different states of the catalyst activity and use,which can be used as criteria for designing optimal industrial catalyst pellets.

  7. Overview of Support Effects in Hydrotreating Catalysts

    Institute of Scientific and Technical Information of China (English)

    Michèle Breysse

    2004-01-01

    @@ Industrial hydrotreating (HDT) catalysts are composed of a molybdenum sulfide (or tungsten sulfide) phase promoted by cobalt or nickel and usually supported on alumina. The origin of the almost exclu1sive use of alumina as support has to be ascribed to its outstanding textural and mechanical properties and its relatively low cost[1].

  8. Catalysts for the Selective Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Catherine Brookes

    2016-06-01

    Full Text Available In industry, one of the main catalysts typically employed for the selective oxidation of methanol to formaldehyde is a multi-component oxide containing both bulk Fe2(MoO43 and excess MoO3. It is thought that the excess MoO3 primarily acts to replace any molybdenum lost through sublimation at elevated temperatures, therefore preventing the formation of an unselective Fe2O3 phase. With both oxide phases present however, debate has arisen regarding the active component of the catalyst. Work here highlights how catalyst surfaces are significantly different from bulk structures, a difference crucial for catalyst performance. Specifically, Mo has been isolated at the surface as the active surface species. This leaves the role of the Fe in the catalyst enigmatic, with many theories postulated for its requirement. It has been suggested that the supporting Fe molybdate phase enables lattice oxygen transfer to the surface, to help prevent the selectivity loss which would occur in the resulting oxygen deficit environment. To assess this phenomenon in further detail, anaerobic reaction with methanol has been adopted to evaluate the performance of the catalyst under reducing conditions.

  9. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  10. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...

  11. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  12. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  13. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    2001-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the particles.

  14. Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase

    Directory of Open Access Journals (Sweden)

    Alessandra Magistrato

    2011-01-01

    Full Text Available The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via an iron molybdenum cofactor (FeMo-co under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N2 to various degrees. However, to date Mo(N2(HIPTN3N with (HIPTN3N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N2. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  15. Manipulating the reactivity of nanoscale catalysts

    DEFF Research Database (Denmark)

    Conradsen, Christian Nagstrup

    . The dynamical changes of an industrial Cu/ZnO/Al2O3 catalyst are investigated by three adsorption methods and XPS. A deviation in the copper surface area measured by H2-TPD and N2O-RFC is explained by the appearance of metallic zinc measured by XPS. The pretreatment in hydrogen resulted in a surface decoration...... is an investigation of a model Cu/Ru system for ammonia oxidation and the deployment the system on a high surface area support. The last part of the thesis presents the dynamical changes of an industrial Cu/ZnO/Al2O3 catalyst during a pretreatment in hydrogen. The structure sensitivity of ruthenium for the CO....... A volcano shaped curve of the activity is found as a function of the copper overlayer thickness. The volcano has an optimum at a copper overlayer thickness of 2 Å corresponding to a coverage of 0.78 ML. The Cu/Ru system is deployed to a real catalyst on a high surface area support. The catalyst also proved...

  16. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  17. Synthesis and characterization of ZSM-12 type zeolytic catalysts by using different aluminium sources in the petroleum industry; Sintese e caracterizacao de catalisadores zeoliticos do tipo ZSM-12 utilizando diferentes fontes de aluminio na industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Marilia R.F.S.; Jesus, Daniela B.; Souza, Marcelo J.B. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Engenharia Quimica; Santos, Consuelo D.; Machado, Sanny W.M.; Pedrosa, Anne M. Garrido [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Quimica

    2010-12-15

    The main objective was to synthesize and characterize ZSM-12 zeolites from different sources of aluminium, using hydrothermal method and characterize the catalysts synthesized by X-ray diffractions, thermal analysis and infrared absorption spectroscopy. The X-ray diffractogram showed the formation of zeolites of the family pantasil crystalline. Thermogravimetric curves and FTIR spectra were utilized by monitoring the removal of template and by monitoring the maintenance of zeolite structure. (author)

  18. Oxides Catalysts of Rare Earth and Transient Metal for Catalytic Oxidation of Benzene

    Institute of Scientific and Technical Information of China (English)

    Liang Kun; Li Rong; Chen Jianjun; Ma Jiantai

    2004-01-01

    The catalysts of CeO2 and the mixture of CeO2 and CuO were prepared, and the activities of these catalysts for completely oxidizing benzene were studied.The results show that the optimal proportion of CeO2/CuO is 6: 4.The highest temperature at which benzene was completely oxidized on these catalysts at different airspeed was measured.Compared these catalysts with the noble metal used, our catalysts had superiority in the resources and the industrial cost besides good activities.

  19. Selective propene oxidation on mixed metal oxide catalysts

    CERN Document Server

    James, D W

    2002-01-01

    Selective catalytic oxidation processes represent a large segment of the modern chemical industry and a major application of these is the selective partial oxidation of propene to produce acrolein. Mixed metal oxide catalysts are particularly effective in promoting this reaction, and the two primary candidates for the industrial process are based on iron antimonate and bismuth molybdate. Some debate exists in the literature regarding the operation of these materials and the roles of their catalytic components. In particular, iron antimonate catalysts containing excess antimony are known to be highly selective towards acrolein, and a variety of proposals for the enhanced selectivity of such materials have been given. The aim of this work was to provide a direct comparison between the behaviour of bismuth molybdate and iron antimonate catalysts, with additional emphasis being placed on the component single oxide phases of the latter. Studies were also extended to other antimonate-based catalysts, including coba...

  20. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  1. Methanol dehydration on carbon-based acid catalysts

    OpenAIRE

    Valero-Romero, Mª José; Calvo-Muñoz, Elisa Mª; Ruiz-Rosas, Ramiro; Rodríguez-Mirasol, José; Cordero, Tomás

    2013-01-01

    Methanol dehydration to produce dimethyl ether (DME) is an interesting process for the chemical industry since DME is an important intermediate and a promising clean alternative fuel for diesel engines. Pure or modified γ-aluminas (γ-Al2O3) and zeolites are often used as catalysts for this reaction. However, these materials usually yield non desirable hydrocarbons and undergo fast deactivation. In this work, we study the catalytic conversion of methanol over an acid carbon catalyst obtaine...

  2. Spent FCC catalyst for improving early strength Portland cement

    OpenAIRE

    Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Paya Bernabeu, Jorge Juan; Vunda, Christian; VELÁZQUEZ RODRÍGUEZ, SERGIO; Soriano Martinez, Lourdes

    2014-01-01

    Spent fluid catalytic cracking (FCC) catalyst from the petrol industry has proven to be a very active pozzolanic material. This behavior leads to an additional increase in the strength of the mortar that contains this catalyst. Pozzolanic effects tend to be considered for periods above three days, whereas in shorter times, the influence of pozzolan is usually negligible. The reactivity of FCC is so high, however, that both pozzolanic effects and acceleration of cement hydration are evident in...

  3. Post-functionalized Hybrid Materials as Multi-site Catalysts

    OpenAIRE

    Rasero Almansa, Antonia María

    2016-01-01

    [EN] Catalysis is one of the fundamental pillars of green chemistry, which was described as the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. The design and application of new catalysts and catalytic systems lead to the dual goals of environmental protection and economic benefit. Heterogeneous catalysts are the most used in industry because they present several advantages such as easy post reaction separation, high stability...

  4. Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus

    1997-01-01

    Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de......NOx'ed flue gas. The vanadium (IV) compound K4(VO)3(SO4)5 precipitated during all the investigated conditions hence causing catalyst deactivation. Hysteresis behavior of both the catalytic activity and the V(IV) content was observed during reheating....

  5. A bioinspired iron catalyst for nitrate and perchlorate reduction.

    Science.gov (United States)

    Ford, Courtney L; Park, Yun Ji; Matson, Ellen M; Gordon, Zachary; Fout, Alison R

    2016-11-11

    Nitrate and perchlorate have considerable use in technology, synthetic materials, and agriculture; as a result, they have become pervasive water pollutants. Industrial strategies to chemically reduce these oxyanions often require the use of harsh conditions, but microorganisms can efficiently reduce them enzymatically. We developed an iron catalyst inspired by the active sites of nitrate reductase and (per)chlorate reductase enzymes. The catalyst features a secondary coordination sphere that aids in oxyanion deoxygenation. Upon reduction of the oxyanions, an iron(III)-oxo is formed, which in the presence of protons and electrons regenerates the catalyst and releases water.

  6. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    Science.gov (United States)

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  7. Synthesis, characterization and hydrotreating performance of supported tungsten phosphide catalysts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H2 and characterized by X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS).The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined.The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene,pyridine,dibenzothiophene,carbazole and diesel oil as the feed-stock.The TiO2,γ-Al2O3 supports and the Ni,Co promoters could remarkably increase and stabilize active W species on the catalyst surface.A suitable amount of Ni (3%-5%),Co (5%-7%) and V (1%-3%) could increase dispersivity of the W species and the BET surface area of the WP/γ-Al2O3 catalyst.The WP/γ-Al2O3 catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities.The Ni,Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/γ-Al2O3 catalyst.The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/γ-Al2O3 catalyst.In general,a support or promoter in the WP/γ-Al2O3 catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.

  8. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  9. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  10. Hydrotreating of waste lube oil by rejuvenated spent hydrotreating catalyst

    Directory of Open Access Journals (Sweden)

    Sadeek A. Sadeek

    2014-03-01

    Full Text Available Large quantities of catalysts are used in the Egyptian refining industry for the purification and upgrading of various petroleum streams. These catalysts gradually lose activity through deactivation with time and the spent catalysts were usually discarded as solid waste. On the other hand, waste lube oil contains heavy metals coming from undergirded base oil and additives, these metals have carcinogenic effect and cause serious environmental problems. Studies are conducted on the reclamation of metals, rejuvenation and reuse of the spent hydrotreating catalyst (Mo–Ni/Al which have been used in re-refining of waste lube oil at Alexandria Petroleum Company. Three leaching solvents were used: oxidized oxalic acid, benzoic acid and boric acid at different concentrations (4%, 8% and 16%, different oxidizing agents (H2O2 and Fe(NO33 and different modes of addition of oxidizing agents (batch and continuous. The results indicated that 4% oxalic acid + 5% Fe(NO33 at continuous addition of oxidizing agents was the most efficient leaching solvent to facilitate metal removal and rejuvenate catalyst. The fresh catalyst was applied for re-refining of waste lube oil under different reaction temperatures (320–410 °C in order to compare the hydrodesulphurization (HDS activity with both the fresh, treated and spent catalysts. The results indicated that the rejuvenation techniques introduce a catalyst have HDS activity nearly approach to that the fresh of the same type.

  11. New Catalysts for ROMP

    Institute of Scientific and Technical Information of China (English)

    H. Berke; C. Frech; A. Lhamazares; O. Blacque; H.W. Schmalle; C. Adlhart; P. Chen

    2005-01-01

    @@ 1Introduction Ring Opening Metathesis Polymerization (ROMP) is based on the olefin metathesis reaction, which requires transition metal catalysts. Mainly molybdenum, tungsten and ruthenium based catalysts have up to now been used. The "in-between" metal rhenium was only rarely applied in olefin metathesis reactions, and not at all in ROMP processes.We have found that cationic phosphine substituted dinitrosyl rhenium complexes[1]1a and 1b effectively catalyze ROMP of norbonene, dicyclopentadiene and of cyclooctene. See Fig. 1.

  12. Lits fluidisés pour l'industrie chimique. Extrapolation et amélioration des catalyseurs. Première partie : Etudes et modèles. Enseignements issus des pilotes Fluidized Beds in Chemical Industry. Scale Up and Catalysts Improvement. First Part: Studies, Models, Learning from Pilot Plants

    Directory of Open Access Journals (Sweden)

    Botton R.

    2006-12-01

    est intitulée Études théoriques, réalités expérimentales, suggestions . Les bulles des lits fluidisés ont fait l'objet de très nombreux travaux, dont les résultats sont très souvent explicités sous la forme de modèles mécanistiques à un paramètre qui est le diamètre des bulles. Pour confronter ces modèles à l'expérience, une relation est établie entre le diamètre des bulles et la vitesse minimum de fluidisation de comportement. Des suggestions sont alors faites pour améliorer les modèles, et l'on propose des conclusions générales sur les lits fluidisés. The firsts catalytic fluidized beds appear near 1942 in petroleum industry and near 1960 in chemical industry. We only consider very high performances chemical fluidized bed reactors (> 99%. In the past, they were developed through the use of very expensive pilot plants of about 0. 5 m diameter and 10 in high. We will demonstrate that direct scale up from laboratory data is possible. This possibility gives also a simple method to improve catalysts used into operating units and opens fluidized bed technique to products that need only low production. Presentation is made with three articles:- In the first, Studies, Models, Learning from Pilot Plants : after a description of the major scale-up problems, studies to solve then are summarized. Then scale-up works of two processes with the use of about 0. 5 m diameter pilot plant are given. From the results it is deduced the possible performances of a catalytic fluidized bed and how to operate to obtain then. - In the second*, Scale up with Only Laboratory Data , it is experimentally demonstrated that the information's scale-up can be obtained in a laboratory. A strategy to obtain them is suggested. An another result of theses experimental studies is that all physical properties of catalytic fluidized bed depends of only one parameter. It is called comportment incipient fluidization velocity . - In the third*, Theoretical Studies, Experimental

  13. X-ray characterization of platinum group metal catalysts

    Science.gov (United States)

    Peterson, Eric J.

    complements information obtained from both XRD and XAS. With aberration-corrected HAADF, particles ranging from sub-nm-size down to clusters of a few atoms and isolated single-atoms can be routinely imaged. A challenge to the interpretation of these images is the characterization of mixed atomic species, in this case, palladium and lanthanum. In this work we show for the first time that quantitative chemical identification of atomically-dispersed mixtures of palladium and lanthanum in an industrially relevant catalyst (palladium on lanthanum-stabilized gamma-alumina) can be obtained through image intensity analysis. Using these techniques we have characterized the state of bimetallic fuel cell catalysts, ex situ, and have examined the state of Pd catalysts under operando CO oxidation conditions.

  14. Ethylene Oligomerization and Polymerization: Alternative Iron Catalysts beyond 2,6-Bisiminopyridyl Iron Complexes

    Institute of Scientific and Technical Information of China (English)

    Suyun Jie; Shu Zhang; Wenjuan Zhang; Yingxia Song; Junxian Hou; Wen-Hua Sun

    2005-01-01

    @@ 1Introduction Polyolefin industry arrives the option to transfer from multiple-site systems of the classical Ziegler-Natta catalysts to more sophisticated single-site catalysts. The late-transition metal compounds were traditionally assumed with poor polymerization properties due to the highly competitive chain-termination step, and produced the short-chain oligomers up to 40 carbon atoms (SHOP catalysts). Recently the polyolefins employing latetransition metal complexes as catalysts became a hot research subject with the pioneering works by Brookhart and Gibson. It is promising for nickel catalysts to use solely ethylene as monomer for highly branched polyethylenes, and the designed nickel catalysts were not useful in industry. It is critical time to investigate the relationship of coordination modes of nickel complexes and its catalytic activities and the properties of resultant polyethylenes.

  15. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Bligaard, Thomas

    2008-01-01

    The removal of trace acetylene from ethylene is performed industrially by palladium hydrogenation catalysts ( often modified with silver) that avoid the hydrogenation of ethylene to ethane. In an effort to identify catalysts based on less expensive and more available metals, density functional...... calculations were performed that identified relations in heats of adsorption of hydrocarbon molecules and fragments on metal surfaces. This analysis not only verified the facility of known catalysts but identified nickel- zinc alloys as alternatives. Experimental studies demonstrated that these alloys...

  16. Modern multiphase catalysis: new developments in the separation of homogeneous catalysts.

    Science.gov (United States)

    Muldoon, Mark J

    2010-01-14

    Homogeneous catalysts are powerful tools for the synthesis of fine chemicals, pharmaceuticals and materials, however their exploitation on an industrial scale is often held back due to the challenges of separating and recycling the catalyst. This perspective focuses on approaches to multiphase catalysis that have emerged in the last decade, highlighting methods that can address the separation issues and in some cases result in superior catalyst performance and environmental benefits.

  17. Alternative Models of Iron and Cobalt Catalysts for Ethylene Oligomerization and Polymerization

    Institute of Scientific and Technical Information of China (English)

    Katrin; Wedeking; Sherrif; Adewuyi; Maliha; Asma; Igor; Vystorop; Saliu; Amolegbe; Elena; Novikova

    2007-01-01

    1 Results Great progresses have been made in the field of transition metal-based complexes as catalytic precursors for olefin oligomerization and polymerization,in which the core subjects will remain as "know and how" to develop novel catalysts both in academic and industrial consideration.The key advantage of iron and cobalt catalyst for ethylene polymerization is to produce vinyl-type polyethylenes.Therefore following the pioneering works of bis(imino) pyridyl iron and cobalt catalyst by Brookhart[1] ...

  18. Supported organoiridium catalysts for alkane dehydrogenation

    Science.gov (United States)

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  19. Development of radioactive platinum group metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E. [and others

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m{sup 2}/g.The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs.

  20. Porous structure and particle size of silica and hydrotalcite catalyst precursors

    NARCIS (Netherlands)

    Titulaer, M.K.

    1993-01-01

    The subject of this thesis is the control of the porous structure of catalyst bodies. The first part deals with silica, that can be utilized as catalyst support with many industrially important catalytic reactions. The second part of the thesis deals with the preparation and characterization of soli

  1. Ammonia synthesis over multi-promoted iron catalysts obtained by high-energy ball-milling

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Jiang, Jianzhong; Mørup, Steen

    1999-01-01

    The feasibility of producing ammonia synthesis catalysts from high-energy ball-milling of a simple mixture of the constituent oxides has been investigated. The effect of ball-milling the fused oxidic precursor of the industrial KM1 ammonia synthesis catalyst has also been studied. The results show...

  2. Controlled assembly of a Cr-based heterogeneous single-site ethylene trimerisation catalyst

    NARCIS (Netherlands)

    Nenu, C.N.

    2006-01-01

    One of the most illustrative examples of heterogeneous catalyst complexity is the Phillips-type Cr/SiO2 catalyst, which is industrially used for the production of more than 40% of all polyethylene worldwide. It is considered that (i) the amount of active Cr sites is less than 10% of the total amount

  3. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  4. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  5. Cumene hydroperoxide hydrogenation over Pd/C catalysts.

    Science.gov (United States)

    Zhu, Qing-cai; Shen, Ben-xian; Ling, Hao; Gu, Rong

    2010-03-15

    Pd/C catalysts were prepared by wet impregnation using K(2)PdCl(4) as precursor and their performance in hydrogenation of cumene hydroperoxide (CHP) was investigated. The catalytic activity was examined on the formaldehyde-reduced and on the hydrogen-reduced Pd/C catalysts. Results from XRD, TEM and CO chemisorption showed that reduction methods have a significant impact on the palladium particles size of resulting catalysts. Formaldehyde-reduced Pd/C catalyst has larger palladium particles than hydrogen-reduced Pd/C catalyst. Consequently, higher activity but lower selectivity to alpha-cumyl alcohol (CA) was obtained on formaldehyde-reduced Pd/C catalyst. Moreover, hydrogenation of CHP over hydrogen-reduced Pd/C catalyst can give similar CA selectivity to Na(2)SO(3) reduction process, an industrial process for CA production. High rate of CHP conversion and CA selectivity can be obtained at an elevated temperature and H(2) pressure. Kinetics studies revealed that CHP hydrogenation is zero-order for CHP concentration and the activation energy was calculated to be 13.6 kJ/mol.

  6. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  7. Olefin metathesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S.G.; Banks, R.L.

    1986-05-20

    A process is described for preparing a disproportionation catalyst comprising admixing a catalytically effective amount of a calcined and activated catalyst consisting essentially of at least one metal oxide selected from molybdenum oxide and tungsten oxide and a support containing a major proportion of silica or alumina with a promoting amount of a methylating agent selected from the group consisting of dimethyl sulfate, dimethylsulfoxide, trimethyloxonium tetrafluorborate, methyl iodide, and methyl bromide, and subjecting same to inert atmospheric conditions for the methylating agent to promote the activity of the calcined molybdenum and tungsten oxides for the disproportionation of olefins.

  8. Mesoporous molecular sieve catalysts

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane

    be used as solid acid catalysts but can also be used as a size-selective matrix. It was shown that it is possible to encapsulate 1-2 nm sized gold nanoparticles by silicalite-1 or ZSM-5 zeolite crystals thereby forming a sintering-stable and substrate size-selective oxidation catalyst. After carrying out...... calcination experiments, both in situ and ex situ indicated that the gold nanoparticles embedded in the crystals were highly stable towards sintering. The catalytic tests proved that the embedded gold nanoparticles were active in selective aldehyde oxidation and were only accessible through the micropores...

  9. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions.

    Science.gov (United States)

    Jiang, Haibin; Lu, Shuliang; Zhang, Xiaohong; Dai, Wei; Qiao, Jinliang

    2016-01-01

    Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol) in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  10. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Haibin Jiang

    2016-06-01

    Full Text Available Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  11. Compressive strength and heavy metal leaching behaviour of mortars containing spent catalyst.

    Science.gov (United States)

    Rattanasak, U; Jaturapitakkul, C; Sudaprasert, T

    2001-10-01

    This investigation was set and aimed to study the possibility of using spent catalyst as a concrete constituent which the spent catalyst was used as sand. Besides the spent catalyst was used as sand, it was also ground to very small particle size as small as that of cement and used as 20% replacement of cement by weight. Compressive strengths and leaching characteristics of lead, chromium, cadmium, and nickel in mortars containing spent catalyst and ground spent catalyst were tested. The results presented revealed that the compressive strength of mortar containing spent catalyst increased with ages. The results also indicated that the compressive strength of mortar containing spent catalyst at the proportion of 1.25 times of cement by weight was strong enough to make a concrete brick. In case of the ground spent catalyst being used to replace cement, it made the compressive strength lower than that of the standard mortar approximately 20%. The leachate results of lead and chromium from spent catalyst were lower than the allowance, but cadmium and nickel exceeded the limits. After the spent catalyst was fixed with cement, the leaching of the heavy metals did not exceed the industrial effluent standard. Therefore, the heavy metals mentioned earlier were not a problem in using spent catalyst as a concrete constituent.

  12. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  13. Nanopore and nanoparticle catalysts.

    Science.gov (United States)

    Thomas, J M; Raja, R

    2001-01-01

    The design, atomic characterization, performance, and relevance to clean technology of two distinct categories of new nanocatalysts are described and interpreted. Exceptional molecular selectivity and high activity are exhibited by these catalysts. The first category consists of extended, crystallographically ordered inorganic solids possessing nanopores (apertures, cages, and channels), the diameters of which fall in the range of about 0.4 to about 1.5 nm, and the second of discrete bimetallic nanoparticles of diameter 1 to 2 nm, distributed more or less uniformly along the inner walls of mesoporous (ca. 3 to 10 nm diameter) silica supports. Using the principles and practices of solid-state and organometallic chemistry and advanced physico-chemical techniques for in situ and ex situ characterization, a variety of powerful new catalysts has been evolved. Apart from those that, inter alia, simulate the behavior of enzymes in their specificity, shape selectivity, regio-selectivity, and ability to function under ambient conditions, many of these new nanocatalysts are also viable as agents for effecting commercially significant processes in a clean, benign, solvent-free, single-step fashion. In particular, a bifunctional, molecular sieve nanopore catalyst is described that converts cyclohexanone in air and ammonia to its oxime and caprolactam, and a bimetallic nanoparticle catalyst that selectively converts cyclic polyenes into desirable intermediates. Nanocatalysts in the first category are especially effective in facilitating highly selective oxidations in air, and those in the second are well suited to effecting rapid and selective hydrogenations of a range of organic compounds.

  14. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  15. Heterogeneous chromium catalysts

    NARCIS (Netherlands)

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based silica-c

  16. Deactivation of Oxidation Catalysts

    Science.gov (United States)

    1991-05-01

    Levenspiel (Reference 10) have proposed an equivalent general expression of the form dS _KST (4) dtk to account for deactivation due to catalyst pore...Voorhies, A., IEC, 1954, vol. 37, p. 318. 10. Szepe, S., and 0. Levenspiel , Proc. 4th Europ. Symp. Chem. React. Eng., Pergamon Press, p. 265. 11. U.S

  17. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-05-14

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory oxide support containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one methylating agent under conditions suitable for the methylating agent compounds to promote the activity of tungsten and molybdenum oxides for the disproportionation reaction.

  18. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  19. Molybdenum sulfide/carbide catalysts

    Science.gov (United States)

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  20. CO hydrogenation to methanol on Cu–Ni catalysts

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Wu, Qiongxiao

    2012-01-01

    on surface area of the active material is comparable to that of the industrially used Cu/ZnO/Al2O3 catalyst. We employ a range of characterization tools such as inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis, in situ X-ray diffraction (XRD) and in situ transmission electron...

  1. Enlarged test catalysts during the hydrogenation of 1,4-butynediol to 1,4-butanediol

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The highly effective catalyzer for butynediol-1;4 hydrogenation was designed and synthesized. Enlarged tests showed that the selectivity on butanediol-1.4 at the hydrogenation of butynediol-1.4 on the alloyed catalyst SKN-39H during 320 h was 84.6 %; that on 18 % higher than for  industrial MNH. The yield of product on the catalyst SKN-39 increases slowly from 3.1 to 7.3 % when on a catalyst MNH – 7.1 to 11.7 % from the initial content of butynediol-1;4. At the hydrogenation of  butynediol on catalyst SKN-39H process efficiency increases in 1.5-2 times and product purity on 2-3 % is higher in comparing with the industrial catalyst MNH. 

  2. SULFUR-RESISTANT BIMETALLIC NOBLE METAL CATALYSTS FOR AROMATIC HYDROGENATION OF DIESEL FUEL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd-M/Y bimetallic catalysts, where M is non-noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd-M/Y catalysts were evaluated under the following conditions: H2 pressure 4.2 MPa, MHSV 4.0 h-1, sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.

  3. Removal of flotation reagents from process water by adsorption onto spent zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.F.; Valdiviezo, E. [COPPE/UFRJ, Rio de Janeiro (Brazil). Dept. of Materials and Metallurgical Engineering]|[CETEM/CNPQ, Rio de Janeiro (Brazil). Center for Mineral Technology

    1995-12-31

    Adsorption of residual flotation reagents onto equilibrium fluid cracking catalysts is a promising method of purification of flotation process water. In the present paper, adsorption of sodium dodecyl sulfate (SDS), dodecyl ammonium chloride (DAC) and sodium oleate onto a spent catalyst from petroleum industry was studied by analyzing the residual concentration of the surfactant after contact with the zeolite catalyst. The adsorption of the DAC was rather low but SDS and sodium oleate presented a high affinity for the catalyst surface. The loading capacity was 4.2 kg/ton for SDS and 5.5 kg/ton for oleic acid. After the treatment of the loaded catalyst with a HCl 1N solution these surfactants are desorbed and the catalyst may thus be regenerated. This would be an additional advantage to its low cost, not to mention its condition as a discarded product and its availability in large tonnages.

  4. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  5. Modelling Catalyst Surfaces Using DFT Cluster Calculations

    Directory of Open Access Journals (Sweden)

    Oliver Kröcher

    2009-09-01

    Full Text Available We review our recent theoretical DFT cluster studies of a variety of industrially relevant catalysts such as TiO2, γ-Al2O3, V2O5-WO3-TiO2 and Ni/Al2O3. Aspects of the metal oxide surface structure and the stability and structure of metal clusters on the support are discussed as well as the reactivity of surfaces, including their behaviour upon poisoning. It is exemplarily demonstrated how such theoretical considerations can be combined with DRIFT and XPS results from experimental studies.

  6. Modelling catalyst surfaces using DFT cluster calculations.

    Science.gov (United States)

    Czekaj, Izabela; Wambach, Jörg; Kröcher, Oliver

    2009-11-20

    We review our recent theoretical DFT cluster studies of a variety of industrially relevant catalysts such as TiO(2), gamma-Al(2)O(3), V(2)O(5)-WO(3)-TiO(2) and Ni/Al(2)O(3). Aspects of the metal oxide surface structure and the stability and structure of metal clusters on the support are discussed as well as the reactivity of surfaces, including their behaviour upon poisoning. It is exemplarily demonstrated how such theoretical considerations can be combined with DRIFT and XPS results from experimental studies.

  7. Fluorination process using catalysts

    Science.gov (United States)

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  8. Fluorination process using catalyst

    Science.gov (United States)

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  9. Silica supported Brӧnsted acids as catalyst in organic transformations:A comprehensive review

    Institute of Scientific and Technical Information of China (English)

    Manpreet Kaur; Sahil Sharma; Preet M. S. Bedi

    2015-01-01

    Brӧnsted acid catalysts have been used in a number of organic transformations. To overcome limi‐tations, such as toxicity, volatility, high price and hazardous nature of the conventional methods, the catalysts are adsorbed on silica gel to give the benefits and advantages of ready availability, simple work‐up procedure, long catalytic life, environment‐friendliness, good to excellent yields and recy‐clability. The uses of such catalysts have gained importance worldwide. This article describes some of the important silicated catalysts, namely, heteropolyacids, polyphosphoric acid, perchloric acid, fluoroboric acid, and silicated sulphuric acid. These catalysts have been used in a number of organic reactions to yield compounds that are important in the chemical and pharmaceutical industries. We summarize the beneficial effects of these catalysts and the reports that have been published on them in the past several years. In the present review, the description of the catalysts are introduced followed by a recent research history, and a comparison between the silica supported catalysts and other (polymer) supported catalysts. The article ends up giving the advantages of these catalytic systems over the conventional catalyst.

  10. Highly selective PdCu/amorphous silica-alumina (ASA) catalysts for groundwater denitration.

    Science.gov (United States)

    Xie, Yongbing; Cao, Hongbin; Li, Yuping; Zhang, Yi; Crittenden, John C

    2011-05-01

    Catalytic nitrate reduction is a promising technology in groundwater purification. In this study, PdCu bimetallic catalysts supported on an industrial amorphous silica-alumina (ASA) were synthesized and used to simulate catalytic removal of nitrate in groundwater. The catalysts exhibited very high activity and the highest catalytic selectivity toward N₂O and N₂ was 90.2%. The optimal Pd/Cu weight ratio was four. Relatively low reduction temperature was found benefit the catalytic stability and 300 °C was the appropriate reduction temperature during catalyst preparation. With an average particle size 5.4 nm, the metal particles were very uniformly distributed on the catalyst surface prepared with the codeposition method. This kept the catalyst more stable than the PdCu/Al₂O₂ catalyst with larger metal particles. According to XRD, TEM, and XPS results, the metals maintained zero-valence but aggregated by about 2 nm during the denitration reaction, which caused gradual deactivation of the catalysts. Little leaching of Cu and Pd from the catalyst might also have a slightly negative impact to the stability of the catalysts. A simple treatment was found to redistribute the particles on the deactivated catalysts, and high catalytic activity was recovered after this process.

  11. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  12. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-03-12

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory material containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one treating agent selected from chlorinated silicon compounds, thionyl chloride, and sulfuryl chloride under conditions suitable for the treating agent to promote the activity of tungsten and molybdenum oxides for the disporoportionation reaction.

  13. Role of clay as catalyst in Friedel–Craft alkylation

    Indian Academy of Sciences (India)

    Tanushree Choudhury; Nirendra M Misra

    2011-10-01

    Solid acids have become increasingly important for many liquid-phase industrial reactions these days. Montmorillonite clays (2:1 clay mineral) have been used as efficient solid acid catalysts for a number of organic and liquid phase reactions and offer several advantages over classic acids. Tailor made catalysts can be prepared from clays by suitably adjusting their acidity and surface area by acid activation. In the present work, preparation, characterization and performance of Pt (II) clays, Cu (II) clays, acid clay, and sol–gel hybrids of Cu (II) clays as solid catalysts in a test Friedel–Craft alkylation reaction of benzyl chloride with toluene using differential scanning calorimeter (DSC) are reported. Product formation has been analysed by FTIR spectroscopy. The main objective of this work is to show how clay as a solid catalyst affects reaction rates and activation energies. Acidity and dispersion of solid catalysts are twomain factors which govern a catalysis reaction. Kinetic parameter analysis and XRD studies confirm that acid Pt (II) clay and Pt (II) clay dispersed by natural dispersants aremore effective catalysts. In contrast to the reactions using AlCl3, the experimental conditions are non-polluting and the final work up does not require any aqueous treatment.

  14. Investigation of syngas interactions in alcohol synthesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Akundi, M.A.

    1998-04-15

    The primary objectives of the project are to (a) synthesize, by controlled sequential and co-impregnation techniques, three distinct composition metal clusters (consisting of Cu-Co-Cr and Cu-Fe-Zn): rich in copper (Methanol selective), rich in ferromagnetic metal (Co or Fe-Hydrocarbon selective) and intermediate range (mixed alcohol catalysts); (b) investigate the changes in the magnetic character of the systems due to interaction with CO, through Zero-field Nuclear Magnetic Resonance (ZFNMR) study of cobalt and Magnetic character (saturation magnetization and coercive field) analysis of the composite catalyst of Vibrating Sample Magnetometry (VSM); (c) examine the changes in syngas adsorption character of the catalyst as the composition changes, by FTIR Spectroscopic analysis of CO stretching frequencies; (d) determine the nature and size of these intermetallic clusters by Scanning Electron Microscopy (SEM); and (e) perform catalytic runs on selected samples and analyze the correlations between the physical and chemical characteristics. The catalysts chosen have a greater promise for industrial application than the Rh and Mo based catalysts. Several groups preparing catalysts by synthetic routes have reported divergent results for activity and selectivity. Generally the research has followed an empirical path and less effort is devoted to analyze the mechanisms and the scientific basis. The primary intent of this study is to analyze the nature of the intermetallic and gas-metal interactions and examine the correlations to catalytic properties.

  15. Influence of hydrogen treatment on SCR catalysts

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    reduction (SCR) process, i.e. the catalytic removal of NOx from the flue gas. A series of experiments was conducted to reveal the impact on the NO SCR activity of a industrial DeNOX catalyst (3%V2O5-7%WO3/TiO2) by treatment of H2. Standard conditions were treatment of the SCR catalyst for 60 min with three...... different concentrations of H2 (0-2%) in a 8% O2/N2 mixture, where the SCR activity was measured before and after the hydrogen treatment. The results show that the activity of the SCR catalyst is only negligible affected during exposure to the H2/O2 gas and in all cases it returned reversibly to the initial...... NOx conversion (temporarily higher) after reexposure to the standard NO SCR gas. Electron paramagnetic resonance (EPR) suggests that a fraction of both V(IV) and V(V) were reduced to V(III) during exposure to 2% H2 + 8% O2. However, the distribution of vanadium in oxidation state V(III)-V(V) quickly...

  16. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  17. Privileged chiral ligands and catalysts

    CERN Document Server

    Zhou, Qi-Lin

    2011-01-01

    This ultimate ""must have"" and long awaited reference for every chemist working in the field of asymmetric catalysis starts with the core structure of the catalysts, explaining why a certain ligand or catalyst is so successful. It describes in detail the history, the basic structural characteristics, and the applications of these ""privileged catalysts"". A novel concept that gives readers a much deeper insight into the topic.

  18. Oxygen-reducing catalyst layer

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O' Neill, David G. (Lake Elmo, MN)

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  19. Catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S.; Holmgreen, Erik M.; Yung, Matthew M.

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  20. How to make Fischer-Tropsch catalyst scale-up fully reliable?

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, L.; Heraud, J.P.; Forret, A.; Gazarian, J. [IFP Energies nouvelles, Solaize (France); Cornaro, U. [Eni S.p.A., San Donato Milanese (Italy). R and M Div.; Carugati, A. [Eni S.p.A., San Donato Milanese (Italy). E and P Div.

    2011-07-01

    Several players use Fischer-Tropsch catalysts and technologies industrially [1,2] or declare to be ready for industrial application [e.g. 3]. Present R and D aims to further increase capacities per train [4] or improve catalyst selectivity towards middle distillates [5]. For transforming promising laboratory results into industrial reality, representative catalyst testing is of particular importance for slurry bubble column FT. In the Italian eni's refinery of Sannazzaro, a 20 BPD slurry bubble column pilot plant has cumulated more than 20,000 hours time on stream in different campaigns. Non reactive slurry bubble columns corresponding to reactor capacities between 20 BPD and 1000 BPD permitted to determine the profiles for gas hold up and liquid velocities as a function of gas flow, catalyst loading, reactor diameter and internals. A hydrodynamic model based on those data led to design a Large Validation Tool, which can reproduce under reaction conditions a high mechanical stress on the catalyst equivalent to the one experienced in an industrial 15000 BPD reactor. While those tools have proven to be efficient for developing an industrial scale FT catalyst [3], they predict today in a representative manner fines formation, activity and selectivity of improved catalysts and / or for optimization of operation conditions to increase the capacity per train. We compare the here presented approach to others. We have found that it is mandatory to combine chemical stress from the reaction products with mechanical stress as experienced in an industrial slurry bubble column, in order to evaluate in a reliable way catalyst performance stability and fines formation. The potential of improvements are discussed. (orig.)

  1. Industrial Hardening Demonstration.

    Science.gov (United States)

    1980-09-01

    less severe conditions than thermal cracking (850’ - 950°F and 10 to 20 psi). Zeolitic or molecular sieve- base catalysts are used. Catalytic reforming...with Potential Industrial Hardening A-1 Participants B Post-Attack Petroleum Refining (and Production) B-1 from Crude Oil V List of Figures Number Page...the Key Worker Shelter 116 viii B-1 Proportions of the Products Obtained by Distillation B-2 of Six Crude Oils B-2 Generalized Flow Chart of the

  2. Fe3O4@MOF core-shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction

    Science.gov (United States)

    Ke, Fei; Qiu, Ling-Guang; Zhu, Junfa

    2014-01-01

    Separation and recycling of catalysts after catalytic reactions are critically required to reduce the cost of catalysts as well as to avoid the generation of waste in industrial applications. In this work, we present a facile fabrication and characterization of a novel type of MOF-based porous catalyst, namely, Fe3O4@MIL-100(Fe) core-shell magnetic microspheres. It has been shown that these catalysts not only exhibit high catalytic activities for the Claisen-Schmidt condensation reactions under environmentally friendly conditions, but remarkably, they can be easily separated and recycled without significant loss of catalytic efficiency after being used for many times. Therefore, compared to other reported catalysts used in the Claisen-Schmidt condensation reactions, these catalysts are green, cheap and more suitable for large scale industrial applications.Separation and recycling of catalysts after catalytic reactions are critically required to reduce the cost of catalysts as well as to avoid the generation of waste in industrial applications. In this work, we present a facile fabrication and characterization of a novel type of MOF-based porous catalyst, namely, Fe3O4@MIL-100(Fe) core-shell magnetic microspheres. It has been shown that these catalysts not only exhibit high catalytic activities for the Claisen-Schmidt condensation reactions under environmentally friendly conditions, but remarkably, they can be easily separated and recycled without significant loss of catalytic efficiency after being used for many times. Therefore, compared to other reported catalysts used in the Claisen-Schmidt condensation reactions, these catalysts are green, cheap and more suitable for large scale industrial applications. Electronic supplementary information (ESI) available: SEM and TEM images, and GC-MS spectra for chalcones. See DOI: 10.1039/c3nr05051c

  3. Monitoring catalysts at work in their final form: spectroscopic investigations on a monolithic catalyst

    DEFF Research Database (Denmark)

    Rasmussen, Søren B.; Bañares, Miguel A.; Bazin, Philippe;

    2012-01-01

    A monolithic vanadia–titania based catalyst has been subjected to studies with in situ FTIR spectroscopy coupled with mass spectrometry, during the SCR (Selective Catalytic Reduction) reaction. A device based on a transmission reactor cell for monolithic samples was constructed, dedicated to the ...... with other surface or bulk sensitive techniques, e.g. Raman and UV-vis spectroscopy.......A monolithic vanadia–titania based catalyst has been subjected to studies with in situ FTIR spectroscopy coupled with mass spectrometry, during the SCR (Selective Catalytic Reduction) reaction. A device based on a transmission reactor cell for monolithic samples was constructed, dedicated....... The observations reported here serve as a demonstration of the great potential for the application of operando spectroscopy on monolithic systems. This cross disciplinary approach aims to identify reaction pathways, active sites, intermediate- and spectator-species for catalytic reactions under truly industrial...

  4. REACTOR FILLED WITH CATALYST MATERIAL, AND CATALYST THEREFOR

    NARCIS (Netherlands)

    Sie, S.T.

    1995-01-01

    Abstract of WO 9521691 (A1) Described is a reactor (1) at least partially filled with catalyst granules (11), which is intended for catalytically reacting at least one gas and at least one liquid with each other. According to the invention the catalyst granules (11) are collected in agglomerates

  5. Atomistic Processes of Catalyst Degradation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-27

    The purpose of this cooperative research and development agreement (CRADA) between Sasol North America, Inc., and the oak Ridge National Laboratory (ORNL) was to improve the stability of alumina-based industrial catalysts through the combination of aberration-corrected scanning transmission electron microscopy (STEM) at ORNL and innovative sample preparation techniques at Sasol. Outstanding progress has been made in task 1, 'Atomistic processes of La stabilization'. STEM investigations provided structural information with single-atom precision, showing the lattice location of La dopant atoms, thus enabling first-principles calculations of binding energies, which were performed in collaboration with Vanderbilt University. The stabilization mechanism turns out to be entirely due to a particularly strong binding energy of the La tom to the {gamma}-alumina surface. The large size of the La atom precludes incorporation of La into the bulk alumina and also strains the surface, thus preventing any clustering of La atoms. Thus highly disperse distribution is achieved and confirmed by STEM images. la also affects relative stability of the exposed surfaces of {gamma}-alumina, making the 100 surface more stable for the doped case, unlike the 110 surface for pure {gamma}-alumina. From the first-principles calculations, they can estimate the increase in transition temperature for the 3% loading of La used commercially, and it is in excellent agreement with experiment. This task was further pursued aiming to generate useable recommendations for the optimization of the preparation techniques for La-doped aluminas. The effort was primarily concentrated on the connection between the boehmitre-{gamma}-Al{sub 2}O{sub 3} phase transition (i.e. catalyst preparation) and the resulting dispersion of La on the {gamma}-Al{sub 2}O{sub 3} surface. It was determined that the La distribution on boehmite was non-uniform and different from that on the {gamma}-Al{sub 2}O{sub 3} and thus

  6. MCM-41 Bound Ruthenium Complex as Heterogeneous Catalyst for Hydrogenation Ⅰ: Effect of Support, Ligand and Solvent on the Catalyst Performance

    Institute of Scientific and Technical Information of China (English)

    YU, Ying-Min; FEI, Jin-Hua; ZHANG, Yi-Ping; ZHENG, Xiao-Ming

    2006-01-01

    The functionalized MCM-41 mesoporous bound ruthenium complex was synthesized and characterized using elemental analysis, atomic absorption spectrophotometer, BET, XRD and FTIR. Hydrogenation of carbon dioxide to formic acid was investigated over these catalysts under supercritical CO2 condition. The effect of reactant gas partial pressure, supports, solvents and ligands on the synthesis of formic acid was studied. These factors could influence the catalyst activity, stability and reuse performance greatly and no byproduct was detected. These promising catalysts also offered the industrial advantages such as easy separation.

  7. Mechanochemistry, catalysis, and catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Butyagin, P.Yu.

    1987-07-01

    The physical basis of mechanochemistry and the reasons for the initiation and acceleration of chemical reactions upon the mechanical treatment of solids have been considered. The phenomenon of mechanical catalysis has been described in the example case of the oxidation of CO on oxide surfaces, and the nature of the active sites and the laws governing the mechanically activated chemisorption of gases on cleavage and friction surfaces of solids have been examined. The possibilities of the use of the methods of mechanochemistry in processes used to prepare catalysts have been analyzed in examples of decomposition reactions of inorganic compounds and solid-phase synthesis.

  8. Industrial applications of enzyme biocatalysis: Current status and future aspects.

    Science.gov (United States)

    Choi, Jung-Min; Han, Sang-Soo; Kim, Hak-Sung

    2015-11-15

    Enzymes are the most proficient catalysts, offering much more competitive processes compared to chemical catalysts. The number of industrial applications for enzymes has exploded in recent years, mainly owing to advances in protein engineering technology and environmental and economic necessities. Herein, we review recent progress in enzyme biocatalysis, and discuss the trends and strategies that are leading to broader industrial enzyme applications. The challenges and opportunities in developing biocatalytic processes are also discussed.

  9. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  10. Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer–Tropsch synthesis

    NARCIS (Netherlands)

    Eschemann, T.O.; Bitter, J.H.; Jong, de K.P.

    2014-01-01

    Because of their high activity and selectivity to C5+ hydrocarbons in the Fischer–Tropsch, process, titania-supported cobalt catalysts have received great interest from industrial and academic, institutions. Here, we report on three catalyst preparation procedures, incipient wetness impregnation (IW

  11. Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer-Tropsch synthesis

    NARCIS (Netherlands)

    Eschemann, Thomas O.; Bitter, Johannes H.; De Jong, Krijn P.

    2014-01-01

    Because of their high activity and selectivity to C5+ hydrocarbons in the Fischer-Tropsch, process, titania-supported cobalt catalysts have received great interest from industrial and academic, institutions. Here, we report on three catalyst preparation procedures, incipient wetness impregnation (IW

  12. In situ investigation of catalysts for alcohol synthesis

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Sharafutdinov, Irek; Wu, Qiongxiao

    The need for studying catalyst under realistic conditions is emphasized both by academic and industrial research. Acquiring highly resolved local information from materials under realistic environments by means of Transmission Electron Microscopy (TEM) has been found to be essential in connecting...... microscopic and macroscopic properties of materials, e.g. relating catalytic performance with crystal structure and morphology. This study presents extensive characterization of NiGa and CuNi alloys during catalyst formation, alcohol synthesis, and accelerated aging experiments. The characterization platform...... for observation in a gaseous environment. By using heating holders, dynamic information about catalysts in their working state can be gained using a variety of TEM techniques. The presented platform successfully illustrates the capability of correlating the dynamic changes in structural phase and particle size...

  13. Improved Ruthenium Catalysts for Z-Selective Olefin Metathesis

    Science.gov (United States)

    Keitz, Benjamin K.; Endo, Koji; Patel, Paresma R.; Herbert, Myles B.; Grubbs, Robert H.

    2011-01-01

    Several new C-H activated ruthenium catalysts for Z-selective olefin metathesis have been synthesized. Both the carboxylate ligand and the aryl group of the N-heterocyclic carbene have been altered and the resulting catalysts were evaluated using a range of metathesis reactions. Substitution of bidentate with monodentate X-type ligands led to a severe attenuation of metathesis activity and selectivity, while minor differences were observed between bidentate ligands within the same family (e.g. carboxylates). The use of nitrato-type ligands, in place of carboxylates, afforded a significant improvement in metathesis activity and selectivity. With these catalysts, turnover numbers approaching 1000 were possible for a variety of cross-metathesis reactions, including the synthesis of industrially-relevant products. PMID:22097946

  14. Interfacial electronic effects control the reaction selectivity of platinum catalysts

    Science.gov (United States)

    Chen, Guangxu; Xu, Chaofa; Huang, Xiaoqing; Ye, Jinyu; Gu, Lin; Li, Gang; Tang, Zichao; Wu, Binghui; Yang, Huayan; Zhao, Zipeng; Zhou, Zhiyou; Fu, Gang; Zheng, Nanfeng

    2016-05-01

    Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

  15. Etat actuel des recherches fondamentales sur les catalyseurs bimétalliques à base de platine, sur support alumine, comparables à ceux utilisés dans l'industrie pétrolière. Current State of Fundamental Research on Platinum-Base Bimetallic Catalysts on an Alumina Support, Comparable to the Ones Used in the Petroleum Industry

    Directory of Open Access Journals (Sweden)

    Charcosset H.

    2006-11-01

    és promoteurs diminuant l'hydrogénolyse ou (et inhibiteurs par encrassement ; 6 le fait que dans les 158 références de l'article la moitié date de 1976 et après, souligne l'intérêt croissant porté aux recherches fondamentales dans ce domaine. This article mainly concerns the pairs (Pt, Re, (Pt, Ir and (Pt,Ru dealt with in the following order - catalyst preparation (impregnation of the support, reduction by hydrogen ; - characterization of reduced catalysts ; - catalytic activities ; - scale-up tests ta industriel catalysts , - conclusions. Special emphasis is placed on I the difficulty of obtaining data on the degree of reduction which are meaningful concerning the state of the catalyst under normal working conditions, hence the need ta combine several techniques such as DTA, TGA, volumetry, catharometry, ESCA, in-frared spectroscopy, HL thermodesorption and the measuring of catalytic activities ; 21 the dference between the phase diagrams of divided and massed systems ; 3 the usefulness of the hydrogen titration of the unsorbed oxygen ta give evidence for the presence of small pure Mell particles in (Pt, Mell/AI20a catalysts; 4 the dependence of the final state of the catalyst on the activation mode. The pair (Pt, Re con be stabilized in a state of alloy particles having similar superficial and mean composition or in a state of particle mixture of (Pt, Re with an Re content of less than the rated composition and of pure and well dispersed Re. The pairs (Pt, Ir and especially (Pt, Ru are characterized by the difficulty in obtaining on alloy state with a constant composition from one metal particle to another ; 5 variations in catalytic activity due ta the addition of Mell to Pt, reflecting one or several of the following effects a increase in the dispersion of Pt with (or without a change in its intrinsic properties by weak-valence ions of W, Mo, Cr, etc. ; b formation of Mell in a metallic state, eventually producing an alloy with Pt ; c the rote of promoter carbon

  16. Catalyst design for biorefining.

    Science.gov (United States)

    Wilson, Karen; Lee, Adam F

    2016-02-28

    The quest for sustainable resources to meet the demands of a rapidly rising global population while mitigating the risks of rising CO2 emissions and associated climate change, represents a grand challenge for humanity. Biomass offers the most readily implemented and low-cost solution for sustainable transportation fuels, and the only non-petroleum route to organic molecules for the manufacture of bulk, fine and speciality chemicals and polymers. To be considered truly sustainable, biomass must be derived from resources which do not compete with agricultural land use for food production, or compromise the environment (e.g. via deforestation). Potential feedstocks include waste lignocellulosic or oil-based materials derived from plant or aquatic sources, with the so-called biorefinery concept offering the co-production of biofuels, platform chemicals and energy; analogous to today's petroleum refineries which deliver both high-volume/low-value (e.g. fuels and commodity chemicals) and low-volume/high-value (e.g. fine/speciality chemicals) products, thereby maximizing biomass valorization. This article addresses the challenges to catalytic biomass processing and highlights recent successes in the rational design of heterogeneous catalysts facilitated by advances in nanotechnology and the synthesis of templated porous materials, as well as the use of tailored catalyst surfaces to generate bifunctional solid acid/base materials or tune hydrophobicity.

  17. Catalyst technology roadmap report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, N.B.

    1997-06-01

    This report outlines the future technology needs of the Chemical Industry in the area of catalysis and is a continuation of the process that produced the report Technology Vision 2020: The U.S. Chemical Industry and the Council for Chemical Research`s (CCR) Chemical Synthesis Team follow-up work in chemical synthesis. Vision 2020 developed a 25-year vision for the chemical industry and outlined the challenges to be addressed in order to achieve this vision. This report, which outlines the catalysis technology roadmap, is based on the output of the CCR`s Chemical Synthesis Team, plus a workshop held March -20-21, 1997, which included about 50 participants, with catalysis experts from industry, academia, and government. It is clear that all participants view catalysis as a fundamental driver to the 0274 economic and environmental viability of the chemical industry. Advances in catalytic science and technology are among the most crucial challenges to achieving the goals of the chemical industry advanced in Vision 2020.

  18. A New Concept for Advanced Heterogeneous Metal Catalysts

    Institute of Scientific and Technical Information of China (English)

    Xu Bo-Qing

    2004-01-01

    Oxide-supported metal catalysts, having always nano-sized structures in which the metal catalysts are prepared as highly dispersed nano-crystals (typically 1-20 nm) on support oxide particles that are often one to several orders of magnitude larger than the metal nano-particles, are an important class of heterogeneous metal catalysts that finds many applications in chemical/petrochemical industries, in environmental protection, in chemical sensors and in the manufacture of fine and special chemicals. It is believed that catalysis by supported metals is the oldest application of nanotechnology. The literature has been rich in nano-size effect of metal nanoparticles in the metal/oxide catalysts. However, it is until recently that the development of size-controlled synthesis of oxide nanoparticles has made it possible to study the nano-size effect of oxide-support particles. When the particle sizes of an oxide support are reduced to become comparable to the sizes of the active metal nanoparticles, the oxide could deviate dramatically from its function as a conventional support. Such metal/oxide catalysts consisting of comparably sized metal and oxide nanocrystals are better called metal/oxide nanocomposite catalysts or catalytic nanoarchitectures.In this presentation, several attempts with reducing the particle size of oxide supports (ZrO2, TiO2,MgO, Al2O3) to approach the metal/oxide nanocomposite concept will be discussed to emphasize the importance of the support size effect. Examples will be given on characteristics of nanocomposite Ni/oxide catalysts for the reforming of natural gas with CO2 and/or steam, and on Au/oxide catalysts for CO oxidation and hydrogenation of unsaturated organic compounds. It will be emphasized that systematic investigations into the size effects of both the metal and oxide nanoparticles approaching the metal/oxide nanocomposite concept can lead to advanced heterogeneous metal catalysts.Moreover, intensive practice of the nanocomposite

  19. Calcium oxide based catalysts for biodiesel production: A review

    Directory of Open Access Journals (Sweden)

    Kesić Željka

    2016-01-01

    Full Text Available Vegetable oils are mainly esters of fatty acids and glycerol, which can be converted to fatty acid methyl esters (FAME, also known as biodiesel, by the transesterification reaction with methanol. In order to attain environmental benignity, a large attention has been focused in the last decades on utilizing heterogeneous catalysts for biodiesel production instead the homogenously catalyzed transesterification of vegetable oil. The pure CaO or CaO mixed with some other metal oxide due to its low solubility in methanol, FAME and glycerol, low cost and availability is one of the most promising among the proposed heterogeneous catalysts. Solid catalysts which contain CaO usually fulfill a number of important requirements, such as high activity at mild temperature, marginal leaching of Ca cations, long life activity, reusability in transesterification of vegetable oil and easy recovery from the final products of transesterification (FAME and glycerol. This review is focused to the recent application of pure CaO or CaO in complex catalyst structure and their use as heterogeneous base catalysts for biodiesel synthesis and suitability for industrial application. [Projekat Ministarstva nauke Republike Srbije, br. 45001

  20. Metal Catalysts Recycling and Heterogeneous/Homogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Masahiko Arai

    2015-05-01

    Full Text Available Heterogeneous metal catalysts rather than homogeneous ones are recommended for industrial applications after considering their performance in activity, separation, and recycling [1]. The recycling of metal catalysts is important from economic and environmental points of view. When supported and bulk metal catalysts are used in liquid-phase organic reactions, there is a possibility that active metal species are leaching away into the liquid phases [2,3]. The metal leaching would make it difficult for the catalysts to maintain their desired initial performance for repeated batch reactions and during continuous ones. The metal leaching would also cause some undesired contamination of products by the metal species dissolved in the reaction mixture, and the separation of the metal contaminants would be required to purify the products. Therefore, various novel methods have been proposed so far to immobilize/stabilize the active metal species and to separate/collect/reuse the dissolved metal species [4]. In addition, knowledge on the heterogeneous and homogeneous natures of organic reactions using heterogeneous catalysts is important to discuss their reaction mechanisms and catalytically working active species. [...

  1. Stereospecific olefin polymerization catalysts

    Science.gov (United States)

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  2. Catalytic destruction of dichloromethane using perovskite-type oxide catalysts.

    Science.gov (United States)

    Lou, Jie-Chung; Hung, Chang-Mao; Yang, Bor-Yu

    2004-06-01

    Dichloromethane (DCM, also known as methylene chloride [CH2Cl2]) is often present in industrial waste gas and is a valuable chemical product in the chemical industry. This study addresses the oxidation of airstreams that contain CH2Cl2 by catalytic oxidation in a tubular fixed-bed reactor over perovskite-type oxide catalysts. This work also considers how the concentration of influent CH2Cl2 (Co = 500-1000 ppm), the space velocity (GHSV = 5000-48,000 1/hr), the relative humidity (RH = 10-70%) and the concentration of oxygen (O2 = 5-21%) influence the operational stability and capacity for the removal of CH2Cl2. The surface area of lanthanum (La)-cobalt (Co) composite catalyst was the greatest of the five perovskite-type catalysts prepared in various composites of La, strontium, and Co metal oxides. Approximately 99.5% CH2Cl2 reduction was achieved by the catalytic oxidation over LaCoO3-based perovskite catalyst at 600 degrees C. Furthermore, the effect of the initial concentration and reaction temperature on the removal of CH2Cl2 in the gaseous phase was also monitored. This study also provides information that a higher humidity corresponds to a lower conversion. Carbon dioxide and hydrogen chloride were the two main products of the oxidation process at a relative humidity of 70%.

  3. Application of Li2SiO3 as a heterogeneous catalyst in the production of biodiesel from soybean oil

    Institute of Scientific and Technical Information of China (English)

    Jian Xun Wang; Kung Tung Chen; Shiuh Tsuen Huang; Chiing Chang Chen

    2011-01-01

    Biodiesel was synthesized from soybean oil by transesterification over Li2SiO3 catalyst. The Li2SiO3 can be used for biodiesel production directly without further drying or thermal pretreatment, no obvious difference in the FAME conversion (92.4-96.7%) between the air-exposed catalyst (24-72 h) and the fresh one (94.2%). This leads to important benefits when considering industrial applications of Li2SiO3 as a solid catalyst for storing and handling catalyst without taking special actions.

  4. When magnetic catalyst meets magnetic reactor: etherification of FCC light gasoline as an example.

    Science.gov (United States)

    Cheng, Meng; Xie, Wenhua; Zong, Baoning; Sun, Bo; Qiao, Minghua

    2013-01-01

    The application of elaborately designed magnetic catalysts has long been limited to ease their separation from the products only. In this paper, we for the first time employed a magnetic sulphonated poly(styrene-divinylbenzene) resin catalyst on a magnetically stabilized-bed (MSB) reactor to enhance the etherification of fluidized catalytic cracking (FCC) light gasoline, one of the most important reactions in petroleum refining industry. We demonstrated that the catalytic performance of the magnetic acid resin catalyst on the magnetic reactor is substantially enhanced as compared to its performance on a conventional fixed-bed reactor under otherwise identical operation conditions. The magnetic catalyst has the potential to be loaded and unloaded continuously on the magnetic reactor, which will greatly simplify the current complex industrial etherification processes.

  5. Ceramic catalyst materials

    Energy Technology Data Exchange (ETDEWEB)

    Sault, A.G.; Gardner, T.J. [Sandia National Laboratories, Albuquerque, NM (United States); Hanprasopwattanna, A.; Reardon, J.; Datye, A.K. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-08-01

    Hydrous titanium oxide (HTO) ion-exchange materials show great potential as ceramic catalyst supports due to an inherently high ion-exchange capacity which allows facile loading of catalytically active transition metal ions, and an ability to be cast as thin films on virtually any substrate. By coating titania and HTO materials onto inexpensive, high surface area substrates such as silica and alumina, the economics of using these materials is greatly improved, particularly for the HTO materials, which are substantially more expensive in the bulk form than other oxide supports. In addition, the development of thin film forms of these materials allows the catalytic and mechanical properties of the final catalyst formulation to be separately engineered. In order to fully realize the potential of thin film forms of titania and HTO, improved methods for the deposition and characterization of titania and HTO films on high surface area substrates are being developed. By varying deposition procedures, titania film thickness and substrate coverage can be varied from the submonolayer range to multilayer thicknesses on both silica and alumina. HTO films can also be formed, but the quality and reproducibility of these films is not nearly as good as for pure titania films. The films are characterized using a combination of isopropanol dehydration rate measurements, point of zero charge (PZC) measurements, BET surface area, transmission electron microscopy (TEM), and elemental analysis. In order to assess the effects of changes in film morphology on catalytic activity, the films are being loaded with MoO{sub 3} using either incipient wetness impregnation or ion-exchange of heptamolybdate anions followed by calcining. The MoO{sub 3} is then sulfided to form MOS{sub 2}, and tested for catalytic activity using pyrene hydrogenation and dibenzothiophene (DBT) desulfurization, model reactions that simulate reactions occurring during coal liquefaction.

  6. A review of metal recovery from spent petroleum catalysts and ash.

    Science.gov (United States)

    Akcil, Ata; Vegliò, Francesco; Ferella, Francesco; Okudan, Mediha Demet; Tuncuk, Aysenur

    2015-11-01

    With the increase in environmental awareness, the disposal of any form of hazardous waste has become a great concern for the industrial sector. Spent catalysts contribute to a significant amount of the solid waste generated by the petrochemical and petroleum refining industry. Hydro-cracking and hydrodesulfurization (HDS) catalysts are extensively used in the petroleum refining and petrochemical industries. The catalysts used in the refining processes lose their effectiveness over time. When the activity of catalysts decline below the acceptable level, they are usually regenerated and reused but regeneration is not possible every time. Recycling of some industrial waste containing base metals (such as V, Ni, Co, Mo) is estimated as an economical opportunity in the exploitation of these wastes. Alkali roasted catalysts can be leached in water to get the Mo and V in solution (in which temperature plays an important role during leaching). Several techniques are possible to separate the different metals, among those selective precipitation and solvent extraction are the most used. Pyrometallurgical treatment and bio-hydrometallurgical leaching were also proposed in the scientific literature but up to now they did not have any industrial application. An overview on patented and commercial processes was also presented.

  7. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  8. Multisite organic-inorganic hybrid catalysts for the direct sustainable synthesis of GABAergic drugs.

    Science.gov (United States)

    Leyva-Pérez, Antonio; García-García, Pilar; Corma, Avelino

    2014-08-11

    Multisite organic-inorganic hybrid catalysts have been prepared and applied in a new general, practical, and sustainable synthetic procedure toward industrially relevant GABA derivatives. The domino sequence is composed of seven chemical transformations which are performed in two one-pot reactions. The method produces both enantiomeric forms of the product in high enantiopurity as well as the racemate in good yields after a single column purification step. This protocol highlights major process intensification, catalyst recyclability, and low waste generation.

  9. Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization

    OpenAIRE

    F. V. Barsi; Cardoso,D.

    2009-01-01

    Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt) and bimetallic catalysts (Pt-Ni), using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on th...

  10. Studies on the behaviour of different spent fluidized-bed catalytic cracking catalysts on Portland cement

    OpenAIRE

    J. PAYÁ; Borrachero, M. V.; Monzó, J.; Soriano, L.

    2009-01-01

    The fluidized-bed catalytic cracking catalyst (FCC) it is a residue from the industry of the petroleum that shows a high pozzolanic reactivity and, in cementing matrix, it significantly improves their mechanical behaviour as well as durability. In this research a comparative study on residues of catalyst from different sources has been carried out, in order to know if these residues can be used jointly in an indiscriminate way or, on the contrary, it is necessary to classify them according to...

  11. The Danish Industrial Enzyme Industry - National based Companies with strong internationalised R&D

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Lindgaard; Hansen, Anne Grethe

    Danish industrial enzyme industry consists of three main companies (Chr. Hansen A/S, Novozymes A/S and Danisco A/S) which in total has around 75 percent of the world market for industrial enzymes. Industrial enzymes are catalysts used in biological and chemical processes in food, detergents, paper...... and energy and many other fields. Historically the industry started up in 1874 based on empiric knowledge on use of rennet in production of cheese from Switzerland and Germany and later enriched by scientific knowledge produced in the company and institutions all over the world. Important for the company...

  12. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  13. {sup 57}Fe Moessbauer Studies in Mo-Fe Supported Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Castelao-Dias, M. [University of Coimbra, Department of Chemical Engineering (Portugal); Costa, B. F. O. [University of Coimbra, Department of Physics (Portugal); Quinta-Ferreira, R. M. [University of Coimbra, Department of Chemical Engineering (Portugal)

    2001-09-15

    Industrially, the Mo-Fe catalysts used in the selective oxidation of methanol to formaldehyde can rapidly deactivate. The use of support materials may reduce the high temperatures in the catalytic bed and/or increase thermal and mechanical resistance. However, during the preparation of these catalysts, or even during reaction conditions, the active species may react with the support material losing their catalytic activity. In this work silica, silicium carbide and titania were studied as supported catalysts by Moessbauer spectroscopy which proved to be a useful technique in the choice of supported materials.

  14. 57Fe Mössbauer Studies in Mo Fe Supported Catalysts

    Science.gov (United States)

    Castelão-Dias, M.; Costa, B. F. O.; Quinta-Ferreira, R. M.

    2001-09-01

    Industrially, the Mo Fe catalysts used in the selective oxidation of methanol to formaldehyde can rapidly deactivate. The use of support materials may reduce the high temperatures in the catalytic bed and/or increase thermal and mechanical resistance. However, during the preparation of these catalysts, or even during reaction conditions, the active species may react with the support material losing their catalytic activity. In this work silica, silicium carbide and titania were studied as supported catalysts by Mössbauer spectroscopy which proved to be a useful technique in the choice of supported materials.

  15. STUDY ON THE MECHANICAL PROPERTIES OF SOLID CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    IntroductionMixed oxides and oxide-supported metalcatalysts are widely used in the petroleum andchemical industries. Besides aGtivity and selectivity, asuccessful solid catalyst should have good physicalproperties, among which mechanical strength is one ofthe key parameters for the reliable and efficientperformance of a fi'xed bed converterlll. Duringtransportation as well as in operation, the catalystssuffer from mechanical stress, which can besufficiently high to cause fracture of the particle. Theformati...

  16. Aerobic oxidation assisted by ligand-free palladium catalysts

    Institute of Scientific and Technical Information of China (English)

    Jia Rui Wang; Chu Ting Yang; Lei Liu; Qing Xiang Guo

    2007-01-01

    Aerobic oxidation of electron-rich benzylic and phenyl allylic alcohols was achieved with high yields with only 0.1 mol.% ofPd(OAc)2 catalyst in the absence of any ligand. This procedure was expected to be valuable for realistic industrial-scale applications from both economic as well as environmental points of view.(C) 2006 Qing Xiang Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  17. Recent Development of Catalysts for Removal of Volatile Organic Compounds in Flue Gas by Combustion: A Review

    Directory of Open Access Journals (Sweden)

    Marco Tomatis

    2016-01-01

    Full Text Available Volatile organic compounds (VOCs emitted from anthropogenic sources pose direct and indirect hazards to both atmospheric environment and human health due to their contribution to the formation of photochemical smog and potential toxicity including carcinogenicity. Therefore, to abate VOCs emission, the catalytic oxidation process has been extensively studied in laboratories and widely applied in various industries. This report is mainly focused on the benzene, toluene, ethylbenzene, and xylene (BTEX with additional discussion about chlorinated VOCs. This review covers the recent developments in catalytic combustion of VOCs over noble metal catalysts, nonnoble metal catalysts, perovskite catalysts, spinel catalysts, and dual functional adsorbent-catalysts. In addition, the effects of supports, coke formation, and water effects have also been discussed. To develop efficient and cost-effective catalysts for VOCs removal, further research in catalytic oxidation might need to be carried out to strengthen the understanding of catalytic mechanisms involved.

  18. Industrial Chain: Industrial Vertical Definition

    Institute of Scientific and Technical Information of China (English)

    YifeiDu; GuojunJiang; ShimingLi

    2004-01-01

    Like value chain and supply chain, “industrial chain” becomes the focus of attention. The implication of “industrial chain” has gained a large range of extension. It not only expresses the industrial “chain” structure and relationship of “back and forward”in order or “up and down” in direction, but also it represents a cluster of large scale of firms in an area or colony. It is a network, or a community. Consequently, we conclude that “industrial chain” is a synthesis of industrial chain, industrial cluster, or industrial network.In this article, firstly we will distinguish industry chain from industry. An industry is the collection of firms that have the same attribute, so an industry can be defined by firm collection of certain attribute. We indicate that industrial chain is a kind of vertical and orderly industrial link. It is defined according to a series of specific product or service created. Secondly we analyze the vertical orderly defiinition process from the aspects of social division of labor and requirement division, self-organization system, and value analysis.Non-symmetry and depending on system or community of large scale of industrial units lead to entire industry to “orderly” structure. On the other hand, the draught of diversity and complexity of requirement simultaneously lead to entire industry to be more “orderly”. Along with processes of self-organization, industrial will appi'oach the state of more orderly and steady, and constantly make industrial chain upgrade. Each firm or unit, who will gain the value, has to establish channels of value, which we called “industrial value chain”. Lastly,we discuss the consequence of vertical and orderly definition, which is exhibited by a certain relationship body. The typical forms of industrial chain include industrial cluster, strategy alliance and vertical integration etc.

  19. Bio-inspired MOF-based Catalysts for Lignin Valorization.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Stavila, Vitalie; Ramakrishnan, Parthasarathi; Davis, Ryan Wesley

    2014-09-01

    Lignin is a potentially plentiful source of renewable organics, with %7E50Mtons/yr produced by the pulp/paper industry and 200-300 Mtons/yr projected production by a US biofuels industry. This industry must process approximately 1 billion tons of biomass to meet the US Renewable Fuel goals. However, there are currently no efficient processes for converting lignin to value-added chemicals and drop-in fuels. Lignin is therefore an opportunity for production of valuable renewable chemicals, but presents staggering technical and economic challenges due to the quantities of material involved and the strong chemical bonds comprising this polymer. Aggressive chemistries and high temperatures are required to degrade lignin without catalysts. Moreover, chemical non-uniformity among lignins leads to complex product mixtures that tend to repolymerize. Conventional petrochemical approaches (pyrolysis, catalytic cracking, gasification) are energy intensive (400-800 degC), require complicated separations, and remove valuable chemical functionality. Low-temperature (25-200 degC) alternatives are clearly desirable, but enzymes are thermally fragile and incompatible with liquid organic compounds, making them impractical for large-scale biorefining. Alternatively, homogeneous catalysts, such as recently developed vanadium complexes, must be separated from product mixtures, while many heterogenous catalysts involve costly noble metals. The objective of this project is to demonstrate proof of concept that an entirely new class of biomimetic, efficient, and industrially robust synthetic catalysts based on nanoporous Metal- Organic Frameworks (MOFs) can be developed. Although catalytic MOFs are known, catalysis of bond cleavage reactions needed for lignin degradation is completely unexplored. Thus, fundamental research is required that industry and most sponsoring agencies are currently unwilling to undertake. We introduce MOFs infiltrated with titanium and nickel species as catalysts

  20. Static and dynamic structural characterization of nanomaterial catalysts

    Science.gov (United States)

    Masiel, Daniel Joseph

    Heterogeneous catalysts systems are pervasive in industry, technology and academia. These systems often involve nanostructured transition metal particles that have crucial interfaces with either their supports or solid products. Understanding the nature of these interfaces as well as the structure of the catalysts and support materials themselves is crucial for the advancement of catalysis in general. Recent developments in the field of transmission electron microscopy (TEM) including dynamic transmission electron microscopy (DTEM), electron tomography, and in situ techniques stand poised to provide fresh insight into nanostructured catalyst systems. Several electron microscopy techniques are applied in this study to elucidate the mechanism of silica nanocoil growth and to discern the role of the support material and catalyst size in carbon dioxide and steam reforming of methane. The growth of silica nanocoils by faceted cobalt nanoparticles is a process that was initially believed to take place via a vapor-liquid-solid growth mechanism similar to other nanowire growth techniques. The extensive TEM work described here suggests that the process may instead occur via transport of silicate and silica species over the nanoparticle surface. Electron tomography studies of the interface between the catalyst particles and the wire indicate that they grow from edges between facets. Studies on reduction of the Co 3O4 nanoparticle precursors to the faceted pure cobalt catalysts were carried out using DTEM and in situ heating. Supported catalyst systems for methane reforming were studied using dark field scanning TEM to better understand sintering effects and the increased activity of Ni/Co catalysts supported by carbon nanotubes. Several novel electron microscopy techniques are described including annular dark field DTEM and a metaheuristic algorithm for solving the phase problem of coherent diffractive imaging. By inserting an annular dark field aperture into the back focal

  1. Organometallic Chemistry and Catalysis in Industry.

    Science.gov (United States)

    Parshall, George W.; Putscher, Richard E.

    1986-01-01

    Traces the growth in the industrial usage of organometallic chemistry from 1950 to 1977, pointing out that this growth involved the production of commodity chemicals. Indicates that one of the early successes of organometallic chemistry was the discovery of ethylene polymerization catalysts. (JN)

  2. Synthetic rubbers prepared by lanthanide coordination catalysts

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China is rich in rare earth resources. Rare earth elements, also named lanthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coordination compounds. In the early 1960s, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAC) found the catalytic activities of lanthanide compounds in stereospecific polymerization of conjugated dienes, and published the first paper on this topic in 1964. On the basis of this finding, CIAC launched extensive research activities on lanthanide compounds as diene polymerization catalysts, from a series of fundamental research to the efforts of industrializing the rare earth catalyzed cis-1,4-polybutatine rubber and cis-1,4-polyisoprene rubber. This review aims to summarize the progress in this field in the past half century.

  3. Synthetic rubbers prepared by lanthanide coordination catalysts

    Institute of Scientific and Technical Information of China (English)

    CHEN WenQi; WANG FoSong

    2009-01-01

    China is rich in rare earth resources. Rare earth elements, also named Ianthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coordination compounds. In the early 1960s, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAC) found the catalytic activities of lanthanide compounds in stereospecific polymerization of conjugated dienes, and published the first paper on this topic in 1964. On the basis of this finding, CIAC launched extensive research activities on lanthanide compounds as diene polymerization catalysts, from a series of fundamental research to the efforts of industrializing the rare earth catalyzed cis~(-1),4-polybutatine rubber and cis~(-1),4-polyisoprene rubber. This review aims to summarize the progress in this field in the past half century.

  4. The innovation catalysts.

    Science.gov (United States)

    Martin, Roger L

    2011-06-01

    A few years ago the software development company Intuit realized that it needed a new approach to galvanizing customers. The company's Net Promoter Score was faltering, and customer recommendations of new products were especially disappointing. Intuit decided to hold a two-day, off-site meeting for the company's top 300 managers with a focus on the role of design in innovation. One of the days was dedicated to a program called Design for Delight. The centerpiece of the day was a PowerPoint presentation by Intuit founder Scott Cook, who realized midway through that he was no Steve Jobs: The managers listened dutifully, but there was little energy in the room. By contrast, a subsequent exercise in which the participants worked through a design challenge by creating prototypes, getting feedback, iterating, and refining, had them mesmerized. The eventual result was the creation of a team of nine design-thinking coaches--"innovation catalysts"--from across Intuit who were made available to help any work group create prototypes, run experiments, and learn from customers. The process includes a "painstorm" (to determine the customer's greatest pain point), a "soljam" (to generate and then winnow possible solutions), and a "code-jam" (to write code "good enough" to take to customers within two weeks). Design for Delight has enabled employees throughout Intuit to move from satisfying customers to delighting them.

  5. Industrial Engineering

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally).......Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally)....

  6. Promotional Effect of Ce on Iron-Based Catalysts for Selective Catalytic Reduction of NO with NH3

    Directory of Open Access Journals (Sweden)

    Xiaobo Wang

    2016-07-01

    Full Text Available A series of Fe–Ce–Ti catalysts were prepared via co-precipitation method to investigate the effect of doping Ce into Fe–Ti catalysts for selective catalytic reduction of NO with NH3. The NO conversion over Fe–Ce–Ti catalysts was considerably improved after Ce doping compared to that of Fe–Ti catalysts. The Fe(0.2–Ce(0.4–Ti catalysts exhibited superior catalytic activity to that of Fe(0.2–Ti catalysts. The obtained catalysts were characterized by N2 adsorption (BET, X-ray diffraction (XRD, temperature programmed reduction (H2-TPR, temperature programmed desorption (NH3-TPD, Fourier transform infrared (FT-IR spectrophotometry, thermogravimetric analysis (TGA, and X-ray photoelectron spectroscopy (XPS. The data showed that the introduction of Ce results in higher surface area and better dispersion of active components on the catalyst surface and enhances the amount of surface acid sites. The interactions between Fe and Ce species were found to improve the redox ability of the catalyst, which promotes catalytic performance at low temperature. The XPS results revealed that Fe3+/Fe2+ and Ce4+/Ce3+ coexisted on the catalyst surface and that Ti was in 4+ oxidation state on catalyst surface. Ce doping increased the atomic ratio of Fe/Ti and Ce/Ti and enhanced the surface adsorbed oxygen species. In addition, Fe(0.2–Ce(0.4–Ti catalyst also showed better tolerance to H2O and SO2 and up to 92% NO conversion at 270 °C with 200 ppm SO2 added over 25 h, which suggests that it is a promising industrial catalyst for mid-low temperature NH3–selective catalytic reduction (SCR reaction.

  7. Towards ‘greener’ catalyst manufacture: Reduction of wastewater from the preparation of Cu/ZnO/Al2O3 methanol synthesis catalysts

    NARCIS (Netherlands)

    Prieto, G.; de Jong, K.P.; de Jongh, P.E.

    2013-01-01

    The generation of large volumes of nitrate-containing wastewater is a major issue in the industrial production of solid catalysts such as Cu/ZnO/Al2O3 employed in methanol synthesis. Extensive washing with water is needed to remove nitrate (and sodium) residues in the as-precipitated metal hydroxy-c

  8. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater.

    Science.gov (United States)

    Duan, Xiaonan; Corgié, Stéphane C; Aneshansley, Daniel J; Wang, Peng; Walker, Larry P; Giannelis, Emmanuel P

    2014-04-04

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2 O2 , producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes.

  9. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan

    2014-02-20

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  11. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability

    Science.gov (United States)

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2014-12-01

    The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications.The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional

  12. Photocatalytic degradation of nicotine in an aqueous solution using unconventional supported catalysts and commercial ZnO/TiO{sub 2} under ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Marcela Andrea Espina de, E-mail: marcela.eq@gmail.com; Silva, William Leonardo da; Bagnara, Mônica; Lansarin, Marla Azário; Zimnoch dos Santos, João Henrique

    2014-10-01

    Nicotine, a highly toxic alkaloid, has been detected in effluents, surface and groundwater and even bottled mineral water. The present work studied the photocatalytic degradation of nicotine in aqueous solution, under ultraviolet irradiation. The experiments were carried out using commercial (ZnO, TiO{sub 2}) and non-conventional catalysts, which were prepared from industrial and laboratory waste. Two experimental designs (CCD) were performed for both commercial catalysts, and initial nicotine concentration, catalyst concentration and initial solution pH effects were studied. Then, the synthesized catalysts were tested under the optimal conditions which were found through CCDs. Using commercial catalysts, about 98% of the alkaloid was degraded by ZnO, and 88% by TiO{sub 2}, in 1 h. Among the non-conventional catalysts, the highest photocatalytic degradation (44%) was achieved using the catalyst prepared from a petrochemical industry residue. - Highlights: • The photocatalytic degradation of nicotine was studied under UV irradiation. • Commercial catalysts ZnO and TiO{sub 2} were tested using two central composite designs. • Initial nicotine concentration, catalyst concentration and pH were evaluated. • Catalysts were prepared using chemical wastes and tested at the best conditions.

  13. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  14. Catalyst containing oxygen transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Jonathan A.; Wilson, Jamie R.; Christie, Gervase Maxwell; Petigny, Nathalie; Sarantopoulos, Christos

    2017-02-07

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a microstructure exhibiting substantially uniform pore size distribution as a result of using PMMA pore forming materials or a bi-modal particle size distribution of the porous support layer materials. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  15. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  16. Progress on the mechanistic understanding of SO2 oxidation catalysts

    DEFF Research Database (Denmark)

    Lapina, Olga B.; Bal'zhinimaev, B.S.; Boghosian, Soghomon

    1999-01-01

    mechanism. A multiinstrumental investigation that combine the efforts of four groups from four different countries has been carried out on the model system as well as on working industrial catalysts. Detailed information has been obtained on the complex and on the redox chemistry of vanadium. Based on this......For almost a century vanadium oxide based catalysts have been the dominant materials in industrial processes for sulfuric acid production. A vast body of information leading to fundamental knowledge on the catalytic process was obtained by Academician [G.K. Boreskov, Catalysis in Sulphuric Acid...... mechanism have been virtually unknown until recent years. It is now recognized that the working catalyst is well described by the molten salt/gas system M2S2O7-MHSO4-V2O5/SO2-O-2-SO3-H2O-CO2-N-2 (M=Na, K, Cs) at 400-600 degrees C and that vanadium complexes play a key role in the catalytic reaction...

  17. Platinum group metal recovery and catalyst manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. S.; Kim, Y. S.; Yoo, J. H.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Lee, S. H.; Paek, S. W.; Kang, H. S.

    1998-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metal such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solution was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400 m{sup 2}/g. The content of palladium impregnated on the support was 10 wt.%. Hydrogen isotope exchange efficiency of 93 % to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its actively is unimportant as in nuclear industries. (author). 63 refs., 38 tabs., 36 figs.

  18. Operando UV-Vis spectroscopy of a catalytic solid in a pilos-scale reactor: deactivation of a CrOx/Al2O3 propane dehydrogenation catalyst

    NARCIS (Netherlands)

    Sattler, J.J.H.B.; Gonzalez-Jimenez, I.D.; Mens, A.J.M.; Arias, M.J.; Visser, T.; Weckhuysen, B.M.

    2013-01-01

    A novel operando UV-Vis spectroscopic set-up has been constructed and tested for the investigation of catalyst bodies loaded in a pilot-scale reactor under relevant reaction conditions. Spatiotemporal insight into the formation and burning of coke deposits on an industrial CrOx/Al2O3 catalyst during

  19. Rhenium Nanochemistry for Catalyst Preparation

    Directory of Open Access Journals (Sweden)

    Vadim G. Kessler

    2012-08-01

    Full Text Available The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

  20. Quick Guide to Flash Catalyst

    CERN Document Server

    Elmansy, Rafiq

    2011-01-01

    How do you transform user interface designs created in Photoshop or Illustrator into interactive web pages? It's easier than you think. This guide shows you how to use Adobe Flash Catalyst to create interactive UIs and website wireframes for Rich Internet Applications-without writing a single line of code. Ideal for web designers, this book introduces Flash Catalyst basics with detailed step-by-step instructions and screenshots that illustrate every part of the process. You'll learn hands-on how to turn your static design or artwork into working user interfaces that can be implemented in Fla

  1. Mn3O4-CeO2 nano-catalysts: Synthesis, characterization and application

    Science.gov (United States)

    Anushree, Sharma, C.; Kumar, S.

    2016-05-01

    Nano-sized Mn3O4-CeO2 catalysts were synthesized by a cost effective co-precipitation method, and were studied as a heterogeneous catalyst for wet air oxidation of paper industry wastewater at mild operating conditions of 90 °C and 1 atm. The structural, micro-structural and textural properties of synthesized catalysts were studied through various characterization techniques, i.e. XRD, TEM, N2-sorption and EDS. The catalytic activity of Mn3O4-CeO2 was interestingly found to be higher than the corresponding single-metal oxides, and the Ce50Mn50 nano-catalyst with small crystallite size (4.5 nm), high specific surface area (75 m2g-1) and high porosity (0.24 ccg-1) was found to be most efficient with 69% color, 60% COD, 59% TOC, 48% AOX removal.

  2. Thioetherification of chloroheteroarenes: a binuclear catalyst promotes wide scope and high functional-group tolerance.

    Science.gov (United States)

    Platon, Mélanie; Wijaya, Novi; Rampazzi, Vincent; Cui, Luchao; Rousselin, Yoann; Saeys, Mark; Hierso, Jean-Cyrille

    2014-09-22

    A constrained binuclear palladium catalyst system affords selective thioetherification of a wide range of functionalized arenethiols with chloroheteroaromatic partners with the highest turnover numbers (TONs) reported to date and tolerates a large variety of reactive functions. The scope of this system includes the coupling of thiophenols with six- and five-membered 2-chloroheteroarenes (i.e., functionalized pyridine, pyrazine, quinoline, pyrimidine, furane, and thiazole) and 3-bromoheteroarenes (i.e., pyridine and furane). Electron-rich congested thiophenols and fluorinated thiophenols are also suitable partners. The coupling of unprotected amino-2-chloropyridines with thiophenol and the successful employment of synthetically valuable chlorothiophenols are described with the same catalyst system. DFT studies attribute the high performance of this binuclear palladium catalyst to the decreased stability of thiolate-containing resting states. Palladium loading was as low as 0.2 mol %, which is important for industrial application and is a step forward in solving catalyst activation/deactivation problems.

  3. A Mini-Review on Solid Acid Catalysts for Esterification Reactions

    Science.gov (United States)

    Sirsam, Rajkumar; Hansora, Dharmesh; Usmani, Ghayas A.

    2016-10-01

    This paper presents an overview of research pertaining to solid acid catalysts for esterification reactions. Prominence has been given to the literatures that have been appeared during the last two decades. A variety of reactions catalyzed by solid acid catalysts have been tabulated according to their broad classification; industrially important reactions have been outlined. Examples, where the use of various solid acid catalysts have led to an improvement in the selectivity of the desired products, have also been discussed. Various catalyzed esterification reactions using different approaches and previous kinetic studies have been reviewed. Types, preparation and synthesis of various solid acid catalysts have been reviewed and discussed. Suggestions have been summarized for their implementation in future work.

  4. Recent development of supported monometallic gold as heterogeneous catalyst for selective liquid phase hydrogenation reactions

    Institute of Scientific and Technical Information of China (English)

    Thushara Kandaramath Hari; Zahira Yaakob

    2015-01-01

    The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research. Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions, in gas and liquid phase reactions. In the present review, we dis-cuss the recent development of heterogeneous, supported monometal ic gold catalysts for organic transforma-tions emphasizing mainly liquid phase hydrogenation reactions. Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out. Appli-cations of heterogeneous, supported monometal ic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.

  5. Highly selective oxidative dehydrogenation of ethane with supported molten chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.A.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen (Germany). Catalysis Research Center

    2011-07-01

    Ethene production is one of the most important transformations in chemical industry, given that C{sub 2}H{sub 4} serves as building block for many mass-market products. Besides conventional thermal processes like steam cracking of ethane, ethane can be produced selectively by catalytic processes. One of the classes of catalysts that have been reported in literature as active and highly selective for the oxidative dehydrogenation of ethane is that of supported molten chloride catalysts, containing an alkali chloride overlayer on a solid support. This work deals with fundamental aspects of the catalytic action in latter class of catalysts. Results from kinetic reaction studies are related to observations in detailed characterization and lead to a comprehensive mechanistic understanding. Of fundamental importance towards mechanistic insights is the oxygen storage capacity of the catalysts that has been determined by transient step experiments. (orig.)

  6. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Prima Astuti [Department of Chemical Engineering, Diponegoro University (Indonesia); Chemical Engineering Program, Faculty of Engineering, Semarang State University (Indonesia); Abdullah; Hadiyanto, Dan, E-mail: hadiyanto@live.undip.ac.id [Department of Chemical Engineering, Diponegoro University (Indonesia)

    2015-12-29

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.

  7. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    Science.gov (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  8. Conversion of xylose into furfural using lignosulfonic acid as catalyst in ionic liquid.

    Science.gov (United States)

    Wu, Changyan; Chen, Wei; Zhong, Linxin; Peng, Xinwen; Sun, Runcang; Fang, Junjie; Zheng, Shaobo

    2014-07-30

    Preparation of biopolymer-based catalysts for the conversion of carbohydrate polymers to new energies and chemicals is a hot topic nowadays. With the aim to develop an ecological method to convert xylose into furfural without the use of inorganic acids, a biopolymer-derived catalyst (lignosulfonic acid) was successfully used to catalyze xylose into furfural in ionic acid ([BMIM]Cl). The characteristics of lignosulfonic acid (LS) and effects of solvents, temperature, reaction time, and catalyst loading on the conversion of xylose were investigated in detail, and the reusability of the catalytic system was also studied. Results showed that 21.0% conversion could be achieved at 100 °C for 1.5 h. The method not only avoids pollution from conventional mineral acid catalysts and organic liquids but also maked full use of a byproduct (lignin) from the pulp and paper industry, thus demonstrating an environmentally benign process for the conversion of carbohydrates into furfural.

  9. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    Science.gov (United States)

    Handayani, Prima Astuti; Abdullah, dan Hadiyanto

    2015-12-01

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.

  10. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...... of the system industry has to inform at the planning stage and afterwards in yearly reports on their waste arising and how the waste is managed. If available such information is very helpful in obtaining information about that specific industry. However, in many countries there is very little information...... available about industrial waste – maybe also influenced by the policy of the industry as to making information publicly available. The data presented in this chapter is scarce and maybe not fully representative for the industrial sectors and hence should be used with caution only....

  11. Longshoring Industry

    Science.gov (United States)

    2001-01-01

    a)(1). (5) ANSI Z-89.1-1986, Personnel Protection-Protective Headwear for Industrial Workers-Requirements; IBR approved for 1917.93(b). (6) ANSI Z-41... Headwear for Industrial Workers-Requirements.” (c) Protective hats previously worn shall be cleaned and disinfected before issuance by the employer to... Headwear for Industrial Workers-Requirements; IBR approved for §1918.103(b). (6) ANSI Z-41-1991, American National Standard for Personal Protection

  12. Biotechnology Industry

    Science.gov (United States)

    2007-01-01

    Countries Growing GMO , 2007). Herbicide and insect resistance traits will continue to be pursued since 25% of food crops are lost each year to insect...daily lives from the clothing we wear, the fuel we use, the food we eat, and the medicines we take. From the earliest days, humans have used the...industry is very broad and includes health care, food , agriculture, industrial, and environmental industries. It is one of the fastest growing sciences

  13. On-line regeneration of hydrodesulfurization catalyst

    Science.gov (United States)

    Preston, Jr., John L.

    1980-01-01

    A hydrotreating catalyst is regenerated as it concurrently hydrotreats a hydrocarbon fuel by introducing a low concentration of oxygen into the catalyst bed either continuously or periodically. At low oxygen concentrations the carbon deposits on the catalyst are burned off without harming the catalyst and without significantly affecting the hydrotreating process. In a preferred embodiment the hydrotreating process is hydrodesulfurization, and regenerating is done periodically with oxygen concentrations between 0.1 and 0.5 volume percent.

  14. Monolitni katalizatori i reaktori: osnovne značajke, priprava i primjena (Monolith catalysts and reactors: preparation and applications

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2004-12-01

    Full Text Available Monolithic (honeycomb catalysts are continuous unitary structures containing many narrow, parallel and usually straight channels (or passages. Catalytically active components are dispersed uniformly over the whole porous ceramic monolith structure (so-called incorporated monolithic catalysts or are in a layer of porous material that is deposited on the walls of channels in the monolith's structure (washcoated monolithic catalysts. The material of the main monolithic construction is not limited to ceramics but includes metals, as well. Monolithic catalysts are commonly used in gas phase catalytic processes, such as treatment of automotive exhaust gases, selective catalytic reduction of nitrogen oxides, catalytic removal of volatile organic compounds from industrial processes, etc. Monoliths continue to be the preferred support for environmental applications due to their high geometric surface area, different design options, low pressure drop, high temperature durability, mechanical strength, ease of orientation in a reactor and effectiveness as a support for a catalytic washcoat. As known, monolithic catalysts belong to the class of the structured catalysts and/or reactors (in some cases the distinction between "catalyst" and "reactor" has vanished. Structured catalysts can greatly intensify chemical processes, resulting in smaller, safer, cleaner and more energy efficient technologies. Monolith reactors can be considered as multifunctional reactors, in which chemical conversion is advantageously integrated with another unit operation, such as separation, heat exchange, a secondary reaction, etc. Finally, structured catalysts and/or reactors appear to be one of the most significant and promising developments in the field of heterogeneous catalysis and chemical engineering of the recent years. This paper gives a description of the background and perspectives for application and development of monolithic materials. Different methods and techniques

  15. Mechanism of NO decomposition on perovskite (-like) catalysts

    Institute of Scientific and Technical Information of China (English)

    ZHU Junjiang; XIAO Dehai; LI Jing; YANG Xiangguang; WU Yue

    2005-01-01

    @@ NOx emitting from industrial and mobile exhaust are serious pollutant in air atmosphere, and the removal of them is an urgent task of today in environment-protection field[1,2]. Although the present three-way-catalyst (TWC)can remove NOx from the mobile exhaust effectively, it will be out of work as lean-burn strategies are used to increase energy efficiency (for example, the diesel engine operated in the lean-burn condition), hence, the technology that can remove NOx in the presence of excess oxygen is desired[3]. In addition, because the capability of noblemetal catalyst for NOx removal is weak at high temperatures (>873 K)[4], it is thus necessary to comprehend the process of NOx decomposition, which would help to solve the problem of NOx removal.

  16. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  17. Catalysts and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-02-14

    The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.

  18. Efficient epoxidation of propene using molecular catalysts

    DEFF Research Database (Denmark)

    Markovits, Iulius I. E.; Anthofer, Michael H.; Kolding, Helene

    2014-01-01

    The epoxidation of propene is performed in homogeneous phase using various molecular catalysts and H2O2 or tert-butyl hydroperoxide as oxidants. A comparison between some molybdenum catalysts and methyltrioxorhenium (MTO) shows that the well known Re catalyst is the best among the examined...

  19. Plasma-chemical Synthesis and Regeneration of Catalysts for CH4 Steam Conversion

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We carried out experimental studies concerning the plasma-chemical synthesis(PCS) of a catalyst for CH4 steam conversion and designed and built the equipment for PCS and/ or regeneration of spent catalyst for CH4 steam conversion. Under the conditions of an electric-arc low-temperature plasma (LTP), we studied the Ni-O-Al system and performed a comprehensive physicochemical analysis of the ultradispersed product obtained. It's the first time worldwide when the conditions of plasma-chemical synthesis and/ or regeneration of CH4 steam conversion catalysts under the conditions of electric-arc LTP are investigated depending on the plasma-chemical process (PCP) parameters and the plasma-chemical reactor (PCP) type (with CW-"cold walls" Tw = 500 K or WW-"warm walls" Tw = 1500 K), samples with a specific surface of 120 m2/g are obtained. Plasma-chemically synthesized and/ or regenerated samples have a homogenous chemical composition similar to that the Girdller (USA) conventional industrial catalyst. It is empirically established that the optimal temperature range in PCR for synthesis of samples with maximum dispersity is (2000 ~ 3000) K. Results from investigation on dynamics and kinetics of plasma-chemically synthesized and / or regenerated catalysts for CH4 steam conversion show that under LTP conditions premises for the formation of catalyst compositions are established. They are reduced 3 to 4 times faster than their industrial analogues. High specific surface of the samples, homogenous composition, high rate of active chemical surface formed by reduction, faulty crystal lattice of catalytically active phases and mostly high catalytic activity make them a potential competitor with their industrial analogues for their probable production in catalyst shops.

  20. Coarse-pored ceramic supports for pyrolysis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Potapova, L.L.; Cherches, B.Kh.; Egiazarov, Yu.G.

    1988-03-20

    One promising trend in improvement of pyrolysis of hydrocarbon feedstocks is the use of heterogeneous catalysts in the process. The industrial use of highly effective catalysts would result in substantially increased product yields and in decrease of energy consumption in comparison with the requirements of drastic thermal processes. The aims of the present work were to obtain a mechanically strong coarse-pored ceramic support for pyrolysis catalysts and to study the influence of various factors on formation of its structure. The support material was made from an industrial ceramic mass of the following composition (%): koalin 30, plastic refractory clay 21, quartz 32, pegmatite 17. Various additives were used for formation of a porous structure: noncombustible highly porous (pumice, claydite), partially combustible (shungite), and completely combustible (SKT) activated carbon). The authors results show that 15 mass % of SKT carbon (particle size 0.1-0.2 mm) and 1-2 mass % of sodium trimetaphosphate should be added to the ceramic mass. The crushing strength of the resultant support samples reaches 550-630 kg/cm/sup 2/, with 34-35% porosity. Under the optimal conditions of pyrolysis of a straight-run gasoline fraction the catalyst obtained by deposition of 12 mass % of In/sub 2/O/sub 3/ and 4% K/sub 2/O on the synthesized support gives a yield of 39-41 mass % of ethylene and 61-62 mass % of unsaturated C/sub 2/-C/sub 4/ hydrocarbons, with 88-90 mass % gasification.

  1. Perovskite catalysts for oxidative coupling

    Science.gov (United States)

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  2. Biodiesel production using heterogenous catalyst

    Science.gov (United States)

    The current transesterification of triacylglycerides (TAG) to produce biodiesel is based on the homogenous catalyst method using strong base such as hydroxides or methoxides. However, this method results in a number of problems: (1) acid pre-treatment is required of feedstocks high in free fatty ac...

  3. Metallocenes catalysts technology and environment; Technologie et environnement des catalyseurs metallocenes

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, A. [Centre de Recherche du Groupe TotalFinaElf, Seneffe (Belgium)

    2000-07-01

    The polyolefin industry is increasingly confronted with the challenge to meet restricting environmental regulations. In parallel, the environmentally conscious public opinion (customer), now globally organized, demands even more stringent anticipative actions to prevent any short or long term damages inflicted upon environment. The gradual shift from high pressure high temperature radical polymerisation for production of polyethylene to silica supported CrO{sub 3} based Phillips catalysts and several generations of stepwise improved TiCl{sub 3} based Ziegler-Natta catalyst technology has led to highly efficient catalytic systems accomplishing substantial improvement with respect to environmental issues. The development and progress of the last decade in single-site metallocene catalyst technology finally indicate that the advancing polyolefin industry has moved, in anticipation, towards even more modern technologies meeting the ultimate goal of employing clean processes that provide environmentally green products. (author)

  4. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining

    Science.gov (United States)

    Buurmans, Inge L. C.; Ruiz-Martínez, Javier; Knowles, William V.; van der Beek, David; Bergwerff, Jaap A.; Vogt, Eelco T. C.; Weckhuysen, Bert M.

    2011-11-01

    Fluid catalytic cracking (FCC) is the major conversion process used in oil refineries to produce valuable hydrocarbons from crude oil fractions. Because the demand for oil-based products is ever increasing, research has been ongoing to improve the performance of FCC catalyst particles, which are complex mixtures of zeolite and binder materials. Unfortunately, there is limited insight into the distribution and activity of individual zeolitic domains at different life stages. Here we introduce a staining method to visualize the structure of zeolite particulates and other FCC components. Brønsted acidity maps have been constructed at the single particle level from fluorescence microscopy images. By applying a statistical methodology to a series of catalysts deactivated via industrial protocols, a correlation is established between Brønsted acidity and cracking activity. The generally applicable method has clear potential for catalyst diagnostics, as it determines intra- and interparticle Brønsted acidity distributions for industrial FCC materials.

  5. Highlights from Faraday Discussion: Designing New Heterogeneous Catalysts, London, UK, April 2016.

    Science.gov (United States)

    Fischer, Nico; Manyar, Haresh G; Roldan, Alberto

    2016-06-28

    The Faraday Discussion on the design of new heterogeneous catalysts took place from 4-6 April 2016 in London, United Kingdom. It brought together world leading scientists actively involved in the synthesis, characterisation, modelling and testing of solid catalysts, attracting more than one hundred delegates from a broad spectrum of backgrounds and experience levels - academic and industrial researchers, experimentalists and theoreticians, and students. The meeting was a reflection of how big of an impact the ability to control and design catalysts with specific properties for particular processes can potentially have on the chemical industry, environment, economy and society as a whole. In the following, we give an overview of the topics covered during this meeting and briefly highlight the content of each presentation.

  6. Alternative deNO{sub x} catalysts and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Due-Hansen, J.

    2010-06-15

    Two approaches are undertaken in the present work to reduce the emission of NO{sub x}: by means of catalytic removal, and by NO absorption in ionic liquids. The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N{sub 2}. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts in the flue gas when biomass is combusted. By co-firing with large amounts of CO{sub 2}-neutral straw or wood (to meet stringent CO{sub 2} emission legislation), the lifetime of the traditional SCR catalyst is thus significantly reduced due to the presence of deactivating species originating from the fuel. To develop a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different active species distributed on the support were investigated, such as iron, copper and vanadium oxides. However, based on the catalysts performance in the SCR reaction and their resistances towards potassium, the most promising candidate of the formulations studied was the vanadia-loaded catalyst, i.e. V{sub 2}O{sub 5}-SO{sub 4}2-ZrO{sub 2}. This work, together with an introduction to the catalytic removal of NO{sub x}, are described in chapter 3. The remainder of the first part is concerned with the catalytic NO{sub x} removal (chapter 4) and it addresses the upscaling of the best catalyst candidate. The catalyst was mixed with the natural binding clay (sepiolite) to upscale the selected catalyst to the monolithic level, suitable for installation in gas stream with high flows, e.g. a flue gas duct of a power plant. A series of catalyst pellets with increasing levels of sepiolite were

  7. Transitioning Rationally Designed Catalytic Materials to Real 'Working' Catalysts Produced at Commercial Scale: Nanoparticle Materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaidle, Joshua A.; Habas, Susan E.; Baddour, Frederick G.; Farberow, Carrie A.; Ruddy, Daniel A.; Hensley, Jesse E.; Brutchey, Richard L.; Malmstadt, Noah; Robota, Heinz

    2017-02-01

    Catalyst design, from idea to commercialization, requires multi-disciplinary scientific and engineering research and development over 10-20 year time periods. Historically, the identification of new or improved catalyst materials has largely been an empirical trial-and-error process. However, advances in computational capabilities (new tools and increased processing power) coupled with new synthetic techniques have started to yield rationally-designed catalysts with controlled nano-structures and tailored properties. This technological advancement represents an opportunity to accelerate the catalyst development timeline and to deliver new materials that outperform existing industrial catalysts or enable new applications, once a number of unique challenges associated with the scale-up of nano-structured materials are overcome.

  8. Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination

    Science.gov (United States)

    Chao, Songlin; Zou, Fang; Wan, Fanfan; Dong, Xiaobin; Wang, Yanlin; Wang, Yuxuan; Guan, Qingxin; Wang, Guichang; Li, Wei

    2017-01-01

    Acetylene hydrochlorination is a major industrial technology for manufacturing vinyl chloride monomer in regions with abundant coal resources; however, it is plagued by the use of mercury(II) chloride catalyst. The development of a nonmercury catalyst has been extensively explored. Herein, we report a N-doped carbon catalyst derived from ZIF-8 with both high activity and quite good stability. The acetylene conversion reached 92% and decreased slightly during a 200 h test at 220 °C and atmospheric pressure. Experimental studies and theoretical calculations indicate that C atoms adjacent to the pyridinic N are the active sites, and coke deposition covering pyridinic N is the main reason for catalyst deactivation. The performance of those N-doped carbons makes it possible for practical applications with further effort. Furthermore, the result also provides guidance for designing metal-free catalysts for similar reactions.

  9. Sixtieth Anniversary of Ziegler-Natta Catalysts and Stereospecific Polymerization

    Directory of Open Access Journals (Sweden)

    Janović Z.

    2015-07-01

    Full Text Available This review article highlights the history of the discoveries of organometallic catalysts and stereospecific polymerization of α-olefins, dienes and a number of vinyl monomers by Karl Ziegler and Giulio Natta sixty years ago, their developments and recent progress. As one of the most important achievements in the field of catalysis, macromolecular science and polymer materials, their inventors were awarded the Nobel Prize in Chemistry in 1963 “for their discoveries in the field of chemistry and technology of high polymers”. These discoveries have stimulated an intensive, both basic and applied research all over the world, up to the present times, leading to great development of the polymer industry. The important biographical data and scientific advancements of K. Ziegler and G. Natta are presented as well. Karl Ziegler, a German scientist, Director of Max Planck Institute for Coal Research in Mülheim, besides many scientific achievements, in 1953 discovered a new process for the polymerization of ethylene into linear polyethylene under mild conditions by using titanium chloride and alkyl aluminium catalytic system that was superior to all existing polymerization. Giulio Natta, an Italian scientist, Director of the Department of Industrial Chemistry at Polytechnic, University of Milan, besides many achievements in petrochemical processes, in 1954 obtained for the first time isotactic polypropylene and Montecatini Co. started its production already in 1958. He conducted pioneering studies on the chain microstructure of synthetic organic polymers and postulated the mechanisms of stereospecific polymerizations. Since the discovery of the Zeigler-Natta catalyst, stereospecific polymerization and processes, significant developments have occurred. The breakthrough in polymerization processes such as fluid bed, liquid phase loop reactor and reactor granule technology led to significant development and growth of polyolefin production. In the 1980s

  10. Industrial Communications.

    Science.gov (United States)

    Lindsay, Dan

    Intended for seniors planning a career in industry as skilled laborers, this specialized course in Industrial Communications offers the student basic communications skills which he will need in his work and in his daily life. Since class activities center around short, factual oral reports, class size will be limited to 20, providing a maximum of…

  11. Industry honoured

    CERN Multimedia

    2008-01-01

    CERN has organised a day to thank industry for its exceptional contributions to the LHC project. Lucio Rossi addresses CERN’s industrial partners in the Main Auditorium.The LHC inauguration provided an opportunity for CERN to thank all those who have contributed to transforming this technological dream into reality. Industry has been a major player in this adventure. Over the last decade it has lent its support to CERN’s teams and participating institutes in developing, building and assembling the machine, its experiments and the computing infrastructure. CERN involved its industrial partners in the LHC inauguration by organising a special industry prize-giving day on 20 October. Over 70 firms accepted the invitation. The firms not only made fundamental contributions to the project, but some have also supported LHC events in 2008 and the inauguration ceremony through generous donations, which have been coordinated by Carmen Dell’Erba, who is responsible for secu...

  12. Deactivation properties of a high-productive vanadia-titania catalyst for oxidation of o-xylene to phthalic anhydride

    Directory of Open Access Journals (Sweden)

    A. T. Georgieva

    2008-06-01

    Full Text Available The behavior of a high-productive V2O5-TiO2 (anatase supported O 4-28 catalyst for oxidation of o-xylene to phthalic anhydride was investigated in the first three years of its exploitation in industry. By using a suitable mathematical model, an identification problem was solved and activation profiles of the catalyst along a fixed bed located in the tubes of an industrial reactor were determined. Experimental temperature regimes and yields of the main and side products for different periods of the catalyst life were used. The proper technological regimes providing for a maximum yield according to the requirements of the catalyst producer company were defined.

  13. Rapid reduction of N-nitrosamine disinfection byproducts in water with hydrogen and porous nickel catalysts.

    Science.gov (United States)

    Frierdich, Andrew J; Shapley, John R; Strathmann, Timothy J

    2008-01-01

    There is a need for new technologies to rapidly and economically treatwater contaminated with N-nitrosodimethylamine (NDMA) and related compounds because of their high toxicity and recent detection in drinking water sources as a consequence of industrial releases and chlorine disinfection of wastewater effluent Treatment of N-nitrosamines with H2 in conjunction with a high surface area porous nickel material, a model nonprecious metal catalyst, has been evaluated. Experiments show that NDMA is reduced rapidly and catalytically to dimethylamine and N2 (e.g., t1/2 = 1.5 min for 500 mg/L catalyst and PH2 = 1 atm), and kinetic trends are consistent with a surface-mediated mechanism involving scission of the N-nitrosamine N-N bond and subsequent reactions with adsorbed atomic hydrogen. The metal-loading-normalized pseudo-first-order rate constant (77.9 +/- 13.1 L g(Ni)(-1) h(-1)) exceeds values reported for Pd-based catalysts. Several related N-nitrosamines react at rates similar to those of NDMA, indicating a weak dependence on structure. The reaction rates for NDMA reduction are not significantly affected by changing pH, and the presence of high concentrations of many common water constituents (Na+, Ca2+, Mg2+, Cl-, SO4(2-), HCO(3-), and NOM) exerts only a small effect on reaction rates. Nitrate is also reduced by the Ni catalyst, and high nitrate concentrations competitively inhibit the reduction of NDMA. (Bi)sulfide poisons the catalyst by strong chemisorption to the Ni surface. Cost-normalized rate constants for the Ni catalyst are highly favorable compared to Pd-based catalysts, indicating that, with further development, Ni-based catalysts may become attractive alternatives to precious metal catalysts.

  14. MECHANICAL STRENGTH AND RELIABILITY OF SOLID CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    Yongdan Li; Dongfang Wu; Y.S. Lin

    2004-01-01

    The mechanical strength of solid catalysts is one of the key parameters for reliable and efficient performance of a fixed bed reactor. Some recent developments and their basic mechanics within this context are reviewed. The main concepts discussed are brittle fracture which leads to the mechanical failure of the catalyst pellets, measurement and statistical properties of the catalyst strength data, and mechanical reliability of the catalyst pellets and their packed bed. The scientific basis for the issues on the catalyst mechanical properties calls yet for further elucidation and advancement.

  15. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    OpenAIRE

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation ...

  16. Carbon nanotubes: A promising catalyst support material for supercritical water gasification of biomass waste

    NARCIS (Netherlands)

    Vlieger, de D.J.M.; Thakur, D.B.; Lefferts, L.; Seshan, K.

    2012-01-01

    Supercritical water (SCW) as a reaction medium is especially promising for the production of renewable chemicals from biomass. Stability issues of catalyst support materials in SCW are a major setback for these reactions and hinder the further development and industrial exploitation of this techniqu

  17. On the Deactivation of Cobalt-based Fischer-Tropsch Catalysts

    NARCIS (Netherlands)

    Cats, K.H.

    2016-01-01

    The Fischer-Tropsch Synthesis (FTS) process is an attractive way to obtain synthetic liquid fuel from alternative energy sources such as natural gas, coal or biomass. However, the deactivation of the catalyst, consisting of cobalt nanoparticles supported on TiO2, currently hampers the industrial app

  18. Hydrotalcite-based catalysts for the synthesis of Methyl Isobutyl Ketone

    NARCIS (Netherlands)

    Winter, Ferry

    2006-01-01

    The investigations for more environmentally benign solid base catalysts have increased significantly for the production of bulk as well as fine chemicals due to the demands for cleaner processes and more stringent legislation. An interesting candidate for industrial applications in the production of

  19. A comprehensive model for the supported vanadium oxide catalyst: The umbrella model

    NARCIS (Netherlands)

    Lingen, J.N.J. van

    2006-01-01

    Supported vanadium oxide catalysts are widely used in industry. However, the molecular structure of the active species, responsible for the actual catalysis, is for a large part still unknown. This thesis describes four years study on the elucidation of this molecular structure. It mainly focuses on

  20. Hairy foam : thin layers of carbon nanofibers as catalyst support for liquid phase reactions

    NARCIS (Netherlands)

    Chinthaginjala, Jitendra Kumar

    2010-01-01

    Catalytic multiphase reactors are at the heart of many chemical industries. They allow efficient contact between gas and/or liquid reactant phases with solid catalysts increasing reaction rates. In practice, the higher reaction rates can be taken advantage of only under the condition that the transf

  1. New Titanium-Based Catalysts for the Synthesis of Poly(ethylene terephthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Youngkeun; Yoon, Seungwoong; Hwang, Yongtaek; Song, Bogeun [Honam Petrochemical Corporation, Daejeon (Korea, Republic of)

    2012-10-15

    Poly(ethylene terephthalate) (PET) is a polymer with relatively low cost and high performance, which is widely used in various applications such as bottles, textile fibers, films and engineering plastics for automobiles and electric industries. Commercial catalysts used for synthesis of PET are in general antimony (Sb) compounds. Antimony(III) oxide, antimony(III) acetate and antimony(III) glycolate are used as a catalyst in 95% of PET manufacturing industries worldwide. The few organoantimony compounds that have been identified in environmental and biological samples are all in the form of methylated Sb-species. The Sb trace element is extremely toxic to mammals, and interferes with embryonic and fetal development, also, carcinogenic to humans. In addition to being found in drinking water, food packaging and soft-drink bottles. According to the World Health Organization (WHO), Sb species concentration lower than 20 ppb are acceptable for drinking water. According to a recent study, in 14 brands of bottled water from Canada, Sb concentrations increased on average 19% during 6 months storage at room temperature, but 48 brands of water from 11 European countries increased on average 90% under identical conditions. Therefore, a very important challenge for polyester catalysis is to come-up with a new Sb-free catalysts with low environmental impact. Intensive efforts have been made to find other stable and more environmental friendly non-antimony catalysts, such as those based on titanium. Titanium-based catalysts have been known for many years and actually are used for polybutylene terephthalate (PBT) and polypropylene terephthalate (PPT) production, however, polycondensation (PC) of PET manufacture is not well studied in literature. To date, only few esterification processes have been applied for the synthesis of PET by titanium catalysts. Herein, we report an efficient synthesis characterization and polymerization of PET for a series of new nontoxic organotitanium

  2. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  3. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  4. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  5. Red mud as an efficient, stable, and costfree catalyst for COx-free hydrogen production from ammonia

    OpenAIRE

    Uzun, Alper; Kurtoğlu, Samira Fatma

    2016-01-01

    Red mud, one of the mostly produced industrial wastes, was converted into a catalyst with exceptionally high and stable performance for hydrogen production from ammonia. Results showed that iron species produced after reduction of the HCl digested red mud were converted into epsilon-Fe2N during the induction period of ammonia decomposition reaction at 700 degrees C. The catalytic performance measurements indicated that the modified red mud catalyst provides a record high hydrogen production r...

  6. Development of MCM-41 based catalysts for the photo-Fenton's degradation of dye pollutants

    Science.gov (United States)

    Lam, Leung Yuk Frank

    The continuous advancement in most industries has resulted in serious water pollution problems. The industrial effluents contain a variety of highly toxic organics such as dye pollutants. Numerous processes have been demonstrated for treating such pollutants. Among them, photo-Fenton's reaction is effective for organic mineralization by hydroxyl radicals generated from the Fenton's reagents (Fe2+ and H2O2). However, there is a drawback in that it requires a separation system to recover the homogeneous ferrous ion in the treated wastewater. In this research, new heterogeneous Fenton's catalysts are developed to solve such a problem and to achieve an efficient mineralization of dye pollutants. Two methods for catalyst preparation, including sol-gel hydrothermal (SG) and metal-organic chemical vapor deposition (MOCVD) techniques, were studied in this work. For SG-prepared catalysts, the iron element was successfully doped into the MCM-41 structure. These catalysts demonstrated a good catalytic efficiency but leaching of metal ions from the developed catalyst was found. In the MOCVD technique, a rotated tubular reactor system was developed to synthesize Fe/MCM-41 catalyst with uniform metal dispersion. It was found that using oxygen as a carrier gas during metal deposition was able to increase the stability of the deposited metal. In degradation of a model dye pollutant, Orange II, a total of 85% TOC mineralization was achieved at pH 3. A disadvantage of using Fe/MCM-41 was the reduced efficiency at higher pH. Cu/MCM-41 was thus developed and showed better catalytic activities than Fe/MCM-41 at neutral pH. Having the specific catalytic properties of Fe/MCM-41 and Cu/MCM-41, bimetallic (Fe+Cu) catalysts supported on MCM-41 were developed which show better activities in the Orange II mineralization than those monometallic (Fe or Cu) catalysts. The preparation conditions of the catalysts were experimentally optimized. The effects of catalyst dosage, metal loading

  7. Comparison of Catalysts Preyssler and Silica-Supported Nano Preyssler in the Synthesis of Acetyl Salicylic Acid

    Directory of Open Access Journals (Sweden)

    H. Nazari

    2012-01-01

    Full Text Available The extensive demand for cleaner environment is forcing chemical industry to use less hazardous materials. In this regard, heteropolyacids attracted considerable amount of interest due to the less toxic behavior in addition of possessing higher acidity. Heteropoly acids have been used as catalysts for the reaction of salicylic acid with acetic anhydride. The performance of different forms of heteropoly acids in the presence of acetic anhydride as acetylating agent for acetylation of salicylic acid was compared. The best conditions were observed using Preyssler and Silica-supported Preyssler Nanoparticles as catalysts. The catalyst is recyclable and reusable.

  8. Highly active and efficient catalysts for alkoxycarbonylation of alkenes

    Science.gov (United States)

    Dong, Kaiwu; Fang, Xianjie; Gülak, Samet; Franke, Robert; Spannenberg, Anke; Neumann, Helfried; Jackstell, Ralf; Beller, Matthias

    2017-01-01

    Carbonylation reactions of alkenes constitute the most important industrial processes in homogeneous catalysis. Despite the tremendous progress in this transformation, the development of advanced catalyst systems to improve their activity and widen the range of feedstocks continues to be essential for new practical applications. Herein a palladium catalyst based on 1,2-bis((tert-butyl(pyridin-2-yl)phosphanyl)methyl)benzene L3 (pytbpx) is rationally designed and synthesized. Application of this system allows a general alkoxycarbonylation of sterically hindered and demanding olefins including all kinds of tetra-, tri- and 1,1-disubstituted alkenes as well as natural products and pharmaceuticals to the desired esters in excellent yield. Industrially relevant bulk ethylene is functionalized with high activity (TON: >1,425,000 TOF: 44,000 h-1 for initial 18 h) and selectivity (>99%). Given its generality and efficiency, we expect this catalytic system to immediately impact both the chemical industry and research laboratories by providing a practical synthetic tool for the transformation of nearly any alkene into a versatile ester product.

  9. Industrial vision

    DEFF Research Database (Denmark)

    Knudsen, Ole

    1998-01-01

    This dissertation is concerned with the introduction of vision-based application s in the ship building industry. The industrial research project is divided into a natural seq uence of developments, from basic theoretical projective image generation via CAD and subpixel analysis to a description...... of the experienc e achieved during the project is provided. The project is industrial oriented. An essential part of the project has been focused on the possi-bilities for immediate use of the results. A full implemented application doing vision ba sed positioning is described. It is concluded that visionbased...

  10. Study on Deactivation by Sulfur and Regeneration of Pd/C Catalyst in Hydrogenation of N-(3-nitro-4-methoxyphenyl) Acetamide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qunfeng; L(U) Jinghui; MA Lei; LU Chunshan; LIU Wei; LI Xiaonian

    2013-01-01

    Deactivation of Pd/C catalyst often occurs in liquid hydrogenation using industrial materials.For instance,the Pd/C catalyst is deactivated severely in the hydrogenation of N-(3-nitro-4-methoxyphenyl) acetamide.In this study,the chemisorption of sulfur on the surface of deactivated Pd/C was detected by energy dispersive spectrometer and X-ray photoelectron spectroscopy.Sulfur compounds poison the Pd/C catalyst and increase the formation of azo deposit,reducing the activity of catalyst.We report a mild method to regenerate the Pd/C catalyst:wash the deposit by N,N-dimethylformamide and oxidize the chemisorbed sulfur by hot air.The regenerated Pd/C catalyst can be reused at least ten runs with stable activity.

  11. Industrial pioneers

    NARCIS (Netherlands)

    Wassink, J.

    2014-01-01

    With their knowledge of metallurgy, mechanics and thermodynamics, mechanical engineers had to give shape to the industrial revolution in the Netherlands 150 years ago. This revolution only slowly gathered momentum, however, especially in comparison with England.

  12. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability.

    Science.gov (United States)

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2015-01-21

    The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications.

  13. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.V. [Global Environmental Solutions, Inc., Morton Grove, IL (United States)

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  14. Electronics Industry

    Science.gov (United States)

    2006-01-01

    companies to begin listing stock options as expenses on financial reports (Chappell, 2005). The industry had used stock options extensively to help... stock options (Chappell, 2005). Industry representatives interviewed by the group argued against the requirement since they predict U.S. companies...may be less inclined now to offer stock options , and subsequently talent may be lost to aggressive foreign competition (Anonymous interviews, 2006

  15. Methane Steam Reforming Kinetics for a Rhodium-Based Catalyst

    DEFF Research Database (Denmark)

    Jakobsen, Jon Geest; Jakobsen, M.; Chorkendorff, Ib;

    2010-01-01

    Methane steam reforming is the key reaction to produce synthesis gas and hydrogen at the industrial scale. Here the kinetics of methane steam reforming over a rhodium-based catalyst is investigated in the temperature range 500-800 A degrees C and as a function of CH4, H2O and H-2 partial pressures....... The methane steam reforming reaction cannot be modeled without taking CO and H coverages into account. This is especially important at low temperatures and higher partial pressures of CO and H-2. For methane CO2 reforming experiments, it is also necessary to consider the repulsive interaction of CO...

  16. Sustainable catalyst supports for carbon dioxide gas adsorbent

    Science.gov (United States)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  17. SO2 oxidation catalyst model systems characterized by thermal methods

    DEFF Research Database (Denmark)

    Hatem, G; Eriksen, Kim Michael; Gaune-Escard, M;

    2002-01-01

    The molten salts M2S2O7 and MHSO4, the binary molten salt Systems M2S2O7-MHSO4 and the molten salt-gas systems M2S2O7 V2O5 and M2S2O7-M2SO4 V2O5 (M = Na, K, Rb, Cs) in O-2, SO2 and At atmospheres have been investigated by thermal methods like calorimetry, Differential Enthalpic Analysis (DEA) and...... to the mechanism Of SO2 oxidation by V2O5 based industrial catalysts....

  18. Biodiesel production using heterogeneous catalysts.

    Science.gov (United States)

    Semwal, Surbhi; Arora, Ajay K; Badoni, Rajendra P; Tuli, Deepak K

    2011-02-01

    The production and use of biodiesel has seen a quantum jump in the recent past due to benefits associated with its ability to mitigate greenhouse gas (GHG). There are large number of commercial plants producing biodiesel by transesterification of vegetable oils and fats based on base catalyzed (caustic) homogeneous transesterification of oils. However, homogeneous process needs steps of glycerol separation, washings, very stringent and extremely low limits of Na, K, glycerides and moisture limits in biodiesel. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The present report is review of the progress made in development of heterogeneous catalysts suitable for biodiesel production. This review shall help in selection of suitable catalysts and the optimum conditions for biodiesel production.

  19. Fundamental investigations of catalyst nanoparticles

    DEFF Research Database (Denmark)

    Elkjær, Christian Fink

    area Cu=ZnO=Al2O3 structure that is difficult to study by TEM. We therefore created size-selected CuZn alloy nanoparticles that were transformed by oxidation and reduction into Cu nanoparticles decorated with ZnO. This represents a simplified model system for the high surface area catalyst...... been unknown. We used nanoreactor technology which allows for simultaneous TEM imaging and activity measurement, also referred to as an Operando experiment. With this we revealed that the shape of the Pt nanoparticles changed in phase with changes in global reaction rate. By the use of reactor modeling...... fundamental understanding of catalytic processes and our ability to make use of that understanding. This thesis presents fundamental studies of catalyst nanoparticles with particular focus on dynamic processes. Such studies often require atomic-scale characterization, because the catalytic conversion takes...

  20. Leaching of vanadium from sulphuric acid manufacture spent catalysts

    Directory of Open Access Journals (Sweden)

    García, Diego Juan

    2001-02-01

    Full Text Available Recovery of vanadium contained in spent catalysts from the manufacture of sulphuric acid has been studied in this work, resulting in an industrial multistage process for the treatment of them avoiding direct deposition or dumping. Characterization of supplied spent catalysts samples, confirmed vanadium levels showed in the literature. The study of variables influencing leaching process: type of leaching agent, leaching agent concentration, S/L ratio, stirring speed and temperature, allows to fix the most advantageous conditions using industrial application criterion and verifying that the process is difusión controlled. The work is completed by developing an industrial leaching cycle simulation with the aim of reproducing real performance of spent catalyst, proposing operating conditions, and verifying the non-toxic character of the final residue obtained.

    En el presente trabajo se ha estudiado la recuperación del vanadio contenido en los catalizadores agotados procedentes de la fabricación del ácido sulfúrico, planteando un proceso industrial multietapa para el tratamiento de estos residuos, evitando su deposición o vertido directos. La caracterización de las muestras de catalizadores agotados disponibles confirmó los valores encontrados en la bibliografía. Se estudiaron las variables que influyen en el proceso de lixiviación (tipo de agente de lixiviación y concentración del mismo, relación S/L, velocidad de agitación y temperatura definiendo las condiciones más adecuadas desde el punto de vista industrial y verificando que el proceso está controlado por mecanismos difusionales. El trabajo se completa con la simulación de un ciclo industrial de lavado del catalizador y la verificación de la nula toxicidad de los lixiviados obtenidos por degradación del residuo final. 24 Aplicación de la resistencia de ruido al estudio de pinturas ricas en zinc Noise resistance applied to the study of zinc rich paints

  1. The role of arsine in the deactivation of methanol synthesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, R.; Mebrahtu, T.; Dahl, T.A.; Lucrezi, F.A.; Toseland, B.A. [Air Products and Chemicals Inc., Adsorption Technology Center, 7201 Hamilton Boulevard, Allentown, PA 18195-1501 (United States)

    2004-06-18

    The liquid phase methanol (LPMEOH) process is successfully producing methanol from coal-derived synthesis gas on an industrial scale. This process uses a standard copper, zinc oxide, and alumina catalyst suspended in an inert mineral oil in a slurry bubble column reactor. An arsenic-containing species, most reasonably arsine, was found in the feed to the LPMEOH commercial demonstration facility located at Eastman Chemical Company's chemicals-from-coal complex in Kingsport, TN. Laboratory testing showed that arsine is, in fact, a powerful methanol synthesis catalyst poison. At levels as low as 150ppbv, arsine results in a rapid deactivation of the catalyst. Removal of arsine results in a deactivation rate consistent with a clean synthesis gas feed; that is, arsine poisoning stops when it is removed from the feed. We infer that arsine reacts irreversibly with the catalyst under the methanol synthesis conditions. X-ray absorption spectroscopy (XAS) of arsenic-containing used catalyst indicated the presence of zero-valent arsenic in an intermetallic surface phase that is structurally related to Domeykite (Cu{sub 3}As). Experimental evidence, thermodynamics, and literature relating to other metal-arsine chemistry were consistent with dissociative adsorption of arsine on the copper surface to form gaseous H{sub 2} and Cu{sub 3}As. To deal with arsine poisoning, we have developed adsorption technology that can remove arsine to levels low enough that catalyst performance is unaffected.

  2. Functionalization of Carbon Nanofibres Obtained by Floating Catalyst Method

    Directory of Open Access Journals (Sweden)

    Adolfo Fernández

    2015-01-01

    Full Text Available The excellent physicochemical and electrical properties of carbon nanofibres (CNF combined with the possibility of being produced at industrial scale at reasonable costs have promoted the interest in their use in very diverse areas. However, there are still some drawbacks that must be solved in order to optimize their set of properties such as the presence of impurities or the imperfections in the crystalline structure. In this work, different modification treatments of CNFs produced by the floating catalyst method have been studied. Three types of modification processes have been explored that can be grouped as mechanical, thermal, and chemical functionalization processes. Mechanical processing has allowed solving the agglomeration problem related to CNFs produced by floating catalyst method and the resulting modified product ensures the secure handling of carbon nanofibres. Thermal and chemical treatments lead to purer and more crystalline products by removing catalyst impurities and amorphous carbon. Functionalization processes explored in this work open the possibility of customized posttreatment of carbon nanofibres according to the desired requirements.

  3. Characterization and functionalities of Pd/hydrotalcite catalysts

    Science.gov (United States)

    Naresh, Dhachapally; Kumar, Vanama Pavan; Harisekhar, Mitta; Nagaraju, Nekkala; Putrakumar, Balla; Chary, Komandur V. R.

    2014-09-01

    A series of palladium supported on calcined hydrotalcite (CHT) catalysts with varying palladium (Pd) loadings (1.0-8.0 wt%) were prepared by impregnation method. Their catalytic performance was evaluated for the reductive amination of phenol to aniline that showed a tremendous interest in the chemical industry. The catalysts were characterized by BET surface area, XRD, TEM, XPS, TPR of H2, TPD of CO2 and CO chemisorption. BET surface area decreased continuously with increase in Pd content. XRD results confirmed the changes in the crystalline phases with altering Pd content. TEM results showed the formation of fine particles at lower loadings and agglomerates at higher loadings. TPR profiles revealed that the reducibility increases with increase of Pd loading. CO2 TPD results illustrate the catalysts basicity increases with increase of Pd loading up to 4.0 wt% and decreases at higher loadings. Pd dispersion, metal area and crystallite sizes were determined by CO chemisorption method. Pd dispersion and metal area decreases with increase of Pd content and crystallite sizes. The results demonstrated that the Pd dispersion and basic properties are depending on the Pd loading. The catalytic performance clearly showed that the increase Pd loading the conversion of phenol increased up to 2.0 wt% and level off beyond the loading. The catalytic properties are well correlated with the active Pd sites determined by CO chemisorption, dispersion and basicity.

  4. Production of biofuels from synthesis gas using microbial catalysts.

    Science.gov (United States)

    Tirado-Acevedo, Oscar; Chinn, Mari S; Grunden, Amy M

    2010-01-01

    World energy consumption is expected to increase 44% in the next 20 years. Today, the main sources of energy are oil, coal, and natural gas, all fossil fuels. These fuels are unsustainable and contribute to environmental pollution. Biofuels are a promising source of sustainable energy. Feedstocks for biofuels used today such as grain starch are expensive and compete with food markets. Lignocellulosic biomass is abundant and readily available from a variety of sources, for example, energy crops and agricultural/industrial waste. Conversion of these materials to biofuels by microorganisms through direct hydrolysis and fermentation can be challenging. Alternatively, biomass can be converted to synthesis gas through gasification and transformed to fuels using chemical catalysts. Chemical conversion of synthesis gas components can be expensive and highly susceptible to catalyst poisoning, limiting biofuel yields. However, there are microorganisms that can convert the CO, H(2), and CO(2) in synthesis gas to fuels such as ethanol, butanol, and hydrogen. Biomass gasification-biosynthesis processing systems have shown promise as some companies have already been exploiting capable organisms for commercial purposes. The discovery of novel organisms capable of higher product yield, as well as metabolic engineering of existing microbial catalysts, makes this technology a viable option for reducing our dependency on fossil fuels.

  5. Pharmaceutical Industry Oriented Homogeneous Catalysis

    Institute of Scientific and Technical Information of China (English)

    Zhang Xumu

    2004-01-01

    Chiral therapeutics already makes up over one-third of pharmaceutical drugs currently sold worldwide. This is a growing industry with global chiral drug sales for 2002 increasing by 12%to $160 billion (Technology Catalysts International) of a total drug market of $410bn. The increasing demand to produce enantiomerically pure pharmaceuticals, agrochemicals, flavors, and other fine chemicals has advanced the field of asymmetric catalytic technologies.We aim to become a high value technology provider and partner in the chiral therapeutics industry by offering proprietary catalysts, novel building blocks, and collaborative synthetic solutions. In decade, we have developed a set of novel chiral homogeneous phosphorus ligands such as Binaphane, Me-KetalPhos, TangPhos, f-Binaphane, Me-f-KetalPhos, C4TunePhos and Binapine,which we called Chiral Ligand ToolKit. Complementing the ToolKit, (R, S, S, R)-DIOP*, T-Phos,o-BIPHEP, o-BINAPO and FAP were added recently[1].These ligands can be applied to a broad variety of drug structural features by asymmetric hydrogenation of dehydroamino acid derivatives, enamides, unsatisfied acids and esters, ketones,beta ketoesters, imines and cyclic imines. And ligand FAP had been apllied succefully in allylic alkylation and [3+2] cycloaddition.

  6. Industrial diamond

    Science.gov (United States)

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  7. Catalysts for decomposing ozone tail gas

    Institute of Scientific and Technical Information of China (English)

    LIU Chang-an; SUN De-zhi; WANG Hui; LI Wei

    2003-01-01

    The preparation of immobilizing-catalysts for decomposing ozone by using dipping method was studied. XRD, XPS and TEM were used to characterize the catalysts. The three kinds of catalysts were selected preferentially, and their catalytic activities were investigated. The results showed that the catalyst with activated carbon dipping acetate (active components are Mn: Cu = 3:2, active component proportion in catalyst is 15%, calcination temperature is 200℃ ) has the best catalytic activity for ozone decomposing. One gram of catalyst can decompose 17.6 g ozone at initial ozone concentration of 2.5 g/m3 and the residence time in reactor of 0.1 s. The experimental results also indicated that humidity of reaction system had negative effect on catalytic activity.

  8. Organic synthesis with olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1995-12-31

    Over the past nine years, early transition metal catalysts for the ring opening metathesis polymerization of cyclic olefins have been developed. These catalysts are simple organometallic complexes containing metal carbon multiple bonds that in most cases polymerize olefins by a living process. These catalysts have been used to prepare a family of near monodispersed and structurally homogeneous polymers. A series of group VII ROMP catalysts that allow a wide range of functionality to be incorporated into the polymer side chains have been prepared. The most important member of this family of complexes are the bisphosphinedihalo-ruthenium carbene complexes. These polymerization catalysts can also be used in the synthesis of fine chemicals by ring closing (RCM) and vinyl coupling reactions. The availability of the group VII catalysts allow metathesis to be carried out on highly functionalized substrates such as polypeptides and in unusual environments such as in aqueous emulsions.

  9. Synthesis and characterization of mesoporous hydrocracking catalysts

    Science.gov (United States)

    Munir, D.; Usman, M. R.

    2016-08-01

    Mesoporous catalysts have shown great prospective for catalytic reactions due to their high surface area that aids better distribution of impregnated metal. They have been found to contain more adsorption sites and controlled pore diameter. Hydrocracking, in the presence of mesoporous catalyst is considered more efficient and higher conversion of larger molecules is observed as compared to the cracking reactions in smaller microporous cavities of traditional zeolites. In the present study, a number of silica-alumina based mesoporous catalysts are synthesized in the laboratory. The concentration and type of surfactants and quantities of silica and alumina sources are the variables studied in the preparation of catalyst supports. The supports prepared are well characterized using SEM, EDX, and N2-BET techniques. Finally, the catalysts are tested in a high pressure autoclave reactor to study the activity and selectivity of the catalysts for the hydrocracking of a model mixture of plastics comprising of LDPE, HDPE, PP, and PS.

  10. EFFECTS OF CATALYST MORPHOLOGY ON HYDROTREATING REACTIONS

    Directory of Open Access Journals (Sweden)

    TYE CHING THIAN

    2008-08-01

    Full Text Available Due to the new environmental regulations for fuel quality, refineries need to process cleaner fuel. This requires an improvement in performance of hydrotreating catalysts. Improvements in catalyst activity require knowledge of the relationships between catalyst morphology and activity. Molybdenum sulfide, the generally agreed catalysts that give the best performance in hydrocracking and hydrotreating was investigated for its morphology effects on hydrotreating reactions. Three types of MoS2 catalysts with different morphology were studied. They are crystalline MoS2, exfoliated MoS2 and MoS2 derived from a precursor, molybdenum naphthenate. Exfoliated MoS2 with minimal long range order, with much higher rim edges has shown relative higher hydrogenation activity. Generally, results of MoS2 catalyst activities in hydrogenation, hydrodesulfurization, hydrodenitrogenation and hydrideoxy¬gena¬tion are in agreement with the rim-edge model.

  11. Hospitality Industry

    Directory of Open Access Journals (Sweden)

    Marian Ionel

    2017-03-01

    Full Text Available Development of accommodation, as basic services offered to tourists, led to the creation of a genuine hospitality industry. Currently, the hospitality industry is no longer just the accommodation service itself but also requires an atmosphere that ensures leisure tourists in the hotel. Thus, hospitable unit manager offers its service in addition to accommodation and catering services, leisure services, treatment services, business services required.. The existence of factors such as revenue growth, increasing leisure time, the development of transport services, the emergence of new tourist attractions have caused increasing international flows of tourists, with consequent development of units hospitable, and therefore a strong hospitality industry. In Romania, after 1990, the tourism sector experienced a true expansion, both through the development of the hotel sector, but also by developing rural hospitality units.

  12. Request for Information from entities interested in commercializing Laboratory-developed homogeneous catalyst technology

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Miranda Huang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-25

    Many industrial catalysts used for homogeneous hydrogenation and dehydrogenation of unsaturated substrates are derived from metal complexes that include (air-sensitive) ligands that are often expensive and difficult to synthesize. In particular, catalysts used for many hydrogenations are based on phosphorus containing ligands (in particular PNP pincer systems). These ligands are often difficult to make, are costly, are constrained to having two carbon atoms in the ligand backbone and are susceptible to oxidation at phosphorus, making their use somewhat complicated. Los Alamos researchers have recently developed a new and novel set of ligands that are based on a NNS (ENENES) skeleton (i.e. no phosphorus donors, just nitrogen and sulfur).

  13. High performance vanadia-anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas; Riisager, Anders;

    2011-01-01

    Highly active nanoparticle SCR deNO(x) catalysts composed of amorphous vanadia on crystalline anatase have been prepared by a sol-gel, co-precipitation method using decomposable crystallization seeds. The catalysts were characterized by means of XRPD, TEM/SEM, FT-IR, nitrogen physisorption and NH(3......)-TPD. Due to the high-surface area anatase particles, loading of 20 wt% vanadia could be obtained without exceeding monolayer coverage of V(2)O(5). This resulted in unprecedented high deNO(x) SCR activity corresponding to a factor of two compared to an industrial reference and to other V(2)O(5)/TiO(2...

  14. Incubation Programs from Public Research Organizations as Catalysts for Open Business Ecosystems

    Directory of Open Access Journals (Sweden)

    Sven H. De Cleyn

    2013-04-01

    Full Text Available In many economies, new knowledge and technology creation and transfer towards local entities and new startups have been recognized as catalysts for industry renewal and tools for safeguarding (or even enhancing a region’s employment and prosperity. This article presents a case study of iMinds, a network organization in Flanders, Belgium. The organization fosters interdisciplinary research in information and communication technologies (ICT and strongly engages in transferring these new technologies towards local actors and in creating and supporting new startups. iMinds’ incubation and entrepreneurship programs act as catalysts for open innovation and company startup activities in the Flemish region.

  15. Oxidation catalysts on alkaline earth supports

    Energy Technology Data Exchange (ETDEWEB)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  16. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  17. Manufacture of Catalyst Systems for Ammonia Conversion

    Institute of Scientific and Technical Information of China (English)

    GAKH S.V.; SAVENKOV D.A.

    2012-01-01

    Platinum catalyst gauzes have been in use since the moment of development of the process of catalyst oxidation of ammonia for production of nitric acid or hydrocyanic acid.Catalyst gauzes are usually made of platinum or its alloys with rhodium and palladium.These precious metals have remarkable properties that make them ideal catalysts for acceleration of the ammonia/oxygen reaction.In 2008,OJSC "SIC ‘Supermetal’" and Umicore AG&Co.KG launched a production line for Pt-alloy-based catalyst systems to be used for ammonia oxidation in the production of weak nitric acid.Catalyst systems consist of a pack of catalyst gauzes and a pack of catchment gauzes,which are made using flat-bed knitting machines and wire-cloth looms.Today,up-to-date catalyst systems MKSpreciseTM are being manufactured,the basic advantages of which are an individual structure of gauzes and composition of the material,which allows to define precisely the position of each gauze in the catalyst pack,a high activity of the catalyst pack,direct catching of platinum and rhodium in the catalyst system,and a reasonable combination of single- and multilayer types of gauzes.This makes it possible to vary the configuration of the catalyst and select an optimum composition of the system to ensure the maximum efficiency of the ammonia oxidation process.We also produce the catchment systems that allow to find the best decision from the economic point view for each individual case.

  18. POLYMER-SUPPORTED LEWIS ACID CATALYSTS. VI. POLYSTYRENE-BONDED STANNIC CHLORIDE CATALYST

    Institute of Scientific and Technical Information of China (English)

    RAN Ruicheng; FU Diankui

    1991-01-01

    A polystyrene-bonded stannic chloride catalyst was synthesized by the method of lithium polystyryl combined with stannic chloride. This catalyst is a polymeric organometallic compound containing 0.25 mmol Sn(IV)/g catalyst. The catalyst showed sufficient stability and catalytic activity in organic reaction such as esterification, acetalation and ketal formation, and it could be reused many times without losing its catalytic activity.

  19. Industrial Networks

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    the focus of operations management from managing the own organization to continuously developing and managing a network of external and internal resources forming a production system. This perspective may be called managing an “extraprise” rather than an “enterprise.” It should be noted that “an industrial...... network” should not be seen as an organizational form but as a perspective that can be used to enrich one's understanding of organizations. The industrial network perspective has three basic building blocks: actors, resources, and activities. The three building blocks and their relations constitute...

  20. Fiabilidad industrial

    OpenAIRE

    Griful Ponsati, Eulàlia

    2001-01-01

    El presente libro ha sido escrito y editado para los estudios de segundo ciclo de Ingeniería de Organización Industrial que se imparten en la ETSEIT de la UPC. La materia de fiabilidad que se imparte en este texto es una introducción a las técnicas estadísticas para resolver cuestiones de fiabilidad industrial. Se estudian distintos modelos probabilísticos del tiempo de vida y se presentan distintas formas de recabar información y de estimar, en cada caso, la fiabilidad de los componentes y s...

  1. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  2. Nitrogen oxides storage catalysts containing cobalt

    Science.gov (United States)

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  3. Effect of Temperature and Catalyst Concentration on Polyglycerol during Synthesis

    Directory of Open Access Journals (Sweden)

    Carolina Ardila-Suárez

    2015-01-01

    Full Text Available Morphology, molecular weight, polydispersity, functionality, and thermal properties are important characteristics when using polyglycerol as a building block in the development of materials for industrial applications such as hydrogels, surfactants, asphalts additives, cosmetics, pharmaceutical, biomedical, and drug delivery systems. In this study several experimental techniques are used to understand the effect of process variables during synthesis in the catalyzed etherification of glycerol, a coproduct of biodiesel industry. Biobased polyglycerol is a high-valued product, which is useful as building block material because of its remarkable features, for instance, multiple hydrophilic groups, excellent biocompatibility, and highly flexible aliphatic polyether backbone. A connection between polyglycerol characteristics and process variables during synthesis allows the control of glycerol polymerization through reaction conditions. We show that temperature and catalyst concentration can be tuned with the aim of tailoring fundamental polyglycerol parameters including molecular weight, polydispersity, morphology, and functionality.

  4. THE OPTIMIZATION OF PRODUCTION ZEOLITE Y CATALYST FROM RHA BY RESPONSE SURFACE METHODOLOGY

    OpenAIRE

    Didi Dwi Anggoro; Aprilina Purbasari

    2012-01-01

    Rice husk is the milling byproduct of rice and is a major waste product of the agriculture industry. Amorphous silica, commonly referred to as rice husk ash, was extracted from rice husk by acid leaching, pyrolysis, and carbon-removing processes. These properties make the ash a valuable raw material for many industries.  This paper is study of synthesized of zeolite Y from rice husk ash. Zeolite Y synthesis is used for petroleum industry as expensive catalyst. Rice husk was calcined at t...

  5. Fermentation Industry.

    Science.gov (United States)

    Grady, C. P. L., Jr.; Grady, J. K.

    1978-01-01

    Presents a literature review of wastes from the fermentation industry, covering publications of 1976-77. This review focuses on: (1) alcoholic beverage production; (2) pharmaceuticals and biochemicals production; and (3) biomass production. A list of 62 references is also presented. (HM)

  6. Shifting Industries

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Coastal city Beihai aspires to revive its economy by developing its electronic information industry Against a clear sky,the blue sea hums along a shining beach,with villas in the distance.This beautiful scene is in Beihai,in south China’s Guangxi Zhuang Autonomous Region.

  7. Thermodynamic Properties of Supported Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  8. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  9. Off-gas catalyst. Abgaskatalysator

    Energy Technology Data Exchange (ETDEWEB)

    Saris, L.; Kloeck, H.

    1987-02-19

    The invention deals with a waste gas catalyst with a thermo-resistant SiO{sub 2} and Al{sub 2}O{sub 3} containing carrier of snarled ceramic fibres which form between themselves the flow paths for the waste gas to be purified and which are coated with platinum, palladium and/or rhodium. The ceramic fibres forming the carrier consist of SiO{sub 2} and Al{sub 2}O{sub 3} and have a diameter of 1 to 10 {mu}m. (orig./RB).

  10. Microbial Alpha-Amylases and their Industrial Applications: A Review

    OpenAIRE

    2012-01-01

    The biotechnological potential of α-amylases from microorganisms has drawn a great deal of attention from various researchers worldwide as likely biological catalysts in a variety of industrial processes. The rapid developments in the field of genetic engineering have given a new impetus to the biotechnology. Biotechnology also offers the potential for new industrial processes that require less energy and are based on renewable raw materialsand environmentally healthy practices.This work repr...

  11. Biomass Derived Chemicals: Furfural Oxidative Esterification to Methyl-2-furoate over Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Maela Manzoli

    2016-07-01

    Full Text Available The use of heterogeneous catalysis to upgrade biomass wastes coming from lignocellulose into higher value-added chemicals is one of the most explored subjects in the prospective vision of bio-refinery. In this frame, a lot of interest has been driven towards biomass-derived building block molecules, such as furfural. Gold supported catalysts have been successfully proven to be highly active and selective in the furfural oxidative esterification to methyl-2-furoate under mild conditions by employing oxygen as benign oxidant. Particular attention has been given to the studies in which the reaction occurs even without base as co-catalyst, which would lead to a more green and economically advantageous process. The Au catalysts are also stable and quite easily recovered and represent a feasible and promising route to efficiently convert furfural to methyl-2-furoate to be scaled up at industrial level.

  12. Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties

    CERN Document Server

    Niwa, Miki; Okumura, Kazu

    2010-01-01

    Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Zeolite-based catalysts are used by industrial chemical companies in the interconversion of hydrocarbons and the alkylation of aromatic compounds. The current book deals with the characterization of specific properties of Zeolites and calculations for the design of catalysts. Measurements and utilization of solid acidity, shape selectivity, and loading properties, that are three prominent properties of a Zeolite catalyst, are treated in detail. These features concern chemical vapor deposition of silica, shape selectivity, loading properties, solid activity, Brønsted or Lewis character, ammonia temperature programmed desorption, control of the pore-opening size by chemical vapor deposition of silica and XAFS analysis of metals being highly dispersed inside and outside a framework.

  13. Glycerol conversion into value added chemicals over bimetallic catalysts in supercritical carbon dioxide

    Science.gov (United States)

    Hidayati, Luthfiana N.; Sudiyarmanto, Adilina, Indri B.

    2017-01-01

    Development of alternative energy from biomass encourage the experiments and production of biodiesel lately. Biodiesel industries widely expand because biodiesel as substitute of fossil fuel recognized as promising renewable energy. Glycerol is a byproduct of biodiesel production, which is resulted 10% wt average every production. Meanwhile, carbon dioxide is a gas that is very abundant amount in the atmosphere. Glycerol and carbon dioxide can be regarded as waste, possibly will produce value-added chemical compounds through chemically treated. In this preliminary study, conversion of glycerol and carbon dioxide using bimetallic catalyst Ni-Sn with various catalyst supports : MgO, γ-Al2O3, and hydrotalcite. Catalysts which have been prepared, then physically characterized by XRD, surface area and porosity analysis, and thermal gravity analysis. Catalytic test performance using supercritical carbon dioxide conditions. Furthermore, the products were analyzed by GC. The final product mostly contained of propylene glycol and glycerol carbonate.

  14. Palladium-tin catalysts for the direct synthesis of H₂O₂ with high selectivity.

    Science.gov (United States)

    Freakley, Simon J; He, Qian; Harrhy, Jonathan H; Lu, Li; Crole, David A; Morgan, David J; Ntainjua, Edwin N; Edwards, Jennifer K; Carley, Albert F; Borisevich, Albina Y; Kiely, Christopher J; Hutchings, Graham J

    2016-02-26

    The direct synthesis of hydrogen peroxide (H2O2) from H2 and O2 represents a potentially atom-efficient alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts coupled with an appropriate heat treatment cycle switches off the sequential hydrogenation and decomposition reactions, enabling selectivities of >95% toward H2O2. This effect arises from a tin oxide surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. We show that this effect is a general feature for oxide-supported Pd catalysts containing an appropriate second metal oxide component, and we set out the design principles for producing high-selectivity Pd-based catalysts for direct H2O2 production that do not contain gold.

  15. Cellulose hydrogenolysis with the use of the catalysts supported on hypercrosslinked polystyrene

    Science.gov (United States)

    Sulman, E. M.; Matveeva, V. G.; Manaenkov, O. V.; Filatova, A. E.; Kislitza, O. V.; Doluda, V. Yu.; Rebrov, E. V.; Sidorov, A. I.; Shimanskaya, E. I.

    2016-11-01

    The study presents the results of cellulose hydrolytic hydrogenation process in subcritical water in the presence of Ru-containing catalysts based on hypercrosslinked polystyrene (HPS) MN-270 and its functionalized analogues: NH2-HPS (MN-100) and SO3H-HPS (MN-500). It was shown that the replacement of the traditional support (carbon) by HPS increases the yield of the main cellulose conversion products - polyols - important intermediates for the chemical industry. The catalysts were characterized using transmission electron microscopy (TEM), high resolution TEM, and porosity measurements. Catalytic studies demonstrated that the catalyst containing 1.0% Ru and based on MN-270 is the most active. The total yield of sorbitol and mannitol was 50% on the average at 85% cellulose conversion.

  16. Molecular molybdenum persulfide and related catalysts for generating hydrogen from water

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R.; Chang, Christopher J.; Karunadasa, Hemamala I.; Majda, Marcin

    2016-11-22

    New metal persulfido compositions of matter are described. In one embodiment the metal is molybdenum and the metal persulfido complex mimics the structure and function of the triangular active edge site fragments of MoS.sub.2, a material that is the current industry standard for petroleum hydro desulfurization, as well as a promising low-cost alternative to platinum for electrocatalytic hydrogen production. This molecular [(PY5W.sub.2)MoS.sub.2].sup.x+ containing catalyst is capable of generating hydrogen from acidic-buffered water or even seawater at very low overpotentials at a turnover frequency rate in excess of 500 moles H.sub.2 per mole catalyst per second, with a turnover number (over a 20 hour period) of at least 19,000,000 moles H.sub.2 per mole of catalyst.

  17. Discerning the Location and Nature of Coke Deposition from Surface to Bulk of Spent Zeolite Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun; Vijayakumar, Murugesan; Bao, Jie; Guo, Mond F.; Derewinski, Miroslaw A.; Xu, Zhijie; Gray, Michel J.; Prodinger, Sebastian; Ramasamy, Karthikeyan K.

    2016-11-23

    The nanoscale compositional mapping of fresh HZSM-5 catalyst synthesized using hydrothermal process as well as after just steaming and after ethanol conversion reaction for 72 hours at realistic catalytic conditions was investigated using atom probe tomography. Atom probe tomography permitted direct atomic scale imaging of non-uniform distribution of Al within the HZSM-5 as well as for the first time image the hydrocarbon coking after ethanol reaction. Clear evidences for existence of multiple C-H molecular species which appear to aggregate as clusters within the pores of spent HZSM-5 catalyst materials is provided. These results provide evidence for the ability of atom probe tomography, a powerful 3D characterization tool in interrogating the atomic scale chemistry of zeolite catalyst materials at industrially relevant catalytic conditions.

  18. Partial oxidation of methane to formaldehyde on Mo03, Fe203 and ferromolybdenum catalysts

    Directory of Open Access Journals (Sweden)

    José Daniel Del Río

    2010-04-01

    Full Text Available One of the main challenges for catalysis has been direct methane conversion to useful products such as methanol and formaldehyde. Formaldehyde is currently produced by a three-step industrial process with syngas and metha- nol as intermediate products. MoO , Fe O and Fe (MoO catalysts were used with four different Mo/Fe molar 3\t2 3 2 4 3 ratios (0.5, 1, 1.5, 2 in this work. The ferromolybdenum catalyst was prepared by coprecipitation. Pure oxides are more active; however they are not formaldehyde selective, but carbon oxide (CO, CO selective. The ferro- molybdenum catalysts showed better HCHO selectivity at low conversions; the molybdenum oxide content did not show increased in catalytic activity. Increased reaction temperature did not increase formaldehyde selectivity.

  19. Solid Catalyst with Ionic Liquid Layer (SCILL). A concept to improve the selectivity of selective hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Korth, W. [Bayreuth Univ. (Germany). Chair of Chemical Engineering

    2011-07-01

    Catalytic hydrogenations are important for refinery processes, petrochemical applications as well as for numerous processes of the fine chemicals industry. In some cases, hydrogenations consist of a sequence of consecutive reactions, and the desired product is the intermediate. An important goal is then a high yield and selectivity to the intermediate, if possible at a high conversion degree. The selectivity to an intermediate primarily depends on the chemical nature of the catalyst, but may also be influenced by diffusion processes. Ionic liquids (ILs) are low melting salts (< 100 C) and represent a promising solvent class. This paper focuses on the concept of a Solid Catalyst with Ionic Liquid Layer (SCILL), where the solid catalyst is coated with a thin IL layer to improve the selectivity. (orig.)

  20. Molecular molybdenum persulfide and related catalysts for generating hydrogen from water

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R.; Chang, Christopher J.; Karunadasa, Hemamala I.; Majda, Marcin

    2016-04-19

    New metal persulfido compositions of matter are described. In one embodiment the metal is molybdenum and the metal persulfido complex mimics the structure and function of the triangular active edge site fragments of MoS.sub.2, a material that is the current industry standard for petroleum hydro desulfurization, as well as a promising low-cost alternative to platinum for electrocatalytic hydrogen production. This molecular [(PY5W.sub.2)MoS.sub.2].sup.x+ containing catalyst is capable of generating hydrogen from acidic-buffered water or even seawater at very low overpotentials at a turnover frequency rate in excess of 500 moles H.sub.2 per mole catalyst per second, with a turnover number (over a 20 hour period) of at least 19,000,000 moles H.sub.2 per mole of catalyst.

  1. Systematic investigation of products formed during synthesis of Ni, Mo, Cu/Kieselguhr catalyst by X-ray diffraction

    Directory of Open Access Journals (Sweden)

    Tanuja Srivastava

    2011-08-01

    Full Text Available Catalytic hydrogenolysis of sucrose is industrially important for the production of glycerol, ethylene glycol, and propylene glycol. Ni catalyst promoted by Mo and Cu and supported on kieselguhr was synthesized in the aqueous medium by co- precipitating compounds of nickel, copper, and molybdenum on kieselguhr from solution of their salts using sodium carbonate. The composition of the constituents present along with desired catalyst formed during synthesis has profound impact on its catalytic activity. Therefore, the present study deals with the synthesis and characterization of all the constituents' major and minor products formed during synthesisof catalyst both unreduced and reduced by X-ray diffraction studies. The results indicated the formation of appreciable amount of nickel hydro silicates and small amount of ionic nickel carbonate and nickel carbonate hydrate in the unreduced catalyst. Besides the formation of major product, hetropolyacid and nickel molybdenum silicide were also present in the unreduced catalyst. The catalyst was reduced at 600°C before carrying the hydrogenolysis reactions and the reduced products were also analyzed for the composition, when the catalyst activity was the maximum. The various chemical reactions involved in the synthesis procedure have been discussed.

  2. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  3. THEORETICAL ANALYSIS OF FIRST-ORDER ISOTHERMAL CONSECUTIVE DIFFUSION REACTIONS IN INDUSTRIALLY POROUS CATALYST PARTICLES WITH FRACTIONAL GEOMETRY SYMMETRY MODEL%分数几何对称模型理论分析多孔固体催化剂颗粒中的一级等温串连扩散反应

    Institute of Scientific and Technical Information of China (English)

    段毅文

    2003-01-01

    The consecutive diffusion reaction in porous catalyst particles is a very important kind of chemical reactions,such as hydrolysis,halogenating,and oxidizing reactions.The fractional geometry symmetry model has been used to analyze these kinds of reactions.And it will widen the recognized area in single particle chemical reaction engineering in order to obtain the various factors for a heterogeneous catalysis reaction in an amorphous porous catalyst particle.Also,the relationship,that is Dui=(φ2i)/(m+1),between fractional number m and experimental data in the porous catalyst bed has been obtained.%在多孔固体催化剂颗粒中的串连扩散反应是非常重要的一类化学反应,如水解反应,卤化反应和氧化反应等.分数几何对称模型已用于分析这类反应的一般规律.为了得到多孔固体催化剂颗粒内非均相催化反应的各因素,这个模型将拓宽单颗粒化学反应工程的认识领域.而且,在多孔固体催化剂颗粒填充床中分数参数m和实验数据间的关系Dui=(φ2i)/(m+1)也已推得.

  4. Olefin polymerization over supported chromium oxide catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    1999-01-01

    Cr/SiO2 or Phillips-type catalysts are nowadays responsible for a large fraction of all polyethylene (HDPE and LLDPE) worldwide produced. In this review, several key-properties of Cr/SiO2 catalysts will be discussed in relation to their polymerization characteristics. It will be shown how the polyol

  5. Magnetically retrievable catalysts for organic synthesis

    Science.gov (United States)

    The use of magnetic nanoparticles (MNPs) as a catalyst in organic synthesis has become a subject of intense investigation. The recovery of expensive catalysts after catalytic reaction and reusing it without losing its activity is an important feature in the sustainable process de...

  6. Chemical engineering design of CO oxidation catalysts

    Science.gov (United States)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  7. Ligand iron catalysts for selective hydrogenation

    Science.gov (United States)

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  8. Catalyst, Volume 9, Number 3, Winter 2008

    Science.gov (United States)

    Ryan, Barbara E., Ed.

    2008-01-01

    The U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes "Catalyst," a newsletter covering current Alcohol and Other Drug Abuse and Violence (AODV) prevention issues at institutions of higher education. "Catalyst" discusses emerging issues and highlights innovative efforts on…

  9. Catalyst, Volume 10, Number 1, Spring 2008

    Science.gov (United States)

    Ryan, Barbara E., Ed.

    2008-01-01

    The U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes "Catalyst," a newsletter covering current Alcohol and Other Drug Abuse and Violence (AODV) prevention issues at institutions of higher education. "Catalyst" discusses emerging issues and highlights innovative efforts on…

  10. NEW REFORMING CATALYST DEVELOPED BY RIPP

    Institute of Scientific and Technical Information of China (English)

    PUZhong-ying

    2003-01-01

    To meet the demands for high-octane gasoline and aromatics,catalytic reforming process has been advancing quickly in China.The reforming catalysts developed by RIPP have been used in more than 80% capacity of domestic CCR and SR units.This paper introduces the properties of PSVI CCR catalyst developed by RIPP in recent years and also the result from commercial units.The PS-VI catalyst has high activity and good selectivity,under the same reaction conditions,the carbon on catalyst was lowered by 26% in mass as compared with that of the reference catalyst.Among the SR reforming catalysts,the new type of PRT series catalysts have excellent performance at low reaction pressure compared with the ref.Cat A.The aromatics and reformate mass yields of PRT catalyst were 2%-3% and 3%,respectively ,higher than those of Cat A,and the run length was 30%-40% longer as well,which exhibits good prospect of application.

  11. Catalyst, Volume 10, Number 2, Fall 2008

    Science.gov (United States)

    Ryan, Barbara E., Ed.

    2008-01-01

    The U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes "Catalyst," a newsletter covering current Alcohol and Other Drug Abuse and Violence (AODV) prevention issues at institutions of higher education. "Catalyst" discusses emerging issues and highlights innovative efforts on…

  12. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2008-08-05

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  13. Assessment of research needs for advanced heterogeneous catalysts for energy applications. Final report: Volume 2, Topic reports

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.

    1994-04-01

    This report assesses the direction, technical content, and priority of research needs judged to provide the best chance of yielding new and improved heterogeneous catalysts for energy-related applications over the period of 5-20 years. It addresses issues of energy conservation, alternate fuels and feedstocks, and the economics and applications that could alleviate pollution from energy processes. Recommended goals are defined in 3 research thrusts: catalytic science, environmental protection by catalysis, and industrial catalytic applications. This study was conducted by an 11-member panel of experts from industry and academia, including one each from Japan and Europe. This volume first presents an in-depth overview of the role of catalysis in future energy technology in chapter 1; then current catalytic research is critically reviewed and research recommended in 8 topic chapters: catalyst preparation (design and synthesis), catalyst characterization (structure/function), catalyst performance testing, reaction kinetics/reactor design, catalysis for industrial chemicals, catalysis for electrical applications (clean fuels, pollution remediation), catalysis for control of exhaust emissions, and catalysts for liquid transportation fuels from petroleum, coal, residual oil, and biomass.

  14. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism

    Directory of Open Access Journals (Sweden)

    Ryo eWatanabe

    2013-10-01

    Full Text Available For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1–xSrxFeyMn1–yO3–d(0 ≤ x≤ 1, 0.2 ≤ y≤ 0.8, perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3–d catalyst with that of an industrial potassium promoted iron (Fe–K catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3–d catalyst showed higher initial activity than the industrial Fe–K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3–d catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe–K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3–d and the Fe–K catalysts in aH2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3–d catalyst while the Fe–K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3–d catalyst had higher potential for activating the steam than the Fe–K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3–d was superior to that of Fe–K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3–d perovskite oxide.

  15. MMC-High Propylene Selectivity DCC Catalyst

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Xie Chaogang; Luo Yibin; Zhao Liuzhou; Shu Xingtian

    2007-01-01

    RIPP has developed the third generation novel DCC catalysts aimed at increasing the propylene yield, named as the MMC series catalysts. This catalyst is of the MFI structure composed of the ZSP zeolite as the main active component, which has higher capability for producing low-carbon olefins, in particular the propylene. The commercial application of this catalyst at SINOPEC Anqing Petrochemical Company has revealed that the adoption of the MMC-2 catalyst has resulted in a 1.6-4.0 percentages increase in propylene yield under basically similar conditions in terms of the feedstock property and process operating regime coupled with reduction in gasoline olefin content and increase in aromatic content to improve the gasoline quality.

  16. Theoretical investigations of olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cundari, T.R.; Gordon, M.S. [North Dakota State Univ., Fargo, ND (United States)

    1992-01-01

    An ab initio analysis of the electronic structure of high-valent, transition-metal alkylidenes as models for olefin metathesis catalysts is presented. The catalyst models studied fall into three categories: {open_quotes}new{close_quotes} metathesis catalyst models-tetrahedral M(OH){sup 2}(XH)(CH{sub 2}) complexes; {open_quotes}old{close_quotes} metathesis catalyst models-tetrahedral MCl{sub 2}(Y)(CH{sub 2}) complexes and alkylidene-substituted Mo metathesis catalysts, Mo(OH){sub 2}(NH)(=C(H)Z). The effect on the bonding caused by modification of either the metal, ligands, or alkylidene substitutents is considered. 21 refs., 2 figs., 5 tabs.

  17. Alternative deNOx catalysts and technologies

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    . The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N2. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts...... in the flue gas when biomass is combusted. By co-firing with large amounts of CO2-neutral straw or wood (tomeet stringent CO2 emission legislation), the lifetime of the traditional SCR catalyst is thus significantly reduced due to the presence of deactivating species originating from the fuel. To develop...... active species distributed on the support were investigated, such as iron, copper and vanadium oxides. However, based on the catalysts performance in the SCR reaction and their resistances towards potassium, the most promising candidate of the formulations studied was the vanadia-loaded catalyst, i.e. V2...

  18. Nanostructured Basic Catalysts: Opportunities for Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Conner, William C; Huber, George; Auerbach, Scott

    2009-06-30

    This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  19. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    Science.gov (United States)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  20. Catalysts for complete oxidation of gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Neyestanaki, A.K.

    1995-12-31

    This thesis presents a study on the complete oxidation of propane, natural gas and the conversion of car exhaust gases over two types of catalysts: (a) knitted silica-fibre supported catalysts and (b) metal-modified ZSM zeolite catalysts. A hybrid textile made up of an organic-inorganic hybrid fibre containing 70 % cellulose and 30 % silicic acid was used as the raw material for preparation of the fibre support for combustion catalysts. The hybrid textile was burnt to obtain a knitted silica-fibre. The changes in the surface area, pore volume and the crystallinity of the obtained support were studied as a function of burning temperature. The stability of the support in steam-rich atmospheres was tested. The knitted silica-fibre obtained by burning the hybrid textile at 1223 K was found to have sufficient strength and high BET specific surface area (140 m{sub 2}/g) to be used as a catalyst support. A series of knitted silica-fibre supported metal oxides (oxides of Co, Ni, Mn, Cr and Cu) and combinations of them, platinum-activated metal oxides (Pt-Co{sub 3}O{sub 4}, Pt-NiO, Pt-MnO{sub 2} and Pt-Cr{sub 2}O{sub 3}) as well as noble metal (Pt, Pd) catalysts were prepared. The location of the metal oxides on the catalyst was studied by SEM equipped with EDXA. The metal oxide was found to be located mostly inside the pores rather than on the exterior surface of the silica-fibre. The catalysts were characterized by XRD, N{sub 2}-physisorption, O{sub 2}-TPD and the chemisorption of propane, carbon monoxide and hydrogen. The activity of the catalysts was tested in the combustion of propane, natural gas and in the conversion of automobile exhaust gases. The effect of residence time and stoichiometry on the conversion behaviour of the catalysts was studied

  1. Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization

    Directory of Open Access Journals (Sweden)

    F. V. Barsi

    2009-06-01

    Full Text Available Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt and bimetallic catalysts (Pt-Ni, using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on the catalytic properties for n-hexane isomerization. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH36]Cl2 and [Pt(NH34]Cl2 as precursors. Four series of catalysts with constant atomic metal content had total metal amounts between 130 and 280 µmol M/g cat. Catalysts were characterized by temperature programmed reduction (TPR and subjected to catalytic evaluation for n-hexane isomerization at 250 ºC and 1 atm using H2/C6 = 9 molar ratio. TPR results show an easier reducibility of Ni+2 cations in the presence of Pt, which was evidenced by the displacement of the reduction peak of those cations towards lower temperatures in bimetallic catalysts. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases. The results of the activity as a function of the Pt content in the bimetallic catalysts show a maximum value around 50% of Pt. An addition of Pt above this critical value leads to a small decrease of the catalytic activity.

  2. Catalysis Science Initiative: Catalyst Design by Discovery Informatics

    Energy Technology Data Exchange (ETDEWEB)

    Delgass, William Nicholas [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States) Department of Chemistry; Caruthers, James [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Ribeiro, Fabio [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Thomson, Kendall [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Schneider, William [Univ. of Notre Dame, IN (United States)

    2016-07-08

    atoms in the interfacial region. Some of the first theoretical descriptions of this important chemistry and potential new source of control of catalyst properties are be in preparation for submission. On the homogeneous catalysis side, we have used single site olefin polymerization as the testbed. This system is important because changes in a single ligand bonded to the catalytically active metal site can alter the rates of individual steps in the polymerization sequence and thereby change the properties of the resulting polymer, potentially improving its value in a hundred million pound per year industry. We have made a major advance in understanding such systems by developing a population balance kinetic model that allows us to predict the molecular weight distribution (MWD) of the product. That, in turn, allows use of MWD data to fit kinetic parameters. By combining monomer loss data, MWD, measurement of the number of working active sites, and polymer end group analysis, we have a rich data set that is highly discriminating of kinetic mechanism. Thus, we have a robust tool for producing high quality, detailed kinetic parameters, which we have used to refine mechanisms presented in the literature and discover relationships between steric and electronic properties of group IV catalysts and individual rate constants in a number of systems. Our recent work on six-coordinate Zr, Ti, and Hf amine bis(phenolate) systems, we have shown that: • The sterics (bulkiness) of the ligands specifically affect the chain termination reaction • The electron density on the metal controls misinsertion (flipped orientation) of the olefin into the growing polymer • Steric effects related to the size of the ortho ligand on the catalyst have been shown to strongly affect its the degree of dormancy, i.e. tendency to stop reacting • Changes in the size of the amine pendent group on the catalyst can have such a strong effect on chain termination as to change the catalyst from one that

  3. Infrared spectroscopic investigations of environmental deNOx and hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Topsoee, Nan-Yu

    1998-02-01

    The present work describes the application of infrared spectroscopy to the investigation of two very important of environmental catalyst systems, i.e. vanadia/titania catalysts for the selective catalytic reduction (SCR) of NOx by ammonia and molybdena/alumina catalyst systems for sulfur removal and other hydrotreating reactions. It is seen that the infrared studies have provided new insight into the surface structures present in the catalyst systems. Furthermore, and more importantly the results have made it possible to establish direct relationships between the fundamental molecular properties and the industrial performance. For these studies the application of a variety of different steady-state and transient FTIR techniques/approaches is shown to be very important. Infrared spectroscopy is one of the few techniques which can provide in situ surface information about real catalysts. Vanadia/titania deNOx catalysts are discussed. The reactivity of various surface species is discussed further based on transient temperature programmed surface reaction (TPSR) studies employing a combined in situ FTIR on-line mass spectrometric approach. The studies are performed by exposing different catalysts with chemisorbed NH{sub 3} to various reaction gases. Part II deals with the studies of hydrotreating catalysts. The catalysts (typically Co-Mo/Al{sub 2}O{sub 3} and Ni-Mo/Al{sub 2}O{sub 3}) are normally prepared in the oxidic (calcined) state but requires sulfiding in order to become activated. The infrared investigation of calcined alumina supported catalysts is discussed. The alumina support has a number of very specific hydroxyl groups. Mo is seen to interact with these groups resulting in the formation of monolayer-type structures bonded to the support via Mo-O-Al bridges. The monolayer structures are seen to be restricted to the original hydroxyl part of the alumina surface. It is seen that there is a preference for Mo to interact with the most basic Al-OH groups and

  4. Effect of diluent and reaction parameter on selective oxidation of propane over MoVTeNb catalyst using nanoflow catalytic reactor

    Institute of Scientific and Technical Information of China (English)

    Restu Kartiko Widi; Sharifah Bee Abdul Hamid; Robert Schl(o)gl

    2008-01-01

    The selective oxidation of propane to acrylic acid over an MoVTeNb mixed oxide catalyst, dried and calcined before reaction has been studied using high-throughput instrumentation, which is called nanoflow catalytic reactor. The effects of catalyst dilution on the catalytic performance of the MoVTeNb mixed oxide catalyst in selective oxidation of propane to acrylic acid were also investigated. The effects of some reaction parameters, such as gas hourly space velocity (GHSV) and reaction temperature, for selective oxidation of propane to acrylic acid over diluted MoVTeNb catalyst have also been studied. The configuration of the nanoflow is shown to be suitable for screen catalytic performance, and its operating conditions were mimicked closely to conventional laboratory as well as to industrial conditions. The results obtained provided very good reproducibility and it showed that preparation methods as well as reaction parameters can play significant roles in catalytic performance of these catalysts.

  5. Development of Auto Exhaust Catalysts and Associated Application of Rare Earths in China

    Institute of Scientific and Technical Information of China (English)

    吴晓东; 翁端

    2004-01-01

    There are at least three obvious trends in the developments of automotive market in China: the evolution of emission standards from Euro Ⅱ to Euro Ⅲ, the demand of lean-burn gasoline engine and the time of diesel vehicles. The latest application and advances of exhaust catalysts by Chinese researchers, using some high effcient, economical and durable methods to meet these changes in emission regulations laws and engine technologies, were described. Rare earth oxides, such as lanthana, ceria-based solid solutions and perovskite-type oxides, are widely used as excellent promoters for thermal stability, oxygen storage capacity and oxidation/reduction activity in these catalysts. Four phases in the development of the auto exhaust catalyst industry in China since the mid 1970s were reviewed. It is argued that China will become the center of global auto exhaust catalysts industry in the next decades with its economic, technical and environmental incentives, which greatly depends on the research and development of rare earth.

  6. Parametric study of the partial oxidation of propane over nickel and platinum based catalysts

    Science.gov (United States)

    Mukka, Mayuri

    supported by both the catalysts are completely different. For the Pt-based catalysts, hydrogen is formed directly by the exothermic partial-oxidation route at lower contact times. This is consistent with earlier work in our laboratory. On the other hand, for Ni-based catalysts, hydrogen is formed by the endothermic steam-reforming reaction which occurs after total oxidation. The 1%Pt/CeO2 catalyst favors higher hydrogen production at lower contact times, whereas the 1%Ni/CeO 2 catalyst favors higher hydrogen production at higher contact times. These results suggest that the 1%Pt/CeO2 catalysts could be used in micro-reactors, at low contact times. On the other hand, since the 1%Ni/CeO 2 catalyst favors the indirect partial oxidation pathway through the endothermic steam reforming process (which is in-turn driven by the heat and products from the total oxidation reaction) and supports higher hydrogen production at higher contact times, large scale reactors or industrial reactors providing larger contact times would be more effective for the 1%Ni/CeO2 catalyst.

  7. Industrial Aplication of Catalytic Systems for n-Heptane Isomerization

    Directory of Open Access Journals (Sweden)

    Laura Olivia Alemán-Vázquez

    2011-07-01

    Full Text Available The ideal gasoline must have a high pump octane number, in the 86 to 94 range, and a low environmental impact. Alkanes, as a family, have much lower photochemical reactivities than aromatics or olefins, but only the highly branched alkanes have adequate octane numbers. The purpose of this work is to examine the possibilities of extending the technological alternative of paraffin isomerization to heavier feedstocks (i.e., n-heptane using non-conventional catalytic systems which have been previously proposed in the literature: a Pt/sulfated zirconia catalyst and a molybdenum sub-oxide catalyst. Under the experimental conditions at which these catalysts have been evaluated, the molybdenum sub-oxide catalyst maintains a good activity and selectivity to isomerization after 24 h, while the Pt/sulfated zirconia catalyst shows a higher dimethylpentanes/methylhexanes ratio, probably due to a lower operating temperature, but also a high formation of cracking products, and presents signs of deactivation after 8 h. Though much remains to be done, the performance of these catalysts indicates that there are good perspectives for their industrial application in the isomerization of n-heptane and heavier alkanes.

  8. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  9. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  10. Catalysts derived from waste slag for transesterification

    Institute of Scientific and Technical Information of China (English)

    Xiaowei Zhang; Wei Huang

    2011-01-01

    MgO-CaO/SiO2 solid catalysts derived from waste slag (WS) of metal magnesium plant were prepared.The catalytic performances were evaluated in the transesterification of rapeseed oil with methanol to biodiesel in a 500 mL three-necked reactor under atmospheric pressure.The basic strengh of the catalyst reached 22.0 measured by indicators accroding to Hammett scale.The results show that the MgO-CaO/SiO2 is an excellent catalyst for transesterification, and the conversion of rapeseed oil reach 98% under the optimum condition.

  11. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Laboratory, TN (United States); LaBarge, W. [General Motors-AC Delco Systems, Flint, MI (United States)] [and others

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  12. LC-finer catalyst testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garg, D.; Bronfenbrenner, J.C.

    1983-09-01

    The activity and aging rate of modified Shell 324 Ni-Mo-Al catalyst were studied in ICRC's process development unit (PDU) under SRC-I Demonstration Plant hydroprocessing conditions. The studies determined variations in SRC conversion, hydrocarbon gas production, hydrogen consumption, and heteroatom removal at both constant and increasing reaction temperatures. Samples of spent catalyst were analyzed to ascertain the reasons for catalyst deactivation. Finally, the PDU hydroprocessing results were compared with those generated at Lummus and Wilsonville pilot plants. 14 references, 25 figures, 16 tables.

  13. Selective aerobic oxidation of 1,3-propanediol to 3-hydroxypropanoic acid using hydrotalcite supported bimetallic gold nanoparticle catalyst in water

    Science.gov (United States)

    Mohammad, Mujahid; Nishimura, Shun; Ebitani, Kohki

    2015-02-01

    Selective oxidation of 1,3-propanediol (1,3-PD) to 3-hydroxypropanoic acid (3-HPA), an important industrial building block, was successfully achieved using hydrotalcite-supported bimetallic Au nanoparticle catalysts in water at 343 K under aerobic and base-free conditions. The highest yield of 42% with 73% selectivity towards 3-HPA was afforded by 1wt% Au0.8Pd0.2-PVP/HT catalyst.

  14. Efficient Nd Promoted Rh Catalysts for Vapor Phase Methanol Carbonylation

    Institute of Scientific and Technical Information of China (English)

    Shu Feng ZHANG; Qing Li QIAN; Ping Lai PAN; Yi CHEN; Guo Qing YUAN

    2005-01-01

    A Nd promoted-Rh catalysts supported on polymer-derived carbon beads for vapor-phase methanol carbonylation was developed. Rh-Nd bimetallic catalysts obviously have higher activity than that of supported Rh catalyst under similar reaction condition. The difference between the activity of above two catalyst systems is clearly caused by the intrinsic properties generated by the introduction of Nd.

  15. High pressure CO hydrogenation over bimetallic Pt-Co catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Medford, Andrew James; Studt, Felix

    2014-01-01

    The potential of bimetallic Pt-Co catalysts for production of higher alcohols in high pressure CO hydrogenation has been assessed. Two catalysts (Pt3Co/SiO2 and PtCo/SiO2) were tested, and the existing literature on CO hydrogenation over Pt-Co catalysts was reviewed. It is found that the catalyst...

  16. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst...

  17. Supported catalyst systems and method of making biodiesel products using such catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  18. Characterization of deactivated catalytic cracking catalyst and evaluation as absorbent material; Caracterizacao de catalisador de craqueamento catalitico desativado e avaliacao como material adsorvente

    Energy Technology Data Exchange (ETDEWEB)

    Valt, R.B.G.; Kaminari, N.M.S.; Cordeiro, B.; Ponte, M.J.J.S.; Ponte, H.A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)

    2010-07-01

    One of the main uses of catalysts in the petroleum industry is in step catalytic cracking, which after use and regeneration cycles generates large quantities of waste material. In this research the deactivated FCC catalyst was characterized before and after the electrokinetic remediation process, in order to assess the change of its structure and possible adsorptive capacity. Analyses of X-Ray Fluorescence Spectroscopy, Scanning Electron Microscopy and BET surface area measurement were performed. The analysis showed no structural change due to the process employed and that electrokinetic remediation has recovered 42% of adsorption capacity of the material, by removing about 89% of heavy metals adhered initially in the catalyst surface. (author)

  19. Directed Evolution of Enzymes for Industrial Biocatalysis.

    Science.gov (United States)

    Porter, Joanne L; Rusli, Rukhairul A; Ollis, David L

    2016-02-01

    Enzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations. Many naturally occurring enzymes are not suitable for use outside of their native cellular environments. However, protein engineering can be used to generate enzymes tailored for specific industrial applications. Directed evolution is particularly useful and can be employed even when lack of structural information impedes the use of rational design. The aim of this review is to provide an overview of current industrial applications of enzyme technology and to show how directed evolution can be used to modify and to enhance enzyme properties. This includes a brief discussion on library generation and a more detailed focus on library screening methods, which are critical to any directed evolution experiment.

  20. Methods for recovering precious metals from industrial waste

    Science.gov (United States)

    Canda, L.; Heput, T.; Ardelean, E.

    2016-02-01

    The accelerated rate of industrialization increases the demand for precious metals, while high quality natural resources are diminished quantitatively, with significant operating costs. Precious metals recovery can be successfully made from waste, considered to be secondary sources of raw material. In recent years, concerns and interest of researchers for more increasing efficient methods to recover these metals, taking into account the more severe environmental protection legislation. Precious metals are used in a wide range of applications, both in electronic and communications equipment, spacecraft and jet aircraft engines and for mobile phones or catalytic converters. The most commonly recovered precious metals are: gold from jewellery and electronics, silver from X- ray films and photographic emulsions, industrial applications (catalysts, batteries, glass/mirrors), jewellery; platinum group metals from catalytic converters, catalysts for the refining of crude oil, industrial catalysts, nitric acid manufacturing plant, the carbon-based catalyst, e-waste. An important aspect is the economic viability of recycling processes related to complex waste flows. Hydrometallurgical and pyrometallurgical routes are the most important ways of processing electrical and electronic equipment waste. The necessity of recovering precious metals has opened new opportunities for future research.

  1. Analysis on Ammonia Synthesis over Wuestite-Based Iron Catalyst

    Institute of Scientific and Technical Information of China (English)

    李小年; 刘化章; 等

    2003-01-01

    Wuestite-based catalyst for ammonia synthesis exhibits extremely high activity and easy to reduction under a wide range of conditions.The reaction kinetics of ammonia synthesis can be illustrated perfectly by both the classical Temkin-Pyzhev and modified Tecmkin equations with optimized α of 0.5,The pre-exponent factors and activation energies at the pressures of 8.0 and 15.0MPa are respectively κ0=1.09×1015,7.35×1014Pa0.5·s-1,and E=156.6,155.5kJ·mol-1 derived from the classical Temkin-Phyzhev equation,as well as k0=2.45×1014 ,1.83×1014Pa0.5·s-1,and E=147.7,147.2kJ·mol-1 derived from the modified Temkin equation.Although the degree of reduction under isothermal condition is primarily dependent upon temperature,low pressure seems to be imperative for reduction under high temperature and low space velocity to be considered as a high activity catalyst.The reduction behavior with dry feed gas can be illustrated perfectly by the shrinking-sphere-particle model,by which the reduction-rate constants of 4248exp(-71680/RT) and 644exp(-87260/RT) were obtained for the powder (0.045-0.054mm) and irregular shape(nominal diameter 3.17mm) catalysts respectively.The significant effect of particle size on reduction rate was observed,therefore,it is important to take into account the influence of particle size on reduction for the optimization of reduction process in industry.

  2. Graphyne-supported single Fe atom catalysts for CO oxidation.

    Science.gov (United States)

    Wu, Ping; Du, Pan; Zhang, Hui; Cai, Chenxin

    2015-01-14

    Single atom catalysts (SACs) are highly desirable for the effort to maximize the efficiency of metal atom use. However, the synthesis of SACs is a major challenge that largely depends on finding an appropriate supporting substrate to achieve a well-defined and highly dispersed single atom. This work demonstrates that, based on the density functional theory (DFT) calculation, graphyne is a good substrate for single Fe atom catalysts. The Fe atom can be tightly embedded in a graphyne sheet with a high binding energy of ∼4.99 eV and a high diffusion energy barrier of ∼1.0 eV. The graphyne-supported Fe (Fe-graphyne) SAC shows high catalytic activity towards CO oxidation, which is often regarded as a prototype reaction for designing atomic-scale catalysts. We studied the adsorption characteristics of CO and O2 on Fe-graphyne SACs, and simulated the reaction mechanism of CO oxidation involving Fe-graphyne. The simulation results indicate that O2 binding on Fe-graphyne is much stronger than that of CO, and the adsorbed O2 prior to occupy the Fe atoms as the co-existence of O2 and CO. The reaction of CO oxidation by adsorbed O2 on Fe-graphyne SACs favors to proceed via the Eley-Rideal (ER) mechanism with the energy barrier of as low as ∼0.21 eV in the rate-limiting step. Calculation of the electronic density of states (DOS) of each reaction step demonstrates that the strong interaction of the O2 and Fe adatom promotes the CO oxidation on Fe-graphyne SACs. The results presented here suggest that graphyne could provide a unique platform to synthesize SACs, and the Fe-graphyne SACs could find potential use in solving the growing environmental problems caused by CO emission from automobiles and industrial processes, in removing CO contamination from vehicle exhaust and in fuel cells.

  3. Selective catalytic reduction of nitrogen oxides with ammonia over microporous zeolite catalysts

    OpenAIRE

    VENNESTROM, PETER NICOLAI RAVNBORG

    2014-01-01

    With increasing legislative demands to remove nitrogen oxides (NOx) from automotive diesel exhaust, new catalyst systems are investigated and intensely studied in industry as well in academia. The most prevailing catalytic method of choice is the selective catalytic reduction (SCR) where non-toxic urea is used as a reductant for practical reasons. Usually urea is stored in a separate tank and once injected into the exhaust system it hydrolyses into the more aggressive reductant NH3 and CO2. ...

  4. Polyethylene glycol: A recyclable solvent system for the synthesis of benzimidazole derivatives using CAN as catalyst

    Indian Academy of Sciences (India)

    Mazaahir Kidwai; Anwar Jahan; Divya Bhatnagar

    2010-07-01

    Ceric ammonium nitrate (CAN) efficiently catalysed the synthesis of benzimidazole derivatives from -phenylenediamine and aldehydes in PEG. This method provides a novel route for the synthesis of benzimidazoles in good yields with little catalyst loading. The recovery and the successful reutilization of the solvent system are also presented. Moreover, the easy set-up and purification tasks of this sustainable method make it appealing for bulk industry applications.

  5. Development and Commercial Application of Third Generation Resid Hydrotreating Catalysts

    Institute of Scientific and Technical Information of China (English)

    Hu Dawei; Yang Qinghe; Dai Lishun; Zhao Xinqiang

    2013-01-01

    Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and application re-quirements, the third-generation series catalysts for residue hydrotreating have been developed by Research Institute of Petroleum Processing, SINOPEC. The new series RHT catalysts possess higher activity for HDS, HDM and HDCCR per-formance as well as longer run length. The commercial results for application of these catalysts have demonstrated that the new catalyst system performs better than the reference ones.

  6. Enhancement of water-gas shift reaction efficiency: catalysts and the catalyst bed arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Baronskaya, Natal' ya A; Minyukova, Tat' yana P; Khassin, Aleksandr A; Yurieva, Tamara M; Parmon, Valentin N [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2010-12-29

    The results of studies devoted to the search for catalysts of water-gas shift (WGS) reaction that are highly active in a wide temperature interval are generalized. New compositions based on traditional and alternative, as regards the chemical composition, catalysts of high- and low-temperature WGS reaction are considered in detail. The single-stage arrangement of WGS reaction ensuring small temperature gradients in the radial direction of the catalyst bed are discussed.

  7. Propene metathesis over silica-supported tungsten oxide catalyst-catalyst induction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Basrur, A.G.; Patwardhan, S.R.; Vyas, S.N. (Indian Inst. of Tech., Bombay (India))

    1991-01-01

    The propene metathesis reaction was studied from the point of view of elucidating the mechanism of catalyst induction and establishing conditions for maximum activity. Instrumental techniques such as ESR, IR, and TPD were used to study the various aspects. During catalyst induction, trace quantities of acetone and acetaldehyde were detected in the product stream, indicating that lattice oxygen from tungsten oxide might be responsible for these products. Induction appeared to proceed via two steps since pretreatment of the catalyst with nitrogen and hydrogen yielded a decreased amount of acetone in the latter case whereas acetaldehyde remained unaffected. ESR studies indicated some interaction between tungsten oxide and silica at the catalyst preparatory stage as well as stabilization of reduced tungsten species on the catalyst after its use and regeneration. Catalyst activity appeared to depend on conditions of pretreatment. Change in nitrogen pretreatment temperature from 500 to 600{sup o}C resulted in transition from strong to negligible external mass transfer behavior of the catalyst. TPD studies in this context showed possible loss of lattice oxygen from tungsten oxide under the above-mentioned conditions of catalyst pretreatment. ESR studies indicated the reduction of WO{sub 3} to a nonstoichiometric oxidation state. Hence catalytic activity appears to be related to the nonstoichiometric state of tungsten oxide, which may be WO{sub 2.9} (as deduced from the blue-violet color of the used catalyst).

  8. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    DEFF Research Database (Denmark)

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also reveale...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  9. FCC Catalysts to Meet Demand of New Era

    Institute of Scientific and Technical Information of China (English)

    Yu Daping

    2008-01-01

    The CGP series FCC catalysts for manufacture of clean gasoline and propylene and the catalyst RSC-2006 for processing inferior residuum with high yield of light distillates are novel catalysts jointly developed by Qilu Catalyst Branch Company of SINOPEC Corp. and the Research Institute of Petroleum Processing (RIPP). The results of commercial application of these catalysts have revealed that they can satisfactorily meet the requirements for environmental protection, good economic benefits and capability for processing inferior FCC feed under new circumstances.

  10. Assessment on Commercial Application of Novel S-RHT Catalysts

    Institute of Scientific and Technical Information of China (English)

    Bian Fengming; Wen Huixin

    2004-01-01

    This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.

  11. Synthesis and Understanding of Novel Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Stair, Peter C. [Northwestern University

    2013-07-09

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supported metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.

  12. Moderated ruthenium fischer-tropsch synthesis catalyst

    Science.gov (United States)

    Abrevaya, Hayim

    1991-01-01

    The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  13. Highly sensitive silicon microreactor for catalyst testing

    DEFF Research Database (Denmark)

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard;

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  14. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis.

    Science.gov (United States)

    Yang, Guohui; Tsubaki, Noritatsu; Shamoto, Jun; Yoneyama, Yoshiharu; Zhang, Yi

    2010-06-16

    Dimethyl ether (DME) is an industrially important intermediate, as well as a promising clean fuel, but the effective production through traditionally consecutive steps from syngas to methanol and then to DME has been hindered by the poorly organized structure of the conventional physical mixture catalyst. Here, a novel zeolite capsule catalyst possessing a core-shell structure (millimeter-sized core catalyst and micrometer-sized acidic zeolite shell) was proposed initially through a well-designed aluminum migration method using the core catalyst as the aluminum resource and for the first time was applied to accomplish the DME direct synthesis from syngas. The selectivity of the expected DME on this zeolite capsule catalyst strikingly exceeded that of the hybrid catalyst prepared by the traditional mixing method, while maintaining the near-zero formation of the unexpected alkanes byproduct. The preliminary methanol synthesis reaction on the core catalyst and the following DME formation from methanol inside the zeolite shell cooperated concertedly and promoted mutually. This zeolite capsule catalyst with a synergetic confinement core-shell structure can be used to efficiently realize the combination of two and more sequential reactions with many synergistic effects.

  15. 17th European Conference on Mathematics for Industry

    CERN Document Server

    Günther, Michael; Marheineke, Nicole

    2014-01-01

    This book contains the proceedings of the 17th European Conference on Mathematics for Industry, ECMI2012, held in Lund, Sweden, July 2012, at which ECMI celebrated its 25th anniversary. It covers mathematics in a wide range of applications and methods, from circuit and electromagnetic devices, environment, fibers, flow, medicine, robotics and automotive industry, further applications to methods and education. The book includes contributions from leading figures in business, science and academia who promote the application of mathematics to industry and emphasize industrial sectors that offer the most exciting opportunities. The contributions reinforce the role of mathematics as being a catalyst for innovation as well as an overarching resource for industry and business. The book features an accessible presentation of real-world problems in industry and finance, provides insight and tools for engineers and scientists which will help them to solve similar problems, and offers modeling and simulation techniques ...

  16. Designing Catalysts for Clean Technology, Green Chemistry, and Sustainable Development

    Science.gov (United States)

    Meurig Thomas, John; Raja, Robert

    2005-08-01

    There is a pressing need for cleaner fuels (free or aromatics and of minimal sulfur content) or ones that convert chemical energy directly to electricity, silently and without production of noxious oxides and particulates; chemical, petrochemical and pharmaceutical processes that may be conducted in a one-step, solvent-free manner and that use air as the preferred oxidant; and industrial processes that minimize consumption of energy, production of waste, or the use of corrosive, explosive, volatile, and nonbiodegradable materials. All these needs and other desiderata, such as the in situ production and containment of aggressive and hazardous reagents, and the avoidance of use of ecologically harmful elements, may be achieved by designing the appropriate heterogeneous inorganic catalyst, which ideally should be cheap, readily preparable and fully characterizable, preferably under in situ reaction conditions. A range of nanoporous and nanoparticle catalysts that meet most of the stringent demands of sustainable development and responsible (clean) technology is described. Specific examples that are highlighted include the production of adipic acid (precursor of polyamides and urethanes) without the use of concentrated nitric acid nor the production of greenhouse gases such as nitrous oxide; the production of caprolactam (precursor of nylon) without the use of oleum and hydroxylamine sulfate; and the terminal oxyfunctionalization of linear alkanes in air. The topic of biocatalysis and sustainable development is also briefly discussed for the epoxidation of terpenes and fatty acid methyl esters; for the generation of polymers, polylactides, and polyesters; and for the production of 1,3-propanediol from corn.

  17. Asymmetric Hydrogenation of Ketones-Design of Chiral Catalysts

    Institute of Scientific and Technical Information of China (English)

    Takeshi Ohkuma

    2005-01-01

    @@ 1Introduction Asymmetric hydrogenation of ketones is one of the most reliable methods for obtaining chiral secondary alcohols. This transformation is not only of academic interest, but also of industrial significance because of its simplicity, environmental friendliness, and economic viability. Chiral RuXY(binap)(1,2-diamine) complexes (BINAP = 2,2'-bis(diphenyl-phosphino)-1, 1'-binaphthyl,X = Y = C1 or X = H, Y = BH4) with[1] or without[2] a strong base catalyze rapid, highly productive asymmetric hydrogenation of various simple ketones in 2-propanol. This reaction, unlike conventional hydrogenation, proceeds selectively at a C = O bond leaving coexisting C = C linkages intact. A range of chiral alcohols are accessible in high enantiomeric purity from aromatic,heteroaromatic, olefinic, and amino ketones by this method[1,2]. However, no universal chiral catalysts exist due to the structural diversity of ketonic substrates. Thus, tert-alkyl ketones and 1-tetralones have remained difficult to be hydrogenated with high reactivity and enantioselectivity. We here report that this problem can be resolved by the use of BINAP/PICA-Ru (PICA = α-picolylamine)[3] or BINAP/1,4-diamine-Ru[4] complexes as catalysts.

  18. Skeletal Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    Min Enze

    2004-01-01

    Looking toward 21 century, smaller, cleaner and more energy-efficient technology will be an important trend in the development of chemical industry. In light of the new process requirements,a number of technology breakthroughs have occurred. One of these discoveries, the magnetically stabilized bed (MSB), has been proven a powerful process for intensification. Since its initial research in the late 1980's at Research Institute of Petroleum Processing (RIPP), the MSB technology and related catalytic material have matured rapidly through an intensive research and engineering program, primarily focused on its scaling-up.In this paper, we report the discovery of a novel skeletal amorphous nickel-based alloy and its use in magnetically stabilized bed (MSB). Amorphous alloys are new kinds of catalytic materials with short-range order but long-range disorder structure. In comparison with Raney Ni, the skeletal amorphous nickel-based alloy has an increasingly higher activity in the hydrogenation of reactive groups and compounds including nitro, nitrile, olefin, acetylene, aromatics, etc. Up to now, the amorphous nickel based alloy catalysts, SRNA series catalyst, one with high Ni ratio have been commercially manufactured more than four year. The new SRNA catalyst has been successfully implemented for hydrogenation applications in slurry reactor at Balin Petrochemical, SINOPEC.SRNA catalyst with further improvement in catalytic activity and stability raise its relative stability to 2~4 times of that of conventional catalyst. In the course of the long-cycle operation of SRNA-4 the excellent catalyst activity and stability can bring about such advantage as low reaction temperature, good selectivity and low catalyst resumption.Magnetically stabilized bed (MSB), a fluidized bed of magnetizable particles by applying a spatially uniform and time-invariant magnetic field oriented axially relative to the fluidizing fluid flow, had many advantages such as the low pressure drop and

  19. Thermocatalytic Oxidation of Chloro-Derivatives of Propane Occurring in Industrial Wastes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The processes of treatment and utilization of organic chlorine compounds: 1,2-dichloropropane andpropylene chlorohydrin, were investigated with application of contact catalysts to obtain the lowest possibletemperature of the process by selection of proper catalysts and determination of optimum reaction parameters.Experiments were carried out with application of oxide, copper-zinc (TMC-2, TMC 3/1) and platinum (PA-2)catalysts. Results of investigations proved the possibility of total oxidation of above-mentioned compoundsand components of industrial wastewater in the temperature range from 350 to 450 ℃.

  20. Bifunctional Catalysts for CO2 Reduction

    Science.gov (United States)

    2014-09-30

    dioxide reduction catalysis . (SA 1 – Catalyst candidate synthesis) As outlined in the original proposal, ligand platforms have been synthesized to...was limited to outer-sphere electron transfer (necessary oxidation potentials for catalysis > –2.1 V vs. [Cp2Fe] +/0). Thus, we pursued two...to heterogeneous Fischer-Tropsch13 catalysts. This reactivity must also be compared with mononuclear early transition metal ligands that require

  1. Deactivation and poisoning of fuel cell catalysts

    Science.gov (United States)

    Ross, P. N., Jr.

    1985-06-01

    The deactivation and poisoning phenomena reviewed are: the poisoning of anode (fuel electrode) catalyst by carbon monoxide and hydrogen sulfide; the deactivation of the cathode (air electrode) catalyst by sintering; and the deactivation of the cathode by corrosion of the support. The anode catalyst is Pt supported on a conductive, high area carbon black, usually at a loading of 10 w/o. This catalyst is tolerant to some level of carbon monoxide or hydrogen sulfide or both in combination, the level depending on temperature and pressure. Much less is known about hydrogen sulfide poisoning. Typical tolerance levels are 2% CO, and 10 ppM H2S. The cathode catalyst is typically Pt supported on a raphitic carbon black, usually a furnace black heat-treated to 2700 C. The Pt loading is typically 10 w/o, and the dispersion (or percent exposed) as-prepared is typically 30%. The loss of dispersion in use depends on the operational parameters, most especially the cathode potential history, i.e., higher potentials cause more rapid decrease in dispersion. The mechanism of loss of dispersion is not well known. The graphitic carbon support corrodes at a finite rate that is also potential dependent. Support corrosion causes thickening of the electrolyte film between the gas pores and the catalyst particles, which in turn causes increased diffusional resistance and performance loss.

  2. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas. Task 3.2: Screen novel catalyst systems; Task 3.3:, Evaluation of the preferred catalyst system

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, R.P.

    1993-01-01

    As part of the DOE-sponsored contract ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas`` experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbon mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst, developed in Air Products` laboratories, has the highest performance in terms of rate and selectivity for C{sub 2+}-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.

  3. Industrial radiographies

    CERN Multimedia

    2005-01-01

    The Radiation Protection group wishes to remind CERN staff responsible for contractors performing X-ray inspections on the CERN sites that the firms must apply the legislation in force in their country of origin, in particular with regard to the prevention of risks relating to ionizing radiation. Industrial radiography firms called on to work on the CERN sites must also comply with the rules laid down in CERN's Radiation Safety Manual and be registered in the relevant CERN database. Since CERN is responsible for safety on its own site, a number of additional rules have been laid down for this kind of work, as set out in Radiation Protection Procedure PRP30 https://edms.cern.ch/file/346848/LAST_RELEASED/PRP30.pdf The CERN Staff Member responsible for the contract shall register the company and issue notification that an X-ray inspection is to be performed via the web interface at the following address: http://cern.ch/rp-radio

  4. Session 4: Improved middle distillate selectivity using pre-treated catalytic cracking catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Trimm, D.L.; Chia, D.A. [New South Wales Univ., School of Chemical Engineering and Industrial Chemistry, Sydney (Australia)

    2004-07-01

    Demand for transport fuels has led to refining practices designed to maximize yields of middle distillate. One such practice involves the addition of light hydrocarbons to the bottom of the riser of a fluid catalytic cracker. Coke, deposited on the most acidic sites of a fresh catalyst, is suggested to limit over-cracking and maximize the yield of middle distillate. Mandal et al. found optimal results with the deposition of 0.2 - 0.3 wt % coke. An attempt to explore this finding using an equilibrated catalyst was unsuccessful and, as a result, the mechanism of the reaction has been explored using squalane (C{sub 30}H{sub 62}) cracking as a test system. All catalyst testing was carried out using a standard micro-activity test unit. Squalane was injected through 0.1 - 5 g catalyst mounted in a heated reactor. Gases and liquids were analysed using gas chromatography. Industrially equilibrated catalyst was fully characterized. Significant changes in the physical and chemical properties of the original catalyst (AKZO Access 908 ABP) were observed. Separate samples were coked to 1.4, 2.5 and 3.4 mass %, and other samples were treated by soaking in 25 mass % ammonia solution, drying and calcining (523 K: 1 h: 923 K: 5.5 h). Results reported are the average of 10 experiments (standard deviation of less than 2%). Initial experiments were carried out to compare the reactions of squalane over equilibrium catalyst with and without pre-treatment. All pre-treatments were found to decrease conversion, with pre-coking having a significant effect on LCO yield and on further coke formation. The results were consistent with pore blocking effects, and comparisons were made with an ammonia pre-treated catalyst where the pore structure remained the same. Compared to the equilibrated catalyst, it was surprising to find higher yields of lower molecular weight compounds at the expense of C{sub 7}{sup +} products, both at 38 and 65 mass % conversion. Hydrogen transfer reactions are known to

  5. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. He...

  6. Advances in HDS catalysts design: relation between catalyst structure and feed composition

    NARCIS (Netherlands)

    Kagami, Narinobu

    2006-01-01

    The aim of this work is to propose a better understanding of ultra deep HDS for diesel, to contribute to the development of advanced catalysts. The characterization of catalyst structure was examined by XRD, TPR, TPS and Raman spectroscopy. The ranking of catalytic activities were tested using vario

  7. The capacity of modified nickel catalysts derived from discharged catalyst of fertilizer plants for NOx treatment

    Science.gov (United States)

    Ha, T. M. P.; Luong, N. T.; Le, P. N.

    2016-11-01

    In Vietnam for recent years, a large amount of hazardous waste containing nickel (Ni) derived from discharged catalyst of fertilizer plants has caused environmental problems in landfill overloading and the risk of soil or surface water sources pollution. Taking advantage of discharged catalyst, recycling Ni components and then synthesizing new catalysts apply for mono-nitrogen oxides (NOx) treatments is an approach to bring about both economic and environmental benefits. This study was carried out with the main objective: Evaluate the performance of modified catalysts (using recovered Ni from the discharged RKS-2-7H catalyst of Phu My Fertilizer Plant) on NOx treatment. The catalysts was synthesized and modified with active phases consist of recovered Ni and commercial Barium oxide (BaO), Manganese dioxide (MnO2) / Cerium (IV) oxide (CeO2) on the support Aluminium oxide (γ-Al2O3). The results show that the modified catalysts with Ni, Ba, Ce was not more beneficial for NOx removal than which with Ni, Ba, Mn. 98% NOx removal at 350°C with the start temperature at 115°C and the T60 value at 307°C can be obtained with 10Ni10Ba10Mn/Al catalyst.

  8. Towards the Rational Design of Nanoparticle Catalysts

    Science.gov (United States)

    Dash, Priyabrat

    This research is focused on development of routes towards the rational design of nanoparticle catalysts. Primarily, it is focused on two main projects; (1) the use of imidazolium-based ionic liquids (ILs) as greener media for the design of quasi-homogeneous nanoparticle catalysts and (2) the rational design of heterogeneous-supported nanoparticle catalysts from structured nanoparticle precursors. Each project has different studies associated with the main objective of the design of nanoparticle catalysts. In the first project, imidazolium-based ionic liquids have been used for the synthesis of nanoparticle catalysts. In particular, studies on recyclability, reuse, mode-of-stability, and long-term stability of these ionic-liquid supported nanoparticle catalysts have been done; all of which are important factors in determining the overall "greenness" of such synthetic routes. Three papers have been published/submitted for this project. In the first publication, highly stable polymer-stabilized Au, Pd and bimetallic Au-Pd nanoparticle catalysts have been synthesized in imidazolium-based 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) ionic liquid (Journal of Molecular Catalysis A: Chemical, 2008, 286, 114). The resulting nanoparticles were found to be effective and selective quasi-homogeneous catalysts towards a wide-range of hydrogenation reactions and the catalyst solution was reused for further catalytic reactions with minimal loss in activity. The synthesis of very pure and clean ILs has allowed a platform to study the effects of impurities in the imidazolium ILs on nanoparticle stability. In a later study, a new mode of stabilization was postulated where the presence of low amounts of 1-methylimidazole has substantial effects on the resulting stability of Au and Pd-Au nanoparticles in these ILs (Chemical Communications, 2009, 812). In further continuation of this study, a comparative study involving four stabilization protocols for nanoparticle

  9. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  10. Development of Novel Resid Hydrometallization Catalyst RDM-3

    Institute of Scientific and Technical Information of China (English)

    Hu Dawei; Niu Chuanfeng; Yang Qinghe; Liu Tao

    2007-01-01

    Based on the reaction mechanism of resid hydrodemetallization,a new catalyst carrier was designed and prepared.As compared with the similar type of catalyst carder,the said new carrier featured a higher pore volume,a larger pore diameter and a weaker surface acidity,which could improve the diffusion performance and stable reaction performance of the catalyst.The active metal components were loaded on the said carrier by a new technique for better metal dispersion,thus the impurity removal rate of the new catalyst,RDM-3,was improved significantly.The commercial test of the RDM-3 catalyst showed that the process of catalyst preparation was stable,the catalyst performance was slightly better than the catalyst prepared in the lab,therefore,the catalyst could be manufactured in commercial scale.

  11. Interaction between Nafion ionomer and noble metal catalyst for PEMFCs

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    The implement of polymer impregnation in electrode structure (catalyst layer) decreasing the noble metal catalyst loading by a factor of ten , , is one of the essential mile stones in the evolution of Proton Exchange Membrane Fuel Cells’ development among the application of catalyst support...... and electrode deposition etc. In fuel cell reactions, both electrons and protons are involved. Impregnation of Nafion ionomer in catalyst layer effectively increases the proton-electron contact, enlarge the reaction zone, extend the reaction from the surface to the entire electrode. Therefore, the entire...... catalyst layer conducts both electrons and protons so that catalyst utilization in the layer is improved dramatically. The catalyst layer will in turn generate and sustain a higher current density. One of the generally adapted methods to impregnate Nafion into the catalyst layer is to mix the catalysts...

  12. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    Directory of Open Access Journals (Sweden)

    Raimondo Maggi

    2016-10-01

    Full Text Available Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  13. Direct synthesis of dimethyl carbonate and propylene glycol using potassium bicarbonate as catalyst in supercritical CO2

    Directory of Open Access Journals (Sweden)

    Wen Yicun

    2015-03-01

    Full Text Available The improved one-pot synthesis of dimethyl carbonate and propylene glycol from propylene oxide, supercritical carbon dioxide, and methanol with potassium bicarbonate as the catalyst has been reported in this paper. As far as we know, it is the first time to use potassium bicarbonate only as the catalyst in the production process which is simple and cheap. Satisfactory conversion rate of propylene oxide and yield of the products could be achieved at the optimized conditions with quite a small amount of by-products. Our new method offers an attractive choice for the production of dimethyl carbonate in large-scale industry efficiently and environmental friendly.

  14. Effects of three industrial wastes on kinetic characteristics of petroleum coke-CO{sub 2} gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zou Jian-hui; Zhou Zhi-jie; Dai Zheng-hua; Liu Hai-feng; Wang Fu-chen; Yu Zun-hong [East China University of Science & Technology, Shanghai (China). Institute of Clean Coal Technology

    2008-07-01

    Three industrial wastes including black liquor from papermaking industry, coal slag, and sludge were used as catalysts for petroleum coke-CO{sub 2} gasification. The gasification kinetics characteristics with and without a catalyst were studied using a pressurized thermo gravimetric analyzer (TGA). It is shown that gasification rate increases with increasing conversion and then decreases after reaching a maximal rate for noncatalytic gasification, while decreases in whole course for catalytic gasification. The proposed normal distribution function model describes well the kinetic curve for both noncatalytic and catalytic gasification. The calculated activation energy of noncatalytic petroleum coke-CO{sub 2} gasification is 197.7 kJ/mol, which is in accordance with the reported data. The activities of three catalysts are contributed to the content of metal species. The black liquor in papermaking industry rich in Na species has the best activity, and its gasification rate is six times as that of noncatalytic gasification. 19 refs., 11 figs., 4 tabs.

  15. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, G.J.; Themistocleous, T.; Copperthwaite, R.G.

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  16. Supported Oxide Catalysts from Chelating Precursors

    Science.gov (United States)

    Prieto-Centurion, Dario

    Supported Fe catalysts and, in particular, Fe and substituted MFI zeolites have attracted industrial and academic attention due to their ability to promote selective catalytic reduction of NOx and selective partial oxidation of hydrocarbons. It is generally accepted that some form of highly dispersed, binuclear or atomically-isolated metal species are involved in the selective processes catalyzed these materials. Several studies have sought to reproduce the structures and reactivity of these substituted zeolites on dierent supports. Given that specialized reagents or preparation conditions that are required in some of these preparation methods, and that multiple surface structures are often formed, this dissertation aimed to develop a route to highly dispersed supported transition metals using commonly available reactants and synthesis routes. Described here is a straightforward and effective procedure to control dispersion and surface speciation of Fe on SiO2 and CeO2 through incipient wetness impregnation (IWI) of the support with aqueous, anionic complexes of Fe3+ and ethylenediaminetetraacetic acid (EDTA) followed by oxidative heat-treatment. On SiO2, this method preferentially creates isolated surface structures up to loading of 0.9 Fe nm-2 if using alkali counter-cations. This isolated species display classic 'single-site' behavior|constant turn over frequency (TOF) with increasing Fe surface density|in the oxidation of adamantane with H 2O2, indicating active sites are equally accessible and equally active within this range of surface density. Additionally, TOF increases linearly with electronegativity of the alkali counter-cation, suggesting electronic promotion. Conversely, IWI of unprotected Fe3+ produces agglomerates less active in this reaction. On CeO2, the sterics and negative charge imparted on Fe 3+ by EDTA4- inhibits incorporation of Fe into surface vacancies. Instead, formation of two-dimensional oligomeric structures which can undergo Fe3+-Fe2

  17. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  18. Development and Application of CDOS Series Catalysts for Bottoms Cracking

    Institute of Scientific and Technical Information of China (English)

    Wang Mingjin; Xu Mingde; Zhu Yuxia

    2013-01-01

    Development of CDOS catalyst for bottoms cracking is based on DOSY zeolite, which is characterized by high metal tolerance. The results of DOSY tests have shown that the catalyst has better activity retention at high metal content in the feed. The performance of catalyst tested in the bench scale was superior over that of the reference catalyst. The results of catalyst application have shown that the CDOS series catalysts have better bottoms cracking activity, high metal tolerance, excellent dry gas selectivity, and enhanced liquid yield.

  19. Catalyst and electrode research for phosphoric acid fuel cells

    Science.gov (United States)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  20. Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing of GaN

    Science.gov (United States)

    Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun

    2016-08-01

    Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing (CMP) of GaN were deeply investigated in this paper. Working as an ideal homogeneous substrate material in LED industry, GaN ought to be equipped with a smooth and flat surface. Taking the strong chemical stability of GaN into account, photocatalytic oxidation technology was adopted in GaN CMP process to realize efficient removal. It was found that, because of the improved reaction rate of photocatalytic oxidation, GaN material removal rate (MRR) increases by a certain extent with catalyst concentration increasing. Cross single line analysis on the surface after polishing by Phase Shift MicroXAM-3D was carried out to prove the better removal effect with higher catalyst concentration. Ultraviolet intensity field in H2O2-SiO2-based polishing system was established and simulated, revealing the variation trend of ultraviolet intensity around the outlet of the slurry. It could be concluded that, owing to the higher planarization efficiency and lower energy damage, the UV lamp of 125 W is the most appropriate lamp in this system. Based on the analysis, defects removal model of this work was proposed to describe the effects of higher catalyst concentration and higher power of UV lamp.

  1. Hydrogenation of carbon dioxide by hybrid catalysts, direct synthesis of aromatic from carbon dioxide and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kuei Chikung; Lee Mindar (National Taiwan Univ., Taipei (Taiwan))

    1991-02-01

    To improve climatic conditions and to solve the carbon resource problem, it is desirable to develop techniques whereby carbon dioxide can be converted to valuable liquid hydrocarbons which can be used either as fuels or industrial raw materials. Direct synthesis of aromatics from carbon dioxide hydrogenation was investigated in a single stage reactor using hybrid catalysts composed of iron catalysts and HZSM-5 zeolite. Carbon dioxide was first converted to CO by the reverse water gas shift reaction, followed by the hydrogenation of CO to hydrocarbons on iron catalyst, and finally the hydrocarbons were converted to aromatics in HZSM-5. Under the operating conditions of 350{degree}C, 2100 kilopascals and CO{sub 2}/H{sub 2}={1/2} the maximum aromatic selectivity obtained was 22% with a CO{sub 2} conversion of 38% using fused iron catalyst combined with the zeolite. Together with the kinetic studies, thermodynamic analysis of the CO{sub 2} hydrogenation was also conducted. It was found that unlike Fischer Tropsch synthesis, the formation of hydrocarbons from CO{sub 2} may not be thermodynamically favored at higher temperature. However, the sufficiently high yields of aromatics possible with this process provides a route for the direct synthesis of high-octane gasoline from carbon dioxide. 24 refs., 9 figs., 5 tabs.

  2. The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts.

    Science.gov (United States)

    Wróblewska, Agnieszka

    2014-11-28

    Limonene belongs to a group of very important intermediates used in the production of fine chemicals. This monoterpene compound can be obtained from peels of oranges or lemon which are a (biomass) waste from the orange juice industry. Thus, limonene is a renewable, easy available and a relatively cheap compound. This work presents preliminary studies on the process of limonene epoxidation over zeolite type catalysts such as: TS-1 and Ti-SBA-15. In these studies methanol was used as a solvent and as an oxidizing agent a 60 wt % hydrogen peroxide solution was applied. The activity of each catalyst was investigated for four chosen temperatures (0 °C, 40 °C, 80 °C and 120 °C). The reaction time was changed from 0.5 to 24 h. For each catalyst the most beneficial conditions (the appropriate temperature and the reaction time) have been established. The obtained results were compared and the most active catalyst was chosen. These studies have also shown different possible ways of limonene transformation, not only in the direction of 1,2-epoxylimonene and its corresponding diol, but also in direction of carveol, carvone and perillyl alcohol-compounds with a lot of applications. The possible mechanisms of formation of the allylic oxidation products were proposed.

  3. Lewis Acidic Ionic Liquids As New Addition Catalyst For Oleic Acid To Monoestolide Synthesis

    Directory of Open Access Journals (Sweden)

    Nadia Farhana Adnan

    2011-09-01

    Full Text Available Estolide compound has a large potential in many industrial applications such as biodegradable lubricants and in cosmetic formulation. In this study, monoestolide can be prepared by addition reaction of oleic acid under vacuum-reflux and solvent free condition for 10 hours at 85 °C in the presence of solid zinc chloride anhydrous (ZnCl2, choline chloride (ChCl and ionic liquids (IL ChCl-ZnCl2, ChCl-FeCl3, ChCl-SnCl2, ChCl-CuCl2 as homogenous acid catalysts. These reactions were compared with common homogenous catalyst namely sulfuric acid (H2SO4. The FTIR analysis show that addition reaction using the above catalysts showed the presence of three new peaks at 1732 cm-1 for C=O ester, 967.0 cm-1 for trans-CH=CH and 1176 cm-1 for C-O-C which confirmed the existence of monoestolide. The LC-MS results showed peak for the present of new monoestolides at retention time (tR 12.3 min corresponding to m/z 563.48. Among the IL, ChCl-ZnCl2 surprisingly exhibited higher activity which is 98 % acid oleic conversion and 80 % selective for the synthesis of monoestolides. As a result, this IL gave two potential functions as a solvent as well as a green catalyst for monoestolide synthesis from oleic acid.

  4. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.

    Science.gov (United States)

    Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M

    2015-06-01

    The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.

  5. The Epoxidation of Limonene over the TS-1 and Ti-SBA-15 Catalysts

    Directory of Open Access Journals (Sweden)

    Agnieszka Wróblewska

    2014-11-01

    Full Text Available Limonene belongs to a group of very important intermediates used in the production of fine chemicals. This monoterpene compound can be obtained from peels of oranges or lemon which are a (biomass waste from the orange juice industry. Thus, limonene is a renewable, easy available and a relatively cheap compound. This work presents preliminary studies on the process of limonene epoxidation over zeolite type catalysts such as: TS-1 and Ti-SBA-15. In these studies methanol was used as a solvent and as an oxidizing agent a 60 wt % hydrogen peroxide solution was applied. The activity of each catalyst was investigated for four chosen temperatures (0 °C, 40 °C, 80 °C and 120 °C. The reaction time was changed from 0.5 to 24 h. For each catalyst the most beneficial conditions (the appropriate temperature and the reaction time have been established. The obtained results were compared and the most active catalyst was chosen. These studies have also shown different possible ways of limonene transformation, not only in the direction of 1,2-epoxylimonene and its corresponding diol, but also in direction of carveol, carvone and perillyl alcohol—compounds with a lot of applications. The possible mechanisms of formation of the allylic oxidation products were proposed.

  6. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  7. Cationic organobismuth complex as an effective catalyst for conversion of CO2 into cyclic carbonates

    Institute of Scientific and Technical Information of China (English)

    Xiaowen ZHANG; Weili DAI; Shuangfeng YIN; Shenglian LUO; Chak-Tong AU

    2009-01-01

    In order to achieve high-efficiency conversion of CO2 into valuable chemicals, and to exploit new appli-cations of organobismuth compounds, cationic organo-bismuth complex with 5,6,7,12-tetrahydrodibenz[c,f] [ 1,5 ]azabismocine framework was examined for the first time for the coupling of CO2 into cyclic carbonates, using ter-minal epoxides as substrates and tetrabutylammonium halide as co-catalyst in a solvent-free environment under mild conditions. It is shown that the catalyst exhibited high activity and selectivity for the coupling reaction of CO2 with a wide range of terminal epoxide. The selectivity of propylene carbonates could reach 100%, and the max-imum turnover frequency was up to 10740 h-1 at 120℃ and 3 MPa CO2 pressure when tetrabutylammonium iod-ide was used as co-catalyst. Moreover, the catalyst is environment friendly, resistant to air and water, and can be readily reused and recycled without any loss of activity,demonstrating a potential in industrial application.

  8. Biomimetic Catalysts for Oxidation of Veratryl Alcohol, a Lignin Model Compound

    Directory of Open Access Journals (Sweden)

    Marcelino Maneiro

    2013-03-01

    Full Text Available Kraft pulp has to be bleached to eliminate the chromophoric structures, which cause a darkening of the pulp. In Nature, an equivalent role is assumed by ligninolytic enzymes such as lignin peroxidases, manganese peroxidases and laccases. The development of low molecular weight manganese peroxidase mimics may achieve environmentally-safe bleaching catalysts for the industry. Herein we report the synthesis and characterization of six manganese(III complexes 1–6, incorporating dianionic hexadentate Schiff base ligands (H2L1-H2L4 and different anions. Complex 4, Mn2L22(H2O2(DCA2 was crystallographically characterized. Complexes 1–4 behave as more efficient mimics of peroxidase in contrast to 5–6. We have studied the use of these complexes as catalysts for the degradation of the lignin model compound veratryl alcohol. The biomimetic catalysts were used in conjunction with chlorine-free inexpensive co-oxidants as dioxygen or hydrogen peroxide. Yields up to 30% of veratryl alcohol conversion to veratraldehyde have been achieved at room temperature in presence of air flow using 0.5% of catalyst.

  9. CATALYSIS SCIENCE INITIATIVE: From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    MAVRIKAKIS, MANOS

    2007-05-03

    In this project, we have integrated state-of-the-art Density Functional Theory (DFT) models of heterogeneous catalytic processes with high-throughput screening of bimetallic catalytic candidates for important industrial problems. We have studied a new class of alloys characterized by a surface composition different from the bulk composition, and investigated their stability and activity for the water-gas shift reaction and the oxygen reduction reaction. The former reaction is an essential part of hydrogen production; the latter is the rate-limiting step in low temperature H2 fuel cells. We have identified alloys that have remarkable stability and activity, while having a much lower material cost for both of these reactions. Using this knowledge of bimetallic interactions, we have also made progress in the industrially relevant areas of carbohydrate reforming and conversion of biomass to liquid alkanes. One aspect of this work is the conversion of glycerol (a byproduct of biodiesel production) to synthesis gas. We have developed a bifunctional supported Pt catalyst that can cleave the carbon-carbon bond while also performing the water-gas shift reaction, which allows us to better control the H2:CO ratio. Knowledge gained from the theoretical metal-metal interactions was used to develop bimetallic catalysts that perform this reaction at low temperature, allowing for an efficient coupling of this endothermic reaction with other reactions, such as Fischer-Tropsch or methanol synthesis. In our work on liquid alkane production from biomass, we have studied deactivation and selectivity in these areas as a function of metal-support interactions and reaction conditions, with an emphasis on the bifunctionality of the catalysts studied. We have identified a stable, active catalyst for this process, where the selectivity and yield can be controlled by the reaction conditions. While complete rational design of catalysts is still elusive, this work demonstrates the power of

  10. Silica-supported (nBuCp)2ZrCl2: Effect of catalyst active center distribution on ethylene-1-hexene copolymerization

    KAUST Repository

    Atiqullah, Muhammad

    2013-08-12

    Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts-silica/MAO/(nBuCp)2ZrCl2 (Catalyst 1) and silica/nBuSnCl3/MAO/(nBuCp)2ZrCl2 (Catalyst 2), where MAO is methylaluminoxane-were synthesized, and subsequently used to prepare, without separate feeding of MAO, ethylene-1-hexene Copolymer 1 and Copolymer 2, respectively. Fouling-free copolymerization, catalyst kinetic stability and production of free-flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self-nucleation and annealing experiments, as well as by an extended X-ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO-pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co-monomer effect-both by 1-hexene-were common. Each copolymer demonstrated vinyl, vinylidene and trans-vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction

  11. 3D-modelling of bifunctional core-shell catalysts for the production of fuels from biomass-based synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenjin; Lee, Seung Cheol; Li, Hui; Pfeifer, Peter; Dittmeyer, Roland [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Micro Process Engineering (IMVT)

    2013-09-01

    Until now, the main route for the production of DME from synthesis gas in industry is methanol synthesis on a metallic catalyst and subsequent dehydration of methanol on an acid catalyst (two-step process). A single-step process using bifunctional catalysts to perform the two steps simultaneously would be preferred e.g. due to thermodynamic considerations; but this is impeded by the higher volumetric heat release which may cause deactivation of the methanol synthesis catalyst function. Thus we propose to conduct the reaction in a microchannel reactor. However, in order to increase the productivity of the microchannel reactor and to lower the investment costs, we aim at a high selectivity and activity of the catalyst. The continuously removal of methanol by dehydration on an acidic ZSM-5 catalyst as shell improves the thermodynamic conditions of methanol synthesis in the CuO/ZnO/Al{sub 2}O{sub 3} core; thus, the synthesis gas conversion can be higher than that determined by the thermodynamics of pure methanol synthesis. The molecular sieving in the zeolite layer can further lead to higher selectivity of DME at milder reaction conditions. However, mass transport limitation of the synthesis gas to the catalyst core should not hinder the reaction, and therefore a more detailed investigation is required. In order to computer-aided optimize the catalyst structure and the operating conditions for core-shell catalysts, a simulation model should be developed to study the coupled reaction and transport processes in core-shell catalysts. In this simulation model the complicated interaction of diffusion and reaction in the zeolite layer (shell) must be detailed by a network model to describe its structure and the mechanisms effectively. In addition, suitable diffusion and kinetic models are required to describe the mass transport and reactions in the layer. Suitable networks, diffusion and kinetic models are discussed for 3D simulations in this contribution. (orig.)

  12. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Lab., TN (United States); LaBarge, W. [Delphi Automotive Systems, Flint, MI (United States)] [and others

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  13. Thermally Stable, Latent Olefin Metathesis Catalysts

    Science.gov (United States)

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652

  14. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  15. Thermal decomposition of supported lithium nitrate catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Maria Lucia [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Lick, Ileana Daniela [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina); Ponzi, Marta Isabel [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Castellon, Enrique Rodriguez; Jimenez-Lopez, Antonio [Departamento de Quimica Inorganica, Cristalografia y Mineralogia. Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Ponzi, Esther Natalia, E-mail: eponzi@quimica.unlp.edu.ar [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina)

    2010-02-20

    New catalysts for soot combustion were prepared by impregnation of different supports (SiO{sub 2}, ZrO{sub 2} and ZrO{sub 2}.nH{sub 2}O) with a LiNO{sub 3} solution and then characterized by means of FTIR, XPS, TGA and UV-vis spectroscopy, whereby the presence of lithium nitrate in the prepared catalysts was identified and quantified. The soot combustion rate using this series of catalysts (LiNO{sub 3}/support) was compared with the activity of a series of impregnated catalysts prepared using LiOH (Li{sub 2}O/supports). Catalysts prepared using LiNO{sub 3} are found to be more active than those prepared using LiOH. The catalytic performance was also studied with a NO/O{sub 2} mixture in the feed, demonstrating that NO increases the combustion rate of soot, probably as a consequence of lithium oxide forming an 'in situ' nitrate ion.

  16. Understanding of catalysis on early transition metal oxide-based catalysts through exploration of surface structure and chemistry during catalysis using in-situ approaches

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Franklin [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering. Dept. of Chemistry

    2015-09-14

    Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co3O4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with different binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few

  17. Examining the surfaces in used platinum catalysts

    Directory of Open Access Journals (Sweden)

    Trumić B.

    2009-01-01

    Full Text Available For the purpose of finding more advanced platinum catalyst manufacturing technologies and achieving a higher degree of ammonia oxidation, metallographic characterization has been done on the surface of catalyst gauzes and catalyst gripper gauzes made from platinum and palladium alloys. For the examined samples of gauzes as well as the cross section of the wires, a chemical analysis was provided. The purpose of this paper is the metallographic characterization of examined alloys carried out by way of electronic microscopic scanning, X-rays as well as chemical assays which contributed greatly to a better understanding of the surface deactivation, in other words a better consideration of structural changes occurring on the wire surface.

  18. Improving performance of catalysts for water electrolysis

    DEFF Research Database (Denmark)

    Frydendal, Rasmus

    This Ph.D. thesis presents work on non-noble metal oxide catalysts for the oxygen evolution reaction, OER. This reaction is currently a bottleneck in electrolyzer technologies, which are promising for energy storage purposes. In particular, Polymer Electrolyte Membrane, PEM, cells are attractive...... for decentralised hydrogen stations. PEM electrolyzers rely on scarce noble metals to achieve high effciency and durability, which limits the scalability of the technology. Finding new catalysts for OER is therefore a thriving research field with new materials being reported frequently. However, many of these new...... in evaluating novel materials for the OER. Unfortunately, most non-noble metal based OER catalysts reported to this date work in alkaline solutions, where cheap NiFe electrodes are already utilized in commercial systems. For acidic media, relevant for the acidic membrane in PEM electrolyzers, there is a lack...

  19. Heterogeneous Catalyst Deactivation and Regeneration: A Review

    Directory of Open Access Journals (Sweden)

    Morris D. Argyle

    2015-02-01

    Full Text Available Deactivation of heterogeneous catalysts is a ubiquitous problem that causes loss of catalytic rate with time. This review on deactivation and regeneration of heterogeneous catalysts classifies deactivation by type (chemical, thermal, and mechanical and by mechanism (poisoning, fouling, thermal degradation, vapor formation, vapor-solid and solid-solid reactions, and attrition/crushing. The key features and considerations for each of these deactivation types is reviewed in detail with reference to the latest literature reports in these areas. Two case studies on the deactivation mechanisms of catalysts used for cobalt Fischer-Tropsch and selective catalytic reduction are considered to provide additional depth in the topics of sintering, coking, poisoning, and fouling. Regeneration considerations and options are also briefly discussed for each deactivation mechanism.

  20. Selective Oxidations using Nanostructured Heterogeneous Catalysts

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen

    and because they produce H2O as the only by-product. Chapter 1 gives a short introduction to basic concepts in heterogeneous catalysis and green chemistry. Furthermore, the chapter gives an overview of the most important strategies to synthesise functional nanostructured materials and highlights how detailed......The aim of this thesis is to investigate and develop new efficient methods to oxidise alcohols and amines using heterogeneous catalysts and either O2 or H2O2 as oxidants. From an economic and environmental point of view, these oxidants are ideal, because they are cheap and readily available...... understanding of size, shape and structure can help in the development of new and more efficient heterogeneous catalysts. The chapter is not intended to give a complete survey, but rather to introduce some of the recent developments in the synthesis of nanostructured heterogeneous catalysts. Finally...

  1. Pyrochlore catalysts for hydrocarbon fuel reforming

    Science.gov (United States)

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  2. Polypropylene obtained through zeolite supported catalysts

    Directory of Open Access Journals (Sweden)

    Queli C. Bastos

    2004-01-01

    Full Text Available Propylene polymerizations were carried out with f2C(Flu(CpZrCl2 and SiMe2(Ind2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM and acid mordenite (HM. The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]. The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu(CpZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereoregularity.

  3. Photocatalytic Denitrogenation over Modiifed Waste FCC Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zheng Liuping; Lin Mei; Huang Yingying; Yan Guiyang; Zheng Binquan; Li Ling

    2013-01-01

    The strontium modiifed waste FCC catalyst was prepared by magnetic stirring method and characterized by X-ray diffractometry (XRD), UV-Vis diffuse relfectance spectrometry (DRS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Meanwhile, its photocatalytic denitrogenation performance was evaluated in terms of its ability to degrade the N-containing simulation oil under visible light. A mixture of strontium nitrate solution (with a concentration of 0.5 mol/L) and waste FCC catalyst was calcined at 400℃for 5 h prior to taking part in the photocatalytic denitrogenation reaction. The test results showed that the photocatalytic degradation rate of pyridine contained in simulation oil in the presence of the strontium modiifed FCC catalyst could reach 92.0%under visible light irradiation for 2.5 h.

  4. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  5. SYNTHESIS OF SPINEL MgAl2O4 AS A GOOD CATALYST SUPPORT FOR PARTIAL OXIDATION OF METHANE TO SYNGAS%MgAl2O4尖晶石的合成及作为甲烷部分氧化反应的良好催化剂载体

    Institute of Scientific and Technical Information of China (English)

    潘秀莲; 刘盛林; 盛世善; 熊国兴

    1999-01-01

    @@ γ-Al2O3 has been intensively studied as a catalyst support in alkane conversion due to its large surface area. However, it is susceptible to crystal phase transition and favors catalyst sintering while the operaing temperature is higher than 700℃. Therefore, its application in industrial reactions is limited.

  6. Ruthenium–Platinum Catalysts and Direct Methanol Fuel Cells (DMFC: A Review of Theoretical and Experimental Breakthroughs

    Directory of Open Access Journals (Sweden)

    Ana S. Moura

    2017-02-01

    Full Text Available The increasing miniaturization of devices creates the need for adequate power sources and direct methanol fuel cells (DMFC are a strong option in the various possibilities under current development. DMFC catalysts are mostly based on platinum, for its outperformance in three key areas (activity, selectivity and stability within methanol oxidation framework. However, platinum poisoning with products of methanol oxidation led to the use of alloys. Ruthenium–platinum alloys are preferred catalysts active phases for methanol oxidation from an industrial point of view and, indeed, ruthenium itself is a viable catalyst for this reaction. In addition, the route of methanol decomposition is crucial in the goal of producing H2 from water reaction with methanol. However, the reaction pathway remains elusive and new approaches, namely in computational methods, have been ensued to determine it. This article reviews the various recent theoretical approaches for determining the pathway of methanol decomposition, and systematizes their validation with experimental data, within methodological context.

  7. Ruthenium carbenes supported on mesoporous silicas as highly active and selective hybrid catalysts for olefin metathesis reactions under continuous flow.

    Science.gov (United States)

    Bru, Miriam; Dehn, Richard; Teles, J Henrique; Deuerlein, Stephan; Danz, Manuel; Müller, Imke B; Limbach, Michael

    2013-08-26

    In the search for a highly active and selective heterogenized metathesis catalyst, we systematically varied the pore geometry and size of various silica-based mesoporous (i.e., MCM-41, MCM-48, and SBA-15) and microporous (ZSM-5 and MWW) versus macroporous materials (D11-10 and Aerosil 200), besides other process parameters (temperature, dilution, and mean residence time). The activity and, especially, selectivity of such "linker-free" supports for ruthenium metathesis catalysts were evaluated in the cyclodimerization of cis-cyclooctene to form 1,9-cyclohexadecadiene, a valuable intermediate in the flavor and fragrance industry. The optimized material showed not only exceptionally high selectivity to the valuable product, but also turned out to be a truly heterogeneous catalyst with superior activity relative to the unsupported homogeneous complex.

  8. Preparation and Catalytic Application of Novel Water Tolerant Solid Acid Catalysts of Zirconium Sulfate/HZSM-5

    Institute of Scientific and Technical Information of China (English)

    JIANG Ya-jie; JUAN Joon Ching; MENG Xiu-juan; CAO Wei-liang; YARMO Mohd Ambar; ZHANG Jing-chang

    2007-01-01

    Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorption, TGA-DTA, XPS, and ammonia adsorption FTIR. The effects of Si/Al ratio, zirconium sulfate(ZS) loading on HZSM-5 and calcination temperature on the esterification were investigated. When 20%(mass fraction) ZS is loaded on HZSM-5, the conversion of AA reaches 100%. XRD analysis indicates that ZS is highly dispersed on HZSM-5 because no crystalline structure assigned to ZS is found. Catalytic activity and hydrophobicity of ZS supported on HZSM-5 are higher compared with those of parent ZS or HZSM-5. Results show that this kind of novel catalysts is an efficient water tolerant solid acid catalyst for esterification reactions.

  9. Comparison of the activities of binder-added and binder-free Mo/HZSM-5 catalysts in methane dehydroaromatization at 1073 K in periodic CH4-H2 switch operation mode

    Institute of Scientific and Technical Information of China (English)

    Yuebing Xu; Hongtao Ma; Yo Yamamoto; Yoshizo Suzuki; Zhanguo Zhang

    2012-01-01

    Three industry-supplied,well-shaped Mo/HZSM-5 catalysts,two binder-added and one binder-free,were tested for the first time in methane dehydroaromatization to benzene at 1073 K and 10000 mL/(g.h) in periodic CH4-H2 switch operation mode,and their catalytic performances were compared with those of three self-prepared,binder-free powder Mo/HZSM-5 catalysts.XRD,27Al NMR,SEM,BET and NH3-TPD characterizations of all the catalysts show that the zeolites in the two binder-added catalysts are comparable to those in the three binder-free powder catalysts in crystallinity,crystal size,micropore volume and Br(¢)nsted acidity.The test results,on the other hand,show that the catalytic performances of the two binder-added catalysts are worse than those of the four binder-free catalysts on both catalyst mass and zeolite mass bases.Then,TPO and BET measurements of all spent samples were conducted to get a deep insight into the negative effects of binder addition,and the results suggest that the binder additives functioned mainly to enhance the polyaromatization of formed aromatics to coke on their external surfaces and consequently lower the benzene formation activity and selectivity of the catalyst.

  10. Boosting Cultural Industry

    Institute of Scientific and Technical Information of China (English)

    Li Zhen

    2009-01-01

    @@ On July 22 of 2009, the State Council released the Revitalization Plan of Cultural Industry, which is the 11th revitalization plan for an industry following plans for steel, auto, textile, equipment manufacturing, ship-making, IT and other industries.

  11. Trajectory for Industrial Upgrade

    Institute of Scientific and Technical Information of China (English)

    LIU YUNYUN

    2010-01-01

    @@ The Ministry of Industry and Information Technology (MIIT) ordered the closure of outdated production lines in 18 industries as part of the country's plan to upgrade its industrial structure and move up the value chain.

  12. Chemicals Industry Vision

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  13. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization

    Science.gov (United States)

    Zheng, Junlin; Zhu, Junhua; Xu, Xuan; Wang, Wanmin; Li, Jiwen; Zhao, Yan; Tang, Kangjian; Song, Qi; Qi, Xiaolan; Kong, Dejin; Tang, Yi

    2016-07-01

    Hydrogenation of levulinic acid (LA) and its esters to produce γ-valerolactone (GVL) and 2-methyl tetrahydrofuran (2-MTHF) is a key step for the utilization of cellulose derived LA. Aiming to develop a commercially feasible base metal catalyst for the production of GVL from LA, with satisfactory activity, selectivity, and stability, Al2O3 doped Cu/SiO2 and Cu/SiO2 catalysts were fabricated by co-precipitation routes in parallel. The diverse physio-chemical properties of these two catalysts were characterized by XRD, TEM, dissociative N2O chemisorptions, and Py-IR methods. The catalytic properties of these two catalysts were systematically assessed in the continuous hydrogenation of ethyl levulinate (EL) in a fixed-bed reactor. The effect of acidic property of the SiO2 substrate on the catalytic properties was investigated. To justify the potential of its commercialization, significant attention was paid on the initial activity, proper operation window, by-products control, selectivity, and stability of the catalyst. The effect of reaction conditions, such as temperature and pressure, on the performance of the catalyst was also thoroughly studied. The development of alumina doped Cu/SiO2 catalyst strengthened the value-chain from cellulose to industrially important chemicals via LA and GVL.

  14. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of combinatorial methods is proposed to rapidly screen catalyst formulations for the advanced development of aqueous phase oxidation catalysts with greater...

  15. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  16. Asymmetric synthesis of polypiperylene on a lanthanide-containing catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Monakov, Yu.B.; Marina, N.G.; Kozlova, O.I.; Kanzafarov, F.Ya.; Tolstikov, G.A.

    1987-07-01

    The authors study the polymerization of piperylene and subsequent synthesis of polypiperylene on a neodymium chloride catalyst containing a sulfoxide and an aluminium complex. Specifics of the catalyst preparation and activity are given.

  17. Highly Durable Catalysts for Ignition of Advanced Monopropellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Monopropellants are readily ignited or decomposed over a bed of solid catalyst. A serious limitation of existing catalysts in the ignition of advanced...

  18. Method of performing sugar dehydration and catalyst treatment

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  19. Application of Ion Beam Processing Technology in Production of Catalysts

    Directory of Open Access Journals (Sweden)

    Mykola G. Bannikov, Javed A. Chattha

    2012-08-01

    Full Text Available In this paper, the applicability of Ion Beam Processing Technology for making catalysts has been inves-tigated. Ceramic substrates of different shapes and metal fibre tablets were implanted by platinum ions and tested in nitrogen oxides (NOx and carbon monoxide (CO conversion reactions. Effectiveness of the implanted catalysts was compared to that of the commercially produced platinum catalysts made by impregnation. Platinum-implanted catalyst having fifteen times less platinum content showed the same CO conversion efficiency as the commercially pro-duced catalyst. It was revealed that the effectiveness of the platinum-implanted catalyst has complex dependence on the process parameters and the optimum can be achieved by varying the ions energy and the duration of implantation. Investigation of the pore structure showed that ion implantation did not decrease the specific surface area of the catalyst.Key Words: Catalyst, Ion Implantation, Noble metals.

  20. Catalysis by nonmetals rules for catalyst selection

    CERN Document Server

    Krylov, Oleg V

    1970-01-01

    Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-ba

  1. Ruthenium-Aryloxide Catalysts for Olefin Metathesis

    Science.gov (United States)

    Monfette, Sebastien; Blacquiere, Johanna M.; Conrad, Jay C.; Beach, Nicholas J.; Fogg, Deryn E.

    : Advances in design of ruthenium aryloxide catalysts for olefin metathesis are described. The target complexes are accessible on reaction of RuCl2(NHC)(py)2 (CHPh) (NHC - N-heterocyclic carbene) with electron-deficient, monodentate aryl- oxides, or aryloxides that yield small, rigid chelate rings. The best of these catalysts offer activity comparable to or greater than that of the parent chloride (Grubbs) systems in ring-closing metathesis (RCM). Preliminary studies of the electronic nature of the Ru-X bond suggest that the metal center is more electropositive in the aryloxide complexes than in the Grubbs systems.

  2. Preliminary toxicological study of Silastic 386 catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.M.; Drake, G.A.; Holland, L.M.; Jackson, D.E.; London, J.E.; Prine, J.R.; Thomas, R.G.

    1978-06-01

    The calculated acute oral LD/sub 50//sup 30/ values for Silastic 386 catalyst were 1225 mg/kg in mice and 4350 mg/kg in rats. According to classical guidelines, the compound would be slightly to moderately toxic in both species. Skin application studies in the rabbit demonstrated the compound to be mildly irritating. The eye irritation study disclosed the compound to be a severe irritant causing conjunctivitis, photophobia, corneal edema, corneal ulceration, anterior uveitis, and keratitis. The sensitization study in the guinea pig did not show Silastic 386 catalyst to be deleterious in this regard.

  3. Resin catalysts and method of preparation

    Science.gov (United States)

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  4. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne;

    2014-01-01

    . In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...... compared to other potential nickel transport species. The relation between experimental catalyst sintering data and the effective mass diffusion constant for Ni-OH is established by numerical modelling of the particle migration and coalescence process. Using this relation, the effective mass diffusion...

  5. Crotonaldehyde hydrogenation on Rh supported catalysts

    OpenAIRE

    Reyes, P; Aguirre, Mª del Carmen; Pecchi, Gina; García Fierro, José Luis

    2000-01-01

    The vapor-phase hydrogenation of crotonaldehyde on Rh supported catalysts has been studied. The effect of some variables of preparation in catalysts prepared by the sol-gel and impregnation methods on the surface and catalytic properties were analyzed. It was found, that the porosity of the support has a small effect on the selectivity to the unsaturated alcohol and the presence of partially reducible supports such as ZrO2 and TiO2, may increase the selectivity to crotyl alcohol via an enhanc...

  6. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    Science.gov (United States)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  7. Deactivation of platinum catalysts by oxygen 2. Nature of the catalyst deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, P.J.M.; Duisters, H.A.M.; Kuster, B.F.M.; van der Wiele, K. (Univ. of Technology, Eindhoven (Netherlands))

    1988-08-01

    The effect of different start-up procedures on the deactivation of a 5% Pt/C catalyst used for the oxidation of D-gluconate has been investigated. Results have been obtained both in a stirred tank reactor for batch experiments and in an apparatus for continuous oxidation processes. The deactivation of the catalyst is not explicable by formation of platinum oxides. A model is proposed for the deactivation of platinum catalysts by oxygen, based on penetration of oxygen atoms into the platinum lattice.

  8. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu

    2014-05-01

    An anodic alumina supported Ni-Pt bimetallic plate-type catalyst was prepared by a two-step impregnation method. The trace amount 0.08 wt% of Pt doping efficiently suppressed the nickel particle sintering and improved the nickel oxides reducibility. The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced, which was considered to be resulted from the hydrogen spillover effect over Ni-Pt alloy. In addition, an integrated combustion-reforming reactor was proposed in this study. However, the sintering of the alumina support is still a critical issue for the industrialization of Ni-Pt catalyst. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  9. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe2(SO4)3/γ-Fe2O3 Nanoparticle-Based Solid Acid Catalyst

    Science.gov (United States)

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-02-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied.

  10. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD, IR, XPS, pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  11. Palladium–tin catalysts on conducting polymers for nitrate removal

    OpenAIRE

    Dodouche, Ibrahim; Barbosa, Danns Pereira; Varela, Maria do Carmo Rangel Santos; Epron, Florence

    2009-01-01

    Trabalho completo: acesso restrito, p. 50–55 Palladium–tin catalysts were prepared by successive impregnation or co-impregnation onto polyaniline and polypyrrole. The catalytic tests showed that this type of catalyst is active for nitrate reduction. The use of polymer support improves the selectivity of the catalyst toward nitrogen formation compared to a classical support, and avoids the apparition of intermediate nitrite. These better performances of the catalysts supported on electroact...

  12. Catalyst deactivation. Is it predictable? What to do?

    Energy Technology Data Exchange (ETDEWEB)

    Moulijn, J.A.; Van Diepen, A.E.; Kapteijn, F. [Department of Chemical Process Technology, Section of Industrial Catalysis, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2001-04-30

    Catalyst deactivation is usually inevitable, although the rate at which it occurs varies greatly. This article discusses the causes of deactivation and the influence on reaction rate. Methods for minimising catalyst deactivation, by tailoring catalyst properties and/or process operations, are presented, as well as reactor configurations suitable for the regeneration of deactivated catalysts. Alkane dehydrogenation is used as an example to demonstrate the variety of engineering solutions possible.

  13. Thief carbon catalyst for oxidation of mercury in effluent stream

    Science.gov (United States)

    Granite, Evan J.; Pennline, Henry W.

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  14. Fries Rearrangement of Phenyl Acetate over Solid Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    CanXiongGUO; YanLIU; 等

    2002-01-01

    A silica-supported zirconium based solid acid (ZS) has been used as catalyst for the Fries rearrangement of phenyl acetate (PA). The catalyst showed a higher PA conversion activity and a much higher selectivity for o-hydroxyacetophenone (o-HAP) than for strongly acidic zeolite catalysts. The supported catalyst was characterized by XRD,IR,XPS,pyridine-TPD and the surface area measurements. The catalytic properties were influenced significantly by pretreatment temperature.

  15. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  16. Nano Catalysts for Diesel Engine Emission Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  17. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes.

    Science.gov (United States)

    Shi, Jing; Wang, Yangdong; Yang, Weimin; Tang, Yi; Xie, Zaiku

    2015-12-21

    The kaleidoscopic applications of zeolite catalysts (zeo-catalysts) in petrochemical processes has been considered as one of the major accomplishments in recent decades. About twenty types of zeolite have been industrially applied so far, and their versatile porous architectures have contributed their most essential features to affect the catalytic efficiency. This review depicts the evolution of pore models in zeolite catalysts accompanied by the increase in industrial and environmental demands. The indispensable roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The zeolites and related industrial processes discussed range from the uni-modal micropore system of zeolite Y (12-ring micropore, 12-R) in fluid catalytic cracking (FCC), zeolite ZSM-5 (10-R) in xylene isomerization and SAPO-34 (8-R) in olefin production to the multi-modal micropore system of MCM-22 (10-R and 12-R pocket) in aromatic alkylation and the hierarchical pores in FCC and catalytic cracking of C4 olefins. The rational construction of pore models, especially hierarchical features, is highlighted with a careful classification from an industrial perspective accompanied by a detailed analysis of the theoretical mechanisms.

  18. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst

    Directory of Open Access Journals (Sweden)

    Viviane P. de Souza

    2016-11-01

    Full Text Available Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  19. Atomic Resolution Imaging of Nanoscale Structural Ordering in a Complex Metal Oxide Catalyst

    KAUST Repository

    Zhu, Yihan

    2012-08-28

    The determination of the atomic structure of a functional material is crucial to understanding its "structure-to-property" relationship (e.g., the active sites in a catalyst), which is however challenging if the structure possesses complex inhomogeneities. Here, we report an atomic structure study of an important MoVTeO complex metal oxide catalyst that is potentially useful for the industrially relevant propane-based BP/SOHIO process. We combined aberration-corrected scanning transmission electron microscopy with synchrotron powder X-ray crystallography to explore the structure at both nanoscopic and macroscopic scales. At the nanoscopic scale, this material exhibits structural and compositional order within nanosized "domains", while the domains show disordered distribution at the macroscopic scale. We proposed that the intradomain compositional ordering and the interdomain electric dipolar interaction synergistically induce the displacement of Te atoms in the Mo-V-O channels, which determines the geometry of the multifunctional metal oxo-active sites.

  20. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI)

    Institute of Scientific and Technical Information of China (English)

    Botao Qiao[1; Jin-Xia Liang[3,4; Aiqin Wang[2; Cong-Qiao Xu[3; Jun Li[3; Tao Zhang[2; Jingyue (Jimmy) Liu[1

    2015-01-01

    Supported noble metal nanoparticles (including nanoclusters) are widely used in many industrial catalytic processes. While the finely dispersed nanostructures are highly active, they are usually thermodynamically unstable and tend to aggregate or sinter at elevated temperatures. This scenario is particularly true for supported nanogold catalysts because the gold nanostructures are easily sintered at high temperatures, under reaction conditions, or even during storage at ambient temperature. Here, we demonstrate that isolated Au single atoms dispersed on iron oxide nanocrystallites (Aul/FeOx) are much more sintering- resistant than Au nanostructures, and exhibit extremely high reaction stability for CO oxidation in a wide temperature range. Theoretical studies revealed that the positively charged and surface-anchored Aul atoms with high valent states formed significant covalent metal-support interactions (CMSIs), thus providing the ultra-stability and remarkable catalytic performance. This work may provide insights and a new avenue for fabricating supported Au catalysts with ultra-high stability.

  1. Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong; MENG Lie; CHEN Rizhi; JIN Wanqin; XING Weihong; XU Nanping

    2013-01-01

    Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes,but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry.A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis.This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis,which covers classification of configurations of porous ceramic membrane reactor,major considerations and some important industrial applications.A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design,optimization of ceramic membrane reactor performance and membrane fouling mechanism.Finally,brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.

  2. Effect of Catalyst on Transesterifi cation of Waste Vegetable Oils from Food Processing Facility

    Directory of Open Access Journals (Sweden)

    Zoran Iličković

    2009-12-01

    Full Text Available Converting waste vegetable oils from food processing facilities, restaurants and households to biodiesel by the transestrification reaction with methanol has important advantages for human health and environment. The transesterification reaction of waste vegetable oils is affected by free fatty acids and water content of oils and fats, type of alcohol, type and quantities of catalyst, reaction temperature and reaction time. Basic aim of this paper is to explore effect of type and quantities of catalyst on transesterification process of different waste vegetable oils from food processing facilities with methanol. Comparison of basic characteristics between produced biodiesel, industrially produced biodiesel and values from European standards for biodiesel fuel (EN14214 was made.

  3. Effect of Catalyst on Transesterification of Waste Vegetable Oils from Food Processing Facility

    Directory of Open Access Journals (Sweden)

    Zoran Iličković

    2009-12-01

    Full Text Available Converting waste vegetable oils from food processing facilities, restaurants and households to biodiesel by the transestrification reaction with methanol has important advantages for human health and environment. The transesterification reaction of waste vegetable oils is affected by free fatty acids and water content of oils and fats, type of alcohol, type and quantities of catalyst, reaction temperature and reaction time. Basic aim of this paper is to explore effect of type and quantities of catalyst on transesterification process of different waste vegetable oils from food processing facilities with methanol. Comparison of basic characteristics between produced biodiesel, industrially produced biodiesel and values from European standards for biodiesel fuel (EN14214 was made.

  4. In situ neutron diffraction under high pressure—Providing an insight into working catalysts

    Science.gov (United States)

    Kandemir, Timur; Wallacher, Dirk; Hansen, Thomas; Liss, Klaus-Dieter; Naumann d'Alnoncourt, Raoul; Schlögl, Robert; Behrens, Malte

    2012-05-01

    In the present work the construction and application of a continuous flow cell is presented, from which neutron diffraction data could be obtained during catalytic reactions at high pressure. By coupling an online gas detection system, parallel structure and activity investigations of working catalysts under industrial relevant conditions are possible. The flow cell can be operated with different feed gases in a wide range from room temperature to 603 K. Pressures from ambient up to 6 MPa are applicable. An exchangeable sample positioning system makes the flow cell suitable for several different goniomter types on a variety of instrument beam lines. Complementary operational test measurements were carried out monitoring reduction of and methanol synthesis over a Cu/ZnO/Al2O3 catalyst at the high-flux powder diffraction beamline D1B at ILL and high-resolution diffraction beamline Echidna at ANSTO.

  5. Evaluation of the performance degradation at PAFC effect of catalyst degradation on electrode performance

    Energy Technology Data Exchange (ETDEWEB)

    Nishizaki, K.; Uchida, H.; Watanabe, M. [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    Aiming commercialization of Phosphoric Acid Fuel Cell (PAFC) power plant, many researches and developments have been contributed. Over 20000 hours operations have been demonstrated by many PAFC power plants. But there is no effective method for the estimation of lifetime of electrochemical cells without a practical long-term operation. Conducted by New Energy and Industrial Technology Development Organization (NEDO), cooperative research projects aiming development of PAFC lifetime estimation method have started since 1995 FY in Japan. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and PAFC manufacturers (Toshiba Co., Mitsubishi Electric Co, Fuji Electric Co.). Among several main causes of the cell performance degradation, effects of catalyst degradation (reduction in metal surface area, dealloying, changes in catalyst support) on PAFC cathode performances are discussed in this work.

  6. Effect of Carbon Supported Pt Catalysts on Selective Hydrogenation of Cinnamaldehyde

    Directory of Open Access Journals (Sweden)

    Qing Han

    2016-01-01

    Full Text Available Selective hydrogenation of cinnamaldehyde (CAL to cinnamyl alcohol (COL is of both fundamental and industrial interest. It is of great significance to evaluate the possible differences between different supports arising from metal dispersion and electronic effects, in terms of activity and selectivity. Herein, Pt catalysts on different carbon supports including carbon nanotubes (CNTs and reduced graphene oxides (RGO were developed by a simple wet impregnation method. The resultant catalysts were well characterized by XRD, Raman, N2 physisorption, TEM, and XPS analysis. Applied in the hydrogenation of cinnamaldehyde, 3.5 wt% Pt/CNT shows much higher selectivity towards cinnamyl alcohol (62% than 3.5 wt% Pt/RGO@SiO2 (48%. The enhanced activity can be ascribed to the high graphitization degree of CNTs and high density of dispersed Pt electron cloud.

  7. Recovery of Dilute Acetic Acid by Catalytic Distillation Using NKC-9 as Catalyst

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhigang; LI Xiaofeng; XU Shimin; LI Xingang

    2006-01-01

    The reaction kinetics of dilute acetic acid with methanol using NKC-9 as catalyst was studied at temperatures of 308 K, 318 K, 323 K, 328 K. The kinetic model based on Langmuir-Hinshelwood rate model was derived and the activation energy was 6.13 x 104 kJ/kmol. The experiment of recovery of dilute acetic acid was conducted in a packed bed catalytic distillation column. The optimal process parameters and operational conditions determined to make up to 85.9% conversion of acetic acid are as follows:the height of catalyst bed is 1 100 mm, reflux ratio is 4: 1, and the ratio of methanol to acetic acid is 2: 1. The method can be used as a guide in industrial scale recovery of 15%-30% dilute acetic acid.

  8. Methanol Steam Reforming Catalysts for Fuel Cell Driven Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    Yongfeng Li; Xinfa Dong; Weiming Lin

    2003-01-01

    Cu/ZnAlO catalysts derived from hydroxycarbonate precursors containing hydrotalcite-likelayered double hydroxides (LDHs) were studied. The influence on the performance of the catalysts wasalso studied when the Al in the Cu/ZnAlO catalyst was partly or completely replaced by Zr or Ce.

  9. Catalyst and Fuel Interactions to Optimize Endothermic Cooling

    Science.gov (United States)

    2016-08-30

    tungsten and molybdenum carbides exhibit enhanced catalytic activity for reactions such as benzene hydrogenation, ammonia synthesis , hydrodehalogenation and...and coking of the catalysts. Finally, there was significant methods development in the areas of theory, catalyst synthesis and characterization, and...theory, catalyst synthesis and characterization, and methods for catalytic reaction analysis. Endothermic fuels, catalysis, DFT, clusters, X-ray

  10. Moessbauer study of function of magnesium in iron oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    YangJie-Xin; MaoLian-Sheng; 等

    1997-01-01

    Moessbauer spectroscopy has been utilized for studying the action of Mg element in iron oxide catalysts used for the dehydrogenation of ethylbenzene to sytrene.The experimental results show that the presence of opportune amount of Mg can enhance the stability and dispersion of catalysts,i.e.Mg is an sueful structure promoter in this kind of catalysts.

  11. Hydrogenation of cottonseed oil with nickel, palladium and platinum catalysts

    Science.gov (United States)

    A number of commercial catalysts have been used to study hydrogenation of cottonseed oil, with the goal of minimizing trans fatty acid (TFA) content. Despite the different temperatures used, catalyst levels, and reaction times, the data from each catalyst type fall on the same curve when the TFA le...

  12. 40 CFR 90.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for thermally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000...

  13. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  14. 40 CFR 91.329 - Catalyst thermal stress test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the test catalyst must be capable of maintaining a temperature of 500 ±5 °C and 1000 ±10 °C. (b)...

  15. Monte Carlo simulation of the PEMFC catalyst layer

    Institute of Scientific and Technical Information of China (English)

    WANG Hongxing; CAO Pengzhen; WANG Yuxin

    2007-01-01

    The performance of the polymer electrolyte membrane fuel cell (PEMFC) is greatly controlled by the structure of the catalyst layer.Low catalyst utilization is still a significant obstacle to the commercialization of the PEMFC.In order to get a fundamental understanding of the electrode structure and to find the limiting factor in the low catalyst utilization,it is necessary to develop the mechanical model on the effect of catalyst layer structure on the catalyst utilization and the performance of the PEMFC.In this work,the structure of the catalyst layer is studied based on the lattice model with the Monte Carlo simulation.The model can predict the effects of some catalyst layer components,such as Pt/C catalyst,electrolyte and gas pores,on the utilization of the catalyst and the cell performance.The simulation result shows that the aggregation of conduction grains can greatly affect the degree of catalyst utilization.The better the dispersion of the conduction grains,the larger the total effective area of the catalyst is.To achieve higher utilization,catalyst layer components must be distributed by means of engineered design,which can prevent aggregation.

  16. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    Science.gov (United States)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  17. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts

    Directory of Open Access Journals (Sweden)

    Irene Lock Sow Mei

    2016-08-01

    Full Text Available Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both catalytic activity and operational lifetime have been developed. In this study, the effect of palladium (Pd as a promoter onto Ni supported on alumina catalyst has been investigated by using co-precipitation technique. The introduction of Pd promotes better catalytic activity, operational lifetime and thermal stability of the catalyst. As expected, highest methane conversion was achieved at reaction temperature of 800 °C while the bimetallic catalyst (1 wt.% Ni -1wt.% Pd/Al2O3 gave the highest methane conversion of 70% over 15 min of time-on-stream (TOS. Interestingly, the introduction of Pd as promoter onto Ni-based catalyst also has a positive effect on the operational lifetime and thermal stability of the catalyst as the methane conversion has improved significantly over 240 min of TOS. Copyright © 2016 BCREC GROUP. All rights reserved Received: 21st January 2016; Revised: 6th February 2016; Accepted: 6th March 2016 How to Cite: Mei, I.L.S., Lock, S.S.M., Vo, D.V.N., Abdullah, B. (2016. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 191-199 (doi:10.9767/bcrec.11.2.550.191-199 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.550.191-199

  18. Designing supported palladium-on-gold bimetallic nano-catalysts for controlled hydrogenation of acetylene in large excess of ethylene

    Science.gov (United States)

    Malla, Pavani

    Ethylene is used as a starting point for many chemical intermediates in the petrochemical industry. It is predominantly produced through steam cracking of higher hydrocarbons (ethane, propane, butane, naphtha, and gas oil). During the cracking process, a small amount of acetylene is produced as a side product. However, acetylene must be removed since it acts as a poison for ethylene polymerization catalysts at even ppm concentrations (>5 ppm). Thus, the selective hydrogenation of acetylene to ethylene is an important process for the purification of ethylene. Conventional, low weight loading Pd catalysts are used for this selective reaction in high concentration ethylene streams. Gold was initially considered to be catalytically inactive for a long time. This changed when gold was seen in the context of the nanometric scale, which has indeed shown it to have excellent catalytic activity as a homogeneous or a heterogeneous catalyst. Gold is proved to have high selectivity to ethylene but poor at conversion. Bimetallic Au and Pd catalysts have exhibited superior activity as compared to Pd particles in semi-hydrogenation. Hydrogenation of acetylene was tested using this bimetallic combination. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. TiO 2 as a support material and 0.05%Pd loading on 1%Au on titania support and used different treatment methods like washing plasma and reduction between the two metal loadings and was observed under 2:1 ratio. In my study there were two set of catalysts which were prepared by a modified incipient wetness impregnation technique. Out of all the reaction condition the catalyst which was reduced after impregnating gold and then impregnating palladium which was further treated in non-thermal hydrogen plasma and then pretreated in hydrogen till 250°C for 1 hour produced the best activity of 76% yield at 225°C. Stability tests were conducted

  19. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst.

    Science.gov (United States)

    Wang, Liangbing; Zhang, Wenbo; Wang, Shenpeng; Gao, Zehua; Luo, Zhiheng; Wang, Xu; Zeng, Rui; Li, Aowen; Li, Hongliang; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Ma, Chao; Si, Rui; Zeng, Jie

    2016-12-22

    Rh-based heterogeneous catalysts generally have limited selectivity relative to their homogeneous counterparts in hydroformylation reactions despite of the convenience of catalyst separation in heterogeneous catalysis. Here, we develop CoO-supported Rh single-atom catalysts (Rh/CoO) with remarkable activity and selectivity towards propene hydroformylation. By increasing Rh mass loading, isolated Rh atoms switch to aggregated clusters of different atomicity. During the hydroformylation, Rh/CoO achieves the optimal selectivity of 94.4% for butyraldehyde and the highest turnover frequency number of 2,065 h(-1) among the obtained atomic-scale Rh-based catalysts. Mechanistic studies reveal that a structural reconstruction of Rh single atoms in Rh/CoO occurs during the catalytic process, facilitating the adsorption and activation of reactants. In kinetic view, linear products are determined as the dominating products by analysing reaction paths deriving from the two most stable co-adsorbed configurations. As a bridge of homogeneous and heterogeneous catalysis, single-atom catalysts can be potentially applied in other industrial reactions.

  20. Improved yield parameters in catalytic steam gasification of forestry residue; optimizing biomass feed rate and catalyst type

    Energy Technology Data Exchange (ETDEWEB)

    Corujo, Andrea; Yerman, Luis; Arizaga, Beatriz; Brusoni, Mariana; Castiglioni, Jorge [Laboratorio de Fisicoquimica de Superficies, DETEMA Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, CC 1157, 11800-Montevideo (Uruguay)

    2010-12-15

    The catalytic gasification (900 C) of forestry industry residue (Eucalyptus saligna) was laboratory-studied. Biomass feed rate and type and amount of catalyst were assayed for their effect on the gasified product composition and the overall energy yield of the gasification reaction. The use of a calcined dolomite catalyst resulted in a combustible gas mixture of adequate calorific power (10.65 MJ m{sup -3}) for use as fuel, but neither the product gas composition nor the energy yield varied significantly with widely different amounts of the catalyst (2 g and 20 g). The use of NiO-loaded calcined dolomite catalysts did not affect the product gas composition significantly but led to a 30% increase in the total product gas volume and to a reduction in the rate of tar and char formation. The catalyst loaded with the smallest amount of NiO studied (0.4 wt%. Ni/Dol) led to the highest energy yield (21.50 MJ kg{sup -1} on a dry-wood basis) based on the use of the gasified product as fuel. The gasified product was found to have an adequate H{sub 2}/CO molar ratio and H{sub 2} content for use as synthesis gas source and partial source of H{sub 2}. (author)

  1. Recovery of Nickel from Reformer Catalysts of Direct Reduction, Using the Pressurized Dissolving Method in Nitric Acid

    Directory of Open Access Journals (Sweden)

    B. Abrar

    2016-10-01

    Full Text Available In the process of direct reduction of iron pellet and production of sponge iron, NiO/Al2O3 act as a catalyst for the generation of carbon monoxide and hydrogen by vapor and natural gas. As an expensive material used in MIDREX method for steel units, this type of catalyst has major environmental problems after accumulation. The steel industry in Iran hopes to employ the MIDREX technique for the 80 percent of the 50 million tons of steel. Thus, the problem of spent catalysts will become a serious environmental challenge. Through the hydrometallurgy method, the present study investigates a possible solution to the problem of catalyst depot (due to heavy metals such as nickel via nickel recovery, which may increase the possibility of selling or re-using the precious and expensive metal. The present research studied the Nickel recovery from spent catalysts of NiO/Al2O¬3 used in reduction gas reliefs of the production of sponge iron unit. In this study, the parameters of temperature, concentration, time and Rpm were studied using pressurized dissolving method. 100% efficiency was achieved at 140 °C for 120 minutes, nitric acid concentration of 1.5 mm, Rpm of 600 and 40 s/l 40 grams per liter.

  2. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst

    Science.gov (United States)

    Wang, Liangbing; Zhang, Wenbo; Wang, Shenpeng; Gao, Zehua; Luo, Zhiheng; Wang, Xu; Zeng, Rui; Li, Aowen; Li, Hongliang; Wang, Menglin; Zheng, Xusheng; Zhu, Junfa; Zhang, Wenhua; Ma, Chao; Si, Rui; Zeng, Jie

    2016-12-01

    Rh-based heterogeneous catalysts generally have limited selectivity relative to their homogeneous counterparts in hydroformylation reactions despite of the convenience of catalyst separation in heterogeneous catalysis. Here, we develop CoO-supported Rh single-atom catalysts (Rh/CoO) with remarkable activity and selectivity towards propene hydroformylation. By increasing Rh mass loading, isolated Rh atoms switch to aggregated clusters of different atomicity. During the hydroformylation, Rh/CoO achieves the optimal selectivity of 94.4% for butyraldehyde and the highest turnover frequency number of 2,065 h-1 among the obtained atomic-scale Rh-based catalysts. Mechanistic studies reveal that a structural reconstruction of Rh single atoms in Rh/CoO occurs during the catalytic process, facilitating the adsorption and activation of reactants. In kinetic view, linear products are determined as the dominating products by analysing reaction paths deriving from the two most stable co-adsorbed configurations. As a bridge of homogeneous and heterogeneous catalysis, single-atom catalysts can be potentially applied in other industrial reactions.

  3. Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review

    Directory of Open Access Journals (Sweden)

    TsungYu Lee

    2016-05-01

    Full Text Available The removals of NOx by catalytic technology at low temperatures (100–300 °C for industrial flue gas treatment have received increasing attention. However, the development of low temperature catalysts for selective catalytic reduction (SCR of NOx with ammonia is still a challenge especially in the presence of SO2. The current status of using Mn-based catalysts for low temperature SCR of NOx with ammonia (NH3-SCR is reviewed. Reaction mechanisms and effects of operating factors on low temperature NH3-SCR are addressed, and the SCR efficiencies of Mn-based metal oxides with and without SO2 poisoning have also been discussed with different supports and co-metals. The key factors for enhancing low temperature NH3-SCR efficiency and SO2 resistance with Mn-based catalysts are identified to be (1 high specific surface area; (2 high surface acidity; (3 oxidation states of manganese; (4 well dispersion of manganese oxide metals; (5 more surface adsorbed oxygen; (6 more absorbed NO3− on the catalyst surface; (7 easier decomposition of ammonium sulfates. Moreover, the regenerative methods such as water washing, acid and/or alkali washing and heat treatment to the poisoned catalysts could help to recover the low temperature SCR efficiency to its initial level.

  4. Novel Ce-W-Sb mixed oxide catalyst for selective catalytic reduction of NOx with NH3

    Science.gov (United States)

    Liu, Jun; Li, Guo-qiang; Zhang, Yong-fa; Liu, Xiao-qing; Wang, Ying; Li, Yuan

    2017-04-01

    A novel Ce3W2SbOx catalyst prepared by the co-precipitation method have been investigated for the selective catalysis reduction (SCR) of NOx with NH3. It was found that the Ce-W-Sb oxide catalyst exhibited an excellent conversion ratio of NOx and a high tolerance to H2O and SO2 in a wide operation temperature window. The catalysts were characterized by N2-adsorption, XRD, Raman, H2-TPR, NH3-TPD, XPS and DRIFTS. The results suggest that the strong interaction between Sb, W and Ce species not only enhances the redox property of the catalyst but also increases the surface acidity, thus promoting the adsorption and activation of NH3 species, which is favorable for high NH3-SCR performance. Based on in situ DRIFTS results, it was concluded that the Langmuir-Hinshelwood (L-H) mechanism existed at the temperature of below 300 °C, while at above 300 °C the Eley-Rideal (E-R) mechanism dominate the NH3-SCR reaction over the Ce3W2SbOx catalyst. Overall, these findings indicate that Ce3W2SbOx is promising for industrial applications.

  5. A One-Bead-One-Catalyst Approach to Aspartic Acid-Based Oxidation Catalyst Discovery

    Science.gov (United States)

    Lichtor, Phillip A.; Miller, Scott J.

    2011-01-01

    We report an approach to the high-throughput screening of asymmetric oxidation catalysts. The strategy is based on application of the one-bead-one-compound library approach, wherein each of our catalyst candidates is based on a peptide scaffold. For this purpose we rely on a recently developed catalytic cycle that employs an acid-peracid shuttle. In order to implement our approach, we developed a compatible linker and demonstrated that the library format is amenable to screening and sequencing of catalysts employing partial Edman degradation and MALDI mass spectrometry analysis. The system was applied to the discovery (and re-discovery) of catalysts for the enantioselective oxidation of a cyclohexene derivative. The system is now poised for application to unprecedented substrate classes for asymmetric oxidation reactions. PMID:21417485

  6. A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution

    Science.gov (United States)

    Huang, Yunpeng; Lu, Hengyi; Gu, Huahao; Fu, Jun; Mo, Shuyi; Wei, Chun; Miao, Yue-E.; Liu, Tianxi

    2015-11-01

    Exploration of high-efficiency Pt-free electrochemical catalysts for hydrogen evolution reaction (HER) is considered as a great challenge for the development of sustainable and carbon dioxide free energy conversion systems. In this work, a unique hierarchical nanostructure of few-layered MoSe2 nanosheets perpendicularly grown on carbon nanotubes (CNTs) is synthesized through a one-step solvothermal reaction. This rationally designed architecture based on a highly conductive CNT substrate possesses fully exposed active edges and open structures for fast ion/electron transfer, thus leading to remarkable HER activity with a low onset potential of -0.07 V vs. RHE (reversible hydrogen electrode), a small Tafel slope of 58 mV per decade and excellent long-cycle stability. Therefore, this noble-metal-free and highly efficient catalyst enables prospective applications for industrial, renewable hydrogen production.Exploration of high-efficiency Pt-free electrochemical catalysts for hydrogen evolution reaction (HER) is considered as a great challenge for the development of sustainable and carbon dioxide free energy conversion systems. In this work, a unique hierarchical nanostructure of few-layered MoSe2 nanosheets perpendicularly grown on carbon nanotubes (CNTs) is synthesized through a one-step solvothermal reaction. This rationally designed architecture based on a highly conductive CNT substrate possesses fully exposed active edges and open structures for fast ion/electron transfer, thus leading to remarkable HER activity with a low onset potential of -0.07 V vs. RHE (reversible hydrogen electrode), a small Tafel slope of 58 mV per decade and excellent long-cycle stability. Therefore, this noble-metal-free and highly efficient catalyst enables prospective applications for industrial, renewable hydrogen production. Electronic supplementary information (ESI) available: the FESEM image of CNT@MoSe2-6 hybrid at low magnification; EDS mapping of CNT@MoSe2-6 hybrid. See DOI: 10

  7. INDUSTRI KREATIF INDONESIA: PENDEKATAN ANALISIS KINERJA INDUSTRI

    Directory of Open Access Journals (Sweden)

    Ahmad Kamil

    2015-10-01

    Full Text Available In 2008, the Department of Commerce of the Republic of Indonesia has launched a creative economic development documents interpreted the 2025 Indonesia became the starting point and guide the development of the creative economy in Indonesia. With the existence of this document, the industry and its stakeholders or other stakeholders can readily develop the creative economy in Indonesia. Economic development in the direction of the creative industries is one manifestation of optimism aspiration to support the Master Plan for the Acceleration and Expansion of Indonesia's Economic Development in realizing the vision of Indonesia are being developed nation. The main objective of this study is the first to analyze the role of the creative industries in Indonesia for labor, value added and productivity, secondly, to analyze the performance trend of the creative industries sector, and third, to analyze the factors affecting the performance of the creative industries sector in Indonesia. Under Indonesia Standard Industrial Classification (ISIC and codes 151-372 (manufacturing industries category identified 18 industry groups belonging to the creative industries, showed that the performance of the national creative industries has been relatively high (in terms of trend analysis of the performance of the industrial creative. Furthermore, regression analysis of panel data (econometrics indicates that company size (SIZE, wages for workers (WAGE and the content of local inputs (LOCAL has a significant impact on the performance of Indonesia's creative industry. Meanwhile, the concentration ratio (CR4 no consequences but have koresi significantly positive effect on the performance of Indonesia’s creative industry.

  8. Nitrated metalloporphyrins as catalysts for alkane oxidation

    Science.gov (United States)

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  9. Catalyst system of the structured type

    NARCIS (Netherlands)

    Jansen, J.C.; Legein, C.H.; Calis, H.P.A.; Van Bekkum, H.; Gerritsen, A.W.; Van den Bleek, M.

    1994-01-01

    The invention relates to a catalyst system of the structured type, in which a structured support is covered with a layer of molecular sieve crystals and/or modifications thereof. These crystals have substantially the same orientation relative to the support surface. The invention further relates to

  10. SOME PRELIMINARY INFORMATION ON SYNDIOTACTIC POLYSTYRENE CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    Adolfo Zambelli; Claudio Pellecchia; Leone Oliva; HAN Shimin

    1988-01-01

    Syndiotactic specific polymerization of styrene has been investigated by 13C NMR analysis and isotopic labelling methods. The value of the activation energy involved in the sterie control has been determined. Some information of the number of the active sites and on the life of the catalysts is reported.

  11. Catalyst Activity Comparison of Alcohols over Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-01-01

    Alcohol transformation to transportation fuel range hydrocarbon on HZSM-5 (SiO2 / Al2O3 = 30) catalyst was studied at 360oC and 300psig. Product distributions and catalyst life were compared using methanol, ethanol, 1-propanol or 1-butanol as a feed. The catalyst life for 1-propanol and 1-butanol was more than double compared to that for methanol and ethanol. For all the alcohols studied, the product distributions (classified to paraffin, olefin, napthene, aromatic and naphthalene compounds) varied with time on stream (TOS). At 24 hours TOS, liquid product from 1-propanol and 1-butanol transformation primarily contains higher olefin compounds. The alcohol transformation process to higher hydrocarbon involves a complex set of reaction pathways such as dehydration, oligomerization, dehydrocyclization, and hydrogenation. Compared to ethylene generated from methanol and ethanol, oligomerization of propylene and butylene has a lower activation energy and can readily take place on weaker acidic sites. On the other hand, dehydrocyclization of propylene and butylene to form the cyclic compounds requires the sits with stronger acid strength. Combination of the above mentioned reasons are the primary reasons for olefin rich product generated in the later stage of the time on stream and for the extended catalyst life time for 1 propanol and 1 butanol compared to methanol and ethanol conversion over HZSM-5.

  12. Hydrodeoxygenation of Levulinic Acid over Supported Catalysts

    NARCIS (Netherlands)

    Luo, Wenhao

    2014-01-01

    Levulinic acid (LA), which can be produced from the sugar fractions of lignocellulosic biomass, is a promising sustainable platform molecule that can play a major role in future biorefineries. The work described was aimed at the development of heterogeneous catalysts for the selective conversion of

  13. Red Mud as an Efficient, Stable, and Cost-Free Catalyst for COx-Free Hydrogen Production from Ammonia

    Science.gov (United States)

    Kurtoğlu, Samira Fatma; Uzun, Alper

    2016-08-01

    Red mud, one of the mostly produced industrial wastes, was converted into a catalyst with exceptionally high and stable performance for hydrogen production from ammonia. Results showed that iron species produced after reduction of the HCl digested red mud were converted into ɛ-Fe2N during the induction period of ammonia decomposition reaction at 700 °C. The catalytic performance measurements indicated that the modified red mud catalyst provides a record high hydrogen production rate for a non-noble metal catalyst at this temperature. For instance, stable hydrogen production rates were measured as 72 and 196 mmol H2 min-1 gcat-1 for the corresponding space velocities of 72 000 and 240 000 cm3 NH3 h-1 gcat-1, respectively, at 700 °C. These results offer opportunities to utilize one of the key hazardous industrial wastes as an eco-friendly, efficient, stable, and almost cost-free catalyst for COx-free hydrogen production from ammonia decomposition.

  14. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  15. Crystal structure of a DNA catalyst.

    Science.gov (United States)

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Höbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.

  16. Cobalt supported on CNTs-covered γ-and nano-structured alumina catalysts utilized for wax selective Fischer-Tropsch synthesis

    Institute of Scientific and Technical Information of China (English)

    Mohammad Reza Hemmati; Mohammad Kazemeini; Farhad Khorasheh; Jamshid Zarkesh; Alimorad Rashidi

    2012-01-01

    Cobalt supported on carbon nanotubes (CNTs)-covered alumina has been recently developed and successfully utilized as a catalyst in Fischer-Tropsch synthesis (FTS).Problems associated with shaping of Co/CNTs into extrudates or pellets as well as catalyst attrition rendered these materials unfavorable for industrial applications.In this investigation regular γ-and nano-structured (N-S) alumina as well as CNTs-covered regular γ-and N-S-alumina supports were impregnated by cobalt nitrate solution to make new cobalt-based catalysts which were also promoted by Ru.The catalysts were characterized and tested in a micro reactor to evaluate their applicability in FTS.γ-Al2O3 was prepared by calcination of bohemite and N-S-Al2O3 was prepared by sol-gel method using aluminum chloride as starting material.Catalyst evaluations indicated that N-S-Al2O3 was superior to regular γ-Al2O3 and that CNTs-covered alumina supports were favored over non-covered ones in terms of activity and heavy hydrocarbon selectivity.These were justified by porosimetric characteristics of the catalysts and existence of CNTs points of view.CNTs-covered catalysts also showed higher wax selectivity and better resistance to deactivation.Furthermore,TPR analysis indicated that the cobalt aluminate phase,which is responsible for the permanent deactivation of alumina supported Co-based catalysts,did not form on alumina supported Co-based catalysts covered with CNTs due to weaker interactions between cobalt and alumina.

  17. 2001 Industry Studies: Munitions

    Science.gov (United States)

    2001-01-01

    industry can pay, and the munitions industry has difficulty providing the lucrative stock options and other equity attractions that other industries...improve the financial strength of the munitions industry, and result in an enhanced ability to provide stock options and equity attractions to both

  18. Athletic Apparel Industry Analysis

    Institute of Scientific and Technical Information of China (English)

    JIE; TAN; NAFISUL; ISLAM; MILAN; MITRASINOVIC

    2015-01-01

    Industry Overview The athletic apparel industry is the fastest growing segment of global clothing industry differentiated by offering high quality athletic apparel made of technically advanced fabrics.The athletic apparel is made for a variety of sports and physical activities for children,men and women and enhances comfort and performance of athletes.The industry consists of companies that design and market

  19. Catalysis Science Initiative: Catalyst Design by Discovery Informatics

    Energy Technology Data Exchange (ETDEWEB)

    Delgass, William Nicholas [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States) Department of Chemistry; Caruthers, James [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Ribeiro, Fabio [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Thomson, Kendall [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Schneider, William [Univ. of Notre Dame, IN (United States)

    2016-07-08

    atoms in the interfacial region. Some of the first theoretical descriptions of this important chemistry and potential new source of control of catalyst properties are be in preparation for submission. On the homogeneous catalysis side, we have used single site olefin polymerization as the testbed. This system is important because changes in a single ligand bonded to the catalytically active metal site can alter the rates of individual steps in the polymerization sequence and thereby change the properties of the resulting polymer, potentially improving its value in a hundred million pound per year industry. We have made a major advance in understanding such systems by developing a population balance kinetic model that allows us to predict the molecular weight distribution (MWD) of the product. That, in turn, allows use of MWD data to fit kinetic parameters. By combining monomer loss data, MWD, measurement of the number of working active sites, and polymer end group analysis, we have a rich data set that is highly discriminating of kinetic mechanism. Thus, we have a robust tool for producing high quality, detailed kinetic parameters, which we have used to refine mechanisms presented in the literature and discover relationships between steric and electronic properties of group IV catalysts and individual rate constants in a number of systems. Our recent work on six-coordinate Zr, Ti, and Hf amine bis(phenolate) systems, we have shown that: • The sterics (bulkiness) of the ligands specifically affect the chain termination reaction • The electron density on the metal controls misinsertion (flipped orientation) of the olefin into the growing polymer • Steric effects related to the size of the ortho ligand on the catalyst have been shown to strongly affect its the degree of dormancy, i.e. tendency to stop reacting • Changes in the size of the amine pendent group on the catalyst can have such a strong effect on chain termination as to change the catalyst from one that

  20. Mechanistic and kinetic analysis of the oxidative dehydrogenation of ethane via novel supported alkali chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.; Veen, A.C. van; Lercher, J.A. [Technische Universitaet Muenchen (Germany). Catalysis Research Center

    2013-11-01

    The oxidative dehydrogenation of ethane over advanced catalysts is promising to selectively produce ethylene, an essential building block for the chemical industry. In this way, ethane from shale gas can be efficiently valorized. Supported alkali chloride catalysts are investigated in this work. Essential feature of those materials is the presence of a solid core (magnesium oxide in part doped with Dy{sub 2}O{sub 3}) covered under reaction conditions with a molten alkali chloride shell. It is shown that especially the lowered melting point of eutectic mixtures of LiCl with other alkali/alkaline earth metals is the key to taylor highly efficient materials. Elucidating the ODH reaction mechanism is essential to understand the reactivity of this novel catalyst class and provides the basis for improving performances. Information about elementary steps and the rate determining step were extracted from kinetic measurements, both in steady state and in transient configuration. Furthermore, isotopic labelling studies were performed, i.e. SSITKA studies and temperature programmed isotopic exchange experiments. Step experiments showed a significant oxygen uptake by the catalysts. Retained oxygen reacted quantitatively with ethane at nearly 100% selectivity to ethylene and conversion rates were comparable with rates observed during steady state operation. Thus, chemically bound oxygen in the melt is the active and selective intermediate in the ODH. Therefore, it is required to consider an intermediate and the activation is concluded to relate to the oxygen dissociation. The total concentration of stored oxygen can be correlated to the steady-state activity, while the viscosity of the melts mainly influences the selectivity towards ethene. Properties of the solid core impact on the catalyst efficiency suggesting that the oxygen species forms at the interface between support and overlayer. The quantity of retained oxygen additionally depends on the properties of the chloride