WorldWideScience

Sample records for catalyst supports

  1. Supported organoiridium catalysts for alkane dehydrogenation

    Science.gov (United States)

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  2. Oxidation catalysts on alkaline earth supports

    Energy Technology Data Exchange (ETDEWEB)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  3. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  4. Thermodynamic Properties of Supported Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  5. Crotonaldehyde hydrogenation on Rh supported catalysts

    OpenAIRE

    Reyes, P; Aguirre, Mª del Carmen; Pecchi, Gina; García Fierro, José Luis

    2000-01-01

    The vapor-phase hydrogenation of crotonaldehyde on Rh supported catalysts has been studied. The effect of some variables of preparation in catalysts prepared by the sol-gel and impregnation methods on the surface and catalytic properties were analyzed. It was found, that the porosity of the support has a small effect on the selectivity to the unsaturated alcohol and the presence of partially reducible supports such as ZrO2 and TiO2, may increase the selectivity to crotyl alcohol via an enhanc...

  6. Overview of Support Effects in Hydrotreating Catalysts

    Institute of Scientific and Technical Information of China (English)

    Michèle Breysse

    2004-01-01

    @@ Industrial hydrotreating (HDT) catalysts are composed of a molybdenum sulfide (or tungsten sulfide) phase promoted by cobalt or nickel and usually supported on alumina. The origin of the almost exclu1sive use of alumina as support has to be ascribed to its outstanding textural and mechanical properties and its relatively low cost[1].

  7. Thermal decomposition of supported lithium nitrate catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Maria Lucia [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Lick, Ileana Daniela [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina); Ponzi, Marta Isabel [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Castellon, Enrique Rodriguez; Jimenez-Lopez, Antonio [Departamento de Quimica Inorganica, Cristalografia y Mineralogia. Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Ponzi, Esther Natalia, E-mail: eponzi@quimica.unlp.edu.ar [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina)

    2010-02-20

    New catalysts for soot combustion were prepared by impregnation of different supports (SiO{sub 2}, ZrO{sub 2} and ZrO{sub 2}.nH{sub 2}O) with a LiNO{sub 3} solution and then characterized by means of FTIR, XPS, TGA and UV-vis spectroscopy, whereby the presence of lithium nitrate in the prepared catalysts was identified and quantified. The soot combustion rate using this series of catalysts (LiNO{sub 3}/support) was compared with the activity of a series of impregnated catalysts prepared using LiOH (Li{sub 2}O/supports). Catalysts prepared using LiNO{sub 3} are found to be more active than those prepared using LiOH. The catalytic performance was also studied with a NO/O{sub 2} mixture in the feed, demonstrating that NO increases the combustion rate of soot, probably as a consequence of lithium oxide forming an 'in situ' nitrate ion.

  8. Polypropylene obtained through zeolite supported catalysts

    Directory of Open Access Journals (Sweden)

    Queli C. Bastos

    2004-01-01

    Full Text Available Propylene polymerizations were carried out with f2C(Flu(CpZrCl2 and SiMe2(Ind2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM and acid mordenite (HM. The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]. The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu(CpZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereoregularity.

  9. Carbon Fiber Composite Monoliths as Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL; Pickel, Joseph M [ORNL; Blom, Douglas Allen [ORNL; Burchell, Timothy D [ORNL

    2006-01-01

    Carbon fiber composite monoliths are rigid bodies that can be activated to a large surface area, have tunable porosity, and proven performance in gas separation and storage. They are ideal as catalyst supports in applications where a rigid support, with open structure and easy fluid access is desired. We developed a procedure for depositing a dispersed nanoparticulate phase of molybdenum carbide (Mo2C) on carbon composite monoliths in the concentration range of 3 to 15 wt% Mo. The composition and morphology of this phase was characterized using X-ray diffraction and electron microscopy, and a mechanism was suggested for its formation. Molybdenum carbide is known for its catalytic properties that resemble those of platinum group metals, but at a lower cost. The materials obtained are expected to demonstrate catalytic activity in a series of hydrocarbon reactions involving hydrogen transfer. This project demonstrates the potential of carbon fiber composite monoliths as catalyst supports.

  10. Carbon Fiber Composite Monoliths for Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL; Pickel, Joseph M [ORNL; Blom, Douglas Allen [ORNL; Burchell, Timothy D [ORNL

    2006-01-01

    Carbon fiber composite monoliths are rigid bodies that can be activated to a large surface area, have tunable porosity, and proven performance in gas separation and storage. They are ideal as catalyst supports in applications where a rigid support, with open structure and easy fluid access is desired. We developed a procedure for depositing a dispersed nanoparticulate phase of molybdenum carbide (Mo2C) on carbon composite monoliths in the concentration range of 3 to 15 wt% Mo. The composition and morphology of this phase was characterized using X-ray diffraction and electron microscopy, and a mechanism was suggested for its formation. Molybdenum carbide is known for its catalytic properties that resemble those of platinum group metals, but at a lower cost. The materials obtained are expected to demonstrate catalytic activity in a series of hydrocarbon reactions involving hydrogen transfer. This project demonstrates the potential of carbon fiber composite monoliths as catalyst supports.

  11. Catalyst support effects on hydrogen spillover

    Science.gov (United States)

    Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; Vandevondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A.

    2017-01-01

    Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

  12. Surface Chemistry and Properties of Oxides as Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    DeBusk, Melanie Moses [ORNL; Narula, Chaitanya Kumar [ORNL; Contescu, Cristian I [ORNL

    2015-01-01

    Heterogeneous catalysis relies on metal-oxides as supports for the catalysts. Catalyst supports are an indispensable component of most heterogeneous catalysts, but the role of the support is often minimized in light of the one played by the catalytically active species it supports. The active species of supported catalysts are located on the surface of the support where their contact with liquid or gas phase reactants will be greatest. Considering that support plays a major role in distribution and stability of active species, the absorption and retention of reactive species, and in some cases in catalytic reaction, the properties and chemistry that can occur at the surface of an oxide support are important for understanding their impact on the activity of a supported catalyst. This chapter examines this rich surface chemistry and properties of oxides used as catalyst supports, and explores the influence of their interaction with the active species.

  13. Supported cobalt catalysts - preparation, characterization and reaction studies

    OpenAIRE

    Backman, Leif

    2009-01-01

    The aim of this work was to understand on the effect of thermal treatments, precursor and support on the interaction between the support and cobalt species, and further how the interaction affects the reducibility and dispersion of the catalyst. Silica and alumina supported cobalt catalysts were prepared, characterised and tested for catalytic activity. The catalysts were prepared by gas phase deposition techniques from cobalt acetylacetonate and cobalt carbonyl and by incipient wetness impre...

  14. Functionalized Graphitic Supports for Improved Fuel Cell Catalyst Stability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) together with the University of Connecticut (UCONN) proposes to demonstrate the improved fuel cell catalyst support durability offered...

  15. Characteristics of Titanocene Catalyst Supported on Palygorskite for Ethylene Polymerization

    Institute of Scientific and Technical Information of China (English)

    Xiao Wei YAN; Jing Dai WANG; Yi Bing SHAN; Yong Rong YANG

    2006-01-01

    A series of heterogeneous catalysts with Cp2TiCl2 supported on palygorskite were prepared and evaluated by ethylene slurry polymerizations. The so-called direct supported catalyst, for which the pretreatment of palygorskite with MAO or Al(i-Bu)3 was not necessary,gave the highest activity among these supported catalysts and could be more robust than homogeneous Cp2TiCl2. With the direct supported catalyst, no significant activity loss was observed under low Al/Ti molar ratios (Al/Ti=300) and the decay of polymerization rate was slower when compared to the other supported catalysts. It was found that the surface Lewis acidity of palygorskite after thermal treatment played an important role in activation of metallocene compound and resulted in high catalyst activity.

  16. Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming

    Directory of Open Access Journals (Sweden)

    Antonios Tribalis

    2016-01-01

    Full Text Available Nickel catalysts are the most popular for steam reforming, however, they have a number of drawbacks, such as high propensity toward coke formation and intolerance to sulfur. In an effort to improve their behavior, a series of Ni-catalysts supported on pure and La-, Ba-, (La+Ba- and Ce-doped γ-alumina has been prepared. The doped supports and the catalysts have been extensively characterized. The catalysts performance was evaluated for steam reforming of n-hexadecane pure or doped with dibenzothiophene as surrogate for sulphur-free or commercial diesel, respectively. The undoped catalyst lost its activity after 1.5 h on stream. Doping of the support with La improved the initial catalyst activity. However, this catalyst was completely deactivated after 2 h on stream. Doping with Ba or La+Ba improved the stability of the catalysts. This improvement is attributed to the increase of the dispersion of the nickel phase, the decrease of the support acidity and the increase of Ni-phase reducibility. The best catalyst of the series doped with La+Ba proved to be sulphur tolerant and stable for more than 160 h on stream. Doping of the support with Ce also improved the catalytic performance of the corresponding catalyst, but more work is needed to explain this behavior.

  17. Ethylene Polymerization with Palygorskite Supported Nickel-Diimine Catalyst

    Institute of Scientific and Technical Information of China (English)

    严小伟; 王靖贷; 阳永荣; 张雷

    2005-01-01

    A nickel-diimine catalyst IN, N′-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylaluminoxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42 × 105 g PE·molNi-l·h-1 was achieved at ethylene pressure of 6.87 × 105 Pa and polymerization temperature of 20℃ In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.

  18. Olefin polymerization over supported chromium oxide catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    1999-01-01

    Cr/SiO2 or Phillips-type catalysts are nowadays responsible for a large fraction of all polyethylene (HDPE and LLDPE) worldwide produced. In this review, several key-properties of Cr/SiO2 catalysts will be discussed in relation to their polymerization characteristics. It will be shown how the polyol

  19. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Samira Bagheri

    2014-01-01

    Full Text Available The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2 was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications.

  20. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah

    2014-01-01

    The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380

  1. Supported catalyst systems and method of making biodiesel products using such catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  2. Mesoporous Molecular Sieves as Supports for Metathesis Catalysts

    Science.gov (United States)

    Balcar, Hynek; Cejka, Jirí

    Mesoporous molecular sieves represent a new family of inorganic oxides with regular nanostructure, large surface areas, large void volumes, and narrow pore size distribution of mesopores. These materials offer new possibilities for designing highly active and selective catalysts for olefin metathesis and metathesis polymerization. Siliceous sieves MCM-41, MCM-48, SBA-15, and organized mesoporous alumina (OMA) were used as supports for preparation of new molybdenum and rhenium oxide catalysts, as well as for heterogenization of well-defined homogeneous catalysts.

  3. Supported Oxide Catalysts from Chelating Precursors

    Science.gov (United States)

    Prieto-Centurion, Dario

    Supported Fe catalysts and, in particular, Fe and substituted MFI zeolites have attracted industrial and academic attention due to their ability to promote selective catalytic reduction of NOx and selective partial oxidation of hydrocarbons. It is generally accepted that some form of highly dispersed, binuclear or atomically-isolated metal species are involved in the selective processes catalyzed these materials. Several studies have sought to reproduce the structures and reactivity of these substituted zeolites on dierent supports. Given that specialized reagents or preparation conditions that are required in some of these preparation methods, and that multiple surface structures are often formed, this dissertation aimed to develop a route to highly dispersed supported transition metals using commonly available reactants and synthesis routes. Described here is a straightforward and effective procedure to control dispersion and surface speciation of Fe on SiO2 and CeO2 through incipient wetness impregnation (IWI) of the support with aqueous, anionic complexes of Fe3+ and ethylenediaminetetraacetic acid (EDTA) followed by oxidative heat-treatment. On SiO2, this method preferentially creates isolated surface structures up to loading of 0.9 Fe nm-2 if using alkali counter-cations. This isolated species display classic 'single-site' behavior|constant turn over frequency (TOF) with increasing Fe surface density|in the oxidation of adamantane with H 2O2, indicating active sites are equally accessible and equally active within this range of surface density. Additionally, TOF increases linearly with electronegativity of the alkali counter-cation, suggesting electronic promotion. Conversely, IWI of unprotected Fe3+ produces agglomerates less active in this reaction. On CeO2, the sterics and negative charge imparted on Fe 3+ by EDTA4- inhibits incorporation of Fe into surface vacancies. Instead, formation of two-dimensional oligomeric structures which can undergo Fe3+-Fe2

  4. Supported Molten Metal Catalysis. A New Class of Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra Datta; Ajeet Singh; Manuela Serban; Istvan Halasz

    2006-06-02

    We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to conventional catalysts for this reaction. A discussion is also provided on the characterization of the active surface area and dispersion of these novel supported catalysts. It is clear based on the results described that the development of new active and selective supported molten metal catalysts for practical applications is entirely plausible.

  5. Carbon xerogels as supports for catalysts and electrocatalysts

    OpenAIRE

    Job, Nathalie; Berthon-Fabry, Sandrine; Lambert, Stephanie; Chatenet, Marian; Maillard, Frédéric; Brigaudet, Mathilde; Pirard, Jean-Paul

    2009-01-01

    International audience; In order to improve mass transport in the pore texture of carbon supported catalysts, the widely used supports (activated carbons or carbon blacks) can be replaced by carbon gels, i.e. texture-tailored materials obtained by drying and pyrolysis of organic gels. Carbon xerogels issued from resorcinol-formaldehyde aqueous gels were used as metal catalyst supports both in gas phase heterogeneous catalysis and in PEM fuel cell electrodes. These materials, composed of very ...

  6. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    Science.gov (United States)

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  7. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. He...

  8. Synthesis and characterization of MCM-41-supported nano zirconia catalysts

    Directory of Open Access Journals (Sweden)

    Mohamed S. Abdel Salam

    2015-03-01

    Full Text Available Series of MCM-41 supported sulfated Zirconia (SZ catalysts with different loadings (2.5–7.5% wt. were prepared using direct impregnation method. The acquired solid catalysts were characterized structurally and chemically using X-RD, HRTEM, BET, FT-IR, Raman spectroscopy and TPD analysis. The acidity of the solid catalysts was investigated through cumene cracking and isopropanol dehydration at different temperatures. As the SZ loading increases, the surface acidity of the mesoporous catalysts was enhanced, this was reflected by the higher catalytic activity toward cumene cracking and isopropanol dehydration.

  9. Study of supported platinum catalysts by anomalous scattering

    Energy Technology Data Exchange (ETDEWEB)

    Georgopoulos, P.; Cohen, J.B.

    1985-01-01

    Platinum metal catalysts supported on silica gel and alumina were examined by wide-angle anomalous x-ray scattering at the Cornell High Energy Synchrotron Source. Complete removal of the support background features is achieved by this method, eliminating errors due to inaccurate background estimation. Platinum diffraction patterns from very-high-percentage metal-exposed catalysts were obtained for the first time, as well as from platinum supported on alumina. This technique is suitable for examining catalysts under working conditions and is superior to EXAFS for determinations of particle morphology and size distribution. 10 references, 8 figures.

  10. Synthesis, characterization and hydrotreating performance of supported tungsten phosphide catalysts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors (supported phospho-tungstate catalysts) in H2 and characterized by X-ray diffraction (XRD),BET,temperature-programmed desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS).The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis (TG-DTA) and the suitable phosphiding temperatures were defined.The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities of the catalysts were tested by using thiophene,pyridine,dibenzothiophene,carbazole and diesel oil as the feed-stock.The TiO2,γ-Al2O3 supports and the Ni,Co promoters could remarkably increase and stabilize active W species on the catalyst surface.A suitable amount of Ni (3%-5%),Co (5%-7%) and V (1%-3%) could increase dispersivity of the W species and the BET surface area of the WP/γ-Al2O3 catalyst.The WP/γ-Al2O3 catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene (DBT) HDS and pyridine HDN activities.The Ni,Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/γ-Al2O3 catalyst.The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/γ-Al2O3 catalyst.In general,a support or promoter in the WP/γ-Al2O3 catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.

  11. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Harvey, David; Dutta, Monica; Colbow, Vesna

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150oC and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metalic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  12. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    Energy Technology Data Exchange (ETDEWEB)

    A. Patel; K. Artyushkova; P. Atanassov; David Harvey; M. Dutta; V. Colbow; S. Wessel

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150 C and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metallic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  13. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    Energy Technology Data Exchange (ETDEWEB)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  14. Functionalized magnetic nanoparticles: A novel heterogeneous catalyst support

    Science.gov (United States)

    Functionalized magnetic nanoparticles have emerged as viable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. Post-synthetic surface modification protocol for magnetic nanoparticles has been developed that imparts desirable che...

  15. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions.

    Science.gov (United States)

    Jiang, Haibin; Lu, Shuliang; Zhang, Xiaohong; Dai, Wei; Qiao, Jinliang

    2016-01-01

    Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol) in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  16. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Haibin Jiang

    2016-06-01

    Full Text Available Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  17. Design of hybrid titania nanocrystallites as supports for gold catalysts.

    Science.gov (United States)

    Mendez, Violaine; Caps, Valérie; Daniele, Stéphane

    2009-06-07

    Citrate-functionalized titania nanocrystallites are successfully synthesized from a heteroleptic titanium alkoxide precursor in a low temperature, hydrolytic process and used as gold catalyst supports for CO oxidation and aerobic stilbene epoxidation.

  18. Precious metal-support interaction in automotive exhaust catalysts

    Institute of Scientific and Technical Information of China (English)

    郑婷婷; 何俊俊; 赵云昆; 夏文正; 何洁丽

    2014-01-01

    Precious metal-support interaction plays an important role in thermal stability and catalytic performance of the automotive exhaust catalysts. The support is not only a carrier for active compounds in catalysts but also can improve the dispersion of precious metals and suppress the sintering of precious metals at high temperature;meanwhile, noble metals can also enhance the redox per-formance and oxygen storage capacity of support. The mechanism of metal-support interactions mainly includes electronic interaction, formation of alloy and inward diffusion of metal into the support or covered by support. The form and degree of precious metal-sup-port interaction depend on many factors, including the content of precious metal, the species of support and metal, and preparation methods. The research results about strong metal-support interaction (SMSI) gave a theory support for developing a kind of new cata-lyst with excellent performance. This paper reviewed the interaction phenomenon and mechanism of precious metals (Pt, Pd, Rh) and support such as Al2O3, CeO2, and CeO2-based oxides in automotive exhaust catalysts. The factors that affect SMSI and the catalysts developed by SMSI were also discussed.

  19. Hydrodeoxygenation of Levulinic Acid over Supported Catalysts

    NARCIS (Netherlands)

    Luo, Wenhao

    2014-01-01

    Levulinic acid (LA), which can be produced from the sugar fractions of lignocellulosic biomass, is a promising sustainable platform molecule that can play a major role in future biorefineries. The work described was aimed at the development of heterogeneous catalysts for the selective conversion of

  20. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  1. Catalytic removal of carbon monoxide over carbon supported palladium catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Avanish Kumar [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Saxena, Amit [Centre for Fire Explosive and Environmental Safety, Timarpur, Delhi-110054 (India); Shah, Dilip; Mahato, T.H. [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Singh, Beer, E-mail: beerbs5@rediffmail.com [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Shrivastava, A.R.; Gutch, P.K. [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Shinde, C.P. [School of Studies in Chemistry, Jiwaji University, Gwalior-474002 (MP) (India)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Carbon supported palladium (Pd/C) catalyst was prepared. Black-Right-Pointing-Pointer Catalytic removal of CO over Pd/C catalyst was studied under dynamic conditions. Black-Right-Pointing-Pointer Effects of Pd %, CO conc., humidity, GHSV and reaction environment were studied. - Abstract: Carbon supported palladium (Pd/C) catalyst was prepared by impregnation of palladium chloride using incipient wetness technique, which was followed by liquid phase reduction with formaldehyde. Thereafter, Pd/C catalyst was characterized using X-ray diffractometery, scanning electron microscopy, atomic absorption spectroscopy, thermo gravimetry, differential scanning calorimetry and surface characterization techniques. Catalytic removal of carbon monoxide (CO) over Pd/C catalyst was studied under dynamic conditions. Pd/C catalyst was found to be continuously converting CO to CO{sub 2} through the catalyzed reaction, i.e., CO + 1/2O{sub 2} {yields} CO{sub 2}. Pd/C catalyst provided excellent protection against CO. Effects of palladium wt%, CO concentration, humidity, space velocity and reaction environment were also studied on the breakthrough behavior of CO.

  2. CO2 Hydrogenation: Supported Nanoparticles vs. Immobilized Catalysts.

    Science.gov (United States)

    Tada, Shohei; Thiel, Indre; Lo, Hung-Kun; Copéret, Christophe

    2015-01-01

    The conversion of CO(2) to more valuable chemicals has been the focus of intense research over the past decades, and this field has become particularly important in view of the continuous increase of CO(2) levels in our atmosphere and the need to find alternative ways to store excess energy into fuels. In this review we will discuss different strategies for CO(2) conversion with heterogeneous and homogeneous catalysts. In addition, we will introduce some promising research concerning the immobilization of homogeneous catalysts on heterogeneous supports, as a hybrid of hetero- and homogeneous catalysts.

  3. Synthesis Gas Production from Natural Gas on Supported Pt Catalysts

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Auto-thermal reforming of methane, combining partial oxidation and reforming of methane with CO2 or steam, was carried out with Pt/Al2O3, Pt/ZrO2 and Pt/CeO2 catalysts, in a temperature range of 300-900 ℃. The auto-thermal reforming occurs in two simultaneous stages, namely, total combustion of methane and reforming of the unconverted methane with steam and CO2, with the O2 conversion of 100% starting from 450 ℃. For combination with CO2 reforming, the Pt/CeO2 catalyst showed the lowest initial activity at 800 ℃, and the highest stability over 40 h on-stream. This catalyst also presented the best performance for the reaction with steam at 800 ℃. The higher resistance to coke formation of the catalyst supported on ceria is due to the metal-support interactions and the higher mobility of oxygen in the oxide lattice.

  4. A Polyphenylene Support for Pd Catalysts with Exceptional Catalytic Activity

    DEFF Research Database (Denmark)

    Wang, Feng; Mielby, Jerrik Jørgen; Richter, Felix Herrmann

    2014-01-01

    We describe a solid polyphenylene support that serves as an excellent platform for metal-catalyzed reactions that are normally carried out under homogeneous conditions. The catalyst is synthesized by palladium-catalyzed Suzuki coupling which directly results in formation of palladium nanoparticles...... confined to a porous polyphenylene network. The composite solid is in turn highly active for further Suzuki coupling reactions, including non-activated substrates that are challenging even for molecular catalysts....

  5. Combinatorial Supports for Ru-based Ammonia Synthesis Catalysts

    Institute of Scientific and Technical Information of China (English)

    Gui Yu HUANG; Jing Dong LIN; Zhong Xiang XU; Dai Wei LIAO

    2005-01-01

    The support materials of ruthenium-based catalysts for ammonia synthesis were prepared using mixed solutions composed of magnesium nitrate, aluminum nitrate and calcium nitrate with a certain ratio. The catalysts supported on complex oxides were more active and the optimal activity temperatures were lower than that supported on single oxide under the same conditions.The catalyst with Mg-Al complex oxide as support prepared by calcinafing hydrotalcite-like compound had significantlyhigher activity, 38.42 mL NH3·h-1·g-1 at 673 K. The BET determination showed that the Mg-Al complex oxide possessed large surface area, 140.95 m2·g-1, similar to γ-Al2O3.

  6. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support

  7. Sorbitol hydrogenolysis to glycols by supported ruthenium catalysts

    Institute of Scientific and Technical Information of China (English)

    Inmaculada Murillo Leo; Manuel Lopez Granados; Jose Luis Garcia Fierro; Rafael Mariscal

    2014-01-01

    Supported Ru catalysts were prepared by wet impregnation to evaluate the role of different oxide supports (Al2O3, SiO2, TiO2, ZrO2) in sorbitol hydrogenolysis to glycols. X-ray diffraction, transmis-sion electron microscopy, hydrogen chemisorption, X-ray photoelectron spectroscopy, and NH3 temperature-programmed desorption were used to characterize the catalysts, which were active in the hydrogenolysis of sorbitol. The support affected both the physicochemical properties and cata-lytic behavior of the supported Ru particles. The characterization results revealed that the Ru/Al2O3 catalyst has a high surface acidity, partially oxidized Ru species on the surface, and a higher surface Ru/Al atomic ratio, which gave it the highest selectivity and yield to glycols.

  8. States of Carbon Nanotube Supported Mo-Based HDS Catalysts

    Institute of Scientific and Technical Information of China (English)

    Hongyan Shang; Chenguang Liu; Yongqiang Xu; Jieshan Qiu; Fei Wei

    2006-01-01

    The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were investigated by TPR, while the sulfided Co-Mo/CNT catalysts were characterized by means of the XRD and LRS techniques. The activity and selectivity with respect to the hydrodesulfurization (HDS) performances on carbon nanotube supported Co-Mo catalysts were evaluated. It was found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, but not MoO3, as generally expected. The maximum loading before the formation of the bulk phase was lower than 6% (percent by mass, based on MoO3). TPR studies revealed that the active species in the oxide state Co-Mo/CNT catalysts were reduced more easily at relatively lower temperatures in comparison to those of the Co-Mo/γ-Al2O3 catalysts, indicating that the CNT support promoted or favored the reduction of the active species. The active species of a Co-Mo-0.7/CNT catalyst were more easily reduced than those of the Co-Mo/CNT catalysts with Co/Mo atomic ratios of 0.2, 0.35, and 0.5, respectively, suggesting that the Co/Mo atomic ratio has a great effect on the reducibility of the active species. It was found that the incorporation of cobalt improved the dispersion of the molybdenum species on the support, and a phenomenon of mobilization and re-dispersion had occurred during the sulfurization process, resulting in low valence state Mo3S4 and Co-MoS2.17 active phases. HDS measurements showed that the Co-Mo/CNT catalysts were more active than the Co-Mo/γ-Al2O3 ones for the desulfurization of DBT, and the hydrogenolysis/hydrogenation selectivity of the Co-Mo/CNT catalysts was also much higher than those of the Co-Mo/γ-Al2O3. The Co-Mo/CNT catalyst with a Co/Mo atomic ratio of 0.7 showed the highest activity, whereas the catalyst with a Co/Mo atomic ratio of 0.35 had the highest selectivity.

  9. Carbon nanotube synthesis with different support materials and catalysts

    Science.gov (United States)

    Gümüş, Fatih; Yuca, Neslihan; Karatepe, Nilgün

    2013-09-01

    Having remarkable characteristics, carbon nanotubes (CNTs) have attracted a lot of interest. Their mechanical, electrical, thermal and chemical properties make CNTs suitable for several applications such as electronic devices, hydrogen storage, textile, drug delivery etc. CNTs have been synthesized by various methods, such as arc discharge, laser ablation and catalytic chemical vapor deposition (CCVD). In comparison with the other techniques, CCVD is widely used as it offers a promising route for mass production. High capability of decomposing hydrocarbon formation is desired for the selected catalysts. Therefore, transition metals which are in the nanometer scale are the most effective catalysts. The common transition metals that are being used are Fe, Co, Ni and their binary alloys. The impregnation of the catalysts over the support material has a crucial importance for the CNT production. In this study, the influence of the support materials on the catalytic activity of metals was investigated. CNTs have been synthesized over alumina (Al2O3), silica (SiO2) and magnesium oxide (MgO) supported Fe, Co, Fe-Co catalysts. Catalyst - support material combinations have been investigated and optimum values for each were compared. Single walled carbon nanotubes (SWCNTs) were produced at 800°C. The duration of synthesis was 30 minutes for all support materials. The synthesized materials were characterized by thermal gravimetric analysis (TGA), Raman spectroscopy and transmission electron microscopy.

  10. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per; Skou, E.M.

    2013-01-01

    A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell applications. © The Royal Society of Chemistry 2013....

  11. Synthesis-Structure-Performance Relationships for Supported Metal Catalysts

    NARCIS (Netherlands)

    Munnik, Peter

    2014-01-01

    Heterogeneous catalysts, which consist of many metal nanoparticles supported on highly porous, mechanically strong and chemically inert supports, are at the center of many existing as well as new and more sustainable processes, such as energy conversion and storage, nanoelectronics and the catalytic

  12. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  13. Preparation and Characterization of Sugar Based Catalyst on Various Supports

    Directory of Open Access Journals (Sweden)

    Jidon Adrian Janaun

    2017-04-01

    Full Text Available A novel structured carbon-based acid catalyst was prepared by depositing the carbon precursor onto glass, ceramic and aluminum supports via dip-coating method, followed by carbonization process for converting the d-glucose layer into black carbon char in an inert nitrogen environment at 400 °C. Then, the –SO3H group was introduced into the framework of the carbon char by multiple vapor phase sulfonation. Four different carbonization methods were carried out (dry pyrolysis and hydrothermal carbonization with or without pressurized in the catalyst preparation while among the carbonization methods, the samples which prepared from dry pyrolysis without pressurized process showed the strong acidity due to highest adsorption of acid group in the catalyst surface although the catalyst attached onto the support was the least compared to other preparation methods. Among the catalysts, the sulfonated carbon-base catalyst that is attached on the ceramic support exhibited the highest aci-dity (1.327 mmol/g followed by the catalyst deposited on the glass (0.917 mmol/g and aluminum (0.321 mmol/g supports. The porous structure of ceramic surface, allowed a better interaction between reactants and –SO3H site in the carbon. Through the FT-IR analysis, it was observed that the functional groups –COOH, –OH, and –SO3H were present in the active sites of the catalysts. The surface areas of  glass (Si–SC, ceramic (Ce–SC and aluminum (Al–SC catalysts were larger than 1 m2/g, whereas the pore size belongs to macroporous as the average pore size is more than 50 nm. It is also stable within the temperature of 400 °C as there was less than 10% weight loss revealed from the TGA analysis. Copyright © 2017 BCREC GROUP. All rights reserved Received: 20th April 2016; Revised: 14th October 2016; Accepted: 17th October 2016 How to Cite: Janaun, J.A., Mey, T.J., Bono, A., Krishnaiah, D. (2017. Preparation and Characterization of Sugar Based Catalyst on Various

  14. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    Science.gov (United States)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  15. States of carbon nanotube supported Mo-based HDS catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Hongyan; Liu, Chenguang; Xu, Yongqiang [Key Laboratory of Catalysis, CNPC, College of Chemistry and Chemical Engineering, University of Petroleum, Dongying 257061 (China); Qiu, Jieshan [Carbon Research Laboratory, Center for Nano Materials and Science, Dalian University of Technology, 158 Zhongshan Road, P. O. Box 49, Dalian 116012 (China); Wei, Fei [Department of Chemical Engineering, Tsinghua University, Being, 100084 (China)

    2007-02-15

    As HDS catalysts, the supported catalysts including oxide state Mo, Co-Mo and sulfide state Mo on carbon nanotube (CNT) were prepared, while the corresponding supported catalysts on {gamma}-Al{sub 2}O{sub 3} were prepared as comparison. Firstly, the dispersion of the active phase and loading capacity of Mo species on CNT was studied by XRD and the reducibility properties of Co-Mo catalysts in oxide state over CNTs were investigated by TPR while the sulfide Co-Mo/CNT catalysts were characterized by XRD and LRS techniques. Secondly, the activity and selectivity of hydrodesulfurization (HDS) of dibenzothiophene with Co-Mo/CNT and Co-Mo/{gamma}-Al{sub 2}O{sub 3} were studied. It has been found that the main active molybdenum species in the oxide state MoO{sub 3}/CNT catalysts were MoO{sub 2}, rather than MoO{sub 3} as generally expected. The maximum loading before formation of the bulk phase was lower than 6%m (calculated in MoO{sub 3}). The TPR studies revealed that that active species in oxide state Co-Mo/CNT catalysts were more easily reduced at relatively lower temperatures in comparison to those in Co-Mo/{gamma}-Al{sub 2}O{sub 3}, indicating that the CNT support promoted the reduction of active species. Among 0-1.0 Co/Mo atomic ratio on Co-Mo/CNT, 0.7 has the highest reducibility. It shows that the Co/Mo atomic ratio has a great effect on the reducibility of active species on CNT and their HDS activities and that the incorporation of cobalt improved the dispersion of molybdenum species on CNT and mobilization. It was also found that re-dispersion could occur during the sulfiding process, resulting in low valence state Mo{sub 3}S{sub 4} and Co-MoS{sub 2.17} active phases. The HDS of DBT showed that Co-Mo/CNT catalysts were more active than Co-Mo/{gamma}-Al{sub 2}O{sub 3} and the hydrogenolysis/hydrogenation selectivity of Co-Mo/CNT catalyst was also much higher than Co-Mo/{gamma}-Al{sub 2}O{sub 3}. For the Co-Mo/CNT catalysis system, the catalyst with Co/Mo atomic

  16. Boron nitride: A high potential support for combustion catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Postole, G. [Institut de Recherches sur la Catalyse, CNRS, 69626 Villeurbanne Cedex (France); ' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Caldararu, M. [' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Ionescu, N.I. [' I.G.Murgulescu' Institute of Physical Chemistry of the Romanian Academy Spl. Independentei 202, 060041 Bucharest (Romania); Bonnetot, B. [Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, bat Berthollet, UCB Lyon I, 69622 Villeurbanne Cedex (France); Auroux, A. [Institut de Recherches sur la Catalyse, CNRS, 69626 Villeurbanne Cedex (France)]. E-mail: auroux@catalyse.cnrs.fr; Guimon, C. [LCPM, 2 Av. President Angot, 64053 Pau Cedex 9 (France)

    2005-08-15

    High surface area BN powders have been prepared from different precursors to be used as supports for noble metal catalysts. The more suitable boron nitride powders were obtained using polytrichoroborazine, pTCB, as precursor, leading to a surface area higher than 150 m{sup 2}/g. The BN powders were characterized by XRD, XPS, TG, SEM and adsorption microcalorimetry measurements (aniline and ammonia). The preliminary results showed a remarkable stability of the BN supports, even in the presence of moisture. Palladium impregnation of the BN powders was performed using a classical method and the obtained catalysts exhibited a high dispersion with Pd particles of about 4 nm.

  17. Templating Routes to Supported Oxide Catalysts by Design

    Energy Technology Data Exchange (ETDEWEB)

    Notestein, Justin M. [Northwestern Univ., Evanston, IL (United States)

    2016-09-08

    The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas. First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MOx-SiO2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO2-Al2O3 acid catalysts and to control reactant selectivity in Al2O3-TiO2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported

  18. Dissolution of Metal Supported Spent Auto Catalysts in Acids

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-03-01

    Full Text Available Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported Converters (MSC, catalytic functions are performed by the Platinum Group Metals (PGM: Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

  19. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    OpenAIRE

    Galip Akay

    2016-01-01

    A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV) induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous s...

  20. Reactions of synthesis gas on silica supported transition metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Niemelae, M. [VTT Chemical Technology, Espoo (Finland). Lab. of Industrial Chemistry

    1997-12-31

    The effect of catalyst precursor and composition on the activation of CO was investigated using CO hydrogenation as a test reaction. The interrelations of preparation, pretreatment, characteristics and activity were clarified. For Co/SiO{sub 2} catalyst, MgO promotion increased the CO adsorption capacity and the hydrogen uptake, although the extent of reduction for cobalt remained the same or decreased. The conversion per active metallic cobalt site consequently increased in conjunction with MgO promotion, while the effect on overall performance per 1 g of catalyst remained moderate. The precursor affected the performance of Co/SiO{sub 2} considerably. CO was more strongly adsorbed on catalysts of carbonyl origin than on those derived from cobalt nitrate, the activity thus being higher. Although the nitrate derived Co/SiO{sub 2} appeared both to retain its activity and to regain its adsorption capacity better than the catalysts of carbonyl origin, the performance of the latter was superior with time on stream. For tetranuclear cluster based Co-Ru and Co-Rh catalysts, rhodium or ruthenium was in contact with the support and cobalt was enriched on top. On Co-Ru/SiO{sub 2} ruthenium enhanced deactivation, and no benefits in activity or oxygenate selectivity were achieved relative to the monometallic catalysts of cluster origin. The Co-Rh/SiO{sub 2} catalysts were also less active than those derived from monometallic clusters, but they exhibited higher selectivities to oxygenated compounds due to the presence of active sites on the perimeter of the cobalt particles located on rhodium. The highest selectivity to oxygenates was achieved by changing the decomposition atmosphere of Rh{sub 4}(CO){sub 12}/SiO{sub 2} from hydrogen to carbon monoxide. The results also showed two types of active sites to be operative in the formation of oxygenates - one for ethanol and another for aldehydes. (orig.) 69 refs.

  1. Ordered mesoporous materials as model supports to study catalyst preparation

    NARCIS (Netherlands)

    Sietsma, J.R.A.

    2007-01-01

    Catalysts are indispensable to modern-day society because of their prominent role in petroleum refining, chemical processing, and the reduction of environmental pollution. The catalytically active component often consists of small metal (oxide) particles that are supported on a carrier such as silic

  2. STRONTIUM AS AN EFFICIENT PROMOTER FOR SUPPORTED PALLADIUM HYDROGENATION CATALYSTS

    Science.gov (United States)

    The effect of strontium promotion is studied for a series of supported palladium catalysts such as Pd/zeolite-β, Pd/Al2O3, Pd/SiO2, Pd/hydrotalcite and Pd/MgO. Strontium is found to be an effective promoter for enhancing the metal area, perce...

  3. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    Science.gov (United States)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  4. Propene Hydroformylation by Supported Aqueous-phase Rh-NORBOS Catalysts

    DEFF Research Database (Denmark)

    Riisager, Anders; Eriksen, Kim Michael; Hjortkjær, Jes

    2003-01-01

    (acac)(CO)(2) and NORBOS ligand. Catalytic performance of silica gel-based catalysts was examined by altering catalyst composition and reaction conditions. Results were compared to analogous TPPTS catalysts and to catalysts supported on alternative support materials, e.g. silica glass, alumina and carbon...

  5. Structural studies of supported tin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nava, Noel [Instituto Mexicano del Petroleo, Gerencia de Catalizadores (Mexico); Viveros, Tomas [Universidad Autonoma Metropolitana-Iztapalapa, Area de Ingenieria Quimica (Mexico)

    1999-11-15

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Moessbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO{sub 2} on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied.

  6. Metal Phosphate-Supported Pt Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Qian

    2014-12-01

    Full Text Available Oxides (such as SiO2, TiO2, ZrO2, Al2O3, Fe2O3, CeO2 have often been used to prepare supported Pt catalysts for CO oxidation and other reactions, whereas metal phosphate-supported Pt catalysts for CO oxidation were rarely reported. Metal phosphates are a family of metal salts with high thermal stability and acid-base properties. Hydroxyapatite (Ca10(PO46(OH2, denoted as Ca-P-O here also has rich hydroxyls. Here we report a series of metal phosphate-supported Pt (Pt/M-P-O, M = Mg, Al, Ca, Fe, Co, Zn, La catalysts for CO oxidation. Pt/Ca-P-O shows the highest activity. Relevant characterization was conducted using N2 adsorption-desorption, inductively coupled plasma (ICP atomic emission spectroscopy, X-ray diffraction (XRD, transmission electron microscopy (TEM, CO2 temperature-programmed desorption (CO2-TPD, X-ray photoelectron spectroscopy (XPS, and H2 temperature-programmed reduction (H2-TPR. This work furnishes a new catalyst system for CO oxidation and other possible reactions.

  7. Polyvinylpolypyrrolidone Supported Brønsted Acidic Catalyst for Esterification

    Directory of Open Access Journals (Sweden)

    Song Wang

    2016-01-01

    Full Text Available A polyvinylpolypyrrolidone (PVPP supported Brønsted acidic catalyst ([PVPP-BS]HSO4 was prepared by coupling SO3H-functionalized polyvinylpolypyrrolidone with H2SO4 in this work. After the characterization through FT-IR, FESEM, TG, BET, and elemental analysis, it was found that 1,4-butane sultone (BS and sulfuric acid reacted with PVPP and were immobilized on PVPP surface. The prepared [PVPP-BS]HSO4 catalyst shows high catalytic activity for a series of esterification reactions and could be separated from the reacted mixture easily. Moreover, this catalyst could be recycled and reused for six times without significant loss of catalytic performance.

  8. Graphitised Carbon Nanofibres as Catalyst Support for PEMFC

    DEFF Research Database (Denmark)

    Yli-Rantala, E.; Pasanen, A.; Kauranen, P.;

    2011-01-01

    Graphitised carbon nanofibres (G-CNFs) show superior thermal stability and corrosion resistance in PEM fuel cell environment over traditional carbon black (CB) and carbon nanotube catalyst supports. However, G-CNFs have an inert surface with only very limited amount of surface defects...... catalyst and the effects of the different surface treatments were discussed. On the basis of these results, new membrane electrode assemblies (MEAs) were manufactured and tested also for carbon corrosion by in situ FTIR analysis of the cathode exhaust gases. It was observed that the G-CNFs showed 5?times...... lower carbon corrosion compared to CB based catalyst when potential reached 1.5?V versus RHE in simulated start/stop cycling....

  9. SILICA-SUPPORTED NICKEL AND ZIRCONIUM CATALYSTS FOR BRANCHED POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Ning Zhu; Yong Cui; Zi-long Li; Yong Chen; Wen-Hua Sun

    2003-01-01

    8-Aminoquinoline nickel dichloride and bis(cyclopentadienyl)zirconium dichloride (Cp2ZrC12) were supported simultaneously on silica to produce branched polyethylene successfully by combined polymerization. The supported polymerization results showed that the molecular weight of polyethylene increased while the molecular weight distribution became wider and the molecular chains of oligomers remaining in the final solution became shorter as compared to the oligomers obtained in polymerization processes with pure 8-aminoquinoline nickel dichloride catalysis, as well as the Cp2ZrC12 and nickel combination system. With decreasing amount of Ni catalyst in the supported catalyst, the molecular chains of oligomers in the resulting solution became shorter, while a-olefin selectivity increased.

  10. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  11. Application of multiple graphene layers as catalyst support material in fuel cells

    OpenAIRE

    Saner, Burcu; YÜRÜM, YUDA; Yurum, Yuda

    2010-01-01

    The fuel cell electrode layer is a significant part of a fuel cell. The electrode layer is composed of the catalyst and porous electrode or gas diffusion layer. Catalyst has critical importance due to the influence on the cost and durability of fuel cells. The production of novel catalyst support materials could open up new ways in order to ensure the catalytic activity by lowering the amount of catalyst loaded [1]. At this point, utilization of multiple graphene layers as catalyst support...

  12. Coarse-pored ceramic supports for pyrolysis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Potapova, L.L.; Cherches, B.Kh.; Egiazarov, Yu.G.

    1988-03-20

    One promising trend in improvement of pyrolysis of hydrocarbon feedstocks is the use of heterogeneous catalysts in the process. The industrial use of highly effective catalysts would result in substantially increased product yields and in decrease of energy consumption in comparison with the requirements of drastic thermal processes. The aims of the present work were to obtain a mechanically strong coarse-pored ceramic support for pyrolysis catalysts and to study the influence of various factors on formation of its structure. The support material was made from an industrial ceramic mass of the following composition (%): koalin 30, plastic refractory clay 21, quartz 32, pegmatite 17. Various additives were used for formation of a porous structure: noncombustible highly porous (pumice, claydite), partially combustible (shungite), and completely combustible (SKT) activated carbon). The authors results show that 15 mass % of SKT carbon (particle size 0.1-0.2 mm) and 1-2 mass % of sodium trimetaphosphate should be added to the ceramic mass. The crushing strength of the resultant support samples reaches 550-630 kg/cm/sup 2/, with 34-35% porosity. Under the optimal conditions of pyrolysis of a straight-run gasoline fraction the catalyst obtained by deposition of 12 mass % of In/sub 2/O/sub 3/ and 4% K/sub 2/O on the synthesized support gives a yield of 39-41 mass % of ethylene and 61-62 mass % of unsaturated C/sub 2/-C/sub 4/ hydrocarbons, with 88-90 mass % gasification.

  13. Fundamental studies of hydrogen interaction with supported meta and bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, S.

    1993-12-07

    The thesis is divided into 3 parts: interaction of H with silica supported Ru catalysts (high pressure in situ NMR), in situ NMR study of H interaction with supported Ru-group IB bimetallic catalysts, and in-situ NMR study of H effects on silica-supported Pt, Rh and Ru catalysts.

  14. Support Functionalization To Retard Ostwald Ripening in Copper Methanol Synthesis Catalysts

    NARCIS (Netherlands)

    van den Berg, Roy|info:eu-repo/dai/nl/358212049; Parmentier, Tanja E.; Elkjaer, Christian F.; Gommes, Cedric J.; Sehested, Jens; Helveg, Stig; de Jongh, Petra E.|info:eu-repo/dai/nl/186125372; de Jong, Krijn P.|info:eu-repo/dai/nl/06885580X

    2015-01-01

    A main reason for catalyst deactivation in supported catalysts for methanol synthesis is copper particle growth. We have functionalized the support surface in order to suppress the formation and/or transport of mobile copper species and thereby catalyst deactivation. A Stober silica support was func

  15. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts.

    Science.gov (United States)

    Matsubu, John C; Zhang, Shuyi; DeRita, Leo; Marinkovic, Nebojsa S; Chen, Jingguang G; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-02-01

    The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal-support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCOx) on reducible oxide supports (TiO2 and Nb2O5) that induce oxygen-vacancy formation in the support and cause HCOx-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO2-reduction selectivity.

  16. One-pot synthesis of network supported catalyst using supramolecular gel as template

    Institute of Scientific and Technical Information of China (English)

    Yong Liang; Li Ming Tang; Yu Xia; Kai Chen; Bo Tian Li; Xin Jin

    2010-01-01

    A simple and general strategy is described for preparing network supported catalyst through a one-pot synthetic procedure using supramolecular gel as template. This procedure directly attaches iigand to support during fabricating the support. Using this strategy, supported CuBr/di-(2-picolyl)amine catalyst with U-shaped fibrillar network was prepared and used in atom transfer radical polymerization of methyl methacrylate. XPS and SEM characterization of the catalyst revealed homogeneous distribution of ligand, sufficient reactive sites, adequate mechanical strength and macroporosity. The polymerization results demonstrated high activity and reusability of such catalyst. This strategy might be extended to other supported catalysts used in column reactors.

  17. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    Science.gov (United States)

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

  18. POLYMER-SUPPORTED RARE EARTH CATALYSTS FOR STYRENE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian; YANG Mujie; ZHENG Yi; SHEN Zhiquan

    1991-01-01

    The neodymium complex supported on styrene-maleic anhydride copolymer (SMA·Nd) has been prepared for the first time and found to be a highly effective catalyst for the polymerization of styrene. The SMA · Nd polymeric complex is characterized by IR and its catalytic activity, and the polymerization features have been investigated in comparison with that of the conventional Ziegler-Natta catalysts. When [Nd] = 1×10-3 mol/L, [M]=5 mol/L, Al/Nd = 170 (mol ratio ) and CCl4/Nd=50(mol ratio), the polymerization conversion of styrene gets to 51.6% in six hours, and the catalytic activity reaches 1852 gPS/gNd, which is much higher than that of conventional rare earth catalysts. The polymerization reaction has an induction period and shows some characteristics of chain polymerization. The polymerization rate is the first order with respect to the concentration of styrene monomer. Addition of FeCl3 does not suppress the polymerization.

  19. Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials

    KAUST Repository

    Yates, Matthew D.

    2014-07-30

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Sustainably biotemplated palladium catalysts generated on different carbon-based support materials are examined for durability under electrochemical (oxidative) and mechanical-stress conditions. Biotemplated catalysts on carbon paper under both stresses retain 95% (at 0.6V) of the initial catalytic activity as opposed to 70% for carbon cloth and 60% for graphite. Graphite electrodes retain 95% of initial catalytic activity under a single stress. Using electrodeposited polyaniline (PANI) and polydimethylsiloxane binder increases the current density after the stress tests by 22%, as opposed to a 30% decrease for Nafion. PANI-coated electrodes retain more activity than carbon-paper electrodes under elevated mechanical (94 versus 70%) or increased oxidative (175 versus 62%) stress. Biotemplated catalytic electrodes may be useful alternatives to synthetically produce catalysts for some electrochemical applications. Sustainable electrode fabrication: The biotemplated synthesis of catalytic porous electrodes is a sustainable process and, according to the results of durability tests under electrochemical and mechanical stress, these electrodes (e.g. the Pd/carbon paper electrode shown in the picture) are durable enough to replace catalytic electrodes based on synthetic materials in certain applications.

  20. Synthesis and Characterization of Cluster-Derived Supported Bimetallic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Richard D; Amiridis, Michael D

    2008-10-10

    New procedures have been developed for synthesizing di- and tri-metallic cluster complexes. The chemical properties of the new complexes have been investigated, particularly toward the activation of molecular hydrogen. These complexes were then converted into bi- and tri-metallic nanoparticles on silica and alumina supports. These nanoparticles were characterized by electron microscopy and were then tested for their ability to produce catalytic hydrogenation of unsaturated hydrocarbons and for the preferential oxidation of CO in the presence of hydrogen. The bi- and tri-metallic nanoparticles exhibited far superior activity and selectivity as hydrogenation catalysts when compared to the individual metallic components. It was found that the addition of tin greatly improved the selectivity of the catalysts for the hydrogenation of polyolefins. The addition of iron improves the catalysts for the selective oxidation of CO by platinum in the presence of hydrogen. The observations should lead to the development of lower cost routes to molecules that can be used to produce polymers and plastics for use by the general public and for procedures to purify hydrogen for use as an alternative energy in the hydrogen economy of the future.

  1. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  2. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    Energy Technology Data Exchange (ETDEWEB)

    Stanger, Keith James [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-α-acetamidocinnamate (MAC), has the illustrated structure as established by 31P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]4, [Rh(COD)2]+BF4-, [Rh(COD)Cl]2, and RhCl3• 3H2O, adsorbed on SiO2 are optimally activated for toluene hydrogenation by pretreatment with H2 at 200 C. The same complexes on Pd-SiO2 are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH2)3s-]Re(O)(Me)(PPh3) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  3. Sustainable catalyst supports for carbon dioxide gas adsorbent

    Science.gov (United States)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  4. Graphyne-supported single Fe atom catalysts for CO oxidation.

    Science.gov (United States)

    Wu, Ping; Du, Pan; Zhang, Hui; Cai, Chenxin

    2015-01-14

    Single atom catalysts (SACs) are highly desirable for the effort to maximize the efficiency of metal atom use. However, the synthesis of SACs is a major challenge that largely depends on finding an appropriate supporting substrate to achieve a well-defined and highly dispersed single atom. This work demonstrates that, based on the density functional theory (DFT) calculation, graphyne is a good substrate for single Fe atom catalysts. The Fe atom can be tightly embedded in a graphyne sheet with a high binding energy of ∼4.99 eV and a high diffusion energy barrier of ∼1.0 eV. The graphyne-supported Fe (Fe-graphyne) SAC shows high catalytic activity towards CO oxidation, which is often regarded as a prototype reaction for designing atomic-scale catalysts. We studied the adsorption characteristics of CO and O2 on Fe-graphyne SACs, and simulated the reaction mechanism of CO oxidation involving Fe-graphyne. The simulation results indicate that O2 binding on Fe-graphyne is much stronger than that of CO, and the adsorbed O2 prior to occupy the Fe atoms as the co-existence of O2 and CO. The reaction of CO oxidation by adsorbed O2 on Fe-graphyne SACs favors to proceed via the Eley-Rideal (ER) mechanism with the energy barrier of as low as ∼0.21 eV in the rate-limiting step. Calculation of the electronic density of states (DOS) of each reaction step demonstrates that the strong interaction of the O2 and Fe adatom promotes the CO oxidation on Fe-graphyne SACs. The results presented here suggest that graphyne could provide a unique platform to synthesize SACs, and the Fe-graphyne SACs could find potential use in solving the growing environmental problems caused by CO emission from automobiles and industrial processes, in removing CO contamination from vehicle exhaust and in fuel cells.

  5. Polystyrene-supported chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for Knoevenagel condensation

    Institute of Scientific and Technical Information of China (English)

    Kaveh Parvanak Boroujeni; Mina Jafarinasab

    2012-01-01

    Non-hygroscopic polystyrene-supported chloroaluminate ionic liquid was prepared from the reaction of Merrifield resin with 1-methylimidazole followed by reaction with aluminum chloride.This Lewis acidic ionic liquid is environmentally friendly heterogeneous catalyst for the Knoevenagel condensation of aromatic and aliphatic aldehydes with ethyl cyanoacetate.The catalyst is stable (as a bench top catalyst) and reusable.

  6. Nanoparticle growth in supported nickel catalysts during methanation reaction - Larger is better

    NARCIS (Netherlands)

    Munnik, Peter; Velthoen, Marjolein E Z; De Jongh, Petra E.; De Jong, Krijn P.; Gommes, Cedric J.

    2014-01-01

    A major cause of supported metal catalyst deactivation is particle growth by Ostwald ripening. Nickel catalysts, used in the methanation reaction, may suffer greatly from this through the formation of [Ni(CO)4]. By analyzing catalysts with various particle sizes and spatial distributions, the interp

  7. Selective oxidation of propylene to acrolein by silica-supported bismuth molybdate catalysts

    DEFF Research Database (Denmark)

    Duc, Duc Truong; Ha, Hanh Nguyen; Fehrmann, Rasmus

    2011-01-01

    Silica-supported bismuth molybdate catalysts have been prepared by impregnation, structurally characterized and examined as improved catalysts for the selective oxidation of propylene to acrolein. Catalysts with a wide range of loadings (from 10 to 90 wt%) of beta bismuth molybdate (β-Bi2Mo2O9...

  8. Catalytic Hydrotreatment of Alcell Lignin Using Supported Ru, Pd, and Cu Catalysts

    NARCIS (Netherlands)

    Kloekhorst, Arjan; Heeres, Hero

    2015-01-01

    A catalyst screening study on the catalytic hydrotreatment of Alcell lignin in a batch setup was performed using supported Ru (C, Al2O3,TiO2), Pd (C, Al2O3), and a Cu/ZrO2 catalyst with the objective to determine the best catalyst for high yields of biobased aromatics and alkylphenolics. Experiments

  9. SELECTIVE HYDROGENATION OF CINNAMALDEHYDE WITH Pt AND Pt-Fe CATALYSTS: EFFECTS OF THE SUPPORT

    Directory of Open Access Journals (Sweden)

    A.B. da Silva

    1998-06-01

    Full Text Available Low-temperature reduced TiO2-supported Pt and Pt-Fe catalysts are much more active and selective for the liquid–phase hydrogenation of cinnamaldehyde to unsaturated cinnamyl alcohol than the corresponding carbon-supported catalysts. High-temperature reduced catalysts, where the SMSI effect should be present, are almost inactive for this reaction. There is at present no definitive explanation for this effect but an electronic metal-support interaction is most probably involved.

  10. Oxidative Esterification of Methacrolein to Methyl Methacrylate over Supported Palladium Catalyst

    Institute of Scientific and Technical Information of China (English)

    Wei ZHAO; Wei Guo CHENG; Zeng Xi LI; Lei WANG; Xiang Ping ZHANG; Suo Jiang ZHANG

    2006-01-01

    Supported palladium catalysts, which were used in the oxidative esterification of methacrolein to methyl methacrylate, have been prepared with different carriers and Pd precursors.Experimental results revealed that Pd catalysts with γ-Al2O3 support and Na2PdCl4 precursor showed good performance. Pd catalyst modified with Pb and Mg indicated that Pd-Mg bimetallic catalyst exhibited considerably higher activity and Pd-Pb exhibited both higher activity and selectivity. 92.27% methacrolein conversion and 90.57% methyl methacrylate selectivity were obtained on Pd-Pb-Mg catalyst.

  11. POLYMER-SUPPORTED LEWIS ACID CATALYSTS. VI. POLYSTYRENE-BONDED STANNIC CHLORIDE CATALYST

    Institute of Scientific and Technical Information of China (English)

    RAN Ruicheng; FU Diankui

    1991-01-01

    A polystyrene-bonded stannic chloride catalyst was synthesized by the method of lithium polystyryl combined with stannic chloride. This catalyst is a polymeric organometallic compound containing 0.25 mmol Sn(IV)/g catalyst. The catalyst showed sufficient stability and catalytic activity in organic reaction such as esterification, acetalation and ketal formation, and it could be reused many times without losing its catalytic activity.

  12. STUDY ON 1-HEXENE POLYMERIZATION BASED ON ZIEGLER-NATTA CATALYSTS WITH DOPED SUPPORT

    Institute of Scientific and Technical Information of China (English)

    Xue Jiang; Zhi-qiang Fan

    2004-01-01

    A series of Ti/Mg supported catalysts are prepared by using ball-milled mixtures of MgCl2-ethanol adducts and NaCl as supports, and 1-hexene polymerizations catalyzed by the novel catalysts are studied. It is found that the molecular weight distribution of poly(1-hexene) becomes apparently narrower when catalysts with doped supports are used, indicating that changing the structure of the support is an effective way to regulate the active center distribution of heterogeneous Ziegler-Natta catalyst.

  13. Novel Carbon Nanotubes-supported NiB Amorphors Alloy Catalyst for Benzene Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Mei Hua YANG; Rong Bin ZHANG; Feng Yi LI

    2004-01-01

    The NiB amorphous alloy catalysts supported on CNTs and alumina were prepared by impregnation and chemical reduction. The gas-phase benzene hydrogenation was used as a probe reaction to evaluate the catalytic activity. The result showed that the NiB amorphous alloy catalyst supported on carbon nanotubes exhibited higher activity than that supported on alumina.

  14. Metallocene supported core@LDH catalysts for slurry phase ethylene polymerisation.

    Science.gov (United States)

    Buffet, Jean-Charles; Byles, Coral F H; Felton, Ryan; Chen, Chunping; O'Hare, Dermot

    2016-03-14

    We report the synthesis of solid catalysts based on a zirconocene supported on either silica@AMO-LDH or zeolite@AMO-LDH for the slurry phase polymerisation of ethylene. The hybrid catalysts demonstrate synergistic effects in which the polymerisation activity is up to three times higher than the zirconocene supported on analogous single phase silica or zeolite supports.

  15. The Effect of Catalyst Support on the Decomposition of Methane to Hydrogen and Carbon

    Directory of Open Access Journals (Sweden)

    Sharif Hussein Sharif Zein Abdul Rahman Mohamed

    2012-10-01

    Full Text Available Decomposition of methane into carbon and hydrogen over Cu/Ni supported catalysts was investigated. The catalytic activities and the lifetimes of the catalysts were studied. Cu/Ni supported on TiO2 showed high activity and long lifetime for the reaction. Transmission electron microscopy (TEM studies revealed the relationship between the catalyst activity and the formation of the filamentous carbon over the catalyst after methane decomposition. While different types of filamentous carbon formed on the various Cu/Ni supported catalysts, an attractive carbon nanotubes was observed in the Cu/Ni supported on TiO2. Key Words:  Methane decomposition, carbon nanotube, Cu/Ni supported catalysts.

  16. Supported quantum clusters of silver as enhanced catalysts for reduction

    Directory of Open Access Journals (Sweden)

    Leelavathi Annamalai

    2011-01-01

    Full Text Available Abstract Quantum clusters (QCs of silver such as Ag7(H2MSA7, Ag8(H2MSA8 (H2MSA, mercaptosuccinic acid were synthesized by the interfacial etching of Ag nanoparticle precursors and were loaded on metal oxide supports to prepare active catalysts. The supported clusters were characterized using high resolution transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and laser desorption ionization mass spectrometry. We used the conversion of nitro group to amino group as a model reaction to study the catalytic reduction activity of the QCs. Various aromatic nitro compounds, namely, 3-nitrophenol (3-np, 4-nitrophenol (4-np, 3-nitroaniline (3-na, and 4-nitroaniline (4-na were used as substrates. Products were confirmed using UV-visible spectroscopy and electrospray ionization mass spectrometry. The supported QCs remained active and were reused several times after separation. The rate constant suggested that the reaction followed pseudo-first-order kinetics. The turn-over frequency was 1.87 s-1 per cluster for the reduction of 4-np at 35°C. Among the substrates investigated, the kinetics followed the order, SiO2 > TiO2 > Fe2O3 > Al2O3.

  17. Ti-Si composite oxide-supported cobalt catalysts for CO2 hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Jakrapan Janlamool; Piyasan Praserthdam; Bunjerd Jongsomjit

    2011-01-01

    In the present work,different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation.Different supports,such as SSP,MCM-41,TiSSP and TiMCM were used to prepare Co catalysts with 20 wt% Co loading.The supports and catalysts were characterized by means of N2 physisorption,XRD,SEM/EDX,XPS,TPR and CO chemisorption.It is found that after calcination of catalysts,Ti is present in the form of anatase.The introduction of Ti plays important roles in the properties of Co catalysts by.(i) facilitating the reduction of Co oxides species which are strongly interacted with support,(ii) preventing the formation of silicate compounds,and (iii) inhibiting the RWGS reaction.Based on CO2 hydrogenation,the CoTiMCM catalyst exhibites the highest activity and stability.

  18. Parahydrogen Induced Polarization Reactions on Supported Metal Nanoparticle Catalysts

    Science.gov (United States)

    Bowers, Clifford; Zhou, Ronghui; Cheng, Wei; Neal, Luke; Hagelin-Weaver, Helena

    2014-03-01

    ALTADENA type parahydrogen induced polarization (PHIP) signals were acquired using various oxide (e.g. Al2O3, TiO2) supported Pt and Ir nanoparticle catalysts in the hydrogenation of small alkenes. The hydrogenation reactions were performed using a home-built mini-reactor installed on top of a 9.4 Tesla superconducting NMR magnet. Precise control of the gas mixture (i.e. alkene, para-H2 and carrier gas) was achieved using mass flow controllers. Hyperpolarized adducts were delivered down the magnet bore from the reactor to the NMR probe for NMR detection. For certain substrates, long-lived hyperpolarized states were generated and detected. The PHIP signal enhancement and pairwise H2 addition selectivity was measured as a function of the reactant partial pressures and reaction temperature. Activation energies and reaction kinetics were obtained for both pairwise and random addition. The reaction conditions and metal nanoparticle characteristics favoring pairwise selectivity were thus identified. This project is supported by the ACS-PRF #52258-ND5.

  19. The role of support and promoter on the oxidation of sulfur dioxide using platinum based catalysts

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Rasmussen, Søren Birk; Eriksen, Kim Michael

    2006-01-01

    The catalytic oxidation of SO2 to SO3 was studied over platinum based catalysts in the absence and the presence of dopants. The active metal was supported on silica gel or titania (anatase) by impregnation. The activities of the silica supported catalysts were found to follow the order PtRh/SiO2...

  20. Glycerol valorization: dehydration to acrolein over silica-supported niobia catalysts

    NARCIS (Netherlands)

    Shiju, N.R.; Brown, D.R.; Wilson, K.; Rothenberg, G.

    2010-01-01

    The catalytic dehydration of glycerol to acrolein is investigated over silica-supported niobia catalysts in a continuous fixed-bed gas-phase reactor. Various supported niobia catalysts are prepared and characterized using surface analysis and spectroscopic methods (XRD, UV-Vis, XPS, N2 adsorption),

  1. Nafion-Teflon bimembrane-supported palladium catalysts for Suzuki coupling reactions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nafion-Teflon bimembrane was used as an efficient support for the preparation and application of heterogeneous palladium catalysts. The supported palladium catalysts exhibit high activity and stability in the Suzuki cross-coupling of aryl bromides with arylboronic acids to afford the corresponding biaryls in good to excellent yields, and can be readily recovered and reused several times without significant loss of activity.

  2. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  3. Propene metathesis over silica-supported tungsten oxide catalyst-catalyst induction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Basrur, A.G.; Patwardhan, S.R.; Vyas, S.N. (Indian Inst. of Tech., Bombay (India))

    1991-01-01

    The propene metathesis reaction was studied from the point of view of elucidating the mechanism of catalyst induction and establishing conditions for maximum activity. Instrumental techniques such as ESR, IR, and TPD were used to study the various aspects. During catalyst induction, trace quantities of acetone and acetaldehyde were detected in the product stream, indicating that lattice oxygen from tungsten oxide might be responsible for these products. Induction appeared to proceed via two steps since pretreatment of the catalyst with nitrogen and hydrogen yielded a decreased amount of acetone in the latter case whereas acetaldehyde remained unaffected. ESR studies indicated some interaction between tungsten oxide and silica at the catalyst preparatory stage as well as stabilization of reduced tungsten species on the catalyst after its use and regeneration. Catalyst activity appeared to depend on conditions of pretreatment. Change in nitrogen pretreatment temperature from 500 to 600{sup o}C resulted in transition from strong to negligible external mass transfer behavior of the catalyst. TPD studies in this context showed possible loss of lattice oxygen from tungsten oxide under the above-mentioned conditions of catalyst pretreatment. ESR studies indicated the reduction of WO{sub 3} to a nonstoichiometric oxidation state. Hence catalytic activity appears to be related to the nonstoichiometric state of tungsten oxide, which may be WO{sub 2.9} (as deduced from the blue-violet color of the used catalyst).

  4. Hydrodechlorination of Tetrachloromethane over Palladium Catalysts Supported on Mixed MgF₂-MgO Carriers.

    Science.gov (United States)

    Bonarowska, Magdalena; Wojciechowska, Maria; Zieliński, Maciej; Kiderys, Angelika; Zieliński, Michał; Winiarek, Piotr; Karpiński, Zbigniew

    2016-11-25

    Pd/MgO, Pd/MgF₂ and Pd/MgO-MgF₂ catalysts were investigated in the reaction of CCl₄ hydrodechlorination. All the catalysts deactivated in time on stream, but the degree of deactivation varied from catalyst to catalyst. The MgF₂-supported palladium with relatively large metal particles appeared the best catalyst, characterized by good activity and selectivity to C₂-C₅ hydrocarbons. Investigation of post-reaction catalyst samples allowed to find several details associated with the working state of hydrodechlorination catalysts. The role of support acidity was quite complex. On the one hand, a definite, although not very high Lewis acidity of MgF₂ is beneficial for shaping high activity of palladium catalysts. The MgO-MgF₂ support characterized by stronger Lewis acidity than MgF₂ contributes to very good catalytic activity for a relatively long reaction period (~5 h) but subsequent neutralization of stronger acid centers (by coking) eliminates them from the catalyst. On the other hand, the role of acidity evolution, which takes place when basic supports (like MgO) are chlorided during HdCl reactions, is difficult to assess because different events associated with distribution of chlorided support species, leading to partial or even full blocking of the surface of palladium, which plays the role of active component in HdCl reactions.

  5. PROPERTIES OF POLYMER SUPPORTED Ni-Cu BIMETALLIC CATALYSTS PREPARED BY SOLVATED METAL ATOM IMPREGNATION

    Institute of Scientific and Technical Information of China (English)

    WU Shihua; ZHU Changying; HUANG Wenqiang

    1996-01-01

    D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.

  6. CARBON NANOTUBES VIA METHANE DECOMPOSITION ON AN ALUMINA SUPPORTED COBALT AEROGEL CATALYST

    Institute of Scientific and Technical Information of China (English)

    Lingyu Piao; Jiuling Chen; Yongdan Li

    2003-01-01

    An alumina-supported cobalt aerogel catalyst prepared from a sol-gel and a supercritical drying method was used in the catalytic decomposition of methane. The physical-chemical properties of the catalyst were characterized and its activity for methane decomposition was investigated. The effects of calcination and reaction temperatures on the activity of the catalyst and the morphology of the carbon nanotubes produced were discussed. A CoAl2O4 spinel structure formed in the calcined catalyst. The quantity of the nanotubes produced in the reaction increases with the amount of cobalt in the reduced catalyst. A higher reaction temperature leads to a higher reaction rate, though faster deactivation of the catalyst occurs with the change. The carbon nanotubes grown on the catalyst have smooth walls and uniform diameter distribution.

  7. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.

    Science.gov (United States)

    Madhavan, Nandita; Jones, Christopher W; Weck, Marcus

    2008-09-01

    Supported catalysis is emerging as a cornerstone of transition metal catalysis, as environmental awareness necessitates "green" methodologies and transition metal resources become scarcer and more expensive. Although these supported systems are quite useful, especially in their capacity for transition metal catalyst recycling and recovery, higher activity and selectivity have been elusive compared with nonsupported catalysts. This Account describes recent developments in polymer-supported metal-salen complexes, which often surpass nonsupported analogues in catalytic activity and selectivity, demonstrating the effectiveness of a systematic, logical approach to designing supported catalysts from a detailed understanding of the catalytic reaction mechanism. Over the past few decades, a large number of transition metal complex catalysts have been supported on a variety of materials ranging from polymers to mesoporous silica. In particular, soluble polymer supports are advantageous because of the development of controlled and living polymerization methods that are tolerant to a wide variety of functional groups, including controlled radical polymerizations and ring-opening metathesis polymerization. These methods allow for tuning the density and structure of the catalyst sites along the polymer chain, thereby enabling the development of structure-property relationships between a catalyst and its polymer support. The fine-tuning of the catalyst-support interface, in combination with a detailed understanding of catalytic reaction mechanisms, not only permits the generation of reusable and recyclable polymer-supported catalysts but also facilitates the design and realization of supported catalysts that are significantly more active and selective than their nonsupported counterparts. These superior supported catalysts are accessible through the optimization of four basic variables in their design: (i) polymer backbone rigidity, (ii) the nature of the linker, (iii) catalyst

  8. Methane Dry Reforming over Alumina Supported Co Catalysts

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-wei; XIAO Tian-cun; Sergio L. González Cortés; Malcolm L. H. Green

    2004-01-01

    A series of Co/γ-Al2O3 catalysts were prepared with the impregnation method and characterized by means of the BET specific surface area, X-ray diffraction(XRD), thermogravimetric analysis (TGA) and Laser Raman spectroscopy. The Co/γ-A12O3 catalysts were activated by using H2, 20%CH4/H2 or CH4, respectively. There was no obvious difference between the activities of the Co/γ-Al2O3 catalyst activated by using the different activation methods for methane dry reforming. The catalytic properties of the Co/γ-Al2O3catalysts with different Co loadings were also investigated. The optimized Co loading for the Co/γ-Al2O3 catalyst pretreated with 20% CH4/H2 is around 12% (mass fraction).

  9. High surface area graphite as alternative support for proton exchange membrane fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira-Aparicio, P.; Folgado, M.A. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, E-28040 Madrid (Spain); Daza, L. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, E-28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie, 2 Campus de Cantoblanco, E-28049 Madrid (Spain)

    2009-07-01

    The suitability of a high surface area graphite (HSAG) as proton exchange membrane fuel cell (PEMFC) catalyst support has been evaluated and compared with that of the most popular carbon black: the Vulcan XC72. It has been observed that Pt is arranged on the graphite surface resulting in different structures which depend on the catalysts synthesis conditions. The influence that the metal particle size and the metal-support interaction exert on the catalysts degradation rate is analyzed. Temperature programmed oxidation (TPO) under oxygen containing streams has been shown to be a useful method to assess the resistance of PEMFC catalysts to carbon corrosion. The synthesized Pt/HSAG catalysts have been evaluated in single cell tests in the cathode catalytic layer. The obtained results show that HSAG can be a promising alternative to the traditionally used Vulcan XC72 carbon black when suitable catalysts synthesis conditions are used. (author)

  10. Hydrogenation of ortho-nitrochlorobenzene on activated carbon supported platinum catalysts

    Institute of Scientific and Technical Information of China (English)

    JIANG Cheng-jun; YIN Hong; CHEN Zhi-rong

    2005-01-01

    Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2'-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this paper. Raw materials and preparation procedure of the activated carbon have great influences on the compositions and surface structure of platinum/carbon catalysts. Platinum catalysts supported on activated carbon with high purity, high surface area, large pore volume and appropriate pore structure usually exhibit higher activities for hydrogenation of ortho-nitrochlorobenzene to 2,2'-dichlorohydrazobenzene.The catalyst prepared from H2PtCl6 with pH=3 shows greater catalytic performance than those prepared under other conditions.

  11. Effects of Cu over Pd based catalysts supported on silica or niobia

    Directory of Open Access Journals (Sweden)

    Roma M.N.S.C.

    2000-01-01

    Full Text Available Palladium and palladium-copper catalysts supported on silica and niobia were characterized by H2 chemisorption and H2-O2 titration. Systems over silica were also analyzed by transmission electron microscopy and EXAFS. The metallic dispersion decreased from 20% to 7% when the content of Pd was increased from 0.5wt.-% to 3wt.-% in monometallic catalysts. The addition of 3 wt.-% Cu to obtain Pd-Cu catalysts caused a remarkable capacity loss of hydrogen chemisorption. TPR analysis suggested an interaction between the two metals and EXAFS characterization of the catalyst supported on silica confirmed the formation of Pd-Cu alloy. Pd/Nb2O5 catalysts showed turnover numbers higher than those obtained with the Pd/SiO2 systems in the cyclohexane dehydrogenation. However, the bimetallic catalysts showed very low turnover numbers.

  12. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  13. Mesoporous zeolite SBA-15 supported nickel diimine catalysts for ethylene polymerization

    Institute of Scientific and Technical Information of China (English)

    GUO Chao; ZHANG Dao; JIN Guoxin

    2004-01-01

    The novel mesoporous zeolite SBA-15 is successfully used as the support to immobilize late-transition metal nickel diimine catalyst, both in physical and chemical methods, EA, ICP, FT-IR and XRD are applied to characterizing these supported catalysts. The results of ethylene polymerization reveal that these supported catalysts have high catalytic activity as their homogenous counterpart does, moreover, polyethylene with a fibrous morphology is produced due to the channel effect of support, and both the molecular weight and molecular weight distributions of polymers are increased greatly.

  14. Effects of carrier and Mn loading on supported manganese oxide catalysts for catalytic combustion of methane

    Institute of Scientific and Technical Information of China (English)

    Jinyan Hu; Wei Chu; Limin Shi

    2008-01-01

    Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane cat-alytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These catalysts were characterized with N2 adsorption, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Methane conversion varied in a large range depending on supports or Mn loading. Al2O3 supported 15% Mn cata-lyst exhibited better activity toward methane catalytic oxidation. The manganese state and oxygen species played an important role in the catalytic performance.

  15. {sup 57}Fe Moessbauer Studies in Mo-Fe Supported Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Castelao-Dias, M. [University of Coimbra, Department of Chemical Engineering (Portugal); Costa, B. F. O. [University of Coimbra, Department of Physics (Portugal); Quinta-Ferreira, R. M. [University of Coimbra, Department of Chemical Engineering (Portugal)

    2001-09-15

    Industrially, the Mo-Fe catalysts used in the selective oxidation of methanol to formaldehyde can rapidly deactivate. The use of support materials may reduce the high temperatures in the catalytic bed and/or increase thermal and mechanical resistance. However, during the preparation of these catalysts, or even during reaction conditions, the active species may react with the support material losing their catalytic activity. In this work silica, silicium carbide and titania were studied as supported catalysts by Moessbauer spectroscopy which proved to be a useful technique in the choice of supported materials.

  16. 57Fe Mössbauer Studies in Mo Fe Supported Catalysts

    Science.gov (United States)

    Castelão-Dias, M.; Costa, B. F. O.; Quinta-Ferreira, R. M.

    2001-09-01

    Industrially, the Mo Fe catalysts used in the selective oxidation of methanol to formaldehyde can rapidly deactivate. The use of support materials may reduce the high temperatures in the catalytic bed and/or increase thermal and mechanical resistance. However, during the preparation of these catalysts, or even during reaction conditions, the active species may react with the support material losing their catalytic activity. In this work silica, silicium carbide and titania were studied as supported catalysts by Mössbauer spectroscopy which proved to be a useful technique in the choice of supported materials.

  17. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  18. Silica supported Brӧnsted acids as catalyst in organic transformations:A comprehensive review

    Institute of Scientific and Technical Information of China (English)

    Manpreet Kaur; Sahil Sharma; Preet M. S. Bedi

    2015-01-01

    Brӧnsted acid catalysts have been used in a number of organic transformations. To overcome limi‐tations, such as toxicity, volatility, high price and hazardous nature of the conventional methods, the catalysts are adsorbed on silica gel to give the benefits and advantages of ready availability, simple work‐up procedure, long catalytic life, environment‐friendliness, good to excellent yields and recy‐clability. The uses of such catalysts have gained importance worldwide. This article describes some of the important silicated catalysts, namely, heteropolyacids, polyphosphoric acid, perchloric acid, fluoroboric acid, and silicated sulphuric acid. These catalysts have been used in a number of organic reactions to yield compounds that are important in the chemical and pharmaceutical industries. We summarize the beneficial effects of these catalysts and the reports that have been published on them in the past several years. In the present review, the description of the catalysts are introduced followed by a recent research history, and a comparison between the silica supported catalysts and other (polymer) supported catalysts. The article ends up giving the advantages of these catalytic systems over the conventional catalyst.

  19. Various conformations of carbon nanocoils prepared by supported Ni-Fe/molecular sieve catalyst.

    Science.gov (United States)

    Yang, Shaoming; Chen, Xiuqin; Takeuchi, K; Motojima, Seiji

    2006-01-01

    The carbon nanocoils with various kinds of conformations were prepared by the catalytic pyrolysis of acetylene using the Ni metal catalyst supported on molecular Sieves which was prepared using Fe-containing kaolin as the raw material. There are four kinds of carbon nanocoils conformations produced by this catalyst. The influences of reaction temperature and gas conditions on the conformations of the nanocoils were investigated and the reasons of forming nano-size coils were discussed by comparison with pure Ni metal catalyst.

  20. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    Science.gov (United States)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  1. Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus

    1997-01-01

    Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de......NOx'ed flue gas. The vanadium (IV) compound K4(VO)3(SO4)5 precipitated during all the investigated conditions hence causing catalyst deactivation. Hysteresis behavior of both the catalytic activity and the V(IV) content was observed during reheating....

  2. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle

    2005-12-31

    A series of cobalt oxide catalysts supported on alumina ({gamma}-Al{sub 2}O{sub 3}) were synthesized with varying contents of cobalt and of added alkali metals, including lithium, sodium, potassium, rubidium, and cesium. Unsupported cobalt oxide catalysts and several cobalt oxide catalysts supported ceria (CeO{sub 2}) with varying contents of cobalt with added potassium were also prepared. The catalysts were characterized with UV-visible spectroscopy and were examined for NO{sub x} decomposition activity. The CoO{sub x}/Al{sub 2}O{sub 3} catalysts and particularly the CoO{sub x}/CeO{sub 2} catalysts show N{sub 2}O decomposition activity, but none of the catalysts (unsupported Co{sub 3}O{sub 4} or those supported on ceria or alumina) displayed significant, sustained NO decomposition activity. For the Al{sub 2}O{sub 3}-supported catalysts, N{sub 2}O decomposition activity was observed over a range of reaction temperatures beginning about 723 K, but significant (>50%) conversions of N{sub 2}O were observed only for reaction temperatures >900 K, which are too high for practical commercial use. However, the CeO{sub 2}-supported catalysts display N{sub 2}O decomposition rates similar to the Al{sub 2}O{sub 3}-supported catalysts at much lower reaction temperatures, with activity beginning at {approx}573 K. Conversions of >90% were achieved at 773 K for the best catalysts. Catalytic rates per cobalt atom increased with decreasing cobalt content, which corresponds to increasing edge energies obtained from the UV-visible spectra. The decrease in edge energies suggests that the size and dimensionality of the cobalt oxide surface domains increase with increasing cobalt oxide content. The rate data normalized per mass of catalyst that shows the activity of the CeO{sub 2}-supported catalysts increases with increasing cobalt oxide content. The combination of these data suggest that supported cobalt oxide species similar to bulk Co{sub 3}O{sub 4} are inherently more active than

  3. FT-IR Study of Carbon Nanotube Supported Co-Mo Catalysts

    Institute of Scientific and Technical Information of China (English)

    Hongyan Shang; Chenguang Liu1; Fei Wei

    2004-01-01

    In this paper, adsorption properties of dibenzothiophene (DBT) on carbon nanotube, carbon nanotube supported oxide state and sulfide state CoMo catalysts are studied by using thermal gravimetric analysis (TGA) technique and FT-IR spectroscopy. Activated carbon support, γ-Al2O3 support and supported CoMo catalysts are also subjected to studies for comparison. It was found that sulfide state CoMoS/MWCNT, CoMoS/AC and CoMoS/γ-Al2O3 catalysts adsorbed much more DBT molecules than their corresponding oxide state catalysts, as well as their corresponding supports. The chemically adsorbed DBT aromatic molecules did not undergo decomposition on the surface of supports, supported oxide state CoMo catalysts and sulfide state CoMo catalysts when out-gassing at 373 K. FT-IR results indicated that DBT molecules mainly stand upright on the active sites (acid sites and/or transition active phases) of CoMoS/MWCNT catalyst. However, DBT aromatic molecules mainly lie flat on MWCNT and CoMoO/MWCNT.

  4. Platinum supported catalysts for carbon monoxide preferential oxidation: Study of support influence

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, R.; Rodriguez, L.; Serrano-Lotina, A.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Benito, M. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain)

    2009-07-01

    The aim of this work is to study the influence of the addition of different oxides to an alumina support, on surface acidity and platinum reducibility in platinum-based catalysts, as well as their effect on the activity and selectivity in CO preferential oxidation, in presence of hydrogen. A correlation between surface acidity and acid strength of surface sites and metal reducibility was obtained, being Pt-support interaction a function of the acid sites concentration under a particular temperature range. In platinum supported on alumina catalysts, CO oxidation follows a Langmuir-Hinshelwood mechanism, where O{sub 2} and CO compete in the adsorption on the same type of active sites. It is noteworthy that the addition of La{sub 2}O{sub 3} modifies the reaction mechanism. In this case, CO is not only adsorbed on the Pt active sites but also on La{sub 2}O{sub 3}, forming bridge bonded carbonates which leads to high reactivity at low temperatures. An increase on temperature produces CO desorption from Pt surface sites and favours oxygen adsorption producing CO{sub 2}. CO oxidation with surface hydroxyl groups was activated producing simultaneously CO{sub 2} and H{sub 2}. (author)

  5. Ammoxidation of 2-methyl pyrazine on supported ammonium salt of 12-molybdophosphoric acid catalysts: The influence of nature of support

    Indian Academy of Sciences (India)

    Katabathini Narasimharao; B Hari Babu; N Lingaiah; P S Sai Prasad; Shaeel A Al-Thabaiti

    2014-03-01

    Influence of the nature of support on the formation of catalytically active species was investigated to clarify the key factor for the synthesis of supported ammonium salt of 12-molybdophosphoric acid (AMPA) catalyst which maintains the activity of ammoxidation during 2-methylpyrazine reaction.With this aim, different loadings of niobia-, silica- and alumina-, supported AMPA catalysts were prepared. The AMPA loading was varied in the range of 5-25 wt%. The synthesized solids were characterized by nitrogen adsorption for BET surface area, XRD and 31P MAS NMR techniques. All the AMPA-supported samples are poorly crystalline even after 25 wt% AMPA loading. Investigations using 31P MAS NMR spectroscopy of samples revealed that Keggin ion existed as at least five different species on the supports. The investigated properties were acidity of the support and amount of AMPA loading on the support. Active sites for the ammoxidation of MP on supported AMPA catalysts seem to be the interacted and/or the lacunary species.Maximum catalytic activity could be obtained at lower loadings with AMPA deposited on acidic supports whereas the less acidic supports require higher loading. It was found that in order to efficiently generate the active interactive species, the support must have an acidity which promotes the formation of support-AMPA interactive species. It is possible to enhance the catalytic activity of the supported AMPA catalyst for ammoxidation of 2-methylpyrazine by controlling the acidity of the support and AMPA loading on the support.

  6. Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil

    Energy Technology Data Exchange (ETDEWEB)

    Baroutian, Saeid; Aroua, Mohamed Kheireddine; Raman, Abdul Aziz Abdul; Sulaiman, Nik Meriam Nik [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-11-15

    In this study, potassium hydroxide catalyst supported on palm shell activated carbon was developed for transesterification of palm oil. The Central Composite Design (CCD) of the Response Surface Methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst loading and methanol to oil molar ratio on the production of biodiesel using activated carbon supported catalyst. The highest yield was obtained at 64.1 C reaction temperature, 30.3 wt.% catalyst loading and 24:1 methanol to oil molar ratio. The physical and chemical properties of the produced biodiesel met the standard specifications. This study proves that activated carbon supported potassium hydroxide is an effective catalyst for transesterification of palm oil. (author)

  7. Ceria-Modified Clay Supported Palladium Catalysts for Complete Oxidation of Volatile Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    Li Jinjun; Hao Zhengping; Hu Chun

    2004-01-01

    Ceria- and alumina-pillared interlayered clays were synthesized in the presence of PEO surfactant by using laponite clay as raw material.And the synthesized pillared clays were used as supports to load palladium catalysts for complete oxidation of benzene.Nitrogen adsorption/desorption experiments reveal that the pillared clays have higher tests show that ceria pillar exhibited promoting effect on the activity of the palladium catalysts, and ceria-pillared clay supported palladium catalyst catalyzed the complete oxidation of benzene at less than 250 ℃.The calcination temperature affects the activity of the catalysts significantly, and it is found that the optimal calcination temperature are 600 and 400 ℃ for ceria- and alumina-pillared clay supported palladium catalysts, respectively.

  8. Carbon Nanofiber Supported Transition-Metal Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    NARCIS (Netherlands)

    Jongerius, A.; Gosselink, R.W.; Dijkstra, J.; Bitter, J.H.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2013-01-01

    Hydrodeoxygenation (HDO) studies over carbon nanofiber-supported (CNF) W2C and Mo2C catalysts were performed on guaiacol, a prototypical substrate to evaluate the potential of a catalyst for valorization of depolymerized lignin streams. Typical reactions were executed at 55 bar hydrogen pressure ove

  9. The Sulfidation of gamma-Alumina and Titania Supported (Cobalt) Molybdenum Oxide Catalysts Monitored by EXAFS.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Leliveld, R.G.; Dillen, A.J. van; Geus, John W.

    1997-01-01

    The sulfidation of @c-alumina- and titania-supported(cobalt)molybdenum oxide catalysts has been studied with X-rayabsorption spectroscopy and temperature programmed sulfidation (TPS).The catalysts were stepwise sulfided at temperatures between 298 and673 K and their structure was determined with EXA

  10. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter.

    Science.gov (United States)

    Yu, Jong-Sung; Kang, Soonki; Yoon, Suk Bon; Chai, Geunseok

    2002-08-14

    Ordered uniform porous carbon frameworks showing interesting morphology variations were synthesized against removable colloidal silica crystalline templates through simply altering acid catalyst sites for acid-catalyzed polymerization. These highly ordered uniform porous carbons as a catalyst supporter resulted in much improved catalytic activity for methanol oxidation in a fuel cell.

  11. Preparation and Application of Carbon-Nanofiber Based Microstructured Materials as Catalyst Supports

    NARCIS (Netherlands)

    Chinthaginjala, J.K.; Seshan, K.; Lefferts, L.

    2007-01-01

    In the application of heterogeneous catalysts in liquid phase reactions, the rate of reaction as well as selectivity is often negatively influenced by mass transfer limitations in the stagnant liquid in the pores of the catalyst support. Internal mass transfer limitations can be reduced by maximizin

  12. Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts

    NARCIS (Netherlands)

    Kulazynski, M.; Ommen, van J.G.; Trawczynski, J.; Walendziewski, J.

    2002-01-01

    Combustion of trichloroethylene (TCE) on Cr2O3, V2O5, Pt or Pd catalysts supported on TiO2-SiO2 as a carrier has been investigated. It was found that oxide catalysts are very active but their activity quickly diminishes due to loss of the active component, especially at higher reaction temperatures

  13. X-Ray Absorption Spectroscopy of Mo and Ni K-edge of Supported Hydrotreating Catalysts

    Institute of Scientific and Technical Information of China (English)

    DuanAijun; XuChunming; ZhaoZhen; DongPeng

    2005-01-01

    X-ray absorption fine structure (XAFS) and other techniques have been used to characterize Ni-Mo/Al2O3 supported catalysts. The analysis of Mo K-edge spetrum shows that the active species over sulfide catalysts are MoS2-alike and the dispersion of Mo is high at the level of nanometer particles. There may exist some distortion of the local environment of MoS2, which has an influence on the hydrotreating activities of catalysts. Ni K-edge analysis shows that the coordination effects of Ni-Mo favor the dispersion state of active phase and imply a close relationship with catalyst activities.

  14. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    Science.gov (United States)

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity.

  15. Relationship between surface microstructure and properties of supported catalyst Rh/Ys

    Institute of Scientific and Technical Information of China (English)

    柳忠阳; 潘平来; 朱长城; 王晓筠; 袁国卿

    1997-01-01

    The inner structure of Rh/Ys,a novel high efficiency supported catalyst,and the spreading of Rh on the Ys surface were analyzed through electron transmission microscopy and scanning tunnel microscopy.The relationship between the distribution of Rh over the support and the preparation temperature of th catalyst was determined.The formation of Rh-C bond was confirmed by XPS and far-IR spectra.The loss of Rh from the surface of the support and the catalytic activity under different preparation conditions have been compared.The internal factors for the high activity and high stability of the novel Rh/Ys catalyst have been discussed.

  16. Catalytic Performance of Bare Supporters and Supported KVO3 Catalysts for Cracking n-Butane to Produce Light Olefins

    Institute of Scientific and Technical Information of China (English)

    LuJiangyin; ZhaoZhen; XuChunming; ZhangPu

    2005-01-01

    Supported KVO3 catalysts were prepared by impregnating different kinds of.supporters (α-Al2O3,γ-Al2O3 and SiO2 powders) with a KVO3 solution. The activity of the bare supporters and supported catalysts were evaluated in a continuous micro-reactivity test unit, with n-butane as a raw material. The results show that KVO3 has no catalytic activity, but it can increase the selectivity to light olefins. The supporter of γ-Al2O3 has good catalytic performance for nbutane cracking when the reaction temperature is below 700℃.

  17. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    Science.gov (United States)

    Kootenaei, A. H. Shahbazi; Towfighi, J.; Khodadadi, A.; Mortazavi, Y.

    2014-04-01

    Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V2O5 catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere.

  18. Membrane fuel cell cathode catalysts based on titanium oxide supported platinum nanoparticles.

    Science.gov (United States)

    Gebauer, Christian; Jusys, Zenonas; Wassner, Maximilian; Hüsing, Nicola; Behm, R Jürgen

    2014-07-21

    The potential of platinum catalysts supported on pure, nitrogen-, or carbon-doped titania for application in the oxygen reduction reaction (ORR), as a cathode catalyst in polymer electrolyte membrane fuel cells, is investigated. The oxide supports are synthesized by using a sol-gel route. Modification with nitrogen and carbon doping is achieved by thermal decomposition of urea and the structure-directing agent P123. Platinum nanoparticles are prepared by reduction of a Pt(IV) salt in ethylene glycol and subsequently immobilized on different support materials. Structural and electronic properties of the support materials and the resulting catalysts are characterized by various methods, including X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. These results and electrochemical characterization of the support materials and platinum nanoparticle catalysts indicate distinct support effects in the catalysts. The electrocatalytic performance of these catalysts in the ORR, as determined in rotating ring disc electrode measurements, is promising. Also here, distinct support effects can be identified. Correlations with the structural/electronic and the electrochemical properties are discussed, as well as the role of metal-support interactions.

  19. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.

    Science.gov (United States)

    Li, Ning; Descorme, Claude; Besson, Michèle

    2007-07-31

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3wt.% Ru/ZrO(2). 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3wt.% Ru/ZrO(2) is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393K) and lower total pressure (3MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect.

  20. Supported Catalysts for CO2 Methanation: A Review

    Directory of Open Access Journals (Sweden)

    Patrizia Frontera

    2017-02-01

    Full Text Available CO2 methanation is a well-known reaction that is of interest as a capture and storage (CCS process and as a renewable energy storage system based on a power-to-gas conversion process by substitute or synthetic natural gas (SNG production. Integrating water electrolysis and CO2 methanation is a highly effective way to store energy produced by renewables sources. The conversion of electricity into methane takes place via two steps: hydrogen is produced by electrolysis and converted to methane by CO2 methanation. The effectiveness and efficiency of power-to-gas plants strongly depend on the CO2 methanation process. For this reason, research on CO2 methanation has intensified over the last 10 years. The rise of active, selective, and stable catalysts is the core of the CO2 methanation process. Novel, heterogeneous catalysts have been tested and tuned such that the CO2 methanation process increases their productivity. The present work aims to give a critical overview of CO2 methanation catalyst production and research carried out in the last 50 years. The fundamentals of reaction mechanism, catalyst deactivation, and catalyst promoters, as well as a discussion of current and future developments in CO2 methanation, are also included.

  1. Particle size effects in Fischer-Tropsch synthesis by Co catalyst supported on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Ali Nakhaei Pour; Elham Hosaini; Mohammad Izadyar; Mohammad Reza Housaindokht

    2015-01-01

    The effect of Co particle size on the Fischer-Tropsch synthesis (FTS) activity of carbon nanotube (CNT)-supported Co catalysts was investigated. Microemulsion (using water-to-surfactant molar ratios of 2 to12) and impregnation techniques were used to prepare catalysts with different Co particle sizes. Kinetic studies were performed to understand the effect of Co particle size on catalytic activity. Size-dependent kinetic parameters were developed using a thermodynamic method, to evaluate the structural sensitivity of the CNT-supported Co catalysts. The size-independent FTS reaction rate constant and size-independent adsorption parameter increased with increasing reac-tion temperature. The Polani parameter also depended on catalyst particle size, because of changes in the catalyst surface coverage.

  2. Hydrotalcite-supported Pd-Cu catalyst for nitrate adsorption and reduction from water

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; QU Jiuhui; LIU Huijuan; WU Rongcheng

    2006-01-01

    Hydrotalcite-supported Pd-Cu catalyst for nitrate adsorption and catalytic reduction from water is prepared by co-impregnation method and characterized by surface area (BET), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectrum (XPS). The performance of adsorption and hydrogenation of nitrate was evaluated and compared with Al2O3, TiO2, and HZSM-supported Pd-Cu catalysts. The experimental results demonstrated that hydrotalcite-supported Pd-Cu catalyst exhibited a high surface area (185.3 m2/g) and mesopore structure (average pore diameter of 52.2 (A)). The active metal clusters were homogeneously dispersed on the support, and the size of the most was less than 10 nm. Excellent adsorption for nitrate resulted from that nitrate ions were forced to enter the interlayer space when the calcined hydrotalcite regenerated layer structure in nitrate solution. The adsorption isotherm could be well described by the Langmuir model. The comparison between the adsorption and catalytic hydrogenation for nitrate using hydrogen indicated that nitrate reduction on hydrotalcite-supported Pd-Cu catalysts was a consecutive and dynamic adsorption and catalytic hydrogenation process. Compared with the Al2O3, TiO2, and HZSM- supported catalysts, hydrotalcite-supported Pd-Cu catalyst possessed higher catalytic activity and selectivity. The analysis on the dissolving of metals in the solution demonstrated that there was hydrolyzation on the surface of the hydrotalcite-supported Pd-Cu catalyst. However, the concentrations of dissolved metals in the solution were lower than the standard executed in China. The activity of the hydrotalcite-supported Pd-Cu catalyst for nitrate reduction kept steady after repeated use.

  3. Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Chunling Wei

    2016-10-01

    Full Text Available A series of vanadia catalysts supported on SBA-15 (V/SBA with a vanadia (V content ranging from 1% to 11% were prepared by an incipient wetness method. Their catalytic behavior in the dehydrogenation of isobutane to isobutene with CO2 was examined. The catalysts were characterized by N2 adsorption, X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy, and temperature-programmed reduction (TPR. It was found that these catalysts were effective for the dehydrogenation reaction, and the catalytic activity is correlated with the amount of dispersed vanadium species on the SBA-15 support. The 7% V/SBA catalyst shows the highest activity, which gives 40.8% isobutane conversion and 84.8% isobutene selectivity. The SBA-15-supported vanadia exhibits higher isobutane conversion and isobutene selectivity than the MCM-41-supported one.

  4. Wire gauze and cordierite supported noble metal catalysts for passive autocatalytic recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Sanap, Kiran K. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007 (India); Varma, S., E-mail: svarma@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Waghmode, S.B. [Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007 (India); Bharadwaj, S.R. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-12-01

    Highlights: • Synthesis by electroless deposition method and chemical reduction route. • Particle size of 0.1–0.5 μm & 3.5–5 nm for Pt–Pd/Wg & Pt–Pd/Cord catalysts. • Active for H{sub 2} and O{sub 2} reaction with initial H{sub 2} concentration of 1.5 to 7% in air. • Active in presence of different contaminants like CO{sub 2}, CH{sub 4}, CO & relative humidity. • Enhanced resistance of Pt–Pd/Cord catalyst towards the poisoning of CO. - Abstract: Hydrogen released in nuclear reactor containment under severe accident scenario poses a threat to containment and hence needs to be regulated by catalytic recombination. Mixed noble metal catalysts with platinum–palladium supported on stainless steel wire gauze and cordierite support have been developed for this purpose. The developed catalysts have been found to be highly efficient for removal of hydrogen concentration in the range of 1.5 to 7.0% v/v in air. Though both the catalysts exhibit similar kinetics for lower hydrogen concentration, cordierite supported catalysts exhibits better kinetic rate at higher hydrogen concentration. The performances of these catalysts in presence of various probable catalytic poison like carbon monoxide and catalytic inhibitors like moisture, carbon dioxide, and hydrocarbons provide data for use of these catalysts under the actual scenario. Compared to stainless steel wire gauze supported catalyst, the cordierite based catalyst are found to exhibit enhanced resistance towards carbon monoxide and limited temperature rise for safer application at higher hydrogen concentrations.

  5. Steam Reforming of Ethylene Glycol over MgAl₂O₄ Supported Rh, Ni, and Co Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Donghai; Lebarbier, Vanessa M.; Xing, Rong; Albrecht, Karl O.; Dagle, Robert A.

    2015-11-25

    Steam reforming of ethylene glycol (EG) over MgAl₂O₄ supported metal (15 wt.% Ni, 5 wt.% Rh, and 15 wt.% Co) catalysts were investigated using combined experimental and theoretical methods. Compared to highly active Rh and Ni catalysts with 100% conversion, the steam reforming activity of EG over the Co catalyst is comparatively lower with only 42% conversion under the same reaction conditions (500°C, 1 atm, 119,000 h⁻¹, S/C=3.3 mol). However, CH₄ selectivity over the Co catalyst is remarkably lower. For example, by varying the gas hour space velocity (GHSV) such that complete conversion is achieved for all the catalysts, CH₄ selectivity for the Co catalyst is only 8%, which is much lower than the equilibrium CH₄ selectivity of ~ 24% obtained for both the Rh and Ni catalysts. Further studies show that varying H₂O concentration over the Co catalyst has a negligible effect on activity, thus indicating zero-order dependence on H₂O. These experimental results suggest that the supported Co catalyst is a promising EG steam reforming catalyst for high hydrogen production. To gain mechanistic insight for rationalizing the lower CH₃ selectivity observed for the Co catalyst, the initial decomposition reaction steps of ethylene glycol via C-O, O-H, C-H, and C-C bond scissions on the Rh(111), Ni(111) and Co(0001) surfaces were investigated using density functional theory (DFT) calculations. Despite the fact that the bond scission sequence in the EG decomposition on the three metal surfaces varies, which leads to different reaction intermediates, the lower CH₄ selectivity over the Co catalyst, as compared to the Rh and Ni catalysts, is primarily due to the higher barrier for CH₄ formation. The higher S/C ratio enhances the Co catalyst stability, which can be elucidated by the facile water dissociation and an alternative reaction path to remove the CH species as a coking precursor via the HCOH formation. This work was financially supported by the United

  6. The study on carbon nanotubes-supported Pt catalysts for PEMFC

    Institute of Scientific and Technical Information of China (English)

    朱捷; 朱红; 康晓红; 葛奉娟; 杨玉国

    2004-01-01

    Carbon nanotube-supported-platinum (Pt/CNTs) and carbon-supported-platinum (Pt/C) catalysts were prepared by in situ chemical reduction method and analyzed by TEM and XRD. Then the experiments were carried out to test the performance of PEMFCs with the Pt electrodes. The results showed that in both catalyst, Pt was of small particle size (about 4 nm) and Pt/CNTs exhibited higher catalytic activity than Pt/C.

  7. Towards stable catalysts by controlling collective properties of supported metal nanoparticles

    Science.gov (United States)

    Prieto, Gonzalo; Zečević, Jovana; Friedrich, Heiner; de Jong, Krijn P.; de Jongh, Petra E.

    2013-01-01

    Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage/conversion and as catalysts for the sustainable production of fuels and chemicals. However, the tendency of nanoparticles to grow into larger crystallites is an impediment for stable performance. Exemplarily, loss of active surface area by metal particle growth is a major cause of deactivation for supported catalysts. In specific cases particle growth might be mitigated by tuning the properties of individual nanoparticles, such as size, composition and interaction with the support. Here we present an alternative strategy based on control over collective properties, revealing the pronounced impact of the three-dimensional nanospatial distribution of metal particles on catalyst stability. We employ silica-supported copper nanoparticles as catalysts for methanol synthesis as a showcase. Achieving near-maximum interparticle spacings, as accessed quantitatively by electron tomography, slows down deactivation up to an order of magnitude compared with a catalyst with a non-uniform nanoparticle distribution, or a reference Cu/ZnO/Al2O3 catalyst. Our approach paves the way towards the rational design of practically relevant catalysts and other nanomaterials with enhanced stability and functionality, for applications such as sensors, gas storage, batteries and solar fuel production.

  8. Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    2016-01-01

    behavior of Nafion ionomer on platinized carbon nano fibers (CNFs), carbon nano tubes (CNTs) and amorphous carbon (Vulcan). The interaction is affected by the catalyst surface oxygen groups as well as porosity. Comparisons between the carbon supports and platinized equivalents are carried out. It reveals......, the ionomer may have an adsorption preference to the platinum nano particle rather than to the overall catalyst. This was verified by a close examination on the decomposition temperature of the carbon support and the ionomer. The electrochemical stability of the catalyst ionomer composite electrode suggests...

  9. Allotropic Carbon Nanoforms as Advanced Metal-Free Catalysts or as Supports

    Directory of Open Access Journals (Sweden)

    Hermenegildo Garcia

    2014-01-01

    Full Text Available This perspective paper summarizes the use of three nanostructured carbon allotropes as metal-free catalysts (“carbocatalysts” or as supports of metal nanoparticles. After an introductory section commenting the interest of developing metal-free catalysts and main features of carbon nanoforms, the main body of this paper is focused on exemplifying the opportunities that carbon nanotubes, graphene, and diamond nanoparticles offer to develop advanced catalysts having active sites based on carbon in the absence of transition metals or as large area supports with special morphology and unique properties. The final section provides my personal view on future developments in this field.

  10. Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources

    Science.gov (United States)

    Abney, Morgan B.; Karr, Laurel; Paley, Mark S.; Donovan, David N.

    2016-01-01

    Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.

  11. Dehydration of Glycerin to Acrolein Over Heteropolyacid Nano-Catalysts Supported on Silica-Alumina.

    Science.gov (United States)

    Kang, Tae Hun; Choi, Jung Ho; Choi, Jun Seon; Song, In Kyu

    2015-10-01

    A series of H3PW12O40 nano-catalysts supported on silica-alumina (XH3PW12O40/SA (X = 10, 15, 20, 25, and 30)) with different H3PW12O40 content (X, wt%) were prepared, and they were applied to the dehydration of glycerin to acrolein. The effect of H3PW12O40 content on the physicochemical properties and catalytic activities of XH3PW12O40/SA nano-catalysts was investigated. Surface area and pore volume of XH3PW12O40/SA catalysts decreased with increasing H3PW12O40 content. Formation of H3PW12O40 aggregates was observed in the catalysts with high H3PW12O40 loading. Brønsted acidity of the catalysts showed a volcano-shaped trend with respect to H3PW12O40 content. It was revealed that yield for acrolein increased with increasing Brønsted acidity of XH3PW12O40/SA catalysts. Brønsted acidity of XH3PW12O40/SA catalysts served as a crucial factor determining the catalytic performance in the dehydration of glycerin. Among the catalysts tested, 25H3PW12O40/SA catalyst with the largest Brønsted acidity showed the best catalytic performance.

  12. Ni catalysts with different promoters supported on zeolite for dry reforming of methane

    KAUST Repository

    Alotaibi, Raja

    2015-07-08

    Dry reforming of methane (DRM) is considered a high endothermic reaction with operating temperatures between 700 and 1000 °C to achieve high equilibrium conversion of CH4 and CO2 to the syngas (H2 and CO). The conventional catalysts used for DRM are Ni-based catalysts. However, many of these catalysts suffer from the short longevity due to carbon deposition. This study aims to evaluate the effect of La and Ca as promoters for Ni-based catalysts supported on two different zeolite supports, ZL (A) (BET surface area = 925 m2/g, SiO2/Al2O3 mol ratio = 5.1), and ZL (B) (BET surface area = 730 m2/g, SiO2/Al2O3 mol ratio = 12), for DRM. The physicochemical properties of the prepared catalysts were characterized with XRD, BET, TEM and TGA. These catalysts were tested for DRM in a microtubular reactor at reaction conditions of 700 °C. The catalyst activity results show that the catalysts Ni/ZL (B) and Ca-Ni/ZL (B) give the highest methane conversion (60 %) with less time on stream stability compared with promoted Ni on ZL (A). In contrast, La-containing catalysts, La-Ni/ZL (B), show more time on stream stability with minimum carbon content for the spent catalyst indicating the enhancement of the promoters to the Ni/ZL (A) and (B), but with less catalytic activity performance in terms of methane and carbon dioxide conversions due to rapid catalyst deactivation.

  13. ASYMMETRIC HYDROSILYLATION CATALYZED BY POLYMER—SUPPORTED THIAZOLIDINE RHODIUM CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    LEIYanohui; LIHong; 等

    1999-01-01

    Asymmetric hydrisilylation catalyzed by polymeric thiazolidine rhodium catalysts was conducted.Almost the same optical yields have been obtained when comb-shaped polymeric ligands and their corresponding monomer complexed rhodium cataltysts were used to asymmetric hydrosilylation of acetophenone.Optical yield of chiral 1-methylbenzyl alcohol reaches as high as 71.5%.Temperature dependence of enantioselective hydrosilylation of acetophenone was discussed.

  14. Graphene-supported platinum catalysts for fuel cells

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko; Engelbrekt, Christian; Zhang, Jingdong

    2015-01-01

    Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the...

  15. LDRD final report on new homogeneous and supported oligomerization catalysts (LDRD 42461).

    Energy Technology Data Exchange (ETDEWEB)

    Hascall, Anthony G.; Kemp, Richard Alan

    2004-11-01

    The overall purpose of this LDRD is multifold. First, we are interested in preparing new homogeneous catalysts that can be used in the oligomerization of ethylene and in understanding commercially important systems better. Second, we are interested in attempting to support these new homogeneous catalysts in the pores of nano- or mesoporous materials in order to force new and unusual distributions of a-olefins to be formed during the oligomerization. Thus the overall purpose is to try to prepare new catalytic species and to possibly control the active site architecture in order to yield certain desired products during a catalytic reaction, much like nature does with enzymes. In order to rationally synthesize catalysts it is imperative to comprehend the function of the various components of the catalyst. In heterogeneous systems, it is of utmost importance to know how a support interacts with the active site of the catalyst. In fact, in the catalysis world this lack of fundamental understanding of the relationship between active site and support is the single largest reason catalysis is considered an 'empirical' or 'black box' science rather than a well-understood one. In this work we will be preparing novel ethylene oligomerization catalysts, which are normally P-O chelated homogeneous complexes, with new ligands that replace P with a stable carbene. We will also examine a commercially catalyst system and investigate the active site in it via X-ray crystallography. We will also attempt to support these materials inside the pores of nano- and mesoporous materials. Essentially, we will be tailoring the size and scale of the catalyst active site and its surrounding environment to match the size of the molecular product(s) we wish to make. The overall purpose of the study will be to prepare new homogeneous catalysts, and if successful in supporting them to examine the effects that steric constraints and pore structures can have on growing oligomer

  16. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts

    Science.gov (United States)

    Wu, Ke; Zheng, Mengjia; Han, Yuxiang; Xu, Zhaoyi; Zheng, Shourong

    2016-07-01

    Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO2, CeO2, Al2O3 and SiO2 were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N2 adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO2 was much smaller than those in im-Pd/TiO2 and pd-Pd/TiO2. Pd particle size of the dp-Pd/TiO2 catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO2 catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd loading amount, the Pd catalyst supported on TiO2 exhibited a much higher catalytic activity than those on other supports. Furthermore, dp-Pd/TiO2 was found to be more active than im-Pd/TiO2 and pd-Pd/TiO2.

  17. Recent development of supported monometallic gold as heterogeneous catalyst for selective liquid phase hydrogenation reactions

    Institute of Scientific and Technical Information of China (English)

    Thushara Kandaramath Hari; Zahira Yaakob

    2015-01-01

    The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research. Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions, in gas and liquid phase reactions. In the present review, we dis-cuss the recent development of heterogeneous, supported monometal ic gold catalysts for organic transforma-tions emphasizing mainly liquid phase hydrogenation reactions. Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out. Appli-cations of heterogeneous, supported monometal ic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.

  18. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    Science.gov (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  19. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Yang, Hui; Huang, Peiyan; Song, Huiyu [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China)

    2014-10-01

    Graphical abstract: The addition of Ru could significantly improve the performance of the mesoporous silica nanoparticles supported PdRu/MSN catalyst, which showed over 5 times higher mass activity than the mono-Pd/MSN towards the liquid-phase hydrogenation of phenol. The improved dispersion and the electronic interaction contributed to the enhanced catalytic activity for the catalyst towards phenol hydrogenation. - Highlights: • PdRu bimetal catalyst supported on mesoporous silica nanoparticles was prepared. • The average sizeof PdRu alloy is smaller than that of mono-Pd. • The addition of Ru to Pd modulates the electronic properties between Pd and Ru. • PdRu/MSN catalyst shows superior activity on phenol hydrogenation than Pd/MSN. • PdRu/MSN catalyst shows good selectivity for cyclohexanol to some extent. - Abstract: A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation–hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  20. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number

    Science.gov (United States)

    A magnetic nanoparticle-supported ruthenium hydroxide catalyst was readily prepared from inexpensive starting materials and shown to catalyze hydration of nitriles with excellent yield in benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity...

  1. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    Science.gov (United States)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    High surface area TiO2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid - Ni3/2PW12O40 was applied as oxide precursor of the active components. The catalyst was characterized by SBET, XRD, UV-vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  2. Study on Chemisorption, Catalytic Behavior, and Stability of Supported Au Catalyst for the Propylene Epoxidation Reaction

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The supported Au/TiO2 and Au/TiO2-SiO2 catalysts were prepared by deposition precipitation method. The TPD study reveals that propylene oxide competes with propylene to be adsorbed on the same adsorptive center-Tin+ site on the surface of the catalyst and that the adsorbing capacity of the catalyst for propylene oxide is larger than that for propylene. Catalytic behavior for propylene epoxidation with H2 and O2 was tested in a micro-reactor. Under typical conditions, the selectivity for propylene oxide is over 87%. The TG curves show that PO successive oxidation cause carbon deposition on the active center and deactivation of the Au catalysts. Because the amounts of Tin+ site decrease significantly, and consequently the separation between Tin+ sites increases, the Au/TiO2-SiO2 catalyst is more stable than Au/TiO2.

  3. High CO methanation activity on zirconia-supported molybdenum sulfide catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhenhua Li; Ye Tian; Jia He; Baowei Wang; Xinbin Ma

    2014-01-01

    In this study, different methods were used to prepare MoO3/ZrO2 catalysts for sulfur resistant methanation reaction. It was found that MoO3/ZrO2 catalyst prepared by one-step co-precipitation method achieved high methanation performance. CO conversion could reach up to 90%on 25 wt%MoO3/ZrO2 catalyst, much higher than that on the conventional 25 wt%MoO3/Al2O3 catalyst. The Mo-based catalysts were characterized by XRF, XRD, Raman, BET, TEM and H2-TPR etc. It was found that MoO3 particles were highly dispersed on ZrO2 support for 25 wt%MoO3/ZrO2 catalyst prepared at 65-85◦C because of its relatively larger pore size, which contributed to a high CO conversion. Meanwhile, when MoO3 loading exceeded the monolayer coverage, the formed crystalline MoO3 and ZrMo2 O8 might block the micropores of the catalyst and make the methanation activity declined. These results are useful for preparing highly efficient catalyst for CO methanation process.

  4. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.

    Science.gov (United States)

    Viswanadham, Balaga; Srikanth, Amirineni; Kumar, Vanama Pavan; Chary, Komandur V R

    2015-07-01

    Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts.

  5. A Novel Carbon Nanotube-Supported NiP Amorphous Alloy Catalyst and Its Hydrogenation Activity

    Institute of Scientific and Technical Information of China (English)

    Yan Ju; Fengyi Li

    2006-01-01

    A carbon nanotube-supported NiP amorphous catalyst (NiP/CNT) was prepared by induced reduction. Benzene hydrogenation was used as a probe reaction for the study of catalytic activity. The effects of the support on the activity and thermal stability of the supported catalyst were discussed based on various characterizations, including XRD, TEM, ICP, XPS, H2-TPD, and DTA. In comparison with the NiP amorphous alloy, the benzene conversion on NiP/CNT catalyst was lower, but the specific activity of NiP/CNT was higher, which is attributed to the dispersion produced by the support, an electron-donating effect, and the hydrogen-storage ability of CNT. The NiP/CNT thermal stability was improved because of the dispersion and electronic effects and the good heat-conduction ability of the CNT support.

  6. thesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts

    Directory of Open Access Journals (Sweden)

    Sanja Ratković

    2009-10-01

    Full Text Available Carbon nanotubes (CNTs were synthesized by a catalytic chemical vapor deposition method (CCVD of ethylene over alumina and silica supported bimetallic catalysts based on Fe, Co and Ni. The catalysts were prepared by a precipitation method, calcined at 600 °C and in situ reduced in hydrogen flow at 700 °C. The CNTs growth was carried out by a flow the mixture of C2H4 and nitrogen over the catalyst powder in a horizontal oven. The structure and morphology of as-synthesized CNTs were characterized using SEM. The as-synthesized nanotubes were purified by acid and basic treatments in order to remove impurities such as amorphous carbon, graphite nanoparticles and metal catalysts. XRD and DTA/TG analyses showed that the amounts of by-products in the purified CNTs samples were reduced significantly. According to the observed results, ethylene is an active carbon source for growing high-density CNTs with high yield but more on alumina-supported catalysts than on their silica- supported counterparts. The last might be explained by SMSI formed in the case of alumina-supported catalysts, resulting in higher active phase dispersion.

  7. Evaluation of photocatalytic activities of supported catalysts on NaX zeolite or activated charcoal.

    Science.gov (United States)

    de Brites-Nóbrega, Fernanda F; Polo, Aldino N B; Benedetti, Angélica M; Leão, Mônica M D; Slusarski-Santana, Veronice; Fernandes-Machado, Nádia R C

    2013-12-15

    This study aimed to evaluate the photocatalytic activity of ZnO and Nb2O5 catalysts, both supported on NaX zeolite and activated charcoal (AC). The synergistic effect between oxide and support and the influence of solution pH (3, 7 and 9) on photocatalytic degradation of reactive blue 5G (C.I. 222) were analyzed. The catalysts Nb2O5/NaX, Nb2O5/AC and ZnO/NaX, ZnO/AC with 5 and 10% (wt%) were prepared by wet impregnation. The results showed that the catalysts exhibit quite different structural and textural properties. The synergic effect between ZnO and NaX support was higher than that with the activated charcoal, showing that these catalysts were more efficient. The most photoactive catalyst was 10% ZnO/NaX which showed 100% discoloration of the dye solution at pH 3, 7 and 9 after 0.5, 5 and 2h of irradiation, respectively. The hydrolytic nature of zeolite favored the formation of surface hydroxyl radicals, which increased the activity of the photocatalyst. Thus, catalysts supported on NaX zeolite are promising for use in photocatalysis.

  8. Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds

    Directory of Open Access Journals (Sweden)

    Huishan Shang

    2016-06-01

    Full Text Available To improve the activities of non-noble metal catalysts is highly desirable and valuable to the reduced use of noble metal resources. In this work, the supported nickel (Ni and nickel-platinum (NiPt nanocatalysts were derived from a layered double hydroxide/carbon composite precursor. The catalysts were characterized and the role of Pt was analysed using X-ray diffraction (XRD, high-resolution transmission electron microscopy (HRTEM, energy dispersive X-ray spectroscopy (EDS mapping, and X-ray photoelectron spectroscopy (XPS techniques. The Ni2+ was reduced to metallic Ni0 via a self-reduction way utilizing the carbon as a reducing agent. The average sizes of the Ni particles in the NiPt catalysts were smaller than that in the supported Ni catalyst. The electronic structure of Ni was affected by the incorporation of Pt. The optimal NiPt catalysts exhibited remarkably improved activity toward the reduction of nitrophenol, which has an apparent rate constant (Ka of 18.82 × 10−3 s−1, 6.2 times larger than that of Ni catalyst and also larger than most of the reported values of noble-metal and bimetallic catalysts. The enhanced activity could be ascribed to the modification to the electronic structure of Ni by Pt and the effect of exposed crystal planes.

  9. Fischer–Tropsch Synthesis: Effect of Reducing Agent for Aqueous-Phase Synthesis Over Ru Nanoparticle and Supported Ru Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, Venkat Ramana Rao [Univ. of Kentucky, Lexington, KY (United States); Shafer, Wilson D. [Univ. of Kentucky, Lexington, KY (United States); Jacobs, Gary [Univ. of Kentucky, Lexington, KY (United States); Graham, Uschi M. [Univ. of Kentucky, Lexington, KY (United States); Khalid, Syed [Brookhaven National Lab. (BNL), Upton, NY (United States); Davis, Burtron H. [Univ. of Kentucky, Lexington, KY (United States)

    2014-12-27

    The effect of the reducing agent on the performance of a ruthenium nanoparticle catalyst was investigated during aqueous-phase Fischer–Tropsch synthesis using a 1 L stirred tank reactor in the batch mode of operation. For the purpose of comparison, the activity and selectivity of NaY zeolite supported Ru catalyst were also studied. NaBH4 and hydrogen were used as reducing agents in our study, and hydrogen reduced catalysts exhibited higher activities than the NaBH4 reduced catalysts, because of higher extent of reduction and a relatively lower tendency toward agglomeration of Ru particles. The Ru nanoparticle catalyst displayed higher activities than the NaY zeolite supported Ru catalyst for both reducing agents. NaBH4 reduced catalysts are less active and the carbon dioxide selectivity is higher than the hydrogen reduced catalysts. The activity of the supported Ru catalyst (Ru/NaY) was 75 % of that of the Ru nanoparticle catalyst, and has the benefit of easy wax/catalyst slurry separation by filtration. Finally, the hydrogen reduced supported Ru catalyst exhibited superior selectivity towards hydrocarbons (higher C5+ selectivity and lower selectivity to methane) than all other catalysts tested.

  10. Studies on the Performance and Structure of Supported Catalysts for the Partial Oxidation of Methane to Syngas

    Institute of Scientific and Technical Information of China (English)

    Tinghua Wu; Mingqiao Zhu; Zhenjiang Niu; Yijun Zhong; Yan Guan; Ya Liu; Qiangu Yan; Zelin Li; Huilin Wan

    2002-01-01

    The catalytic properties of several supported metal catalysts on different carriers were studied in the partial oxidation of methane (POM) to syngas. In our experiment, supported noble metal catalysts exhibited better performance than the other supported transition metal catalysts. The catalyst performances were significantly influenced by the d-electron configuration of the active metal components and the dispersion of active metal components on the support. A catalyst with a moderate number of unpaired electrons in the d-orbital of the active metal support without obvious acidity or redox activity (e.g. MgO) was suitable for POM performance. The Rh/SiO2 catalyst was the best in the POM reaction, among those investigated. Reaction conditions apparently also affected the POM performance of the catalyst. The conversion of methane and the selectivity for CO increased with the reaction temperature, and a high CH4/O2 ratio was not beneficial for POM performance.

  11. Influence of preparation method on performance of a metal supported perovskite catalyst for combustion of methane

    Institute of Scientific and Technical Information of China (English)

    翟彦青; 熊杰明; 李翠清; 徐新; 罗国华

    2010-01-01

    A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and also by ultrasonic and thermal shock tests and catalytic activity.It was found that the process factors during the preparation,e.g.the preparation of the catalyst precursor and the coating slurry,the calcination te...

  12. SUPPORTED CATALYST WITHOUT EXTERNAL ELECTRON DONOR FOR PROPYLENE POLYMERIZATION Ⅱ. TACTICITY DISTRIBUTION AND MICROSTRUCTURE OF POLYPROPYLENE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Propylene was polymerized with a novel supported Ziegler-Natta catalyst containing 2,2-di-iso-butyl-1,3-dimethoxy-propane (DIBDMP) as internal donor and in the absence of external donor. The tacticity distribution of polypropylene was obtained by using temperature rising elution fractionation (TREF) technique and microstructure of fractions was studied with 13C-NMR. Compared with the catalyst without electron donor, this catalyst gives a considerably narrower tacticity distribution. Fractionation data demonstrate that DIBDMP shows better performance than aromatic diester DNBP (di-n-butyl phthalate). Chemically inverted propylene units and less stereoblockiness are found in the first fraction. Possible reasons for these were presented.

  13. Role of vanadium in Keggin heteropoly molybdate supported on titania catalysts for oxidation reactions

    Indian Academy of Sciences (India)

    A Srivani; K T Venkateswara Rao; P S Sai Prasad; N Lingaiah

    2014-03-01

    Vanadium-incorporated molybdophosporic acid catalysts supported on titania were prepared and characterized by FT-IR, X-ray diffraction and laser Raman spectroscopy. Characterization data reveals the incorporation of vanadium into the primary structure of Keggin ion of MPA. Catalysts activities were evaluated for oxidation of 1,2-benzenedimethanol using H2O2 and O2 as oxidants. Vanadium-containing catalysts showed high activity compared to their parent heteropoly acids. Oxidation ability depended on the number of V atoms present in Keggin heteropoly molybdate. Effect of reaction parameters on the oxidation ability was also evaluated.

  14. Potential of Ni supported on clinoptilolite catalysts for carbon dioxide reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Nimwattanakul, Weetima; Luengnaruemitchai, Apanee; Jitkarnka, Sirirat [The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330 (Thailand)

    2006-01-15

    Carbon dioxide reforming of methane to synthesis gas has been investigated with Ni-supported clinoptilolite catalysts. The catalysts were prepared by using the incipient wetness impregnation method. The catalytic activity of Ni supported on clinoptilolite with varying Ni loadings was determined and the results showed that at 700{sup o}C, 8wt% Ni/clinoptilolite gave the highest activity. It exhibited not only the highest activity and selectivity but also remarkable stability. Moreover, both the activity and stability of this catalyst were observed to vary with the Zr content, exhibiting a maximum at a composition of 2% Zr. The amount of carbonaceous deposits on the spent catalysts was further investigated by temperature-programmed oxidation (TPO) and thermogravimetric analyzer (TGA) studies. (author)

  15. Supercritical water gasification of microalga Nannochloropsis over supported Ni and Ru catalysts

    Science.gov (United States)

    Wijenayake, A. G. B. S. P.; Hassan, M.; Komiyama, M.

    2016-11-01

    Supercritical water gasification (SCWG) of a marine microalga Nannochloropsis was performed in the presence and the absence of supported Ru and Ni catalysts at 385 °C and 26 MPa using a batch reactor. The product gas of the non-catalytic reaction mainly comprised of CO2 while that of catalytic reaction produced CH4, CO2, H2 and some C2-C4 compounds. The addition of catalysts enhanced the decomposition and conversion (water-gas shift and methanation) reactions, consequently increasing the total gasification efficiency up to 92% for 60 min reaction time. Between the supported Ru and Ni catalysts, Ru resulted in higher gasification efficiency than Ni. Catalyst deactivation during SCWG of Nannochloropsis was also examined.

  16. Highly selective oxidative dehydrogenation of ethane with supported molten chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.A.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen (Germany). Catalysis Research Center

    2011-07-01

    Ethene production is one of the most important transformations in chemical industry, given that C{sub 2}H{sub 4} serves as building block for many mass-market products. Besides conventional thermal processes like steam cracking of ethane, ethane can be produced selectively by catalytic processes. One of the classes of catalysts that have been reported in literature as active and highly selective for the oxidative dehydrogenation of ethane is that of supported molten chloride catalysts, containing an alkali chloride overlayer on a solid support. This work deals with fundamental aspects of the catalytic action in latter class of catalysts. Results from kinetic reaction studies are related to observations in detailed characterization and lead to a comprehensive mechanistic understanding. Of fundamental importance towards mechanistic insights is the oxygen storage capacity of the catalysts that has been determined by transient step experiments. (orig.)

  17. Oxidative homocoupling of alkynes using supported ionic liquid phase (SILP) catalysts--systematic investigation of the support influence.

    Science.gov (United States)

    Szesni, Normen; Kaiser, Melanie; Putzien, Sophie; Fischer, Richard W

    2012-02-01

    Supported Ionic Liquid Phase (SILP) catalysts have been prepared by effective immobilization of [Cu(TMEDA)(OH)]Cl in a nano-metric film of an ionic liquid on various oxidic support materials. The catalysts were tested for the oxidative homocoupling of 1-alkynes to the corresponding diynes in in a combined high throughput and conventional batch reaction approach. Among the screened support materials silica based materials performed best. The results indicate that for the specific reaction the thickness of the ionic liquids layer and therefore the mobility of the homogeneous copper complex within the ionic liquid layer as deduced from solid state nmr measurements have major impact on the catalytic performance. The optimized catalysts could be recycled up to four times without any loss of activity.

  18. Study on the Reaction Mechanism for Carbon Dioxide Reforming of Methane over supported Nickel Catalyst

    Institute of Scientific and Technical Information of China (English)

    Ling QIAN; Zi Feng YAN

    2003-01-01

    The adsorption and dissociation of methane and carbon dioxide for reforming on nickelcatalyst were extensively investigated by TPSR and TPD experiments. It showed that thedecomposition of methane results in the formation of at least three kinds of surface carbon specieson supported nickel catalyst, while CO2 adsorbed on the catalyst weakly and only existed in onekind of adsorption state. Then the mechanism of interaction between the species dissociatedfrom CH4 and CO2 during reforming was proposed.

  19. Supported ruthenium-carbene catalyst on ionic magnetic nanoparticles for olefin metathesis.

    Science.gov (United States)

    Chen, Shu-Wei; Zhang, Zhi-Cheng; Ma, Miaofeng; Zhong, Chong-Min; Lee, Sang-gi

    2014-10-01

    The Grubbs-Hoveyda ruthenium-carbene complex has been covalently immobilized on ionic magnetic nanoparticles utilizing an imidazolium salt linker. The supported catalyst exhibited excellent catalytic activity for ring-closing metathesis (RCM) and cross-metathesis (CM) in the presence of less than 1 mol % of ruthenium. The catalysts can easily be recovered magnetically and reused up to seven times with minimal leaching of ruthenium species.

  20. Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization

    OpenAIRE

    F. V. Barsi; Cardoso,D.

    2009-01-01

    Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt) and bimetallic catalysts (Pt-Ni), using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on th...

  1. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    Science.gov (United States)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  2. TiO{sub 2} nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    Energy Technology Data Exchange (ETDEWEB)

    Palcheva, R., E-mail: palcheva@gmail.com [Institute of Catalysis, Bulgarian Academy of Sciences, G. Bonchev Str., Bldg. 11, 1113 Sofia (Bulgaria); Dimitrov, L. [Institute of Mineralogy and Crystallography Acad. I. Kostov, G. Bonchev Str., Bldg. 107, 1113 Sofia (Bulgaria); Tyuliev, G.; Spojakina, A. [Institute of Catalysis, Bulgarian Academy of Sciences, G. Bonchev Str., Bldg. 11, 1113 Sofia (Bulgaria); Jiratova, K. [Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, 165 02 Prague 6 (Czech Republic)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer NiW catalysts supported on TiO{sub 2} nanotubes, titania and alumina. Black-Right-Pointing-Pointer The best results are obtained with NiW/TiO{sub 2} nanotubes in hydrodesulfurization (HDS) of thiophene. Black-Right-Pointing-Pointer Active phase is Ni-WO{sub x}S{sub y}. Black-Right-Pointing-Pointer Electronic promotion of W by Ti. - Abstract: High surface area TiO{sub 2} nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid - Ni{sub 3/2}PW{sub 12}O{sub 40} was applied as oxide precursor of the active components. The catalyst was characterized by S{sub BET}, XRD, UV-vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  3. Selective Oxidation of Glycerol over Carbon-Supported AuPd Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ketchie,W.; Murayama, M.; Davis, R.

    2007-01-01

    Carbon-supported AuPd bimetallic nanoparticles were synthesized, characterized, and evaluated as catalysts in the aqueous-phase selective oxidation of glycerol. The bimetallic catalysts were synthesized by two different methods. The first method involved the deposition of Au onto the surface of 3-nm supported Pd particles by catalytic reduction of HAuCl{sub 4} in aqueous solution by H{sub 2}. The second method used the formation of a AuPd sol that was subsequently deposited onto a carbon support. Characterization of the catalysts using analytical transmission electron microscopy, H{sub 2} titration, and X-ray absorption spectroscopy at the Au L{sub III} and Pd K-edges confirmed that the first synthesis method successfully deposited Au onto the Pd particles. Results from the AuPd sol catalyst also revealed that Au was preferentially located on the surface. Measurement of glycerol oxidation rates (0.3 M glycerol, 0.6 M NaOH, 10 atm O{sub 2}, 333 K) in a semibatch reactor gave a turnover frequency (TOF) of 17 s{sup -1} for monometallic Au and 1 s{sup -1} for monometallic Pd, with Pd exhibiting a higher selectivity to glyceric acid. Although the activity of the bimetallic AuPd catalysts depended on the amount of Au present, none of them had a TOF greater than that of the monometallic Au catalyst. However, the AuPd catalysts had higher selectivity to glyceric acid compared with the monometallic Au. Because a physical mixture of monometallic Au and Pd catalysts also gave higher selectivity to glyceric acid, the Pd is proposed to catalyze the decomposition of the side product H{sub 2}O{sub 2} that is also formed over the Au but is detrimental to the selectivity toward glyceric acid.

  4. Effects of Supports and Promoter Ag on Pd Catalysts for Selective Hydrogenation of Acetylene

    Institute of Scientific and Technical Information of China (English)

    朱淑映; 侯瑞君; 王铁峰

    2012-01-01

    SiO2,α-Al2O3,γ-Al2O3,ZrO2 and CeO2 were used as supports and Ag as promoter to study their effects on Pd catalysts for selective hydrogenation of acetylene.The catalysts were prepared by impregnated synthesis and characterized by XRD,BET and TEM.The catalytic reaction was carried out in a fixed-bed reactor.Overall,the low specific surface area supports were better to increase the ethylene selectivity at high conversion rate of acetylene.Among the four Pd catalysts on low specific surface area supports,the catalyst on low specific surface area SiO2 (LSA-SiO2) retained a high ethylene selectivity even at complete conversion,while the other catalysts showed significant decrease in the selectivity at complete conversion.The performance of Pd/LSA-SiO2 was important to decrease the loss of ethylene in selective hydrogenation of trace acetylene in ethylene.Addition of Ag to Pd/LSA-SiO2 significantly decreased the formation of ethane,C4 alkenes and green oil,and improved the ethylene selectivity to 90% when Pd∶Ag=1∶1 and 1∶3(ω).When the ratio of Pd to Ag was above 1,the activity of Pd-Ag bimetallic catalyst was similar to that of Pd monometallic catalyst,and the selectivity of ethylene increased with increasing of amount of Ag.When the ratio of Pd to Ag was below 1,the activity of bimetallic catalyst decreased with increasing of amount of Ag,while the selectivity of ethylene was kept unchanged.The optimum temperature was 200~230 ℃ for 0.02%(ω)Pd-0.02%( ω)Ag/LSA-SiO2 to give a high ethylene selectivity and low formation of green oil.

  5. Controlled metal nitrate decomposition for the preparation of supported metal Catalysts

    NARCIS (Netherlands)

    Wolters, M.

    2010-01-01

    High surface area supported metal (oxide) catalysts are essential for the production of fuels, chemicals, pharmaceuticals and the abatement of environmental pollution. Impregnation of high surface area supports, often silica or alumina, followed by drying, calcination and reduction is one of the mos

  6. A Highly Efficient and Environmentally Friendly CMC-Supported Lanthanide Catalyst for One-pot Synthesis of Substituted Imidazoles

    Institute of Scientific and Technical Information of China (English)

    WANG Limin; YAO Yinfang; WANG Yonghong; ZOU Gang

    2009-01-01

    A CMC-supported lanthanide catalyst was prepared from CMC and isopropoxy lanthanide. This solid Lewis acid catalyst was used in synthesis of substituted imidazoles under mild conditions, showing catalytic activity com-parable to the expensive lanthanide Lewis acid Ln(Otf)3. Furthermore, the catalyst could be readily recycled and reused for five times without any appreciable loss in catalytic activity.

  7. Nanocrystalline MgO supported nickel-based bimetallic catalysts for carbon dioxide reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Meshkani, Fereshteh [Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan (Iran); Rezaei, Mehran [Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan (Iran); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran)

    2010-10-15

    Nanocrystalline magnesium oxide with high surface area and plate-like shape was employed as catalyst support for preparation of nickel-based bimetallic catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by X-ray diffraction (XRD), N{sub 2} adsorption (BET), Temperature programmed oxidation and desorption (TPO-TPD), Thermal gravimetric and differential thermal gravimetric (TGA-DTG), H{sub 2} chemisorption and Transmission and electron microscopies (TEM and SEM) analyses. CO{sub 2}-TPD data showed the high CO{sub 2} adsorption capacity of catalysts which improves the resistance of catalysts against the carbon formation. The H{sub 2} chemisorption results also indicated that the addition of Pt to nickel catalyst improved the nickel dispersion. The obtained results revealed that the prepared catalysts showed a high activity and stability during the reaction with a low amount of deposited carbon. Addition of Pt to nickel catalyst improved both the activity and resistivity against carbon formation. (author)

  8. Water gas shift reaction over Cu catalyst supported by mixed oxide materials for fuel cell application

    Directory of Open Access Journals (Sweden)

    Tepamatr Pannipa

    2016-01-01

    Full Text Available The water gas shift activities of Cu on ceria and Gd doped ceria have been studied for the further enhancement of hydrogen purity [1] after the steam reforming of ethanol. The catalytic properties of commercial catalysts were also studied to compare with the as-prepared catalysts. Copper-containing cerium oxide materials are shown in this work to be suitable for the high temperature. Copper-ceria is a stable high-temperature shift catalyst, unlike iron-chrome catalysts that deactivate severely in CO2-rich gases. We found that 5%Cu/10%GDC(D has much higher activity than other copper ceria based catalysts. The finely dispersed CuO species is favorable to the higher activity, which explained the activity enhancement of this catalyst. The kinetics of the WGS reaction over Cu catalysts supported by mixed oxide materials were measured in the temperature range 200-400 °C. An independence of the CO conversion rate on CO2 and H2 was found.

  9. Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports

    Science.gov (United States)

    2013-02-12

    1000 mg of commercially available carbon powder (Cabot Vulcan XCR72R) was placed into the barrel and the chamber was evacuated to approximately 1 × 10−6...unmodified and N-modified Vulcan were obtained on a Philips CM200 TEM. X-ray Photoelectron Spectroscopy (XPS) analysis of the synthesized catalysts was done...durability cycles Pt-Ru/ Vulcan 73 3.3 × 10−5 24 51 10 Pt-Ru/N- Vulcan 55 2.9 × 10−5 17 60 40 Pt-Ru/C JM 5000 69 3.0 × 10−5 20 48 17 tials higher than 0.7 V

  10. Graphene supported heterogeneous catalysts for Li–O{sub 2} batteries

    Energy Technology Data Exchange (ETDEWEB)

    Alaf, M., E-mail: mirac.alaf@bilecik.edu.tr [Bilecik Seyh Edebali University, Engineering Faculty, Department of Metallurgy and Materials Engineering, Gulumbe Campus, Bilecik 11210 (Turkey); Tocoglu, U.; Kartal, M.; Akbulut, H. [Sakarya University, Engineering Faculty, Department of Metallurgy and Materials Engineering, Esentepe Campus, Sakarya 54187 (Turkey)

    2016-09-01

    Graphical abstract: - Highlights: • Free-standing and flexible electrodes were prepared for Li–air batteries. • α-MnO{sub 2} nanorods, Pt nanoparticles and graphene were used. • α-MnO{sub 2} and Pt catalyst improved OER/ORR kinetics. - Abstract: In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO{sub 2}/graphene, (iii) Pt/graphene (iv) α-MnO{sub 2}/Pt/graphene composite cathodes for Li–air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N{sub 2} adsorption–desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li–air batteries.

  11. Enhanced activity and selectivity of carbon nanofiber supported Pd catalysts for nitrite reduction.

    Science.gov (United States)

    Shuai, Danmeng; Choe, Jong Kwon; Shapley, John R; Werth, Charles J

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment.

  12. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  13. Gold Catalysts on Y-Doped Ceria Supports for Complete Benzene Oxidation

    Directory of Open Access Journals (Sweden)

    Lyuba Ilieva

    2016-07-01

    Full Text Available Gold (3 wt. % catalysts on Y-doped (1, 2.5, 5 and 7.5 wt. % Y2O3 ceria supports prepared by coprecipitation (CP or impregnation (IM were studied in complete benzene oxidation (CBO. A low-extent Y modification was chosen to avoid ordering of oxygen vacancies. The samples were characterized by XRD, TGA, XPS and TPR techniques. A positive role of air pretreatment at 350 °C as compared to 200 °C was established for all Y-containing catalysts and it was explained by cleaning the active sites from carbonates. The oxygen supply cannot be considered as a limiting step for benzene oxidation except for the high 7.5%-doped samples, as suggested by TGA and TPR data. On the basis of XPS results of fresh and used in CBO catalysts, the presence of cationic gold species does not seem important for high CBO activity. The gold catalyst on an IM support with 1% Y-doping exhibited the best performance. A 100% benzene conversion was achieved only over this catalyst and Au/ceria, while it was not reached even at 300 °C over all other studied catalysts. Gold and ceria particle agglomeration or coke formation should be excluded as a possible reason, and the most probable explanation could be associated with the importance of the benzene activation stage.

  14. Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    BILJANA M. BABIĆ

    2007-08-01

    Full Text Available A carbon cryogel, synthesized by carbonization of a resorcinol/formaldehyde cryogel and oxidized in nitric acid, was used as catalyst support for Pt nano-particles. The Pt/C catalyst was prepared by a modified polyol synthesis method in an ethylene glycol (EG solution. Characterization by nitrogen adsorption showed that the carbon cryogel support and the Pt/C catalyst were mesoporous materials with high specific surface areas (SBET > 400 m2 g-1 and large mesoporous volumes. X-Ray diffraction of the catalyst demonstrated the successful reduction of the Pt precursor to metallic form. TEM Images of the Pt/C catalyst and Pt particle size distribution showed that the mean Pt particle size was about 3.3 nm. Cyclic voltammetry (CV experiments at various scan rates (from 2 to 200 mV s-1 were performed in 0.5 mol dm-3 HClO4 solution. The large capacitance of the oxidized carbon cryogel electrode, which arises from a combination of the double-layer capacitance and pseudocapacitance, associated with the participation of surface redox-type reactions was demonstrated. For the oxidized carbon cryogel, the total specific capacitance determined by 1/C vs. ν0.5 extrapolation method was found to be 386 F g-1. The hydrogen oxidation reaction at the investigated Pt/C catalyst proceeded as an electrochemically reversible, two-electron direct discharge reaction.

  15. CeO2 nanorods-supported transition metal catalysts for CO oxidation.

    Science.gov (United States)

    Mock, Samantha A; Sharp, Shannon E; Stoner, Thomas R; Radetic, Michael J; Zell, Elizabeth T; Wang, Ruigang

    2016-03-15

    A catalytically active oxide support in combination with metal catalysts is required in order to achieve better low temperature activity and selectivity. Here, we report that CeO2 nanorods with a superior surface oxygen release/storage capability were used as an active support of transition metal (TM) catalysts (Mn, Fe, Co, Ni, Cu) for CO oxidation reaction. The as-prepared CeO2 nanorods supported 10 wt% TM catalysts were highly active for CO oxidation at low temperature, except for the Fe sample. It is found that the 10%Cu-CeO2 catalyst performed best, and it provided a lower light-off temperature with T50 (50% conversion) at 75 °C and T100 (100% conversion) of CO to CO2 at 194 °C. The atomic level surface structure of CeO2 nanorods was investigated in order to understand the improved low temperature catalytic activity. The richness of surface roughness and various defects (voids, lattice distortion, bending, steps, twinning) on CeO2 nanorods could facilitate oxygen release and storage. According to XRD and Raman analysis, copper species migrate into the bulk CeO2 nanorods to a greater degree. Since CO adsorbed over the surface of the catalyst/support is detrimental to its catalytic activity, the surface defects on the CeO2 nanorods and CeO2-TM interactions were critical to the enhanced activity.

  16. Selective oxidation of methylamine over zirconia supported Pt-Ru, Pt and Ru catalysts

    Institute of Scientific and Technical Information of China (English)

    Aiying Song; Gongxuan Lu

    2015-01-01

    Pt–Ru, Pt and Ru catalysts supported on zirconia were prepared by impregnation method and were tested in se-lective oxidation of methylamine (MA) in aqueous media. Among three catalysts, Ru/ZrO2 was more active than Pt/ZrO2 while Pt–Ru/ZrO2 demonstrated the best catalytic activity due to the fact that Pt addition efficiently pro-moted the dispersion of active species in bimetallic catalyst. Therefore, the~100%TOC conversion and N2 selec-tivity were achieved over Pt–Ru/ZrO2, Pt/ZrO2 and Ru/ZrO2 catalysts at 190, 220 and 250 °C, respectively.

  17. Physicochemical investigations of carbon nanofiber supported Cu/ZrO{sub 2} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Din, Israf Ud, E-mail: drisraf@yahoo.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: drisraf@yahoo.com, E-mail: maizats@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS (Malaysia); Naeem, A., E-mail: naeeem64@yahoo.com [National Centre of Excellence in Physical Chemistry, University of Peshawar (Pakistan)

    2014-10-24

    Zirconia-promoted copper/carbon nanofiber catalysts (Cu‐ZrO{sub 2}/CNF) were prepared by the sequential deposition precipitation method. The Herringbone type of carbon nanofiber GNF-100 (Graphite nanofiber) was used as a catalyst support. Carbon nanofiber was oxidized to (CNF-O) with 5% and 65 % concentration of nitric acid (HNO{sub 3}). The CNF activated with 5% HNO{sub 3} produced higher surface area which is 155 m{sup 2}/g. The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR) and N{sub 2} adsorption-desorption. The results showed that increase of HNO{sub 3} concentration reduced the surface area and porosity of the catalyst.

  18. Effect of Reduction Temperature on Hydrofining Performance of Supported Molybdenum Phosphide Catalyst

    Institute of Scientific and Technical Information of China (English)

    Fengyan Li; Zhifang Zhao; Qingjie Li; Tianbo Zhao; Cuiqing Li; Guida Sun

    2005-01-01

    A series of supported molybdenum phosphide catalysts were prepared by impregnation method.XRD, TG-DTG, XPS and BET were used to study the phase, compositions and surface areas of the prepared catalysts. A model reactant containing thiophene, pyridine and cyclohexene was used for the measurements of catalytic activities. The effect of reduction temperature on catalytic activities was investigated. The analysis results by XRD and BET are very different when the reduction temperature is changed from 400 to 900 ℃. MoP/γ-Al2O3 catalysts and CoMoP/γ-Al2O3 catalysts prepared at the reduction temperature of 500 ℃ are the most active ones.

  19. Electro-Deposition Pt Catalysts Supported on Carbon-Nanotubes for Methanol Oxidation

    Institute of Scientific and Technical Information of China (English)

    Hailin Song; Peixia Yang; Xiaoyu Wen; Maozhong An; Jinqiu Zhang

    2015-01-01

    In order to study the properties of supporting Pt catalysts for methanol oxidation, carbon⁃nanotubes are used by electrochemical deposition method. Different deposition turns, different cyclic voltammetry scanning speeds and processing time with ascorbic acid are investigated in this paper. The micrographs of Pt/CNTs catalysts are characterized by scanning electron microscopy, the electro⁃catalytic properties of Pt/CNTs catalysts for methanol oxidation are investigated by cycle voltammetry and chronoamperometry. The results show that the size of platinum will be greater with the faster scanning speed. After dissolution in ascorbic acid, Pt nano⁃particles disperse uniformly. The obtained Pt/CNTs catalysts show a high electro⁃catalytic activity and stability.

  20. Preparation of Mesoporous Silica-Supported Palladium Catalysts for Biofuel Upgrade

    Directory of Open Access Journals (Sweden)

    Ling Fei

    2012-01-01

    Full Text Available We report the preparation of two hydrocracking catalysts Pd/CoMoO4/silica and Pd/CNTs/CoMoO4/silica (CNTs, carbon nanotubes. The structure, morphologies, composition, and thermal stability of catalysts were studied by X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy, transmission electron microscopy (TEM, energy-dispersive X-ray (EDX, and thermogravimetric analysis (TGA. The catalyst activity was measured in a Parr reactor with camelina fatty acid methyl esters (FAMEs as the feed. The analysis shows that the palladium nanoparticles have been incorporated onto mesoporous silica in Pd/CoMoO4/silica or on the CNTs surface in Pd/CNTs/CoMoO4/silica catalysts. The different combinations of metals and supports have selective control cracking on heavy hydrocarbons.

  1. Chitosan as a Natural Polymer for Heterogeneous Catalysts Support: A Short Review on Its Applications

    Directory of Open Access Journals (Sweden)

    Mengshan Lee

    2015-11-01

    Full Text Available Chitosan, a bio-based polymer which has similar characteristics to those of cellulose, exhibits cationic behavior in acidic solutions and strong affinity for metals ions. Thus, it has received increased attention for the preparation of heterogeneous catalysts. Recent studies demonstrated that chitosan-based catalysts had high sorption capacities, chelating activities, stability and versatility, which could be potentially applied as green reactants in various scientific and engineering applications. This study intends to review the recent development of chitosan-based catalysts, particularly in the aspects of the main mechanisms for preparing the materials and their applications in environmental green chemistry. Studies on the preparation of catalyst nanoparticles/nanospheres supported on chitosan were also reviewed.

  2. Advanced catalyst supports for PEM fuel cell cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Shao, Yuyan; Sun, Junming; Yin, Geping; Liu, Jun; Wang, Yong

    2016-11-01

    Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.

  3. Liquid-phase Hydrogenation of Phenol to Cyclohexanone over Supported Palladium Catalysts

    Directory of Open Access Journals (Sweden)

    Lihui Fan

    2016-10-01

    Full Text Available The ZSM-5, g-Al2O3, SiO2 and MgO supported Pd-catalysts were prepared for the phenol hydrogenation to cyclohexanone in liquid-phase. The natures of these catalysts were characterized by XRD, N2 adsorption-desorption analysis, H2-TPR, CO2-TPD and NH3-TPD. The catalytic performance of the supported Pd-catalyst for phenol hydrogenation to cyclohexanone is closely related to nature of the support and the size of Pd nanoparticles. The Pd/MgO catalyst which possesses higher basicity shows higher cyclohexanone selectivity, but lower phenol conversion owing to the lower specific surface area. The Pd/SiO2 catalyst prepared by precipitation gives higher cyclohexanone selectivity and phenol conversion, due to the moderate amount of Lewis acidic sites, and the smaller size and higher dispersion of Pd nanoparticles on the surface. Under the reaction temperature of 135 oC and H2 pressure of 1 MPa, after reacting for 3.5 h, the phenol conversion of 71.62% and the cyclohexanone selectivity of 90.77% can be obtained over 0.5 wt% Pd/SiO2 catalyst. Copyright © 2016 BCREC GROUP. All rights reserved Received: 7th March 2016; Revised: 13rd May 2016; Accepted: 7th June 2016 How to Cite: Fan, L., Zhang, L., Shen, Y., Liu, D., Wahab, N., Hasan, M.M. (2016. Liquid-phase Hydrogenation of Phenol to Cyclohexanone over Supported Palladium Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 354-362 (doi: 10.9767/bcrec.11.3.575.354-362 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.575.354-362

  4. Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pudukudy, Manoj, E-mail: manojpudukudy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Yaakob, Zahira, E-mail: zahirayaakob65@gmail.com [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Akmal, Zubair Shamsul [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia)

    2015-03-01

    Graphical abstract: - Highlights: • Synthesis and characterization of Ni, Co and Fe based bimetallic catalysts supported over SBA-15. • Thermocatalytic decomposition of methane over the SBA-15 supported bimetallic catalysts. • Enhanced catalytic efficiency of the bimetallic catalysts for the production of CO{sub x} free hydrogen and nanocarbon. • Production of value added open tip hollow multi-walled carbon nanotubes. • Crystalline characterization of carbon nanotubes by XRD, Raman and thermogravimetric analysis. - Abstract: Thermocatalytic decomposition of methane is an alternative route for the production of CO{sub x}-free hydrogen and carbon nanomaterials. In this work, a set of novel Ni, Co and Fe based bimetallic catalysts supported over mesoporous SBA-15 was synthesized by a facile wet impregnation route, characterized for their structural, textural and reduction properties and were successfully used for the methane decomposition. The fine dispersion of metal oxide particles on the surface of SBA-15, without affecting its mesoporous texture was clearly shown in the low angle X-ray diffraction patterns and the transmission electron microscopy (TEM) images. The nitrogen sorption analysis showed the reduced specific surface area and pore volume of SBA-15, after metal loading due to the partial filling of hexagonal mesopores by metal species. The results of methane decomposition experiments indicated that all of the bimetallic catalysts were highly active and stable for the reaction at 700 °C even after 300 min of time on stream (TOS). However, a maximum hydrogen yield of ∼56% was observed for the NiCo/SBA-15 catalyst within 30 min of TOS. A high catalytic stability was shown by the CoFe/SBA-15 catalyst with 51% of hydrogen yield during the course of reaction. The catalytic stability of the bimetallic catalysts was attributed to the formation of bimetallic alloys. Moreover, the deposited carbons were found to be in the form of a new set of hollow

  5. Preparation of highly active AlSBA-15-supported platinum catalyst for thiophene hydrodesulfurization

    OpenAIRE

    KANDA, Yasuharu; AIZAWA, Tomohiro; Kobayashi, Takao; UEMICHI, Yoshio; NAMBA, Seitaro; SUGIOKA, Masatoshi

    2007-01-01

    The catalytic activities of various noble metals (Pt, Pd, Rh, and Ru) supported on siliceous SBA-15 and Al-containing SBA-15 (AlSBA-15) for hydrodesulfurization (HDS) of thiophene at 350 C were investigated. AlSBA-15 was prepared by a grafting method using aluminum isopropoxide (Al(OC3H7)3) hexane solution. The HDS activity of Pt/AlSBA-15 catalyst was the highest among those of various supported noble metal catalysts, and this activity was higher than that of commercial CoMo/Al2O3 HDS catalys...

  6. Nanostructural and Chemical Characterization of Supported Metal Oxide Catalysts by Aberration Corrected Analytical Electron Microscopy

    Science.gov (United States)

    Zhou, Wu

    In this thesis, aberration corrected STEM imaging and chemical analysis techniques have been extensively applied in the structural and chemical characterization of supported tungsten oxide catalysts in an attempt to reveal the structure-activity relationships at play in these catalyst systems. The supported WO3/ZrO2 solid acid catalyst system is a major focal point of this thesis, and detailed aberration-corrected STEM-HAADF imaging studies were performed on a systematic set of catalysts showing different level of catalytic performance. The nature of the catalytically most active WOx species was identified by correlating structural information, obtained from STEM-HAADF and in-situ optical spectroscopy studies, with catalytic testing results. Specifically, ˜1nm distorted Zr-WOx mixed oxide clusters were identified to be the most active species for both the methanol dehydration and n-pentane isomerization reactions in the WO3/ZrO2 catalyst system. The use of amorphous zirconia as a precursor support material makes it much easier to extract and incorporate Zr cations into the surface WOx clusters during calcination. The calcination temperature was also identified to also play an important role in the formation of these most active Zr-WOx clusters. When the calcination temperature is comparable to or higher than the 896K Huttig temperature of ZrO2 (at which surface ZrO x species have sufficient mobility to agglomerate and sinter), the chance for successful surface WOx and ZrOx intermixing is significantly increased. Based on this perceived structure-activity relationship, several new catalyst synthesis strategies were developed in an attempt to optimize the catalytic performance of WOx-based catalysts. We have demonstrated in Chapter 3 that co-impregnation of WOx and ZrOx precursors onto an inactive model WO3/ZrO2 catalyst, followed by a calcination treatment above the 896K Huttig temperature of ZrO 2, promotes the surface diffusion of ZrO2 and intermixing of Zr

  7. Synthesis and characterization of supported sugar catalyst by dip coating method

    Science.gov (United States)

    Janaun, J.; Siambun, N. J.; Safie, N. N.

    2016-06-01

    Sugar catalyst is a novel solid acid catalyst with reactivity comparable to that of sulphuric acid in biodiesel production. However, the fine powder form of sugar catalyst with the non-porous structure might cause large pressure drop in a packed bed reactor due to low bed porosity, affecting the reaction conversion especially in gas phase reaction. Furthermore, higher pressure drop requires higher electrical energy to drive the fluid through. Increasing the particle size is anticipated to be able to overcome the pressure drop matter. Hence, a deposition of sugar catalyst on larger particle materials was studied. Three types of materials were used for this investigation namely aluminum, silica and clay. The deposition was done via dip-coating method. The materials were characterized for their total acidity, thermal stability, functional groups, surface area, and element composition. The total acidity for SCDCAl, SCDCSi, and SCDCCl were 0.9 mmol/g, 0.2 mmol/g, and 0.4 mmol/g, respectively. The ratio of char deposited on SCDCAl, SCDCSi and SCDCCl were 0.9 g of support/g of carbon, 0.040 g of support/g of carbon, and 0.014 g of support/g of carbon respectively. FTIR and EDX analyses were carried out to determine the presence of active sites of the catalysis by identifying the functional groups such as -COOH, -OH, -SO3H. The results showed that -SO3H was detected on the surface of synthesized catalysts, except for SCDCC1.The pore size of SCDCAl, SCDCSi and SCDCCl were classified as macropores because the average diameter were greater than 50nm.. The catalysts were stable up to 400°C. The results showed that the dipcoating method could deposit sugar catalyst on aluminum, silica, and clay at low total acidity concentration.

  8. Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, A.J.; Carrero, A.; Calles, J.A. [Department of Chemical and Environmental Technology, Rey Juan Carlos University, Escuela Superior de Ciencias Experimentales y Tecnologia (ESCET), c/ Tulipan s/n, 28933 Mostoles (Spain)

    2007-07-15

    In the present work, Cu-Ni supported catalysts were tested in ethanol steam reforming reaction. Two commercial amorphous solids (SiO{sub 2} and {gamma}-Al{sub 2}O{sub 3}) and three synthesized materials (MCM-41, SBA-15 and ZSM-5 nanocrystalline) were used as support. A series of Cu-Ni/SiO{sub 2} catalysts with different Cu and Ni content were also prepared. It was found that aluminium containing supports favour ethanol dehydration to ethylene in the acid sites, which in turn, promotes the coke deactivation process. The highest hydrogen selectivity is achieved with the Cu-Ni/SBA-15 catalyst, due to a smaller metallic crystallite size. Nevertheless, the Cu-Ni/SiO{sub 2} catalyst showed the best catalytic performance, since a better equilibrium between high hydrogen selectivity and CO{sub 2}/CO{sub x} ratio is obtained. It was seen that nickel is the phase responsible for hydrogen production in a greater grade, although both CO production and coke deposition are decreased when copper is added to the catalyst. (author)

  9. Highly active mesoporous ferrihydrite supported pt catalyst for formaldehyde removal at room temperature.

    Science.gov (United States)

    Yan, Zhaoxiong; Xu, Zhihua; Yu, Jiaguo; Jaroniec, Mietek

    2015-06-01

    Ferrihydrite (Fh) supported Pt (Pt/Fh) catalyst was first prepared by combining microemulsion and NaBH4 reduction methods and investigated for room-temperature removal of formaldehyde (HCHO). It was found that the order of addition of Pt precursor and ferrihydrite in the preparation process has an important effect on the microstructure and performance of the catalyst. Pt/Fh was shown to be an efficient catalyst for complete oxidation of HCHO at room temperature, featuring higher activity than magnetite supported Pt (Pt/Fe3O4). Pt/Fh and Pt/Fe3O4 exhibited much higher catalytic activity than Pt supported over calcined Fh and TiO2. The abundance of surface hydroxyls, high Pt dispersion and excellent adsorption performance of Fh are responsible for superior catalytic activity and stability of the Pt/Fh catalyst. This work provides some indications into the design and fabrication of the cost-effective and environmentally benign catalysts with excellent adsorption and catalytic oxidation performances for HCHO removal at room temperature.

  10. Evaluation of photocatalytic activities of supported catalysts on NaX zeolite or activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Brites-Nóbrega, Fernanda F. de [Chemical Engineering Department, Universidade Estadual de Maringá (UEM), Av. Colombo, 5790, CEP 87020-900 Maringá, PR (Brazil); Sanitary and Environmental Engineering Department, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG (Brazil); Polo, Aldino N.B.; Benedetti, Angélica M. [Chemical Engineering Department, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua da Faculdade, 645, CEP 85903-000 Toledo, PR (Brazil); Leão, Mônica M.D. [Sanitary and Environmental Engineering Department, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG (Brazil); Slusarski-Santana, Veronice, E-mail: veronice.santana@unioeste.br [Chemical Engineering Department, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua da Faculdade, 645, CEP 85903-000 Toledo, PR (Brazil); Fernandes-Machado, Nádia R.C. [Chemical Engineering Department, Universidade Estadual de Maringá (UEM), Av. Colombo, 5790, CEP 87020-900 Maringá, PR (Brazil)

    2013-12-15

    Highlights: • The synergic effect between ZnO and NaX was positive, which increased its activity. • The best results were obtained at pH 3 and 9 with ZnO/NaX and at pH 3 with Nb{sub 2}O{sub 5}/AC. • High degradation and considerable mineralization were attained with 10% ZnO/NaX. • ZnO and Nb{sub 2}O{sub 5} supported on NaX and AC are promising alternatives as photocatalysts. -- Abstract: This study aimed to evaluate the photocatalytic activity of ZnO and Nb{sub 2}O{sub 5} catalysts, both supported on NaX zeolite and activated charcoal (AC). The synergistic effect between oxide and support and the influence of solution pH (3, 7 and 9) on photocatalytic degradation of reactive blue 5G (C.I. 222) were analyzed. The catalysts Nb{sub 2}O{sub 5}/NaX, Nb{sub 2}O{sub 5}/AC and ZnO/NaX, ZnO/AC with 5 and 10% (wt%) were prepared by wet impregnation. The results showed that the catalysts exhibit quite different structural and textural properties. The synergic effect between ZnO and NaX support was higher than that with the activated charcoal, showing that these catalysts were more efficient. The most photoactive catalyst was 10% ZnO/NaX which showed 100% discoloration of the dye solution at pH 3, 7 and 9 after 0.5, 5 and 2 h of irradiation, respectively. The hydrolytic nature of zeolite favored the formation of surface hydroxyl radicals, which increased the activity of the photocatalyst. Thus, catalysts supported on NaX zeolite are promising for use in photocatalysis.

  11. Polyaniline-functionalized carbon nanotube supported platinum catalysts.

    Science.gov (United States)

    He, Daping; Zeng, Chao; Xu, Cheng; Cheng, Niancai; Li, Huaiguang; Mu, Shichun; Pan, Mu

    2011-05-03

    Electrocatalytically active platinum (Pt) nanoparticles on a carbon nanotube (CNT) with enhanced nucleation and stability have been demonstrated through introduction of electron-conducting polyaniline (PANI) to bridge the Pt nanoparticles and CNT walls with the presence of platinum-nitride (Pt-N) bonding and π-π bonding. The Pt colloids were prepared through ethanol reduction under the protection of aniline, the CNT was dispersed well with the existence of aniline in the solution, and aniline was polymerized in the presence of a protonic acid (HCl) and an oxidant (NH(4)S(2)O(8)). The synthesized PANI is found to wrap around the CNT as a result of π-π bonding, and highly dispersed Pt nanoparticles are loaded onto the CNT with narrowly distributed particle sizes ranging from 2.0 to 4.0 nm due to the polymer stabilization and existence of Pt-N bonding. The Pt-PANI/CNT catalysts are electroactive and exhibit excellent electrochemical stability and therefore promise potential applications in proton exchange membrane fuel cells.

  12. Oxidative desulfurization of synthetic diesel using supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Caero, Luis Cedeno; Hernandez, Emiliano [UNICAT, Departamento de Ingenieria Quimica, Facultad de Quimica, UNAM. Cd. Universitaria, 04510 Mexico D.F. (Mexico); Pedraza, Francisco; Murrieta, Florentino [Programa de Tratamiento en Crudo Maya, Instituto Mexicano del Petroleo, Eje Central 152, 07730 Mexico D.F. (Mexico)

    2005-10-30

    In this work, an experimental study was carried out to obtain the reactivity of different organic sulfur compounds and to examine the effect of various parameters, such as temperature, solvent and the amount of oxidant reagent in oxidative desulfurization (ODS) reaction. The oxidation was performed through a vanadium based catalyst in the presence of hydrogen peroxide under mild reaction conditions, atmospheric pressure and temperature range of 303-343K. The sulfur compounds studied were: 2-methylthiophene (2-MT), 2,5-dimethylthiophene (2,5-DMT), benzothiophene (BT), dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). All of them are typical thiophenic sulfur compounds present in diesel fuels. A synthetic diesel was prepared with these compounds in hexadecane. The experimental results showed that oxidation reactivities decreased according to the following order: DBT>BT>4-MDBT>2-MT>2,5-DMT>4,6-DMDBT. A fraction of the S compounds removed from the diesel phase, was not transformed to its corresponding sulfone, under these experimental conditions. It is only removed as sulfur compound by extraction, without ODS reaction. The surplus amount of oxidant promoted the equilibrium reaction, but the thermal decomposition of oxidant and oxidation reactions produces water, which inhibits the ODS reactions. Therefore, the controlled addition of H{sub 2}O{sub 2} improves ODS reactivity of sulfur compounds.

  13. Studies of supported metal catalysts. Final report, September 1, 1979-April 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Hercules, D.M.

    1984-04-01

    A variety of surface spectroscopic techniques, coupled with chemical activity measurements, has been used to study supported heterogeneous catalysts. The catalytic systems investigated are: Ni on Al/sub 2/O/sub 3/ and SiO/sub 2/, Co on Al/sub 2/O/sub 3/, Co and Zn on Al/sub 2/O/sub 3/, Mo on Al/sub 2/O/sub 3/, Mo in TiO/sub 2/, W on Al/sub 2/O/sub 3/, Co and Mo on Al/sub 2/O/sub 3/ and Ni and W on Al/sub 2/O/sub 3/. Emphasis has been on defining the nature of the surface species on the oxidic catalysts, prior to treatment or activation. Reaction of catalysts with H/sub 2/ and H/sub 2/S/H/sub 2/ have been used for diagnosing different species. Treatment with Ha2S/H/sub 2/ also has been used to elucidate the species on sulfided hydrotreating catalysts. Other aspects of the research involved evaluation of photoacoustic spectroscopy for studying catalysts and use of curve resolving techniques to maximize use of ESCA spectra for studying catalysts. In general, the species on catalysts with loadings below monolayer coverage are determined by the nature of the support. For example, on ..gamma..-Al/sub 2/O/sub 3/ distributions of the metal between tetrahedral (Td) and octahedral (Oh) sites occurs. Reactivity of metals in Oh and Td support sites differ; in Mo-Al/sub 2/O/sub 3/ catalysts, the metal in Td sites is reduced only to Mo(+5) by H/sub 2/ (500/sup 0/C) but Oh Mo is reduced to Mo(+4). Sulfiding Mo/Al/sub 2/O/sub 3/ catalysts produces MoS/sub 2/ but leaves some metal unsulfided (Mo+5). Clear evidence for interaction species was found for ternary catalyst systems, viz. Co-Mo-Al/sub 2/O/sub 3/.

  14. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  15. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    Science.gov (United States)

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  16. Metal Chlorides Supported Solid Catalysts for F-C Acylations of Arenes

    Institute of Scientific and Technical Information of China (English)

    李阳; 刘云龙; 穆曼曼; 陈立功

    2015-01-01

    A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the excellent results were obtained over FeCl3/SiO2. These catalysts were characterized by BET, NH3-TPD and FT-IR of pyridine adsorption to clarify the structure-activity relationship. It was found that FeCl3/SiO2 has larger pore size and pore volume than other catalysts, which increased the accessibility of the catalyst. In addition, FeCl3/SiO2 ex-hibited higher molar ratio of Lewis acid sites and Brφnsted acid sites, which might be another reason for the in-crease of toluene conversion. Furthermore, the reaction parameters, including temperature, time and molar ratio, were optimized. Under the optimized conditions, 91.2%, conversion and 82.0%, selectivity were obtained. Mean-while, the generality of the catalyst was demonstrated by the acylations of alkyl substituted aromatics. Finally, the catalyst was reused for four runs with slight loss in catalytic activity, which attributed to the drain of the active component.

  17. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Ali, Sardar, E-mail: alikhan-635@yahoo.com [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H{sub 2}-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C{sub 5+} selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  18. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    Science.gov (United States)

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  19. Catalytic decomposition of N₂O over CeO₂ supported Co₃O₄ catalysts

    Indian Academy of Sciences (India)

    S K MAHAMMADUNNISA; T AKANKSHA; K KRUSHNAMURTY; CH SUBRAHMANYAM

    2016-11-01

    This work was aimed to design efficient catalysts for N₂O decomposition at low temperatures. Cobalt oxide (Co₃O₄) was prepared by hydrothermal, precipitation and combustion methods and tested for N₂O decomposition. It was found that the catalysts prepared by solution combustion synthesis were most active for this reaction. Subsequently, a series of ceria (CeO₂) supported Co₃O₄ catalysts (xCeCo) were prepared by solution combustion method and used them for N₂O decomposition. All the catalysts were characterized by analytical methods like XRD, TEM, BET, XPS, UV-Vis, Raman and H2-TPR. It was found that 10 and 20 wt..% loading of CeO₂ on Co₃O₄ promoted the activity of Co₃O₄ towards N₂O decomposition, whereas, higher loading of CeO₂ reduced the activity. Typical results indicated that addition of CeO₂ increases the surface area of Co₃O₄ , and improves the reduction of Co³⁺ to Co²⁺ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step for the N₂O decomposition over Co₃O₄ spinel catalysts. Optimal CeO₂ loading can increase both dispersion and surface area of Co₃O₄ catalysts and weaken the Co–O bond strength to promote N₂O decomposition.

  20. Understanding properties of engineered catalyst supports using contact angle measurements and X-ray reflectivity.

    Science.gov (United States)

    Amama, Placidus B; Islam, Ahmad E; Saber, Sammy M; Huffman, Daniel R; Maruyama, Benji

    2016-02-01

    There is significant interest in broadening the type of catalyst substrates that support the growth of high-quality carbon nanotube (CNT) carpets. In this study, ion beam bombardment has been utilized to modify catalyst substrates for CNT carpet growth. Using a combination of contact angle measurements (CAMs) and X-ray reflectivity (XRR) for the first time, new correlations between the physicochemical properties of pristine and engineered catalyst substrates and CNT growth behavior have been established. The engineered surfaces obtained after exposure to different degrees of ion beam damage have distinct physicochemical properties (porosity, layer thickness, and acid-base properties). The CAM data were analyzed using the van Oss-Chaudhury-Good model, enabling the determination of the acid-base properties of the substrate surfaces. For the XRR data, a Fourier analysis of the interference patterns enabled extraction of layer thickness, while the atomic density and interfacial roughness were extracted by analyzing the amplitude of the interference oscillations. The dramatic transformation of the substrate from "inactive" to "active" is attributed to a combined effect of substrate porosity or damage depth and Lewis basicity. The results reveal that the efficiency of catalyst substrates can be further improved by increasing the substrate basicity, if the minimum surface porosity is established. This study advances the use of a non-thermochemical approach for catalyst substrate engineering, as well as demonstrates the combined utility of CAM and XRR as a powerful, nondestructive, and reliable tool for rational catalyst design.

  1. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    Science.gov (United States)

    Zabidi, Noor Asmawati Mohd; Ali, Sardar; Subbarao, Duvvuri

    2014-10-01

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H2-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/ CO = 2v / v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C5+ selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  2. EFFECT OF FOREIGN CARBON ON ACTIVITY OF METHANE COMBUSTION OVER SUPPORTED PALLADIUM CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    Qi Caixia; An Lidun; Wang Hongli

    2001-01-01

    EDTA as precursor of carbon was introduced into Pd(NO3)2 catalysts supported on γ-Al2O3 or 5%MgO/γ-Al2O3. Two kinds of samples,denoted as Pd(NO3)2/[support+EDTA] and [Pd(NO3)2/support]+EDTA, were prepared by changing sequence of impregnating EDTA to the supports. After only being dried they were tested for methane combustion. XPS analyses to the samples at different stages of testing reaction were performed. It was found that the Pd(NO3)2 catalysts became more inactive due to the introduction of EDTA. EDTA in the catalysts was naturally in situ oxidized,partially became into CO2 and escaped, partially coked and deposited on palladium and support with temperature increasing in oxygen-rich atmosphere.Formation of Pd-C solid solution was also confirmed during the reaction. It can be suggested that foreign carbon, in spite of its any existing forms and position in catalysts, inhibits methane combustion largely. The role of carbon on morphological change of palladium during methane combustion was also discussed.

  3. The model thin film alumina catalyst support suitable for catalysis-oriented surface science studies

    Energy Technology Data Exchange (ETDEWEB)

    Nartova, Anna V., E-mail: avnartova@gmail.com [Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave., 5, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Pirogova St., 2, Novosibirsk, 630090 (Russian Federation); Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave., 5, Novosibirsk, 630090 (Russian Federation); Kvon, Ren I., E-mail: kvon@catalysis.ru [Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave., 5, Novosibirsk, 630090 (Russian Federation); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave., 5, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Pirogova St., 2, Novosibirsk, 630090 (Russian Federation)

    2015-09-15

    Graphical abstract: - Highlights: • New model catalyst on “AlOx-thin film/FeCrAl” support is presented. • Metal substrate minimizes sample charging, allows fast and uniform heating. • Surface is rough to model the catalyst support's morphology. • Planar alumina is stable in air/gases/solutions and similar to γ-Al{sub 2}O{sub 3}. • New model support is suitable for in situ XPS, STM, TPD, TPR, etc. - Abstract: The preparation of thin continuous alumina film at the surface of metal substrate in UHV (ultra high vacuum) conditions is described. The peculiarities of the obtained films studied by XPS (X-ray photoelectron spectroscopy) and STM (scanning tunneling microscopy) are discussed. The long-term durability of the oxide film was tested and proved both under ambient conditions and in acidic aqueous solutions. The stability of the planar alumina samples toward oxidation by oxygen was checked in the wide ranges of gas pressure and sample temperature. The suggested procedure ensures the controlled and reproducible preparation of thin alumina films – model support appropriate for wet chemistry catalyst preparation, suitable for STM and for other Surface Science techniques studies of alumina supported metal catalysts.

  4. Wet catalyst-support films for production of vertically aligned carbon nanotubes.

    Science.gov (United States)

    Alvarez, Noe T; Hamilton, Christopher E; Pint, Cary L; Orbaek, Alvin; Yao, Jun; Frosinini, Aldo L; Barron, Andrew R; Tour, James M; Hauge, Robert H

    2010-07-01

    A procedure for vertically aligned carbon nanotube (VA-CNT) production has been developed through liquid-phase deposition of alumoxanes (aluminum oxide hydroxides, boehmite) as a catalyst support. Through a simple spin-coating of alumoxane nanoparticles, uniform centimer-square thin film surfaces were coated and used as supports for subsequent deposition of metal catalyst. Uniform VA-CNTs are observed to grow from this film following deposition of both conventional evaporated Fe catalyst, as well as premade Fe nanoparticles drop-dried from the liquid phase. The quality and uniformity of the VA-CNTs are comparable to growth from conventional evaporated layers of Al(2)O(3). The combined use of alumoxane and Fe nanoparticles to coat surfaces represents an inexpensive and scalable approach to large-scale VA-CNT production that makes chemical vapor deposition significantly more competitive when compared to other CNT production techniques.

  5. Ni supported on activated carbon as catalyst for flue gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of Ni supported on activated carbon are prepared by excessive impregnation and the desulfurization activity is investigated. It has been shown that the activated carbon-supported Ni is an efficient solid catalyst for flue gas desulfurization. The activated carbon treated by HNO3 exhibits high desulfurization activity, and different amounts of loaded-Ni on activated carbon significantly influence the desulfurization activity. The catalysts are studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results of XRD and XPS indicate that the activated carbon treated by HNO3 can increase oxygen-containing functional groups. Ni on activated carbon after calcination at 800 °C shows major Ni phase and minor NiO phase, and with increasing Ni content on activated carbon, Ni phase increases and affects the desulfurization activity of the catalyst, which proves that Ni is the main active phase.

  6. Perlite as a potential support for nickel catalyst in the process of sunflower oil hydrogenation

    Science.gov (United States)

    Radonjić, V.; Krstić, J.; Lončarević, D.; Jovanović, D.; Vukelić, N.; Stanković, M.; Nikolova, D.; Gabrovska, M.

    2015-12-01

    Investigation was conducted in order to elucidate the possibility of using perlite as support for preparation of nickel based precursor catalyst, potentially applicable in vegetable oil hydrogenation process. On three differently prepared expanded perlite, nickel catalyst precursors with identical Ni/SiO2 = 1.1 and Ni/Mg = 10/1 ratios were synthesized by precipitation-deposition method. Different techniques, SEM micrography, He-pycnometry, calcimetry, Hg-porosimetry, N2-physisorption, H2-chemisorption and temperature programmed reduction, were used for characterization of obtained samples. Determining the precursor texture, morphology and reducibility shows a successfully deposited nickel phase on perlite support with promising properties for vegetable oil hydrogenation. Chosen precursor was reduced and passivated in paraffin oil and the obtained catalyst showed significant catalytic activity in the test of sunflower oil hydrogenation.

  7. Selective Oxidation of Isobutane to Methacrylic Acid over Supported V-Mo-P Based Composite Oxide Catalysts

    Institute of Scientific and Technical Information of China (English)

    Feifei Sun; Yunfeng Geng; Shunhe Zhong

    2002-01-01

    Heteropolyacid, the most popular catalyst for the direct oxidation of isobutane, exhibits high catalytic activity, poor thermal stability and a short lifetime. Therefore, the catalyst requires further research to improve its performance. Catalysts composed of mixed oxides (V2O5, P2O5, or MoO3) supported on silica were prepared by the sol-gel method to catalyze the reaction. Results of XRD, IR, and BET corroborated that the mixed oxides were dispersed homogeneously on the surface of support. The activity of lattice oxygen in the catalysts was studied by TPR, and the chemisorption property of isobutane on the surface of the catalysts was investigated by the TPD method. H2-TPR of the catalysts revealed that the lattice oxygen of the vanadium-based catalysts is more active than that of the molybdenum-based catalysts. The rcdox property of V or Mo species is slightly affected by other compositions of the series catalysts. The TPD curves illustrate that there are two kinds of adsorptive species of isobutane on the surface of the V and Mo based catalysts. The adsorbing species on the VMoP/SiO2 catalyst are identical to the main adsorbing species on VP/SiO2 and MoP/SiO2. The catalyst VMoP/SiO2 is more active than others in the selective oxidation of isobutane.

  8. Structure sensitive adsorption of hydrogen on ruthenium and ruthenium-silver catalysts supported on silica

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.

    1999-02-12

    Supported metal catalysts typically consist of particles with sizes less than 10 nm, and because of the small crystallite size, low coordination number sites (edges and corners) represent a significant fraction of all surface sites. Furthermore, it has been demonstrated that adsorption rates can be much greater at these low coordination sites than on basal plane sites. What has not been generally appreciated, however, is that preferential adsorption at edge and corner sites may explain the mechanism by which a promoter, or the addition of a second metal to form a bimetallic, can alter the selectivity and rate of reaction. For example, the measurements of hydrogen adsorption onto supported Ru-Ag catalysts show marked decreases in the amount of hydrogen adsorbed relative to the amount adsorbed on Ru catalysts. Although it is known that Ag does not dissociatively adsorb hydrogen, this decrease cannot be explained by a simple one-to-one site blocking mechanism unless Ag preferentially populates edges and corners, thereby reducing the number of Ru edge sites. Indeed, Monte Carlo simulations of Ru-Group IB metal catalysts predict that Group IB metal atoms preferentially populate corner and edge sites of ruthenium crystals. This evidence, taken together, suggests that adsorption occurs preferentially at Ru corner and edge sites, which act as portals onto basal planes. A model based on this portal theory for hydrogen adsorption onto supported ruthenium bimetallic catalysts has been developed using a rate equation approach. Specifically, the model accounts for the following features: (1) preferential adsorption through portals, (2) basal plane site-energy multiplicity, and (3) hydrogen spillover onto the support. A comparison of model predictions with experiment is presented for different concentration of Ag in Ru-Ag catalysts. The portal model of hydrogen adsorption can explain the observed decreased in the amount of hydrogen adsorbed on Ru-Ag catalysts. The model can be

  9. Carbon-supported platinum alloy catalysts for phenol hydrogenation for making industrial chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.T.; Song, C.

    1999-07-01

    Phenol is available in large quantities in liquids derived from coal and biomass. Phenol hydrogenation is an industrially important reaction to produce cyclohexanone and cyclohexanol. Cyclohexane, cyclohexene and benzene are obtained as minor products in this reaction. Cyclohexanone is an important intermediate in the production of caprolactam for nylon 6 and cyclohexanol for adipic acid production. In USA, cyclohexanol and cyclohexanone are produced by benzene hydrogenation to cyclohexane over nickel or noble metal catalysts, followed by oxidation of cyclohexane to produce a mixture of cyclohexanol and cyclohexanone. Then cyclohexanol is dehydrogenated in the presence of Cu-Zn catalyst to cyclohexanone. Usually phenol hydrogenation is also carried out by using Ni catalyst in liquid phase. However, a direct single-step vapor phase hydrogenation of phenol to give cyclohexanone selectively is more advantageous in terms of energy savings and process economics, since processing is simplified and the endothermic step of cyclohexanol dehydrogenation can be avoided, as demonstrated by Montedipe and Johnson Matthey using promoted Pd/Al{sub 2}O{sub 3} catalyst. While it is not the purpose of this paper to dwell on the relative merits of these routes, it is necessary to mention that while using monometallic catalysts, generally the problem of catalyst deactivation of sintering as well as coking is frequently encountered. Addition and alloying of noble metal (e.g. Pt) with a second metal can result in a catalyst with better selectivity and activity in the reaction which is more resistant to deactivation. This paper presents the results on the single-step vapor phase hydrogenation of phenol over carbon-supported Pt-M (M=Cr, V, Zr) alloy catalysts to yield mainly cyclohexanone or cyclohexanol.

  10. Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts

    Science.gov (United States)

    Pudukudy, Manoj; Yaakob, Zahira; Akmal, Zubair Shamsul

    2015-03-01

    Thermocatalytic decomposition of methane is an alternative route for the production of COx-free hydrogen and carbon nanomaterials. In this work, a set of novel Ni, Co and Fe based bimetallic catalysts supported over mesoporous SBA-15 was synthesized by a facile wet impregnation route, characterized for their structural, textural and reduction properties and were successfully used for the methane decomposition. The fine dispersion of metal oxide particles on the surface of SBA-15, without affecting its mesoporous texture was clearly shown in the low angle X-ray diffraction patterns and the transmission electron microscopy (TEM) images. The nitrogen sorption analysis showed the reduced specific surface area and pore volume of SBA-15, after metal loading due to the partial filling of hexagonal mesopores by metal species. The results of methane decomposition experiments indicated that all of the bimetallic catalysts were highly active and stable for the reaction at 700 °C even after 300 min of time on stream (TOS). However, a maximum hydrogen yield of ∼56% was observed for the NiCo/SBA-15 catalyst within 30 min of TOS. A high catalytic stability was shown by the CoFe/SBA-15 catalyst with 51% of hydrogen yield during the course of reaction. The catalytic stability of the bimetallic catalysts was attributed to the formation of bimetallic alloys. Moreover, the deposited carbons were found to be in the form of a new set of hollow multi-walled nanotubes with open tips, indicating a base growth mechanism, which confirm the selectivity of SBA-15 supported bimetallic catalysts for the formation of open tip carbon nanotubes. The Raman spectroscopic and thermogravimetric analysis of the deposited carbon nanotubes over the bimetallic catalysts indicated their higher graphitization degree and oxidation stability.

  11. Synthesising Fe-Mo catalysts supported on silica for the selective oxidation of methane to formaldehyde

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Guerrero Fajardo

    2010-05-01

    Full Text Available The selective oxidation of methane to formaldehyde was analysed using iron-molybdenum catalysts supported on silica prepared by the sol-gel method which leads to obtaining a greater surface area and high iron and molybdenum metal dispersion on the si-lica’s amorphous surface. Seven catalysts were prepared, one of them as silica support, another as 0.5% wt iron load without molybdenum and the remaining five having 0.1%-1.0% weight molybdenum and 0.5% wt iron loads. The highest BET areas were 830 and 879 m2.g-1 for catalysts 2 (0.5% Fe - 0% Mo and 4 (0.5% Fe - 0.3% Mo respectively, having 28% average micropo-rosity and 47% average mesoporosity. X-ray diffraction confirmed the catalysts’ amorphous structure. The TPR spectrum showed low hydrogen consumption attributed to the absence of isolated Fe and Mo species. ESCA analysis revealed the same Fe/Mo a-tomic ratio on the catalyst surface as in the bulk preparation. Catalytic activity was carried out at atmospheric pressure, CH4/ O2/N2 = 7.5/1/4 reaction mixture, 400-800°C temperature interval. Catalysts 4 (0.5% Fe - 0.3% Mo, 5 (0.5% Fe - 0.5% Mo and 7 (0.5% Fe - 1.0% Mo displayed greater methane conversion, whereas catalysts 5 (0.5% Fe - 0.5% Mo, 4 (0.5% Fe - 0.3% Mo, 2 (0.5% Fe - 0% Mo and 7 (0.5% Fe - 1.0% Mo gave better formaldehyde product results. The highest conversion per- centage (4.07% mol was presented at 700°C for catalyst 4 (0.5% Fe-0.3% Mo. Formaldehyde yield was 202,0 gHCHO.kg-1 cata.h-1 at this temperature.

  12. A Review on Metal-support Interaction in Automotive Catalysts

    Institute of Scientific and Technical Information of China (English)

    ZHENG Tingting; HE Junjun; WANG Song; LU Jun; ZHAO Yunkun

    2012-01-01

    TWC-equipped exhausts are widely used in gasoline-fueled vehicles to meet stringent emission regulations.The main components in TWCs are precious metals such as palladium (Pd),platinum (Pt),and rhodium (Rh) as the active component,and inorganic oxides such as γ-alumina (Al2O3),ceria (CeO2),zirconia (ZrO2) and ceria-zirconia (CeO2-ZrO2) are used as the support.Interaction of precious metals and support plays an important role in the thermal stability and catalytic performance of TWCs.The support can improve the dispersion of precious metals and suppress the sintering of precious metals at high temperature.In the same,precious metals can also enhance the redox performance and oxygen storage capacity of support.This paper reviews the reaction phenomenon and mechanism of precious metals (Pt,Pd,Rh) and supports such as Al2O3,CeO2-based composite oxides.

  13. Hydrogen production from biomass gasification using biochar as a catalyst/support.

    Science.gov (United States)

    Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping

    2016-09-01

    Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production.

  14. Effect of Sn on methane decomposition over Fe supported catalysts to produce carbon

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Patricia F.; Ribeiro, Leandro P.; Rosmaninho, Marcelo G. [ICEx. Universidade Federal de Minas Gerais (UFMG), Departamento de Quimica (Brazil); Ardisson, Jose D. [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN), Laboratorio de Fisica Aplicada (Brazil); Dias, Anderson [Universidade Federal de Ouro Preto (UFOP), Departamento de Quimica (Brazil); Lago, Rochel M., E-mail: rochel@qui.ufmg.br [ICEx. Universidade Federal de Minas Gerais (UFMG), Departamento de Quimica (Brazil)

    2011-11-15

    In this work, alumina-supported Sn containing Fe catalysts were investigated in CVD reactions (Chemical Vapor Deposition) using methane for carbon production. The catalysts were prepared with 10 wt.% of Fe (as Fe{sub 2}O{sub 3}) and 3, 6 and 12 wt.% of Sn (as SnO{sub 2}) supported on Al{sub 2}O{sub 3} named hereon Fe10Sn3A, Fe5Sn6A and Fe10Sn12A, respectively. These catalysts were characterized by SEM, TPCVD, TPR, TG, Raman, XRD and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. Methane reacts with Fe10A catalyst (without Sn) in the temperature range 680-900 Degree-Sign C to produce mainly Fe{sup 0}, Fe{sub 3}C and 20 wt.% of carbon deposition. TPR and TPCVD clearly showed that Sn strongly hinders the CH{sub 4} reaction over Fe catalyst. {sup 57}Fe Moessbauer suggested that in the presence of Sn the reduction of Fe{sup + 3} by methane becomes very difficult. {sup 119}Sn Moessbauer showed Sn{sup + 4} species strongly interact with metallic iron after CVD, producing iron-tin phases such as Fe{sub 3}SnC and FeSn{sub 2}. This interaction Sn-Fe increases the CVD temperatures and decreases the carbon yield leading to the production of more organized forms of carbon such as carbon nanotubes, nanofibers and graphite.

  15. Effect of Sn on methane decomposition over Fe supported catalysts to produce carbon

    Science.gov (United States)

    Oliveira, Patrícia F.; Ribeiro, Leandro P.; Rosmaninho, Marcelo G.; Ardisson, José D.; Dias, Anderson; Lago, Rochel M.

    2011-11-01

    In this work, alumina-supported Sn containing Fe catalysts were investigated in CVD reactions (Chemical Vapor Deposition) using methane for carbon production. The catalysts were prepared with 10 wt.% of Fe (as Fe2O3) and 3, 6 and 12 wt.% of Sn (as SnO2) supported on Al2O3 named hereon Fe10Sn3A, Fe5Sn6A and Fe10Sn12A, respectively. These catalysts were characterized by SEM, TPCVD, TPR, TG, Raman, XRD and 57Fe and 119Sn Mössbauer spectroscopy. Methane reacts with Fe10A catalyst (without Sn) in the temperature range 680-900°C to produce mainly Fe0, Fe3C and 20 wt.% of carbon deposition. TPR and TPCVD clearly showed that Sn strongly hinders the CH4 reaction over Fe catalyst. 57Fe Mössbauer suggested that in the presence of Sn the reduction of Fe + 3 by methane becomes very difficult. 119Sn Mössbauer showed Sn + 4 species strongly interact with metallic iron after CVD, producing iron-tin phases such as Fe3SnC and FeSn2. This interaction Sn-Fe increases the CVD temperatures and decreases the carbon yield leading to the production of more organized forms of carbon such as carbon nanotubes, nanofibers and graphite.

  16. Theoretical study of the catalytic CO oxidation by Pt catalyst supported on Ge-doped grapheme.

    Science.gov (United States)

    Tang, Yanan; Yang, Zongxian; Dai, Xianqi; Lu, Zhansheng; Zhang, Yanxing; Fu, Zhaoming

    2014-09-01

    The geometry, electronic structure and catalytic properties of the anchored Pt atom on the Ge-doped graphene (Pt/Ge-graphene) substrates are investigated using the first-principles computations. It is found that Ge atoms can form strong covalent bonds with the carbon atoms at the vacancy site on the defective graphene. The Ge-graphene as substrate can effectively anchored Pt atoms and form supported Pt catalyst, which exhibits good catalytic activity for CO oxidation with a two-step route, starting with the Langmuir-Hinshelwood (LH) reaction followed by the Eley-Rideal (ER) reaction. The Ge dopant in graphene plays a vital role in enhancing the substrate-adsorbate interaction through facilitating the charge redistribution at their interfaces. The Ge-graphene can be used as the reactive support to control the stability and activity of the Pt catalysts. This work provides valuable guidance on fabricating carbon-based catalysts for CO oxidation, and validates the reactivity of single-atom catalyst for designing atomic-scale catalysts.

  17. Sintering-resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanyong; Schweitzer, Neil; League, Aaron; Bernales Candia, Sandra Varinia; Peters, Aaron; Getsoian, Andrew G.; Wang, Timothy; Miller, Jeffrey T.; Vjunov, Aleksei; Fulton, John L.; Lercher, Johannes A.; Cramer, Christopher J.; Gagliardi, Laura; Hupp, Joseph; Farha, Omar

    2016-02-17

    Developing supported single-site catalysts is an important goal in heterogeneous catalysis, since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based MOF, NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a metal–organic framework (MOF) (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.

  18. A combined in situ XAS-XRPD-Raman study of Fischer-Tropsch synthesis over a carbon supported Co catalyst

    DEFF Research Database (Denmark)

    Tsakoumis, Nikolaos E.; Dehghan, Roya; Johnsen, Rune;

    2013-01-01

    A cobalt based Fischer-Tropsch synthesis (FTS) catalyst, supported on a carbon nanofibers/carbon felt composite (Co/CNF/CF) was studied in situ at realistic conditions. The catalyst was monitored by Xray absorption spectroscopy (XAS), high-resolution X-ray powder diffraction (HR-XRPD) and Raman...... spectroscopy, while changes in the gas phase were observed by mass spectrometry (MS). Transmission electron microscopy (TEM) was also applied to characterise the catalyst. The catalyst has a bimodal particle size distribution and exhibits a high deactivation rate. During the in situ study the catalyst appears...

  19. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  20. Carbon nanotubes: A promising catalyst support material for supercritical water gasification of biomass waste

    NARCIS (Netherlands)

    Vlieger, de D.J.M.; Thakur, D.B.; Lefferts, L.; Seshan, K.

    2012-01-01

    Supercritical water (SCW) as a reaction medium is especially promising for the production of renewable chemicals from biomass. Stability issues of catalyst support materials in SCW are a major setback for these reactions and hinder the further development and industrial exploitation of this techniqu

  1. Catalytic Ring Hydrogenation of Benzoic Acid with Supported Transition Metal Catalysts in scCO2

    Directory of Open Access Journals (Sweden)

    Fengyu Zhao

    2007-07-01

    Full Text Available The ring hydrogenation of benzoic acid to cyclohexanecarboxylic acid overcharcoal-supported transition metal catalysts in supercritical CO2 medium has been studiedin the present work. The cyclohexanecarboxylic acid can be produced efficiently insupercritical CO2 at the low reaction temperature of 323 K. The presence of CO2 increasesthe reaction rate and several parameters have been discussed.

  2. Carbon Supported Polyaniline as Anode Catalyst: Pathway to Platinum-Free Fuel Cells

    CERN Document Server

    Zabrodskii, A G; Malyshkin, V G; Sapurina, I Y

    2006-01-01

    The effectiveness of carbon supported polyaniline as anode catalyst in a fuel cell (FC) with direct formic acid electrooxidation is experimentally demonstrated. A prototype FC with such a platinum-free composite anode exhibited a maximum room-temperature specific power of about 5 mW/cm2

  3. Calcium Oxide Supported on Monoclinic Zirconia as a Highly Active Solid Base Catalyst

    NARCIS (Netherlands)

    Frey, A.M.; Haasterecht, van T.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Calcium oxide supported on ZrO2 is a highly active catalyst for base-catalyzed reactions such as aldol-type reactions and transesterification reactions. The role of key parameters during preparation, that is, impregnation versus precipitation, heat treatment, and metal oxide loading on the basicity

  4. Vanadia-based SCR Catalysts Supported on Tungstated and Sulfated Zirconia: Influence of Doping with Potassium

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Boghosian, Soghomon; Kustov, Arkadii

    2007-01-01

    preparation parameters were examined, including the choice of precipitant, variation of carrier surface area, potassium poisoning, crystallinity, and ZrO2-phase composition. The results show that the catalysts structure and SCR activity is affected from the synthesis route by means of support crystallinity...

  5. Phosphite Ligand Modified Supported Rhodium Catalyst for Hydroformylation of Internal Olefins to Linear Aldehydes

    Institute of Scientific and Technical Information of China (English)

    LI Xian-ming; DING Yun-jie; JIAO Gui-ping; LI Jing-wei; YAN Li; ZHU He-jun

    2009-01-01

    A phosphite ligand modified heterogeneous catalyst was developed for the hydroformylation of internal olefins to linear aldehydes, which showed a high activity and high regioselectivity and could be separated easily by filtration after reaction in an autoclave. Three nanoporous silica sieves were used to investigate the influence of pore structure and shape selective performance of support on the regioselectivity to the linear products.

  6. Nitrogen containing species as intermediates in the oxidation of ammonia over silica supported molybdena catalysts

    NARCIS (Netherlands)

    Biermann, J.J.P.; Janssen, F.J.J.G.; Ross, J.R.H.

    1992-01-01

    The behaviour of ammonia and oxygen over silica supported molybdena catalysts has been studied by means of thermal analysis techniques, such as thermo-gravimetry and heat-flow calorimetry. The composition of the reactants and products was determined by means of mass spectrometric analysis. Nitrogen-

  7. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie;

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic...

  8. Catalytic Ring Hydrogenation of Benzoic Acid with Supported Transition Metal Catalysts in scCO2

    OpenAIRE

    2007-01-01

    The ring hydrogenation of benzoic acid to cyclohexanecarboxylic acid over charcoal-supported transition metal catalysts in supercritical CO2 medium has been studied in the present work. The cyclohexanecarboxylic acid can be produced efficiently in supercritical CO2 at the low reaction temperature of 323 K. The presence of CO2 increases the reaction rate and several parameters have been discussed.

  9. A comprehensive model for the supported vanadium oxide catalyst: The umbrella model

    NARCIS (Netherlands)

    Lingen, J.N.J. van

    2006-01-01

    Supported vanadium oxide catalysts are widely used in industry. However, the molecular structure of the active species, responsible for the actual catalysis, is for a large part still unknown. This thesis describes four years study on the elucidation of this molecular structure. It mainly focuses on

  10. Alkene Isomerization Using a Solid Acid as Activator and Support for a Homogeneous Catalyst

    Science.gov (United States)

    Seen, Andrew J.

    2004-01-01

    An upper-level undergraduate experiment that, in addition to introducing students to catalysis using an air sensitive transition-metal complex, introduces the use of a solid acid as an activator and support for the catalyst is developed. The increased stability acquired in the course of the process affords the opportunity to characterize the…

  11. Stability of cobalt supported on ZrO{sub 2} catalysts for methane combustion

    Energy Technology Data Exchange (ETDEWEB)

    Milt, V.G.; Lombardo, E.A.; Ulla, M.A. [Instituto de Investigaciones en Catalisis y Petroquimica, INCAPE FIQ, UNL-CONICET, Santiago del Estero 2829, 3000 Santa Fe (Argentina)

    2002-04-08

    Cobalt supported catalysts were prepared by two different techniques: atomic layer epitaxy (ALE) and wet impregnation. Either ZrO{sub 2} or La/ZrO{sub 2} (La-doped ZrO{sub 2}) were used as supports. The solids were characterized by XRD, TPR and XPS before and after hydrothermal and catalytic stability tests (TOS: 150h, 970K). The most active catalysts were those in which cobalt was incorporated using the epitaxial growth technique. Moreover, the initial activity of cobalt supported on ZrO{sub 2} by ALE was significantly higher than that on La/ZrO{sub 2}. But, after maintaining the former catalysts for 150h at 970K on stream (stability test), their initial high activities significantly decreased. On the other hand, when Co was supported on La-doped ZrO{sub 2} the resulting catalysts became much more stable. Combining the catalytic results with the characterization information a simple model is proposed that rationalizes the behavior of these solids.

  12. Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    1999-01-01

    Diffuse reflectance spectroscopy is a suitable technique for studying heterogeneous catalysts, as both d-d and charge transfer transitions of supported transition metal ions can be probed. Within the past several years, new developments have resulted in a more detailed understanding of the surface c

  13. Recent Applications of Polymer Supported Organometallic Catalysts in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Nina Kann

    2010-09-01

    Full Text Available Recent developments concerning the application of polymer supported organometallic reagents in solid phase synthesis are reviewed, with a special focus on methodology for carbon-carbon formation. Examples of reactions that are covered include the classical Suzuki, Sonogashira and Heck coupings, but also aryl amination, epoxide opening, rearrangements, metathesis and cyclopropanation. Applications in the field of asymmetric synthesis are also discussed.

  14. Niobia-supported Cobalt Catalysts for Fischer-Tropsch Synthesis

    NARCIS (Netherlands)

    den Otter, J.H.

    2016-01-01

    In this thesis niobia has been shown to be an attractive support for application in Fischer-Tropsch catalysis at industrially relevant conditions without apparent deactivation up to at least 200 hours of operation. This proves that the level of potentially poisoning contaminants is sufficiently low

  15. HDS, HDN and HDA activities of nickel-molybdenum catalysts supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Crespo, M.A. [Instituto Mexicano del Petroleo, Programa de Tratamiento de Crudo Maya. Avenida Eje Central Lazaro Cardenas No.152, Col. San Bartolo Atepehuacan, 07730, Mexico D. F. (Mexico); Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA-Altamira, IPN) Km 14.5 Carretera Tampico-puerto Industrial 89600, Altamira, Tamaulipas (Mexico); Torres-Huerta, A.M.; Ramirez-Meneses, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA-Altamira, IPN) Km 14.5 Carretera Tampico-puerto Industrial 89600, Altamira, Tamaulipas (Mexico); Diaz-Garcia, L. [Instituto Mexicano del Petroleo, Programa de Tratamiento de Crudo Maya. Avenida Eje Central Lazaro Cardenas No.152, Col. San Bartolo Atepehuacan, 07730, Mexico D. F. (Mexico); Arce-Estrada, E.M. [Instituto Politecnico Nacional, Departamento de Metalurgia y Materiales. A.P. 75-876, 07300 Mexico, D. F. (Mexico)

    2008-08-15

    In this work, NiMo-Al{sub 2}O{sub 3} catalysts were prepared by using different alumina precursors. The supports were impregnated by means of the spray at incipient wetness technique in both basic and acid media. Both the supports and fresh catalysts were characterized by the adsorption-desorption isotherms, Temperature-Programmed Reduction (TPR), Thermal Pyridine Adsorption-Desorption (TPD) and X-Ray Diffraction analyses (XRD). After sulfidation, the NiMoS metallic particles were characterized by Transmission Electron Microscopy (TEM). The initial analyses were performed in a trickle-bed reactor by using a real feedstock (Mexican heavy gas oil) and performing hydrotreating reactions (HDS, HDN and HDA) at three different temperatures: 613, 633 and 653 K; and 54 kg cm{sup -} {sup 2}. The catalytic activities are discussed in relation to the physicochemical properties of the NiMo catalysts, alumina phase and pH of the impregnating solution. The catalytic results show an increase in the conversion profiles with temperature. The sulfur conversion was increased from 89 to 99.25%, 91-99%, 90.8-97%, 83-95% and 78-96% when the crystal size of the support varied from 3 to 20 nm, respectively. The nitrogen and aromatic conversions were also increased in the range of 23-45 wt.%. It was found that the {gamma} phase reached a higher catalytic performance than the {eta} phase. The NiMo catalysts synthesized in a basic medium showed a better catalytic performance than that obtained with those prepared in acid solutions. The significance of the kinetic data to compare the catalysts is discussed. The maximum value of the catalytic activity was reached with the catalysts with the smallest particle sizes. (author)

  16. Effect of Sr loading on oxydehydrogenation of propane to propylene over Al2O3-supported V-Mo catalysts

    Institute of Scientific and Technical Information of China (English)

    Meilana; Dharma; Putra; Saeed; M.Al-Zahrani; Ahmed; E.Abasaeed

    2013-01-01

    Incorporation of strontium into V-Mo alumina-supported catalyst enhanced its performance (increased conversion and selectivity,decreased reducibility and improved stability) in propane oxydehydrogenation to propylene.12.5% Sr loading was shown to be the optimum content to the V-Mo catalyst.The results were supported by various characterization techniques,namely,BET,XRD,SEM,FTIR and TPD.

  17. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI)

    Institute of Scientific and Technical Information of China (English)

    Botao Qiao[1; Jin-Xia Liang[3,4; Aiqin Wang[2; Cong-Qiao Xu[3; Jun Li[3; Tao Zhang[2; Jingyue (Jimmy) Liu[1

    2015-01-01

    Supported noble metal nanoparticles (including nanoclusters) are widely used in many industrial catalytic processes. While the finely dispersed nanostructures are highly active, they are usually thermodynamically unstable and tend to aggregate or sinter at elevated temperatures. This scenario is particularly true for supported nanogold catalysts because the gold nanostructures are easily sintered at high temperatures, under reaction conditions, or even during storage at ambient temperature. Here, we demonstrate that isolated Au single atoms dispersed on iron oxide nanocrystallites (Aul/FeOx) are much more sintering- resistant than Au nanostructures, and exhibit extremely high reaction stability for CO oxidation in a wide temperature range. Theoretical studies revealed that the positively charged and surface-anchored Aul atoms with high valent states formed significant covalent metal-support interactions (CMSIs), thus providing the ultra-stability and remarkable catalytic performance. This work may provide insights and a new avenue for fabricating supported Au catalysts with ultra-high stability.

  18. POLYMER—SUPPORTED RHODIUM CATALYSTS FOR CARBONYLATION OF METHYL ACETATE TO ACETIC ANHYDRIDE

    Institute of Scientific and Technical Information of China (English)

    CHENDean; HUANGShizhuan; 等

    1993-01-01

    Two kinds of rhodium catalysts supported on cross-linked styrene-divinylbenzene copolymers containing bipyridine or o-phenylene diamine have been prepared and found to display high activity for methyl acetate carbonylation to form acetic anhydride,the activities are even higher than their homogeneous counterparts. XPS analysis was used to characterize the synthetic catalysts.The apparent activation parameters were determined to be Eα=73.3KJ/mol,ΔH≠=66.3KJ/mol,ΔS≠=-28.6eu.These parameters are very close to those in methanol carbonylation and imply to have analogous mechanism in both cases.

  19. Nb K- and L3-edges XAFS study on the structure of supported Nb carbide catalyst

    Science.gov (United States)

    Ichikuni, N.; Yanagase, F.; Mitsuhara, K.; Hara, T.; Shimazu, S.

    2016-05-01

    Mesoporous silica SBA-15 supported NbC catalysts were prepared under reduced pressure of CH4-H2 gas in a closed circulating system. Nb K- and L 3-edges XAFS measurements revealed that small NbC cluster formed on SBA-15 support and gradual carburization process by lengthening the carburization temperature-maintaining period. Carburization degree of Nb species was clearly explained by using threshold energy shift of Nb L 3-edge XANES profile.

  20. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis.

    Science.gov (United States)

    Rajabi, Fatemeh; Alves, Diego; Luque, Rafael

    2015-11-19

    The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least ten times without any loss of activity. No cobalt contamination could be detected in the products by AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.

  1. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2015-11-01

    Full Text Available The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least ten times without any loss of activity. No cobalt contamination could be detected in the products by AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.

  2. Hydrodechlorination of Tetrachloromethane over Palladium Catalysts Supported on Mixed MgF2-MgO Carriers

    Directory of Open Access Journals (Sweden)

    Magdalena Bonarowska

    2016-11-01

    Full Text Available Pd/MgO, Pd/MgF2 and Pd/MgO-MgF2 catalysts were investigated in the reaction of CCl4 hydrodechlorination. All the catalysts deactivated in time on stream, but the degree of deactivation varied from catalyst to catalyst. The MgF2-supported palladium with relatively large metal particles appeared the best catalyst, characterized by good activity and selectivity to C2-C5 hydrocarbons. Investigation of post-reaction catalyst samples allowed to find several details associated with the working state of hydrodechlorination catalysts. The role of support acidity was quite complex. On the one hand, a definite, although not very high Lewis acidity of MgF2 is beneficial for shaping high activity of palladium catalysts. The MgO-MgF2 support characterized by stronger Lewis acidity than MgF2 contributes to very good catalytic activity for a relatively long reaction period (~5 h but subsequent neutralization of stronger acid centers (by coking eliminates them from the catalyst. On the other hand, the role of acidity evolution, which takes place when basic supports (like MgO are chlorided during HdCl reactions, is difficult to assess because different events associated with distribution of chlorided support species, leading to partial or even full blocking of the surface of palladium, which plays the role of active component in HdCl reactions.

  3. MgO-SBA-15 Supported Pd-Pb Catalysts for Oxidative Esterification of Methacrolein with Methanol to Methyl Methacrylate☆

    Institute of Scientific and Technical Information of China (English)

    Li Jiang; Yanyan Diao; Junxing Han; Ruiyi Yan; Xiangping Zhang; Suojiang Zhang

    2014-01-01

    Novel MgO–SBA-15 supported catalysts were prepared for oxidative esterification of methacrolein (MAL) with methanol to methyl methacrylate (MMA). The MgO–SBA-15 supports were synthesized with different magnesia loadings from different magnesium precursors and hydrochloric acid molar concentrations. The MgO–SBA-15 sup-ports and Pd–Pb/MgO–SBA-15 catalysts were characterized by several analysis methods. The results revealed that the addition of MgO improved the ordered structure of SBA-15 supports and provided surface alkalinity of SBA-15 supports. The average size of the Pd3Pb particles on magnesia-modified Pd–Pb/MgO–SBA-15 catalysts was smal er than that on the pure silica-based Pd–Pb/SBA-15 catalysts. The experiments on catalyst performance showed that the magnesia-modified Pd–Pb/MgO–SBA-15 catalysts had higher activity than pure silica-based Pd–Pb/SBA-15 catalysts, showing the strong dependence of catalytic activity on the average size of active particles. The difference of activity between Pd–Pb/SBA-15 catalysts and Pd–Pb/MgO–SBA-15 catalysts was due to the discrepant structural properties and surface alkalinity provided by MgO, which led to the different Pd3Pb particle sizes and then resulted in the different number of active sites. Besides magnesia loadings, other factors, such as hydrochloric acid molar concentration and magnesium precursors, had considerable influences on the catalytic activity.

  4. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    The main objective of our research has been to elucidate fundamental concepts associated with controlling the activity, selectivity, and stability of bifunctional, metal-based heterogeneous catalysts for tandem reactions, such as liquid-phase conversion of oxygenated hydrocarbons derived from biomass. We have shown that bimetallic catalysts that combine a highly-reducible metal (e.g., platinum) with an oxygen-containing metal promoter (e.g., molybdenum) are promising materials for conversion of oxygenated hydrocarbons because of their high activity for selective cleavage for carbon-oxygen bonds. We have developed methods to stabilize metal nanoparticles against leaching and sintering under liquid-phase reaction conditions by using atomic layer deposition (ALD) to apply oxide overcoat layers. We have used controlled surface reactions to produce bimetallic catalysts with controlled particle size and controlled composition, with an important application being the selective conversion of biomass-derived molecules. The synthesis of catalysts by traditional methods may produce a wide distribution of metal particle sizes and compositions; and thus, results from spectroscopic and reactions kinetics measurements have contributions from a distribution of active sites, making it difficult to assess how the size and composition of the metal particles affect the nature of the surface, the active sites, and the catalytic behavior. Thus, we have developed methods to synthesize bimetallic nanoparticles with controlled particle size and controlled composition to achieve an effective link between characterization and reactivity, and between theory and experiment. We have also used ALD to modify supported metal catalysts by addition of promoters with atomic-level precision, to produce new bifunctional sites for selective catalytic transformations. We have used a variety of techniques to characterize the metal nanoparticles in our catalysts, including scanning transmission electron

  5. Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization

    Directory of Open Access Journals (Sweden)

    F. V. Barsi

    2009-06-01

    Full Text Available Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt and bimetallic catalysts (Pt-Ni, using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on the catalytic properties for n-hexane isomerization. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH36]Cl2 and [Pt(NH34]Cl2 as precursors. Four series of catalysts with constant atomic metal content had total metal amounts between 130 and 280 µmol M/g cat. Catalysts were characterized by temperature programmed reduction (TPR and subjected to catalytic evaluation for n-hexane isomerization at 250 ºC and 1 atm using H2/C6 = 9 molar ratio. TPR results show an easier reducibility of Ni+2 cations in the presence of Pt, which was evidenced by the displacement of the reduction peak of those cations towards lower temperatures in bimetallic catalysts. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases. The results of the activity as a function of the Pt content in the bimetallic catalysts show a maximum value around 50% of Pt. An addition of Pt above this critical value leads to a small decrease of the catalytic activity.

  6. An Alumina-Supported Ni-La-Based Catalyst for Producing Synthetic Natural Gas

    Directory of Open Access Journals (Sweden)

    Daniel E. Rivero-Mendoza

    2016-10-01

    Full Text Available LaNi5, known for its hydrogen storage capability, was adapted to the form of a metal oxide-supported (γ-Al2O3 catalyst and its performance for the Sabatier reaction assessed. The 20 wt % La-Ni/γ-Al2O3 particles were prepared via solution combustion synthesis (SCS and exhibited good catalytic activity, achieving a CO2 conversion of 75% with a high CH4 selectivity (98% at 1 atm and 300 °C. Characteristics of the La-Ni/γ-Al2O3 catalyst were identified at various stages of the catalytic process (as-prepared, activated, and post-reaction and in-situ DRIFTS was used to probe the reaction mechanism. The as-prepared catalyst contained amorphous surface La–Ni spinels with particle sizes <6 nm. The reduction process altered the catalyst make-up where, despite the reducing conditions, Ni2+-based particles with diameters between 4 and 20 nm decorated with LaOx moieties were produced. However, the post-reaction catalyst had particle sizes of 4–9 nm and comprised metallic Ni, with the LaOx decoration reverting to a form akin to the as-prepared catalyst. DRIFTS analysis indicated that formates and adsorbed CO species were present on the catalyst surface during the reaction, implying the reaction proceeded via a H2-assisted and sequential CO2 dissociation to C and O. These were then rapidly hydrogenated into CH4 and H2O.

  7. Inhibition effects in the partial oxidation of cyclohexane on polymer supported Co(II catalysts

    Directory of Open Access Journals (Sweden)

    MAJA ODOVIC

    2005-02-01

    Full Text Available Polymer supported catalysts with different contents of metal ions where synthesized by wet impregnation of the degassed support from ethanolic solutions of cobalt(II nitrate. Amacroreticular copolymer of poly-4-vinylpyridine with divinylbenzene was used as the support. The prepared catalysts were tested in the partial oxidation of cyclohexane to cyclohexanol and cyclohexanone. Activity tests were performed in a stainless steel, laboratory scale, stirred autoclave, in the semi batch regime under isothermal and non-isothermal conditions. Isothermal experiments where performed at 170 °C for 120 min. In the non-isothermal conditions. isothermal experiments where performed at 170 °C for 120 min. In the non-isothermal experiments, a constant heating rate of 0.3 degree/min was used in the range between 110 °C and 170 °C. Non-linear, least-squares analysis with the simplex optimization method and numerical simulation of the reaction model in each iterative step was used for the kinetic characterization of the process in a non-stationary, semi-batch regime. Apparent rate constants were obtained as an invariant measure of the catalytic system. Anon-linear effect of the content of metal ions on the reaction rate and on the ratio of the yield of the products was observed, which is attributed to a complex interactions between the reaction medium and the heterogeneous catalyst, including a catalyst-inhibition effect.

  8. In situ synthesis of nano clay filled polyethylene using polymer support metallocenes catalyst system

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, Z.V.P.; Parikh, Parimal A., E-mail: zvpm@ched.svnit.ac.in [Sardar Vallabhbhai National Institute of Technology, Gujarat (India). Chemical Engineering Department; Rajesh, Smitha [Sardar Vallabhbhai National Institute of Technology, Gujarat (India). Sardar Vallabhbhai National Institute of Technology. Chemical Engineering Department

    2011-07-01

    In situ ethylene polymerizations were performed using bis(cyclopentadiene)titanium dichloride supported on poly ethersulfone as catalyst. The bis(cyclopentadiene)titanium dichloride supported on poly ethersulfone catalyst activity estimated by ethylene polymerization was 360 kg PE/mol Ti/h. During polymerization the fillers used were montmorillonite nano clays having surface modifications with 35-45 wt % dimethyl dialkyl(14-18)amine (FA) and 25-30 wt % trimethyl stearyl ammonium (FB). These fillers were pretreated with methylaluminoxine (MAO; co catalyst) for better dispersion onto the polymer matrix. The formation of polyethylene within the whole matrix was confirmed by FTIR studies. It was found that the nature of nano filler did not have any remarkable effect on the melting characteristics of the polymer. TGA study indicates that nano clay FB filled polyethylene has higher thermal stability than nano clay FA filled polyethylene. The melting temperature of the obtained polyethylenes was 142 degree C, which corresponds to that synthesized by the polyether sulfone supported catalyst. (author)

  9. Gold-supported cerium-doped NiOx catalysts for water oxidation

    Science.gov (United States)

    Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; Chakthranont, Pongkarn; Kirk, Charlotte; Vojvodic, Aleksandra; Jaramillo, Thomas F.

    2016-05-01

    The development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiOx films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeOx-Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highly active under-coordinated sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeOx-Au catalyst is further demonstrated in a device context by pairing it with a nickel-molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.

  10. Solid state NMR investigation of silica aerogel supported Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiru; Dunn, Brian C.; Turpin, Gregory C.; Eyring, Edward M.; Ernst, Richard D.; Pugmire, Ronald J. [Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (United States)

    2007-01-15

    The Fischer-Tropsch (F-T) catalyst is the critical component for the F-T synthesis of a variety of hydrocarbons from syngas. Fischer-Tropsch cobalt, iron and ruthenium catalysts supported on silica aerogel have been prepared using a combination of sol-gel chemistry and vapor phase deposition methods. Solid state NMR spectroscopy, a very powerful technique for analyzing the structure and dynamics of various materials, was employed in the study of these F-T catalyst systems. The silica aerogel supported F-T catalysts have been investigated using both solid state {sup 29}Si and {sup 13}C NMR methods. The silica aerogel's tetrahedral sub-unit structure and the influence of the loaded metal compounds have been observed. Three types of Si(O{sub 1/2}){sub 4} tetrahedral unit structure (Q{sub 2}, Q{sub 3} and Q{sub 4}) are clearly resolved in the silica aerogel samples. The calcining process and the loading of metal compounds produce line broadening in the {sup 29}Si spectra sufficient to prevent clear resolution of the three distinct Q{sub n} spectral lines, but the broadened spectra indicate that the three Q sub-unit structures are still present. The ferrocene and ruthenocene molecules used in the vapor phase deposition method exhibit a rapid exchange within the silica aerogel support similar to what one would expect in the gas or liquid state. (author)

  11. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides

    Institute of Scientific and Technical Information of China (English)

    Hongqing Chen; Hao Yu; Yong Tang; Minqiang Pan; Guangxing Yang; Feng Peng; Hongjuan Wang; Jian Yang

    2009-01-01

    Hydrogen was produced over noble metal (Ir, Ru, Rh, Pd) catalysts supported on various oxides, including γ-Al2O3, CeO2, ZrO2 and La2O3, via the autothermai reforming reaction of ethanol (ATRE) and oxidative reforming reaction of ethanol (OSRE). The conversion of ethanol and selectivites for hydrogen and byproducts such as methane, ethylene and acetaldehyde were studied. It was found that lanthana alone possessed considerable activity for the ATRE reaction, which could be used as a functional support for ATRE catalysts. It was demonstrated that Ir/La2O3 prevented the formation of methane, and Rh/La2O3 encumbered the production of ethylene and acetaldehyde. ATRE reaction was carried out over La2O3-supported catalysts (Ir/La2O3) with good stability on stream, high conversion, and excellent hydrogen selectivity approaching thermodynamic limit under autothermal condition. Typically, 3.4 H2 molecules can be extracted from a pair of ethanol and water molecules over Ir(5wt%)/La2O3. The results presented in this paper indicate that Ir/La2O3 can be used as a promising catalyst for hydrogen production via ATRE reaction from renewable ethanol.

  12. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  13. Cellulose hydrogenolysis with the use of the catalysts supported on hypercrosslinked polystyrene

    Science.gov (United States)

    Sulman, E. M.; Matveeva, V. G.; Manaenkov, O. V.; Filatova, A. E.; Kislitza, O. V.; Doluda, V. Yu.; Rebrov, E. V.; Sidorov, A. I.; Shimanskaya, E. I.

    2016-11-01

    The study presents the results of cellulose hydrolytic hydrogenation process in subcritical water in the presence of Ru-containing catalysts based on hypercrosslinked polystyrene (HPS) MN-270 and its functionalized analogues: NH2-HPS (MN-100) and SO3H-HPS (MN-500). It was shown that the replacement of the traditional support (carbon) by HPS increases the yield of the main cellulose conversion products - polyols - important intermediates for the chemical industry. The catalysts were characterized using transmission electron microscopy (TEM), high resolution TEM, and porosity measurements. Catalytic studies demonstrated that the catalyst containing 1.0% Ru and based on MN-270 is the most active. The total yield of sorbitol and mannitol was 50% on the average at 85% cellulose conversion.

  14. Thermally Activated Palm Kernel Based Carbon as a Support for Edible Oil Hydrogenation Catalyst

    Directory of Open Access Journals (Sweden)

    Abdulmajid Alshaibani

    2013-01-01

    Full Text Available Activated carbon has distinctive properties as a support for hydrogenation catalysts. Thermally activated carbon has been prepared from palm kernel shell at 1073 K and placed under nitrogen flow for 2 h. It was impregnated by palladium using toluene solution of Pd (acac2. The Pd/C was reduced using a water solution of potassium borohydride (KBH4. The Pd-B/C was characterized by the Brunauer-Emmett-Teller surface area analysis (BET, scanning electron microscopy (SEM, transmission electron microscopy (TEM and inductively-coupled plasma mass spectrometry (ICP-MS. Pd-B/C was applied for sunflower oil hydrogenation at a temperature of 373 K, hydrogen pressure of 413.5 kPa and agitation of 1400 rpm for 1 h. Pd-B/C noticeably exhibited a higher overall catalyst activity in comparison to some recently published palladium catalysts.

  15. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  16. Kinetics studies of d-glucose hydrogenation over activated charcoal supported platinum catalyst

    Science.gov (United States)

    Ahmed, Muthanna J.

    2012-02-01

    The kinetics of the catalytic hydrogenation of d-glucose to produce d-sorbitol was studied in a three-phase laboratory scale reactor. The hydrogenation reactions were performed on activated charcoal supported platinum catalyst in the temperature range 25-65°C and in a constant pressure of 1 atm. The kinetic data were modeled by zero, first and second-order reaction equations. In the operating regimes studied, the results show that the hydrogenation reaction was of a first order with respect to d-glucose concentration. Also the activation energy of the reaction was determined, and found to be 12.33 kJ mole-1. A set of experiment was carried out to test the deactivation of the catalyst, and the results show that the deactivation is slow with the ability of using the catalyst for several times with a small decrease in product yield.

  17. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity.

  18. Gold Functionalized Supported Ionic Liquids Catalyst for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Svetlana Ivanova

    2011-11-01

    Full Text Available The present study tries to give an insight to the combination of the homogeneous and heterogeneous catalytic properties in a new class of materials. Well dispersed gold nanoparticles on an ionic liquid layer supported on a mineral carrier have been prepared. This work is concentrated on the characterizations and understanding of the interactions between all the components of the catalytic system. The application of the materials in the reaction of oxidation of carbon monoxide shows rather unexpected results—a good catalytic activity completely independent of the temperature.

  19. Effect of Activated Carbon as a Support on Metal Dispersion and Activity of Ruthenium Catalyst for Ammonia Synthesis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10.0 MPa and 10 000 h-1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13.17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1.37% over 4%Ru-BaO/AC10 catalyst.

  20. Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yan; Dai, Hong-Bin; Ma, Lai-Peng; Wang, Ping; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2010-04-15

    The catalyst with high activity and durability plays a crucial role in the hydrogen generation systems for the portable fuel cell generators. In the present study, a ruthenium supported on graphite catalyst (Ru/G) for hydrogen generation from sodium borohydride (NaBH{sub 4}) solution is prepared by a modified impregnation method. This is done by surface pretreatment with NH{sub 2} functionalization via silanization, followed by adsorption of Ru (III) ion onto the surface, and then reduced by a reducing agent. The obtained catalyst is characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Very uniform Ru nanoparticles with sizes of about 10 nm are chemically bonded on the graphite surface. The hydrolysis kinetics measurements show that the concentrations of NaBH{sub 4} and NaOH all exert considerable influence on the catalytic activity of Ru/G catalyst towards the hydrolysis reaction of NaBH{sub 4}. A hydrogen generation rate of 32.3 L min{sup -1} g{sup -1} (Ru) in a 10 wt.% NaBH{sub 4} + 5 wt.% NaOH solution has been achieved, which is comparable to other noble catalysts that have been reported. (author)

  1. Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong Shari; Hensley, Alyssa J.; McEwen, Jean-Sabin; Wang, Yong

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 °C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 °C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 °C, and by approximately a factor of two (83.2% versus 43.3%) at 450 °C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

  2. n-Butane Oxidation over γ-Al2O3 Supported Vanadium Phosphate Catalysts

    Institute of Scientific and Technical Information of China (English)

    Y.H.Taufiq-Yap; L.K.Leong; R.Irmawati

    2007-01-01

    Four vanadium phosphate catalysts supported on γ-Al2O3(20 wt%)were synthesized via 75 h)at 673 K in a reaction flow of n-butane/air mixture.The samples calcined for 6 and 10 h produced only a single phase of(VO)2P2O7.However,the VOPO4 phase(β-VOPO4)was detected and became more prominent with only a minor pyrophosphate peaks were found after 30 h of calcination.All these pyrophosphate peaks disappeared after 75 h of calcination.The formation of V5+ phase Was also observed in the SEM micrographs.The redox properties and the nature of oxidants of the catalysts employed in this study were investigated by H2-TPR analysis.Selective oxidation of n-butane to maleic anhydride (MA) over these catalysts shows that the percentage of n-butane conversion decreases with the transformation of the catalysts from V4+ to V5+ phases.An appropriate ratio of V5+/V4+ can enhance the performance of the VPO catalyst.However,a higher amount of V5+ and its associated oxygen species are responsible to promote the MA selectivity.

  3. The high performance of tungsten carbides/porous bamboo charcoals supported Pt catalysts for methanol electrooxidation

    Science.gov (United States)

    Ma, Chun-an; Xu, Chenbin; Shi, Meiqin; Song, Guanghui; Lang, Xiaoling

    2013-11-01

    In this paper, a kind of environmental friendly and cost-effective bamboo charcoal (BC) is used as catalyst support in DMFCs instead of carbon nanotubes (CNTs), which is toxic and expensive. After special treatments, we obtain a sponge-like three-dimensional (3D) BC, which can provide high specific surface area (1264.5 m2 g-1) and porous matrices. Then, tungsten carbide (WC) and Pt are loaded on the BCs with microwave-assisted technique and 3D structural Pt/WC/BCs electro-catalyst is finally fabricated. Subsequently, the catalyst is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In the further electrochemical investigation, it was found that Pt/WC/BCs catalyst has higher performance (2.76 mA cm-2) and better CO-tolerance for methanol oxidation compared with Pt/WC/CNTs and commercial Pt/C. Herein, we believe that the as-synthesized 3D Pt/WC/BCs catalyst has great promising application in DMFCs.

  4. STUDIES ON TiCl4/Mg (Oet)2/EB SUPPORTED CATALYSTS FOR PROPYLENE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    XIAO Shijing; LU Honglan; ZHANG Minghui

    1990-01-01

    The supported catalysts for propylene polymerization were prepared by milling Mg (OEt)2 with EB (ethylbenzoate) and treating with TiCl4 solution. When TiCl4/(Mg (OEt)2/EB) (mol.) ratio was increased, decrease in contents of -OEt and Ti of the catalysts was observed, while the content of EB increased. It is proved by analyses of IR, X-ray and XPS that during co-milling Mg(OEt)2with EB no reactions have taken place. But after treatment with TiCl4 solution, Mg (OEt)2 converts into MgCl2 and EB coordinates on the resulting MgCl2 carrier, a surface complex forms.The activity of catalysts,isotacticityand vicosimetric molecular weight of polypropylene increase with the decrease of the content of ethoxyl group. The kinetic curves of propene polymerization obtained with present catalysts system display decay curves. It is found from the triad tacticity calculated from the expanded spectra of methyl carbon region that, ethoxyl group in catalyst has an effect on the configuration of polymer chain.

  5. The Stereoselective Epoxidation by a New Type of Soluble Polymer-Supported Catalysts

    Institute of Scientific and Technical Information of China (English)

    Wang Yongmei; Wang Xin; Liu Juyan

    2004-01-01

    As the phase transfer catalyst (PTC) is one of most important catalysts in organic synthesis. Here, we represent initial results of a research program aimed at the rational design of a variety of new two centers, soluble polyethylene glycol (PEG) supported catalysts based on the cinchona alkaloid system and their application in asymmetric expoxidation process.Table 1 and Table 2 summarized the results of epoxidation of substituted chalcone As shown in Table 1 and Table 2, chalcone derivatives as reactive olefins afforded the corresponding epoxided with modest to good enantiomeric excesses. In contrast, a definite trend to higher ee value is displayed by solvent effect. It was found that enantioselectivity becomes higher with the polarity increases(Table 1, Table 2). Changing catalyst 1 to catalyst 2, ee value was increased (entry 6 in Table 1) as well. Compared with Me, NO2 groups, substitution on the aromatic ring of the enone carbonyl function by OMe group increased the enantioselectivity(entry 3 in Table 1 and entry 3' in Table 2).

  6. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous Catalyst for Aerobic Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available A series of Au catalysts with different sizes were synthesized and employed on amine group functionalized ordered mesoporous silica solid supports as catalyst for the aerobic oxidation of various alcohols. The mesoporous silica of MCM-41 supported Au nanoparticles (Au-1 exhibited the smallest particle size at ~1.8 nm with superior catalytic activities owing to the confinement effect of the mesoporous channels. Au-1 catalyst is also very stable and reusable under aerobic condition. Therefore, this presented work would obviously provide us a platform for synthesizing more size-controlled metal catalysts to improve the catalytic performances.

  7. Research of special carbon nanobeads supported Pt catalyst for fuel cell through high temperature pyrolysis and deposition from novel phthalocyanine

    Institute of Scientific and Technical Information of China (English)

    GUO Yanchuan; YUE Jun; PAN Zhongxiao; XU Haitao; ZHANG Bing; HAN Fengmei; CHEN Lijuan; PENG Bixian; XIE Wenwei; QIAN Haisheng; YAN Tiantang

    2004-01-01

    The carbon nanobeads were prepared through high temperature pyrolysis and deposition from phthaiocyanine. After surface's functionalization treatment of the carbon beads, the carbon nanobeads supported Pt catalyst was produced. The Pt/C catalyst was characterized by SEM,TEM, Raman spectrum, EDS and XRD methods. Combining the carbonaceous paper spreaded up with the catalyst with Nafion membrane, we made MEA electrode. The discharge curves indicated that this carbon nanobeads supported Pt is a good fuel cell catalyst with excellent performance, high activity and sign of a long-time life.

  8. XPS Characterization of Carbon Nanotube Supported CoMo Hydrodesulfurization Catalysts

    Institute of Scientific and Technical Information of China (English)

    SHANG, Hong-Yan(商红岩); LIU, Chen-Guang(刘晨光); ZHAO, Rui-Yu(赵瑞玉); WU, Ming-Bo(吴明铂); WEI, Fei(魏飞)

    2004-01-01

    In this paper, the effect of catalytic support and sulfiding method on the chemical state of supported Co-Mo catalysts is studied by XPS. After sulfidation with in-situ method, the majority of molybdenum in CNT supported CoMo catalyst is transferred to a species with a formal chemical state Mo(Ⅳ) in MoS2 phase, and the rest to Mo(Ⅴ)which consists of Mo coordinated both to O and S, such as MoO2S22- and MoO3S2-. In case of CoMo/γ-Al2O3 catalyst sulfided with in-situ method, a fraction of molybdenum is transferred to formal state Mo(Ⅳ) in the form of MoS2, but there is still a mount of unreduced Mo(Ⅵ) phase which is difficult to be sulfided. In CoMo/CNT catalytic system sulfided with ex-situ method, Mo(Ⅳ) in the form of MoS2 is detected along with a portion of unreduced Mo(Ⅵ) phase, suggesting that not all the Mo phases are reduced and sulfided by ex-situ method. As for CoMo/γ-Al2O3, a portion of molybdenum is sulfided to intermediate reduced state Mo(Ⅴ) which consists of Mo coordinated both to O and S, such as MoO2S22- and MoO3S2-, in addition, there is still a fraction of unreduced Mo(Ⅵ)phase. XPS analyses results suggest that CNT support facilitates the reduction and sulfidation of active species to a large extent, and that alumina support strongly interacts with active species, hereby producing a fraction of phase which resists complete sulfiding. Catalytic measurements of catalysts in the HDS of dibenzothiophene (DBT) show that CoMo/CNT catalysts are of higher HDS activity and selectivity than CoMo/γ-Al2O3 catalyst, which is in good relation with the sulfiding behavior of the corresponding catalyst.

  9. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil.

    Science.gov (United States)

    Liu, Jing; He, Jing; Wang, Luying; Li, Rong; Chen, Pan; Rao, Xin; Deng, Lihong; Rong, Long; Lei, Jiandu

    2016-03-29

    Nickel oxide (NiO) and phosphotungstic acid (PTA) supported on a ZIF-8 (NiO-PTA/ZIF-8) catalyst was first synthesized and it showed high activity and good selectivity for the hydrocracking of Jatropha oil. The catalyst was characterized by SEM, SEM-EDS, TEM, N2 adsorption, FT-IR, XRD and XPS. Compared with the NiO-PTA/Al2O3 catalyst, the selectivity of C15-C18 hydrocarbon increased over 36%, and catalytic efficiency increased 10 times over the NiO-PTA/ZIF-8 catalyst. The prepared NiO-PTA/ZIF-8 catalyst was stable for a reaction time of 104 h and the kinetic behavior was also analyzed. This catalyst was found to bypass the presulfurization process, showing promise as an alternative to sulfided catalysts for green diesel production.

  10. Development of a supported tri-metallic catalyst and evaluation of the catalytic activity in biomass steam gasification.

    Science.gov (United States)

    Li, Jianfen; Xiao, Bo; Yan, Rong; Xu, Xiaorong

    2009-11-01

    A supported tri-metallic catalyst (nano-Ni-La-Fe/gamma-Al(2)O(3)) was developed for tar reduction and enhanced hydrogen production in biomass steam gasification, with focuses on preventing coke deposition and sintering effects to lengthen the lifetime of developed catalysts. The catalyst was prepared by deposition-precipitation method and characterized by various analytical approaches. Following that, the activity of catalysts in biomass steam gasification was investigated in a bench-scale combined fixed bed reactor. With presence of the catalyst, the content of hydrogen in gas products was increased to over 10 vol.%, the tar removal efficiency reached 99% at 1073 K, and more importantly the coke deposition on the catalyst surfaces and sintering effects were avoided, leading to a long lifetime of catalysts.

  11. A New Type of Polymer-Supported Metallocene Catalyst for Ethylene Polymerization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new polymer-supported metallocene catalyst has been prepared. The polymer- supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62′ 107gPE/molZr· h, the molecular weight of the polyethylene produced was Mn = 1.29′ 105, about 3-4 times those of corresponding homogeneous zirconocenes. The polymer- supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features,such as adaptable to gas phase and slurry processes; easy to prepare in low cost; relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.

  12. PREPARATION OF NOVEL POLYETHYLENE-graft- POLY(4-VINYLPYRIDINE)-SUPPORTED METALLOCENE CATALYSTS FOR ETHYLENE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Ning Zhu; Yong Chen; Zi-long Li; Yuan-xia Liu; Yu-cai Ke; Wen-Hua Sun

    2003-01-01

    Polyethylene (PE) grafting 4-vinylpyridine copolymers has been produced as powders of different rushes by the irradiation method. After treatment with methylaluminoxane (MAO), the copolymers were used as supports for Cp2ZrCl2 catalyst. Results of X-ray photoelectron spectroscopy, Fourier transforms infrared spectroscopy, ultraviolet spectroscopy and scanning electron microscope measurements show that the catalytic sites have been linked through MAO on the PE-graft-4-vinylpyridine (PEVP). The percentages of grafting 4-vinylpyridine and supported Cp2ZrCl2 depend on the size of polyethylene powder. The smaller the polyethylene powder, the more percent of 4-vinylpyridine groups and Cp2ZrCl2 exist on the polyethylene chains, and the PEVP-supported catalyst has a relatively high activity for ethylene polymerization.

  13. Temperature influence on the global and local structure of the chromia supported nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pintea, Stelian; Rednic, Vasile; Marginean, Petru; Aldea, Nicolae [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Xie Yaning, E-mail: stelian.pintea@itim-cj.r [Beijing Synchrotron Radiation Facilities of Beijing Electron Positron Collider National Laboratory (China)

    2009-08-01

    The changes induced by the heat treatment on the global and the local structures of the supported nickel catalysts are investigated. The global structure parameters were obtained by processing the X-ray diffraction patterns of the samples using the Scherrer formula. The local structure parameters were determined by X-ray absorption spectra processing. Both types of measurements were carried out using synchrotron radiation. The nickel catalysts supported on chromia were prepared by coprecipitation method. The nickel/chromium atomic percent was 70/30. After preparation, the samples were thermally treated for three hours at 350, 650 and 950{sup 0}C. A strong correlation between previous catalytic activity information and the global and local structure is evidenced. Also the correlation between the nickel crystallite size and the active metal-oxide support interaction is discussed.

  14. MCM-41 Bound Ruthenium Complex as Heterogeneous Catalyst for Hydrogenation Ⅰ: Effect of Support, Ligand and Solvent on the Catalyst Performance

    Institute of Scientific and Technical Information of China (English)

    YU, Ying-Min; FEI, Jin-Hua; ZHANG, Yi-Ping; ZHENG, Xiao-Ming

    2006-01-01

    The functionalized MCM-41 mesoporous bound ruthenium complex was synthesized and characterized using elemental analysis, atomic absorption spectrophotometer, BET, XRD and FTIR. Hydrogenation of carbon dioxide to formic acid was investigated over these catalysts under supercritical CO2 condition. The effect of reactant gas partial pressure, supports, solvents and ligands on the synthesis of formic acid was studied. These factors could influence the catalyst activity, stability and reuse performance greatly and no byproduct was detected. These promising catalysts also offered the industrial advantages such as easy separation.

  15. Highly dispersed metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  16. Dependence of copper species on the nature of the support for dispersed CuO catalysts.

    Science.gov (United States)

    Gervasini, Antonella; Manzoli, Maela; Martra, Gianmario; Ponti, Alessandro; Ravasio, Nicoletta; Sordelli, Laura; Zaccheria, Federica

    2006-04-20

    Copper catalysts prepared by chemisorption-hydrolysis technique over silica (Cu/Si) and silica-alumina (Cu/SiAl) supports were studied to understand the role of the support on the nature and surface properties of the copper species stabilized on their surfaces. The morphological and surface properties of the copper phases have been characterized by complementary techniques, such as HRTEM, EXAFS-XANES, EPR, XPS, and FTIR. For the FTIR investigation, molecular probes (CO and NO) were also adsorbed on the surfaces to test the reactivity of the copper species. Moreover, the catalytic performances of the two catalysts have been compared in the HC-SCR reaction (NO reduction by C(2)H(4)) performed in highly oxidant conditions. The superior activity and selectivity of the supported silica-alumina catalyst with respect to that supported on silica could be related with the different nature of the copper species stabilized on the two supports, as emerged from the results obtained from the spectroscopic investigations. Small and well-dispersed CuO particles were present on silica, whereas isolated copper ions predominated on silica-alumina, likely in regions rich in alumina that made some exchangeable sites available, as indicated by FTIR spectra of adsorbed CO. The less positive global charge of copper species on Cu/SiAl than in Cu/Si has been confirmed by EPR, XPS, and EXAFS-XANES analyses.

  17. Preparation of catalyst for a polymer electrolyte fuel cell using a novel spherical carbon support

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Mika; Okubo, Atsuhiko; Kobayashi, Yoshio [Department of Biomolecular Functional Engineering, Faculty of Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Yamamoto, Shun [Material and Biological Sciences, Graduate School of Science and Engineering, Faculty of Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Kikuchi, Mayuko; Nishitani-Gamo, Mikka [Department of Applied Chemistry, Faculty of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Uno, Katsuhiro [Department of Media and Telecommunications Engineering, Faculty of Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Ando, Toshihiro [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2010-09-15

    In this study, the support Pt catalyst was supported by a novel spherical carbon using a convenient technique. Two different preparation methods utilizing a nanocolloidal solution method without heat treatment were developed (methods 1 and 2). The scanning electron microscope (SEM) and transmission electron microscope (TEM) observations showed that the Pt nanoparticles (particle size) were supported, with higher dispersion being achieved with method 2 than method 1. The peak of the Pt metal was confirmed from the X-ray diffraction (XRD) measurement. Based on the inductively coupled plasma mass spectrometry (ICP-MS) measurements, Pt loading was 19.5 wt.% in method 1 and approximately 50 wt.% in method 2. The Pt specific surface area of the Pt/novel spherical carbon catalyst calculated from the cyclic voltammetry (CV) measurement result was larger than that of the commercially available Pt/Ketjen catalyst. These results indicated that the Pt nanoparticles were supported in high dispersion without heat treatment using novel spherical carbon as a carbon support. (author)

  18. Study of Alginate-Supported Ionic Liquid and Pd Catalysts

    Directory of Open Access Journals (Sweden)

    Eric Guibal

    2012-01-01

    Full Text Available New catalytic materials, based on palladium immobilized in ionic liquid supported on alginate, were elaborated. Alginate was associated with gelatin for the immobilization of ionic liquids (ILs and the binding of palladium. These catalytic materials were designed in the form of highly porous monoliths (HPMs, in order to be used in a column reactor. The catalytic materials were tested for the hydrogenation of 4-nitroaniline (4-NA in the presence of formic acid as hydrogen donor. The different parameters for the elaboration of the catalytic materials were studied and their impact analyzed in terms of microstructures, palladium sorption properties and catalytic performances. The characteristics of the biopolymer (proportion of β-D-mannuronic acid (M and α-L-guluronic acid (G in the biopolymer defined by the M/G ratio, the concentration of the porogen agent, and the type of coagulating agent significantly influenced catalytic performances. The freezing temperature had a significant impact on structural properties, but hardly affected the catalytic rate. Cellulose fibers were incorporated as mechanical strengthener into the catalytic materials, and allowed to enhance mechanical properties and catalytic efficiency but required increasing the amount of hydrogen donor for catalysis.

  19. Carbon-Supported Silver Catalysts for CO Selective Oxidation in Excess Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Limin Chen; Ding Ma; Barbara Pietruszka; Xinhe Bao

    2006-01-01

    Carbon materials were used as supports for Ag catalysts that are prepared using the conventional wet impregnation method, and their catalytic properties for CO selective oxidation in excess hydrogen at temperatures below 483 K were tested. A variety of techniques, e.g. N2 adsorption, XPS, TPD, UV-Vis DRS, TEM and SEM, were used to determine the influence of physical and chemical properties of the carbon on the properties of Ag catalyst. It was found that defects on the carbon surface served as nucleation sites for silver ions, while functional groups on carbon surface induced their reduction to the metallic form. The formation of silver particles on carbon was governed by homogeneous and/or heterogeneous nucleation during the impregnation and subsequent activation processes. The best catalytic performance was obtained with a Ag/carbon black catalyst with a uniform size distribution of silver nanoparticles (about 12 nm), moderate BET surface area (with a mesoporous structure), and a limited amount of carbon-oxygen groups. The research indicates that carbon materials are potentially good supports for silver catalysts for preferential oxidation of CO in excess hydrogen.

  20. Transition metal-modified polyoxometalates supported on carbon as catalyst in 2-(methylthio)-benzothiazole sulfoxidation

    Indian Academy of Sciences (India)

    Romina A Frenzel; Gustavo P Romanelli; Mirta N Blanco; Luis R Piz

    2015-01-01

    Polyoxometalates with lacunary Keggin structure modified with transition metal ions [PW11O39M(H2O)]5−, where M = Ni2+, Co2+, Cu2+ or Zn2+, were synthesized and supported on activated carbon to obtain the PW11MC catalysts. Using FT-IR and DTA-TGA it was concluded that the [PW11O39M(H2O)]5− species are interacting with the functional groups of the support, and that thermal treatment leads to the loss of the coordinatively bonded water molecules without any noticeable anion degradation. The activity and selectivity of the catalysts in the sulfoxidation reaction of 2-(methylthio)-benzothiazole, an emerging environmental pollutant, were evaluated. The reaction was carried out in acetonitrile as solvent using H2O2 35% p/v as a clean oxidant. The conversion values decreased in the following order: PW11NiC > PW11CuC > PW11CoC > PW11ZnC, with selectivity to sulfoxide higher than 69%. The catalyst could be reused without appreciable loss of the catalytic activity at least three times. The materials were found to be efficient and recyclable catalysts for 2-(methylthio)-benzothiazole sulfoxidation in order to obtain a more biodegradable product than the corresponding substrate.

  1. Supported molybdenum oxides as effective catalysts for the catalytic fast pyrolysis of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Murugappan, Karthick; Mukarakate, Calvin; Budhi, Sridhar; Shetty, Manish; Nimlos, Mark R.; Román-Leshkov, Yuriy

    2016-01-01

    The catalytic fast pyrolysis (CFP) of pine was investigated over 10 wt% MoO3/TiO2 and MoO3/ZrO2 at 500 degrees C and H2 pressures =0.75 bar. The product distributions were monitored in real time using a molecular beam mass spectrometer (MBMS). Both supported MoO3 catalysts show different levels of deoxygenation based on the cumulative biomass to MoO3 mass ratio exposed to the catalytic bed. For biomass to MoO3 mass ratios <1.5, predominantly olefinic and aromatic hydrocarbons are produced with no detectable oxygen-containing species. For ratios =1.5, partially deoxygenated species comprised of furans and phenols are observed, with a concomitant decrease of olefinic and aromatic hydrocarbons. For ratios =5, primary pyrolysis vapours break through the bed, indicating the onset of catalyst deactivation. Product quantification with a tandem micropyrolyzer-GCMS setup shows that fresh supported MoO3 catalysts convert ca. 27 mol% of the original carbon into hydrocarbons comprised predominantly of aromatics (7 C%), olefins (18 C%) and paraffins (2 C%), comparable to the total hydrocarbon yield obtained with HZSM-5 operated under similar reaction conditions. Post-reaction XPS analysis on supported MoO3/ZrO2 and MoO3/TiO2 catalysts reveal that ca. 50% of Mo surface species exist in their partially reduced forms (i.e., Mo5+ and Mo3+), and that catalyst deactivation is likely associated to coking.

  2. Liquid Phase Hydrogenation of Benzalacetophenone:Effect of Solvent,Catalyst Support,Catalytic Metal and Reaction Conditions%Liquid Phase Hydrogenation of Benzalacetophenone: Effect of Solvent, Catalyst Support, Catalytic Metal and Reaction Conditions

    Institute of Scientific and Technical Information of China (English)

    Achim STOLLE; Christine SCHMOGER; Bernd ONDRUSCHKA; Werner BONRATH; Thomas F. KELLER; Klaus D. JANDT

    2011-01-01

    Innovative catalysts based on a “porous glass” support material were developed and investigated for the reduction of benzalacetophenone.The easy preparation conditions and possibility to use different metals (e.g.Pd,Pt,Rh) for impregnation gave a broad variety of these catalysts.Hydrogenation experiments with these supported catalysts were carried out under different hydrogen pressures and temperatures.Porous glass catalysts with Pd as the active component gave chemoselective hydrogenation of benzalacetophenone,while Pt- and Rh-catalysts tended to further reduce the carbonyl group,especially at elevated hydrogen pressures and temperatures.Kinetic analysis of the reactions revealed these had zero order kinetics,which was independent of the type of porous glass support and solvent used.

  3. Zirconia supported catalysts for bioethanol steam reforming: Effect of active phase and zirconia structure

    Energy Technology Data Exchange (ETDEWEB)

    Benito, M.; Padilla, R.; Rodriguez, L.; Sanz, J.L.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/ Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2007-06-10

    Three new catalysts have been prepared in order to study the active phase influence in ethanol steam reforming reaction. Nickel, cobalt and copper were the active phases selected and were supported on zirconia with monoclinic and tetragonal structure, respectively. To characterize the behaviour of the catalysts in reaction conditions a study of catalytic activity with temperature was performed. The highest activity values were obtained at 973 K where nickel and cobalt based catalysts achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. Nickel supported on tetragonal zirconia exhibited the highest hydrogen production efficiency, higher than 4.5 mol H{sub 2}/mol EtOH fed. The influence of steam/carbon (S/C) ratio on product distribution was another parameter studied between the range 3.2-6.5. Nickel supported on tetragonal zirconia at S/C = 3.2 operated at 973 K without by-product production such as ethylene or acetaldehyde. In order to consider a further application in an ethanol processor, a long-term reaction experiment was performed at 973 K, S/C = 3.2 and atmospheric pressure. After 60 h, nickel supported on tetragonal zirconia exhibited high stability and selectivity to hydrogen production. (author)

  4. Influences of reaction conditions on methane decomposition over non-supported Ni catalyst

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Qingjie Ge; Hengyong Xu

    2011-01-01

    Effects of reaction temperature and methane gas hourly space velocity (GHSV) on methane decomposition over non-supported Ni catalyst havebeen investigated in this work.Methane molecules activation,Ni particles growth and nano-carbon diffusion were the main factors influencing methane decomposition stability of non-supported Ni.The results of methane decomposition activity test on the non-supported Ni catalyst showed that the prepared non-supported Ni could exhibit a good methane decomposition performance with 273 gC/gNi and 2667 molH2/molNi at 500 ℃ and 45000 mL/(gcat·h).Scanning electron microscope (SEM),X-ray powder diffraction (XRD) and temperature-programmed oxidation (TPO) have been carried out to characterize the used catalysts.The deposited carbon was carbon nanofibers,among which graphitic carbon formation increased with the reaction time of methane decomposition.Ni particle size was not the decisive factor during the carbon growing stage.

  5. Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Edwin L. Kugler

    2003-01-01

    Full Text Available Activated carbon (AC-supported molybdenum catalysts, either with or without a potassium promoter, were prepared by the incipient wetness impregnation method. The materials were characterized using differential thermal analysis (DTA and temperature programmed reduction (TPR, and were used for mixed alcohol synthesis from syngas (CO+H2. DTA results showed that a new phase, related to the interaction between Mo species and the AC support, is formed during the calcination of the Mo/AC catalyst, and the introduction of a K promoter has noticeable effect on the interaction. TPR results indicated that the Mo is more difficult to reduce after being placed onto the AC support, and the addition of a K promoter greatly promotes the formation of Mo species reducible at relatively low temperatures, while it retards the generation of Mo species that are reducible only at higher temperatures. These differences in the reduction behavior of the catalysts are atributed to the interaction between the active components (Mo and K and the support. Potassium-doping significantly promotes the formation of alcohols at the expense of CO conversion, especially to hydrocarbons. It is postulated that Mo species with intermediate valence values (averaged around +3.5 are more likely to be the active phase(s for alcohol synthesis from CO hydrogenation, while those with lower Mo valences are probably responsible for the production of hydrocarbons.

  6. Gold-Iron Oxide Catalyst for CO Oxidation: Effect of Support Structure

    Directory of Open Access Journals (Sweden)

    Hui-Zhen Cui

    2016-03-01

    Full Text Available Gold-iron oxide (Au/FeOx is one of the highly active catalysts for CO oxidation, and is also a typical system for the study of the chemistry of gold catalysis. In this work, two different types of iron oxide supports, i.e., hydroxylated (Fe_OH and dehydrated iron oxide (Fe_O, have been used for the deposition of gold via a deposition-precipitation (DP method. The structure of iron oxide has been tuned by either selecting precipitated pH of 6.7–11.2 for Fe_OH or changing calcination temperature of from 200 to 600 °C for Fe_O. Then, 1 wt. % Au catalysts on these iron oxide supports were measured for low-temperature CO oxidation reaction. Both fresh and used samples have been characterized by multiple techniques including transmission electron microscopy (TEM and high-resolution TEM (HRTEM, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, X-ray absorption near edge structure (XANES and temperature-programmed reduction by hydrogen (H2-TPR. It has been demonstrated that the surface properties of the iron oxide support, as well as the metal-support interaction, plays crucial roles on the performance of Au/FeOx catalysts in CO oxidation.

  7. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  8. CO2 hydrogenation to methanol on supported Au catalysts under moderate reaction conditions: support and particle size effects.

    Science.gov (United States)

    Hartadi, Yeusy; Widmann, Daniel; Behm, R Jürgen

    2015-02-01

    The potential of metal oxide supported Au catalysts for the formation of methanol from CO2 and H2 under conditions favorable for decentralized and local conversion, which could be concepts for chemical energy storage, was investigated. Significant differences in the catalytic activity and selectivity of Au/Al2 O3 , Au/TiO2 , AuZnO, and Au/ZrO2 catalysts for methanol formation under moderate reaction conditions at a pressure of 5 bar and temperatures between 220 and 240 °C demonstrate pronounced support effects. A high selectivity (>50 %) for methanol formation was obtained only for Au/ZnO. Furthermore, measurements on Au/ZnO samples with different Au particle sizes reveal distinct Au particle size effects: although the activity increases strongly with the decreasing particle size, the selectivity decreases. The consequences of these findings for the reaction mechanism and for the potential of Au/ZnO catalysts for chemical energy storage and a "green" methanol technology are discussed.

  9. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark

    2012-09-28

    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibility for high volume manufacturability.

  10. Networks of connected Pt nanoparticles supported on carbon nanotubes as superior catalysts for methanol electrooxidation

    Science.gov (United States)

    Huang, Meihua; Zhang, Jianshuo; Wu, Chuxin; Guan, Lunhui

    2017-02-01

    The high cost and short lifetime of the Pt-based anode catalyst for methanol oxidation reaction (MOR) hamper the widespread commercialization of direct methanol fuel cell (DMFC). Therefore, improving the activity of Pt-based catalysts is necessary for their practical application. For the first time, we prepared networks of connected Pt nanoparticles supported on multi-walled carbon nanotubes with loading ratio as high as 91 wt% (Pt/MWCNTs). Thanks for the unique connected structure, the Pt mass activity of Pt/MWCNTs for methanol oxidation reaction is 4.4 times as active as that of the commercial Pt/C (20 wt%). When carbon support is considered, the total mass activity of Pt/MWCNTs is 20 times as active as that of the commercial Pt/C. The durability and anti-poisoning ability are also improved greatly.

  11. Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Witzke, M. E.; Dietrich, P. J.; Ibrahim, M. Y. S.; Al-Bardan, K.; Triezenberg, M. D.; Flaherty, D. W.

    2016-12-12

    Selective dehydrogenation catalysts that produce acetaldehyde from bio-derived ethanol can increase the efficiency of subsequent processes such as C–C coupling over metal oxides to produce 1-butanol or 1,3-butadiene or oxidation to acetic acid. Here, we use in situ X-ray absorption spectroscopy and steady state kinetics experiments to identify Cuδ+ at the perimeter of supported Cu clusters as the active site for esterification and Cu0 surface sites as sites for dehydrogenation. Correlation of dehydrogenation and esterification selectivities to in situ measures of Cu oxidation states show that this relationship holds for Cu clusters over a wide-range of diameters (2–35 nm) and catalyst supports and reveals that dehydrogenation selectivities may be controlled by manipulating either.

  12. Gold/Iron Carbonyl Clusters for Tailored Au/FeOx Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Stefania Albonetti

    2011-12-01

    Full Text Available A novel preparation method was developed for the preparation of gold/iron oxide supported catalysts using the bimetallic carbonyl cluster salts [NEt4]4[Au4Fe4(CO16] and [NEt4][AuFe4(CO16] as precursors of highly dispersed nanoparticles over different supports. A series of catalysts with different metal loadings were prepared and tested in the complete oxidation of dichlorobenzene, toluene, methanol and in the preferential oxidation of CO in the presence of H2 (PROX as model reactions. The characterization by BET, XRD, TEM, H2-TPR, ICP-AES and XPS point out the way the nature of the precursors and the thermal treatment conditions affected the dispersion of the active phase and their catalytic activity in the studied reactions.

  13. Imidazolium ionic liquid-supported sulfonic acids: Efficient and recyclable catalysts for esterification of benzoic acid

    Institute of Scientific and Technical Information of China (English)

    Yue Qin Cai; Guo Qiang Yu; Chuan Duo Liu; Yuan Yuan Xu; Wei Wang

    2012-01-01

    Several imidazolium ionic liquid (IL)-supported sulfonic acids with different anions,[C3SO3Hmim]HSO4,[C3SO3Hmim]BF4,[C3SO3Hmim]PF6,and [C3SO3Hmim]CF3SO3,were synthesized and applied as catalysts for esterification reaction of benzoic acid.The experimental results indicate that imidazolium IL-supported sulfonic acid containing anion of HSO4- shows the best catalytic activity.Only when less [C3SO3Hmim]HSO4 (0.3 equiv.) applied,was the product obtained with high yield of 97%.Furthermore,the produced esters could be separated by decantation,and the catalyst could be reused after the removal of water.

  14. Investigation of altenative carbon materials for fuel-cell catalyst support

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul

    In order to ensure high utilization of the catalyst material in a polymer electrolyte membrane fuel cell (PEMFC) it is usually fixed in the form of nanoparticles on a supporting material. The catalyst is platinum or a platinum alloy, and the commonly used support is carbon black (CB). Although...... the large surface area and good anchoring properties make it a suited material for this purpose, it is prone to degradation in the fuel-cell environment. Thus alternative materials with higher durability than CB, but with similar (or better) capability of dispersion, are desired. Among them are highly...... of non- or low-temperature-treated CBs were dominated by defects, and the FWCNTs contained both elements. By XPS it was possible to determine the concentration of oxygen in the carbons, but an exact deconvolution of the XPS peaks was not possible due to the very low oxygen contents, the lack of parameter...

  15. Preparation of microcapsule-supported palladium catalyst using SPG (Shirasu Porous Glass) emulsification technique

    Institute of Scientific and Technical Information of China (English)

    Ying Liu; Xiu Juan Feng; De Cai Bao; Kai Xiao Li; Ming Bao

    2010-01-01

    A new method for the preparation of microcapsule-supported palladium catalyst was described.The highly monodisperse crosslinked polystyrene microcapsules containing phosphine ligand were synthesized by the self-assembling of phase separated polymer(SaPSeP)method using diphenyl(4-vinylphenyl)phosphine and divinylbenzene as a monomer and crosslinking agent,respectively,and 2,2'-azobisisobutyronitrile(AIBN)as an initiator within the droplets of oil-in-water(O/W)emulsions,which were prepared by using the Shirasu Porous Glass(SPG)membrane emulsification technique.The prepared microcapsule-supported palladium catalyst exhibited high catalytic activity for Heck reaction and can be reused several times without loss of activity.

  16. Effect of Carbon Supported Pt Catalysts on Selective Hydrogenation of Cinnamaldehyde

    Directory of Open Access Journals (Sweden)

    Qing Han

    2016-01-01

    Full Text Available Selective hydrogenation of cinnamaldehyde (CAL to cinnamyl alcohol (COL is of both fundamental and industrial interest. It is of great significance to evaluate the possible differences between different supports arising from metal dispersion and electronic effects, in terms of activity and selectivity. Herein, Pt catalysts on different carbon supports including carbon nanotubes (CNTs and reduced graphene oxides (RGO were developed by a simple wet impregnation method. The resultant catalysts were well characterized by XRD, Raman, N2 physisorption, TEM, and XPS analysis. Applied in the hydrogenation of cinnamaldehyde, 3.5 wt% Pt/CNT shows much higher selectivity towards cinnamyl alcohol (62% than 3.5 wt% Pt/RGO@SiO2 (48%. The enhanced activity can be ascribed to the high graphitization degree of CNTs and high density of dispersed Pt electron cloud.

  17. Ni catalysts supported on nanocrystalline magnesium oxide for syngas production by CO2 reforming of CH4

    Institute of Scientific and Technical Information of China (English)

    Fereshteh Meshkani; Mehran Rezaei

    2011-01-01

    CO2 reforming of methane(CDRM)was carried out over MgO supported Ni catalysts with various Ni loadings.The preparation of MgO supported Ni catalysts via surfactant-assisted precipitation method led to the formation of a nanocrystalline carrier for nickel catalysts.The synthesized samples were characterized by XRD,N2 adsorption-desorption,H2 chemisorption,TPR,TPO and SEM techniques.It was found that the high catalytic activity and stability of the prepared catalysts could be attributable to high dispersion of reduced Ni species and basicity of support surface.In addition,the effect of feed ratio,nickel loading and GHSV on the catalytic performance of CDRM over the catalysts were investigated.

  18. Application of Cement Clinker as Ni-Catalyst Support for Glycerol Dry Reforming

    Directory of Open Access Journals (Sweden)

    Hua Chyn Lee

    2013-12-01

    Full Text Available The increase in biodiesel production inevitably yield plethora of glycerol. Therefore, glycerol has been touted as the most promising source for bio-syngas (mixture of H2 and CO production. Significantly, coking on nickel-based catalysts has been identified as a major deactivation factor in reforming technology. Indeed, coke-resistant catalyst development is essential to enhance syngas production. The current work develops cement clinker (comprised of 62.0% calcium oxide-supported nickel catalyst (with metal loadings of 5, 10, 15 and 20 wt% for glycerol dry reforming (CO2. Physicochemical characterization of the catalysts was performed using XRD, XRF, BET, TGA and FESEM-EDS techniques. Subsequently, reaction studies were conducted in a 7-mm ID fixed-bed stainless steel reactor at 1023 K with various CO2 partial pressures at constant weight-hourly space velocity (WHSV of 7.2×104 ml gcat-1 h-1. Gas compositions were determined using Agilent 3000 micro-gas chromatography (GC and Lancom III gas analyzer. Results obtained showed an increment of BET surface area up to 32-fold with Ni loading which was corroborated by FESEM images. Syngas (H2 and CO ratios of less than 2 were being produced at 1023 K. A closer scrutiny to the transient profile revealed that the presence of CO2 higher or lower than CGR 1:1 promotes the Boudouard reaction. © 2013 BCREC UNDIP. All rights reservedReceived: 30th May 2013; Revised: 27th August 2013; Accepted: 11st September 2013[How to Cite: Lee, H.C., Siew, W.K., Cheng, C.K. (2013. Preparation Application of Cement Clinker as Ni-Catalyst Support for Glycerol Dry Reforming. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 137-144. (doi:10.9767/bcrec.8.2.5023.137-144][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.5023.137-144

  19. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts

    DEFF Research Database (Denmark)

    Marsden, Charlotte Clare; Taarning, Esben; Hansen, David

    2008-01-01

    A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient cond...... conditions; the reactions can be performed in an open flask and at room temperature. Benzaldehyde is even oxidised at a reasonable rate below -70 degrees C. Acrolein is oxidised to methyl acrylate in high yield using the same protocol....

  20. Stability and kinetic studies of supported ionic liquid phase catalysts for hydroformylation of propene

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2005-01-01

    Supported ionic liquid phase (SILP) catalysts have been studied with regard to their long-term stability in the continuous gas-phase hydroformylation of propene. Kinetic data have been acquired by variation of temperature, pressure, syngas composition, substrate concentration, and residence time...... exceeded 200 h time on stream with no loss in selectivity. A small decrease in activity could be compensated by a vacuum procedure regaining the initial activity....

  1. Oxidation of o-xylene on mesoporous Ti-phosphate-supported VOx catalysts and promoter effect of K+ on selectivity

    NARCIS (Netherlands)

    Mérida-Robles, J.; Rodríguez-Castellón, E.; Jiménez-López, A.; López Granados, M.; Val, S. del; Melián Cabrera, I.; Fierro, J.L.G.; Jimenez, J

    2005-01-01

    The selective oxidation of o-xylene on catalysts based on mesoporous titanium phosphate-supported vanadium oxide has been studied. The catalysts were characterized by different physico-chemical techniques (XRD, XPS, N-2 isotherms, TPD of chemisorbed NH3 and Raman spectroscopy). The conversion and yi

  2. Use of tyrosyl bolaamphiphile self-assembly as a biochemically reactive support for the creation of palladium catalysts.

    Science.gov (United States)

    Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-14

    The self-assembly of tyrosine-containing bolaamphiphile was applied as a catalyst support on which palladium (Pd) catalysts were loaded to exploit the biochemical activity of tyrosine. The bolaamphiphile self-assembled to form spherical structures exposing tyrosine moieties on the surface. The phenyl group of tyrosine was then used to create the Pd catalyst on the spherical self-assembly. Silver (Ag) clusters were decorated on the surface, exploiting the reducing function of the phenyl group. These Ag clusters were further applied to create Pd catalysts through the galvanic replacement reaction in the next step. The produced Pd catalyst showed reliable catalytic activity in decomposing dichromate with a pseudo-first-order reaction rate. The reaction rate constant increased proportionally to the Pd loading on the self-assembly support. In addition, as a solid support, the bolaamphiphile self-assembly made catalyst recovery easy, and the recovered Pd catalysts showed consistent activity after several cycles. The experimental results demonstrated that the bolaamphiphile self-assembly is a promising organic support with biochemical activity for the facile creation of metallic catalysts.

  3. Effect of Support in Heterogeneous Ruthenium Catalysts Used for the Selective Aerobic Oxidation of HMF in Water

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    added base. Catalysts were prepared by depositing catalytically active Ru(OH)x species on a number of different supports, such as titanium-, aluminum-, cerium-, zirconium-, magnesium- and lanthanum oxides, magnetite, spinel, hydrotalcite and hydroxyapatite. All the catalysts were found to be active...

  4. Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer–Tropsch synthesis

    NARCIS (Netherlands)

    Eschemann, T.O.; Bitter, J.H.; Jong, de K.P.

    2014-01-01

    Because of their high activity and selectivity to C5+ hydrocarbons in the Fischer–Tropsch, process, titania-supported cobalt catalysts have received great interest from industrial and academic, institutions. Here, we report on three catalyst preparation procedures, incipient wetness impregnation (IW

  5. Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer-Tropsch synthesis

    NARCIS (Netherlands)

    Eschemann, Thomas O.; Bitter, Johannes H.; De Jong, Krijn P.

    2014-01-01

    Because of their high activity and selectivity to C5+ hydrocarbons in the Fischer-Tropsch, process, titania-supported cobalt catalysts have received great interest from industrial and academic, institutions. Here, we report on three catalyst preparation procedures, incipient wetness impregnation (IW

  6. Natural phosphate-supported palladium: A highly efficient and recyclable catalyst for the suzuki-miyaura coupling under microwave irradiation

    KAUST Repository

    Hassine, Ayoub

    2015-01-19

    This report explores Suzuki-Miyaura coupling under microwave irradiation, using a new generation of catalyst that is based on natural phosphate (NP) impregnated by palladium. This catalyst was prepared by the treatment of natural phosphate with bis(benzonitrile)palladium(II) chloride in acetone at room temperature. The catalyst displayed high catalytic activity for the Suzuki-Miyaura coupling of aryl bromides and chlorides with aryl boronic acids in pure water and with the use of microwave irradiation. The low-cost and availability of the solid support, mild reaction conditions, high yields of desired products, recyclability of the catalyst and short reaction times are the notable features of these methods.

  7. Supported Copper, Nickel and Copper-Nickel Nanoparticle Catalysts for Low Temperature Water-Gas-Shift Reaction

    Science.gov (United States)

    Lin, Jiann-Horng

    Hydrogen is being considered worldwide as a future replacement for gasoline, diesel fuel, natural gas in both the transportation and non-transportation sectors. Hydrogen is a versatile energy carrier that can be produced from a variety of widely available primary energy sources, including coal, natural gas, biomass, solar, wind, and nuclear power. Coal, the most abundant fossil fuel on the planet, is being looked at as the possible future major source of H2, due to the development of the integrated gasification combined cycle (IGCC) and integrated gasification fuel cell technologies (IGFC). The gasification of coal produces syngas consisting of predominately carbon monoxide and hydrogen with some remaining hydrocarbons, carbon dioxide and water. Then, the water-gas shift reaction is used to convert CO to CO2 and additional hydrogen. The present work describes the synthesis of model Cu, Ni and Cu-Ni catalysts prepared from metal colloids, and compares their behavior in the WGS reaction to that of traditional impregnation catalysts. Initially, we systematically explored the performance of traditional Cu, Ni and Cu-Ni WGS catalysts made by impregnation methods. Various bimetallic Cu-Ni catalysts were prepared by supported impregnation and compared to monometallic Cu and Ni catalysts. The presence of Cu in bimetallic catalysts suppressed undesirable methanation side reaction, while the Ni component was important for high WGS activity. Colloidal Cu, Ni and Cu-Ni alloy nanoparticles obtained by chemical reduction were deposited onto alumina to prepare supported catalysts. The resulting Cu and Ni nanoparticle catalysts were found to be 2.5 times more active in the WGS reaction per unit mass of active metal as compared to catalysts prepared by the conventional impregnation technique. The powder XRD and HAADF-STEM provided evidence supporting the formation of Cu-Ni particles containing the Cu core and Cu-Ni alloy shell. The XPS data indicated surface segregation of Cu in

  8. Mechanistic and kinetic analysis of the oxidative dehydrogenation of ethane via novel supported alkali chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.; Veen, A.C. van; Lercher, J.A. [Technische Universitaet Muenchen (Germany). Catalysis Research Center

    2013-11-01

    The oxidative dehydrogenation of ethane over advanced catalysts is promising to selectively produce ethylene, an essential building block for the chemical industry. In this way, ethane from shale gas can be efficiently valorized. Supported alkali chloride catalysts are investigated in this work. Essential feature of those materials is the presence of a solid core (magnesium oxide in part doped with Dy{sub 2}O{sub 3}) covered under reaction conditions with a molten alkali chloride shell. It is shown that especially the lowered melting point of eutectic mixtures of LiCl with other alkali/alkaline earth metals is the key to taylor highly efficient materials. Elucidating the ODH reaction mechanism is essential to understand the reactivity of this novel catalyst class and provides the basis for improving performances. Information about elementary steps and the rate determining step were extracted from kinetic measurements, both in steady state and in transient configuration. Furthermore, isotopic labelling studies were performed, i.e. SSITKA studies and temperature programmed isotopic exchange experiments. Step experiments showed a significant oxygen uptake by the catalysts. Retained oxygen reacted quantitatively with ethane at nearly 100% selectivity to ethylene and conversion rates were comparable with rates observed during steady state operation. Thus, chemically bound oxygen in the melt is the active and selective intermediate in the ODH. Therefore, it is required to consider an intermediate and the activation is concluded to relate to the oxygen dissociation. The total concentration of stored oxygen can be correlated to the steady-state activity, while the viscosity of the melts mainly influences the selectivity towards ethene. Properties of the solid core impact on the catalyst efficiency suggesting that the oxygen species forms at the interface between support and overlayer. The quantity of retained oxygen additionally depends on the properties of the chloride

  9. CeO_2-supported vanadium oxide catalysts for soot oxidation:the roles of molecular structure and nanometer effect

    Institute of Scientific and Technical Information of China (English)

    刘坚; 赵震; 徐春明; 段爱军; 姜桂元

    2010-01-01

    The nanometer CeO2 powder was prepared by the method of microwave-assisted heating hydrolysis,and the nanometer CeO2-supported or ordinary CeO2-supported vanadia catalysts with different vanadium loadings(atomic ratios:100V/Ce=0.1,1,4,10,and 20) were prepared by an incipient-wetness impregnation method.Spectroscopic techniques(XRD,FT-IR,Raman and UV-Vis DRS) were utilized to characterize the structures of VOx/CeO2 catalysts.The results showed that the structures of CeO2-supported vanadium oxide catalysts de...

  10. Zeolite-supported precious metal catalysts for NO{sub x} reduction in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Takami, A.; Takemoto, T.; Iwakuni, H.; Yamada, K.; Shigetsu, M.; Komatsu, K. [Technical Research Center, Mazda Motor Corporation, Hiroshima (Japan)

    1997-03-06

    The effects of the zeolite-supported precious metal catalysts on NO{sub x} reduction in oxygen-rich exhaust have been investigated. It became clear that NO{sub x} conversion related the number of NO adsorption sites of precious metal and the number of HC (C{sub 3}H{sub 6}) adsorption of support (zeolite). Pt-Ir-Rh/MFI zeolite catalyst showed higher performance and durability than the current Pt-Rh supported on alumina and ceria catalyst

  11. Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts.

    Science.gov (United States)

    Yadav, Bholu Ram; Garg, Anurag

    2016-01-01

    The present study deals with the non-catalytic and catalytic wet oxidation (CWO) for the removal of persistent organic compounds from the pulping effluent. Two activated carbon-supported heterogeneous catalysts (Cu/Ce/AC and Cu/Mn/AC) were used for CWO after characterization by the following techniques: temperature-programmed reduction, Fourier transform infrared spectroscopy and thermo-gravimetric analysis. The oxidation reaction was performed in a batch high-pressure reactor (capacity = 0.7  L) at moderate oxidation conditions (temperature = 190°C and oxygen pressure = 0.9 MPa). With Cu/Ce/AC catalyst, the maximum chemical oxygen demand (COD), total organic carbon (TOC) and lignin removals of 79%, 77% and 88% were achieved compared to only 50% removal during the non-catalytic process. The 5-day biochemical oxygen demand (BOD5) to COD ratio (a measure for biodegradability) of the pulping effluent was improved to 0.52 from an initial value of 0.16. The mass balance calculations for solid recovered after CWO reaction showed 8% and 10% deduction in catalyst mass primarily attributed to the loss of carbon and metal leaching. After the CWO process, carbon deposition was also observed on the recovered catalyst which was responsible for around 3-4% TOC reduction.

  12. Pure silica SBA-15 supported Cu-Ni catalysts for hydrogen production by ethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Vizcayno, A.J.; Carrero, A.; Calles, J.A. [Department of Chemical and Environmental Technology, Rey Juan Carlos University, Escuela Superior de Ciencias Experimentales y Tecnologya (ESCET), c/ Tulipan s/n, 28933 Mostoles, (Spain)

    2006-07-01

    Cu-Ni/SBA-15 supported catalysts prepared by the incipient wetness impregnation method were tested in the ethanol steam reforming reaction for hydrogen production. The effect of reaction temperature and metal loading was studied in order to maximize the hydrogen selectivity and the CO{sub 2}/CO{sub x} molar ratio. The best catalytic performance was achieved at 600 C with a catalyst containing 2 and 7 wt% of copper and nickel, respectively. In addition, two catalysts were prepared by the method of direct insertion of Ni and Cu ions as precursors in the initial stage of the synthesis. XRD, TEM, N{sub 2} adsorption and ICP-AES results evidenced that SBA-15 materials with long range hexagonal ordering could be successfully synthesized in the presence of copper and nickel salts with the (Cu+Ni) contents around 4-6 wt%. However, lower hydrogen selectivity and together with ethanol and water conversions were observed with catalysts prepared by direct synthesis in comparison with those prepared by incipient wetness impregnation method. (authors)

  13. Investigation on C-TiO2 nanotubes composite as Pt catalyst support for methanol electrooxidation

    Science.gov (United States)

    Sui, Xu-Lei; Wang, Zhen-Bo; Yang, Min; Huo, Li; Gu, Da-Ming; Yin, Ge-Ping

    2014-06-01

    In this paper, Pt nanoparticles have been successfully deposited on the mixture of carbon black and one-dimensional self-ordered TiO2 nanotubes (TNTs) array by a microwave-assisted polyol process to synthesize Pt/C-TNTs catalyst. TiO2 nanoparticles (TNPs) are used instead of TNTs to prepare catalyst as a reference. The obtained samples are characterized by physical characterization and electrochemical measurements. The results show that Pt nanoparticles are uniformly deposited on the three-phase interfaces between carbon and TNTs. The Pt/C-TNTs possesses substantially enhanced activity and stability in electrochemical performance. Such remarkable properties are due to the excellent composite carrier of C-TNTs: (1) TNTs has strong corrosion resistance in acidic and oxidative environment and a metal support interaction between Pt and TNTs; (2) Compared to TNPs, TNTs is more suitable for electro-catalytic field on account of its better electronic conductivity; (3) Compared to TNPs, TNTs can improve the anti-poisoning ability of catalyst for methanol oxidation. (4) Amorphous carbon can improve the dispersion of platinum particles; (5) The distribution of carbon improves the poor conductivity of TNTs. These studies indicate that Pt/C-TNTs compound is a promising catalyst for methanol electrooxidation.

  14. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Alberto [Universita di Milano, Italy; Prati, Laura [Universita di Milano, Italy; Su, Dangshen [Fritz Haber Institute of the Max Planck Society, Berlin, Germany; Wang, Di [Fritz Haber Institute of the Max Planck Society, Berlin, Germany; Veith, Gabriel M [ORNL

    2010-01-01

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd{at}Au{sub PVA}/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  15. Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lingyun; Lin, Zekai; Peng, Fei; Wang, Weiwei; Huang, Ruiyun; Wang, Cheng; Yan, Jiawei; Liang, Jie; Zhang, Zhiming; Zhang, Teng; Long, Lasheng; Sun, Junliang; Lin, Wenbin (StockholmU); (UC); (Xiamen)

    2016-03-08

    Metal–organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal–organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.

  16. Comparison study of catalyst nanoparticle formation and carbon nanotube growth: Support effect

    Science.gov (United States)

    Wang, Yunyu; Luo, Zhiquan; Li, Bin; Ho, Paul S.; Yao, Zhen; Shi, Li; Bryan, Eugene N.; Nemanich, Robert J.

    2007-06-01

    A comparison study has been conducted on the formation of catalyst nanoparticles on a high surface tension metal and low surface tension oxide for carbon nanotube (CNT) growth via catalytic chemical vapor deposition (CCVD). Silicon dioxide (SiO2) and tantalum have been deposited as supporting layers before deposition of a thin layer of iron catalyst. Iron nanoparticles were formed after thermal annealing. It was found that densities, size distributions, and morphologies of iron nanoparticles were distinctly different on the two supporting layers. In particular, iron nanoparticles revealed a Volmer-Weber growth mode on SiO2 and a Stranski-Krastanov mode on tantalum. CCVD growth of CNTs was conducted on iron/tantalum and iron/SiO2. CNT growth on SiO2 exhibited a tip growth mode with a slow growth rate of less than 100nm /min. In contrast, the growth on tantalum followed a base growth mode with a fast growth rate exceeding 1μm/min. For comparison, plasma enhanced CVD was also employed for CNT growth on SiO2 and showed a base growth mode with a growth rate greater than 2μm /min. The enhanced CNT growth rate on tantalum was attributed to the morphologies of iron nanoparticles in combination with the presence of an iron wetting layer. The CNT growth mode was affected by the adhesion between the catalyst and support as well as CVD process.

  17. CO2 Hydrogenation over Oxide-Supported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity.

    Science.gov (United States)

    Kattel, Shyam; Yu, Weiting; Yang, Xiaofang; Yan, Binhang; Huang, Yanqiang; Wan, Weiming; Liu, Ping; Chen, Jingguang G

    2016-07-04

    By simply changing the oxide support, the selectivity of a metal-oxide catalysts can be tuned. For the CO2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO2 , ZrO2 , and TiO2 ), replacing a TiO2 support by CeO2 or ZrO2 selectively strengthens the binding of C,O-bound and O-bound species at the PtCo-oxide interface, leading to a different product selectivity. These results reveal mechanistic insights into how the catalytic performance of metal-oxide catalysts can be fine-tuned.

  18. Carbon Nanotubes Supported Pt-Ru-Ni as Methanol Electro-Oxidation Catalyst for Direct Methanol Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Ye; Shengzhou Chen; Xinfa Dong; Weiming Lin

    2007-01-01

    Carbon nanotubes (CNTs) supported Pt-Ru and Pt-Ru-Ni catalysts were prepared by chemical reduction of metal precursors with sodium borohydride at room temperature. The crystallographic properties and composition of the catalysts were characterized by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis, and the catalytic activity and stability for methanol electro-oxidation were measured by electrochemical impedance spectroscopy (EIS), linear sweep voltammetries (LSV), and chronoamperometry (CA). The results show that the catalysts exhibit face-centered cubic (fcc) structure.The particle size of Pt-Ru-Ni/CNTs catalyst is about 4.8 nm. The catalytic activity and stability of the Pt-Ru-Ni/CNTs catalyst are higher than those of Pt-Ru/CNTs catalyst.

  19. Microwave assisted synthesis of biarlys by Csbnd C coupling reactions with a new chitosan supported Pd(II) catalyst

    Science.gov (United States)

    Baran, Talat; Menteş, Ayfer

    2016-10-01

    In this study a new type chitosan-based support has been produced for Pd(II) catalyst and its catalytic performance in Suzuki Csbnd C reactions has been studied under microwave irradiation without using any solvent. The chemical identification of the catalyst was performed using TG/DTG, FTIR, UV-Vis ICP-OES, SEM/EDAX, 13C NMR, molar conductivity, XRD and magnetic moment techniques. The performance of this new Pd(II) catalyst was studied in Suzuki Csbnd C reactions. The Pd(II) catalyst exhibited a good catalytic performance in very short time (4 min) by giving high TONs and TOFs with low amount of the catalyst (0.015 mol%). The catalyst also had reusability and did not lose its activity until six runs.

  20. Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst.

    Science.gov (United States)

    Kibsgaard, Jakob; Lauritsen, Jeppe V; Laegsgaard, Erik; Clausen, Bjerne S; Topsøe, Henrik; Besenbacher, Flemming

    2006-10-25

    Supported MoS(2) nanoparticles constitute the active component of the important hydrotreating catalysts used for industrial upgrading and purification of the oil feedstock for the production of fossil fuels with a low environmental load. We have synthesized and studied a model system of the hydrotreating catalyst consisting of MoS(2) nanoclusters supported on a graphite surface in order to resolve a number of very fundamental questions related to the atomic-scale structure and morphology of the active clusters and in particular the effect of a substrate used in some types of hydrotreating catalysts. Scanning tunneling microscopy (STM) is used to image the atomic-scale structure of graphite-supported MoS(2) nanoclusters in real space. It is found that the pristine graphite (0001) surface does not support a high dispersion of MoS(2), but by introducing a small density of defects in the surface, highly dispersed MoS(2) nanoclusters could be synthesized on the graphite. From high-resolution STM images it is found that MoS(2) nanoclusters synthesized at low temperature in a sulfiding atmosphere preferentially grow as single-layer clusters, whereas clusters synthesized at 1200 K grow as multilayer slabs oriented with the MoS(2)(0001) basal plane parallel to the graphite surface. The morphology of both single-layer and multilayer MoS(2) nanoclusters is found to be preferentially hexagonal, and atom-resolved images of the top facet of the clusters provide new atomic-scale information on the MoS(2)-HOPG bonding. The structure of the two types of catalytically interesting edges terminating the hexagonal MoS(2) nanoclusters is also resolved in atomic detail in STM images, and from these images it is possible to reveal the atomic structure of both edges and the location and coverage of sulfur and hydrogen adsorbates.

  1. Carbon Aerogel-Supported Pt Catalysts for the Hydrogenolysis and Isomerization of n-Butane: Influence of the Carbonization Temperature of the Support and Pt Particle Size

    Directory of Open Access Journals (Sweden)

    Marta B. Dawidziuk

    2012-10-01

    Full Text Available Carbon aerogels prepared at different carbonization temperatures and with varying mesopore volumes were used as supports for Pt catalysts to study the n-C4H10/H2 reaction. Mean Pt particle size depended on the mesopore volume of the support, showing a linear decrease when the mesopore volume increased. The turnover frequency (TOF for hydrogenolysis was much higher than for isomerization in catalysts supported on carbon aerogels obtained at 900–950 °C. However, both TOF values were similar in catalysts supported on the carbon aerogel obtained at 500 °C. TOF for hydrogenolysis and isomerization were related to the mean Pt particle size in catalysts supported on carbon aerogels obtained at 900–950 °C. In addition, both reactions showed a compensation effect between the activation energy and pre-exponential factor, indicating that they have the same intermediate, i.e., the chemisorbed dehydrogenated alkane.

  2. Degradation of phenylamine by catalytic wet air oxidation using metal catalysts with modified supports.

    Science.gov (United States)

    Torrellas, Silvia A; Escudero, Gabriel O; Rodriguez, Araceli R; Rodriguez, Juan G

    2015-01-01

    The effect of acid treatments with HCl and HNO3 on the surface area and surface chemistry of three granular activated carbons was studied. These supports were characterized and the hydrochloric acid treatment leads to the best activated carbon support (AC2-C). The catalytic behavior of Pt, Ru and Fe (1 wt.%) supported on granular activated carbon treated with HCl was tested in the phenylamine continuous catalytic wet air oxidation in a three-phase, high-pressure catalytic reactor over a range of reaction temperatures 130-170ºC and total pressure of 1.0-3.0 MPa at LHSV = 0.4-1 h(-1), whereas the phenylamine concentration range and the catalyst loading were 5-16 mol.m(-3) and 0.5-1.5 g, respectively. Activity as well as conversion varied as a function of the metal, the catalyst preparation method and operation conditions. Higher activities were obtained with Pt incorporated on hydrochloric acid -treated activated carbon by the ion exchange method. In steady state, approximately 98% phenylamine conversion, 77% of TOC and 94% of COD removal, was recorded at 150ºC, 11 mol m(-3) of phenylamine concentration and 1.5 g of catalyst, and the selectivity to non-organic compounds was 78%. Several reaction intermediaries were detected. A Langmuir-Hinshelwood model gave an excellent fit of the kinetic data of phenylamine continuous catalytic wet air oxidation over the catalysts of this work.

  3. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst.

    Science.gov (United States)

    Baran, Talat; Inanan, Tülden; Menteş, Ayfer

    2016-07-10

    The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature.

  4. Catalytic incineration of CO and VOC emissions over supported metal oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Per-Olof

    1999-05-01

    Catalytic incineration is one of the methods to reduce the emissions of CO and VOCs. Low operation temperature and low catalyst cost are essential parameters for catalytic incinerators. Pt/Al{sub 2}O{sub 3} catalysts are frequently used today, but the cheaper metal oxide catalysts can be very competitive if comparable overall activity is obtained. This thesis concerns how it is possible to decrease the operation temperature for supported metal oxide catalysts by using different supports, active metal oxides and additives. In the thesis it is demonstrated that different copper oxide based catalysts have the best activity and durability for complete oxidation among several tested metal oxide catalysts. CuO{sub x} supported on TiO{sub 2} and Al{sub 2}O{sub 3} showed increased activity with the CuO{sub x} loading up to the threshold coverage for formation of crystalline CuO particles, which is 12 {mu}mol/m{sup 2} on TiO{sub 2} and 6 {mu}mol/m{sup 2} on Al{sub 2}O{sub 3}. Up to the threshold coverage for CuO formation, well dispersed copper oxide species were formed on TiO{sub 2}, and a dispersed copper aluminate surface phase was formed on Al{sub 2}O{sub 3}. Durability tests showed accelerated sintering of TiO{sub 2} by copper, but stabilisation was possible by modification of the TiO{sub 2} with CeO{sub x} before the deposition of CuO{sub x}. The stabilisation was obtained by formation of a Ce-O-Ti surface phase. Addition of CeO{sub x} also enhanced the activity of the copper oxide species thanks to favourable interaction between the active copper oxide species and the CeO{sub x} on the support, which could be seen as increased reducibility in TPR experiments. The increased activity and reducibility was also observed for CuO{sub x} supported on ceria modified Al{sub 2}O{sub 3}. In this regard it was shown that CuO{sub x} deposited on CeO{sub 2}(001) surfaces was substantially more active for CO oxidation than copper oxide deposited on CeO{sub 2}(111) Surfaces. This

  5. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.

    Science.gov (United States)

    Wang, Wenhui; He, Ting; Liu, Xuehua; He, Weina; Cong, Hengjiang; Shen, Yangbin; Yan, Liuming; Zhang, Xuetong; Zhang, Jinping; Zhou, Xiaochun

    2016-08-17

    Hydrogen is regarded as a future sustainable and clean energy carrier. Formic acid is a safe and sustainable hydrogen storage medium with many advantages, including high hydrogen content, nontoxicity, and low cost. In this work, a series of highly active catalysts for hydrogen production from formic acid are successfully synthesized by controllably depositing Pd onto Ag nanoplates with different Ag nanofacets, such as Ag{111}, Ag{100}, and the nanofacet on hexagonal close packing Ag crystal (Ag{hcp}). Then, the Pd-Ag nanoplate catalysts are supported on Vulcan XC-72 carbon black to prevent the aggregation of the catalysts. The research reveals that the high activity is attributed to the formation of Pd-Ag alloy nanofacets, such as Pd-Ag{111}, Pd-Ag{100}, and Pd-Ag{hcp}. The activity order of these Pd-decorated Ag nanofacets is Pd-Ag{hcp} > Pd-Ag{111} > Pd-Ag{100}. Particularly, the activity of Pd-Ag{hcp} is up to an extremely high value, i.e., TOF{hcp} = 19 000 ± 1630 h(-1) at 90 °C (lower limit value), which is more than 800 times higher than our previous quasi-spherical Pd-Ag alloy nanocatalyst. The initial activity of Pd-Ag{hcp} even reaches (3.13 ± 0.19) × 10(6) h(-1) at 90 °C. This research not only presents highly active catalysts for hydrogen generation but also shows that the facet on the hcp Ag crystal can act as a potentially highly active catalyst.

  6. Dimethyl carbonate synthesis via transesterification of propylene carbonate with methanol by ceria-zinc catalysts: Role of catalyst support and reaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen; Srivastava, Vimal Chandra; Mishra, Indra Mani [Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand (India)

    2015-09-15

    Ceria and zinc oxide catalyst were impregnated onto various oxide supports, namely Al{sub 2}O{sub 3}, TiO{sub 2} and SiO{sub 2}, individually by deposition-coprecipitation method. The synthesized catalysts (CZA, CZS and CZT having supports Al{sub 2}O{sub 3}, TiO{sub 2} and SiO{sub 2}, respectively) were characterized by X-ray diffraction (XRD), NH{sub 3}- and CO{sub 2}-temperature programmed desorption (TPD) and N2 adsorption. These catalysts were used for synthesis of dimethyl carbonate (DMC) from methanol and propylene carbonate in a batch reactor. CZS was found to have larger average grain size as compared to CZA and CZT. Composite oxides (catalysts) were found to contain individual phases of ZnO, CeO{sub 2} and some spinel forms of Zn, Ce along with their supports. CZS having highest basicity and surface area showed better catalytic activity as compared to CZA and CZT. Effect of reaction temperature and methanol/PC molar ratio on DMC yield was studied and a reaction mechanism has been discussed. Maximum DMC yield of 77% was observed with CZS catalyst at 170 .deg. C with methanol/PC molar ratio of 10.

  7. Kinetics of the Bray-Liebhafsky oscillatory reaction perturbed by polymer supported cobalt catalyst

    Directory of Open Access Journals (Sweden)

    Maksimović J.P.

    2011-01-01

    Full Text Available The Bray-Liebhafsky (BL oscillatory reaction generated in the batch reactor at 62- 68 oC was perturbed by cobalt(II-nitrate, supported on the macroreticular copolymer of poly-4-vinylpyridine with divinylbenzene (Co-PVPDVB. The kinetic data was analyzed of the complex pathways of the hydrogen peroxide decomposition in the examined BL reaction. The obtained results confirm that the kinetics of the BL reaction in the presence Co-PVPDVB comes partially from the Co-catalyst and partially from the macroreticular copolymer support.

  8. Low-temperature SCR of NO{sub x} with NH{sub 3} over carbon-ceramic supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Valdes-Solis, Teresa; Marban, Gregorio; Fuertes, Antonio B. [Instituto Nacional del Carbon (CSIC), c/Francisco Pintado Fe No. 26, 33011 Oviedo (Spain)

    2003-11-10

    A new method for preparing vanadium oxide supported on carbon-ceramic cellular monoliths is described. This includes a support oxidation step with HNO{sub 3}, followed by ionic exchange with a NaOH solution, equilibrium adsorption impregnation of VO{sup 2+} and thermal treatment. As a result an active catalyst for low-temperature selective catalytic reduction (SCR) reaction is obtained. The V-catalyst is more resistant to SO{sub 2} poisoning than the previously developed Mn-catalyst. Inhibition by water is reversible for both types of catalysts. Testing of the vanadium catalyst after subjecting it to the outlet gas stream of a power plant shows fast deactivation until constant residual activity is reached. Deactivation seems to be caused by arsenic poisoning and the formation of superficial sulphates.

  9. Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Upadhye, AA; Ro, I; Zeng, X; Kim, HJ; Tejedor, I; Anderson, MA; Dumesic, JA; Huber, GW

    2015-01-01

    We show that localized surface plasmon resonance (LSPR) can enhance the catalytic activities of different oxide-supported Au catalysts for the reverse water gas shift (RWGS) reaction. Oxide-supported Au catalysts showed 30 to 1300% higher activity for RWGS under visible light compared to dark conditions. Au/TiO2 catalyst prepared by the deposition-precipitation (DP) method with 3.5 nm average Au particle size showed the highest activity for the RWGS reaction. Visible light is converted into chemical energy for this reaction with up to a 5% overall efficiency. A shift in the apparent activation energy (from 47 kJ mol(-1) in dark to 35 kJ mol(-1) in light) and apparent reaction order with respect to CO2 (from 0.5 in dark to 1.0 in light) occurs due to the LSPR. Our kinetic results indicate that the LSPR increases the rate of either the hydroxyl hydrogenation or carboxyl decomposition more than any other steps in the reaction network.

  10. Towards rational design of catalysts supported on a topological insulator substrate

    CERN Document Server

    Xiao, Jianping; Yam, Chi-Yung; Frauenheim, Thomas; Yan, Binghai

    2015-01-01

    Exotic and robust metallic surface states of topological insulators (TIs) have been expected to provide a promising platform for novel surface chemistry and catalysis. However, it is still an unprecedented field how TIs affect the activity of catalysts. In this work, we study the effects of topological surface states (TSSs) on the activity of transition metal clusters (Au, Ag, Cu, Pt, and Pd), which are supported on a TI Bi2Se3 substrate. It was found the adsorption energy of oxygen on the supported catalysts can be always enhanced due to the TSSs. However, it does not necessarily mean an increase of the activity in catalytic oxidation reaction. Rather, the enhanced adsorption behavior in the presence of TSSs exhibits dual effects, determined by the intrinsic reactivity of these catalysts with oxygen. For the Au case, the activity of catalytic oxidation can be improved because the intrinsic binding between Au and O is relatively weak. In contrast, a negative effect is found for the Pt and Pd clusters since th...

  11. Synergistic effect between Sn and K promoters on supported platinum catalyst for isobutane dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    Yiwei Zhang; Yuming Zhou; Lihui Wan; Mengwei Xue; Yongzheng Duan; Xuan Liu

    2011-01-01

    Catalytic dehydrogenation of isobutane has recently received considerable attention because of the increasing demand for isobutene.In this study,the synergistic effect between Sn and K on PtSnK/γ-Al2O3 catalysts has been investigated by changing the content of Sn.It was found that with the presence of potassium,suitable addition of Sn could not only increase the metal dispersion,but also reduce the catalyst acidity.In these cases,the synergistic effect could also strengthen the interactions between the metal and support,which resulted in an increase in both catalytic activity and stability.In our experiments,Pt-0.6SnK/Al catalyst exhibited the lowest deactivation rate (12.4%) and showed a selectivity to isobutene higher than 94% at the isobutane conversion of about 45.3% after running the reaction for 6 h.However,with the excessive loading of Sn,surface property of active sites and the interactions between metal and support were changed.As a result,the initial optimal ratio between the metallic function and acid function would be destroyed,which was disadvantageous to the reaction.

  12. Microwave-assisted synthesis of carbon-supported carbides catalysts for hydrous hydrazine decomposition

    Science.gov (United States)

    Mnatsakanyan, Raman; Zhurnachyan, Alina R.; Matyshak, Valery A.; Manukyan, Khachatur V.; Mukasyan, Alexander S.

    2016-09-01

    Microwave-assisted synthesis of carbon-supported Mo2C and WC nanomaterials was studied. Two different routes were utilized to prepare MoO3 (WO3) - C precursors that were then subjected to microwave irradiation in an inert atmosphere. The effect of synthesis conditions, such as irradiation time and gas environment, was investigated. The structure and formation mechanism of the carbide phases were explored. As-synthesized nanomaterials exhibited catalytic activity for hydrous hydrazine (N2H4·H2O) decomposition at 30-70 °C. It was shown that the catalyst activity significantly increases if microwave irradiation is applied during the decomposition process. Such conditions permit complete conversion of hydrazine to ammonia and nitrogen within minutes. This effect can be attributed to the unique nanostructure of the catalysts that includes microwave absorbing carbon and active carbide constituents.

  13. Synthesis and characterization of magnesium oxide supported catalysts with a meso-macropore structure.

    Science.gov (United States)

    Kim, Sang Woo; Kim, Inho; Moon, Dong Ju

    2013-08-01

    Nanostructured magnesium oxide catalyst support materials with controlled morphology and size were synthesized from a supercritical carbon dioxide/ethanol solution via chemical reaction of soluble precursors and subsequent thermal decomposition. Leaf-like magnesium hydroxide precursors with high specific surface area were formed by a low-temperature chemical reaction at below 140 degrees C, while magnesium carbonate cubes with a very low surface area less than 3.3 m2/g were formed by temperature-induced phase transition from a loose to a dense structure during carbonation reaction at above 150 degrees C. The specific surface area has significantly increased higher than 90 m2/g due to the creation of highly porous MgO cubes with mesopore structure formed after thermal decomposition of the magnesium carbonate precursors. Ni-magnesium oxide catalysts with bimodal pore structure were finally formed by the consequence of packing heterogeneity of the porous magnesium oxides with different morphologies and sizes.

  14. Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hongbin; Li, Lei; Yang, Jun; Zhang, Yongming [School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2008-10-01

    A novel catalyst support was synthesized by in situ chemical oxidative polymerization of pyrrole on Vulcan XC-72 carbon in naphthalene sulfonic acid (NSA) solution containing ammonium persulfate as oxidant at room temperature. Pt nanoparticles with 3-4 nm size were deposited on the prepared polypyrrole-carbon composites by chemical reduction method. Scanning electron microscopy and transmission electron microscopy measurements showed that Pt particles were homogeneously dispersed in polypyrrole-carbon composites. The Pt nanoparticles-dispersed catalyst composites were used as anodes of fuel cells for hydrogen and methanol oxidation. Cyclic voltammetry measurements of hydrogen and methanol oxidation showed that Pt nanoparticles deposited on polypyrrole-carbon with NSA as dopant exhibit better catalytic activity than those on plain carbon. This result might be due to the higher electrochemically available surface areas, electronic conductivity and easier charge-transfer at polymer/carbon particle interfaces allowing a high dispersion and utilization of deposited Pt nanoparticles. (author)

  15. Synthesis and study of carbon microspheres for use as catalyst support for cobalt

    Directory of Open Access Journals (Sweden)

    N.J. Coville

    2010-01-01

    Full Text Available The production of pure carbon spheres was achieved in the absence of a catalyst through the direct pyrolysis of two hydrocarbon sources, acetylene and ethylene. Systematic studies using acetylene as the feedstock indicated that the size distribution of the resulting carbon microspheres can be controlled by pyrolysis temperature, time and feedstock flow rate. The resulting spheres were fully characterised by transmission electron microscopy (TEM and thermogravimetric analysis. The TEM examination showed that these spheres have a ball-like and chain-like morphology, and the balls have smooth surfaces with a variation in diameter size and distribution determined by the reaction conditions. Carbon microsphere-supported cobalt catalysts were synthesised and have shown good activity in the ethylene hydrogenation reaction.

  16. Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications

    Science.gov (United States)

    Zhao, Hongbin; Li, Lei; Yang, Jun; Zhang, Yongming

    A novel catalyst support was synthesized by in situ chemical oxidative polymerization of pyrrole on Vulcan XC-72 carbon in naphthalene sulfonic acid (NSA) solution containing ammonium persulfate as oxidant at room temperature. Pt nanoparticles with 3-4 nm size were deposited on the prepared polypyrrole-carbon composites by chemical reduction method. Scanning electron microscopy and transmission electron microscopy measurements showed that Pt particles were homogeneously dispersed in polypyrrole-carbon composites. The Pt nanoparticles-dispersed catalyst composites were used as anodes of fuel cells for hydrogen and methanol oxidation. Cyclic voltammetry measurements of hydrogen and methanol oxidation showed that Pt nanoparticles deposited on polypyrrole-carbon with NSA as dopant exhibit better catalytic activity than those on plain carbon. This result might be due to the higher electrochemically available surface areas, electronic conductivity and easier charge-transfer at polymer/carbon particle interfaces allowing a high dispersion and utilization of deposited Pt nanoparticles.

  17. Aluminum Oxide Formation On Fecral Catalyst Support By Electro-Chemical Coating

    Directory of Open Access Journals (Sweden)

    Yang H.S.

    2015-06-01

    Full Text Available FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

  18. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Science.gov (United States)

    Huang, Chao; Yang, Xu; Yang, Hui; Huang, Peiyan; Song, Huiyu; Liao, Shijun

    2014-10-01

    A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation-hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  19. Carbon-Supported Fe Catalysts for CO2 Electroreduction to High-Added Value Products: A DEMS Study: Effect of the Functionalization of the Support

    Directory of Open Access Journals (Sweden)

    S. Pérez-Rodríguez

    2011-01-01

    Full Text Available Vulcan XC-72R-supported Fe catalysts have been synthesised for the electroreduction of CO2 to high-added value products. Catalysts were obtained by the polyol method, using ethylene glycol as solvent and reducing agent. Prior to the metal deposition, Vulcan was subjected to different oxidation treatments in order to modify its surface chemistry and study its influence on the physicochemical and electrochemical properties of the catalysts, as well as on the product distribution. The oxidation treatments of the supports modify their textural properties, but do not affect significantly the physicochemical properties of catalysts. However, DEMS studies showed that the carbon support degradation, the distribution of products, and the catalytic activity toward the CO2 electroreduction reaction depend significantly on the surface chemistry of the carbon support.

  20. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    OpenAIRE

    John Meynard M. Tengco; Bahareh Alsadat Tavakoli Mehrabadi; Yunya Zhang; Akkarat Wongkaew; John R. Regalbuto; Weidner, John W.; John R. Monnier

    2016-01-01

    Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED) of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) characterization of the base catalyst showed highly dispersed particles. A basic E...

  1. Hydrogen production in membrane reactors using Rh catalysts on binary supports

    Energy Technology Data Exchange (ETDEWEB)

    Carrara, Carlos; Roa, Alejandro; Cornaglia, Laura; Lombardo, Eduardo A. [Instituto de Investigaciones en Catalisis y Petroquimica (FIQ, UNL-CONICET), Sgo del Estero 2829-3000 Santa Fe (Argentina); Mateos-Pedrero, Cecilia; Ruiz, Patricio [Unite de Catalyse et Chimie des Materiaux Divises, Universite Catholique de Louvain, Place Croix du Sud 2/17, 1348 Louvain-la Neuve (Belgium)

    2008-04-15

    The binary supports employed in this work were prepared by different methods. The Ti(7%)-MgO and the Ti(13%)-SiO{sub 2} were obtained using the grafting technique. The La(27%)-SiO{sub 2} was obtained through the incipient wetness impregnation with La(NO{sub 3}){sub 3} of Aerosil 300, previously calcined at 1173 K. The Rh was incorporated to these supports by wet impregnation. The catalysts were first evaluated for the CH{sub 4} + CO{sub 2} reaction in a fixed-bed reactor. They were found to be active and stable as to justify their use in the membrane reactor, which was operated at 823 K achieving methane conversions up to twice as much as the equilibrium values. In all cases, the activity of the Rh solids remained constant after 120 h on stream with very little formation of carbonaceous residues only detected through LRS. The catalysts were characterized through either hydrogen or carbon monoxide chemisorption, TPR, XRD, LRS and XPS. The Rh(0.6)/La-SiO{sub 2} catalyst showed a high metal dispersion that remained constant after use and the highest capacity to restore the CH{sub 4} + CO{sub 2} equilibrium when H{sub 2} was permeated out of the reaction section. The Rh(0.8)/Ti-MgO showed the highest Rh/oxide interaction associated with the lowest capacity to restore the reaction equilibrium. The Rh(0.8)/Ti-SiO{sub 2} exhibited an intermediate activity due in part to the partial segregation of the TiO{sub 2} upon calcinations and the subsequent appearance of small Rh crystallites in the used catalysts. (author)

  2. Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, A.L.; Miranda-Hernandez, M.; Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, Temixco, 62580 Morelos (Mexico); Morgado, J.; Montoya, J.A. [IMP, Eje Central Lazaro Cardenas 152, 07730 D.F. Mexico (Mexico)

    2006-10-06

    In this work the authors present the results of a systematic characterization and evaluation of the carbon nanotube supported Pt-Ru (Pt-Ru/CNT) for its use as methanol oxidation catalyst. Its activity was compared with that of Pt and Pt-Ru catalysts supported on Vulcan and synthesized from carbonyl precursors, and another commercial Pt-Ru catalyst. The cyclic voltammetry, CO stripping and electrochemical impedance techniques were employed to determine the electrocatalytic activity of the catalysts. The electrochemical studies were performed in 0.5M H{sub 2}SO{sub 4} containing different concentrations of methanol (0.05-1M). The results showed a noticeable influence of the catalyst support (CNT) on the performance of the catalyst for CO oxidation. The electrochemical impedance studies allowed us to separate the different steps in the methanol oxidation reaction and to control these steps or reactions by varying the applied potential and the methanol concentration. At low methanol concentration and potentials the de-hydrogenation of methanol predominated. But, at high potential and methanol concentrations, the CO oxidation predominated. These results allowed us to clearly describe at what potential and concentration ranges the bi-functional effect of Ru becomes evident. Our results indicated that the CO oxidation occurs both on Pt and Ru. Compared to other catalysts, Pt-Ru supported on carbon nanotubes showed superior catalytic activity for CO and methanol oxidation. (author)

  3. Supported Pt-based nanoparticulate catalysts for the electro-oxidation of methanol: An experimental protocol for quantifying its activity

    DEFF Research Database (Denmark)

    Hernandez-Fernandez, Patricia; Lund, Peter Brilner; Kallesøe, Christian

    2014-01-01

    In here, we propose a simple methodology to evaluate the activity of supported nano-particulate catalysts on the electro-oxidation of methanol in a three-electrode cell. The proof of concept has been made on carbon supported Pt and PtRu commercial catalysts, but the protocol can be extended to all...... kinds of Pt-based nanoparticles. Even though the electro-oxidation of methanol has been studied for many years, there is no established electrochemical procedure for measuring the performance of a catalyst in such reaction. The conditions in which the measurements are carried out differ between research...

  4. Cloth catalysts in water denitrification. II. Removal of nitrates using Pd-Cu supported on glass fibers

    OpenAIRE

    Matatov-Meytal, Yu.; Barelko, V.; Yuranov, I.; Kiwi-Minsker, L.; Renken, A.; Sheintuch, M.

    2001-01-01

    The use of glass fibers in the form of woven cloth (GFC), as a new type of catalytic support, was studied for the reduction of aqueous nitrate solutions using a Pd/Cu–GFC catalyst. The activity (per gram Pd) and selectivity to nitrogen were found to be comparable with those found for Pd–Cu catalysts supported on the other carriers. The maximal initial removal activity was found for a catalyst with a Pd/(Pd+Cu) ratio of 0.81. The corresponding activity was 0.7 mmol min-1 (gPd)-1, and the selec...

  5. Preparation and characterization of zirconium dioxide catalyst supports modified with rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Masakuni; Kimura, Mareo (Toyota Central Research and Development Labs., Inc., Aichi (Japan))

    1991-08-15

    ZrO{sub 2} catlyst supports modified with rare earth elements were prepared by coprecipitation from an aqueous solution of zirconium oxychloride and rare earth chlorides. The crystallization of amorphous hydrous ZrO{sub 2} was inhibited by doping with rare earths; the crystallization temperature was elevated as the amount and ionic radius of the rare earth modifiers was increased. Only modification using cerium had no effect on the crystallization process. The behavior of cerium was different from that of other rare earth elements with valency +3. A metastable cubic phase was formed for ZrO{sub 2} modified with 10 mol.% lanthanum, neodymium and samarium by heating at 600degC. X-ray diffraction and Raman data indicated that the metastable phase had large microstrain and short-range ordering similar to tetragonal symmetry. Rare earth modified ZrO{sub 2} showed a large surface area and good thermal stability as a catalyst support. The carbon monoxide oxidation activity of iron was enhanced by modification with neodymium of ZrO{sub 2} supports. The results suggest the effectiveness of rare earth modified ZrO{sub 2} as catalyst supports. (orig.).

  6. In—Situ FTIR Study on Effect of Lathanum on Oxidation Mechanism of Methanol Automobile Exhaust on Supported Palladium Catalyst

    Institute of Scientific and Technical Information of China (English)

    王幸宜; 万颖; 等

    2002-01-01

    The performance of severe oxidation of methanol on 0.1%Pd supported on alumina was studied by a combined device of chromatograph-micro reactor,The results show that the addition of La intoγAl2O3as support can affect the performance of Pd catalyst greatly.By using Pd catalyst comtaining La in methanol oxidation,thouhg,the ignition temperature is not lower than than by using Pd catalyst,the presence of La does suppress the formation of oxygenic intermediates,The results by in-situ FTIR show that the presence of La in the support affects the adsorbed specties and hence the mechanism of severe oxidation of methanol on Pd catalyst.

  7. In-Situ FTIR Study on Effect of Lathanum on Oxidation Mechanism of Methanol Automobile Exhaust on Supported Palladium Catalyst

    Institute of Scientific and Technical Information of China (English)

    王幸宜; 万颖; 卢冠忠; 李庭琛

    2002-01-01

    The performance of severe oxidation of methanol on 0.1%Pd supported on alumina was studied by a combined device of chromatograph-micro reactor. The results show that the addition of La into γ-Al2O3 as support can affect the performance of Pd catalyst greatly. By using Pd catalyst containing La in methanol oxidation, though, the ignition temperature is not lower than that by using Pd catalyst, the presence of La does suppress the formation of oxygenic intermediates. The results by in-situ FTIR show that the presence of La in the support affects the adsorbed species and hence the mechanism of severe oxidation of methanol on Pd catalyst.

  8. Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Homs, Narcis; Llorca, Jordi; De la Piscina, Pilar Ramirez [Departament de Quimica Inorganica, Universitat de Barcelona, C/Marti i Franques 1-11, 08028 Barcelona (Spain)

    2006-08-15

    ZnO-supported Ni and Cu as well as bimetallic Co-Ni and Co-Cu catalysts containing ca. 0.7wt% sodium promoter and prepared by the co-precipitation method were tested in the ethanol steam-reforming reaction at low temperature (523-723K), using a bioethanol-like mixture diluted in Ar. Monometallic ZnO-supported Cu or Ni samples do not exhibit good catalytic performance in the steam-reforming of ethanol for hydrogen production. Copper catalyst mainly dehydrogenates ethanol to acetaldehyde, whereas nickel catalyst favours ethanol decomposition. However, the addition of Ni to ZnO-supported cobalt has a positive effect both on the production of hydrogen at low temperature (<573K), and on catalyst stability. Evidence for alloy formation as well as mixed oxides at the microstructural level was found in the bimetallic systems after running the ethanol steam-reforming reaction by HRTEM-EELS. (author)

  9. Partial Oxidation of Hydrocarbons in a Segmented Bed Using Oxide-based Catalysts and Oxygen-conducting Supports

    Science.gov (United States)

    Smith, Mark W.

    Two objectives for the catalytic reforming of hydrocarbons to produce synthesis gas are investigated herein: (1) the effect of oxygen-conducting supports with partially substituted mixed-metal oxide catalysts, and (2) a segmented bed approach using different catalyst configurations. Excess carbon deposition was the primary cause of catalyst deactivation, and was the focus of the experiments for both objectives. The formation and characterization of deposited carbon was examined after reaction for one of the selected catalysts to determine the quantity and location of the carbon on the catalyst surface leading to deactivation. A nickel-substituted barium hexaaluminate (BNHA), with the formula BaAl 11.6Ni0.4O18.8, and a Rh-substituted lanthanum zirconate pyrochlore (LCZR) with the formula La1.89Ca0.11 Zr1.89Rh0.11, were combined with two different doped ceria supports. These supports were gadolinium-doped ceria (GDC) and zirconium-doped ceria (ZDC). The active catalyst phases were combined with the supports in different ratios using different synthesis techniques. The catalysts were characterized using several different techniques and were tested under partial oxidation (POX) of n-tetradecane (TD), a diesel fuel surrogate. It was found that the presence of GDC and ZDC reduced the formation of carbon for both catalysts; the optimal ratio of catalyst to support was different for the hexaaluminate and the pyrochlore; a loading of 20 wt% of the pyrochlore with ZDC produced the most stable performance in the presence of common fuel contaminants (>50 h); and, the incipient wetness impregnation synthesis method of applying the active catalyst to the support produced more stable product yields than the catalyst prepared by a solid-state mixing technique. Different hexaaluminate and pyrochlore catalysts were used in different configurations in a segmented bed approach. The first strategy was to promote the indirect reforming mechanism by placing a combustion catalyst in the

  10. Production of Carbon Nanofibers Using a CVD Method with Lithium Fluoride as a Supported Cobalt Catalyst

    Directory of Open Access Journals (Sweden)

    S. A. Manafi

    2008-02-01

    Full Text Available Carbon nanofibers (CNFs have been synthesized in high yield (>70% by catalytic chemical vapor deposition (CCVD on Co/LiF catalyst using acetylene as carbon source. A novel catalyst support (LiF is reported for the first time as an alternative for large-scale production of carbon nanofibers while purification process of nanofibers is easier. In our experiment, the sealed furnace was heated at 700∘C for 0.5 hour (the heating rate was 10∘C/min and then cooled to room temperature in the furnace naturally. Catalytic chemical vapor deposition is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanofibers (CNFs. The obtained sample was sequentially washed with ethanol, dilutes acid, and distilled water to remove residual impurities, amorphous carbon materials, and remaining of catalyst, and then dried at 110∘C for 24 hours. The combined physical characterization through several techniques, such as high-resolution transmission electron microscope (TEM, scanning electron microscope (SEM, thermogarvimetric analysis (TGA, and zeta-sizer and Raman spectroscopy, allows determining the geometric characteristic and the microstructure of individual carbon nanofibers. Catalytic chemical vapor deposition is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanofibers (CNFs. As a matter of fact, the method of CCVD guarantees the production of CNFs for different applications.

  11. Mesoporous synthetic clays : synthesis, characterization, and use as HDS catalyst supports.

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, C. A. A.; Carrado, K. A.; Marshall, C. L.; Seifert, S.; Wei, D.; Xu, L.

    1999-08-10

    Mesoporous synthetic clays (MSCs) are obtained when polymer-containing silicate gels are hydrothermally crystallized to form layered magnesium silicate hectorite clays containing polymers that are incorporated in situ. Polyvinylpyrrolidone of several average molecular weights ranging from 10K to 1.3M, in gel loadings varying from 5-30 wt%, were used. The organic polymer template molecules were removed from synthetic polymer-clay complexes via calcination. Pore radii, surface areas, and pore volumes of the resulting porous inorganic networks were then measured. For the most part there is a direct correlation between both PVP molecular weight and polymer loading on the diameter of the average pore. In addition to conventional techniques, the polymer-clay materials were also characterized by small angle x-ray scattering to ascertain the disposition of the polymeric matrix. The MSC materials after calcination were examined as potential supports for hydrodesulfurization (HDS). They were loaded with a bimetallic Co/Mo catalyst system for comparison with a commercial Co/Mo alumina catalyst. Dibenzothiophene (DBT) diluted with hexadecane (0.75 wt% S) was utilized as a liquid feed for the HDS tests. This feed was chosen as a deep HDS test of a heavy model oil. The pore diameters of the MSC catalysts were found to have a strong effect on both the HDS activity and selectivity.

  12. Effects of preparation variables of supported-cobalt catalysts on the selective hydrogenation of. alpha. ,. beta. -unsaturated aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Yuriko; Hiramatsu, Yoshifumi; Imanaka, Toshinobu (Osaka Univ., Toyonaka (Japan))

    1990-11-01

    The effects of starting salts, supports, added amount of Na{sub 2}CO{sub 3}, and other precipitation variables on catalytic properties of supported cobalt catalysts were studied for the hydrogenation of cinnamaldehyde and crotonaldehyde by using TGA, XRD, and XPS. The catalysts prepared from cobalt chloride always exhibited high selectivities to unsaturated alcohols irrespective of the support employed. The amount of surface chlorine remaining after H{sub 2}-reduction of the Co/SiO{sub 2} precursors prepared from cobalt chloride decreased with increasing amount of Na{sub 2}CO{sub 3} added as the precipitant, and both activity and selectivity reached maxima at around Cl/Co = 0.2 in the catalyst surface. The enhanced selectivity of the catalyst prepared from cobalt chloride was explained by the effects of residual chlorine both in the H{sub 2}-reduction stage and in the reaction stage; the former leads to a favorable crystallite size distribution (CDS) of cobalt and the latter depresses the hydrogenation of C{double bond}C double bond. The difference in activities and selectivities of various supported catalysts prepared from cobalt nitrate was discussed based on the difference in the strength of metal-support interaction which leads to different CDSs of cobalt in theses catalysts.

  13. The application of inelastic neutron scattering to investigate the steam reforming of methane over an alumina-supported nickel catalyst

    Science.gov (United States)

    McFarlane, Andrew R.; Silverwood, Ian P.; Norris, Elizabeth L.; Ormerod, R. Mark; Frost, Christopher D.; Parker, Stewart F.; Lennon, David

    2013-12-01

    An alumina-supported nickel catalyst, previously used in methane reforming experiments employing CO2 as the oxidant, is applied here in the steam reforming variant of the process. Micro-reactor experiments are used to discern an operational window compatible with sample cells designed for inelastic neutron scattering (INS) experiments. INS spectra are recorded after 6 h reaction of a 1:1 mixture of CH4 and H2O at 898 K. Weak INS spectra are observed, indicating minimal hydrogen retention by the catalyst in this operational regime. Post-reaction, the catalyst is further characterised by powder X-ray diffraction, transmission electron microscopy and Raman scattering. In a comparable fashion to that seen for the ‘dry’ reforming experiments, the catalyst retains substantial quantities of carbon in the form of filamentous coke. The role for hydrogen incorporation by the catalyst is briefly considered.

  14. Pore curvature and support composition effects on the electronic properties of supported Pt catalysts: an infrared spectroscopy study with CO as probe molecule

    NARCIS (Netherlands)

    Lepage, M.; Visser, T.; van der Eerden, A.M.J.; Soulimani, F.; Weckhuysen, B.M.

    2008-01-01

    Supported 1 wt% Pt-based catalyst materials have been used as model systems to study pore curvature and support composition effects on the electronic properties of supported Pt nanoparticles. For this purpose, Pt nanoparticles have been loaded onto microporous (ITQ-1), mesoporous (Si- MCM-41, Si-MCM

  15. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting.

    Science.gov (United States)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-19

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media.

  16. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting

    Science.gov (United States)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-01

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media.

  17. Synthesis and characterization of niobium-promoted cobalt/iron catalysts supported on carbon nanotubes for the hydrogenation of carbon monoxide

    Institute of Scientific and Technical Information of China (English)

    Zahra Gholami; Noor Asmawati Mohd Zabidi; Fatemeh Gholami; Mohammadtaghi Vakili

    2016-01-01

    Bimetallic Co/Fe catalysts supported on carbon nanotubes ( CNTs) were prepared, and niobium ( Nb) was added as promoter to the 70Co:30Fe/CNT catalyst. The physicochemical properties of the catalysts were characterized, and the catalytic performances were analyzed at the same operation conditions (H2:CO (volume ratio)= 2:1, p = 1 MPa, and t = 260℃) in a tubular fixed-bed microreactor system. The addition of Nb to the bimetallic catalyst decreases the average size of the oxide nanoparticles and improves the reducibility of the bimetallic catalyst. Evaluation of the catalyst performance in a Fischer-Tropsch reaction shows that the catalyst results in high selectivity to methane, and the selectivity to C5+ increased slightly in the bimetallic catalyst unlike that in the monometallic catalysts. The addition of 1% Nb to the bimetallic catalyst increases CO conversion and selectivity to C5+. Meanwhile, a decrease in methane selectivity is observed.

  18. Catalytic Combustion of Methane over Ti-Pillared Clay Supported Copper Catalysts

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Xu; Yanfei Pan; Xiaoyan Cui; Zhanghuai Suo

    2004-01-01

    A natural montmorillonite, produced from Laiyang of Shandong Province, was pillared by Tipolycations to form Ti-pillared clay (Ti-PILC), and characterized by BET surface area, infrared spectra and thermal analysis. The characterization results show that Ti-PILC has a larger surface area and more hydroxyl groups than that of the natural clay, thus was used as the catalytic carriers to prepare supported Cu catalysts (Cu/Ti-PILC). The 20%Cu/Ti-PILC with 10mmol/g of Ti/clay shows a high catalytic performance of methane combustion in the temperature range of 400-500 ℃.

  19. Metal (Fe, Co, Ni) supported on different aluminas as Fischer-Tropsch catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dahlan [Chemistry Education Study Program, Universitas Halu Oleo, Jl. HEA Mokodompit, Kendari 93232 (Indonesia); Marsih, I. Nyoman, E-mail: nyoman@chem.itb.ac.id; Ismunandar [Inorganic and Physical Chemistry Division, Departement of Chemistry, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Makertihartha, I. G. B. N. [Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Praserthdam, Piyasan; Panpranot, Joongjai [Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand)

    2015-09-30

    This research aimed to compare the physico-chemical properties of the same metal M (M = iron, cobalt, nickel) supported on aluminas with different morphology and pore size as Fischer-Tropsch catalyst. The aluminas applied as support were alumina synthesized through hydrothermal process, alumina formed by pretreatment of catapal and commercial alumina which named as Ahy, Aca, and Aco respectively. Ahy has uniform morphology of nanotubes while Aca and Aco showed non-uniform morphology of particle lumps. The particle lumps of Aca were larger than those of Aco. Ahy, Aca, and Aco respectively has average pore diameter of 2.75, 2.86 and 2.9 nm. Metals were deposited on the supports by incipient-wetness impregnation method. The catalysts were characterized by XRD, H{sub 2}-TPR, and H{sub 2} chemisorption. Catalyst acitivity test for Fischer-Tropsch reaction was carried out in a micro reactor at 200 °C and 1 atm, and molar ratio of H{sub 2}/CO = 2:1. The metal oxide particle size increased in the order M/Aco < M/Aca < M/Ahy. The catalysts reducibility also increased according to the order M/Aco < M/Aca < M/Ahy suggesting that the larger metal oxide particles are more reducible. The number of active site was not proportional to the reducibility because during the reduction, larger metal oxide particles were converted into larger metal particles. On the other hand, the number of active sites was inversely proportional to the particle sizes. The number of active site increased in the order M/Ahy < M/Aco < M/Aca. The catalytic activity also increased in the following order M/Ahy < M/Aco < M/Aca. The activity per active site increased according to the order M/Aca < M/Aco < M/Ahy meaning that for M/Ahy, a little increase in active site will lead to a significance increase in catalytic activity. It showed that Ahy has potential for the better support.

  20. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    improve the oxygen reduction kinetics due to increased oxygen solubility and suppressed adsorption of phosphoric acid anions. Further enhancement of the catalytic activity can be obtained by operating the polymer electrolytes at higher temperatures. Efforts have been made to develop a polymer electrolyte......Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...

  1. Metal (Fe, Co, Ni) supported on different aluminas as Fischer-Tropsch catalyst

    Science.gov (United States)

    Dahlan, Marsih, I. Nyoman; Makertihartha, I. G. B. N.; Praserthdam, Piyasan; Panpranot, Joongjai; Ismunandar

    2015-09-01

    This research aimed to compare the physico-chemical properties of the same metal M (M = iron, cobalt, nickel) supported on aluminas with different morphology and pore size as Fischer-Tropsch catalyst. The aluminas applied as support were alumina synthesized through hydrothermal process, alumina formed by pretreatment of catapal and commercial alumina which named as Ahy, Aca, and Aco respectively. Ahy has uniform morphology of nanotubes while Aca and Aco showed non-uniform morphology of particle lumps. The particle lumps of Aca were larger than those of Aco. Ahy, Aca, and Aco respectively has average pore diameter of 2.75, 2.86 and 2.9 nm. Metals were deposited on the supports by incipient-wetness impregnation method. The catalysts were characterized by XRD, H2-TPR, and H2 chemisorption. Catalyst acitivity test for Fischer-Tropsch reaction was carried out in a micro reactor at 200 °C and 1 atm, and molar ratio of H2/CO = 2:1. The metal oxide particle size increased in the order M/Aco < M/Aca < M/Ahy. The catalysts reducibility also increased according to the order M/Aco < M/Aca < M/Ahy suggesting that the larger metal oxide particles are more reducible. The number of active site was not proportional to the reducibility because during the reduction, larger metal oxide particles were converted into larger metal particles. On the other hand, the number of active sites was inversely proportional to the particle sizes. The number of active site increased in the order M/Ahy < M/Aco < M/Aca. The catalytic activity also increased in the following order M/Ahy < M/Aco < M/Aca. The activity per active site increased according to the order M/Aca < M/Aco < M/Ahy meaning that for M/Ahy, a little increase in active site will lead to a significance increase in catalytic activity. It showed that Ahy has potential for the better support.

  2. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  3. Nanocrystalline Anatase Titania Supported Vanadia Catalysts: Facet-dependent Structure of Vanadia

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei-Zhen; Gao, Feng; Li, Yan; Walter, Eric D.; Liu, Jun; Peden, Charles HF; Wang, Yong

    2015-07-09

    Titania supported vanadia, a classic heterogeneous catalyst for redox reactions, typically has nonhomogeneous vanadia species on various titania facets, making it challenging not only to determine and quantify each species but also to decouple their catalytic contributions. We prepared truncated tetragonal bipyramidal (TiO2-TTB) and rod-like (TiO2-Rod) anatase titania with only {101} and {001} facets at ratios of about 80:20 and 93:7, respectively, and used them as supports of sub-monolayer vanadia. The structure and redox properties of supported vanadia were determined by XRD, TEM, XPS, EPR, Raman, FTIR and TPR, etc. It was found that vanadia preferentially occupy TiO2 {001} facets and form isolated O=V4+(O-Ti)2 species, and with further increase in vanadia surface coverage, isolated O=V5+(O-Ti)3 and oligomerized O=V5+(O-M)3 (M = Ti or V) species form on TiO2 {101} facets. The discovery on support facet-dependent structure of vanadia on anatase titania is expected to enable the elucidation of structure-function correlations on high surface area TiO2 supported vanadia catalysts. This work was supported by U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. The research was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle.

  4. Support Screening Studies on the Hydrogenation of Levulinic Acid to γ-Valerolactone in Water Using Ru Catalysts

    Directory of Open Access Journals (Sweden)

    Anna Piskun

    2016-08-01

    Full Text Available γ-Valerolactone (GVL has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru, 90 °C, 45 bar of H2, 2 wt. % catalyst on LA. Eight monometallic catalysts were tested on carbon based(C, carbon nanotubes (CNT and inorganic supports (Al2O3, SiO2, TiO2, ZrO2, Nb2O5 and Beta-12.5. The best result was found for Ru/Beta-12.5 with almost quantitative LA conversion (94% and 66% of GVL yield after 2 h reaction. The remaining product was 4-hydroxypentanoic acid (4-HPA. Catalytic activity for a bimetallic RuPd/TiO2 catalyst was by far lower than for the monometallic Ru catalyst (9% conversion after 2 h. The effects of relevant catalyst properties (average Ru nanoparticle size, Brunauer-Emmett-Teller (BET surface area, micropore area and total acidity on catalyst activity were assessed.

  5. Comparison of Catalysts Preyssler and Silica-Supported Nano Preyssler in the Synthesis of Acetyl Salicylic Acid

    Directory of Open Access Journals (Sweden)

    H. Nazari

    2012-01-01

    Full Text Available The extensive demand for cleaner environment is forcing chemical industry to use less hazardous materials. In this regard, heteropolyacids attracted considerable amount of interest due to the less toxic behavior in addition of possessing higher acidity. Heteropoly acids have been used as catalysts for the reaction of salicylic acid with acetic anhydride. The performance of different forms of heteropoly acids in the presence of acetic anhydride as acetylating agent for acetylation of salicylic acid was compared. The best conditions were observed using Preyssler and Silica-supported Preyssler Nanoparticles as catalysts. The catalyst is recyclable and reusable.

  6. Controlled radical polymerization of vinyl acetate in presence of mesoporous silica supported TiCl4 heterogeneous catalyst

    Indian Academy of Sciences (India)

    M A Semsarzadeh; S Amiri; M Azadeh

    2012-10-01

    The heterogeneous TiCl4 catalysts supported on mesoporous mobile composition of matter (MCM-41) and mesoporous silicone particles synthesized from block copolymer of PPG–PEG–PPG (SPB) complexed with dimethyl formamide (DMF) ligand were used in a controlled free radical reaction with benzoyl peroxide (BPO) initiator in bulk polymerization of vinyl acetate (VAc). In this polymerization process, mesoporous particle of SPB increased the reactivity of TiCl4 catalyst with DMF ligand. The active site formed on the surface and the pores of the catalyst produced specific sequences of VAc on the chain with different thermal and microstructural properties and crystallinity.

  7. Simultaneous catalytic removal of NOx and diesel soot particulate over perovskite-type oxides and supported Ag catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of perovskite-type oxides and supported Ag catalysts were prepared,and characterized by X-ray diffraction (XRD) and Xray photoelectron spectroscopy (XPS).The catalytic activities of the catalysts as well as influencing factors on catalytic activity have been investigated for the simultaneous removal of NOx and diesel soot particulate.An increase in catalytic activity for the selective reduction of NOx was observed with Ag addition in these perovskite oxides,especially with 5% Ag loading.This catalyst could be a promising candidate of catalytic material for the simultaneous elimination of NOx and diesel soot.

  8. Titania Supported Pt and Pt/Pd Nano-particle Catalysts for the Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Johannessen, Tue; Eriksen, Kim Michael

    2006-01-01

    Several types of titania (anatase) were used as supports for pure platinum and Pt–Pd bimetallic alloy catalysts. The preparation methods, normal wet impregnation technique and flame aerosol synthesis, obtained metal loadings of 2% by weight. The prepared catalysts were tested for SO2 oxidation...... activity at atmospheric pressure in the temperature range 250–600 °C. The SO2 to SO3 conversion efficiency of the Pt–Pd alloy was significantly higher than that of the individual metals. The effects of the preparation method and the titania type used on the properties and activity of the resulting catalyst...

  9. CuO/CeO{sub 2} catalysts prepared with different cerium supports for CO oxidation at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chi-Yuan [School of Public Health, Chung Shan Medical University, Taichung 402, Taiwan, ROC (China); Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan, ROC (China); Chang, Wen-Chi [Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Wey, Ming-Yen, E-mail: mywey@dragon.nchu.edu.tw [Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China)

    2013-08-15

    The activity of a catalyst depends on the nature of its support, its active site, and its preparation method. This study aimed to employ various types of CeO{sub 2} supports such as commercial CeO{sub 2} and self-prepared CeO{sub 2} for the preparation of copper catalysts. The CuO/CeO{sub 2} catalysts were prepared using the polyol process and impregnation method. The catalysts were characterized using Brunauer–Emmett–Teller analysis, scanning electron microscopy, and X-ray analysis, and their catalytic activity for CO removal was evaluated in a microcatalytic reactor. The experimental results showed that the catalytic activity of the CuO/CeO{sub 2} catalysts with different calcination temperatures decreased in the following order: 500 °C > 300 °C > 700 °C. Compared to the impregnation method, the polyol process generated well-dispersed metal particles over the support and showed higher CO removal efficiency with low activation energy. Compared to CuO/CeO{sub 2} catalysts with commercial CeO{sub 2}, those with CeO{sub 2} that was self-prepared by pyrolysis had a large pore volume and good crystal structure of CeO{sub 2} and showed good performance. The catalytic activity for CO removal was in the following order: CuO/CeO{sub 2}-P (pyrolysis) > CuO/CeO{sub 2}-C (commercial) > CuO/CeO{sub 2}-D (deposition precipitation). CuO/CeO{sub 2}-P catalysts showed good activity even at low temperature. The CuO/CeO{sub 2}-P(300)-P-120 min catalyst was found to possess the good CO removal rate when the oxygen content was 6%, CO concentration was 500 ppm, catalyst weighed 1.0 g, pollutant gas velocity was 500 mL min{sup −1}, SV was 3.7 × 10{sup 4} h{sup −1}, and reaction temperature was 150 °C. - Highlights: • CuO/CeO{sub 2} catalysts were prepared using polyol and impregnation methods. • The supports of catalyst were self-prepared cerium oxide and commercial cerium oxide. • Pyrolysis and deposition precipitation methods were used for cerium preparation.

  10. Carbon nanotubes and other nanostructures as support material for nanoparticulate noble-metal catalysts in fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune; Larsen, Mikkel Juul; Elina, Yli-Rantala

    or platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1–5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... of the fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible...... for difficulties in contacting the nanotubes with other substances in the electrode or electrode preparation. Other promising candidate structures for catalyst support include carbon nanofibers (CNF) and various modifications of CNTs. We present some of our work with the investigation of surface properties...

  11. Carbon Nanotubes and Other Nanostructures as Support Material for Nanoparticulate Noble-Metal Catalysts in Fuel Cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Veltzé, Sune; Skou, Eivind Morten

    or platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1-5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... of the fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible...... for difficulties in contacting the nanotubes with other substances in the electrode or electrode preparation. Other promising candidate structures for catalyst support include carbon nanofibers (CNF) and various modifications of CNTs. We present some of our work with the investigation of surface properties...

  12. Nickel catalysts supported on MgO with different specific surface area for carbon dioxide reforming of methane

    Institute of Scientific and Technical Information of China (English)

    Luming; Zhang; Lin; Li; Yuhua; Zhang; Yanxi; Zhao; Jinlin; Li

    2014-01-01

    In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 ?C were mainly activated carbon species.

  13. Continuous preparation of carbon-nanotube-supported platinum catalysts in a flow reactor directly heated by electric current

    Directory of Open Access Journals (Sweden)

    Alicja Schlange

    2011-10-01

    Full Text Available In this contribution we present for the first time a continuous process for the production of highly active Pt catalysts supported by carbon nanotubes by use of an electrically heated tubular reactor. The synthesized catalysts show a high degree of dispersion and narrow distributions of cluster sizes. In comparison to catalysts synthesized by the conventional oil-bath method a significantly higher electrocatalytic activity was reached, which can be attributed to the higher metal loading and smaller and more uniformly distributed Pt particles on the carbon support. Our approach introduces a simple, time-saving and cost-efficient method for fuel cell catalyst preparation in a flow reactor which could be used at a large scale.

  14. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  15. NO oxidation on Zeolite Supported Cu Catalysts: Formation and Reactivity of Surface Nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2016-04-18

    The comparative activities of a small-pore Cu-CHA and a large-pore Cu-BEA catalyst for the selective catalytic reduction (SCR) of NOx with NH3, and for the oxidation of NO to NO2 and the subsequent formation of surface nitrates were investigated. Although both catalysts are highly active in SCR reactions, they exhibit very low NO oxidation activity. Furthermore, Cu-CHA is even less active than Cu-BEA in catalyzing NO oxidation but is clearly more active for SCR reactions. Temperature-programed desorption (TPD) experiments following the adsorption of (NO2 + NO + O2) with different NO2:NO ratios reveal that the poor NO oxidation activity of the two catalysts is not due to the formation of stable surface nitrates. On the contrary, NO is found to reduce and decompose the surface nitrates on both catalysts. To monitor the reaction pathways, isotope exchange experiments were conducted by using 15NO to react with 14N-nitrate covered catalyst surfaces. The evolution of FTIR spectra during the isotope exchange process demonstrates that 14N-nitrates are simply displaced with no formation of 15N-nitrates on the Cu-CHA sample, which is clearly different from that observed on the Cu-BEA sample where formation of 15N-nitrates is apparent. The results suggest that the formal oxidation state of N during the NO oxidation on Cu-CHA mainly proceeds from its original +2 to a +3 oxidation state, whereas reaching a higher oxidation state for N, such as +4 or +5, is possible on Cu-BEA. The authors at PNNL gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  16. Oxygen-deficient titania as alternative support for Pt catalysts for the oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Anqi Zhao; Justus Masa; Wei Xia

    2014-01-01

    Insufficient electrochemical stability is a major challenge for carbon materials in oxygen reduction reaction (ORR) due to carbon corrosion and insufficient metal-support interactions. In this work, titania is explored as an alternative support for Pt catalysts. Oxygen deficient titania samples including TiO2−x and TiO2−xNy were obtained by thermal treatment of anatase TiO2 under flowing H2 and NH3, respectively. Pt nanoparticles were deposited on the titania by a modified ethylene glycol method. The samples were characterized by N2-physisorption, X-ray diffraction and X-ray photoelectron spectroscopy. The ORR activity and long-term stability of supported Pt catalysts were evaluated using linear sweep voltammetry and chronoamperometry in 0.1 mol/L HClO4. Pt/TiO2−x and Pt/TiO2−xNy showed higher ORR activities than Pt/TiO2 as indicated by higher onset potentials. Oxygen deficiency in TiO2−x and TiO2−xNy contributed to the high ORR activity due to enhanced charge transfer, as disclosed by electrochemical impedance spectroscopy studies. Electrochemical stability studies revealed that Pt/TiO2−x exhibited a higher stability with a lower current decay rate than commercial Pt/C, which can be attributed to the stable oxide support and strong interaction between Pt nanoparticles and the oxygen-deficient TiO2−x support.

  17. Efficient and solvent-free synthesis of bis-indolylmethanes using silica gel supported aluminium chloride as a reusable catalyst

    Institute of Scientific and Technical Information of China (English)

    Kaveh Parvanak Boroujeni; Kamran Parvanak

    2011-01-01

    Stable and non-hygroscopic silica gel supported aluminium chloride (SiO2-AlCl3), which is prepared easily from cheap and commercially available compounds was found to be an environmentally friendly heterogeneous catalyst for the condensation of indole with aldehydes and ketones to afford bis-indolylmethanes at room temperature under solvent-free conditions. The catalyst can be reused up to five times after simple washing with ether.

  18. CO2 as a regulator for the controllable preparation of highly dispersed chitosan-supported Pd catalysts in ionic liquids.

    Science.gov (United States)

    Xue, Zhimin; Sun, Xiaofu; Li, Zhonghao; Mu, Tiancheng

    2015-07-11

    A controllable synthetic route has been developed for the preparation of chitosan supported Pd catalysts in an ionic liquid, 1-butyl-3-methylimidazolium acetate ([Bmim]OAc), by using compressed CO2 as the anti-solvent and regulator. It was found that the dispersion of Pd particles on chitosan and the catalytic activity of the as-prepared catalysts for the hydrogenation of styrene could be tuned by changing the pressure of CO2.

  19. Oxygen Reduction Reaction Activity and Durability of Pt Catalysts Supported on Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Morio Chiwata

    2015-06-01

    Full Text Available We have prepared Pt nanoparticles supported on titanium carbide (TiC (Pt/TiC as an alternative cathode catalyst with high durability at high potentials for polymer electrolyte fuel cells. The Pt/TiC catalysts with and without heat treatment were characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and transmission electron microscopy (TEM. Hemispherical Pt nanocrystals were found to be dispersed uniformly on the TiC support after heat treatment at 600 °C in 1% H2/N2 (Pt/TiC-600 °C. The electrochemical properties (cyclic voltammetry, electrochemically active area (ECA, and oxygen reduction reaction (ORR activity of Pt/TiC-600 °C and a commercial Pt/carbon black (c-Pt/CB were evaluated by the rotating disk electrode (RDE technique in 0.1 M HClO4 solution at 25 °C. It was found that the kinetically controlled mass activity for the ORR on Pt/TiC-600 °C at 0.85 V (507 A g−1 was comparable to that of c-Pt/CB (527 A g−1. Moreover, the durability of Pt/TiC-600 °C examined by a standard potential step protocol (E = 0.9 V↔1.3 V vs. RHE, holding 30 s at each E was much higher than that for c-Pt/CB.

  20. Decomposition of hexachlorobenzene over Al2O3 supported metal oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lifei; ZHENG Minghui; ZHANG Bing; LIU Wenbin; GAO Lirong; BA Te; REN Zhiyuan; SU Guijin

    2008-01-01

    Decomposition of hexachlorobenzene (HCB) was investigated over several metal oxides (i.e., MgO, CaO, BaO, La2O3,CeO2, MnO2, Fe2O3 and Co3O4) supported on Al2O3, which was achieved in closed system at a temperature of 300℃. Catalysts were prepared by incipient wetness impregnation with different metal oxides loading and impregnating solvents. The decomposition efficiency of different catalysts for this reaction depends on the nature of the metal oxide used, and Al2O3 supported La2O3 was found to be the most active one. Pentachlorobenzene (PeCB), and all tetrachlorobenzene (TeCB), trichlorobenzene (TrCB), and dichlorobenzene (DCB) isomers were detected after the decomposition reaction, indicating that the decomposition was mainly a dechlorination process. The detection of all lower chlorinated beazenes suggested the complexity of decomposition and the presence of more than one dechlodnation pathway.

  1. Reduction of Furfural to Furfuryl Alcohol in Liquid Phase over a Biochar-Supported Platinum Catalyst

    Directory of Open Access Journals (Sweden)

    Ariadna Fuente-Hernández

    2017-02-01

    Full Text Available In this work, the liquid phase hydrogenation of furfural has been studied using a biochar-supported platinum catalyst in a batch reactor. Reactions were performed between 170 °C and 320 °C, using 3 wt % and 5 wt % of Pt supported on a maple-based biochar under hydrogen pressure varying from 500 psi to 1500 psi for reaction times between 1 h and 6 h in various solvents. Under all reactive conditions, furfural conversion was significant, whilst under specific conditions furfuryl alcohol (FA was obtained in most cases as the main product showing a selectivity around 80%. Other products as methylfuran (MF, furan, and trace of tetrahydrofuran (THF were detected. Results showed that the most efficient reaction conditions involved a 3% Pt load on biochar and operations for 2 h at 210 °C and 1500 psi using toluene as solvent. When used repetitively, the catalyst showed deactivation although only a slight variation in selectivity toward FA at the optimal experimental conditions was observed.

  2. Nanoparticles of TiAlZr mixed oxides as supports of hydrodesulfurization catalysts: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kraleva, E., E-mail: ekraleva@gmail.com [Institute of Biodiversity and Ecosystems Research, Bulgarian Academy of Sciences, Sofia, Gagarin st.2 (Bulgaria); Spojakina, A. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Saladino, M.L. [Dipartimento di Chimica ' S. Cannizzaro' , Universita di Palermo and INSTM-Udr Palermo, Parco d' Orleans II Viale delle Scienze pad 17, I-90128 Palermo,Italy (Italy); Caponetti, E. [Dipartimento di Chimica ' S. Cannizzaro' , Universita di Palermo and INSTM-Udr Palermo, Parco d' Orleans II Viale delle Scienze pad 17, I-90128 Palermo,Italy (Italy); Centro Grandi Apparecchiature - UniNetLab, Universita di Palermo, Via F. Marini 14, I-90128 Palermo (Italy); Nasillo, G. [Centro Grandi Apparecchiature - UniNetLab, Universita di Palermo, Via F. Marini 14, I-90128 Palermo (Italy); Jiratova, K. [Institute of Chemical Process Fundamentals, 16502 Prague 6 (Czech Republic)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Preparation of ternary mixed oxide by sol-gel method. Black-Right-Pointing-Pointer Catalytic properties of the three-mixed oxides. Black-Right-Pointing-Pointer Heteropolyacid H{sub 3}PMo{sub 12}O{sub 40} and its cobalt salt Co{sub 1.5}PMo{sub 12}O{sub 40} that of active components in catalytic systems for thiophene hydrodesulfurization (HDS). - Abstract: TiAlZr mixed oxides, synthesized using sol-gel method, were characterized and used as supports of hydrodesulfurization catalysts (12 wt% Mo) prepared by impregnation either with molybdenum heteropolyacid H{sub 3}PMo{sub 12}O{sub 40} or its cobalt salt Co{sub 1.5}PMo{sub 12}O{sub 40}. Structure, morphology and textural properties of oxides and catalysts were characterized using X-ray powder diffraction (XRD), Raman spectroscopy, Nitrogen adsorption porosimetry, TEM-EDS, temperature-programmed desorption (TPD) and temperature-programmed reduction (TPR) techniques. Activity of the catalytic systems was tested in thiophene hydrodesulfurization (HDS). No formation of a new oxide phase was revealed in the synthesized mixed materials. However the effect of separated oxides on the structure of ternary oxides was observed. Maximum in HDS activity of Mo containing samples was determined by optimum content of alumina in the mixed oxides. Incorporation of cobalt into the heteropolyacid increased the HDS activity about two times and masked the effect of the support composition.

  3. Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes

    Science.gov (United States)

    Marinkas, A.; Hempelmann, R.; Heinzel, A.; Peinecke, V.; Radev, I.; Natter, H.

    2015-11-01

    One of the biggest challenges in the field of polymer electrolyte membrane fuel cells (PEMFC) is to enhance the lifetime and the long-term stability of PEMFC electrodes, especially of cathodes, furthermore, to reduce their platinum loading, which could lead to a cost reduction for efficient PEMFCs. These demands could be achieved with a new catalyst support architecture consisting of a composite of carbon structures with significant different morphologies. A highly porous cathode catalyst support layer is prepared by addition of various carbon types (carbon black particles, multi-walled carbon nanotubes (MWCNT)) to multilayer graphene (MLG). The reported optimized cathodes shows extremely high durability and similar performance to commercial standard cathodes but with 89% lower Pt loading. The accelerated aging protocol (AAP) on the membrane electrode assemblies (MEA) shows that the presence of MLG increases drastically the durability and the Pt-extended electrochemical surface area (ECSA). In fact, after the AAP slightly enhanced performance can be observed for the MLG-containing cathodes instead of a performance loss, which is typical for the commercial carbon-based cathodes. Furthermore, the presence of MLG drastically decreases the ECSA loss rate. The MLG-containing cathodes show up to 6.8 times higher mass-normalized Pt-extended ECSA compared to the commercial standard systems.

  4. Partial oxidation of dimethyl ether to H2/syngas over supported Pt catalyst

    Institute of Scientific and Technical Information of China (English)

    Yazhong Chen; Zongping Shao; Nanping Xu

    2008-01-01

    Dimethyl ether (DME) is a non-toxic fuel with high H/C ratio and high volumetric energy density, and could be served as an ideal source of H2/syngas production for application in solid oxide fuel cells (SOFC). This study presents results of DME partial oxidation over a 1.5 wt% Pt/Ceo.4 Zro.6O2 catalyst under the condition of gas hourly space velocity (GHSV) of 15000-60000 ml/(gh), molar ratio of O2/DME of 0.5 and 500-700 ℃, and this temperature range was also the operation temperature range for intermediate temperature SOFC. The results indicated that the catalyst showed good activity for the selective partial oxidation of DME to H2/syngas. Under the working conditions investigated, DME was completely converted. Increase in reaction temperature enhanced the amount of syngas, but lowered the H2/CO ratio and yield of methane; while increase in reaction GHSV resulted in only slight variation in the distribution of products. The good catalytic activity of Pt supported on Ceo.4Zro.6O2 for the partial oxidation of DME may be directly associated with the good oxygen storage capacity of the support, which is worth of further investigation to develop materials for application in SOFC.

  5. Carbon Supported Ag Nanoparticles as High Performance Cathode Catalyst for Anion Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Le eXin

    2013-09-01

    Full Text Available A solution phase-based nanocapsule method was successfully developed to synthesize non-precious metal catalyst - carbon supported Ag nanoparticles (Ag/C. XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm and narrow size distribution (2-9 nm are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR on the Ag/C and commercial Pt/C were investigated using rotating ring disc electrode (RRDE tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80 oC.

  6. Alumina-Supported Manganese Catalysts for Soot Combustion Prepared by Thermal Decomposition of KMnO4

    Directory of Open Access Journals (Sweden)

    Agustin Bueno-López

    2012-09-01

    Full Text Available Alumina-supported manganese catalysts with cryptomelane and/or birnessite structure have been prepared using a simple method based on the thermal decomposition of potassium permanganate. The samples have been characterized by XRD, FTIR, TGA, DSC, N2 adsorption at −196 °C, SEM, H2-TPR and XPS, and their catalytic activity for soot combustion has been tested and compared to that of a reference Pt/alumina catalyst. The thermal decomposition of alumina-supported KMnO4 yields a mixture of supported birnessite and potassium manganate which is the most effective, among those prepared, to lower the soot combustion temperature. However, this material is not useful for soot combustion because the accelerating effect is not based on a catalytic process but on the oxidation of soot by potassium manganate. A suitable soot combustion catalyst is obtained after potassium manganate is removed by water washing, yielding only the birnessite phase on the γ-Al2O3 support. This birnessite phase can be transformed into cryptomelane by calcination at 600 °C. These two samples, γ-Al2O3-supported birnessite and cryptomelane are suitable catalysts for soot combustion in NOx/O2 mixtures, as their catalytic activity is based on the NO2-assited mechanism, that is, both catalysts accelerate the oxidation of NO to NO2 and NO2 promotes soot oxidation. The soot combustion temperatures obtained with these birnessite/cryptomelane alumina-supported catalysts are similar to that obtained with the reference Pt/alumina catalyst.

  7. Characterization and reactivity of 11-molybdo-1-vanadophosphoric acid catalyst supported on zirconia for dehydration of glycerol to acrolein

    Indian Academy of Sciences (India)

    Balaga Viswanadham; Amirineni Srikanth; Komandur V R Chary

    2014-03-01

    A series of vanadium-substituted phosphomolybdic acid (HPA) catalysts supported on zirconia were prepared by impregnation method with varying the HPA active phase content from 10 to 50 wt% on the support. The calcined catalysts were characterized by X-ray diffraction, Raman spectroscopy, temperatureprogrammed desorption of NH3, FT-IR spectra of pyridine adsorption and surface area measurements. XRD results suggest that the active phase of heteropolyacid is present in a highly dispersed state at lower loadings and as a crystalline phase at higher HPA loadings and these findings are well-supported by the results of FT-IR and Raman spectra. Calcination of the samples did not affect the Keggin ion structure of HPA. The ammonia TPD results suggest that acidity of the catalysts was found to increase with increase of HPA loading up to 40 wt% and decreases at higher loadings. FT-IR spectra of pyridine adsorption show that the Brønsted acidic sites increase with increase of HPA loadings up to 40 wt% catalyst. However, Lewis acid sites decrease with increase ofHPA loading. Catalytic properties were evaluated during vapour phase dehydration of glycerol to acrolein. The catalyst with 40 wt% HPA has exhibited excellent selectivity towards acrolein formation with complete conversion of glycerol at 225°C under atmospheric pressure. Catalytic performances during dehydration of glycerol are well-correlated with acidity of the catalysts.

  8. In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst

    Institute of Scientific and Technical Information of China (English)

    HUANG Shaoyong; ZHANG Changbin; HE Hong

    2009-01-01

    An activated carbon (AC) supported Pd catalyst was used to develop a highly efficient in situ adsorption-catalysis system for the removal of low concentrations of o-xylene. In this study, three kinds of Pd/AC catalysts were prepared and tested to investigate the synergistic efficiency between adsorption and catalysis for o-xylene removal. The Pd/AC catalyst was first used as an adsorbent to concentrate dilute o-xylene at low temperature. After saturated adsorption, the adsorbed o-xylene was oxidized to CO2 and H2O by raising the temperature of the catalyst bed. The results showed that more than 99% of the adsorbed o-xylene was completely oxidized to CO2 over a 5% Pd/AC catalyst at 140℃. Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), temperature-programmed desorption (TPD), and temperature-programmed oxidation (TPO) were applied to investigate the physical properties of o-xylene adsorption-desorption and the in situ adsorption-catalysis activity of the AC support and Pd/AC catalyst. A synergistic relationship between the AC support and the active Pd species for the removal of low concentrations of o-xylene was established.

  9. Production of a Biofuel that Keeps the Glycerol as a Monoglyceride by Using Supported KF as Heterogeneous Catalyst

    Directory of Open Access Journals (Sweden)

    Juan Calero

    2014-06-01

    Full Text Available This study describes the results obtained in the synthesis of a biofuel that avoids the production of glycerol by applying supported KF as alkaline heterogeneous catalyst, to generate two moles of fatty acid methyl esters and one mole of monoglyceride from one mol of triglyceride. In this respect, the selective transesterification process of sunflower oil with methanol was carried out with KF (10 wt% supported on three different solids, Al2O3, ZnO and MgO. The standard experimental conditions employed in the heterogeneous selective methanolysis reaction were: 12 mL of sunflower oil, 2.7 mL of methanol, 0.8 g of catalyst, at 65 °C temperature and one hour of reaction time. In all cases 100% conversion was obtained, with high selectivity values, greater than 90%, and quite suitable viscosity values, 4.5–8.5 cSt. In this way, the best catalytic behavior in the first use was obtained by using Al2O3 as support. However, although in the five consecutive reuses all catalysts exhibited a continuous decrease in their catalytic activities; the lower one was for KF catalyst using MgO as support. In summary, these three KF supported catalysts are very suitable to obtain a new biofuel, similar to conventional biodiesel, applicable to diesel engines.

  10. Liquid-phase benzene isopropylation using alumina solid lewis superacid-supported platinum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K.; Honda, K.; Kitahara, D.; Miyamoto, M.; Shiga, M.; Ayame, A. [Muroran Inst. of Tech., Hokkaido (Japan)

    2000-03-01

    Supporting platinum on alumina solid Lewis superacid (AmLSA; J. C. S., Chem. Commun., 645 (1989)) was prepared by using of the in situ CVD technique at 773 K with Ar{sup +}-sputtered platinum fine particles and dry chlorine, followed by reduction with hydrogen at 673 K. The AmLSA-supported platinum catalyst (Pt/AmLSA) was applied to isopropylation of benzene with propene in the hydrogen stream at ambient temperature, using a semibatch reactor. Products were mono-, di-, tri-, and tetra-isopropylbenzenes. Conversion of propene to propane was below 1 %, and a trace amount of cyclohexane from benzene was also observed. Deactivation of AmLSA due to strong adsorption of poly-substituted benzenes and/or propene oligomers was remarkably depressed by supporting platinum and supplying hydrogen into the propene stream. Consequently, the activity of Pt/AmLSA catalyst had increased almost 1.5 times that of AmLSA. At the same level of benzene conversion, the product distribution f isopropyl-substituted benzenes obtained on Pt/AmLSA was identical to that on AmLSA, and had shifted slightly into the mono-substituted benzene side compared with the result on AmLSA in the absence of hydrogen. In the isopropylation of benzene with 2-chloropropane, the results quite similar to those described above were obtained. From the above observations, synergetic effects of platinum supporting and hydrogen supplying were considered to be due to the presence of hydrogen atoms spilled over from the platinum surface to the strong Lewis acid sites. (author)

  11. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  12. Silica (NPs) supported Fe (III) as a reusable heterogeneous catalyst for the one-pot synthesis of 1, 4-dihydropyridines under mild conditions

    Indian Academy of Sciences (India)

    Javad Safaei-Ghomi; Abolfazl Ziarati; Safura Zahedi

    2012-07-01

    A cheap and recyclable silica (NPs) supported Fe (III) was prepared as heterogeneous catalyst for the synthesis of various substituted 1,4-dihydropyridines via condensation of aldehydes with ethyl acetoacetate and ammonium acetate in ethanol. The products were separated from the catalyst simply by filtration and the catalyst could be recycled and reused for several times without noticeable decrease in the catalytic activity.

  13. The application of inelastic neutron scattering to investigate the steam reforming of methane over an alumina-supported nickel catalyst

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Andrew R.; Silverwood, Ian P. [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Norris, Elizabeth L.; Ormerod, R. Mark [Department of Chemistry, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG (United Kingdom); Frost, Christopher D.; Parker, Stewart F. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Lennon, David, E-mail: David.Lennon@glasgow.ac.uk [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering has been used to investigate a Ni/alumina catalyst. • The extent of hydrogen retention by the catalyst has been determined. • Filamentous carbon is identified as a by-product. - Abstract: An alumina-supported nickel catalyst, previously used in methane reforming experiments employing CO{sub 2} as the oxidant, is applied here in the steam reforming variant of the process. Micro-reactor experiments are used to discern an operational window compatible with sample cells designed for inelastic neutron scattering (INS) experiments. INS spectra are recorded after 6 h reaction of a 1:1 mixture of CH{sub 4} and H{sub 2}O at 898 K. Weak INS spectra are observed, indicating minimal hydrogen retention by the catalyst in this operational regime. Post-reaction, the catalyst is further characterised by powder X-ray diffraction, transmission electron microscopy and Raman scattering. In a comparable fashion to that seen for the ‘dry’ reforming experiments, the catalyst retains substantial quantities of carbon in the form of filamentous coke. The role for hydrogen incorporation by the catalyst is briefly considered.

  14. Hydrogenation of Liquid Styrene by Alumina Supported Nickel Catalysts: Comparison between Classical and Non-Classical Methods

    Science.gov (United States)

    Tan, Y. C.; Abu Bakar, N. H. H.; Tan, W. L.; Abu Bakar, M.

    2016-06-01

    Almina supported Ni catalysts (Ni/Al2O3) with different Ni weight percentages (wt%) were prepared via classical and non-classical methods. All samples were prepared via impregnation technique. The samples prepared via non-classical methods were reduced using KBH4 as the reducing agent. The catalysts were tested for the hydrogenation of styrene in liquid phase. Optimum activation conditions for the hydrogenation reaction were found to be 633 K for 2 hours. Comparison of the catalytic reactivity for all catalysts at these activation conditions showed that catalysts prepared via classical methods exhibited better activity. Furthermore the 7.6wt% Ni-Al2O3/C showed enhanced activity when compared to the 5.9wt% and 13.8wt% Ni-Al2O3/C catalyst. This phenomenon is mainly attributed to the type of Ni active sites available on the catalyst. The surface properties of the catalysts investigated via H2- temperature programmed reduction (H2-TPR), H2-chemisorption and H2-temperature programmed desorption (H2-TPD) confirm this.

  15. Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mouat, Aidan R.; Lohr, Tracy L.; Wegener, Evan C.; Miller, Jeffrey T.; Delferro, Massimiliano; Stair, Peter C.; Marks, Tobin J.

    2016-08-23

    A single-site molybdenum dioxo catalyst, (Oc)2Mo(=O)2@C, was prepared via direct grafting of MoO2Cl2(dme) (dme = 1,2-dimethoxyethane) on high-surface- area activated carbon. The physicochemical and chemical properties of this catalyst were fully characterized by N2 physisorption, ICP-AES/OES, PXRD, STEM, XPS, XAS, temperature-programmed reduction with H2 (TPR-H2), and temperature-programmed NH3 desorption (TPD-NH3). The single-site nature of the Mo species is corroborated by XPS and TPR-H2 data, and it exhibits the lowest reported MoOx Tmax of reduction reported to date, suggesting a highly reactive MoVI center. (Oc)2Mo(=O)2@C catalyzes the transesterification of a variety of esters and triglycerides with ethanol, exhibiting high activity at moderate temperatures (60-90 °C) and with negligible deactivation. (Oc)2Mo(=O)2@C is resistant to water and can be recycled at least three times with no loss of activity. The transesterification reaction is determined experimentally to be first order in [ethanol] and first order in [Mo] with ΔH = 10.5(8) kcal mol-1 and ΔS = -32(2) eu. The low energy of activation is consistent with the moderate conditions needed to achieve rapid turnover. This highly active carbon-supported single-site molybdenum dioxo species is thus an efficient, robust, and lowcost catalyst with significant potential for transesterification processes.

  16. Synthesis of catalysts supported in {gamma}-alumina; Sintese de catalisadores suportados na {gamma}-alumina

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiza Gabriel; Silva, A.J.N.; Santos, I.M.G.; Souza, A.G. [Paraiba Univ, Joao Pessoa, PB (Brazil). Dept. de Quimica. Lab. de Termoquimica e Materiais]. E-mail: luizagaby@yahoo.com.br; Fernandes Junior, V.J.; Araujo, A.S. [Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Quimica. Lab. de Combustiveis

    2003-07-01

    Fuels contain a great amount of undesirable pollutants as asphaltenes, metals, sulfides and nitrogen compounds. The content of sulfur in petroleum is around 1%,. When burned, fuels liberate SO{sub x}, the greatest air pollutant . The maximum sulfur quantity in diesel is {approx}350 wppm, but in agreement to European specifications, this content will fall to 50 wppm up to 2005. To remove this sulfur a deep hydrodesulfurization is necessary, requiring high performance catalysts. This way, in this work, the following catalysts were synthesized, using Pechini method: MoO{sub 3} containing Ni and/or Co supported on {gamma}-alumina, with the formulas Co{sub x}Mo{sub 1-x}O{sub 3}/Al{sub 2}O{sub 3}, Ni{sub x}Mo{sub 1-x}O{sub 3}/Al{sub 2}O{sub 3} and Ni{sub x/2}Co{sub x/2}Mo{sub 1-x}O{sub 3}/Al{sub 2}O{sub 3} where x 0,01, 0,02 and 0,03 in mol percentage. This method was proposed, due to its high stoichiometry control, purity, reproducibility and homogeneity. All catalysts were submitted to thermal treatment at 500 deg C to 700 deg C and characterized by thermogravimetry, infrared spectroscopy, X-ray diffraction. Results indicate the stabilization of the requested composition at around 622 deg C. The X-ray diffraction results indicate that secondary phase increases with dopant amount. (author)

  17. Catalytic performance of cement clinker supported nickel catalyst in glycerol dry reforming

    Institute of Scientific and Technical Information of China (English)

    Hua Chyn Lee; Kah Weng Siew; Maksudur R. Khan; Sim Yee Chin; Jolius Gimbun; Chin Kui Cheng

    2014-01-01

    The paper reports the development of cement clinker-supported nickel (with metal loadings of 5 wt%, 10 wt%, 15 wt%and 20 wt%) catalysts for glycerol dry (CO2) reforming reaction. XRF results showed that CaO constituted 62.0%of cement clinker. The physicochemical character-ization of the catalysts revealed 32-folds increment of BET surface area (SBET) with the addition of nickel metal into the cement clinker, which was also corroborated by FESEM images. Significantly, XRD results suggested different types of Ni oxides formation with Ni loading, whilst Ca3SiO5 and Ca2Al0.67Mn0.33FeO5 were the main crystallite species for pure cement clinker. Temperature-programmed reduction analysis yielded three domains of H2 reduction peaks, viz. centered at approximately 750 K referred to as type-I peaks, another peaks at 820 K denoted as type-II peaks and the highest reduction peaks, type-III recorded at above 1000 K. 20 wt%Ni was found to be the best loading with the highest XG and H2 yield, whilst the lowest methanation activity. Syngas with lower H2/CO ratios (0.6 to 1.5) were readily produced from glycerol dry reforming at CO2-to-Glycerol feed ratio (CGR) of unity. Nonetheless, carbon deposit comprised of whisker type (Cv) and graphitic-like type (Cc) species were found to be in majority on 20 wt%Ni/CC catalysts.

  18. Effects of preparation methods of support on the properties of nickel catalyst for hydrogenation of m-dinitrobenzene

    Institute of Scientific and Technical Information of China (English)

    LIU Yingxin; WEI Zuojun; CHEN Jixiang; ZHANG Jiyan

    2007-01-01

    Using tetraethyl orthosilicate(TEOS) as the precursor of silica,the silica aerogel and xerogel,which were used as supports of nickel-based catalysts for liquid hydrogenation of m-dinitrobenzene to m-phenylenediamine,were prepared by the sol-gel method combined with supercritical drying(SCD)and conventional drying,respectively.Then,a series of nickel-based catalyst samples supported on these supports were prepared by the incipient wetness impregnation method with an aqueous solution of nickel nitrate as well as lanthanum nitrate as impregnation liquids.Based on the characterization results of nitrogen adsorption-desorption (BET),X-ray diffraction(XRD),temperature programmed reduction(TPR),temperature-programmed desorption of hydrogen(H2-TPD),and catalytic activity evaluation,the physico-chemical properties and catalytic performances of the catalysts were investigated.The results show that the nickel crystallites on the binary nickel catalyst using silica aerogel as support are of smaller particle size.However,compared with the sample supported on silica xerogel,the nickel catalyst supported on the silica aerogel exhibits lower activity and selectivity for the hydrogenation of m-dinitrobenzene because it has a lesser amount of active sites and weaker absorption ability to reactants caused by sintering of the nickel crystallites.The addition of promoter La2O3 could increase the activity and selectivity of the catalysts.Among all the nickel-based catalyst samples prepared,the La2O3 promoted ternary nickel-based catalyst supported on silica xerogel exhibits the highest activity and selectivity for the hydrogenation of m-dinitrobenzene to m-phenylenediamine,which could be attributed to its highest active surfacc area and appropriate absorption strength to reactants.Over this promising catalyst,me conversion of m-dinitrobenzene and the yield of m-phenylenediamine could reach 97.0%and 93.1%,respectively,under proper reaction conditions of hydrogen pressure 2.6 MPa

  19. Preparation of IrO2 nanoparticles with SBA-15 template and its supported Pt nanocomposite as bifunctional oxygen catalyst

    Science.gov (United States)

    Kong, Fan-Dong; Liu, Jing; Ling, Ai-Xia; Xu, Zhi-Qiang; Wang, Hui-Yun; Kong, Qing-Sheng

    2015-12-01

    In the present work, we report the syntheses of IrO2 nanoparticles with SBA-15 template (s-IrO2), and s-IrO2 supported Pt nanocomposite (Pt/s-IrO2) as bifunctional oxygen catalyst. Physical characterizations including X-ray diffraction and transmission electron microscopy demonstrate that s-IrO2 catalyst has excellent uniformity and regularity in particle shape and much ordered distribution in geometric space, and Pt/s-IrO2 catalyst shows a uniform Pt dispersion on the surface of the s-IrO2 particles. Electrochemical analyses prove that s-IrO2 catalyst possesses superior OER activity at operating potentials; and that Pt/s-IrO2 catalyst, in comparison to Pt/commercial IrO2, has higher ESA value and ORR catalytic performance with a mechanism of four-electron pathway and a high ORR efficiency. And as a bifunctional oxygen catalyst, Pt/s-IrO2 also exhibits more remarkable OER performance than the commercial one. The s-IrO2 nanoparticles will be a promising active component (for OER), and suitable for Pt support (for ORR).

  20. Highly efficient, quick and green synthesis of biarlys with chitosan supported catalyst using microwave irradiation in the absence of solvent.

    Science.gov (United States)

    Baran, Talat; Açıksöz, Eda; Menteş, Ayfer

    2016-05-20

    The aim of this study was to develop a quick reaction that had high activity with a small amount of catalyst, which could be an eco-friendly alternative technique for the synthesis of biarlys in Suzuki coupling reactions. First, a novel chitosan Schiff base supported Pd(II) catalyst was synthesized, and its structure was illuminated with FTIR, (1)H NMR, (13)C NMR, TG/DTG, SEM/EDAX, XRD, ICP-OES, UV-vis, magnetic moment, and molar conductivity techniques. Subsequently, the catalytic activity of the catalyst was tested in Suzuki C-C reactions under microwave irradiation using a solvent-free reaction condition. The catalytic tests showed an excellent activity with a small load of the catalyst (0.02 mol%) in 4 min. The catalyst showed seven runs without loss of activity, and high values of turnover numbers (TON) and turnover frequency (TOF) were obtained. The novel biopolymer supported Pd(II) catalyst provided much faster reaction times, higher yields, and reusability under microwave heating compared to classic heating methods.

  1. Oxidation of CO and Methanol on Pd-Ni Catalysts Supported on Different Chemically-Treated Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    Juan Carlos Calderón

    2016-10-01

    Full Text Available In this work, palladium-nickel nanoparticles supported on carbon nanofibers were synthesized, with metal contents close to 25 wt % and Pd:Ni atomic ratios near to 1:2. These catalysts were previously studied in order to determine their activity toward the oxygen reduction reaction. Before the deposition of metals, the carbon nanofibers were chemically treated in order to generate oxygen and nitrogen groups on their surface. Transmission electron microscopy analysis (TEM images revealed particle diameters between 3 and 4 nm, overcoming the sizes observed for the nanoparticles supported on carbon black (catalyst Pd-Ni CB 1:2. From the CO oxidation at different temperatures, the activation energy Eact for this reaction was determined. These values indicated a high tolerance of the catalysts toward the CO poisoning, especially in the case of the catalysts supported on the non-chemically treated carbon nanofibers. On the other hand, apparent activation energy Eap for the methanol oxidation was also determined finding—as a rate determining step—the COads diffusion to the OHads for the catalysts supported on carbon nanofibers. The results here presented showed that the surface functional groups only play a role in the obtaining of lower particle sizes, which is an important factor in the obtaining of low CO oxidation activation energies.

  2. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.

    Science.gov (United States)

    Liu, Wei-Min; Hu, Yi-Qiang; Tu, Shan-Tung

    2010-07-15

    Active carbon-ceramic sphere as support of ruthenium catalysts were evaluated through the catalytic wet air oxidation (CWAO) of resin effluent in a packed-bed reactor. Active carbon-ceramic sphere and ruthenium catalysts were characterized by N(2) adsorption and chemisorption measurements. BET surface area and total pore volume of active carbon (AC) in the active carbon-ceramic sphere increase with increasing KOH-to-carbon ratio, and AC in the sample KC-120 possesses values as high as 1100 m(2) g(-1) and 0.69 cm(3) g(-1) (carbon percentage: 4.73 wt.%), especially. Active carbon-ceramic sphere supported ruthenium catalysts were prepared using the RuCl(3) solution impregnation onto these supports, the ruthenium loading was fixed at 1-5 wt.% of AC in the support. The catalytic activity varies according to the following order: Ru/KC-120>Ru/KC-80>Ru/KC-60>KC-120>without catalysts. It is found that the 3 wt.% Ru/KC-120 catalyst displays highest stability in the CWAO of resin effluent during 30 days. Chemical oxygen demand (COD) and phenol removal were about 92% and 96%, respectively at the reaction temperature of 200 degrees C, oxygen pressure of 1.5 MPa, the water flow rate of 0.75 L h(-1) and the oxygen flow rate of 13.5 L h(-1).

  3. Effects of CO2 content on the activity and stability of nickel catalyst supported on mesoporous nanocrystalline zirconia

    Institute of Scientific and Technical Information of China (English)

    M.Rezaei; S.M.Alavi; S.Sahebdelfar; Zi-Feng Yan

    2008-01-01

    The effects of carbon dioxide content on the catalytic performance and coke formation of nickel catalyst supported on mesoporous nanocrystalline zirconia with high surface area and pure tetragonaI crystalline phase were investigated in methane reforming with carbon dioxide.The samples were characterized bV XRD,BET,PR,TPO,TPH,TEM,and SEM techniques.The catalyst prepared showed high surface area and a mesoporous structure with a narrow pore size distribution.The obtained results revealed that the increase in CO2 content increased the methane conversion and stability of the catalyst and significantly reduced the coke deposition.The TPH analysis showed that several species of carbon with different reactivities toward hydrogenation were deposited on the spent catalysts employed under different CO2 contents.

  4. Hydrogenation of Anthracene in Supercritical Carbon Dioxide Solvent Using Ni Supported on Hβ-Zeolite Catalyst

    Directory of Open Access Journals (Sweden)

    Ashraf Aly Hassan

    2012-01-01

    Full Text Available Catalytic hydrogenation of anthracene was studied over Ni supported on Hβ-zeolite catalyst under supercritical carbon dioxide (sc-CO2 solvent. Hydrogenation of anthracene in sc-CO2 yielded 100% conversion at 100 °C, which is attributed to the reduced mass transfer limitations, and increased solubility of H2 and substrate in the reaction medium. The total pressure of 7 MPa was found to be optimum for high selectivity of octahydroanthracene (OHA. The conversion and selectivity for OHA increased with an increase in H2 partial pressure, which is attributed to higher concentration of hydrogen atoms at higher H2 pressures. The selectivity reduced the pressure below 7 MPa because of enhanced desorption of the tetrahydro-molecules and intermediates from Ni active sites, due to higher solubility of the surface species in sc-CO2. The selectivity of OHA increased with the increase in catalyst weight and reaction time. The rate of hydrogenation of anthracene was compared with that found for napthalene and phenanthrene. The use of acetonitrile as co-solvent or expanded liquid with CO2 decreased the catalytic activity.

  5. Rice Husk Supported Catalysts for Degradation of Chlorobenzenes in Capillary Microreactor

    Directory of Open Access Journals (Sweden)

    Abdulelah Thabet

    2015-01-01

    Full Text Available Chlorinated organic pollutants are persistent, toxic, and ubiquitously distributed environmental contaminants. These compounds are highly bioaccumulative and adversely affect the ozone layer in the atmosphere. As such, their widespread usage is a major cause of environmental and health concern. Therefore, it is important to detoxify such compounds by environment friendly methods. In this work, rice husk supported platinum (RHA-Pt and titanium (RHA-Ti catalysts were used, for the first time, to investigate the detoxification of chlorobenzenes in a glass capillary microreactor. High potential (in kV range was applied to a reaction mixture containing buffer solution in the presence of catalyst. Due to high potential, hydroxyl and hydrogen radicals were produced, and the reaction was monitored by gas chromatography-mass spectrometry. The main advantage of this capillary reactor is the in situ generation of hydrogen for the detoxification of chlorobenzene. Various experimental conditions influencing detoxification were optimized. Reaction performance of capillary microreactor was compared with conventional catalysis. Only 20 min is sufficient to completely detoxify chlorobenzene in capillary microreactor compared to 24 h reaction time in conventional catalytic method. The capillary microreactor is simple, easy to use, and suitable for the detoxification of a wide range of chlorinated organic pollutants.

  6. Nanoporous and highly active silicon carbide supported CeO₂-catalysts for the methane oxidation reaction.

    Science.gov (United States)

    Hoffmann, Claudia; Biemelt, Tim; Lohe, Martin R; Rümmeli, Mark H; Kaskel, Stefan

    2014-01-29

    CeOx @SiO2 nanoparticles are used for the first time for the generation of porous SiC materials with tailored pore diameter in the mesopore range containing encapsulated and catalytically active CeO2 nanoparticles. The nanocasting approach with a preceramic polymer and subsequent pyrolysis is performed at 1300 °C, selective leaching of the siliceous part results in CeOx /SiC catalysts with remarkable characteristics like monodisperse, spherical pores and specific surface areas of up to 438 m(2) ·g(-1) . Porous SiC materials are promising supports for high temperature applications. The catalysts show excellent activities in the oxidation of methane with onset temperatures of the reaction 270 K below the onset of the homogeneous reaction. The synthesis scheme using core-shell particles is suited to functionalize silicon carbide with a high degree of stabilization of the active nanoparticles against sintering in the core of the template even at pyrolysis temperatures of 1300 °C rendering the novel synthesis principle as an attractive approach for a wide range of catalytic reactions.

  7. Supported nano gold as a recyclable catalyst for green, selective and efficient oxidation of alcohol using molecular oxygen

    Directory of Open Access Journals (Sweden)

    Bashir Dar

    2011-09-01

    Full Text Available The myth that gold cannot act as a catalyst has been discarded in view of recent studies, which have demonstrated the high catalytic efficiency of pure nano-gold and supported nano-gold catalysts. In recent years, numerous papers have described the use of supported nano-gold particles for catalysis in view of their action on CO and O2 to form CO2, as well as a variety of other reactions. Special emphasis is placed on the oxidation studies undertaken on model nano-Au systems. In this work a solvent free oxidation of 1-phenyl ethanol was carried out using gold supported on ceria-silica, ceria-titania, ceria- zirconia and ceria-alumina at 160 0C. Almost 88-97% conversion was obtained with >99% selectivity. Temperature screening was done from 70 to 160 0C.Catalysts were prepared by deposition co-precipitation method and deposition was determined by EDEX analysis.

  8. Comparative study on stability and coke deposition over supported Rh and FePO4 catalysts for oxy-bromination of methane

    Institute of Scientific and Technical Information of China (English)

    Ronghe; Lin; Yunjie; Ding; Runqin; Wang

    2014-01-01

    Rhodium- and iron phosphate-based catalysts are by far the most promising catalysts for oxy-bromination of methane(OBM) reaction. However, most literature reported either Rh- or FePO4-based catalysts, and the results were rarely studied in a uniform environmental condition. In this report, comparative study was conducted on silica- and silicon carbide-supported rhodium and iron phosphate catalysts with the main focuses on stability performance and coke deposition. The catalytic results demonstrated that the stability of both Rh- and FePO4-based catalysts was greatly influenced by the supports used, and silicon carbide-supported catalysts showed much better anti-coking ability as compared with silica-supported ones. Temperature-programmed oxidation over the used catalysts further indicated that the coke formation mechanisms were completely different between silica-supported rhodium and iron phosphate catalysts. While cokes might be caused by condensation of CH2Br2over supported iron phosphate, methane decomposition might be the reason for coke formation over silica-supported rhodium catalyst. These findings might pave the way for designing highly efficient and stable catalysts of the OBM reaction.

  9. Gas Phase Polymerization of Ethylene with Supported Titanium-Nickel Catalysts

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new ditransition-metal catalyst system TiCl4-NiCl2/MgCl2-SiO2/AlR3 was prepared.Gas phase polymerization of ethylene with the catalysts has been studied.The kinetic curves of gas phase polymerization showed a decline.The catalystic efficiency and polymerization reaction rates have a optimum value when Ni content of the catalysts was 12.5%(mol).The products obtained are branched polyethylene.

  10. Improved activity and durability of Rh-based three-way catalyst under diverse aging atmospheres by ZrO2 support.

    Science.gov (United States)

    Cao, Yidan; Ran, Rui; Wu, Xiaodong; Zhao, Baohuai; Weng, Duan

    2017-02-01

    The catalytic activity and durability of Rh/ZrO2 catalyst were investigated compared with Rh/Al2O3 catalyst under diverse aging atmospheres, including lean, rich and lean-rich cyclic aging atmospheres, to simulate the real working conditions of three-way catalyst. Oxidation states and microstructures of rhodium species were investigated to correlate with the catalytic performance of the catalysts. The catalytic performance and durability of the Rh catalyst under diverse aging atmospheres were drastically enhanced by ZrO2 support. ZrO2 support was confirmed to be able to effectively inhibit rhodium sintering even under diverse aging conditions. It can also successfully keep Rh species in an active low-valence state on the surface of the catalyst. The superiority of ZrO2 support compared to Al2O3 was verified by the Rh-based monolith catalyst.

  11. A palladium-doped ceria@carbon core-sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions

    Science.gov (United States)

    Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi

    2015-08-01

    A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique

  12. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    Directory of Open Access Journals (Sweden)

    Raimondo Maggi

    2016-10-01

    Full Text Available Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  13. Effect of support and pre-treatment conditions on Pt-Sn catalysts: application to nitrate reduction in water.

    Science.gov (United States)

    Soares, Olívia Salomé G P; Jardim, Erika O; Reyes-Carmona, Alvaro; Ruiz-Martínez, Javier; Silvestre-Albero, Joaquín; Rodríguez-Castellón, Enrique; Orfão, José J M; Sepúlveda-Escribano, Antonio; Pereira, Manuel Fernando R

    2012-03-01

    The effect of the support (activated carbon or titanium dioxide) on the catalytic activity and selectivity to nitrogen of Pt-Sn catalysts in nitrate reduction was studied. The effects of the preparation conditions and the Pt:Sn atomic ratio were also evaluated. It was observed that the support plays an important role in nitrate reduction and that different preparation conditions lead to different catalytic activities and selectivities. Generally, the catalysts supported on activated carbon were less active but more selective to nitrogen than those supported on titanium dioxide. The monometallic Pt catalyst is active for nitrate reduction only when supported on titanium dioxide, which is explained by the involvement of the support in the reaction mechanism. The catalysts were characterized by different techniques, and significant changes on metal chemical states were observed for the different preparation conditions used. Only metallic Pt and oxidized Sn were observed at low calcination and reduction temperatures, but some metallic Sn was also present when high temperatures were used, being also possible the formation of Pt-Sn alloys.

  14. Fabrication of Novel Titanium-supported Ni-Sn Catalysts for Methanol Electro-oxidation

    Institute of Scientific and Technical Information of China (English)

    YI Qing-Feng; HUANG Wu; YU Wen-Qiang; LI Lei; LIU Xiao-Ping

    2008-01-01

    Novel titanium-supported Ni-Sn/Ti electrodes (Ni8Sn/Ti, Ni7Sn3/Ti and Ni/Ti) have been prepared using a hydrothermal method by a one step process. The scanning electron microscopy (SEM) images show that the catalyst particles are present as nano-scale flakes. Their electrochemical activity for methanol oxidation in 1 mol·L-1 NaOH was evaluated using voltammetric techniques, chronoamperometric measurements and electrochemical impedance spectra (EIS). It was found that the Ni8Sn/Ti electrode presents higher anodic currents and lower onset potential for methanol oxidation than Ni7Sn3/Ti, Ni/Ti and polycrystalline Ni electrodes. The EIS data indicate that under condi- tions of various anodic potentials and methanol concentrations, the Ni8Sn/Ti electrode displays significantly lower charge transfer resistances and high electrocatalytic activity towards methanol oxidation.

  15. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst.

    Science.gov (United States)

    Liu, Huizhen; Jiang, Tao; Han, Buxing; Liang, Shuguang; Zhou, Yinxi

    2009-11-27

    Cyclohexanone is an industrially important intermediate in the synthesis of materials such as nylon, but preparing it efficiently through direct hydrogenation of phenol is hindered by over-reduction to cyclohexanol. Here we report that a previously unappreciated combination of two common commercial catalysts-nanoparticulate palladium (supported on carbon, alumina, or NaY zeolite) and a Lewis acid such as AlCl3-synergistically promotes this reaction. Conversion exceeding 99.9% was achieved with >99.9% selectivity within 7 hours at 1.0-megapascal hydrogen pressure and 50 degrees C. The reaction was accelerated at higher temperature or in a compressed CO(2) solvent medium. Preliminary kinetic and spectroscopic studies suggest that the Lewis acid sequentially enhances the hydrogenation of phenol to cyclohexanone and then inhibits further hydrogenation of the ketone.

  16. Cellulose conversion to polyols on supported Ru catalysts in aqueous basic solution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It is of great significance and challenge to achieve direct conversion of cellulose to specific polyols,e.g.,ethylene glycol and propylene glycol.For such selective conversion,a novel one-pot approach was studied by combination of alkaline hydrolysis and hydrogenation on supported Ru catalysts.A wide range of bases including solid bases,e.g.,Ca(OH)2 and La2O3,and phosphate buffers were examined in the cellulose reaction in water,and the cellulose conversions and polyol products depended largely on the basicity or pH values in the aqueous solutions.Ethylene glycol,1,2-propanediol,and especially 1,2,5-pentanetriol were obtained with selectivities of 15%,14% and 22%,respectively,at 38% cellulose conversion at pH 8 in phosphate buffer solution.These preliminary results provide potentials for efficient conversion of cellulose to targeted polyols by using the advantages of bases.

  17. Electro-synthesis of novel nanostructured PEDOT films and their application as catalyst support

    Directory of Open Access Journals (Sweden)

    Yan Yushan

    2011-01-01

    Full Text Available Abstract Poly(3,4-ethylenedioxythiophene (PEDOT films doped with nitric and chlorine ions have been electrochemically deposited simply by a one-step electrochemical method in an aqueous media in the absence of any surfactant. The fabricated PEDOT films were characterized by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results indicate that the hierarchical structured PEDOT film doped with nitric ions displays a 'lunar craters' porous morphology consisting of PEDOT nano-sheets with a thickness of less than 2 nm. The effect of counter ions on the electro-polymerization, the electrochemistry, and the morphology of the polymer film was studied. Compared with PEDOT film doped with nitric acid, PEDOT film deposited in the presence of chlorine ions shows irregular morphology and less electrochemical activity. The specific nanostructure of the polymer was further studied as catalyst support for platinum nanoparticles to methanol electro-oxidation.

  18. Characterization and reactivity of Pd Pt bimetallic supported catalysts obtained by laser vaporization of bulk alloy

    Science.gov (United States)

    Rousset, J. L.; Cadete Santos Aires, F. J.; Bornette, F.; Cattenot, M.; Pellarin, M.; Stievano, L.; Renouprez, A. J.

    2000-09-01

    Bimetallic Pd-Pt clusters produced by laser vaporization of bulk alloy have been deposited on high surface alumina. Energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM) show that they have a perfectly well-defined stoichiometry and a narrow range of size. Therefore, they constitute ideal systems to investigate alloying effects towards reactivity. Pd-Pt alloys are already known for their applications in the hydrogenation of unsaturated hydrocarbons, especially aromatics, because this system is highly resistant to sulfur and nitrogen poisoning. In this context, the catalytic properties of this system have been investigated in the hydrogenation of tetralin in the presence of hydrogen sulfide. Preliminary results show that this model catalyst is more sulfur-resistant than each of the pure supported metals prepared by chemical methods.

  19. Tailoring Synthesis Conditions of Carbon Xerogels towards Their Utilization as Pt-Catalyst Supports for Oxygen Reduction Reaction (ORR

    Directory of Open Access Journals (Sweden)

    María Jesús Lázaro

    2012-10-01

    Full Text Available Carbon xerogels characterized by different textural, structural and chemical properties were synthesized and used as supports for Pt catalysts for the application in polymer electrolyte fuel cells. Synthesis conditions were varied in order to synthesize carbon xerogels following the sol-gel method. These included the reactants ratio (precursor/formaldehyde, the catalyst concentration (precursor/catalyst ratio and type (basic and acid, the precursor type (resorcinol and pyrogallol and the solvent (aqueous or acetone based. Stoichiometric mixtures of resorcinol and formaldehyde yielded well polymerized gels and highly developed structures. Slow gelation, favored by the presence of acetone as solvent in the sol and low catalyst concentration, resulted in higher polymerization extent with a highly mesoporous or even macroporous texture and more ordered structure, as evidenced by XPS and Raman spectroscopy. Small Pt particles of ca. 3.5 nm were obtained by using carbon xerogels characterized by an ordered surface structure. The specific activity towards the oxygen reduction reaction, i.e., the limiting catalytic process in low temperature fuel cells, is significantly favored by highly ordered carbon xerogels due to a metal-support enhanced interaction. Nevertheless, surface defects favor the distribution of the metallic particles on the surface of carbon, which in the end influences the effectiveness of the catalyst. Accelerated degradation tests were conducted to evaluate catalyst stability under potential cycling conditions. The observed decay of performance was considerably lower for the catalysts based on ordered carbon xerogels stabilizing Pt particles in a higher extent than the other xerogels and the commercial carbon black support.

  20. TiN@nitrogen-doped carbon supported Pt nanoparticles as high-performance anode catalyst for methanol electrooxidation

    Science.gov (United States)

    Zhang, Jun; Ma, Li; Gan, Mengyu; Fu, Shenna; Zhao, Yi

    2016-08-01

    In this paper, TiN@nitrogen-doped carbons (NDC) composed of a core-shell structure are successfully prepared through self-assembly and pyrolysis treatment using γ-aminopropyltriethoxysilane as coupling agent, polyaniline as carbon and nitrogen source, respectively. Subsequently, TiN@NDC supporting Pt nanoparticles (Pt/TiN@NDC) are obtained by a microwave-assisted polyol process. The nitrogen-containing functional groups and TiN nanoparticles play a critical role in decreasing the average particle size of Pt and improving the electrocatalytic activity of Pt/TiN@NDC. Transmission electron microscope results reveal that Pt nanoparticles are uniformly dispersed in the TiN@NDC surface with a narrow particle size ranging from 1 to 3 nm in diameter. Moreover, the Pt/TiN@NDC catalyst shows significantly improved catalytic activity and high durability for methanol electrooxidation in comparison with Pt/NDC and commercial Pt/C catalysts, revealed by cyclic voltammetry and chronoamperometry. Strikingly, this novel Pt/TiN@NDC catalyst reveals a better CO tolerance related to Pt/NDC and commercial Pt/C catalysts, which due to the bifunctional mechanism and strong metal-support interaction between Pt and TiN@NDC. In addition, the probable reaction steps for the electrooxidation of CO adspecies on Pt NPs on the basis of the bifunctional mechanism are also proposed. These results indicate that the TiN@NDC is a promising catalyst support for methanol electrooxidation.

  1. A comparative study of differently prepared rare earths-modified ceria-supported gold catalysts for preferential oxidation of CO

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, L.; Ivanov, I.; Andreeva, D. [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 11, 1113 Sofia (Bulgaria); Pantaleo, G.; Venezia, A.M. [Istituto per lo Studio dei Materiali Nanostrutturati, CNR, I-90146 Palermo (Italy); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Mexico D. F. (Mexico)

    2009-08-15

    The preferential oxidation of CO in H{sub 2}-rich gas was studied over gold catalysts supported on ceria modified by rare earths (RE = La, Sm, Gd and Y). The ceria supports were prepared by mechanochemical activation or co-precipitation. The amount of RE{sub 2}O{sub 3} was 10 wt%. Gold (2 wt%) was added by the deposition-precipitation method. The samples were characterized using XRD, HRTEM, HAADF, TPR, and Raman spectroscopy. It was established that catalysts prepared by co-precipitation were more active than samples made by mechanochemical activation. A gold catalyst on yttrium-modified ceria, prepared by co-precipitation, exhibited the highest catalytic activity and selectivity, and high stability. No substantial differences in the size distribution and average size of the nanogold particles in the studied catalysts were observed. The main reason for the differences in PROX activity of these gold catalysts was searched into the role of the ceria supports, depending on the preparation method, and the nature of the modifier. (author)

  2. Kinetics of carbon monoxide oxidation over modified supported CuO catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Loc, Luu Cam; Tri, Nguyen; Cuong, Hoang Tien; Thoang, Ho Si [Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City (Viet Nam). Inst. of Chemical Technology; Agafonov, Yu.A.; Gaidai, N.A.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry

    2013-11-01

    The following supported on {gamma}-Al{sub 2}O{sub 3} catalysts: 10(wt.)%CuO (CuAl), 10%CuO+10%Cr{sub 2}O{sub 3} (CuCrAl) and 10%CuO+20%CeO{sub 2} (CuCeAl) were under the investigation. Physico-chemical characteristics of the catalysts were determined by the methods of BET, X-ray Diffraction (XRD), and Temperature-Programmed Reduction (TPR). A strong interaction of copper with support in CuAl resulted in the formation of low active copper aluminates. The bi-oxide CuCrAl was more active than CuAl owing to the formation of high catalytically active spinel CuCr{sub 2}O{sub 4}. The fact of very high activity of the sample CuCeAl can be explained by the presence of the catalytically active form of CuO-CeO{sub 2}-Al{sub 2}O{sub 3}. The kinetics of CO total oxidation was studied in a gradientless flow-circulating system at the temperature range between 200 C and 270 C. The values of initial partial pressures of carbon monoxide (P{sup o}{sub CO}), oxygen (P{sup o}{sub O2}), and specially added carbon dioxide (P{sup o}{sub CO{sub 2}}) were varied in ranges (hPa): 10 / 45; 33 / 100, and 0 / 30, respectively. (orig.)

  3. Studies on accelerated deactivation of ruthenium-promoted alumina-supported alkalized cobalt Fischer-Tropsch synthesis catalyst

    Institute of Scientific and Technical Information of China (English)

    Shohreh Tehrani; Mohamad Irani; Ahmad Tavasoli; Yadollah Mortazavi; Abbas A.Khodadadi; Ali Nakhaei Pour

    2011-01-01

    Accelerated deactivation of ruthenium-promoted alumina-supported alkalized cobalt(K-Ru-Co/-γ-Al2O3)Fischer-Tropsch(FT)synthesis catalyst along the catalytic bed over 120 h of time-on-stream(TOS)was investigated.Catalytic bed was divided into three parts and structural changes of the spent catalysts collected from each catalytic bed after FT synthesis were studied using different techniques.Rapid deactivation was observed during the reaction due to high reaction temperature and low feed flow rates.The physico-chemical properties of the catalyst charged in the Bed #1 of the reactor did not change significantly.Interaction of cobalt with alumina and the formation of CoAl2O4 increased along the catalytic bed.Reducibility percentage decreased by 4.5%,7.5% and 12.9% for the catalysts in the Beds #1,#2 and #3,respectively.Dispersion decreased by 8.8%,14.4% and 26.6% for the catalysts in the Beds #1,#2 and #3,respectively.Particle diameter increased by 0.6%,2.4% and 10.4% for the catalysts in the Beds #1,#2 and #3,respectively,suggesting higher rate of sintering at the last catalytic bed.The amount of coke at the last catalytic bed was significantly higher than those of Beds #1 and #2.

  4. A novel catalyst containing palladium nanoparticles supported on PVP composite nanofiber films: Synthesis, characterization and efficient catalysis

    Science.gov (United States)

    Guo, Liping; Bai, Jie; Li, Chunping; Meng, Qingrun; Liang, Haiou; Sun, Weiyan; Li, Hongqiang; Liu, Huan

    2013-10-01

    This paper studied the preparation of Pd nanoparticles/PVP composite nanofiber membranes catalyst. In the experiment, reductant was ethanol and PVP (polyvinyl pyrrolidone) served as the protecting agent as well as supporter of palladium nanoparticles. Pd nanoparticles/PVP sol was examined by UV-vis absorbance spectra (UV-vis); Pd NPs/PVP nanofibers were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). The Pd NPs/PVP nanofibers films catalyst was applied to catalytic hydrogenation of aryl nitro compounds reduction and Heck reactions to test the catalytic activity, products were characterized by gas chromatograph (GC) and gas chromatograph mass spectrometer (GC-MS). Results showed that the diameters of Pd NPs were 3-10 nm and the Pd NPs/PVP nanofibers films catalyst possessed high-activity, improved the selectivity and yield, the conversion rate of paratoluidine was 74.36%, N-butyl cinnamate esters conversion rate still exceed 99% after catalyst be used three times. It overcomes the problems that palladium has leached badly and recovery difficultly in conventional homogeneous palladium catalyst field, and have a broad foreground of catalyst applications.

  5. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts.

    Science.gov (United States)

    Park, Hyun Ju; Park, Sung Hoon; Sohn, Jung Min; Park, Junhong; Jeon, Jong-Ki; Kim, Seung-Soo; Park, Young-Kwon

    2010-01-01

    The steam reforming of benzene as a model compound of biomass gasification tar was carried out over various Ni/metal oxide catalysts. The effects of the support, temperature, Ni-precursor, Ni loading and reaction time were examined, and their catalytic performance was compared with that of a commercial Ni catalyst. Among the Ni/metal oxide catalysts used, 15 wt% Ni/CeO(2)(75%)-ZrO(2)(25%) showed the highest catalytic performance owing to its greater redox characteristics and increased surface area, irrespective of the reaction temperature. The catalytic activity of 15 wt% Ni/CeO(2)(75%)-ZrO(2)(25%) was higher than that of the commercial Ni catalyst. Moreover, the catalyst activity was retained due to its excellent resistance to coke deposition even after 5h. The Ni-precursor played a critical role in the catalytic activity. With the exception of nickel nitrate, all the Ni-precursors (chloride and sulfate) caused deactivation of the catalyst.

  6. Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides

    Science.gov (United States)

    Spassova, I.; Stoeva, N.; Nickolov, R.; Atanasova, G.; Khristova, M.

    2016-04-01

    Composite catalysts, prepared by one or more active components supported on a support are of interest because of the possible interaction between the catalytic components and the support materials. The supports of combined hydrophilic-hydrophobic type may influence how these materials maintain an active phase and as a result a possible cooperation between active components and the support material could occur and affects the catalytic behavior. Silica-carbon nanocomposites were prepared by sol-gel, using different in specific surface areas and porous texture carbon materials. Catalysts were obtained after copper deposition on these composites. The nanocomposites and the catalysts were characterized by nitrogen adsorption, TG, XRD, TEM- HRTEM, H2-TPR, and XPS. The nature of the carbon predetermines the composite's texture. The IEPs of carbon materials and silica is a force of composites formation and determines the respective distribution of the silica and carbon components on the surface of the composites. Copper deposition over the investigated silica-carbon composites leads to formation of active phases in which copper is in different oxidation states. The reduction of NO with CO proceeds by different paths on different catalysts due to the textural differences of the composites, maintaining different surface composition and oxidation states of copper.

  7. STUDIES ON THE STATE OF PALLADIUM AND HYDROGENATION ACTIVITY OF RESIN SUPPORTED PALLADIUM—TIN OXIDE CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    HuWeibing; ZhangShengming; 等

    1994-01-01

    Sereral Pd-SnO2/D3520 and Pd-PbO/D3520 catalysts with Pd/D3520,SnO2/D3520 and PbO/D3520 catalysts as reference were studied by means of IR and XPS.Interaction between Pd and the second metal or between metal and support was observed.Results show that there is a strong interaction between Pd and the second metal,but there is not an obvious interaction between metal and support.The active constituent is Pd.Hydrogenation activity of the catalysts is altered because of the interaction between Pd and the second metal.The activity of the catalysis for hydrogenation has relation to outer layer valence electron density of Pd.

  8. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    Science.gov (United States)

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene.

  9. Carbon nanotubes-Nafion composites as Pt-Ru catalyst support for methanol electro-oxidation in acid media

    Institute of Scientific and Technical Information of China (English)

    Shengzhou Chen; Fei Ye; Weiming Lin

    2009-01-01

    Carbon nanotubes-Nafion (CNTs-Nafion) composites were prepared by impregnated CNTs with Nafion in ethanol solution and characterized by FT-IR. Pt-Ru catalysts supported on CNTs-Nafion composites were synthesized by microwave-assisted polyol process. The physical and electrochemical properties of the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), CO stripping voltammetry, cyclic voltammetry (CV) and chronoamperometry (CA). The results showed that the Nafion incorporation in CNTs-Nafion composites did not significantly alter the oxygen-containing groups on the CNTs surface. The Pt-Ru catalyst supported on CNTs-Nafion composites with 2 wt% Nafion showed good dispersion and the best CO oxidation and methanol electro-oxidation activities.

  10. Solvent-free aerobic oxidation of ethylbenzene over supported Ni catalysts using molecular oxygen at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    G.Raju; P. Shiva Reddy; J.Ashok; B.Mahipal Reddy; A.Venugopal

    2008-01-01

    We investigated the aerobic oxidation of ethylbenzene in the absence of solvent or any additive carded out over Ni on difierent types of supports namely SiO2,hydroxyapatite,SBA-15,and USY Zeolites.The oxidation of ethylbenzene activities was measured in a round bottom flask immersed in oil bath at known reaction temperature.The physicochemical characteristics of the catalysts were examined by BET surface area.XRD.FT-IR and the oxidation activities were correlated with the acidities of the catalysts obtained bv TPD of NH3.It was observed that both hydroxyapatite and USY(13%Na2O)supported Ni catalysts displayed higher ethylbenzene conversion and 80%selectivity towards acetophenone.

  11. Infrared spectroscopic investigation of CO adsorption on SBA-15- and KIT-6-supported nickel phosphide hydrotreating catalysts.

    Science.gov (United States)

    Korányi, Tamás I; Pfeifer, Eva; Mihály, Judith; Föttinger, Karin

    2008-06-12

    The infrared (IR) spectra of CO adsorbed on 10, 20, and 30 wt % nickel phosphide-containing reduced SBA-15 and KIT-6 mesoporous silica-supported catalysts have been studied at 300-473 K. On the catalysts containing a stoichiometric amount of phosphorus with 20 wt % loading, the most intense IR absorption band was observed at 2097-2099 cm(-1), which was assigned to CO terminally bonded to coordinatively unsaturated Ni(delta+) (0 hydrotreating catalytic activity. The modified Ni-P charge distribution, the mode of CO adsorption on surface nickel phosphide sites, as well as the acidity can be directly connected to the catalytic activity of these mesoporous silica-supported catalysts.

  12. Hydrogen production from the steam reforming of bio-butanol over novel supported Co-based bimetallic catalysts.

    Science.gov (United States)

    Cai, Weijie; de la Piscina, Pilar Ramirez; Homs, Narcis

    2012-03-01

    This paper reports the hydrogen production through the steam reforming of a bioresource-derived butanol mixture (butanol:acetone:ethanol=6:3:1 mass ratio) over supported cobalt-based catalysts. The support plays an important role for the catalytic behavior and Co/ZnO exhibits the best catalytic performance compared to Co/TiO(2) and Co/CeO(2). Moreover, a higher hydrogen yield is obtained over bimetallic Co-Ir/ZnO, which shows an increase in H(2) selectivity and a decrease in CH(4) selectivity under steam reforming conditions, compared to Co/ZnO. Raman results of the used catalysts indicate that the addition of Ir could prevent the coke formation to prolong the catalyst stability.

  13. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature

    Science.gov (United States)

    Yao, Xiaojiang; Kong, Tingting; Yu, Shuohan; Li, Lulu; Yang, Fumo; Dong, Lin

    2017-04-01

    The commonly used supports of SiO2, γ-Al2O3, TiO2, and CeO2 were synthesized, and used for preparing MnOx/SiO2, MnOx/γ-Al2O3, MnOx/TiO2, and MnOx/CeO2 catalysts with the purpose of investigating the influence of crystal structure and coordination status on the physicochemical properties and denitration performance of these supported Mn-based catalysts for low-temperature NH3-SCR. The obtained samples were characterized by XRD, Raman, BET, H2-TPR, NH3-TPD, in situ DRIFTS, NO + O2-TPD, XPS, and NH3-SCR model reaction. XRD results indicate that MnOx species can be highly dispersed on the surface of γ-Al2O3, TiO2, and CeO2, which is because that there are some octahedral and tetrahedral vacancy sites, octahedral vacancy site, and cubic vacancy site exist on the surface of defective spinel structure γ-Al2O3, anatase TiO2, and cubic fluorite-type structure CeO2, respectively. However, there is no any vacancy site on the surface of SiO2 due to its unique SiO4 tetrahedral structure, which results in the appearance of crystalline β-MnO2 on the surface of MnOx/SiO2 catalyst. Furthermore, H2-TPR results exhibit obvious different reduction behavior among these supported Mn-based catalysts, which is explained by the coordination status of Mn species. Finally, NH3-SCR model reaction results show that MnOx/γ-Al2O3 catalyst presents the best catalytic performance among these supported Mn-based catalysts due to its high dispersion, suitable reduction behavior, largest amount of acid sites, optimal NOx adsorption capacity, and abundant Mn4+ content.

  14. Selective catalytic oxidation of H{sub 2}S over iron oxide supported on alumina-intercalated Laponite clay catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Dou, Guangyu; Wang, Zhuo [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Li, Li [Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 (Australia); Wang, Yufei; Wang, Hailin [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hao, Zhengping, E-mail: zpinghao@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2013-09-15

    Graphical abstract: The catalytic reaction and deactivation mechanisms for H{sub 2}S selective oxidation over Fe/Al-Lap catalysts are shown in the illustration. The catalytic reaction follows Mars–van Krevelen mechanism. Moreover, the interaction between iron oxide and alumina, the strong acidity of the catalysts and the well dispersion of iron oxide improve the catalytic performance efficiently. Meanwhile, the catalyst deactivation is mainly due to the formation of Fe{sub 2}(SO{sub 4}){sub 3} and elemental sulfur deposits on the surface. -- Highlights: • Fe/Al-Lap catalysts with mesoporous structure were synthesized. • Iron oxide mainly exists in form of isolate Fe{sup 3+} in an oxidic environment. •Fe/Al-Lap catalysts show high catalytic activities at low temperature. •The high catalytic activities are ascribed to the interaction between iron oxide and alumina. •The formed Fe{sub 2}(SO{sub 4}){sub 3} and elemental sulfur deposits on surface cause catalyst deactivation. -- Abstract: A series of iron oxide supported on alumina-intercalated clay catalysts (named Fe/Al-Lap catalysts) with mesoporous structure and high specific surface area were prepared. The structural and chemical properties were studied by nitrogen sorption isotherms, X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (UV–vis DRS), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FTIR), H{sub 2} temperature-programmed reduction (H{sub 2}-TPR) and NH{sub 3} temperature-programmed desorption (NH{sub 3}-TPD) techniques. It was realized that iron oxide mainly existed in the form of isolated Fe{sup 3+} in an oxidic environment. Fe/Al-Lap catalysts showed high catalytic activities in the temperature range of 120–200 °C without the presence of excessive O{sub 2}. This can be attributed to the interaction between iron oxide and alumina, which improve the redox property of Fe{sup 3+} efficiently. In addition, the strong acidity of catalysts and good

  15. SISGR-Fundamental Experimental and Theoretical Studies on a Novel Family of Oxide Catalyst Supports for Water Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant [University of Pittsburgh

    2014-10-03

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it was demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would

  16. Designing supported palladium-on-gold bimetallic nano-catalysts for controlled hydrogenation of acetylene in large excess of ethylene

    Science.gov (United States)

    Malla, Pavani

    Ethylene is used as a starting point for many chemical intermediates in the petrochemical industry. It is predominantly produced through steam cracking of higher hydrocarbons (ethane, propane, butane, naphtha, and gas oil). During the cracking process, a small amount of acetylene is produced as a side product. However, acetylene must be removed since it acts as a poison for ethylene polymerization catalysts at even ppm concentrations (>5 ppm). Thus, the selective hydrogenation of acetylene to ethylene is an important process for the purification of ethylene. Conventional, low weight loading Pd catalysts are used for this selective reaction in high concentration ethylene streams. Gold was initially considered to be catalytically inactive for a long time. This changed when gold was seen in the context of the nanometric scale, which has indeed shown it to have excellent catalytic activity as a homogeneous or a heterogeneous catalyst. Gold is proved to have high selectivity to ethylene but poor at conversion. Bimetallic Au and Pd catalysts have exhibited superior activity as compared to Pd particles in semi-hydrogenation. Hydrogenation of acetylene was tested using this bimetallic combination. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. TiO 2 as a support material and 0.05%Pd loading on 1%Au on titania support and used different treatment methods like washing plasma and reduction between the two metal loadings and was observed under 2:1 ratio. In my study there were two set of catalysts which were prepared by a modified incipient wetness impregnation technique. Out of all the reaction condition the catalyst which was reduced after impregnating gold and then impregnating palladium which was further treated in non-thermal hydrogen plasma and then pretreated in hydrogen till 250°C for 1 hour produced the best activity of 76% yield at 225°C. Stability tests were conducted

  17. Influence of the Synthesis Method for Pt Catalysts Supported on Highly Mesoporous Carbon Xerogel and Vulcan Carbon Black on the Electro-Oxidation of Methanol

    OpenAIRE

    2015-01-01

    Platinum catalysts supported on carbon xerogel and carbon black (Vulcan) were synthesized with the aim of investigating the influence of the characteristics of the support on the electrochemical performance of the catalysts. Three synthesis methods were compared: an impregnation method with two different reducing agents, sodium borohydride and formic acid, and a microemulsion method, in order to study the effect of the synthesis method on the physico-chemical properties of the catalysts. X-ra...

  18. Meso-macroporous Al2O3 supported Ru catalysts for CO preferential oxidation in hydrogen-rich gases

    Institute of Scientific and Technical Information of China (English)

    Limiao Shen; Cheng Zhang; Yuan Liu

    2012-01-01

    Series of meso-macroporous Al2O3 supported Ru catalysts with different loadings were prepared by incipient wetness method and applied to preferential oxidation of CO in hydrogen-rich gases.N2 adsorption-desorption,SEM,XRD,TEM,CO chemisorption and H2-TPR techniques were employed to characterize the catalysts.The results indicate that Ru/Al2O3 catalysts have meso-macroporous structure,high surface area and high metal dispersion.The characterization results of XRD and CO chemisorption indicate the entry of Ru ions into Al2O3 lattice.The results of catalytic performance tests indicate that the meso-macroporous Al2O3 supported Ru catalysts for CO preferential oxidation showed good activity under high space velocity.It is proposed that the macropores in the Ru/Al2O3 catalyst favor mass transfer and mesopores help to improve the dispersion of metal,resulting in the excellent catalytic performance.

  19. Rational design of Mg-Al mixed oxide-supported bimetallic catalysts for dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganok, Andrey I. [Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, D' Iorio Hall, 10 Marie Curie Street, Ottawa, Ont. (Canada); Inaba, Mieko [Natural Gas Technology Development Team, Teikoku Oil Co., 9-23-30 Kitakarasuyama, Setagaya-ku, Tokyo 157-0061 (Japan); Tsunoda, Tatsuo; Uchida, Kunio; Suzuki, Kunio; Hayakawa, Takashi [Institute for Materials and Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Takehira, Katsuomi [Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan)

    2005-09-18

    A novel synthetic strategy for preparing bimetallic Ru-M (M=Cr, Fe, Co, Ni and Cu) catalysts, supported on Mg-Al mixed oxide, has been introduced. It was based on a 'memory effect', i.e. on the ability of Mg-Al mixed oxide to reconstruct a layered structure upon rehydration with an aqueous solution. By repeated calcinations-rehydration cycles, layered double hydroxide (LDH) precursors of catalysts containing two different metals were synthesized. Bimetallic catalysts were then generated (1) in situ from LDH under methane reforming reaction conditions and (2) from mixed metal oxides obtained by preliminary LDH calcination. Among all the LDH-derived catalysts, a Ru{sup 0.1%}-Ni{sup 5.0%}/MgAlO{sub x} sample revealed the highest activity and selectivity to syngas, a suitable durability and a low coking capacity. A promoting effect of ruthenium on catalytic function of supported nickel was demonstrated. Preliminary LDH calcination was shown to markedly affect the catalytic activity of the derived catalysts and especially their coking properties.

  20. Potassium-decorated active carbon supported Co-Mo-based catalyst for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    Yixin Lian; RuiFen Xiao; Weiping Fang; Yiquan Yang

    2011-01-01

    The effect of potassium-decoration was studied on the activity of water-gas shift(WGS)reaction over the Co-Mo-based catalysts supported on active carbon(AC),which was prepared by incipient wetness co-impregnation method.The decoration of potassium on active carbon in advance enhances the activities of the CoMo-K/AC catalysts for WGS reaction.Highest activity(about 92% conversion)was obtained at250 ℃ for the catalyst with an optimum K2O/AC weight ratio in the range from 0.12 to 0.15.The catalysts were characterized by TPR and EPR,and the results show that activated carbon decorated with potassium makes Co-Mo species highly dispersed,and thus easily reduced and sulfurized.XRD results show that an appropriate content of potassium-decoration on active carbon supports may favors the formation of highly dispersed Co9Ss-type structures which are situated on the edge or a site in contact with MoS2,K-Mo-O-S,Mo-S-K phase.Those active species are responsible for the high activity of CoMo-K/AC catalysts.

  1. Effects of supported metallocene catalyst active center multiplicity on antioxidant-stabilized ethylene homo- and copolymers

    KAUST Repository

    Atiqullah, Muhammad

    2014-10-09

    © 2014 Akadémiai Kiadó, Budapest, Hungary. A silica-supported bis(n-butylcyclopentadienyl) zirconium dichloride [( n BuCp)2ZrCl2] catalyst was synthesized. This was used to prepare an ethylene homopolymer and an ethylene-1-hexene copolymer. The active center multiplicity of this catalyst was modeled by deconvoluting the copolymer molecular mass distribution and chemical composition distribution. Five different active site types were predicted, which matched the successive self-nucleation and annealing temperature peaks. The thermo-oxidative melt stability, with and without Irganox 1010 and Irgafos 168, of the above polyethylenes was investigated using nonisothermal differential scanning calorimetric (DSC) experiments at 150 °C. This is a temperature that ensures complete melting of the samples and avoids the diffusivity of oxygen to interfere into polyethylene crystallinity and its thermo-oxidative melt degradation. The oxidation parameters such as onset oxidation temperature, induction period, protection factor, and S-factor were determined by combining theoretical modeling with the DSC experiments. Subsequently, these findings were discussed considering catalyst active center multiplicity and polymer microstructure, particularly average ethylene sequence length. Several insightful results, which have not been reported earlier in the literature, were obtained. The antioxidant effect, for each polymer, varied as (Irganox + Irgafos) ≈ Irganox > Irgafos > Neat polymer. The as-synthesized homopolymer turned out to be almost twice as stable as the corresponding copolymer. The antioxidant(s) in the copolymer showed higher antioxidant effectiveness (AEX) than those in the homopolymer. Irganox exhibited more AEX than Irgafos. To the best of our knowledge, such findings have not been reported earlier in the literature. However, mixed with Irganox or Irgafos, their melt oxidation stability was comparable. The homopolymer, as per the calculated S-factor, showed Irganox

  2. Ferric hydrogen sulfate supported on silica-coated nickel ferrite nanoparticles as new and green magnetically separable catalyst for 1,8-dioxodecahydroacridine synthesis

    Institute of Scientific and Technical Information of China (English)

    Amir Khojastehnezhad; Mohammad Rahimizadeh; Hossein Eshghi; Farid Moeinpour; Mehdi Bakavoli

    2014-01-01

    A new magnetically separable catalyst consisting of ferric hydrogen sulfate supported on sili-ca-coated nickel ferrite nanoparticles was prepared. The synthesized catalyst was characterized using vibrating sample magnetometry, X-ray diffraction, transmission electron microscopy, scan-ning electron microscopy, and Fourier transform infrared spectroscopy. This new magnetic catalyst was shown to be an efficient heterogeneous catalyst for the synthesis of 1,8- dioxodecahydroacri-dines under solvent-free conditions. The catalyst is readily recovered by simple magnetic decanta-tion and can be recycled several times with no significant loss of catalytic activity.

  3. Effect of support surface treatment on the synthesis, structure, and performance of Co/CNT Fischer-Tropsch catalysts

    NARCIS (Netherlands)

    Eschemann, Thomas O.; Lamme, Wouter S.; Manchester, Rene L.; Parmentier, Tanja E.; Cognigni, Andrea; Ronning, Magnus; de Jong, Krijn P.

    2015-01-01

    We report the preparation of supported cobalt catalysts (9 wt% Co) on untreated (CNT) and surface-oxidized (CNT-ox) carbon nanotube materials by incipient wetness impregnation with solutions of cobalt nitrate in water, ethanol, or 1-propanol. The results show that by a judicious selection of solvent

  4. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Solid catalyst systems comprised of ruthenium hydroxide supported on magnesium-based carrier materials (spinel, magnesium oxide and hydrotalcite) were investigated for the selective, aqueous aerobic oxidation of the biomass-derived chemical 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid...

  5. Durability of Carbon Nanofiber (CNF) & Carbon Nanotube (CNT) as Catalyst Support for Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Lund, Peter;

    2013-01-01

    gravimetric analysis (TGA), cyclic voltammetry (CV), polarization curve and impedance spectroscopy were applied on the samples under accelerated stress conditions. The carbon nano-materials demonstrated better stability as support for nano-sized platinum catalyst under PEMFC related operating conditions. Due...

  6. Support screening studies on the hydrogenation of levulinic acid to γ‐valerolactone in water using RU catalysts

    NARCIS (Netherlands)

    Piskun, Anna; Winkelman, Jozef G M; Tang, Zhenchen; Heeres, Hero Jan

    2016-01-01

    γ-Valerolactone (GVL) has been identified as a sustainable platform chemical for the production of carbon-based chemicals. Here we report a screening study on the hydrogenation of levulinic acid (LA) to GVL in water using a wide range of ruthenium supported catalysts in a batch set-up (1 wt. % Ru, 9

  7. Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts

    NARCIS (Netherlands)

    Kumar, Chowdari Ramesh; Anand, Narani; Kloekhorst, Arjan; Cannilla, Catia; Bonura, Giuseppe; Frusteri, Francesco; Barta, Katalin; Heeres, Hero Jan

    2015-01-01

    The catalytic hydrotreatment of Kraft lignin using sulfided NiMo and CoMo catalysts on different acidic and basic supports (Al2O3, ZSM-5, activated carbon (AC) and MgO-La2O3) was studied in the absence of a solvent. Experiments were carried out in a batch set-up at a reaction temperature of 350 degr

  8. One-step Synthesis of n-Butanol from Ethanol Condensation over Alumina-supported Metal Catalysts

    Institute of Scientific and Technical Information of China (English)

    Ke Wu YANG; Xuan Zhen JIANG; Wei Chao ZHANG

    2004-01-01

    One-step synthesis of n-butanol from bimolecular condensation of ethanol was firstly achieved over nickel supported gamma alumina catalyst. A mechanism of dehydration path for the growth of carbon chain by eliminating a hydroxy group from one ethanol molecule with a α-H of other ethanol molecule rather than aldol condensation was verified.

  9. Hydroxyapatite supported caesium carbonate as a new recyclable solid base catalyst for the Knoevenagel condensation in water

    Directory of Open Access Journals (Sweden)

    Monika Gupta

    2009-11-01

    Full Text Available The Knoevenagel condensation between aromatic aldehydes and malononitrile, ethyl cyanoacetate or malonic acid with hydroxyapatite supported caesium carbonate in water is described. HAP–Cs2CO3 was found to be a highly active, stable and recyclable catalyst under the reaction conditions.

  10. Synthesis and characterization of molybdenum catalysts supported on γ-Al2O3-CeO2 composite oxides

    Science.gov (United States)

    Farooq, Muhammad; Ramli, Anita; Subbarao, Duvvuri

    2012-09-01

    The physical and chemical properties of a catalyst play a vital role in various industrial applications. Molybdenum catalysts supported on γ-Al2O3 and γ-Al2O3-CeO2 mixed oxides with varying loading of CeO2 (5, 10, 15, 20 wt% with respect to γ-Al2O3) were prepared by wet impregnation method. The physiochemical properties of these synthesized Mo catalysts were studied with various characterization techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX) and X-ray fluorescence spectrometer (XRF). The results showed that the addition of CeO2 into the support affected the binding energies of the elements and reducibility of the metal oxides formed after calcination of catalyst samples due to the change in metal-support interaction. Further, the characterization techniques showed that the active metal was well dispersed on the surface of support material.

  11. A Phenomenological Study on the Synergistic Role of Precious Metals and the Support in the Steam Reforming of Logistic Fuels on Monometal Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Abdul-Majeed Azad

    2010-01-01

    Full Text Available Clean power source utilizing vast logistic fuel reserves (jet fuels, diesel, and coal would be the main driver in the 21st century for high efficiency. Fuel processors are required to convert these fuels into hydrogen-rich reformate for extended periods in the presence of sulfur, and deliver hydrogen with little or no sulfur to the fuel cell stack. However, the jet and other logistic fuels are invariably sulfur-laden. Sulfur poisons and deactivates the reforming catalyst and therefore, to facilitate continuous uninterrupted operation of logistic fuel processors, robust sulfur-tolerant catalysts ought to be developed. New noble metal-supported ceria-based sulfur-tolerant nanocatalysts were developed and thoroughly characterized. In this paper, the performance of single metal-supported catalysts in the steam-reforming of kerosene, with 260 ppm sulfur is highlighted. It was found that ruthenium-based formulation provided an excellent balance between hydrogen production and stability towards sulfur, while palladium-based catalyst exhibited rapid and steady deactivation due to the highest propensity to sulfur poisoning. The rhodium supported system was found to be most attractive in terms of high hydrogen yield and long-term stability. A mechanistic correlation between the role of the nature of the precious metal and the support for generating clean desulfurized H2-rich reformate is discussed.

  12. Suzuki Reaction of Aryl Bromides Using a Phosphine-Free Magnetic Nanoparticle-Supported Palladium Catalyst

    Institute of Scientific and Technical Information of China (English)

    Nghia T. BUI; Trung B. DANG; Ha V. LE; Nam T. S. PHAN

    2011-01-01

    A palladium catalyst immobilized on superparaganetic nanoparticles was prepared with a palladium loading of 0.30 mmol/g.The catalyst was characterized using X-ray diffraction,scanning electron microscopy,transmission electron microscopy,vibrating sample magnetometry,thermogravimetric analysis,Fourier transform infrared,atomic absorption spectrophotometry,and nitrogen adsorption.The immobilized palladium catalyst was an efficient catalyst without added phosphine ligands for the Suzuki cross-coupling reaction of several aryl bromides with phenylboronic acid.The recovery of catalyst was simply by magnetic decantation in the presence of a magnet.The immobilized palladium catalyst can be reused many times without significant degradation in catalytic activity.No leaching of active palladium species into the reaction solution was detected.

  13. On the role of reactant transport and (surface) alloy formation for the CO tolerance of carbon supported PtRu polymer electrolyte fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J.; Colmenares, L.; Jusys, Z.; Behm, R.J. [Abt. Oberflaechenchemie und Katalyse, Universitaet Ulm (Germany); Moertel, R.; Boennemann, H. [Max-Planck-Institut fuer Kohlenforschung, Muelheim a.d. Ruhr (Germany); Koehl, G.; Modrow, H.; Hormes, J. [Physikalisches Institut, Universitaet Bonn (Germany)

    2006-07-15

    The role of atomic scale intermixing for the electrocatalytic activity of bimetallic PtRu anode catalysts in reformate operated polymer electrolyte fuel cells (PEFC) was investigated, exploiting the specific properties of colloid based catalyst synthesis for the selective preparation of alloyed and non-alloyed bimetallic catalysts. Three different carbon supported PtRu catalysts with different degrees of Pt and Ru intermixing, consisting of (i) carbon supported PtRu alloy particles (PtRu/C), (ii) Pt and Ru particles co-deposited on the same carbon support (Pt+Ru/C), and (iii) a mixture of carbon supported Pt and carbon supported Ru (Pt/C+Ru/C) as well as the respective monometallic Pt/C and Ru/C catalysts were prepared and characterized by electron microscopy (TEM), X-ray absorption spectroscopy, and CO stripping. Their performance as PEFC anode catalysts was evaluated by oxidation of a H{sub 2}/2%CO gas mixture (simulated reformate) under fuel cell relevant conditions (elevated temperature, continuous reaction and controlled reactant transport) in a rotating disk electrode (RDE) set-up. The CO tolerance and H{sub 2} oxidation activity of the three catalysts is comparable and distinctly different from that of the monometallic catalysts. The results indicate significant transport of the reactants, CO{sub ad} and/or OH{sub ad}, between Pt and Ru surface areas and particles for all three catalysts, with only subtle differences from the alloy catalyst to the physical mixture. The high activity and CO tolerance of the bimetallic catalysts, through the formation of bimetallic surfaces, is explained, e.g., by contact formation in nanoparticle agglomerates or by material transport and subsequent surface decoration/surface alloy formation during catalyst preparation, conditioning, and operation. The instability and mobility of the catalysts under these conditions closely resembles concepts in gas phase catalysis. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  14. Preparation of Mesoporous Silica-Supported Palladium Catalysts for Biofuel Upgrade

    OpenAIRE

    Ling Fei; Harvind Kumar Reddy; Joshua Hill; Qianglu Lin; Bin Yuan; Yun Xu; Peter Dailey; Shuguang Deng; Hongmei Luo

    2012-01-01

    We report the preparation of two hydrocracking catalysts Pd/CoMoO4/silica and Pd/CNTs/CoMoO4/silica (CNTs, carbon nanotubes). The structure, morphologies, composition, and thermal stability of catalysts were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and thermogravimetric analysis (TGA). The catalyst activity was measured in a Parr reactor with camelina fatty acid methyl est...

  15. Transition metals supported on al-pilcs as catalysts for C6H5Cl oxidation

    OpenAIRE

    Oliveira, L. C. A.; Lago,R.M.; J. D. Fabris; Solar,C.; K. Sapag

    2003-01-01

    In the present work, clays pillared with aluminium and impregnated with transition metals (Fe, Co and Cr) were prepared, characterised and studied as catalysts in the oxidation of chlorobenzene. The pillared clay was synthesised using a natural montmorillonite from San Juan (Argentina) as the starting material and an aluminium polycation solution. The catalysts were prepared by impregnating the pillared clay and then calcinating at 500ºC. The catalysts were characterised by XRD, temperature-p...

  16. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids

    Directory of Open Access Journals (Sweden)

    M. Isabel Burguete

    2011-09-01

    Full Text Available This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs, to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones.

  17. Oxidation of methanol to formaldehyde on supported vanadium oxide catalysts compared to gas phase molecules.

    Science.gov (United States)

    Döbler, Jens; Pritzsche, Marc; Sauer, Joachim

    2005-08-10

    The oxidation of methanol to formaldehyde on silica supported vanadium oxide is studied by density functional theory. For isolated vanadium oxide species silsesquioxane-type models are adopted. The first step is dissociative adsorption of methanol yielding CH3O(O=)V(O-)2 surface complexes. This makes the O=V(OCH3)3 molecule a suited model system. The rate-limiting oxidation step involves hydrogen transfer from the methoxy group to the vanadyl oxygen atom. The transition state is biradicaloid and needs to be treated by the broken-symmetry approach. The activation energies for O=V(OCH3)3 and the silsesquioxane surface model are 147 and 154 kJ/mol. In addition, the (O=V(OCH3)3)(2) dimer (a model for polymeric vanadium oxide species) and the O=V(OCH3)3(*+) radical cation are studied. For the latter the barrier is only 80 kJ/mol, indicating a strong effect of the charge on the energy profile of the reaction and questioning the significance of gas-phase cluster studies for understanding the activity of supported oxide catalysts.

  18. Propene and l-octene hydroformylation with silica-supported, ionic liquid-phase (SILP) Rh-phosphine catalysts in continuous fixed-bed mode

    DEFF Research Database (Denmark)

    Riisager, Anders; Eriksen, Kim Michael; Wasserscheid, Peter;

    2003-01-01

    Supported ionic liquid-phase (SILP) catalysts were made by immobilizing Rh-monophosphine complexes of bis(m-phenylguanidinium) phenylphosphine 1 and NORBOS 2 ligands in 1-n-butyl-3-methylimidazolium hexafluorophosphate, [BMIM] [PF6], on a silica support. The catalysts were active in continuous gas...

  19. Effect of catalyst pretreatment on the olefin metathesis catalyzed by alumina-supported (9%) rhenium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.C.

    1979-01-01

    A kinetic model was developed to express the time-on-stream profile of the activity during catalyst break-in and deactivation. The catalyst surface is in geometric and energetic heterogeneity. Partial catalyst reduction is a prerequisite step for olefin metathesis. The metathesis activity may be affected by the coordination number and the type of ligands associated with the sites on the catalyst. The deactivation is proposed due to deposition of residues on the active sites, and to sintering, etc. A dispersion pretreatment increased activity. Oxygen is an activator. The hydrogen reduction at 500/sup 0/C causes partial but permanent loss of activity.

  20. Suppression of methane formation during Fisher-Tropsch synthesis using manganese-cobalt oxide supported on H-5A zeolite as a catalyst

    Institute of Scientific and Technical Information of China (English)

    Syed Tajammul Hussain; Muhammad Mazhar; Muhammad Arif Nadeem

    2009-01-01

    In Fischer-Tropsch synthesis reaction, methane formation is one of the side reactions which must be suppressed in order to get better catalytic selectivity for light olefins. In the present study, we have modified cobalt based Fischer-Tropsch catalyst and developed a process to minimize methane production, consequently to produce maximum yield of light olefins. Manganese-cobalt oxide supported on H-5A zeolite catalyst was synthesized using modified H-5A zeolite, to increase its surface acid sites. Increased acidity of zeolite plays a major part in the suppression of methane formation during the Fischer-Tropsch reaction. The modified zeolite results in the electronic modification of catalyst surface by creating new active catalytic sites. The results are compared with other supported catalysts along with unmodified zeolite. Appreciable reduction in methane formation is achieved on modified zeolite supported catalyst in comparison with unsupported catalyst.

  1. Synthesis of Single-Walled Carbon Nanotubes: Effects of Active Metals, Catalyst Supports, and Metal Loading Percentage

    Directory of Open Access Journals (Sweden)

    Wei-Wen Liu

    2013-01-01

    Full Text Available The effects of active metals, catalyst supports, and metal loading percentage on the formation of single-walled carbon nanotubes (SWNTs were studied. In particular, iron, cobalt, and nickel were investigated for SWNTs synthesis. Iron was found to grow better-quality SWNTs compared to cobalt and nickel. To study the effect of catalyst supports, magnesium oxide, silicon oxide, and aluminium oxide were chosen for iron. Among the studied supports, MgO was identified to be a suitable support for iron as it produced SWNTs with better graphitisation determined by Raman analysis. Increasing the iron loading decreased the quality of SWNTs due to extensive agglomeration of the iron particles. Thus, lower metal loading percentage is preferred to grow better-quality SWNTs with uniform diameters.

  2. A Novel Synthesis of Gold Nanoparticles Supported on Hybrid Polymer/Metal Oxide as Catalysts for p-Chloronitrobenzene Hydrogenation

    Directory of Open Access Journals (Sweden)

    Cristian H. Campos

    2017-01-01

    Full Text Available This contribution reports a novel preparation of gold nanoparticles on polymer/metal oxide hybrid materials (Au/P[VBTACl]-M metal: Al, Ti or Zr and their use as heterogeneous catalysts in liquid phase hydrogenation of p-chloronitrobenzene. The support was prepared by in situ radical polymerization/sol gel process of (4-vinyl-benzyltrimethylammonium chloride and 3-(trimethoxysilylpropyl methacrylate in conjunction with metal-alkoxides as metal oxide precursors. The supported catalyst was prepared by an ion exchange process using chloroauric acid (HAuCl4 as gold precursor. The support provided the appropriate environment to induce the spontaneous reduction and deposition of gold nanoparticles. The hybrid material was characterized. TEM and DRUV-vis results indicated that the gold forms spherical metallic nanoparticles and that their mean diameter increases in the sequence, Au/P[VBTACl]-Zr > Au/P[VBTACl]-Al > Au/P[VBTACl]-Ti. The reactivity of the Au catalysts toward the p-CNB hydrogenation reaction is attributed to the different particle size distributions of gold nanoparticles in the hybrid supports. The kinetic pseudo-first-order constant values for the catalysts in the hydrogenation reaction increases in the order, Au/P[VBTACl]-Al > Au/P[VBTACl]-Zr > Au/P[VBTACl]-Ti. The selectivity for all the catalytic systems was greater than 99% toward the chloroaniline target product. Finally the catalyst supported on the hybrid with Al as metal oxide could be reused at least four times without loss in activity or selectivity for the hydrogenation of p-CNB in ethanol as solvent.

  3. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports

    Directory of Open Access Journals (Sweden)

    Krzysztof Skowerski

    2016-01-01

    Full Text Available An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot.

  4. Supported cobalt oxide on graphene oxide: Highly efficient catalysts for the removal of Orange II from water

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Penghui, E-mail: sph1123@163.com [College of Environment Science and Engineering, Donghua University, Shanghai 201620 (China); Henan University of Urban Construction, Pingdingshan, Henan 467044 (China); Su, Ruijing; Zhu, Shaobo [College of Environment Science and Engineering, Donghua University, Shanghai 201620 (China); Zhu, Mincong [College of Environment Science and Engineering, Donghua University, Shanghai 201620 (China); Department of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000 (China); Li, Dengxin, E-mail: lidengxin@dhu.edu.cn [College of Environment Science and Engineering, Donghua University, Shanghai 201620 (China); Xu, Shihong [College of Environment Science and Engineering, Donghua University, Shanghai 201620 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Cobalt oxide supported on graphene oxide (GO) in a solvothermal system. Black-Right-Pointing-Pointer The structure of the Co{sub 3}O{sub 4}/GO catalyst is stable and the well-dispersed Co{sub 3}O{sub 4} particles on GO. Black-Right-Pointing-Pointer The Co{sub 3}O{sub 4}/GO catalyst is an efficient heterogeneous catalyst for activation of PMS. Black-Right-Pointing-Pointer The Co{sub 3}O{sub 4}/GO/PMS system is able to completely degrade Orange II within a very short duration of a few minutes. Black-Right-Pointing-Pointer Very limited cobalt dissolved from Co{sub 3}O{sub 4}/GO. - Abstract: The current paper investigated the removal of the azo dye Orange II from water using advanced oxidation processes based on sulfate radicals. The cobalt oxide catalyst immobilized on graphene oxide (GO) can activate peroxymonosulfate (PMS) for the degradation of Orange II in water. The Co{sub 3}O{sub 4}/GO catalyst system was characterized via X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and X-ray spectroscopy. Results showed that Co{sub 3}O{sub 4} was distributed on GO. The Co{sub 3}O{sub 4}/GO catalyst system exhibited high activity in Orange II oxidation when the Co{sub 3}O{sub 4}/GO catalyst has an optimum Co{sub 3}O{sub 4} loading. In addition, 100% decomposition could be achieved within 6 min with 0.2 mM Orange II, 0.1 g L{sup -1} catalyst, and 2 mM PMS. Meanwhile, inductively coupled plasma analysis revealed that the leach of cobalt ions was low. The catalyst also exhibited stable performance after several rounds of regeneration. Several operational parameters, such as catalyst amount, oxidant amount, pH, temperature, and oxidation rate, affected the degradation of Orange II.

  5. Gold catalysts supported on nanosized iron oxide for low-temperature oxidation of carbon monoxide and formaldehyde

    Science.gov (United States)

    Tang, Zheng; Zhang, Weidong; Li, Yi; Huang, Zuming; Guo, Huishan; Wu, Feng; Li, Jinjun

    2016-02-01

    This study aimed to optimize synthesis of gold catalyst supported on nanosized iron oxide and to evaluate the activity in oxidation of carbon monoxide and formaldehyde. Nanosized iron oxide was prepared from a colloidal dispersion of hydrous iron oxide through a dispersion-precipitation method. Gold was adsorbed onto nanosized iron oxide under self-generated basic conditions. Characterization results indicate that the iron oxide consisted of hematite/maghemite composite with primary particle sizes of 6-8 nm. Gold was highly dispersed on the surface of the support. The catalysts showed good activity in the oxidation of airborne carbon monoxide and formaldehyde. The optimal pH for their synthesis was ∼7. The catalytic performance could be enhanced by extending the adsorption time of gold species on the support within 21 h. The optimized catalyst was capable of achieving complete oxidation of 1% carbon monoxide at -20 °C and 33% conversion of 450 ppm formaldehyde at ambient temperature. The catalyst may be applicable to indoor air purification.

  6. 信息动态%Polymerization of 1-butene with spherical MgCI2-supported catalyst

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The activity of the spherical MgCl2-supported catalyst for 1-butene polymerization reached 607 g/g and the isotacticity index of poly(l-butene) prepared with the catalyst attained 82.3% under the following optimal conditions: triethyl aluminum as cocatalyst, molar ratio of Al to Ti 300, polymerization pressure 0.10 MPa, polymerization temperature 30 ℃, hydrogen 3 mL, molar ratio of cyclohexyl methyl dimethoxy s/lane (CHMMS) to Al 0.033 and reaction time 2 hr. The ranking of external electron donors could be expressed in descending order on the basis of either the catalyst activity as CHMMS, dieyclopentyl dimethoxy silane(DCPMS), diisobutyl dimethoxy silane(DIBMS), diisopropyl dimethoxy silane(DIPMS) and diphenyl dimethoxy silane(DDS), or the isotacticity index of poly(l-butene) as DCPMS, DIPMS, DIBMS, CHMMS and DDS.

  7. Effect of reduction method on the performance of Pd catalysts supported on activated carbon for the selective oxidation of glucose

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The effect of the reduction method on the catalytic properties of palladium catalysts supported on activated carbon for the oxidation of D-glucose was examined.The reduction methods investigated include argon glow discharge plasma reduction at room temperature,reduction by flowing hydrogen at elevated temperature,and reduction by formaldehyde at room temperature.The plasma-reduced catalyst shows the smallest metal particles with a narrow size distribution that leads to a much higher activity.The catalyst characteristics show that the plasma reduction increases the amount of oxygen-containing functional groups,which significantly enhances the hydrophilic property of the activated carbon and improves the dispersion of the metal.

  8. Ruthenium carbenes supported on mesoporous silicas as highly active and selective hybrid catalysts for olefin metathesis reactions under continuous flow.

    Science.gov (United States)

    Bru, Miriam; Dehn, Richard; Teles, J Henrique; Deuerlein, Stephan; Danz, Manuel; Müller, Imke B; Limbach, Michael

    2013-08-26

    In the search for a highly active and selective heterogenized metathesis catalyst, we systematically varied the pore geometry and size of various silica-based mesoporous (i.e., MCM-41, MCM-48, and SBA-15) and microporous (ZSM-5 and MWW) versus macroporous materials (D11-10 and Aerosil 200), besides other process parameters (temperature, dilution, and mean residence time). The activity and, especially, selectivity of such "linker-free" supports for ruthenium metathesis catalysts were evaluated in the cyclodimerization of cis-cyclooctene to form 1,9-cyclohexadecadiene, a valuable intermediate in the flavor and fragrance industry. The optimized material showed not only exceptionally high selectivity to the valuable product, but also turned out to be a truly heterogeneous catalyst with superior activity relative to the unsupported homogeneous complex.

  9. New approach on the catalytic oxidation of methanol to formaldehyde over MoO3 supported on nano hydroxyapatite catalysts

    Science.gov (United States)

    Said, A. A.; Abd El-Wahab, M. M.; Alian, A. M.

    2014-08-01

    Molybdenum oxide (20 wt. %) supported on nano hydroxyapatite mixed was prepared by impregnation method and calcinated at 400° 500° 600° and 700°C in static air atmosphere. The catalysts were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X-ray diffraction (XRD), Transmission Electron Microscope (TEM) and nitrogen sorption measurements. The gas-phase oxidation of methanol to formaldehyde was carried out in a conventional fixed flow bed reactor. The obtained results clearly revealed that the formation of CaMoO4 spinel nano particles was active and selective catalyst towards the formation of formaldehyde. The maximum yield of formaldehyde was 97% on the catalyst calcined at 400 ° C. Moreover, the yield of formaldehyde was found unaffected by increasing the calcination temperature up to 700° C.

  10. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Liang; Jin, Haibo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Agathopoulos, Simeon [Department of Materials Science and Engineering, University of Ioannina, GR-451 10 Ioannina (Greece)

    2006-09-29

    In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte. (author)

  11. Hydrogen production from oxidative steam reforming of bio-butanol over CoIr-based catalysts: effect of the support.

    Science.gov (United States)

    Cai, Weijie; Piscina, Pilar Ramírez de la; Gabrowska, Klaudia; Homs, Narcís

    2013-01-01

    This paper studies the influence of the support on the behavior of bimetallic CoIr-based catalysts (6.5 wt.% Co, 0.4 wt.% Ir) for hydrogen production from the oxidative steam reforming of bio-butanol raw mixture (butanol/acetone/ethanol = 6/3/1 mass ratio). Catalytic tests were carried out at 500 °C for 60 h with raw mixture/water/air/Ar = 1/10/7.5/12 molar ratio and GHSV = 7500 h(-1). Over CoIr/18CeZrO(2) and CoIr/ZnO the main process which took place was the oxidative steam reforming of the raw mixture. CoIr/18CeZrO(2) showed the better catalytic performance. Characterization of the used catalysts indicated that both active metal sintering and coke formation was prevented on the CoIr/18CeZrO(2) catalyst.

  12. 载体中元素电负性对稀土催化剂聚合活性的影响%Effect of Electronegativity of the EleSupporters on the lymerization Activity of Supported Rare Earth Catalysts

    Institute of Scientific and Technical Information of China (English)

    张成林; 单成基

    2001-01-01

    Supported rare earth catalysts were made from Nd (O-i-Pr)3 and the chlorides as well asbromides of the elements of I A and Ⅱ A groups which were used as supporters of the catalyst. In thestudy on the relationship between the composition of supporters and the polymerization activity of bu-tadiene in the presence of the supported rare earth catalysts, it was found that the electronegativity of I A or Ⅱ A elements has an obvious effect on the activity of supported catalysts, that is the activity ofthe supported catalyst increases with the increasing of the electronegativity. This phenomenon is ex-plained in terms of the interaction between the HOMO of the butadiene and the LUMO of theneodymium. This rule also holds in the case when halides of magnesium were used as supporters.

  13. Kinetics and efficiency displayed by supported and suspended TiO2 catalysts applied to the disinfection of Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Majdi Kacem; Gael Plantard; Nathalie Wery; Vincent Goetz

    2014-01-01

    TiO2-mediated photocatalysis is widely used in a variety of applications and products in the envi-ronmental and energy fields, including photoelectrochemical conversion, self-cleaning surfaces, and especially water purification systems. The dimensionality of the structure of a TiO2 material can affect its properties, functions, and more specifically, its photocatalytic performance. In this work, the photocatalytic inactivation of Gram-negative Escherichia coli using three photocatalysts, differ-ing in their structure and other characteristics, was studied in a batch reactor under UVA light. The aim was to establish the disinfection efficiency of solid TiO2 compared with that of suspended cata-lysts, widely considered as reference cases for photocatalytic water disinfection. The bacterial inac-tivation profiles obtained showed that: (1) the photoinactivation was exclusively related to the quantity of photons retained per unit of treated volume, irrespective of the characteristics of the photocatalyst and the emitted light flux densities;(2) across the whole UV light range studied, each of the photocatalytic solids was able to achieve more than 2 log bacterial inactivation with less than 2 h UV irradiation;(3) none of the used catalysts achieved a total bacterial disinfection during the treatment time. For each of the catalysts the quantum yield has been assessed in terms of disinfec-tion efficiency, the 2D material showed almost the same performance as those of suspended cata-lysts. This catalyst is promising for supported photocatalysis applications.

  14. Selective catalytic oxidation of H₂S over iron oxide supported on alumina-intercalated Laponite clay catalysts.

    Science.gov (United States)

    Zhang, Xin; Dou, Guangyu; Wang, Zhuo; Li, Li; Wang, Yufei; Wang, Hailin; Hao, Zhengping

    2013-09-15

    A series of iron oxide supported on alumina-intercalated clay catalysts (named Fe/Al-Lap catalysts) with mesoporous structure and high specific surface area were prepared. The structural and chemical properties were studied by nitrogen sorption isotherms, X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FTIR), H₂ temperature-programmed reduction (H₂-TPR) and NH₃ temperature-programmed desorption (NH3-TPD) techniques. It was realized that iron oxide mainly existed in the form of isolated Fe(3+) in an oxidic environment. Fe/Al-Lap catalysts showed high catalytic activities in the temperature range of 120-200 °C without the presence of excessive O₂. This can be attributed to the interaction between iron oxide and alumina, which improve the redox property of Fe(3+) efficiently. In addition, the strong acidity of catalysts and good dispersion of iron oxide were also beneficial to oxidation reaction. Among them, 7% Fe/Al-Lap catalyst presented the best catalytic performance at 180 °C. Finally, the catalytic and deactivation mechanisms were explored.

  15. Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams

    Institute of Scientific and Technical Information of China (English)

    Vesna Nikoli; eljko Kamberovi; Zoran Ani; Marija Kora; Miroslav Soki; Vesna Maksimovi

    2014-01-01

    A method of synthesizing Ni-based catalysts supported onα-Al2O3-based foams was developed. The foams were impregnated with aqueous solutions of metal chlorides under an air atmosphere using an aerosol route. Separate procedures involved calcination to form oxides and drying to obtain chlorides on the foam surface. The synthesized samples were subsequently reduced with hydrogen. With respect to the Ni/Al2O3 catalysts, the chloride reduction route enabled the formation of a Ni coating without agglomerates or cracks. Further research included catalyst modification by the addition of Pd, Cu, and Fe. The influences of the additives on the degree of reduction and on the low-temperature reduction effectiveness (533 and 633 K) were examined and compared for the catalysts obtained from oxides and chlorides. Greater degrees of reduction were achieved with chlorides, whereas Pd was the most effective modifier among those investigated. The reduc-tion process was nearly complete at 533 K in the sample that contained 0.1wt%Pd. A lower reduction temperature was utilized, and the cal-cination step was avoided, which may enhance the economical and technological aspects of the developed catalyst production method.

  16. Preparation, characterization of Mo catalysts supported on Ni- containing calcium deficient hydroxyapatite and reactivity for the thiophene HDS reaction

    Directory of Open Access Journals (Sweden)

    Cherif A.

    2013-09-01

    Full Text Available Ni-containing Calcium Hydroxyapatite (NiCaHAp; 3.31 wt.% Ni was synthesized by coprecipitation and used as catalyst support. Molybdenum was supported on NiCaHAp by impregnation using ammonium heptamolybdate. The prepared catalysts Mo(x/NiCaHAp (x: 2 to 8 wt % in Mo were characterized by elemental analysis, XRD, FT-IR, N2 adsorption-desorption and TEM-EDX. The catalysts were sulfided in-situ at 673 K under flowing H2S/H2 (15 Vol.% H2S and tested in hydrodesulfurization (HDS of thiophene at 673 K. The main XRD peaks of hydroxyapatite CaHAp phase were observed in all samples and a peak due probably to crystalline MoO3 phase was also identified from the results. However, no crystalline phase of NiO was found for the catalysts, which showed its Ni species were highly dispersed. The sulfided catalysts Mo(x/NiCaHAp presented are active in HDS of thiophene, despite the presence of some large MoO3 crystallites and incomplete sulfidation. This activity may be due to interaction of NiO and MoO3 on CaHAp resulting in the formation of Ni-Mo-S phase under flowing H2S/H2. When the molybdenum content increased the HDS activity increasead slightly, which was caused by the agglomeration of MoO3. The Mo(8/NiCaHAp catalyst is about two times less active for thiophene HDS than the commercial NiMoP/Al2O3.

  17. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  18. OXIDATION OF METHANOL USING OZONE ON TITANIA-SUPPORTED VANADIUM CATALYST

    Science.gov (United States)

    Catalytic ozone decomposition of methanol has been conducted at mild temperatures of 100 to 250°C using V2O5/TiO2 catalyst prepared by either sol-gel or wet impregnation methods. The catalysts were characterized using XRD, surface area measurements, and desorption of CH3OH. Gas p...

  19. Study of Nanoconfined Phases for the Rational Synthesis of Supported Catalysts

    NARCIS (Netherlands)

    Eggenhuisen, T.M.

    2012-01-01

    Catalysts are indispensable for modern day society since they are used in the production of transportation fuels, chemicals and materials. Understanding the structure-activity relation for a catalytic system allows the formulation of catalyst structure specifications that optimizes activity, selecti

  20. Structure of alumina supported vanadia catalysts for oxidative dehydrogenation of propane prepared by flame spray pyrolysis

    DEFF Research Database (Denmark)

    Høj, Martin; Jensen, Anker Degn; Grunwaldt, Jan-Dierk

    2013-01-01

    , with traces of ethene and acrolein. Comparing propene selectivity as function of propane conversion the most selective catalysts were the 2 and 3wt.% V samples, which contained mostly vanadia monomers according to Raman spectroscopy. The best propene yield of 12% was obtained with the 2wt.% vanadium catalyst...