WorldWideScience

Sample records for catalyst packing mode

  1. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    International Nuclear Information System (INIS)

    Seungwoo Paek; Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-01-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  2. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    Energy Technology Data Exchange (ETDEWEB)

    Seungwoo Paek [KAERI (Korea, Republic of); Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-07-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  3. Dissolved oxygen removal in a column packed with catalyst

    International Nuclear Information System (INIS)

    Lee, Han Soo; Chung, Hong Suk; Cho, Young Hyun; Ahn, Do Hee; Kim, Eun Kee

    1996-01-01

    The dissolved oxygen removed by H 2 -O 2 reaction in column packed with various catalysts was examined. The catalysts employed were the prepared polymeric catalyst, platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feel water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removed of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst. 14 refs., 6 figs., 2 tabs. (author)

  4. Deuterium exchange reaction between hydrogen and water in a trickle-bed column packed with novel catalysts

    International Nuclear Information System (INIS)

    Ahn, D. H.; Baek, S. W.; Lee, H. S.; Kim, K. R.; Kang, H. S.; Lee, S. H.; Jeong, H. S.

    1998-01-01

    The activity of a novel catalyst (Pt/SDBC) for deuterium exchange reaction between water and hydrogen streams in a trickle bed was measured. The performance of the catalyst was compared with a commercial catalyst with same metal content. The catalytic activity for the bed of wet-proofed catalyst diluted with hydrophillic packing material also measured. The Pt/SDBC catalyst shows higher activity in the liquid phase reaction than the commercial catalyst as measured in the vapor phase reaction. The performance for 50% dilution of the Pt/SDBC catalyst bed with hydrophillic packing material is better than that of the 100% bed due to more liquid holdup and better water distribution

  5. Process for the exchange of hydrogen isotopes using a catalyst packed bed assembly

    International Nuclear Information System (INIS)

    Butler, J.P.; den Hartog, J.; Molson, F.W.R.

    1978-01-01

    A process for the exchange of hydrogen isotopes between streams of gaseous hydrogen and liquid water is described, wherein the streams of liquid water and gaseous hydrogen are simultaneously brought into contact with one another and a catalyst packed bed assembly while at a temperature in the range 273 0 to 573 0 K. The catalyst packed bed assembly may be composed of discrete carrier bodies of e.g. ceramics, metals, fibrous materials or synthetic plastics with catalytically active metal crystallites selected from Group VIII of the Periodic Table, partially enclosed in and bonded to the carrier bodies by a water repellent, water vapor and hydrogen gas permeable, porous, polymeric material, and discrete packing bodies having an exterior surface which is substantially hydrophilic and relatively noncatalytically active with regard to hydrogen isotope exchange between hydrogen gas and water vapor to that of the catalyst bodies

  6. New proposition on performance evaluation of hydrophobic Pt catalyst packed in trickle bed

    International Nuclear Information System (INIS)

    Shimizu, Masami; Kitamoto, Asashi; Takashima, Yoichi.

    1983-01-01

    On the evaluation of the performance of the hydrophobic Pt catalyst packed in the trickle-bed test column, the conventionally defined (Ksub(y)a) and the newly defined (Ksub(f))sub (G) are compared with each other as a measure of the overall D-transfer coefficient. The value of (Ksub(y)a) varies in a wide range in accordance with the length of the test column. On the other hand (Ksub(f))sub (G sub (l = L)) has a finite value in the test column longer than about 0.5 m. By considering the values of ksub(g) and ksub(l) which are the constituents of (Ksub(f))sub (G), it is possible to improve the hydrophobic Pt catalyst trickle bed and to design the H 2 /H 2 O-isotopic exchange trickle-bed column packed with this catalyst. (author)

  7. The Performance of the Trickle Bed Reactor Packed with the Pt/SDBC Catalyst Mixture for the CECE Process

    International Nuclear Information System (INIS)

    Seungwoo Paek; Do-Hee Ahn; Heui-Joo Choi; Kwang-Rag Kim; Hongsuk Chung; Sung-Paal Yim; Minsoo Lee; Kyu-Min Song; Soon Hwan Sohn

    2006-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE process is composed of an electrolysis cell and a LPCE (Liquid Phase Catalytic Exchange) column. This paper describes the experimental results of the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst for the development of the LPCE column of the CECE process. The hydrophobic Pt/SDBC (Styrene Divinyl Benzene Copolymer) catalyst has been developed by Korean researchers for the LPCE column of WTRF (Wolsong Tritium Removal Facility). An experimental apparatus was constructed for the various experiments with the different parameters, such as hydrogen flow rate, temperature, and the structure of the mixed catalyst column. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring). The performance of the catalyst bed was expressed as an overall rate constant Kya. To improve the performance of the trickle bed, the modification of the catalyst bed design (changing the shape of the catalyst complex and diluting with inert) has been investigated. (author)

  8. Oxidation of tritium in packed bed of noble metal catalyst for detritiation from system gases

    International Nuclear Information System (INIS)

    Nishikawa, Masabumi; Takeishi, Toshiharu; Munakata, Kenzo; Kotoh, Kenji; Enoeda, Mikio

    1985-01-01

    Catalytic oxidation rates of tritium in the bed of the noble metal catalysts are obtained and compared with the oxidation rates observed for the packed bed of spongy copper oxide or hopcalites. Use of Pt- or Pd-aluminia catalysts is recommended in this study because they give effective oxidation rates of tritium in the ambient temperature range. The adsorption performance of tritiated water in the catalyst bed is also discussed. (orig.)

  9. Effects of the gas-liquid ratio on the optimum catalyst quantity for the CECE process with a homogeneously packed LPCE column

    International Nuclear Information System (INIS)

    Sugiyama, T.; Ushida, A.; Yamamoto, I.

    2008-01-01

    In order to improve the separative performance of a combined electrolysis catalytic exchange (CECE) process, we have carried out experimental studies on hydrogen isotope separation by a CECE process using a liquid phase catalytic exchange (LPCE) column of trickle-type packed beds. Two types of trickle beds were tested in our previous study. One was the layered bed, where layers of Kogel catalysts and Dixon gauze rings were alternately filled in the column. The other was the homogeneous bed, where Kogel catalysts and Dixon gauze rings were homogeneously mixed and filled in the column. We found that (1) the homogeneously packed bed was more efficient than the layered packed bed, and (2) the catalyst quantity was optimal, which resulted in the highest separative performance. In this study, the effect of the gas-liquid ratio (G/L) on the optimum catalyst quantity was studied experimentally in a homogeneously packed bed. When the value of G/L was 1.7, total separation factors were relatively small and the optimum catalyst quantity could not be determined. On the other hand, when the values of G/L were 0.9 and 0.7, the values of the total separation factors had maximums and the optimal quantities of the catalyst were clearly obtained

  10. The performance of a trickle-bed reactor packed with a Pt/SDBC catalyst mixture for the CECE process

    International Nuclear Information System (INIS)

    Paek, Seungwoo; Ahn, Do-Hee; Choi, Heui-Joo; Kim, Kwang-Rag; Lee, Minsoo; Yim, Sung-Paal; Chung, Hongsuk; Song, Kyu-Min; Sohn, Soon Hwan

    2007-01-01

    The combined electrolysis and catalytic exchange (CECE) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy wastewater streams because of its high separation factor and mild operating conditions. A hydrophobic platinum/styrene-divinyl benzene copolymer (Pt/SDBC) catalyst which was developed for the liquid-phase catalytic exchange (LPCE) column of the Wolsong tritium removal facility (WTRF) has been tested in a trickle bed reactor for the design of the CECE process. An experimental apparatus has been built for the testing of the catalyst at various temperatures and gas velocities. The catalyst column was packed with a mixture of a hydrophobic catalyst and a hydrophilic packing (Dixon gauze ring) to improve the liquid distribution and vapor/liquid transfer area. Many tests have been carried out at Korea Atomic Energy Research Institute (KAERI) to measure the activity of the catalyst, K y a (1 s -1 ), under various operating conditions. K y a increases with the hydrogen flow rates in the range of 0.4-1.6 m s -1 at STP. The height of the catalyst column was determined from these K y a values according to the reaction temperatures and hydrogen flow rates

  11. The performance of a trickle-bed reactor packed with a Pt/SDBC catalyst mixture for the CECE process

    Energy Technology Data Exchange (ETDEWEB)

    Paek, Seungwoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: swpaek@kaeri.re.kr; Ahn, Do-Hee; Choi, Heui-Joo; Kim, Kwang-Rag; Lee, Minsoo; Yim, Sung-Paal; Chung, Hongsuk [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Song, Kyu-Min; Sohn, Soon Hwan [Korea Electric Power Research Institute, 103-16 Munji-dong, Yuseong-gu, Daejeon 305-380 (Korea, Republic of)

    2007-10-15

    The combined electrolysis and catalytic exchange (CECE) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy wastewater streams because of its high separation factor and mild operating conditions. A hydrophobic platinum/styrene-divinyl benzene copolymer (Pt/SDBC) catalyst which was developed for the liquid-phase catalytic exchange (LPCE) column of the Wolsong tritium removal facility (WTRF) has been tested in a trickle bed reactor for the design of the CECE process. An experimental apparatus has been built for the testing of the catalyst at various temperatures and gas velocities. The catalyst column was packed with a mixture of a hydrophobic catalyst and a hydrophilic packing (Dixon gauze ring) to improve the liquid distribution and vapor/liquid transfer area. Many tests have been carried out at Korea Atomic Energy Research Institute (KAERI) to measure the activity of the catalyst, K{sub y}a (1 s{sup -1}), under various operating conditions. K{sub y}a increases with the hydrogen flow rates in the range of 0.4-1.6 m s{sup -1} at STP. The height of the catalyst column was determined from these K{sub y}a values according to the reaction temperatures and hydrogen flow rates.

  12. Studies about the transfer phenomena of tritium from liquid to gaseous phase in a catalyst and ordered packing successive system

    International Nuclear Information System (INIS)

    Bornea, Anisia; Cristescu, Ion; Zamfirache, Marius; Varlam, Carmen

    2002-01-01

    The processes for hydrogen isotope separation are very important for nuclear technology. One of the most important processes for tritium separation, is the catalyst isotope exchange water-hydrogen. In a column of isotope exchange tritium is transferred from liquid phase (tritiated heavy water) in gaseous phase (hydrogen). In the experimental setup, which was used, the column of catalytic isotope exchange is filled with successive layers of catalyst and ordered packing. The catalyst consists of 95.5 wt.% of PTFE, 4.1 wt. % of carbon and 0.40 wt. % of platinum and was made of Raschig rings 10 x 10 x 2 mm. The ordered packing was of B7 type and consists of a phosphor bronze wire mesh of 0.18 x 0.48 mm dimension. We analysed the transfer phenomena of tritium from liquid to gaseous phase, in this system. The mathematical model presented in the paper allowed computing experimental data for testing the catalyst performances. In this way the speed constants which characterized the isotopic exchange on the catalysis bed ks, and the distillation on the ordered packing kd, were expressed as function of experimental concentrations and hydrodynamic conditions. (authors)

  13. Synthesis of Biodiesel in Batch and Packed-Bed Reactors Using Powdered and Granular Sugar Catalyst

    Science.gov (United States)

    Janaun, J.; Lim, P. M.; Balan, W. S.; Yaser, A. Z.; Chong, K. P.

    2017-06-01

    Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

  14. Investigation of hydrodynamic behavior of a pilot-scale trickle bed reactor packed with hydrophobic catalyst using radiotracer technique

    International Nuclear Information System (INIS)

    Kumar, Rajesh; Mohan, Sadhana; Pant, H.J.; Sharma, V.K.; Mahajani, S.M.

    2010-01-01

    Exchange of isotopes of hydrogen between aqueous phase and hydrogen gas is one of the most efficient methods for separation of hydrogen isotopes and is commonly used for production of heavy water or removal of tritium from tritiated water effluents. The isotope exchange reaction can be effectively executed in a counter-current trickle bed reactor (TBR) packed with a novel metal (Pt, Pd, Ni) based hydrophobic catalyst as the conventional novel metal based hydrophilic catalysts become ineffective after they come in contact with liquid effluents. The overall exchange reaction in the TBR mainly consists of a gas-liquid mass transfer process that transfers reactants from liquid to gaseous phase followed by an isotopic exchange reaction between the reactants in gaseous phase in presence of a solid hydrophobic catalyst. However, due to water repellent nature of the catalyst, poor liquid distribution in the reactor is normally observed that deteriorates the gas-liquid mass transfer. Therefore, it was thought that if a mixture of hydrophobic catalyst and a suitable hydrophilic mass transfer packing is used to fill the TBR column then, it can improve the distribution or mixing of the liquid and gas phase and thus improve the gas-liquid mass transfer and overall performance of the reactor and needs to be confirmed

  15. Effects of the gas-liquid ratio on the optimal quantity of the catalyst for the CECE process with a homogeneously packed LPCE column

    International Nuclear Information System (INIS)

    Ushida, A.; Sugiyama, T.; Yamamoto, I.

    2007-01-01

    In order to improve the separative performance of a CECE (Combined Electrolysis Catalytic Exchange) process we have been carried out experimental studies on hydrogen isotope separation by a CECE process using with a LPCE (Liquid Phase Catalytic Exchange) column of trickle-type bed. Two types of trickle beds were tested in our previous study. One was the layered bed where layers of Kogel catalysts and that of Dixon gauze rings were filled in the column alternately. The other was the homogeneous bed where Kogel catalysts and Dixon gauze rings were mixed and filled in the column homogeneously. We found two major points: 1) the homogeneous bed was more efficient than the layered bed and 2) there was an optimal quantity of the catalyst for both types of beds to obtain the largest separation factor. The optimal quantity of the catalyst is affected by various factors such as catalytic activity, flow rates of fluid, temperature and so on. In this study we focused on an effect of the gasliquid ratio. The purpose of the present study is to investigate experimentally the effect of the gas-liquid ratio on the optimal quantity of the catalyst using with a homogeneous bed. The column is a Pyrex glass tube with 25 mm internal diameter and 60 cm length. The column is filled with Kogel catalysts (1.0 wt% Pt deposited) and Dixon gauze rings. A catalyst packed-ratio is defined as a ratio of the grain-volume of catalyst to the grain volume of the whole packings, where grain volumes mean the volume of a sphere with average diameter of the Kogel catalyst and the volume of a cylinder which has the outer shape same as a Dixon gauze ring. Hydrogen-deuterium isotope separation with the CECE equipment was performed at 101 kPa, 343 K for various values of the catalyst packed-ratio and for various values of the gas-liquid ratio. Hydrogen gas was generated by the Solid Polymer Electrolysis (SPE) electrolyzer. Maximum production rate and purity of hydrogen gas are 1 m3/h and 99.99%. The

  16. Modeling of an axial flow, spherical packed-bed reactor for naphtha reforming process in the presence of the catalyst deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Iranshahi, D.; Pourazadi, E.; Paymooni, K.; Bahmanpour, A.M.; Rahimpour, M.R.; Shariati, A. [Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of)

    2010-12-15

    Improving the octane number of the aromatics' compounds has always been an important matter in refineries and lots of investigations have been made concerning this issue. In this study, an axial-flow spherical packed-bed reactor (AF-SPBR) is considered for naphtha reforming process in the presence of catalyst deactivation. Model equations are solved by the orthogonal collocation method. The AF-SPBR results are compared with the plant data of a conventional tubular packed-bed reactor (TR). The effects of some important parameters such as pressure and temperature on aromatic and hydrogen production rates and catalyst activity have been investigated. Higher production rates of aromatics can successfully be achieved in this novel reactor. Moreover, results show the capability of flow augmentation in the proposed configuration in comparison with the TR. This study shows the superiority of AF-SPBR configuration to the conventional types. (author)

  17. Hydrogenation of Levulinic Acid to gamma-Valerolactone in Water Using Millimeter Sized Supported Ru Catalysts in a Packed Bed Reactor

    NARCIS (Netherlands)

    Piskun, A. S.; de Haan, J. E.; Wilbers, E.; de Bovenkamp, H. H. van; Tang, Z.; Heeres, Hero

    gamma-Valerolactone (GVL) has been identified as a sustainable platform chemical for the production of carbon-based chemicals. We here report an experimental study on the catalytic hydrogenation of levulinic acid (LA) in water to GVL in a packed bed reactor using supported Ru catalysts (carbon,

  18. Studies on transfer phenomena of tritium from liquid to gaseous phase in a successive catalyst and ordered packing system

    International Nuclear Information System (INIS)

    Bornea, Anisia; Cristescu, Ion; Zamfirache, Marius; Varlam, Carmen

    2001-01-01

    The processes for hydrogen isotope separation are very important for nuclear technology. One of the most important processes in tritium separation, is the water-hydrogen catalytic isotope exchange. In a column of isotope exchange, tritium is transferred from the liquid phase (tritiated heavy water) to the gaseous phase (hydrogen). In the experimental set-up, which was used, the column of catalytic isotope exchange is filled with successive layers of catalyst Pt/C/PtFe and B7 type ordered packing of phosphor bronze. The tritium transfer from liquid phase to water vapours, is achieved on ordered packing by distillation process: (DTO)L+(D 2 O)V → (D 2 O)L+(DTO)V. On the catalytic tritium transfer from water vapours to hydrogen gas is achieved by the catalytic isotopic exchange process: (DTO)V+(D 2 )G → (D 2 O)V+(DT)G. We analyzed the transfer phenomena of tritium in this system by using the experimental data obtained. The mathematical model presented in the paper allowed computing experimental data for testing the catalyst performances. The transfer equations are solved using the Runge - Kutta method. In this way the speed constants which characterized the isotopic exchange on the catalysis bed ks, and the distillation on the ordered packing kd, were expressed as function of experimental concentrations and hydrodynamic conditions. (authors)

  19. Removal of H2S from Biogas by Iron (Fe3+ Doped MgO on Ceramic Honeycomb Catalyst using Double Packed Columns System

    Directory of Open Access Journals (Sweden)

    Juntima Chungsiriporn

    2010-03-01

    Full Text Available Hydrogen sulfide is a toxic and corrosive in nature, gas should be safely removed from the biogas streams before subjecting into the fuel cell. Fe3+ doped magnesium oxide was synthesized using sol-gel technique and dip coating process of Fe3+ doped MgO on foam ceramic honeycomb. XRD and SEM indicate that Fe3+ in Fe3+ doped MgO on foam ceramic honeycomb catalyst is finely dispersed in the MgO support. Performance of the synthesized Fe3+ doped magnesium oxide on the honeycomb catalyst was examined for hydrogen sulfide (H2S oxidation by double packed column scrubbers. The absorption column was used for H2S scrubbing from biogas by deionized water absorption and catalytic column was used as catalyst bed for degradation of absorbed H2S in scrubbing water. In the catalytic column, counter current flow of the scrubbing water and air through the catalyst pack was performed for H2S oxidation accompany with catalyst regeneration. System capacity for H2S removal from gas stream showed 98% constant along 3 hr testing time at room temperature.

  20. Dry reforming of methane via plasma-catalysis: influence of the catalyst nature supported on alumina in a packed-bed DBD configuration

    Science.gov (United States)

    Brune, L.; Ozkan, A.; Genty, E.; Visart de Bocarmé, T.; Reniers, F.

    2018-06-01

    These days, the consideration of CO2 as a feedstock has become the subject of more interest. The reutilization of CO2 is already possible via cold plasma techniques operating at atmospheric pressure. A promising technology is the dielectric barrier discharge (DBD). In most cases DBDs exhibit a low energy efficiency for CO2 conversion. However, several routes can be used to increase this efficiency and hence, the product formation. One of these routes is the packed-bed DBD configuration with porous beads inside the gap of the DBD, which also allows the coupling of plasma with catalysis. Catalysts can be introduced in such a configuration to exploit the synergistic effect between plasma and catalytically active surfaces, leading to a more efficient process. In this article, the dry reforming of methane (DRM) is studied, which aims to convert both CO2 and CH4, another greenhouse gas, at the same time. The conversions and energy costs of the DRM process are investigated and compared in both the packed-bed DBD configurations containing catalysts (Co, Cu or Ni) and the classical DBD. The change in filamentary behavior is studied in detail and correlated with the obtained conversions using gas chromatography, mass spectrometry and using an oscilloscope. A characterization of the catalysts on the beads is also carried out. Both the CO2 and CH4 conversions are clearly increased with the plasma-catalysis. Moreover, CH4 conversions as high as 90% can be obtained in certain conditions with copper catalysts.

  1. A packed bed membrane reactor for the oxidative dehydrogenation of propane on a Ga2O3 / MoO3 based catalyst

    NARCIS (Netherlands)

    Kotanjac, Ž.S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2010-01-01

    Oxidative dehydrogenation of propane has been studied over a Ga2O3/MoO3 based catalyst. Using a differentially operated packed bed reactor with premixed oxygen and propane feed, the kinetic parameters for the main reaction and the consecutive and parallel reactions were experimentally determined. It

  2. The Performance of Structured Packings in Trickle-Bed Reactors

    NARCIS (Netherlands)

    Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, W.P.M. van

    1999-01-01

    An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped

  3. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  4. Continuous Process for Biodiesel Production in Packed Bed Reactor from Waste Frying Oil Using Potassium Hydroxide Supported on Jatropha curcas Fruit Shell as Solid Catalyst

    Directory of Open Access Journals (Sweden)

    Achanai Buasri

    2012-08-01

    Full Text Available The transesterification of waste frying oil (WFO with methanol in the presence of potassium hydroxide catalyst supported on Jatropha curcas fruit shell activated carbon (KOH/JS was studied. The catalyst systems were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and the Brunauer–Emmett–Teller (BET method. The effects of reaction variables such as residence time, reaction temperature, methanol/oil molar ratio and catalyst bed height in packed bed reactor (PBR on the yield of biodiesel were investigated. SEM images showed that KOH was well distributed on the catalyst support. The optimum conditions for achieving the conversion yield of 86.7% consisted of a residence time of 2 h, reaction temperature of 60 °C, methanol/oil molar ratio of 16 and catalyst bed height of 250 mm. KOH/JS could be used repeatedly five times without any activation treatment, and no significant activity loss was observed. The results confirmed that KOH/JS catalyst had a great potential to be used for industrial application in the transesterification of WFO. The fuel properties of biodiesel were also determined.

  5. Use of hydrophobic Pt-catalysts in tritium removal from effluents

    International Nuclear Information System (INIS)

    Gheorghe, Ionita; Popescu, Irina; Stefanescu, Ioan; Steflea, Dumitru; Varlam, Carmen

    2002-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the application of the hydrophobic catalysts in tritium removal from nuclear effluents. Tritium removal from the heavy water reactor and nuclear reprocessing plant, the cleanup of atmosphere and gaseous effluents by hydrogen-oxygen recombination, removal of oxygen dissolved in water are presented and discussed. Unlike the conventional hydrophilic catalysts, the hydrophobic catalysts keep a high catalytic activity and stability, even under the direct contact to liquid water or in presence of saturated humidity. A large diversity of catalyst types (over 100 catalysts) was prepared and tested in order to make them feasible for such processes. The objectives of the review are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - the designing and operation of reactor packed with hydrophobic catalysts; - to evaluate the potentiality of hydrophobic Pt-catalysts in the present and future applications. The most important results are the following: - the hydrophobic Pt-catalysts packed in the trickle bed or separated bed reactors, showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for the hydrogen isotopes (tritium and deuterium) separation and for hydrogen-oxygen recombination in nuclear field was entirely confirmed on industrial scale; - the improvement of the inner geometry of the reactors and of the composition of mixed catalytic packing as well as the evaluation of performances of separation processes constitute a major contribution of the authors; - the extension of the utilization of the hydrophobic Pt-catalysts in the oxidation of volatile organic compounds from wastewater; - the removal of dissolved oxygen, and deuterium

  6. Catalytic biofilms on structured packing for the production of glycolic acid.

    Science.gov (United States)

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2013-02-01

    While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

  7. Separation of deuterium by H2/H2O reaction with hydrophobic platinum catalyst

    International Nuclear Information System (INIS)

    Kitamoto, A.; Takashima, Y.; Shimizu, M.

    The separation performance of a trickle bed exchange column packed with a hydrophobic or waterproof catalyst is related to operating conditions such as hydrogen surface velocity, water flow rate, and temperature. The optimum carrier type and catalyst platinum content were determined. The continuous injection of roughly 10 3 ppm O 2 regenerates the catalyst effectively. The ratio of hydrophobic catalyst to hydrophilic packing is an important factor in increasing the exchange rate in deuterium extraction

  8. Oxidation of ethene in a wall-cooled packed-bed reactor

    NARCIS (Netherlands)

    Schouten, E.P.S.; Borman, P.C.; Westerterp, K.R.

    1994-01-01

    The selective oxidation of ethene over a silver on α-alumina catalyst was studied in a pilot plant with a wall-cooled tubular packed bed reactor. Gas and solid temperatures in the catalyst bed were measured at different axial and radial positions as well as concentrations at different axial

  9. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    Science.gov (United States)

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2005-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes, (2) to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation (3) to asses and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follow: (1) the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; (2) the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; (3) the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subjected to testing. (author)

  11. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    International Nuclear Information System (INIS)

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2004-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation; - to assess and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follows: - the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; - the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subject to testing. (authors)

  12. Controllable synthesis in a continuous mode of unsupported molybdenum catalysts with micro/nano size for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Hill, J.M.; Pereira Almao, P.R. [Calgary Univ., AB (Canada)

    2004-07-01

    Heavy oils contain significant amounts of impurities compared to conventional oils, thereby posing a challenge for hydroprocessing operations at refineries. Hydrodesulfurization is one of the important reactions involved in hydroprocessing. Transition metal sulfides have excellent properties in terms of sulphur removal. Molybdenum based catalysts have been used extensively in the petroleum industry for hydrotreating heavy oil fractions. Supported molybdenum based catalysts suffer strong deactivation in the traditional hydrotreating process due to the deposition of carbonaceous components on the surface of the catalyst when they are used in conventional fixed bed reactors. Unsupported catalysts have higher catalytic activity with better metal dispersion. Laboratory experiments were conducted in which micro/nano size unsupported molybdenum catalysts were synthesized from a water/oil emulsion. The catalysts were prepared in a continuous mode for online application to hydroprocessing or in situ upgrading. Dispersed molybdenum catalysts are more suitable for processing heavier feeds because they are less prone to deactivation. Also, their submicron size ensure high activities due to a large specific surface area. They are also sufficiently small to be readily dispersed in the residual oil. 4 refs., 1 tab., 2 figs.

  13. Hypostatic jammed packings of frictionless nonspherical particles

    Science.gov (United States)

    VanderWerf, Kyle; Jin, Weiwei; Shattuck, Mark D.; O'Hern, Corey S.

    2018-01-01

    We perform computational studies of static packings of a variety of nonspherical particles including circulo-lines, circulo-polygons, ellipses, asymmetric dimers, dumbbells, and others to determine which shapes form packings with fewer contacts than degrees of freedom (hypostatic packings) and which have equal numbers of contacts and degrees of freedom (isostatic packings), and to understand why hypostatic packings of nonspherical particles can be mechanically stable despite having fewer contacts than that predicted from naive constraint counting. To generate highly accurate force- and torque-balanced packings of circulo-lines and cir-polygons, we developed an interparticle potential that gives continuous forces and torques as a function of the particle coordinates. We show that the packing fraction and coordination number at jamming onset obey a masterlike form for all of the nonspherical particle packings we studied when plotted versus the particle asphericity A , which is proportional to the ratio of the squared perimeter to the area of the particle. Further, the eigenvalue spectra of the dynamical matrix for packings of different particle shapes collapse when plotted at the same A . For hypostatic packings of nonspherical particles, we verify that the number of "quartic" modes along which the potential energy increases as the fourth power of the perturbation amplitude matches the number of missing contacts relative to the isostatic value. We show that the fourth derivatives of the total potential energy in the directions of the quartic modes remain nonzero as the pressure of the packings is decreased to zero. In addition, we calculate the principal curvatures of the inequality constraints for each contact in circulo-line packings and identify specific types of contacts with inequality constraints that possess convex curvature. These contacts can constrain multiple degrees of freedom and allow hypostatic packings of nonspherical particles to be mechanically

  14. Characterization of Foam Catalysts as Packing for Tubular Reactors.

    Czech Academy of Sciences Publication Activity Database

    Lali, Farzad

    2016-01-01

    Roč. 105, JUL 2016 (2016), s. 1-9 ISSN 0255-2701 Institutional support: RVO:67985858 Keywords : overall mass transfer * foam catalyst * tubular reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.234, year: 2016

  15. Using atomic layer deposited tungsten to increase thermal conductivity of a packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Van Norman, Staci A.; Falconer, John L.; Weimer, Alan W., E-mail: alan.weimer@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309-0596 (United States); Tringe, Joseph W.; Sain, John D. [Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550 (United States); Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, Colorado 80309-0427 (United States)

    2015-04-13

    This study investigated the effective thermal conductivity (k{sub eff}) of packed-beds that contained porous particles with nanoscale tungsten (W) films of different thicknesses formed by atomic layer deposition (ALD). A continuous film on the particles is vital towards increasing k{sub eff} of the packed beds. For example, the k{sub eff} of an alumina packed bed was increased by three times after an ∼8-nm continuous W film with 20 cycles of W ALD, whereas k{sub eff} was decreased on a polymer packed bed with discontinuous, evenly dispersed W-islands due to nanoparticle scattering of phonons. For catalysts, understanding the thermal properties of these packed beds is essential for developing thermally conductive supports as alternatives to structured supports.

  16. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    International Nuclear Information System (INIS)

    He, Jianchao; Wang, Heyi; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-01-01

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  17. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianchao; Wang, Heyi, E-mail: hywang@caep.cn; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-12-15

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  18. Current status for applications of hydrophobic platinum catalysts in tritium removal from nuclear effluents

    International Nuclear Information System (INIS)

    Vagner, Irina; Ionita, Gheorghe; Varlam, Carmen

    2008-01-01

    Full text: Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D results on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: 1. to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; 2. to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation; 3. to assess and find a new procedure for preparation of a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follow: 1. the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; 2. the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; 3. the extension of the utilization of the hydrophobic Pt-catalysts to other new processes, which take place in presence of liquid water or high humidity, like VOCs oxidation from wastewater or H 2 -O 2 catalytic recombination, are subject to testing

  19. Experimental, kinetic and numerical modeling of hydrogen production by catalytic reforming of crude ethanol over a commercial catalyst in packed bed tubular reactor and packed bed membrane reactor

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Akande, Abayomi; Idem, Raphael

    2006-01-01

    The demand for hydrogen energy has increased tremendously in recent years essentially because of the increase in the word energy consumption as well as recent developments in fuel cell technologies. The energy information administration has projected that world energy consumption will increase by 59% over the next two decades, from 1999 to 2020, in which the largest share is still dominated by fossil fuels (oil, natural gas and coal). Carbon dioxide (CO 2 ) emissions resulting from the combustion of these fossil fuels currently are estimated to account for three-fourth of human-caused CO 2 emissions worldwide. Greenhouse gas emission, including CO 2 , should be limited, as recommended at the Kyoto Conference, Japan, in December 1997. In this regard, hydrogen (H 2 ) has a significant future potential as an alternative fuel that can solve the problems of CO 2 emissions as well as the emissions of other air contaminants. One of the techniques to produce hydrogen is by reforming of hydrocarbons or biomass. Crude ethanol (a form of biomass, which essentially is fermentation broth) is easy to produce, is free of sulphur, has low toxicity, and is also safe to handle, transport and store. In addition, crude ethanol consists of oxygenated hydrocarbons, such as ethanol, lactic acid, glycerol, and maltose. These oxygenated hydrocarbons can be reformed completely to H 2 and CO 2 , the latter of which could be separated from H 2 by membrane technology. This provides for CO 2 capture for eventual storage or destruction. In the case of using crude ethanol, this will result in negative CO 2 , emissions. In this paper, we conducted experimental work on production of hydrogen by the catalytic reforming of crude ethanol over a commercial promoted Ni-based catalyst in a packed bed tubular reactor as well as a packed bed membrane reactor. As well, a rigorous numerical model was developed to simulate this process in both the catalytic packed bed tubular reactor and packed bed membrane

  20. Gas-solid trickle flow hydrodynamics in a packed column

    NARCIS (Netherlands)

    Westerterp, K.R.; Kuczynski, M.

    1987-01-01

    The pressure gradient and the static and the dynamic hold-up have been measured for a system consisting of a Fluid Cracking Catalyst (FCC) of 30–150 × 10−6 m diameter, trickling over a packed bed and with a gas streaming in countercurrent flow. The experiments were carried out at ambient conditions

  1. Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts

    International Nuclear Information System (INIS)

    Obeid, Farah; Zeaiter, Joseph; Al-Muhtaseb, Ala’a H.; Bouhadir, Kamal

    2014-01-01

    Highlights: • Thermo-catalytic pyrolysis of waste polyethylene bottles was investigated. • The highest yield of liquid (82%) was obtained over a cement powder bed. • Acidic catalysts narrowed the carbon chain length of the paraffins to C 10 –C 28 . • Combination of cement bed with HBeta catalyst gave the highest yield of liquid. • Significant yield of aromatics was obtained mainly naphthalene and D-limonene. - Abstract: Plastic waste is an increasing economic and environmental problem as such there is a great need to process this waste and reduce its environmental impact. In this work, the pyrolysis of high density polyethylene (HDPE) waste products was investigated using both thermal and catalytic cracking techniques. The experimental work was carried out using packed bed reactor operating under an inert atmosphere at 450 °C. Different reactor bed materials, including sand, cement and white clay were used to enhance the thermal cracking of HDPE. In addition, the catalytic effect of sodium hydroxide, HUSY and HBeta zeolite catalysts on the degradation of HDPE waste was also investigated. The reactor beds were found to significantly alter the yield as well as the product composition. Products such as paraffins (⩽C 44 ), olefins (⩽C 22 ), aromatics (⩽C 14 ) and alcohols (C 16 and C 17 ) were obtained at varying rates. The highest yield of liquid (82%) was obtained over a cement powder bed with a paraffin yield of 58%. The yield of paraffins and olefins followed separate paths, for paraffins it was found to increase in the order or Cement > White clay > Silica Sand, whereas for the olefins it was in the reverse order Silica Sand > White clay > Cement. The results obtained in this work exhibited a higher P/O ratio than expected, where the amount of generated paraffins was greater than 60% in most cases. Less olefin was generated as a consequence. This indicates that the product generated is more suited to be used as a fuel rather than as a chemical

  2. Simulation of abuse tolerance of lithium-ion battery packs

    Energy Technology Data Exchange (ETDEWEB)

    Spotnitz, Robert M.; Weaver, James; Yeduvaka, Gowri [Battery Design LLC, 2277 DeLucchi Drive, Pleasanton, CA 94588 (United States); Doughty, D.H.; Roth, E.P. [Lithium Battery Department, Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2007-01-01

    A simple approach for using accelerating rate calorimetry data to simulate the thermal abuse resistance of battery packs is described. The thermal abuse tolerance of battery packs is estimated based on the exothermic behavior of a single cell and an energy balance than accounts for radiative, conductive, and convective heat transfer modes of the pack. For the specific example of a notebook computer pack containing eight 18650-size cells, the effects of cell position, heat of reaction, and heat-transfer coefficient are explored. Thermal runaway of the pack is more likely to be induced by thermal runaway of a single cell when that cell is in good contact with other cells and is close to the pack wall. (author)

  3. Novel catalysts for isotopic exchange between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Butler, J.P.; Rolston, J.H.; Stevens, W.H.

    1978-01-01

    Catalytic isotopic exchange between hydrogen and liquid water offers many inherent potential advantages for the separation of hydrogen isotopes which is of great importance in the Canadian nuclear program. Active catalysts for isotopic exchange between hydrogen and water vapor have long been available, but these catalysts are essentially inactive in the presence of liquid water. New, water-repellent platinum catalysts have been prepared by: (1) treating supported catalysts with silicone, (2) depositing platinum on inherently hydrophobic polymeric supports, and (3) treating platinized carbon with Teflon and bonding to a carrier. The activity of these catalysts for isotopic exchange between countercurrent streams of liquid water and hydrogen saturated with water vapor has been measured in a packed trickle bed integral reactor. The performance of these hydrophobic catalysts is compared with nonwetproofed catalysts. The mechanism of the overall exchange reaction is briefly discussed. 6 figures

  4. Power generation by packed-bed air-cathode microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2013-08-01

    Catalysts and catalyst binders are significant portions of the cost of microbial fuel cell (MFC) cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. Packed-bed air-cathodes were constructed without expensive binders or diffusion layers using four inexpensive carbon-based materials. Cathodes made from activated carbon produced the largest maximum power density of 676±93mW/m2, followed by semi-coke (376±47mW/m2), graphite (122±14mW/m2) and carbon felt (60±43mW/m2). Increasing the mass of activated carbon and semi-coke from 5 to ≥15g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (~3 or ~6cm). These results indicate that a thin packed layer of activated carbon or semi-coke can be used to make inexpensive air-cathodes for MFCs. © 2013 Elsevier Ltd.

  5. Operation of Packed-Bed Reactors Studied in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2004-01-01

    The operation of a packed bed reactor (PBR) involves gas and liquid flowing simultaneously through a fixed-bed of solid particles. Depending on the application, the particles can be various shapes and sizes but are generally designed to force the two fluid phases through a tortuous route of narrow channels connecting the interstitial space. The PBR is the most common type of reactor in industry because it provides for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. Furthermore, this type of reactor is relatively compact and requires minimal power to operate. This makes it an excellent candidate for unit operations in support of long-duration human space activities.

  6. Hydrodynamic behaviour of a gas—solid counter-current packed column at trickle flow

    NARCIS (Netherlands)

    Roes, A.W.M.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    Trickle flow of a more or less fluidized catalyst through a packed column is a promising new gas—solid counter-current operation. The hydrodynamic, behaviour of such a column, filled with dumped PALL rings, has been investigated, while some results have been obtained with RASCHIG rings and

  7. Structured reactors as alternative to pellets catalyst for propane oxidative steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Vita, A.; Pino, L.; Cipiti, F.; Lagana, M.; Recupero, V. [CNR - Institute for Advanced Energy Technologies ' ' Nicola Giordano' ' , Via Salita S. Lucia sopra Contesse n. 5, 98126 Messina (Italy)

    2010-09-15

    The performance of a Pt/CeO{sub 2} catalyst as packed bed, coated on monolith and as self-structured bed has been evaluated during C{sub 3}H{sub 8} oxidative steam reforming. Structured bed, prepared by a new aqueous tape casting method, combining high total porosity (80%) with a self-supported channel structure, offers a better and more efficient control of heat and mass transfer along the catalytic bed, showing, especially at high gas hourly space velocity (30 x 10{sup 4} h{sup -1}), better performance in terms of fuel conversion, hydrogen production and low by-products formation coupled with an economy of the catalyst of about to 43% with respect to the traditional packed bed system. (author)

  8. Application of hydrophobic Pt catalysts in hydrogen isotopes separation from nuclear effluents

    Energy Technology Data Exchange (ETDEWEB)

    Ionita, G.; Popescu, I.; Stefanescu, I.; Retegan, T. [National Institute of Cryogenics and Isotopic Separation (Romania)

    2003-09-01

    According to reviewed references and to tests effected by authors the platinum/carbon/teflon is the most active and the most stable catalyst for removal of tritium from nuclear effluents by isotopic exchange between hydrogen and liquid water. To improve the performances of process it is recommended to use the catalyst as ordered or random mixed catalytic packing in a trickle bed reactor. (O.M.)

  9. Impact of catalyst reduction mode on selective hydrogenation of cinnamaldehyde over Ru-Sn sol-gel catalysts

    Czech Academy of Sciences Publication Activity Database

    Hájek, J.; Kumar, N.; Salmi, T.; Murzin, DY.; Karhu, H.; Väyrynen, J.; Červený, L.; Paseka, Ivo

    2003-01-01

    Roč. 42, č. 2 (2003), s. 295-305 ISSN 0888-5885 R&D Projects: GA ČR GA104/00/1009 Institutional research plan: CEZ:AV0Z4032918 Keywords : Supported ruthenium catalysts * Ru-Sn-Al2O3 catalysts * benzene Subject RIV: CA - Inorganic Chemistry Impact factor: 1.317, year: 2003

  10. Hydrophobic catalyst applications in the nuclear field and in environmental studies

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Popescu, Irina; Stefanescu, Ioan; Varlam, Carmen

    2002-01-01

    The paper presents methods of preparation and applications of hydrophobic platinum catalysts in nuclear field and environmental protection. These catalysts allow the transport of gaseous reactants and reaction products to and from catalytic active centers since the pore blocking by water is avoided. Hence the activity and stability of the catalysts increase and isotopic exchange columns with simpler internal structure can be achieved. The aim of the paper is: 1. to give a data base regarding the preparation methods of the optimal catalyst type; 2. to indicate the utilization and operation procedures of hydrophobic catalysts with mixed and simple packings; 3. to evaluate the performances and applications of hydrophobic catalysts. Over one hundred of hydrophobic catalysts of the active metal/support type were prepared in our laboratory. Hydrophobic features were obtained by different methods like these: - coating a hydrophilic conventional catalyst with a hydrophobic agent such as silicone or teflon; - supporting the active metal directly into the pores of a hydrophobic support; - mixing the teflon powder with a hydrophilic conventional catalyst; coating the support with teflon followed by the impregnation with the precursor of the active metal. The most important application of these catalysts is detritiation of the heavy water used as moderator and coolant in CANDU type reactors. Build-up of tritium in heavy water following the neutron capture by deuterium leads to a reduction in the moderating properties and at the same time leads to a contamination hazard for both operation personnel and environment. Tritium recovery leads this way to both improving the moderating qualities of the heavy water and obtaining valuable pure tritium of high importance in fusion research and other laboratory studies. One gram of tritium costs about USD 10,000. The physical chemical process is water-hydrogen catalyzed isotopic exchange. Also discussed in the paper is the separation of

  11. Bifunctional anode catalysts for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Ferrin, Peter; Tritsaris, Georgios

    2012-01-01

    Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties......: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro-oxidation....... Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts....

  12. Evaluation of a commercial packed bed flow hydrogenator for reaction screening, optimization, and synthesis

    Directory of Open Access Journals (Sweden)

    Marian C. Bryan

    2011-08-01

    Full Text Available The performance of the ThalesNano H-Cube®, a commercial packed bed flow hydrogenator, was evaluated in the context of small scale reaction screening and optimization. A model reaction, the reduction of styrene to ethylbenzene through a 10% Pd/C catalyst bed, was used to examine performance at various pressure settings, over sequential runs, and with commercial catalyst cartridges. In addition, the consistency of the hydrogen flow was indirectly measured by in-line UV spectroscopy. Finally, system contamination due to catalyst leaching, and the resolution of this issue, is described. The impact of these factors on the run-to-run reproducibility of the H-Cube® reactor for screening and reaction optimization is discussed.

  13. Fast charge implications: Pack and cell analysis and comparison

    Science.gov (United States)

    Tanim, Tanvir R.; Shirk, Matthew G.; Bewley, Randy L.; Dufek, Eric J.; Liaw, Bor Yann

    2018-03-01

    This study investigates the effect of 50-kW (about 2C) direct current fast charging on a full-size battery electric vehicle's battery pack in comparison to a pack exclusively charged at 3.3 kW, which is the common alternating current Level 2 charging power level. Comparable scaled charging protocols are also independently applied to individual cells at three different temperatures, 20 °C, 30 °C, and 40 °C, to perform a comparative analysis with the packs. Dominant cell-level aging modes were identified through incremental capacity analysis and compared with full packs to gain a clear understanding of additional key factors that affect pack aging. While the cell-level study showed a minor impact on performance due to direct current fast charging, the packs showed a significantly higher rate of capacity fade under similar charging protocols. This indicates that pack-level aging cannot be directly extrapolated from cell evaluation. Delayed fast charging, completing shortly before discharge, was found to have less of an impact on battery degradation than conventional alternating current Level 2 charging.

  14. Heterogeneous packing and hydraulic stability of cube and cubipod armor units

    OpenAIRE

    GÓMEZ-MARTÍN, M. ESTHER; Medina, Josep R.

    2014-01-01

    This paper describes the heterogeneous packing (HEP) failure mode of breakwater armor. HEP reduces packing density in the armor layer near and above the mean water level and increases packing density below it. With HEP, armor units may move in the armor layer, although they are not actually extracted from it. Thus, when HEP occurs, armor-layer porosity is not constant, and measurements obtained with conventional methods may underestimate armor damage. In this paper, the Virtual Net method ...

  15. Development of Water Detritiation Process Using the Hydrophobic Platinum Catalyst

    International Nuclear Information System (INIS)

    Ahn, D.H.; Paek, S.; Choi, H.J.; Kim, K.R.; Chung, H.; Yim, S.P.; Lee, M.S.

    2006-01-01

    Radioactive emissions and occupational doses by tritium are mainly caused by tritiated water escaping from equipment in the nuclear industry. Improving the leak-tightness of equipment is effective in reducing emissions and internal dose but is not a long-term solution. Water detritiation was consider to be the most effective tritium control option since tritium is removed right from the source. The WTRF (Wolsong Tritium Removal Facility) is under construction now with the completion date of June, 2006 in Korea. It is designed to remove tritium from tritiated heavy water in each of the existing four Candu units at Wolsong site. We developed a hydrophobic platinum catalyst (Pt/SDBC catalyst) that would be used at the LPCE (Liquid Phase Catalytic Exchange) column in the WTRF. The catalytic rate constants of the newly developed catalyst for the deuterium exchange reaction between water vapor and hydrogen gas were measured in a recycle reactor. The catalytic rate constants of the Pt/SDBC catalyst decreased with reaction time and were much greater than that required, 2.0 x 10 -4 mol (D 2 )/s/g(pellet) in the design of the WTRF. Tritium removal efficiency of the WTRF, which is important for a safe and reliable operation of the facility, depends on the design and operating variables. A theoretical model based on the design and operating variables of the LPCE process was set up, and the equations between the parameters were derived. Numerical calculation result from a computer program shows steep increase of the detritiation factor of the LPCE process with respect to temperature increase and mild increase with respect to pressure decrease. The other parametric study shows that the calculated detritiation factors increase as the catalyst efficiency, number of theoretical stages of hydrophilic packing, the detritiation factor of cryogenic distillation system and the total number of sections increase. We also proceeded with the experiments for the hydrogen isotopic exchange

  16. An assessment on preparation methods and applications of hydrophobic Pt-catalyst in nuclear and environmental field

    International Nuclear Information System (INIS)

    Ionita, Gh.; Stefanescu, I.; Varlam, Carmen

    2001-01-01

    Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation and application of hydrophobic catalysts for use in nuclear and environmental fields. Unlike the conventional hydrophilic catalysts, the hydrophobic catalysts repel the liquid water and allow the transport of the gaseous reactants and reaction products to and from catalytic active centers. For deuterium and tritium separation, over one hundred hydrophobic catalyst types have been prepared in different experimental conditions and by a large diversity of wet proofing methods. The influence of about twenty parameters on catalytic activity have been also studied. The purpose of this paper is: (1) to provide a database for preparation and selection of he most appropriate method for preparing an active hydrophobic catalyst, (2) to show how to use the hydrophobic catalyst and how to operate efficiently the reactor packed with hydrophobic catalyst, (3) to evaluate the performances and potentiality of hydrophobic catalysts in nuclear and environmental field, (4) evaluation of applications of hydrophobic catalysts in nuclear and environmental fields. As result, the following categories are shown: (1) the hydrophobic catalysts based on platinum and Teflon as wet-proofing proved to have the highest activity and the longest stability, (2) the utilization of hydrophobic catalyst as ordered mixed catalytic packing in the trickle bed or separated bed reactors is more efficient and has been entirely proved on industrial scale for tritium separation process, (3) the extension of the applications of hydrophobic catalysts for other processes which take place in the presence of saturated humidity or liquid water in environmental protection field. The merits of hydrophobic Pt-catalysts for tritium separation are discussed in comparison to other

  17. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  18. Sensitivity of energy-packed compounds based on superfine and nanoporous silicon to pulsed electrical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Zegrya, G. G. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Savenkov, G. G. [Saint-Petersburg State Engineering Institute (Technical University) (Russian Federation); Morozov, V. A. [Saint-Petersburg State University (Russian Federation); Zegrya, A. G.; Ulin, N. V., E-mail: Ulin@mail.ioffe.ru; Ulin, V. P. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lukin, A. A. [Saint-Petersburg State Engineering Institute (Technical University) (Russian Federation); Bragin, V. A.; Oskin, I. A. [AO Scientific Production Association Poisk (Russian Federation); Mikhailov, Yu. M. [Russian Academy of Sciences, Institute of Problems of Chemical Physics (Russian Federation)

    2017-04-15

    The sensitivity of an energy-packed compound based on nanoporous silicon and calcium perchlorate to a high-current electron beam is studied. The initiation of explosive transformations in a mixture of potassium picrate with a highly dispersed powder of boron-doped silicon by means of a high-voltage discharge is examined. It is shown that explosive transformation modes (combustion and explosion) appear in the energy-packed compound under study upon its treatment with an electron beam. A relationship is established between the explosive transformation modes and the density of the energy-packed compound and between the breakdown (initiation) voltage and the mass fraction of the silicon powder.

  19. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  20. Valve stem packing seal test results for primary heat transport system conditions in Canadian nuclear generating stations

    International Nuclear Information System (INIS)

    Dixon, D.F.; Farrell, J.M.; Coutinho, R.F.

    1978-06-01

    Valve stem packing tests were done to obtain performance data on packing already in CANDU-PHW reactor service and on alternative packings. Most of the tests were replicated. Results are presented for ten packings tested under two stem cycle modes; leakage, packing consolidation and packing friction were the main responses. Packing tests were performed with water at close to CANDU-PHW reactor primary heat transport (PHT) system conditions (288 deg C and 10 MPa), but without ionizing radiation. The test rigs had rising, rotating stems. Stuffing box dimensions were typical of a standard Velan valve; packings were spring loaded to control applied packing stress

  1. Nasal packing with ventilated nasal packs; a comparison with traditional vaseline nasal pack

    International Nuclear Information System (INIS)

    Alam, J.; Siddiqui, M.W.; Abbas, A.; Sami, M.; Ayub, Z.

    2017-01-01

    To compare the benefits of ventilated nasal packing with traditional vaseline guaze nasal packing. Study Design: Randomized controlled trial. Place and Duration of Study: This study was conducted at CMH Multan, from Jun 2014 to Dec 2014. Material and Methods: In this study, sample size of 80 patients was calculated using WHO calculator. Patients were divided in two groups using lottery method endotracheal tube and piece of surgical glove filled with ribbon guaze was utilized for fabricated ventilated nasal pack and compared with traditional nasal packs. Nasal obstruction and sleep disturbance were studied at eight hours and twenty-four hours following surgery using visual analog scale. Results: Mean nasal obstruction with ventilated nasal pack was 45.62 +- 6.17 and with Vaseline nasal pack was 77.67 +- 4.85 which was statistically significant (p=0.001) in both the groups. Mean sleep disturbance in both the groups was 46.32 +- 5.23 and 68.75 +- 2.70 respectively which was statistically significant (p=0.001) in both the groups. Conclusion: Patients with ventilated nasal packs were found to have better tolerance to nasal packs due to less nasal obstruction and sleep disturbance

  2. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    powerful platform for nanoparticle catalysis, our studies suggest that in some cases interband transitions should be considered as an alternative mechanism of light-driven nanoparticle catalysis. The benefits already demonstrated by plasmonic nanostructures as catalysts provided the impetus for examining complementary activation modes based on the metal nanoparticle itself. Leveraging these transitions has the potential to provide a means to highly active catalysis modes that would otherwise be challenging to access. For example, for the preparation of highly active metal catalysts on a subnanosized scale is challenging, thus limiting their exploitation and study in catalysis. Our work suggests a novel and facile strategy for the formation of highly active gold nanocluster catalysts by light illumination of the interband transitions in the presence of the appropriate substrate.

  3. Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst.

    Science.gov (United States)

    Levi, R; Milman, M; Landau, M V; Brenner, A; Herskowitz, M

    2008-07-15

    The catalytic wet air oxidation of aqueous solution containing 1000 ppm aniline was conducted in a trickle-bed reactor packed with a novel nanocasted Mn-Ce-oxide catalyst (surface area of 300 m2/g) prepared using SBA-15 silica as a hard template. A range of liquid hourly space velocities (5-20 h(-1)) and temperatures (110-140 degrees C) at 10 bar of oxygen were tested. The experiments were conducted to provide the intrinsic performance of the catalysts. Complete aniline conversion, 90% TOC conversion, and 80% nitrogen mineralization were achieved at 140 degrees C and 5 h(-1). Blank experiments yielded relatively low homogeneous aniline (<35%) and negligible TOC conversions. Fast deactivation of the catalysts was experienced due to leaching caused by complexation with aniline. Acidification of the solution with HCI (molar HCI to aniline ratio of 1.2) was necessary to avoid colloidization and leaching of the nanoparticulate catalyst components. The catalyst displayed stable performance for over 200 h on stream.

  4. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  5. To Pack or Not to Pack? A Randomized Trial of Vaginal Packing After Vaginal Reconstructive Surgery.

    Science.gov (United States)

    Westermann, Lauren B; Crisp, Catrina C; Oakley, Susan H; Mazloomdoost, Donna; Kleeman, Steven D; Benbouajili, Janine M; Ghodsi, Vivian; Pauls, Rachel N

    2016-01-01

    Placement of vaginal packing after pelvic reconstructive surgery is common; however, little evidence exists to support the practice. Furthermore, patients have reported discomfort from the packs. We describe pain and satisfaction in women treated with and without vaginal packing. This institutional review board-approved randomized-controlled trial enrolled patients undergoing vaginal hysterectomy with prolapse repairs. The primary outcome was visual analog scales (VASs) for pain on postoperative day 1. Allocation to "packing" ("P") or "no-packing" ("NP") arms occurred intraoperatively at the end of surgery. Visual analog scales regarding pain and satisfaction were completed early on postoperative day 1 before packing removal. Visual analog scale scores for pain, satisfaction, and bother attributable to packing were recorded before discharge. All packing and perineal pads were weighed to calculate a "postoperative vaginal blood loss." Perioperative data were collected from the hospital record. Our sample size estimation required 74 subjects. Ninety-three women were enrolled. After exclusions, 77 were randomized (P, 37; NP, 40). No differences were found in surgical information, hemoglobin levels, or narcotic use between groups. However, "postoperative vaginal blood loss" was greater in packed subjects (P discharge (P, 35.0 vs NP, 40.0; P = 0.43] were not significantly different between treatment arms. Likewise, VAS scores for satisfaction before removal of packing (P, 81.0 vs NP, 90.0; P = 0.08] and before discharge (P, 90.0 vs NP, 90.5; P = 0.60] were not significantly different. Packed patients noted lower nursing verbal pain scores (P = 0.04) and used less ketorolac (P = 0.01). Bother from packing was low overall. Although there was no difference based on VAS, women receiving vaginal packing had lower nursing documented pain and used less ketorolac than packed women. Vaginal packing may provide benefit and can remain part of the surgical practice.

  6. Sorption-enhanced water gas shift reaction for high-purity hydrogen production: Application of a Na-Mg double salt-based sorbent and the divided section packing concept

    International Nuclear Information System (INIS)

    Lee, Chan Hyun; Lee, Ki Bong

    2017-01-01

    Highlights: •Na-Mg double salt-based sorbent was used for high-temperature CO 2 sorption. •Divided section packing concept was applied to the SE-WGS reaction. •High-purity H 2 was produced from the SE-WGS reaction with divided section packing. •High-purity H 2 productivity could be further enhanced by modifying packing method. -- Abstract: Hydrogen is considered a promising environmentally benign energy carrier because it has high energy density and produces no pollutants when it is converted into other types of energy. The sorption-enhanced water gas shift (SE-WGS) reaction, where the catalytic WGS reaction and byproduct CO 2 removal are carried out simultaneously in a single reactor, has received considerable attention as a novel method for high-purity hydrogen production. Since the high-purity hydrogen productivity of the SE-WGS reaction is largely dependent on the performance of the CO 2 sorbent, the development of sorbents having high CO 2 sorption capacity is crucial. Recently, a Na-Mg double salt-based sorbent has been considered for high-temperature CO 2 capture since it has been reported to have a high sorption capacity and fast sorption kinetics. In this study, the SE-WGS reaction was experimentally demonstrated using a commercial catalyst and a Na-Mg double salt-based sorbent. However, the SE-WGS reaction with a one-body hybrid solid, a physical admixture of catalyst and sorbent, showed poor reactivity and reduced CO 2 sorption uptake. As a result, a divided section packing concept was suggested as a solution. In the divided section packing method, the degree of mixing for the catalyst and sorbent in a column can be controlled by the number of sections. High-purity hydrogen (<10 ppm CO) was produced directly from the SE-WGS reaction with divided section packing, and the hydrogen productivity was further improved when the reactor column was divided into more sections and packed with more sorbent.

  7. A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor

    Directory of Open Access Journals (Sweden)

    Andrew Bogdan

    2009-04-01

    Full Text Available We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leaving the organic product separate from the aqueous by-products. Furthermore, the microreactor oxidized a wide range of alcohols and remained active in excess of 100 trials without showing any loss of catalytic activity.

  8. Optimal Switching Table-Based Sliding Mode Control of an Energy Recovery Li-Ion Power Accumulator Battery Pack Testing System

    Directory of Open Access Journals (Sweden)

    Kil To Chong

    2013-10-01

    Full Text Available The main objective of the present work is to apply a sliding mode controller (SMC to medium voltage and high power output energy recovery Li-ion power accumulator battery pack testing systems (ERLPABTSs, which are composed of a three-level neutral-point-clamped (NPC three-phase voltage source inverter (VSI and a two-level buck-boost converter without an isolating transformer. An inner current decoupled control scheme for the aforementioned system is proposed and two sliding mode planes for active and reactive current control are designed based on the control scheme. An optimized switching table for current convergence is used according to the error sign of the equivalent input voltage and feedback voltage. The proposed ERLPABTS could be used to integrate discharging energy into the power grid when performing high accuracy current testing. The active and reactive power references for the grid-connected inverter are determined based on the discharging energy from the DC-DC converter. Simulations and experiments on a laboratory hardware platform using a 175 kW insulated gate bipolar transistor (IGBT-based ERLPABTS have been implemented and verified, and the performance is found satisfactory and superior to conventional ERLPABPTS.

  9. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  10. Preparation of HZSM-5 membrane packed CuO–ZnO–Al{sub 2}O{sub 3} nanoparticles for catalysing carbon dioxide hydrogenation to dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rong; Tian, Haifeng; Yang, Aimei; Zha, Fei, E-mail: zhafei@nwnu.edu.cn; Ding, Jian; Chang, Yue

    2015-08-01

    Highlights: • CuO–ZnO–Al{sub 2}O{sub 3} composite nanoparticles were successfully prepared using carbon sphere as template. • HZSM-5@CuO–ZnO–Al{sub 2}O{sub 3} capsule catalyst was prepared hydrothermally. • Zeolite capsule catalysts exhibited an extremely good selectivity for DME compared with the conventional hybrid catalyst. - Abstract: Spherical carbons were prepared successfully from aqueous glucose using hydrothermal method. After covered with aqueous Cu{sup 2+}, Zn{sup 2+} and Al{sup 3+} ions during the co-precipitation treatment, carbons were removed via calcination to yield CuO–ZnO–Al{sub 2}O{sub 3} nanoparticles. HZSM-5 membrane, which was synthesized using tetrapropylammonium hydroxide as templating agent, was packed onto CuO–ZnO–Al{sub 2}O{sub 3} nanoparticles hydrothermally to form HZSM-5 packed CuO–ZnO–Al{sub 2}O{sub 3} nanoparticles. It was characterized by the method of X-ray powder diffraction (XRD), scanning electronic microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and nitrogen sorption measurement. HZSM-5 packed CuO–ZnO–Al{sub 2}O{sub 3} nanoparticles were used as catalysts for the CO{sub 2} hydrogenation to dimethyl ether. The catalyst activity was investigated in a fixed-bed reactor. Under the reaction conditions of pressure at 3.0 MPa, space velocity (SV) of 1800 mL g{sub cat}{sup −1} h{sup −1}, volume ratio of CO{sub 2}/H{sub 2} to 1:3 and temperature at 270 °C, the conversion of CO{sub 2} could reach to 48.3%, with a dimethyl ether yield and selectivity of 23.4% and 48.5%, respectively.

  11. Advanced Catalysis Technologies: Lanthanum Cerium Manganese Hexaaluminate Combustion Catalysts for Flat Plate Reactor for Compact Steam Reformers

    Science.gov (United States)

    2008-12-01

    packed-bed steam reformer reactor using an open-flame or radiant burner as the heat source, the rate of heat transfer is limited by wall film and bed...resistances. Heat transfer can be effectively improved by replacing the burner /packed-bed system with parallel channels containing metal foam...combustion reactor was tested using the hexaaluminate catalyst in pellets and supported on FeCrAlloy metal foam. Both tests burned propane and JP-8

  12. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    Science.gov (United States)

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  13. Tritium removal by hydrogen isotopic exchange between hydrogen gas and water on hydrophobic catalyst

    International Nuclear Information System (INIS)

    Morishita, T.; Isomura, S.; Izawa, H.; Nakane, R.

    1980-01-01

    Many kinds of the hydrophobic catalysts for hydrogen isotopic exchange between hydrogen gas and water have been prepared. The carriers are the hydrophobic organic materials such as polytetrafluoroethylene(PTFE), monofluorocarbon-PTFE mixture(PTFE-FC), and styrene-divinylbenzene copolymer(SDB). 0.1 to 2 wt % Pt is deposited on the carriers. The Pt/SDB catalyst has much higher activity than the Pt/PTFE catalyst and the Pt/PTFE-FC catalyst shows the intermediate value of catalytic activity. The observation of electron microscope shows that the degrees of dispersion of Pt particles on the hydrophobic carriers result in the difference of catalytic activities. A gas-liquid separated type column containing ten stages is constructed. Each stage is composed of both the hydrophobic catalyst bed for the hydrogen gas/water vapor isotopic exchange and the packed column type bed for the water vapor/liquid water isotopic exchange. In the column hydrogen gas and water flow countercurrently and hydrogen isotopes are separated

  14. Multi objective optimization of line pack management of gas pipeline system

    International Nuclear Information System (INIS)

    Chebouba, A

    2015-01-01

    This paper addresses the Line Pack Management of the ''GZ1 Hassi R'mell-Arzew'' gas pipeline. For a gas pipeline system, the decision-making on the gas line pack management scenarios usually involves a delicate balance between minimization of the fuel consumption in the compression stations and maximizing gas line pack. In order to select an acceptable Line Pack Management of Gas Pipeline scenario from these two angles for ''GZ1 Hassi R'mell- Arzew'' gas pipeline, the idea of multi-objective decision-making has been introduced. The first step in developing this approach is the derivation of a numerical method to analyze the flow through the pipeline under transient isothermal conditions. In this paper, the solver NSGA-II of the modeFRONTIER, coupled with a matlab program was used for solving the multi-objective problem

  15. Silica-Supported Catalyst for Enantioselective Arylation of Aldehydes under Batch and Continuous-Flow Conditions.

    Science.gov (United States)

    Watanabe, Satoshi; Nakaya, Naoyuki; Akai, Junichiro; Kanaori, Kenji; Harada, Toshiro

    2018-05-04

    A silica-supported 3-aryl H 8 -BINOL-derived titanium catalyst exhibited high performance in the enantioselective arylation of aromatic aldehydes using Grignard and organolithium reagents not only under batch conditions but also under continuous-flow conditions. Even with a simple pipet reactor packed with the heterogeneous catalyst, the enantioselective production of chiral diarylmethanols could be achieved through a continuous introduction of aldehydes and mixed titanium reagents generated from the organometallic precursors. The pipet reactor could be used repeatedly in different reactions without appreciable deterioration of the activity.

  16. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant

    2015-05-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed-bed type reformer is one of the potential designs for such purpose. An externally heated reformer has issues of adverse lower temperature in the core of the reformer and significant heat loss to the environment thus impacting its performance. Experimental and numerical studies on a new concept of internally heated tubular packed-bed methanol-steam reformer have been reported in this paper with improved performance in terms of higher methanol conversion and reduced heat losses to surroundings. CuO/ZnO/Al2O3 is used as the catalyst for the methanol-steam reforming reaction and a rod-type electric heater at the center of the reactor is used for supplying necessary heat for endothermic steam reforming reaction. The vaporizer and the reformer unit with a constant volume catalyst bed are integrated in the annular section of a tubular reformer unit. The performance of the reformer was investigated at various operating conditions like feed rate of water-methanol mixture, mass of the catalyst and reforming temperature. The experimental and numerical results show that the methanol conversion and CO concentration increase with internal heating for a wide range of operating conditions. The developed reformer unit generates 50-80W (based on lower heating value) of hydrogen gas for applications in PEMFCs. For optimized design and operating conditions, the reformer unit produced 298sccm reformed gas containing 70% H2, 27% CO2 and 3% CO at 200-240°C which can produce a power output of 25-32W assuming 60% fuel cell efficiency and 80% of hydrogen utilization in a PEMFC. © 2015 Hydrogen Energy Publications, LLC.

  17. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics

    International Nuclear Information System (INIS)

    Xue, Yuan; Johnston, Patrick; Bai, Xianglan

    2017-01-01

    Highlights: • PE, PP, PS and PET were catalytically pyrolyzed in a tandem micro-pyrolyzer. • Product distribution and composition were varied at in-situ and ex-situ pyrolysis. • Hydrogen carrier gas suppressed coke formation and reduced polyaromatic content. • Positive synergies between PE and PS, or PE and PET were found. - Abstract: In the present study, polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET) were pyrolyzed using HZSM-5 zeolite in a tandem micro-pyrolyzer to investigate the effects of plastic type, catalyst and feedstock contact mode, as well as the type of carrier gas on product distribution. Among the four plastics, PS produced highest aromatic yields up to 85% whereas PE and PP mainly produced aliphatic hydrocarbons. In comparison to ex-situ pyrolysis, in-situ pyrolysis of the plastics produced more solid residue but also promoted the formation of aromatic hydrocarbons, except PS. For PS, ex-situ pyrolysis produced a higher yield of aromatics than in-situ pyrolysis, mostly contributed by high styrene yield. During in-situ pyrolysis, the catalyst reduced the decomposition temperatures of the plastics in the order of PE, PP, PS and PET from high to low. Hydrogen carrier gas reduced solid residue and also increased the selectivity of single ring aromatics in comparison to inert pyrolysis. Hydrogen was more beneficial to PS and PET than PE and PP in terms of reducing coke yield and increasing hydrocarbon yield. The present study also showed that catalytically co-pyrolyzing PS and PE, or PET and PE increases the yield of aromatics and reduces the yield of solid residue due to hydrogen transfer from PE to PS or PET and alkylation reactions among the plastic-derivatives.

  18. Activity and selectivity control through periodic composition forcing over Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Silveston, P L; Hudgins, R R; Adesina, A A; Ross, G S; Feimer, J L

    1986-01-01

    Data collected under steady-state and periodic composition forcing of the Fischer-Tropsch synthesis over three commonly used catalysts demonstrate that both activity and selectivity can be changed by the latter operating mode. Synthesis of hydrocarbons up to C/sub 7/are favored at the expense of the higher carbon numbers for the Co catalyst, while for the Ru catalyst, only the C/sub 3/ and lower species are favored. Only methane production is stimulated with the Fe catalyst. Fe and Ru catalysts shift production from alkenes to alkanes. Transient data is interpreted in the paper.

  19. Water detritiation: better catalysts for liquid phase catalytic exchange

    International Nuclear Information System (INIS)

    Braet, J.

    2005-01-01

    Fusion reactors are our hope for a clean nuclear energy. But as they shall handle huge amounts of tritium, 1.5 10 19 Bq GWth -1 a -1 or about 50 000 times more tritium than light water fission reactors, they need detritiation. Most tritium losses can be trapped as or can easily be transformed into tritiated water. Water detritiation is preferably based on the multiplication of the large equilibrium isotope effect during the exchange reaction of tritium between hydrogen gas and liquid water in a counter current trickle bed reactor. Such LPCE (Liquid Phase Catalytic Exchange) requires an efficient hydrophobic catalyst. SCK-CEN invented and developed such a catalyst in the past. In combination with an appropriate packing, different batches of this catalyst performed very well during years of extensive testing, allowing to develop the ELEX process for water detritiation at inland reprocessing plants. The main objectives of this study were to reproduce and possibly improve the SCK-CEN catalyst for tritium exchange between hydrogen and liquid water; and to demonstrate the high overall exchange rate and thus high detritiation factors that can be realized with it in a small and simple LPCE column under typical but conservative operating conditions

  20. Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO2 Reduction.

    Science.gov (United States)

    Gu, Jun; Héroguel, Florent; Luterbacher, Jeremy; Hu, Xile

    2018-03-05

    Controlling the selectivity in electrochemical CO 2 reduction is an unsolved challenge. While tin (Sn) has emerged as a promising non-precious catalyst for CO 2 electroreduction, most Sn-based catalysts produce formate as the major product, which is less desirable than CO in terms of separation and further use. Tin monoxide (SnO) nanoparticles supported on carbon black were synthesized and assembled and their application in CO 2 reduction was studied. Remarkably high selectivity and partial current densities for CO formation were obtained using these SnO nanoparticles compared to other Sn catalysts. The high activity is attributed to the ultra-small size of the nanoparticles (2.6 nm), while the high selectivity is attributed to a local pH effect arising from the dense packing of nanoparticles in the conductive carbon black matrix. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Correlation of atomic packing with the boson peak in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. M. [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Liu, H. S., E-mail: liuhaishun@126.com, E-mail: blshen@seu.edu.cn, E-mail: runweili@nimte.ac.cn, E-mail: jiangjz@zju.edu.cn; Zhao, Y. C. [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Liu, X. J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Chen, G. X.; Man, Q. K.; Chang, C. T.; Li, R. W., E-mail: liuhaishun@126.com, E-mail: blshen@seu.edu.cn, E-mail: runweili@nimte.ac.cn, E-mail: jiangjz@zju.edu.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Dun, C. C. [Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109 (United States); Shen, B. L., E-mail: liuhaishun@126.com, E-mail: blshen@seu.edu.cn, E-mail: runweili@nimte.ac.cn, E-mail: jiangjz@zju.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Inoue, A. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); and others

    2014-09-28

    Boson peaks (BP) have been observed from phonon specific heats in 10 studied amorphous alloys. Two Einstein-type vibration modes were proposed in this work and all data can be fitted well. By measuring and analyzing local atomic structures of studied amorphous alloys and 56 reported amorphous alloys, it is found that (a) the BP originates from local harmonic vibration modes associated with the lengths of short-range order (SRO) and medium-range order (MRO) in amorphous alloys, and (b) the atomic packing in amorphous alloys follows a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diameter are 3 and 7, respectively, which exact match with length ratios of BP vibration frequencies to Debye frequency for the studied amorphous alloys. This finding provides a new perspective for atomic packing in amorphous materials, and has significant implications for quantitative description of the local atomic orders and understanding the structure-property relationship.

  2. Characteristics of mordenite-type zeolite catalysts deactivated by SO{sub 2} for the reduction of NO with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.H.; Nam, I.S.; Kim, Y.G. [Pohang Univ. of Science and Technology/Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)

    1998-10-25

    The deactivation of mordenite-type zeolite catalysts for the selective reduction of NO by hydrocarbons in the presence of SO{sub 2} was examined in a packed-bed flow reactor system. The physicochemical properties of the deactivated catalysts by SO{sub 2} were extensively characterized by TGA, TPSR, XPS, Raman, XANES, the measurements of surface area and elemental analysis. Not only the surface area and sulfur content of the deactivated catalysts, but their TGA and TPSR patterns strongly suggest the formation of a sulfur species as a deactivating agent on the catalyst surface. It is also observed that the sulfur species exists in the form of sulfate (SO{sub 4}{sup 2{minus}}) by XPS and Raman. It mainly causes the loss of NO removal activity of the catalysts. The sulfate species formed on the deactivated catalysts by SO{sub 2} did not significantly alter the chemical environment of the copper ions contained in the zeolite catalysts such as CuHM and CuNZA. It does not exist in the form of cupric sulfate pentahydrate on the catalyst surface as revealed by Cu K-edge absorption spectra of the catalysts.

  3. Pt-catalyzed ozonation of aqueous phenol solution using high-gravity rotating packed bed

    International Nuclear Information System (INIS)

    Chang, Chia-Chi; Chiu, Chun-Yu; Chang, Ching-Yuan; Chang, Chiung-Fen; Chen, Yi-Hung; Ji, Dar-Ren; Tseng, Jyi-Yeong; Yu, Yue-Hwa

    2009-01-01

    In this study, a high-gravity rotating packed bed (HGRPB or HG) was used as a catalytic ozonation (Cat-OZ) reactor to decompose phenol. The operation of HGRPB system was carried out in a semi-batch apparatus which combines two major parts, namely the rotating packed bed (RPB) and photo-reactor (PR). The high rotating speed of RPB can give a high volumetric gas-liquid mass transfer coefficient with one or two orders of magnitude higher than those in the conventional packed beds. The platinum-containing catalyst (Dash 220N, Pt/γ-Al 2 O 3 ) and activated alumina (γ-Al 2 O 3 ) were packed in the RPB respectively to adsorb molecular ozone and the target pollutant of phenol on the surface to catalyze the oxidation of phenol. An ultra violet (UV) lamp (applicable wavelength λ = 200-280 nm) was installed in the PR to enhance the self-decomposition of molecular ozone in water to form high reactive radical species. Different combinations of advanced oxidation processes (AOPs) with the HGRPB for the degradation of phenol were tested. These included high-gravity OZ (HG-OZ), HG catalytic OZ (HG-Cat-OZ), HG photolysis OZ (HG-UV-OZ) and HG-Cat-OZ with UV (HG-Cat-UV-OZ). The decomposition efficiency of total organic compound (η TOC ) of HG-UV-OZ with power of UV (P UV ) of 16 W is 54% at applied dosage of ozone per volume sample m A,in = 1200 mg L -1 (reaction time t = 20 min), while that of HG-OZ without the UV irradiation is 24%. After 80 min oxidation (m A,in = 4800 mg L -1 ), the η TOC of HG-UV-OZ is as high as 94% compared to 82% of HG-OZ process. The values of η TOC for HG-Cat-OZ process with m S = 42 g are 56% and 87% at m A,in = 1200 and 4800 mg L -1 , respectively. By increasing the catalyst mass to 77 g, the η TOC for the HG-Cat-OZ process reaches 71% and 90% at m A,in = 1200 and 4800 mg L -1 , respectively. The introduction of Pt/γ-Al 2 O 3 as well as UV irradiation in the HG-OZ process can enhance the η TOC of phenol significantly, while γ-Al 2 O 3 exhibits

  4. Tunable random packings

    International Nuclear Information System (INIS)

    Lumay, G; Vandewalle, N

    2007-01-01

    We present an experimental protocol that allows one to tune the packing fraction η of a random pile of ferromagnetic spheres from a value close to the lower limit of random loose packing η RLP ≅0.56 to the upper limit of random close packing η RCP ≅0.64. This broad range of packing fraction values is obtained under normal gravity in air, by adjusting a magnetic cohesion between the grains during the formation of the pile. Attractive and repulsive magnetic interactions are found to affect stongly the internal structure and the stability of sphere packing. After the formation of the pile, the induced cohesion is decreased continuously along a linear decreasing ramp. The controlled collapse of the pile is found to generate various and reproducible values of the random packing fraction η

  5. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  6. Comparison study of catalyst nanoparticle formation and carbon nanotube growth: Support effect

    International Nuclear Information System (INIS)

    Wang Yunyu; Luo Zhiquan; Li Bin; Ho, Paul S.; Yao Zhen; Shi Li; Bryan, Eugene N.; Nemanich, Robert J.

    2007-01-01

    A comparison study has been conducted on the formation of catalyst nanoparticles on a high surface tension metal and low surface tension oxide for carbon nanotube (CNT) growth via catalytic chemical vapor deposition (CCVD). Silicon dioxide (SiO 2 ) and tantalum have been deposited as supporting layers before deposition of a thin layer of iron catalyst. Iron nanoparticles were formed after thermal annealing. It was found that densities, size distributions, and morphologies of iron nanoparticles were distinctly different on the two supporting layers. In particular, iron nanoparticles revealed a Volmer-Weber growth mode on SiO 2 and a Stranski-Krastanov mode on tantalum. CCVD growth of CNTs was conducted on iron/tantalum and iron/SiO 2 . CNT growth on SiO 2 exhibited a tip growth mode with a slow growth rate of less than 100 nm/min. In contrast, the growth on tantalum followed a base growth mode with a fast growth rate exceeding 1 μm/min. For comparison, plasma enhanced CVD was also employed for CNT growth on SiO 2 and showed a base growth mode with a growth rate greater than 2 μm/min. The enhanced CNT growth rate on tantalum was attributed to the morphologies of iron nanoparticles in combination with the presence of an iron wetting layer. The CNT growth mode was affected by the adhesion between the catalyst and support as well as CVD process

  7. Separation and determination of polyurethane amine catalysts in polyether polyols by using UHPLC-Q-TOF-MS on a reversed-phase/cation-exchange mixed-mode column.

    Science.gov (United States)

    Li, Jiaxiao; Zhu, Marcel

    2018-02-01

    A simple, selective, and accurate ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established and validated for the efficient separation and quantification of polyurethane amine catalysts in polyether polyols. Amine catalysts were primarily separated in polyether polyol-based sample by solid-phase extraction, and further baseline separated on a reversed-phase/cation-exchange mixed-mode column (SiELC Primesep™ 200) using 0.1% trifluoroacetic acid/acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.2 mL/min. High-resolution quadrupole time-of-flight mass spectrometry analysis in electrospray ionization positive mode allowed the identification as N,N'-bis[3-(dimethylamino)propyl]urea, N-[2-(2-dimethylaminoethoxy)ethyl]-N-methyl-1,3-propanediamine, and N,N,N',N'-tetramethyldipropylenetriamine. The method was validated and presented good linearity for all the analytes in blank matrices within the concentration range of 0.20-5.0 or 0.1-2.0 μg/mL with the correlation coefficients (R 2 ) ranging from 0.986 to 0.997. Method recovery ranged within 81-105% at all three levels (80, 100, and 120% of the original amount) with relative standard deviations of 1.0-6.2%. The limits of detection were in the range of 0.007-0.051 μg/mL. Good precision was obtained with relative standard deviation below 3.2 and 0.72% for peak area and retention time of three amines, respectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation of biodiesel from soybean oil by using heterogeneous catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, Kaniz; Rakib Uddin, M.; Islam, M.A. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Khan, Maksudur R. [Department of Chemical Engineering and Polymer Science, Shah Jalal University of Science and Technology, Sylhet 3114 (Bangladesh); Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2013-07-01

    The predicted shortage of fossil fuels and related environmental concerns has recently attracted significant attention to search alternative fuel. Biodiesel is one of the alternatives to fossil fuel. Now-a-days, most biodiesel is produced by the transesterification of oils using methanol and a homogeneous base catalyst. The use of homogeneous catalysts is normally limited to batch mode processing followed by a catalyst separation step. The immiscible glycerol phase, which accumulates during the course of the reaction, solubilizes the homogeneous base catalyst and therefore, withdraws from the reaction medium. Moreover, other difficulties of using homogeneous base catalysts relate to their sensitivity to free fatty acid (FFA) and water and resulting saponification phenomenon. High energy consumption and costly separation of the catalyst from the reaction mixture have inspired the use of heterogeneous catalyst. The use of heterogeneous catalysts does not lead to the formation of soaps through neutralization of FFA and saponification of oil. In the present paper, biodiesel was prepared from crude (soybean) oil by transesterification reaction using heterogeneous base catalyst name calcium oxide (CaO). Various reaction parameters were optimized and the biodiesel properties were evaluated.

  9. Experimental study of simultaneous Athabasca bitumen recovery and upgrading using ultradispersed catalysts injection

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, R.; Pereira, P. [University of Calgary (Canada)

    2011-07-01

    As the demand for oil is continuously increasing, the need for unconventional resources is rising. Oil extraction from bitumen and heavy oil reservoirs requires advanced techniques in order to decrease the viscosity of the oil. To increase the recovered original oil in place (OOIP) of a reservoir and decrease refining costs, new techniques to upgrade oil in situ are being developed. The current study investigates the use of ultra-dispersed (UD) submicronic catalysts to decrease oil viscosity. The experiment involved the injection of the catalyst and hydrogen gas in a sand pack saturated with Athabasca bitumen. Analysis was carried out by building recovery curves, and by comparing the oil recovery from the catalyzed process with that of catalyst-free processes. The study demonstrated that the oil recovered from the new technique had higher API gravity and lower viscosity, indicating the success of the in situ upgrading process.

  10. Low-Cost Syngas Shifting for Remote Gasifiers: Combination of CO2 Adsorption and Catalyst Addition in a Novel and Simplified Packed Structure

    Directory of Open Access Journals (Sweden)

    Ricardo A. Narváez C.

    2018-02-01

    Full Text Available This paper presents the technical validation of a novel, low-complexity alternative based on the inclusion of a patented (IEPI-MU-2016-185 packed bed for improving the performance of remote, small-scale gasification facilities. This study was carried out in an updraft, atmospheric-pressure gasifier, outfitted with a syngas reflux line, air and oxygen feed, and an upper packed-bed coupled to the gasification unit to improve the syngas quality by catalytic treatment and CO2 adsorption. The experimental facility is located in the rural community San Pedro del Laurel, Ecuador. Gasification experiments, with and without packed material in the upper chamber, were performed to assess its effect on the syngas quality. The assessment revealed that the packed material increases the carbon monoxide (CO content in the syngas outlet stream while carbon dioxide (CO2 was reduced. This option appears to be a suitable and low-complexity alternative for enhancing the content of energy vectors of syngas in gasification at atmospheric pressure since CO/CO2 ratios of 5.18 and 3.27 were achieved against reported values of 2.46 and 0.94 for operations which did not include the addition of packed material. It is concluded that the upper packed-bed is an active element able to modify syngas characteristics since CO2 content was reduced.

  11. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses.

    Science.gov (United States)

    Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G

    2011-09-02

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.

  12. Modelling and Simulation of Packed Bed Catalytic Converter for Oxidation of Soot in Diesel Powered Vehicles Flue Gas

    Directory of Open Access Journals (Sweden)

    Mohammad Nasikin

    2010-10-01

    Full Text Available Diesel vehicle is used in Indonesia in very big number. This vehicle exhausts pollutants especially diesel soot that can be reduces by using a catalytic converter to convert the soot to CO2. To obtain the optimal dimension of catalytic converter it is needed a model that can represent the profile of soot weight, temperature and pressure along the catalytic converter. In this study, a model is developed for packed bed catalytic converter in an adiabatic condition based on a kinetic study that has been  reported previously. Calculation of developed equations in this model uses Polymath 5.X solver with Range Kutta Method. The simulation result shows that temperature profile along catalytic converter increases with the decrease of soot weight,  while pressure profile decreases. The increase of soot weight in entering gas increases the needed converter length. On the other hand, the increase of catalyst diameter does not affect to soot weight along converter and temperature profile, but results a less pressure drop. For 2.500 c diesel engine, packed bed catalytic converter with ellipse's cross sectional of 14,5X7,5 cm diagonal and 0,8 cm catalyst particle diameter, needs 4,1 cm length.

  13. In situ doping of catalyst-free InAs nanowires with Si: Growth, polytypism, and local vibrational modes of Si

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Emmanouil; Ramsteiner, Manfred; Huang, Chang-Ning; Trampert, Achim; Riechert, Henning; Geelhaar, Lutz [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Davydok, Anton; Biermanns, Andreas; Pietsch, Ullrich [Festkörperphysik, Universität Siegen, Walter-Flex-Str. 3, 57072 Siegen (Germany)

    2013-09-30

    Growth and structural aspects of the in situ doping of InAs nanowires with Si have been investigated. The nanowires were grown catalyst-free on Si(111) substrates by molecular beam epitaxy. The supply of Si influenced the growth kinetics, affecting the nanowire dimensions, but not the degree of structural polytypism, which was always pronounced. As determined by Raman spectroscopy, Si was incorporated as substitutional impurity exclusively on In sites, which makes it a donor. Previously unknown Si-related Raman peaks at 355 and 360 cm{sup −1} were identified, based on their symmetry properties in polarization-dependent measurements, as the two local vibrational modes of an isolated Si impurity on In site along and perpendicular, respectively, to the c-axis of the wurtzite InAs crystal.

  14. Effect of cation nature on development of Zn-, Cd- and Ca-zeolite catalysts during ethylbenzene transformations

    International Nuclear Information System (INIS)

    Tuan, K.Kh.; Berentsvejg, V.V.; Rudenko, A.P.; Tkhuan, N.T.; Topchieva, K.V.

    1984-01-01

    It is shown that in the course of ethylbenzene transformations at 650 deg, 0.25 7nY, 0.25CdY, 0.82CdY catalysts on the basis of Y-type zeolite are developed for the process of styrene formation accompanied by the accumulation of packing products (PP) and increase in styrene selectivity from 0 to 100%. It is shown that the nature of Me 2+ ion in zeolite is of great importance in the manifestation of the effect of catalyst development in the course of ethylbenzene transformations. Ions capable of PP formation and accumulation composing polymercatalyst complexes [PPxMe 2+ ] are active in this process

  15. Preparation of Pd/γ- Al2O3 catalyst utilized in chemisorption of hydrogen isotopes

    International Nuclear Information System (INIS)

    David, Elena; Stefanescu, Doina; Stanciu, V.

    1997-01-01

    Separation and hydrogen isotope determination require packings with special properties, utilizable in separation columns. Consequently, such packings as catalysts using γ-aluminia and metallic palladium active component as holder were obtained. The γ-aluminia used as holder has been prepared starting from λ salts, easy soluble in water, such as Al 2 (NO 3 ) 3 ·9H 2 O, at a preset (6.2-6.4) controlled pH. At a first stage the Al(OH) 3 results which by calcination at controlled temperature transforms in γ-Al 2O3 . On this holder, in which the specific surface and porosity has been determined, metallic palladium has been deposed, using for impregnation a 2% PdCl 2 solution. The content of deposed palladium was determined as the difference between the content in the initial solution and solution remaining after holder impregnation. This content has been determined by atomic absorption and is within 0.5 - 1.2% Pd. After impregnation the catalyst has been dried, then granulated at the 0.16 mm size and activated by hydrogen at a flow rate of 300 vol H 2 /volume

  16. High-resolution of particle contacts via fluorophore exclusion in deep-imaging of jammed colloidal packings

    Science.gov (United States)

    Kyeyune-Nyombi, Eru; Morone, Flaviano; Liu, Wenwei; Li, Shuiqing; Gilchrist, M. Lane; Makse, Hernán A.

    2018-01-01

    Understanding the structural properties of random packings of jammed colloids requires an unprecedented high-resolution determination of the contact network providing mechanical stability to the packing. Here, we address the determination of the contact network by a novel strategy based on fluorophore signal exclusion of quantum dot nanoparticles from the contact points. We use fluorescence labeling schemes on particles inspired by biology and biointerface science in conjunction with fluorophore exclusion at the contact region. The method provides high-resolution contact network data that allows us to measure structural properties of the colloidal packing near marginal stability. We determine scaling laws of force distributions, soft modes, correlation functions, coordination number and free volume that define the universality class of jammed colloidal packings and can be compared with theoretical predictions. The contact detection method opens up further experimental testing at the interface of jamming and glass physics.

  17. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae.

    Science.gov (United States)

    Zune, Q; Delepierre, A; Gofflot, S; Bauwens, J; Twizere, J C; Punt, P J; Francis, F; Toye, D; Bawin, T; Delvigne, F

    2015-08-01

    Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with solid-state-related physiological mechanisms. This work is based on the comparative analysis of classical submerged fermentation with a fungal biofilm reactor for the production of a Gla::green fluorescent protein (GFP) fusion protein by Aspergillus oryzae. The biofilm reactor comprises a metal structured packing allowing the attachment of the fungal biomass. Since the production of the target protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, the biofilm mode of culture is expected to enhance the global productivity. Although production of the target protein was enhanced by using the biofilm mode of culture, we also found that fusion protein production is also significant when the submerged mode of culture is used. This result is related to high shear stress leading to biomass autolysis and leakage of intracellular fusion protein into the extracellular medium. Moreover, 2-D gel electrophoresis highlights the preservation of fusion protein integrity produced in biofilm conditions. Two fungal biofilm reactor designs were then investigated further, i.e. with full immersion of the packing or with medium recirculation on the packing, and the scale-up potentialities were evaluated. In this context, it has been shown that full immersion of the metal packing in the liquid medium during cultivation allows for a uniform colonization of the packing by the fungal biomass and leads to a better quality of the fusion protein.

  18. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    Science.gov (United States)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  19. Comparing the efficacy of mature mud pack and hot pack treatments for knee osteoarthritis.

    Science.gov (United States)

    Sarsan, Ayşe; Akkaya, Nuray; Ozgen, Merih; Yildiz, Necmettin; Atalay, Nilgun Simsir; Ardic, Fusun

    2012-01-01

    The objective of this study is to compare the efficacy of mature mud pack and hot pack therapies on patients with knee osteoarthritis. This study was designed as a prospective, randomized-controlled, and single-blinded clinical trial. Twenty-seven patients with clinical and radiologic evidence of knee osteoarthritis were randomly assigned into two groups and were treated with mature mud packs (n 15) or hot packs (n=12). Patients were evaluated for pain [based on the visual analog scale (VAS)], function (WOMAC, 6 min walking distance), quality of life [Short Form-36 (SF-36)], and serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and insulin-like growth factor-1 (IGF-1) at baseline, post-treatment, and 3 and 6~months after treatment. The mud pack group shows a significant improvement in VAS, pain, stifness, and physical function domains of WOMAC. The difference between groups of pain and physical activity domains is significant at post-treatment in favor of mud pack. For a 6 min walking distance, mud pack shows significant improvement, and the difference is significant between groups in favor of mud pack at post-treatment and 3 and 6 months after treatment. Mud pack shows significant improvement in the pain subscale of SF-36 at the third month continuing until the sixth month after the treatment. Significant improvements are found for the social function, vitality/energy, physical role disability, and general health subscales of SF-36 in favor of the mud pack compared with the hot pack group at post-treatment. A significant increase is detected for IGF-1 in the mud pack group 3 months after treatment compared with the baseline, and the difference is significant between groups 3 months after the treatment. Mud pack is a favorable option compared with hotpack for pain relief and for the improvement of functional conditions in treating patients with knee osteoarthritis.

  20. Argo packing friction research update

    International Nuclear Information System (INIS)

    VanTassell, D.M.

    1994-01-01

    This paper focuses on the issue of valve packing friction and its affect on the operability of motor- and air-operated valves (MOVs and AOVs). At this time, most nuclear power plants are required to perform postmaintenance testing following a packing adjustment or replacement. In many cases, the friction generated by the packing does not impact the operability window of a valve. However, to date there has not been a concerted effort to substantiate this claim. To quantify the effects of packing friction, it has become necessary to develop a formula to predict the friction effects accurately. This formula provides a much more accurate method of predicting packing friction than previously used factors based strictly on stem diameter. Over the past 5 years, Argo Packing Company has been developing and testing improved graphite packing systems at research facilities, such as AECL Chalk River and Wyle Laboratories. Much of this testing has centered around reducing and predicting friction that is related to packing. In addition, diagnostic testing for Generic Letter 89-10 MOVs and AOVs has created a significant data base. In July 1992 Argo asked several utilities to provide running load data that could be used to quantify packing friction repeatability and predictability. This technical paper provides the basis to predict packing friction, which will improve calculations for thrust requirements for Generic Leter 89-10 and future AOV programs. In addition, having an accurate packing friction formula will improve packing performance when low running loads are identified that would indicate insufficient sealing force

  1. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    Science.gov (United States)

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  3. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    International Nuclear Information System (INIS)

    Hui Su

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm(sub 2) for 40-(micro)m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection

  4. An alternative cooling system to enhance the safety of Li-ion battery packs

    Science.gov (United States)

    Kizilel, Riza; Sabbah, Rami; Selman, J. Robert; Al-Hallaj, Said

    A passive thermal management system is evaluated for high-power Li-ion packs under stressful or abusive conditions, and compared with a purely air-cooling mode under normal and abuse conditions. A compact and properly designed passive thermal management system utilizing phase change material (PCM) provides faster heat dissipation than active cooling during high pulse power discharges while preserving sufficiently uniform cell temperature to ensure the desirable cycle life for the pack. This study investigates how passive cooling with PCM contributes to preventing the propagation of thermal runaway in a single cell or adjacent cells due to a cell catastrophic failure. Its effectiveness is compared with that of active cooling by forced air flow or natural convection using the same compact module and pack configuration corresponding to the PCM matrix technology. The effects of nickel tabs and spacing between the cells were also studied.

  5. An alternative cooling system to enhance the safety of Li-ion battery packs

    Energy Technology Data Exchange (ETDEWEB)

    Kizilel, Riza; Sabbah, Rami [Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W. 33rd Street, Chicago, IL 60616 (United States); Selman, J. Robert [Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W. 33rd Street, Chicago, IL 60616 (United States); All Cell Technologies, LLC, IIT University Technology Park, 3440 S. Dearborn Street, Suite 117N, Chicago, IL 60616 (United States); Al-Hallaj, Said [All Cell Technologies, LLC, IIT University Technology Park, 3440 S. Dearborn Street, Suite 117N, Chicago, IL 60616 (United States)

    2009-12-01

    A passive thermal management system is evaluated for high-power Li-ion packs under stressful or abusive conditions, and compared with a purely air-cooling mode under normal and abuse conditions. A compact and properly designed passive thermal management system utilizing phase change material (PCM) provides faster heat dissipation than active cooling during high pulse power discharges while preserving sufficiently uniform cell temperature to ensure the desirable cycle life for the pack. This study investigates how passive cooling with PCM contributes to preventing the propagation of thermal runaway in a single cell or adjacent cells due to a cell catastrophic failure. Its effectiveness is compared with that of active cooling by forced air flow or natural convection using the same compact module and pack configuration corresponding to the PCM matrix technology. The effects of nickel tabs and spacing between the cells were also studied. (author)

  6. Packing force data correlations

    International Nuclear Information System (INIS)

    Heiman, S.M.

    1994-01-01

    One of the issues facing valve maintenance personnel today deals with an appropriate methodology for installing and setting valve packing that will minimize leak rates, yet ensure functionality of the the valve under all anticipated operating conditions. Several variables can affect a valve packing's ability to seal, such as packing bolt torque, stem finish, and lubrication. Stem frictional force can be an excellent overall indicator of some of the underlying conditions that affect the sealing characteristics of the packing and the best parameter to use when adjusting the packing. This paper addresses stem friction forces, analytically derives the equations related to these forces, presents a methodology for measuring these forces on valve stems, and attempts to correlate the data directly to the underlying variables

  7. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst

    NARCIS (Netherlands)

    Basile, A.; Parmaliana, A.; Tosti, S.; Iulianelli, A.; Gallucci, F.; Espro, C.; Spooren, J.

    2008-01-01

    The methanol steam reforming (MSR) reaction was studied by using both a dense Pd-Ag membrane reactor (MR) and a fixed bed reactor (FBR). Both the FBR and the MR were packed with a new catalyst based on CuOAl2O3ZnOMgO, having an upper temperature limit of around 350 °C. A constant sweep gas flow rate

  8. Synopses/physical significance of complex-valued catalyst parameters in heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, D

    1979-08-01

    An independent parameter was used to describe the local values of the interdependent thermodynamic variables of the coupled effects of transfer, sorption, and surface reaction at steady state in a packed bed of porous catalyst. A system reduction yielded a generalized concept of the pore effectiveness factor, H, which was unity or a real or imaginary complex number when the coupled diffusion and reaction processes do not affect, inhibit, or enhance conversion, respectively. These concepts are illustrated by ethylene hydrogenation on platinum, a process in which ethylene adsorbs much more strongly than hydrogen, but diffuses more slowly; as the rate is proportional to the product of hydrogen and ethylene surface coverage and the more strongly adsorbed ethylene occupies the majority of the available sites, a decrease in gas-phase ethylene concentration would increase the conversion rate. The reaction rate also increases with decreasing distance from the catalyst particle core.

  9. Strategies for catalyst development: possibilities of the ``rational approach`` illustrated with partial oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W.; Schedel-Niedrig, T.; Schloegl, R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany). Abt. Oberflaechenphysik

    1998-12-31

    The paper discusses two petrochemical selective oxidation reactions namely the practised formation of styrene (STY) and the desired oxidative functionalisation of propane. The present knowledge about the mode of operation of oxide catalysts is critically considered. The dehydrogenation of ethylbenzene (EB) should be described by an oxidehydration with water acting as oxidant. The potential role of the coke formed during catalytic reaction as co-catalyst will be discussed. Selective oxidation is connected with the participation of lattice oxygen mechanism which transforms unselective gas phase oxygen into selective oxygen. The atomistic description of this process is still quite unclear as well as the electron structural properties of the activated oxygen atom. The Role of solid state acidity as compared to the role of lattice oxygen is much less well investigated modern multiphase-multielement oxide (MMO) catalysts. The rationale is that the significant efforts made to improve current MMO systems by chemical modifications can be very much more fruitful when in a first step the mode of action of a catalyst is clarified on the basis of suitable experiments. Such time-consuming experiments at the beginning of a campaign for catalyst improvement pay back their investment in later stages of the project when strategies of chemical development can be derived on grounds of understanding. (orig.)

  10. MECHANISTIC KINETIC MODELS FOR STEAM REFORMING OF CONCENTRATED CRUDE ETHANOL ON NI/AL2O3 CATALYST

    Directory of Open Access Journals (Sweden)

    O. A. OLAFADEHAN

    2015-05-01

    Full Text Available Mechanistic kinetic models were postulated for the catalytic steam reforming of concentrated crude ethanol on a Ni-based commercial catalyst at atmosphere pressure in the temperature range of 673-863 K, and at different catalyst weight to the crude ethanol molar flow rate ratio (in the range 0.9645-9.6451 kg catalyst h/kg mole crude ethanol in a stainless steel packed bed tubular microreactor. The models were based on Langmuir-Hinshelwood-Hougen-Watson (LHHW and Eley-Rideal (ER mechanisms. The optimization routine of Nelder-Mead simplex algorithm was used to estimate the inherent kinetic parameters in the proposed models. The selection of the best kinetic model amongst the rival kinetic models was based on physicochemical, statistical and thermodynamic scrutinies. The rate determining step for the steam reforming of concentrated crude ethanol on Ni/Al2O3 catalyst was found to be surface reaction between chemisorbed CH3O and O when hydrogen and oxygen were adsorbed as monomolecular species on the catalyst surface. Excellent agreement was obtained between the experimental rate of reaction and conversion of crude ethanol, and the simulated results, with ADD% being ±0.46.

  11. Optimization of operating parameters for gas-phase photocatalytic splitting of H2S by novel vermiculate packed tubular reactor.

    Science.gov (United States)

    Preethi, V; Kanmani, S

    2016-10-01

    Hydrogen production by gas-phase photocatalytic splitting of Hydrogen Sulphide (H2S) was investigated on four semiconductor photocatalysts including CuGa1.6Fe0.4O2, ZnFe2O3, (CdS + ZnS)/Fe2O3 and Ce/TiO2. The CdS and ZnS coated core shell particles (CdS + ZnS)/Fe2O3 shows the highest rate of hydrogen (H2) production under optimized conditions. Packed bed tubular reactor was used to study the performance of prepared photocatalysts. Selection of the best packing material is a key for maximum removal efficiency. Cheap, lightweight and easily adsorbing vermiculate materials were used as a novel packing material and were found to be effective in splitting H2S. Effect of various operating parameters like flow rate, sulphide concentration, catalyst dosage, light irradiation were tested and optimized for maximum H2 conversion of 92% from industrial waste H2S. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu; Guo, Yu; Kameyama, Hideo; Basset, Jean-Marie

    2014-01-01

    . The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced

  13. Dehydration of alcohols over oxide catalysts: γ-eliminations -- stereospecificity and selectivity

    International Nuclear Information System (INIS)

    Siddhan, S.; Narayanan, K.

    1979-01-01

    The effect of alkali impregnation on alumina catalysts has been investigated by a physicochemical study of pure and modified alumina catalyst samples. The stereospecificity and selectivity of dehyration reactions, as well as the incidence of γ-elimination, have been studied by passing suitable substrates over catalyst samples. There was a change in the acidity-basicity balance in the sodium-impregnated alumina samples vis a vis pure alumina, while the surface area virtually remained constant. A higher propensity for γ-elimination was noticed with increases in basicity of the catalyst. 1-Olefin formation was found to be larger in more basic alumina- and thoria-catalyzed dehydration reactions. Thoria was strikingly unique in its capacity to dehydrate only alcohols, which have at least one β-hydrogen atom. Neopentyl alcohol could not be dehydrated even under drastic conditions. The modes of elimination in the case of alumina and thoria have been shown to be anti and syn, respectively, from the results of the dehydration studies with threo-3-methyl-2-pentanol. Studies of alcohols with proper β-substituents revealed that the cis preference is not universal in all catalytic eliminations but, in fact, depends on the mode of elimination. While cis-preference was noticed in alumina-catalyzed anti eliminations, trans-olefin was formed to a major amount in thoria-catalyzed syn-elimination processes. 9 figures, 13 tables

  14. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  15. Radioisotopic investigations of catalyst motion in the process of fluidal catalytic cracking

    International Nuclear Information System (INIS)

    Dalecki, W.; Bazaniak, Z.; Palige, J.; Michalik, J.

    1981-01-01

    By radioisotopic method the dynamic characteristics of reactor and regenerator of fluidal mode of catalytic cracking have been determined. Average times of catalyst staying, distribution of residence times, mass of catalyst circulating in installation, mass intensity of flow and height of fluidal bed have been estimated. It has been found a considerable participation of process of ideal mixing in the operation of both aggregates, what is particularly disadvantageous in the case of regenerator. (author)

  16. American Spirit Pack Descriptors and Perceptions of Harm: A Crowdsourced Comparison of Modified Packs.

    Science.gov (United States)

    Pearson, Jennifer L; Richardson, Amanda; Feirman, Shari P; Villanti, Andrea C; Cantrell, Jennifer; Cohn, Amy; Tacelosky, Michael; Kirchner, Thomas R

    2016-08-01

    In 2015, the Food and Drug Administration issued warnings to three tobacco manufacturers who label their cigarettes as "additive-free" and/or "natural" on the grounds that they make unauthorized reduced risk claims. The goal of this study was to examine US adults' perceptions of three American Spirit (AS) pack descriptors ("Made with Organic Tobacco," "100% Additive-Free," and "100% US Grown Tobacco") to assess if they communicate reduced risk. In September 2012, three cross-sectional surveys were posted on Amazon Mechanical Turk. Adult participants evaluated the relative harm of a Marlboro Red pack versus three different AS packs with the descriptors "Made with Organic Tobacco," "100% Additive-Free," or "100% US Grown Tobacco" (Survey 1; n = 461); a Marlboro Red pack versus these AS packs modified to exclude descriptors (Survey 2; n = 857); and unmodified versus modified AS pack images (Survey 3; n = 1001). The majority of Survey 1 participants rated the unmodified AS packs as less harmful than the Marlboro Red pack; 35.4%-58.8% of Survey 2 participants also rated the modified (no claims) packs as less harmful than Marlboro Red. In these surveys, prior use of AS cigarettes was associated with reduced perceptions of risk (adjusted odds ratio [AOR] 1.59-2.40). "Made with Organic Tobacco" and "100% Additive-Free" were associated with reduced perceptions of risk when comparing the modified versus the unmodified AS packs (Survey 3). Data suggest that these AS pack descriptors communicate reduced harm messages to consumers. Findings have implications for regulatory actions related to product labeling and packaging. These findings provide additional evidence that the "Made with Organic Tobacco," "100% Additive-Free," and "100% US Grown" descriptors, as well as other aspects of the AS pack design, communicate reduced harm to non-, current, and former smokers. Additionally, they provide support for the importance of FDA's 2015 warning to Santa Fe Natural Tobacco Company on

  17. VOC removal by microwave, electron beam and catalyst technique

    International Nuclear Information System (INIS)

    IghigeanuI, D.; Martin, D.; OproiuI, C.; Manaila, E.; Craciun, G.; Calinescu, I.; Zissulescu, E.

    2007-01-01

    A hybrid technique, developed for VOCs removal using microwave (MW) treatment, electron beam (EB) irradiation and catalyst method, is presented. Two hybrid laboratory installations, developed for the study of air pollution control by combined EB irradiation, MW irradiation and catalyst, are described. Air loaded with toluene was treated at different MW power levels, water content, flow rates, and different irradiation modes, separately and combined with MW and EB. Also, simultaneous EB and MW irradiation method was applied to SO 2 and NO x removal. Real synergy effects between EB induced NTP, MW induced NTP and catalysis can be observed

  18. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study.

    Science.gov (United States)

    Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen

    2011-01-01

    An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  19. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses

    NARCIS (Netherlands)

    Chen, K.; Manning, M.L.; Yunker, P.J.; Ellenbroek, W.G.; Zhang, Zexin; Liu, Andrea J.; Yodh, A.G.

    2011-01-01

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance

  20. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst

    International Nuclear Information System (INIS)

    Dhand, Vivek; Prasad, J. Sarada; Rao, M. Venkateswara; Bharadwaj, S.; Anjaneyulu, Y.; Jain, Pawan Kumar

    2013-01-01

    Densely agglomerated, high specific surface area carbon nano onions with diameter of 30–40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp 2 hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 °C. - Highlights: ►Flame synthesized carbon nano onions with 30–40 nm diameters. ►LPG/air, diffusion type flame used in absence of catalyst to produce nano onions. ►Carbon nano onion production rate is 5 g/hr and with 70% purity.

  1. Hardness of approximation for strip packing

    DEFF Research Database (Denmark)

    Adamaszek, Anna Maria; Kociumaka, Tomasz; Pilipczuk, Marcin

    2017-01-01

    Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects into a strip of a given width, while minimizing the total height of the packing. The problem has multiple applications, for example, in scheduling and stock-cutting, and has been studied extensively......)-approximation by two independent research groups [FSTTCS 2016,WALCOM 2017]. This raises a questionwhether strip packing with polynomially bounded input data admits a quasi-polynomial time approximation scheme, as is the case for related twodimensional packing problems like maximum independent set of rectangles or two...

  2. Modified strip packing heuristics for the rectangular variable-sized bin packing problem

    Directory of Open Access Journals (Sweden)

    FG Ortmann

    2010-06-01

    Full Text Available Two packing problems are considered in this paper, namely the well-known strip packing problem (SPP and the variable-sized bin packing problem (VSBPP. A total of 252 strip packing heuristics (and variations thereof from the literature, as well as novel heuristics proposed by the authors, are compared statistically by means of 1170 SPP benchmark instances in order to identify the best heuristics in various classes. A combination of new heuristics with a new sorting method yields the best results. These heuristics are combined with a previous heuristic for the VSBPP by the authors to find good feasible solutions to 1357 VSBPP benchmark instances. This is the largest statistical comparison of algorithms for the SPP and the VSBPP to the best knowledge of the authors.

  3. Role of ultrasonic irradiation on transesterification of palm oil using calcium oxide as a solid base catalyst

    International Nuclear Information System (INIS)

    Poosumas, Jutipong; Ngaosuwan, Kanokwan; Quitain, Armando T.; Assabumrungrat, Suttichai

    2016-01-01

    Highlights: • Transesterification of palm oil using a circulated continuous flow ultrasonic reactor. • Heterogeneous system using CaO as catalyst. • Effects of ultrasonic frequency and power, and catalyst reusability were considered. • A single high frequency and high intensity irradiation is favorable for heterogeneous system. - Abstract: Biodiesel production from transesterification of palm oil using a circulated continuous flow ultrasonic reactor was investigated. Transesterification was carried out at 60 °C, 1 atm and a methanol-to-oil molar ratio of 9:1. The highest reaction rate was achieved at the catalyst loading of 2 wt%, and biodiesel yield constantly increased until transesterification equilibrium (about 80%) was reached. A higher ultrasonic frequency (50 kHz) promoted the heterogeneously catalyzed transesterification of refined palm oil, because the three-phase system (packed solid catalyst, methanol and oil) required more spatial distribution by ultrasonic irradiation. Moreover, the highest ultrasonic power also provided highest transesterification rate and biodiesel yield due to cavitation activity enhancement. Reusability of calcium oxide catalysts was also investigated, and results showed that this can be reused to provide high biodiesel yield for at least three operations with slight decrease in the rate of reaction due to counter balance effect of organic compounds deposition on the catalyst surface. The results from this study can be a basis for scaling up of the process to industrial scale.

  4. Flooding characteristics of Goodloe packing

    International Nuclear Information System (INIS)

    Begovich, J.M.; Watson, J.S.

    1976-08-01

    Experimental flooding data for the countercurrent flow of air and water in a 7.62-cm-diam glass column filled with Goodloe packing were compared with a correlation reported by the packing manufacturer. Flooding rates observed in this study were as low as one-half those predicted by the correlation. Rearranging the packing by inverting the column and removing some packing segments yielded results similar to the correlation for liquid-to-gas (L/G) mass flow rate ratios greater than 10, but the experimental flooding curve fell significantly below the correlation at lower L/G ratios. When the column was repacked with new packing, the results were essentially the same as those obtained in the inverted column. Thus, it is believed that a carefully packed column is more likely to yield flooding rates similar to those obtained in the new or inverted columns rather than rates predicted by the original correlation

  5. The advantages of hydraulic packing extraction

    International Nuclear Information System (INIS)

    Baker, R.S.

    1991-01-01

    Today's competitive environment, coupled with industry's desire to improve the efficiency of plant maintenance and operations, has management continually seeking ways to save time, money, and, at nuclear plants, radiation exposure. One area where a tremendous improvement in efficiency can be realized is valve packing removal. For example, industry experience indicates that up to 70% of the time it takes to repack a valve can be spent just removing the old packing. In some case, the bonnets of small valves are removed to facilitate packing removal and prevent stem and stuffing box damage that can occur when using packing removal picks. In other cases, small valves are simply removed and discarded because it costs less to replace the valves than to remove the packing using conventional methods. Hydraulic packing extraction greatly reduces packing removal time and will not damage the stem nor stuffing box, thus eliminating the need for bonnet removal or valve replacement. This paper will review some of the more common problems associated with manual packing extraction techniques. It will explain how hydraulic packing extraction eliminates or greatly reduces the impact of each of the problem areas. A discussion will be provided of some actual industry operating experiences related to success stories using hydraulic packing extraction. The paper will also briefly describe the operating parameters associated with hydraulic packing extraction tools. Throughout the paper, actual operating experiences from the nuclear power, fossil power, petrochemical, and refinery industries will be used to support the conclusion that hydraulic packing extraction is an alternative that can save time, money, and exposure

  6. Production of structured lipids by acidolysis of an EPA-enriched fish oil and caprylic acid in a packed bed reactor: analysis of three different operation modes.

    Science.gov (United States)

    González Moreno, P A; Robles Medina, A; Camacho Rubio, F; Camacho Páez, B; Molina Grima, E

    2004-01-01

    Structured triacylglycerols (ST) enriched in eicosapentaenoic acid (EPA) in position 2 of the triacylglycerol (TAG) backbone were synthesized by acidolysis of a commercially available EPA-rich oil (EPAX4510, 40% EPA) and caprylic acid (CA), catalyzed by the 1,3-specific immobilized lipase Lipozyme IM. The reaction was carried out in a packed bed reactor (PBR) operating in two ways: (1) by recirculating the reaction mixture from the exit of the bed to the substrate reservoir (discontinuous mode) and (2) in continuous mode, directing the product mixture leaving the PBR to a product reservoir. By operating in these two ways and using a simple kinetic model, representative values for the apparent kinetic constants (kX) for each fatty acid (native, Li or odd, M) were obtained. The kinetic model assumes that the rate of incorporation of a fatty acid into TAG per amount of enzyme, rX (mole/(h g lipase)) is proportional to the extent of the deviation from the equilibrium for each fatty acid (i.e., the difference of concentration between the fatty acid in the triacylglycerol and the concentration of the same fatty acid in the triacylglycerol once the equilibrium of the acidolysis reaction is reached). The model allows comparing the two operating modes through the processing intensity, defined as mLt/(V[TG]0) and mL/(q[TG]0), for the discontinuous and continuous operation modes, respectively. In discontinuous mode, ST with 59.5% CA and 9.6% EPA were obtained. In contrast, a ST with 51% CA and 19.6% EPA were obtained when using the continuous operation mode. To enhance the CA incorporation when operating in continuous mode, a two-step acidolysis reaction was performed (third operation mode). This continuous two-step process yields a ST with a 64% CA and a 15% EPA. Finally, after purifying the above ST in a preparative silica gel column, impregnated with boric acid, a ST with 66.9% CA and 19.6% EPA was obtained. The analysis by reverse phase and Ag+ liquid chromatography of

  7. The Maximum Resource Bin Packing Problem

    DEFF Research Database (Denmark)

    Boyar, J.; Epstein, L.; Favrholdt, L.M.

    2006-01-01

    Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...

  8. Valve packing manual. A maintenance application guide

    International Nuclear Information System (INIS)

    Aikin, J.A.; McCutcheon, R.G.; Cumming, D.

    1997-01-01

    Since 1970, AECL Chalk River Mechanical Equipment Development (MED) branch has invested over 175 person years in testing related to improving valve packing performance. Successful developments, including, 'live-loading', reduced packing heights, and performance-based packing qualification testing have been implemented. Since 1986, MED and the Integrated Valve Actuator Program Task Force - Valve Packing Steering Committee (IVAP-VPSC) have been involved in the development of combination die-formed graphite packing for use in CANDU plants. Many reports, articles, and specifications have been issued. Due to the large amount of test data and reports, a more user-friendly document has been prepared for everyday use. The Valve Packing Manual is based on many years of MED research and testing, as well as operating experience from CANDU nuclear generating stations (NGS). Since 1986, packing research and testing has been funded by the CANDU Owners Group (COG), the Electric Power Research Institute (EPRI), and participating valve packing manufacturers. The Valve Packing Manual (VPM) provides topical summaries of all work related to valve packing done since 1985. It includes advances in configuration design, stem packing friction, materials specifications, and installation procedures. This paper provides an overview on the application of the VPM with a focus on qualification testing, packing configuration, and stem packing friction. (author)

  9. Shouldn't catalysts shape up?

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzer, Michiel T.; Kapteijn, Freek; Moulijn, Jacob A. [Reactor and Catalysis Engineering, DelftChemTech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2006-01-15

    In this paper, the advantage of structuring catalytic reactors is discussed. In structured systems, the exact shape of all column internals is determined by design rather than chance. This results in two advantages for the engineer in charge of designing a reactor: (1) the structuring introduces additional characteristic length scales, leading to new degrees of freedom that allow decoupling of phenomena that otherwise would need a sub-optimal compromise and (2) full control over the entire geometry results in higher precision. Taking full control over the geometry boosts performance, especially if the catalyst is tailored to the reactor design. The monolith structure is the best-known example of a structured catalyst. We discuss the industrial benefits and practical pitfalls of this honeycomb of parallel capillaries that allows the advantages of microfluidics to be applied on an enormous scale. In this paper it is argued that the monolith is most suitable for processes that are (1) stable enough for packed-bed operation and (2) need better mass transfer than can be obtained in any conventional reactor, including the trickle bed and the stirred tank reactor. This includes several large-scale processes such as HDS. Fine chemical synthesis, where the objective of robust scale-up and predictability will never be met using stirred tanks, may equally benefit from the scalable ultra-high mass transfer that is obtained in monoliths.

  10. Experimental studies on the coolability of packed beds. Flooding of hot dry packed beds

    International Nuclear Information System (INIS)

    Leininger, S.; Kulenovic, R.; Laurien, E.

    2013-01-01

    In case of a severe accident in a nuclear power plant meltdown of the reactor core can occur and form a packed bed in the lower plenum of the reactor pressure vessel (RPV) after solidification due to contact with water. The removal of after-heat and the long-term coolability is of essential interest. The efficient injection of cooling water into the packed bed has to be assured without endangering the structural integrity of the reactor pressure vessel. The experiments performed aimed to study the dry-out and the quenching (flooding) of hot dry packed beds. Two different inflow variants, bottom- and top-flooding including the variation of the starting temperature of the packed bed and the injection rate were studied. In case of bottom flooding the quenching time increases with increasing packed bed temperature and decreasing injection rate. In case of top flooding the flow pattern is more complex, in a first phase the water flows preferentially toward the RPV wall, the flow paths conduct the water downwards. The flow resistance of the packed bed increases with increasing bed temperatures. The quenching temperatures increase significantly above average.

  11. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dhand, Vivek, E-mail: vivekdhand2012@gmail.com [Centre for Knowledge Management of Nanoscience and Technology, 12-5-32/8, Vijayapuri Colony, Tarnaka, Secunderabad-500 017, A.P (India); Prasad, J. Sarada; Rao, M. Venkateswara [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 085 (India); Bharadwaj, S. [Department of Physics, CVR College of Engineering and Osmania University, Hyderabad 501510, A.P (India); Anjaneyulu, Y. [TLGVRC, Jackson State University, JSU Box 18739, Jackson, MS 39217-0939 (United States); Jain, Pawan Kumar [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur PO, Hyderabad 500005, Andhra Pradesh (India)

    2013-03-01

    Densely agglomerated, high specific surface area carbon nano onions with diameter of 30-40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp{sup 2} hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 Degree-Sign C. - Highlights: Black-Right-Pointing-Pointer Flame synthesized carbon nano onions with 30-40 nm diameters. Black-Right-Pointing-Pointer LPG/air, diffusion type flame used in absence of catalyst to produce nano onions. Black-Right-Pointing-Pointer Carbon nano onion production rate is 5 g/hr and with 70% purity.

  12. Force-chain evolution in a two-dimensional granular packing compacted by vertical tappings

    Science.gov (United States)

    Iikawa, Naoki; Bandi, M. M.; Katsuragi, Hiroaki

    2018-03-01

    We experimentally study the statistics of force-chain evolution in a vertically-tapped two-dimensional granular packing by using photoelastic disks. In this experiment, the tapped granular packing is gradually compacted. During the compaction, the isotropy of grain configurations is quantified by measuring the deviator anisotropy derived from fabric tensor, and then the evolution of force-chain structure is quantified by measuring the interparticle forces and force-chain orientational order parameter. As packing fraction increases, the interparticle force increases and finally saturates to an asymptotic value. Moreover, the grain configurations and force-chain structures become isotropically random as the tapping-induced compaction proceeds. In contrast, the total length of force chains remains unchanged. From the correlations of those parameters, we find two relations: (i) a positive correlation between the isotropy of grain configurations and the disordering of force-chain orientations, and (ii) a negative correlation between the increasing of interparticle forces and the disordering of force-chain orientations. These relations are universally held regardless of the mode of particle motions with or without convection.

  13. Proliferation of twinning in hexagonal close-packed metals: Application to magnesium

    Science.gov (United States)

    Sun, D.; Ponga, M.; Bhattacharya, K.; Ortiz, M.

    2018-03-01

    Plastic deformation of metallic alloys usually takes place through slip, but occasionally involves twinning. In particular, twinning is important in hexagonal close packed (HCP) materials where the easy slip systems are insufficient to accommodate arbitrary deformations. While deformation by slip mechanisms is reasonably well understood, comparatively less is known about deformation by twinning. Indeed, the identification of relevant twinning modes remains an art. In this paper, we develop a framework combining a fundamental kinematic definition of twins with large-scale atomistic calculations to predict twinning modes of crystalline materials. We apply this framework to magnesium where there are two accepted twin modes, tension and compression, but a number of anomalous observations. Remarkably, our framework shows that there is a very large number of twinning modes that are important in magnesium. Thus, in contrast to the traditional view that plastic deformation is kinematically partitioned between a few modes, our results suggest that deformation in HCP materials is the result of an energetic and kinetic competition between numerous possibilities. Consequently, our findings suggest that the commonly used models of deformation need to be extended in order to take into account a broader and richer variety of twin modes, which, in turn, opens up new avenues for improving the mechanical properties.

  14. Optimized packings with applications

    CERN Document Server

    Pintér, János

    2015-01-01

    This volume presents a selection of case studies that address a substantial range of optimized object packings (OOP) and their applications. The contributing authors are well-recognized researchers and practitioners. The mathematical modelling and numerical solution aspects of each application case study are presented in sufficient detail. A broad range of OOP problems are discussed: these include various specific and non-standard container loading and object packing problems, as well as the stowing of hazardous and other materials on container ships, data centre resource management, automotive engineering design, space station logistic support, cutting and packing problems with placement constraints, the optimal design of LED street lighting, robust sensor deployment strategies, spatial scheduling problems, and graph coloring models and metaheuristics for packing applications. Novel points of view related to model development and to computational nonlinear, global, mixed integer optimization and heuristic st...

  15. Development of a multi-mode hybrid electric bus

    Energy Technology Data Exchange (ETDEWEB)

    Shemmans, M.J. [Overland Custom Coach, Thorndale, ON (Canada); Bland, C. [BET Services Inc., Mississauga, ON (Canada)

    2004-04-01

    This paper describes the development of an energy efficient, low floor, 28 foot hybrid electric bus for use as an airport shuttle bus or other specialized transit operations. A multi-mode concept was also adopted to include the capability of operating in battery-only drive, engine-only drive or a range of hybrid electric drive modes. The electric drivetrain was powered by a battery pack or a combination of a battery pack and an internal combustion engine-powered electric generator. The participating companies in this project include Overland Custom Coach, BET Services Inc., Siemens and Transport Canada. The technical feasibility study was described with reference to duty cycles, performance issues, vehicle weight, mechanical drive issues, brakes, suspension, powertrain cooling, heating, ventilation, electrical system, batteries and control system. The commercial feasibility was also described in terms of capital and operating costs. Results of the prototype tests validate the possibilities of zero or reduced emission transit in real world applications. 25 tabs., 32 figs.

  16. An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model

    International Nuclear Information System (INIS)

    Zhang, Xu; Wang, Yujie; Yang, Duo; Chen, Zonghai

    2016-01-01

    Accurate estimation of battery pack state-of-charge plays a very important role for electric vehicles, which directly reflects the behavior of battery pack usage. However, the inconsistency of battery makes the estimation of battery pack state-of-charge different from single cell. In this paper, to estimate the battery pack state-of-charge on-line, the definition of battery pack is proposed, and the relationship between the total available capacity of battery pack and single cell is put forward to analyze the energy efficiency influenced by battery inconsistency, then a lumped parameter battery model is built up to describe the dynamic behavior of battery pack. Furthermore, the extend Kalman filter-unscented Kalman filter algorithm is developed to identify the parameters of battery pack and forecast state-of-charge concurrently. The extend Kalman filter is applied to update the battery pack parameters by real-time measured data, while the unscented Kalman filter is employed to estimate the battery pack state-of-charge. Finally, the proposed approach is verified by experiments operated on the lithium-ion battery under constant current condition and the dynamic stress test profiles. Experimental results indicate that the proposed method can estimate the battery pack state-of-charge with high accuracy. - Highlights: • A novel space state equation is built to describe the pack dynamic behavior. • The dual filters method is used to estimate the pack state-of-charge. • Battery inconsistency is considered to analyze the pack usage efficiency. • The accuracy of the proposed method is verified under different conditions.

  17. Propene and l-octene hydroformylation with silica-supported, ionic liquid-phase (SILP) Rh-phosphine catalysts in continuous fixed-bed mode

    DEFF Research Database (Denmark)

    Riisager, Anders; Eriksen, Kim Michael; Wasserscheid, Peter

    2003-01-01

    - and liquid-phase hydroformylation of propene and 1-octene, exhibiting TOFs up to 88 h(-1) for SILP Rh-2 catalysts, while only low selectivities up to 74% n-aldehyde (n/iso ratio of 2.8) were obtained. This is the first example of continuous fixed-bed liquid-phase hydroformylation using SILP catalysts.......Supported ionic liquid-phase (SILP) catalysts were made by immobilizing Rh-monophosphine complexes of bis(m-phenylguanidinium) phenylphosphine 1 and NORBOS 2 ligands in 1-n-butyl-3-methylimidazolium hexafluorophosphate, [BMIM] [PF6], on a silica support. The catalysts were active in continuous gas...

  18. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-03-31

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.

  19. Packing Degenerate Graphs Greedily

    Czech Academy of Sciences Publication Activity Database

    Allen, P.; Böttcher, J.; Hladký, J.; Piguet, Diana

    2017-01-01

    Roč. 61, August (2017), s. 45-51 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Institutional support: RVO:67985807 Keywords : tree packing conjecture * graph packing * graph processes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics

  20. Treatment of azo dye-containing wastewater by a Fenton-like process in a continuous packed-bed reactor filled with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Isabel; Matos, Luis C. [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Duarte, Filipa [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal); Maldonado-Hodar, F.J. [Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada (Spain); Mendes, Adelio [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal); Madeira, Luis M., E-mail: mmadeira@fe.up.pt [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Oxidation with the Fenton's reagent was carried out in a packed-bed reactor. Black-Right-Pointing-Pointer The packed-bed was filled with iron-impregnated activated carbon. Black-Right-Pointing-Pointer The increment of temperature increases the Chicago Sky Blue removal and mineralization. Black-Right-Pointing-Pointer The values of iron leaching were below 0.4 ppm in the outlet effluent. Black-Right-Pointing-Pointer It was possible to reach a dye conversion of 88% in steady-state. - Abstract: In this work, oxidation with a Fenton-like process of a dye solution was carried out in a packed-bed reactor. Activated carbon Norit RX 3 Extra was impregnated with ferrous sulfate and used as catalyst (7 wt.% of iron). The effect of the main operating conditions in the Chicago Sky Blue (CSB) degradation was analyzed. It was found that the increase in temperature leads to a higher removal of the dye and an increased mineralization. However, it also increases the iron leaching, but the values observed were below 0.4 ppm (thus, far below European Union limits). It was possible to reach, at steady-state, a dye conversion of 88%, with a total organic carbon (TOC) removal of ca. 47%, being the reactor operated at 50 Degree-Sign C, pH 3, W{sub cat}/Q = 4.1 g min mL{sup -1} (W{sub cat} is the mass of catalyst and Q the total feed flow rate) and a H{sub 2}O{sub 2} feed concentration of 2.25 mM (for a CSB feed concentration of 0.012 mM). The same performance was reached in three consecutive cycles.

  1. Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study

    Directory of Open Access Journals (Sweden)

    Hsiao-Ching Chen

    2011-01-01

    Full Text Available An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435 as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31±2.07% and 82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  2. Heuristics for Multidimensional Packing Problems

    DEFF Research Database (Denmark)

    Egeblad, Jens

    for a minimum height container required for the items. The main contributions of the thesis are three new heuristics for strip-packing and knapsack packing problems where items are both rectangular and irregular. In the two first papers we describe a heuristic for the multidimensional strip-packing problem...... that is based on a relaxed placement principle. The heuristic starts with a random overlapping placement of items and large container dimensions. From the overlapping placement overlap is reduced iteratively until a non-overlapping placement is found and a new problem is solved with a smaller container size...... of this heuristic are among the best published in the literature both for two- and three-dimensional strip-packing problems for irregular shapes. In the third paper, we introduce a heuristic for two- and three-dimensional rectangular knapsack packing problems. The two-dimensional heuristic uses the sequence pair...

  3. A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells

    International Nuclear Information System (INIS)

    Wang Qianpu; Song Datong; Navessin, Titichai; Holdcroft, Steven; Liu Zhongsheng

    2004-01-01

    A spherical flooded-agglomerate model for the cathode catalyst layer of a proton exchange membrane fuel cell, which includes the kinetics of oxygen reduction, at the catalyst vertical bar electrolyte interface, proton transport through the polymer electrolyte network, the oxygen diffusion through gas pore, and the dissolved oxygen diffusion through electrolyte, is considered. Analytical and numerical solutions are obtained in various control regimes. These are the limits of (i) oxygen diffusion control (ii) proton conductivity control, and (iii) mixture control. The structure and material parameters, such as porosity, agglomerate size, catalyst layer thickness and proton conductivity, on the performance are investigated under these limits. The model could help to characterize the system properties and operation modes, and to optimize catalyst layer design

  4. Valve-stem-packing improvement study. Final report

    International Nuclear Information System (INIS)

    Adey, C.W.; Klein, J.J.

    1982-08-01

    By employing questionnaires and face-to-face interviews with valve and valve packing manufacturers, as well as nuclear plant personnel, an understanding of valve stem packing leakage problems from each of the three viewpoints was developed. This information, in-house experience, and available technical literature were used to develop specific recommendations for valve manufacturers, valve packing manufacturers, and nuclear plant valve users. It was generally recommended that each these groups make better use of graphite packing. The questionnaires and interviews indicated that increased usage of graphite packing over the last few years has reduced the incidence of valve packing problems. To confirm this, a survey of Licensee Event Reports (LERs) from 1972 to 1980 was undertaken using the keywords Valve and Packing. A statistical analysis of the LER data confirms that the adoption of graphite packing has significantly reduced valve stem leakage

  5. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  6. Modeling a Packed Bed Reactor Utilizing the Sabatier Process

    Science.gov (United States)

    Shah, Malay G.; Meier, Anne J.; Hintze, Paul E.

    2017-01-01

    A numerical model is being developed using Python which characterizes the conversion and temperature profiles of a packed bed reactor (PBR) that utilizes the Sabatier process; the reaction produces methane and water from carbon dioxide and hydrogen. While the specific kinetics of the Sabatier reaction on the RuAl2O3 catalyst pellets are unknown, an empirical reaction rate equation1 is used for the overall reaction. As this reaction is highly exothermic, proper thermal control is of the utmost importance to ensure maximum conversion and to avoid reactor runaway. It is therefore necessary to determine what wall temperature profile will ensure safe and efficient operation of the reactor. This wall temperature will be maintained by active thermal controls on the outer surface of the reactor. Two cylindrical PBRs are currently being tested experimentally and will be used for validation of the Python model. They are similar in design except one of them is larger and incorporates a preheat loop by feeding the reactant gas through a pipe along the center of the catalyst bed. The further complexity of adding a preheat pipe to the model to mimic the larger reactor is yet to be implemented and validated; preliminary validation is done using the smaller PBR with no reactant preheating. When mapping experimental values of the wall temperature from the smaller PBR into the Python model, a good approximation of the total conversion and temperature profile has been achieved. A separate CFD model incorporates more complex three-dimensional effects by including the solid catalyst pellets within the domain. The goal is to improve the Python model to the point where the results of other reactor geometry can be reasonably predicted relatively quickly when compared to the much more computationally expensive CFD approach. Once a reactor size is narrowed down using the Python approach, CFD will be used to generate a more thorough prediction of the reactors performance.

  7. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  8. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  9. Complications of balloon packing in epistaxis

    NARCIS (Netherlands)

    Vermeeren, Lenka; Derks, Wynia; Fokkens, Wytske; Menger, Dirk Jan

    2015-01-01

    Although balloon packing appears to be efficient to control epistaxis, severe local complications can occur. We describe four patients with local lesions after balloon packing. Prolonged balloon packing can cause damage to nasal mucosa, septum and alar skin (nasal mucosa, the cartilaginous skeleton

  10. Isotope exchange reaction of tritium on precious metal catalyst based on cation-exchanged mordenite for blanket tritium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Precious metal catalyst based on cation-exchanged mordenite was prepared. • Isotope exchange reaction between H{sub 2} and HTO on the catalyst was investigated. • The order of entire reaction is not clear, but it is the first-order reaction as for HTO. • Effect of exchanged cation may appear as the difference of the surface area of catalyst. - Abstract: It is known that the chemical forms of tritium released from a ceramic breeder blanket are hydrogen form and water form. To recover tritiated water vapor, adoption of dryer that is packed column of synthetic zeolite has been proposed. On the other hand, synthetic zeolite is often used as a support of precious metal catalyst. Such catalysts usually have a capability of hydrogen isotope exchange between gas and water vapor. If this catalyst is used to dryer, the dryer may obtain a preferable function for tritium recovery by isotopic exchange reaction. To assess such functions, reaction rate should be estimated. The results of water adsorption experiment on cation-exchanged mordenite-type zeolite suggested the possibility that state of adsorbed water varied by exchanged cation. So, in this work, precious metal catalyst based on cation-exchanged mordenite was prepared, and the reaction rate of chemical exchange between hydrogen and tritiated water was investigated under temperature range between 30 °C and 80 °C by the steady-state approximation. In the case of platinum on Na-mordenite, the reaction between gaseous hydrogen and tritiated water vapor was almost expressed as first-order reaction concerning tritiated water vapor concentration.

  11. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  12. Obesity prevention and personal responsibility: the case of front-of-pack food labelling in Australia.

    Science.gov (United States)

    Magnusson, Roger S

    2010-11-02

    In Australia, the food industry and public health groups are locked in serious struggle for regulatory influence over the terms of front-of-pack food labelling. Clear, unambiguous labelling of the nutritional content of pre-packaged foods and of standardized food items sold in chain restaurants is consistent with the prevailing philosophy of 'personal responsibility'. An interpretive, front-of-pack labelling scheme has the capacity to encourage healthier patterns of eating, and to be a catalyst for improvements in the nutritional quality of food products through re-formulation. On the other hand, the strength of opposition of the Australian Food and Grocery Council to 'Traffic Light Labelling', and its efforts to promote a non-interpretive, voluntary scheme, invite the interpretation that the food industry is resistant to any reforms that could destabilise current (unhealthy) purchasing patterns and the revenues they represent. This article argues that although policies that aim to educate consumers about the nutritional content of food are welcome, they are only one part of a broader basket of policies that are needed to make progress on obesity prevention and public health nutrition. However, to the extent that food labelling has the capacity to inform and empower consumers to make healthier choices--and to be a catalyst for improving the nutritional quality of commercial recipes--it has an important role to play. Furthermore, given the dietary impact of meals eaten in fast food and franchise restaurants, interpretive labelling requirements should not be restricted to pre-packaged foods. Food industry resistance to an interpretive food labelling scheme is an important test for government, and a case study of how self-interest prompts industry to promote weaker, voluntary schemes that pre-empt and undermine progressive public health regulation.

  13. Obesity prevention and personal responsibility: the case of front-of-pack food labelling in Australia

    Directory of Open Access Journals (Sweden)

    Magnusson Roger S

    2010-11-01

    Full Text Available Abstract Background In Australia, the food industry and public health groups are locked in serious struggle for regulatory influence over the terms of front-of-pack food labelling. Clear, unambiguous labelling of the nutritional content of pre-packaged foods and of standardized food items sold in chain restaurants is consistent with the prevailing philosophy of 'personal responsibility'. An interpretive, front-of-pack labelling scheme has the capacity to encourage healthier patterns of eating, and to be a catalyst for improvements in the nutritional quality of food products through re-formulation. On the other hand, the strength of opposition of the Australian Food and Grocery Council to 'Traffic Light Labelling', and its efforts to promote a non-interpretive, voluntary scheme, invite the interpretation that the food industry is resistant to any reforms that could destabilise current (unhealthy purchasing patterns and the revenues they represent. Discussion This article argues that although policies that aim to educate consumers about the nutritional content of food are welcome, they are only one part of a broader basket of policies that are needed to make progress on obesity prevention and public health nutrition. However, to the extent that food labelling has the capacity to inform and empower consumers to make healthier choices - and to be a catalyst for improving the nutritional quality of commercial recipes - it has an important role to play. Furthermore, given the dietary impact of meals eaten in fast food and franchise restaurants, interpretive labelling requirements should not be restricted to pre-packaged foods. Summary Food industry resistance to an interpretive food labelling scheme is an important test for government, and a case study of how self-interest prompts industry to promote weaker, voluntary schemes that pre-empt and undermine progressive public health regulation.

  14. Obesity prevention and personal responsibility: the case of front-of-pack food labelling in Australia

    Science.gov (United States)

    2010-01-01

    Background In Australia, the food industry and public health groups are locked in serious struggle for regulatory influence over the terms of front-of-pack food labelling. Clear, unambiguous labelling of the nutritional content of pre-packaged foods and of standardized food items sold in chain restaurants is consistent with the prevailing philosophy of 'personal responsibility'. An interpretive, front-of-pack labelling scheme has the capacity to encourage healthier patterns of eating, and to be a catalyst for improvements in the nutritional quality of food products through re-formulation. On the other hand, the strength of opposition of the Australian Food and Grocery Council to 'Traffic Light Labelling', and its efforts to promote a non-interpretive, voluntary scheme, invite the interpretation that the food industry is resistant to any reforms that could destabilise current (unhealthy) purchasing patterns and the revenues they represent. Discussion This article argues that although policies that aim to educate consumers about the nutritional content of food are welcome, they are only one part of a broader basket of policies that are needed to make progress on obesity prevention and public health nutrition. However, to the extent that food labelling has the capacity to inform and empower consumers to make healthier choices - and to be a catalyst for improving the nutritional quality of commercial recipes - it has an important role to play. Furthermore, given the dietary impact of meals eaten in fast food and franchise restaurants, interpretive labelling requirements should not be restricted to pre-packaged foods. Summary Food industry resistance to an interpretive food labelling scheme is an important test for government, and a case study of how self-interest prompts industry to promote weaker, voluntary schemes that pre-empt and undermine progressive public health regulation. PMID:21044302

  15. Influence of reaction products of K-getter fuel additives on commercial vanadia-based SCR catalysts

    DEFF Research Database (Denmark)

    Castellino, Francesco; Jensen, Anker Degn; Johnsson, Jan Erik

    2009-01-01

    , deactivation rates up to 3%/day have been measured. The spent catalysts have been characterized by bulk chemical analysis, Hg-porosimetry and SEM-EDX. NH3-chemisorption tests on the spent elements and activity tests on catalyst powders obtained by crushing the monoliths have also been carried out. The catalyst...... characterization has shown that poisoning by K is the main deactivation mechanism. The results show that binding K in K–P salts will not reduce the rate of catalyst deactivation....... as a K-getter additive. The formed aerosols have been characterized by using both a SMPS system and a low pressure cascade impactor, showing a dual-mode volume-based size distribution with a first peak at around 30 nm and a second one at diameters >1 μm. The different peaks have been associated...

  16. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    Science.gov (United States)

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Understanding the Performance and Stability of Supported Ni-Co-Based Catalysts in Phenol HDO

    Directory of Open Access Journals (Sweden)

    Thuan M. Huynh

    2016-11-01

    Full Text Available Performances of bimetallic catalysts (Ni-Co supported on different acidic carriers (HZSM-5, HBeta, HY, ZrO2 and corresponding monometallic Ni catalysts in aqueous phase hydrodeoxygenation of phenol were compared in batch and continuous flow modes. The results revealed that the support acidity plays an important role in deoxygenation as it mainly controls the oxygen-removing steps in the reaction network. At the same time, sufficient hydrothermal stability of a solid catalyst is essential. Batch experiments revealed 10Ni10Co/HZSM-5 to be the best-performing catalyst in terms of conversion and cyclohexane yield. Complementary continuous runs provided more insights into the relationship between catalyst structure, efficiency and stability. After 24 h on-stream, the catalyst still reveals 100% conversion and a slight loss (from 100% to 90% in liquid hydrocarbon selectivity. The observed alloy of Co with Ni increased dispersion and stability of Ni-active sites, and combination with HZSM-5 resulted in a well-balanced ratio of metal and acid sites which promoted all necessary steps in preferred pathways. This was proved by studies of fresh and spent catalysts using various characterization techniques (N2 physisorption, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission electron microscopy (TEM and infrared spectroscopy of adsorbed pyridine (pyr-IR.

  18. Development of a leadership resource pack

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The pack contains notes and presentation material for OSD inspectors to help them prepare for health and safety discussions with senior managers. The successful application of the leadership resource pack depends on an inspector gaining familiarity with the contents of the pack. Flexibility and adaptability were considered crucial factors in developing the contents. The pack is not considered a substitute for an inspector's own experience, knowledge or substitute for prior research. The leadership resource pack is intended as a source of knowledge and good practice that demonstrates how positive leadership can drive a health and safety agenda alongside business considerations. The benefits of the leadership resource pack include: the creation of a flexible tool that inspectors can use to highlight key leadership messages in health and safety; the development of a seven-stage model for characterising senior management commitment; practical examples of how leadership in health and safety management was felt throughout nine organisations; ideas for devising an aide memoire for specific discussions with senior managers. (author)

  19. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production

    Science.gov (United States)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.

    2017-03-01

    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  20. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Ahmed, Maaz S.

    Development of aerobic oxidation methods is of critical importance for the advancement of green chemistry, where the only byproduct produced is water. Recent work by our lab has produced an efficient Pd based heterogenous catalyst capable of preforming the aerobic oxidation of a wide spectrum of alcohols to either carboxylic acid or methyl ester. The well-defined catalyst PdBi 0.35Te0.23/C (PBT/C) catalyst has been shown to can perform the aerobic oxidation of alcohols to carboxylic acids in basic conditions. Additionally, we explored this catalyst for a wide range of alcohols and probed the nature of the selectivity of PBT/C for methyl esterification over other side products. Finally, means by which the catalyst operates with respect to oxidation states of the three components, Pd, Bi, and Te, was probed. Carboxylic acids are an important functional group due to their prevalence in various pharmaceutically active agents, agrochemicals, and commodity scale chemicals. The well-defined catalyst PBT/C catalyst was discovered to be effective for the oxidation of a wide spectrum of alcohols to carboxylic acid. The demonstrated substrate scope and functional group tolerance are the widest reported for an aerobic heterogeneous catalyst. Additionally, the catalyst has been implemented in a packed bed reactor with quantitative yield of benzoic acid maintained throughout a two-day run. Biomass derived 5-(hydroxymethyl)furfural (HMF) is also oxidized to 2,5-furandicarboxylic acid (FDCA) in high yield. Exploration of PBT/C for the oxidative methyl esterification was found to exhibit exquisite selectivity for the initial oxidation of primary alcohol instead of methanol, which is the bulk solvent. We explored this selectivity and conclude that it results from various substrate-surface interactions, which are not attainable by methanol. The primary alcohol can outcompete the methanol for binding on the catalyst surface through various interactions between the side chain of the

  1. Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts

    Directory of Open Access Journals (Sweden)

    Qinghe Zheng

    2015-10-01

    Full Text Available The rhodium (Rh component in automotive three way catalysts (TWC experiences severe thermal deactivation during fuel shutoff, an engine mode (e.g., at downhill coasting used for enhancing fuel economy. In a subsequent switch to a slightly fuel rich condition, in situ catalyst regeneration is accomplished by reduction with H2 generated through steam reforming catalyzed by Rh0 sites. The present work reports the effects of the two processes on the activity and properties of 0.5% Rh/Al2O3 and 0.5% Rh/CexOy-ZrO2 (CZO as model catalysts for Rh-TWC. A very brief introduction of three way catalysts and system considerations is also given. During simulated fuel shutoff, catalyst deactivation is accelerated with increasing aging temperature from 800 °C to 1050 °C. Rh on a CZO support experiences less deactivation and faster regeneration than Rh on Al2O3. Catalyst characterization techniques including BET surface area, CO chemisorption, TPR, and XPS measurements were applied to examine the roles of metal-support interactions in each catalyst system. For Rh/Al2O3, strong metal-support interactions with the formation of stable rhodium aluminate (Rh(AlO2y complex dominates in fuel shutoff, leading to more difficult catalyst regeneration. For Rh/CZO, Rh sites were partially oxidized to Rh2O3 and were relatively easy to be reduced to active Rh0 during regeneration.

  2. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  3. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    Science.gov (United States)

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  4. Mechanised packing for longwall coal faces. Monolithic packing and powered supports for the packhole

    Energy Technology Data Exchange (ETDEWEB)

    Carr, F; Kitching, F

    1978-11-01

    If full advantage is to be taken of the great advances that have taken place in power loading and powered support at the coalface, other operations in that vicinity must be similarly mechanised and automated. The gateside packing is one of the most important of these ancillary operations on the longwall face, and in previous articles F. Carr and F. Kitching, National Coal Board Headquarters, Coalface Operations Mining Engineers have given a very comprehensive resume of the present situation. Subjects covered include the requirements of mechanised packing, the parameters involved, the various working arrangements, the different systems of gate-ends, the types of equipment that are being used, their characteristics, the spread of their application, and the results obtained from them. In this article the authors conclude their survey by dealing with dirt/cement and anhydrite packing, by taking a hard look at powered supports for the packhole, and by expressing their views on the way mechanised packing may be expected to develop in the future.

  5. Hypostatic jammed packings of frictionless nonspherical particles

    OpenAIRE

    VanderWerf, Kyle; Jin, Weiwei; Shattuck, Mark D.; O'Hern, Corey S.

    2017-01-01

    We perform computational studies of static packings of a variety of nonspherical particles including circulo-lines, circulo-polygons, ellipses, asymmetric dimers, and dumbbells to determine which shapes form hypostatic versus isostatic packings and to understand why hypostatic packings of nonspherical particles can be mechanically stable despite having fewer contacts than that predicted from na\\"ive constraint counting. To generate highly accurate force- and torque-balanced packings of circul...

  6. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.

  7. New Structured Packing CUB for Purification of Exhaust Gases

    Directory of Open Access Journals (Sweden)

    Irina Novikova

    2016-10-01

    Full Text Available New structured packing for heat and mass transfer processes named CUB is presented in our article. The packing can be applied in packed towers for exhaust gas cleaning instead random packing, for example, rings type that are the most used in such processes. The advantages of the new packing over random packing are lower pressure drop, capability of purification and as a consequence long-term service of the packing. The researches of intensity of liquid-phase mass-transfer in packed bed depending on liquid spray rate and gas velocity were carried out. Obtained data show that packing CUB is more effective than the most popular type of structured packing under all other conditions being equal. As experimental data shown heat transfer coefficient was up by 17% and mass transfer coefficient was up by 51%. We found out optimal geometry of cross section of the new packing, namely, number of elements and parameters of one element. The new construction of structured packing is applicable for both type of column cross-section round and square.

  8. Development of an effective valve packing program

    Energy Technology Data Exchange (ETDEWEB)

    Hart, K.A.

    1996-12-01

    Current data now shows that graphite valve packing installed within the guidance of a controlled program produces not only reliable stem sealing but predictable running loads. By utilizing recent technological developments in valve performance monitoring for both MOV`s and AOV`s, valve packing performance can be enhanced while reducing maintenance costs. Once known, values are established for acceptable valve packing loads, the measurement of actual valve running loads via the current MOV/AOV diagnostic techniques can provide indication of future valve stem sealing problems, improper valve packing installation or identify the opportunity for valve packing program improvements. At times the full benefit of these advances in material and predictive technology remain under utilized due to simple past misconceptions associated with valve packing. This paper will explore the basis for these misconceptions, provide general insight into the current understanding of valve packing and demonstrate how with this new understanding and current valve diagnostic equipment the key aspects required to develop an effective, quality valve packing program fit together. The cost and operational benefits provided by this approach can be significant impact by the: elimination of periodic valve repacking, reduction of maintenance costs, benefits of leak-free valve operation, justification for reduced Post Maintenance Test Requirements, reduced radiation exposure, improved plant appearance.

  9. Random packing of digitized particles

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.

    2013-01-01

    The random packing of regularly and irregularly shaped particles has been studied extensively. Within this paper, packing is studied from the perspective of digitized particles. These digitized particles are developed for and used in cellular automata systems, which are employed for the simple

  10. Random packing of digitized particles

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos

    2012-01-01

    The random packing of regularly and irregularly shaped particles has been studied extensively. Within this paper, packing is studied from the perspective of digitized particles. These digitized particles are developed for and used in cellular automata systems, which are employed for the simple

  11. BNGS B valve packing program

    International Nuclear Information System (INIS)

    Cumming, D.

    1995-01-01

    The Bruce B Valve Packing Program began in 1987. The early history and development were presented at the 1992 International CANDU Maintenance conference. This presentation covers the evolution of the Bruce B Valve Packing Program over the period 1992 to 1995. (author)

  12. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2008-01-01

    Coauthored by one of the creators of the most efficient space packing solution, the Weaire-Phelan structure, The Pursuit of Perfect Packing, Second Edition explores a problem of importance in physics, mathematics, chemistry, biology, and engineering: the packing of structures. Maintaining its mathematical core, this edition continues and revises some of the stories from its predecessor while adding several new examples and applications. The book focuses on both scientific and everyday problems ranging from atoms to honeycombs. It describes packing models, such as the Kepler conjecture, Voronoï decomposition, and Delaunay decomposition, as well as actual structure models, such as the Kelvin cell and the Weaire-Phelan structure. The authors discuss numerous historical aspects and provide biographical details on influential contributors to the field, including emails from Thomas Hales and Ken Brakke. With examples from physics, crystallography, engineering, and biology, this accessible and whimsical bo...

  13. Electrochemical removal of copper ions from dilute solutions using packed bed electrode. Part І

    Directory of Open Access Journals (Sweden)

    I.A. Khattab

    2013-06-01

    Full Text Available Removal of some hazardous waste like copper from effluent streams has an industrial importance. In this field, this paper is directed towards electrochemical removal of copper ions from sulfate solution using packed bed electrode. The cathode packing is in static mode, consisted of graphite particles, with mean particle size equal to 0.125 cm. The high surface area of this cell is expected to give high current efficiency and removal percent. The effect of current density and liquid flow rate were tested. Experimental results obtained indicate that the efficiencies are in direct proportional with current density while inversely proportional with liquid flow rate. It was observed that, using this cell was effective in reducing copper concentration to less than 4 mg/l with R.E of 96.2% during 30 min electrolysis time.

  14. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  15. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  16. Experimental Study on Pressure Drop and Flow Dispersion in Packed Bed of Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Ruya Petric Marc

    2018-01-01

    Full Text Available The use of conventional correlation for pressure drop and dispersion coefficient calculation may result in inaccurate values for zeolite packed bed as the correlations are generally developed for regularly shaped and uniformly sized particles. To support the research on the application of modified natural zeolite as tar cracking catalyst, the research on the hydrodynamic behaviour of zeolite packed bed has been conducted. Experiments were carried out using a glass column with diameter of 37.8 mm. Natural zeolite with particle size of about 2.91 to 6.4 mm was applied as packing material in the column, and the bed height was varied at 9, 19 and 29 cm. Air was used as the fluid that flows through the bed and nitrogen was used as a tracer for residence time distribution determination. Air flow rates were in the range of 20 to 100 mL/s which correspond to the laminar-transitional flow regime. The pressure drops through the bed were in the range of 1.7 to 95.6 Pa, depending on the air flow rate and bed height. From these values, the parameters in the Ergun equation were estimated, taking into account the contribution by wall effect when the ratio of column to particle diameter is low. The viscous and inertial term constants in the Ergun equation calculated ranges from 179 to 199 and 1.41 to 1.47 respectively while the particle sphericity ranges from 0.56 to 0.59. The reactor Peclet number were determined to range from 5.2 to 5.5, which indicated significant deviation from a plug flow condition.

  17. 7 CFR 982.11 - Pack.

    Science.gov (United States)

    2010-01-01

    ... according to size, internal quality, and external appearance and condition of hazelnuts packed in accordance... 7 Agriculture 8 2010-01-01 2010-01-01 false Pack. 982.11 Section 982.11 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and...

  18. Deterministic indexing for packed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye

    2017-01-01

    Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time...... or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet σ...

  19. Partial oxidation of dimethyl ether using the structured catalyst Rh/Al2O3/Al prepared through the anodic oxidation of aluminum.

    Science.gov (United States)

    Yu, B Y; Lee, K H; Kim, K; Byun, D J; Ha, H P; Byun, J Y

    2011-07-01

    The partial oxidation of dimethyl ether (DME) was investigated using the structured catalyst Rh/Al2O3/Al. The porous Al2O3 layer was synthesized on the aluminum plate through anodic oxidation in an oxalic-acid solution. It was observed that about 20 nm nanopores were well developed in the Al2O3 layer. The thickness of Al2O3 layer can be adjusted by controlling the anodizing time and current density. After pore-widening and hot-water treatment, the Al2O3/Al plate was calcined at 500 degrees C for 3 h. The obtained delta-Al2O3 had a specific surface area of 160 m2/g, making it fit to be used as a catalyst support. A microchannel reactor was designed and fabricated to evaluate the catalytic activity of Rh/Al2O3/Al in the partial oxidation of DME. The structured catalyst showed an 86% maximum hydrogen yield at 450 degrees C. On the other hand, the maximum syngas yield by a pack-bed-type catalyst could be attained by using a more than fivefold Rh amount compared to that used in the structured Rh/Al2O3/Al catalyst.

  20. Development and integration of a LabVIEW-based modular architecture for automated execution of electrochemical catalyst testing.

    Science.gov (United States)

    Topalov, Angel A; Katsounaros, Ioannis; Meier, Josef C; Klemm, Sebastian O; Mayrhofer, Karl J J

    2011-11-01

    This paper describes a system for performing electrochemical catalyst testing where all hardware components are controlled simultaneously using a single LabVIEW-based software application. The software that we developed can be operated in both manual mode for exploratory investigations and automatic mode for routine measurements, by using predefined execution procedures. The latter enables the execution of high-throughput or combinatorial investigations, which decrease substantially the time and cost for catalyst testing. The software was constructed using a modular architecture which simplifies the modification or extension of the system, depending on future needs. The system was tested by performing stability tests of commercial fuel cell electrocatalysts, and the advantages of the developed system are discussed. © 2011 American Institute of Physics

  1. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials

  2. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander; Hö binger, Mathias; Wallner, Johannes; Pottmann, Helmut

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.

  3. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-12-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.

  4. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.

  5. Packing circles and spheres on surfaces

    KAUST Repository

    Schiftner, Alexander; Hö binger, Mathias; Wallner, Johannes; Pottmann, Helmut

    2009-01-01

    Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.

  6. Packing configuration performance for small stem diameters

    International Nuclear Information System (INIS)

    Aikin, J.A.; Spence, C.G.; Cumming, D.

    1997-01-01

    The extensive use of graphite packing and its excellent track record for large isolating valves in CANDU, Primary Heat Transfer (PHT) systems has resulted in an increased application of graphite packing on the conventional side. Many of these applications are in air operated valves (AOVs) where the packing sets are used on small stem diameters (<1 inch) with frequent short-cycling strokes (± 10% of full stroke). The direct application of the proven packing configurations for large isolated valves to control valve application has generated problems such as stiction, packing wear and, in isolated cases, stem stall. To address this issue, a test program was conducted at AECL, CRL by MED branch. The testing showed that by reconfiguring the packing sets and using PTFE wafers reductions in stem friction of 50% at ambient conditions, a 3 fold at hot conditions are achievable. The test program also demonstrated benefits gained in packing wear with different stem roughness finishes and the potential need to exercise small stems valves that see less than full stroke cycling. The paper describes the tests results and provides field support experience. (author)

  7. Effect of ZIF-8 Crystal Size on the O2 Electro-Reduction Performance of Pyrolyzed Fe–N–C Catalysts

    Directory of Open Access Journals (Sweden)

    Vanessa Armel

    2015-07-01

    Full Text Available The effect of ZIF-8 crystal size on the morphology and performance of Fe–N–C catalysts synthesized via the pyrolysis of a ferrous salt, phenanthroline and the metal-organic framework ZIF-8 is investigated in detail. Various ZIF-8 samples with average crystal size ranging from 100 to 1600 nm were prepared. The process parameters allowing a templating effect after argon pyrolysis were investigated. It is shown that the milling speed, used to prepare catalyst precursors, and the heating mode, used for pyrolysis, are critical factors for templating nano-ZIFs into nano-sized Fe–N–C particles with open porosity. Templating could be achieved when combining a reduced milling speed with a ramped heating mode. For templated Fe–N–C materials, the performance and activity improved with decreased ZIF-8 crystal size. With the Fe–N–C catalyst templated from the smallest ZIF-8 crystals, the current densities in H2/O2 polymer electrolyte fuel cell at 0.5 V reached ca. 900 mA cm−2, compared to only ca. 450 mA cm−2 with our previous approach. This templating process opens the path to a morphological control of Fe–N–C catalysts derived from metal-organic frameworks which, when combined with the versatility of the coordination chemistry of such materials, offers a platform for the rational design of optimized Metal–N–C catalysts.

  8. Bidispersed Sphere Packing on Spherical Surfaces

    Science.gov (United States)

    Atherton, Timothy; Mascioli, Andrew; Burke, Christopher

    Packing problems on spherical surfaces have a long history, originating in the classic Thompson problem of finding the ground state configuration of charges on a sphere. Such packings contain a minimal number of defects needed to accommodate the curvature; this is predictable using the Gauss-Bonnet theorem from knowledge of the topology of the surface and the local symmetry of the ordering. Famously, the packing of spherical particles on a sphere contains a 'scar' transition, where additional defects over those required by topology appear above a certain critical number of particles and self-organize into chains or scars. In this work, we study the packing of bidispersed packings on a sphere, and hence determine the interaction of bidispersity and curvature. The resultant configurations are nearly crystalline for low values of bidispersity and retain scar-like structures; these rapidly become disordered for intermediate values and approach a so-called Appollonian limit at the point where smaller particles can be entirely accommodated within the voids left by the larger particles. We connect our results with studies of bidispersed packings in the bulk and on flat surfaces from the literature on glassy systems and jamming. Supported by a Cottrell Award from the Research Corporation for Science Advancement.

  9. Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal.

    Science.gov (United States)

    Sun, Yongli; Zhou, Libo; Zhang, Luhong; Sui, Hong

    2012-01-01

    A wire-mesh catalyst coated by La0.8Sr0.2MnO3 was combined with a dielectric barrier discharge (DBD) reactor for toluene removal at atmospheric pressure. It was found that toluene removal efficiency and carbon dioxide selectivity were enhanced in the catalytic packed-bed reactor. In addition, ozone and nitrogen monoxide from the gas effluent byproducts decreased. This is the first time that ultrasound combined with plasma has been used for toluene removal. A synergistic effect on toluene removal was observed in the plasma-assisted ultrasound system. At the same time, the system increased toluene conversion and reduced ozone emission.

  10. Influence of γ-ray radiation on mechanical character of packing

    International Nuclear Information System (INIS)

    Tashiro, Hisao; Sakuma, Toshio

    1989-01-01

    This paper describes the results of investigation on coefficient of friction, normal to axial pressure-ratio and compressed strain of packings influenced by γ-ray irradiation, which are necessary to evaluate the mechanical characteristics of packing, using packings made of seven kinds of new materials and conventional asbestos packing A. It resulted that graphite packing was less influenced by the γ-ray exposure, whereas carbon-fiber (pitch) packing, tefron-fiber packing and alamid-fiber packing were much influenced as compared with the graphite packing. (author)

  11. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  12. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    Science.gov (United States)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  13. Quasi-human seniority-order algorithm for unequal circles packing

    International Nuclear Information System (INIS)

    Zhu, Dingju

    2016-01-01

    In the existing methods for solving unequal circles packing problems, the initial configuration is given arbitrarily or randomly, but the impact of different initial configurations for existing packing algorithm to the speed of existing packing algorithm solving unequal circles packing problems is very large. The quasi-human seniority-order algorithm proposed in this paper can generate a better initial configuration for existing packing algorithm to accelerate the speed of existing packing algorithm solving unequal circles packing problems. In experiments, the quasi-human seniority-order algorithm is applied to generate better initial configurations for quasi-physical elasticity methods to solve the unequal circles packing problems, and the experimental results show that the proposed quasi-human seniority-order algorithm can greatly improve the speed of solving the problem.

  14. 48 CFR 552.211-87 - Export packing.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Export packing. 552.211-87... FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 552.211-87 Export packing. As prescribed in 511.204(b)(7), insert the following clause: Export Packing (JAN 2010) (a...

  15. Co-deposition of Pt and ceria anode catalyst in supercritical carbon dioxide for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    You, Eunyoung; Guzmán-Blas, Rolando; Nicolau, Eduardo; Aulice Scibioh, M.; Karanikas, Christos F.; Watkins, James J.; Cabrera, Carlos R.

    2012-01-01

    Pt and mixed Pt-ceria catalysts were deposited onto gas diffusion layers using supercritical fluid deposition (SFD) to fabricate thin layer electrodes for direct methanol fuel cells. Dimethyl (1,5-cyclooctadiene) platinum (II) (CODPtMe 2 ) and tetrakis (2,2,6,6-tetramethyl 3,5-heptanedionato) cerium (IV) (Ce(tmhd) 4 ) were used as precursors. Hydrogen-assisted Pt deposition was performed in compressed carbon dioxide at 60 °C and 17.2 MPa to yield high purity Pt on carbon-black based gas diffusion layers. During the preparation of the mixed Pt-ceria catalyst, hydrogen reduction of CODPtMe 2 to yield Pt catalyzed the deposition of ceria from Ce(tmhd) 4 enabling co-deposition at 150 °C. The catalyst layers were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive spectral (SEM-EDS) analyses. Their electrochemical performance toward methanol oxidation was examined in half cell mode using a three electrode assembly as well as in fuel cell mode. The thin layer electrodes formed via SFD exhibited higher performance in fuel cell operations compared to those prepared by the conventional brush-paint method. Furthermore, the Pt-ceria catalyst with an optimized composition exhibited greater methanol oxidation activity than pure platinum.

  16. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  17. Shelving 6 pack crisps

    OpenAIRE

    Garriga Torrecillas, Núria; Otrubova, Natalie; Worm, Robert; Larroque, Thibaut

    2017-01-01

    6-Pack crisps are one of the main products sold by PepsiCo using the standard shelf storage options offered by Tesco PLC. While presenting specific packaging involves a multitude of variables. This report focusses on cognitive recognition, brand confusion and product attractiveness. PepsiCo asked the research team to investigate innovative ways of presenting the crisp 6-pack variant on instore displays. research shows that attraction is crucial in the form of expected rewards. The combination...

  18. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  19. Does Post Septoplasty Nasal Packing Reduce Complications?

    Directory of Open Access Journals (Sweden)

    Bijan Naghibzadeh

    2011-01-01

    Full Text Available The main issues in nasal surgery are to stabilize the nose in the good position after surgery and preserve the cartilages and bones in the favorable situation and reduce the risk of deviation recurrence. Also it is necessary to avoid the synechia formation, nasal valve narrowing, hematoma and bleeding. Due to the above mentioned problems and in order to solve and minimize them nasal packing, nasal splint and nasal mold have been advised. Patients for whom the nasal packing used may faced to some problems like naso-pulmonary reflex, intractable pain, sleep disorder, post operation infection and very dangerous complication like toxic shock syndrome. We have two groups of patients and three surgeons (one of the surgeons used post operative nasal packing in his patients and the two others surgeons did not.Complications and morbidities were compared in these two groups. Comparing the two groups showed that the rate of complication and morbidities between these two groups were same and the differences were not valuable, except the pain and discomfort post operatively and at the time of its removal. Nasal packing has several risks for the patients while its effects are not studied. Septoplasty can be safely performed without postoperative nasal packing. Nasal packing had no main findings that compensated its usage. Septal suture is one of the procedures that can be used as alternative method to nasal packing. Therefore the nasal packing after septoplasty should be reserved for the patients with increased risk of bleeding.

  20. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    NARCIS (Netherlands)

    Ali Imran, A.; Bramer, Eduard A.; Seshan, Kulathuiyer; Brem, Gerrit

    2016-01-01

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post

  1. To compare efficacy & discomfort in posterior nasal packing with foley's catheters versus bipp gauze packing in cases of posterior epistaxis

    International Nuclear Information System (INIS)

    Khan, M.A.; Ahmed, A.

    2015-01-01

    To compare efficacy and discomfort in posterior nasal packing with Foley's catheters versus BIPP gauze packing in cases of posterior epistaxis. Study Design: Randomized controlled trial. Place and Duration of Study: Combined Military Hospital (CMH) Kharian from October 2011 to October 2013. Material and Methods: A total of 206 patients of posterior epistaxis were included in the study through non-probability convenience sampling and randomly divided in two groups of 103 each. In group A patients were treated by posterior nasal packing with Foley's catheter and in group B patients were treated by posterior nasal packing with BIPP gauze and results in terms of control of epistaxis and discomfort during pack insertion, while the packs were in situ and pack removal, based on VAS (Visual Analogue Scale) were observed. Results: Average age in group A was 52.64 years (SD=9.57) and in group B it was 50.27 years (SD ± 10.13). There were 71 (68.9%) males in group A while 67 (65%) males in group B. During posterior nasal pack insertion, the mean pain score in Group A was 6.21 (SD ± I.13) and in Group B was 7.43 (SD ± 1.19). The mean pain score with the pack in situ was 4.27 (SD ± 0.08) in Group A versus 4.76 (SD ± 0.09) Group B. Similarly pack removal was also more painful in group B than group A (6.14 ± 0.91 vs 6.89 ± 1.09) (p =0.000). In the group A, 31 (30.1%) patients had rebleeding after pack removal, out of which 9 (8.7%) had significant bleeding requiring repacking. In 22 (21.4%) cases there was mild bleeding which settled without repacking. In group B 22 (21.4%) patients had rebleeding after pack removal, out of which 5 (4.7%) had significant bleeding requiring repacking. Conclusion: It is concluded that posterior nasal packing with BIPP gauze pack is effective for controlling posterior epistaxis but causes more discomfort to the patients as compared to Foley's catheter packing. (author)

  2. A Quantitative Study on Packing Density and Pozzolanic Activity of Cementitious Materials Based on the Compaction Packing Model

    International Nuclear Information System (INIS)

    Gong, Jianqing; Chou, Kai; Huang, Zheng Yu; Zhao, Minghua

    2014-01-01

    A brief introduction to the theoretical basis of compaction packing model (CPM) and an over-view of the principle of the specific strength method provided the starting point of this study. Then, research on quantitative relations was carried out to find the correlation between the contribution rate of the pozzolanic activity and the contribution value of packing density when CPM was applied to fine powder mixture systems. The concept of the contribution value of the packing density being in direct correspondence with the contribution rate was proved by the compressive strength results and SEM images. The results indicated that the variation rule of the contribution rate of the pozzolanic activity is similar to that of the contribution value of packing density as calculated by CPM. This means the contribution value of the packing density could approximately simulate the change tendency of the contribution rate of the pozzolanic activity, which is of significant value for the future of mix designs for high and ultra-high performance concrete

  3. Modeling and simulation of a packed bed reactor for hydrogen by methanol steam reforming

    International Nuclear Information System (INIS)

    Aboudheir, A.; Idem, R.

    2004-01-01

    'Full text:' The performance of a catalytic packed bed tubular reactor for hydrogen production depends on mass transport characteristics and temperature distribution in the reactor. To accurately predict this performance, a rigorous numerical model has been developed based on coupled mass, energy, and momentum balance equations in cylindrical coordinates. This comprehensive model takes into account the variations of the concentration and temperature in both the axial and radial directions as well as the pressure drop along the packed reactor. Also, experimental measurements for hydrogen production were collected using a manganese-promoted co-precipitated Cu-Al catalyst for methanol-steam reforming in a micro-reactor having 10 mm i.d. and 460 mm overall length. The operating temperature ranged from 443 to 523 K and the space-time ranged from 0.1 to 2.5 kg cat h/kmol CH3OH. The simulation results were found to be in close agreement with the experimental data over the various operating conditions. This confirms the validity of both the numerical model of this work and our previous published kinetics models for this reaction system. In addition, the model formulation is applicable to handle reactions, not only for the microreactor presented in this work, but also, for other laboratory size and industrial scale processes for hydrogen production by hydrocarbon reformation. (author)

  4. Effect of catalyst preparation on the yield of carbon nanotube growth

    International Nuclear Information System (INIS)

    Escobar, Mariano; Rubiolo, Gerardo; Candal, Roberto; Goyanes, Silvia

    2009-01-01

    Multi-wall carbon nanotubes (MWCNTs) were synthesized by catalytic chemical vapor deposition (CVD) on catalytic iron nanoparticles dispersed in a silica matrix, prepared by sol gel method. In this contribution, variation of gelation condition on catalyst structure and its influence on the yield of carbon nanotubes growth was studied. The precursor utilized were tetraethyl-orthosilicate and iron nitrate. The sols were dried at two different temperatures in air (25 or 80 deg. C) and then treated at 450 deg. C for 10 h. The xerogels were introduced into the chamber and reduced in a hydrogen/nitrogen (10%v/v) atmosphere at 600 deg. C. MWCNTs were formed by deposition of carbon atoms from decomposition of acetylene at 700 deg. C. The system gelled at RT shows a yield of 100% respect to initial catalyst mass whereas the yield of that gelled at 80 deg. C was lower than 10%. Different crystalline phases are observed for both catalysts in each step of the process. Moreover, TPR analysis shows that iron oxide can be efficiently reduced to metallic iron only in the system gelled at room temperature. Carbon nanotubes display a diameter of about 25-40 nm and several micron lengths. The growth mechanism of MWCNTs is base growth mode for both catalysts.

  5. Effect of catalyst preparation on the yield of carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Mariano, E-mail: mescobar@df.uba.a [Dep. Quimica Inorganica, Analitica y Quimica Fisica, FCEyN, UBA, Ciudad Universitaria (1428), Bs As (Argentina); LP and MC, Dep. Fisica, FCEyN, UBA (Argentina); Rubiolo, Gerardo [Unidad de Actividad Materiales, CNEA, Av Gral Paz 1499, San Martin (1650), Bs As (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Candal, Roberto [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Instituto de Fisico-quimica de Materiales, Ambiente y Energia (INQUIMAE), CONICET - UBA (Argentina); Goyanes, Silvia [LP and MC, Dep. Fisica, FCEyN, UBA (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2009-10-01

    Multi-wall carbon nanotubes (MWCNTs) were synthesized by catalytic chemical vapor deposition (CVD) on catalytic iron nanoparticles dispersed in a silica matrix, prepared by sol gel method. In this contribution, variation of gelation condition on catalyst structure and its influence on the yield of carbon nanotubes growth was studied. The precursor utilized were tetraethyl-orthosilicate and iron nitrate. The sols were dried at two different temperatures in air (25 or 80 deg. C) and then treated at 450 deg. C for 10 h. The xerogels were introduced into the chamber and reduced in a hydrogen/nitrogen (10%v/v) atmosphere at 600 deg. C. MWCNTs were formed by deposition of carbon atoms from decomposition of acetylene at 700 deg. C. The system gelled at RT shows a yield of 100% respect to initial catalyst mass whereas the yield of that gelled at 80 deg. C was lower than 10%. Different crystalline phases are observed for both catalysts in each step of the process. Moreover, TPR analysis shows that iron oxide can be efficiently reduced to metallic iron only in the system gelled at room temperature. Carbon nanotubes display a diameter of about 25-40 nm and several micron lengths. The growth mechanism of MWCNTs is base growth mode for both catalysts.

  6. Effect of coke and catalyst structure on oxidative regeneration of hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1991-04-01

    Two industrial hydroprocessing catalysts used for upgrading an atmospheric residue and a gas oil, respectively were regenerated in a fixed bed using air and 2 vol.% O{sub 2}+N{sub 2} balance mixture. The regeneration in air resulted in a significant sintering of the catalyst's material. The surface area of catalysts regenerated in 2 vol.% O{sub 2} mixture was similar to that of fresh catalysts, whereas a significant loss of surface area was observed after regeneration in air. The X-ray diffraction pattern of catalysts regenerated in 2 vol.% O{sub 2}+N{sub 2} balance mixture was also similar to that of fresh catalysts. 22 refs., 9 figs., 7 tabs.

  7. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  8. The influence of TiO2 and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor

    International Nuclear Information System (INIS)

    Wang Lizhang; Zhao Yuemin; Fu Jianfeng

    2008-01-01

    The electrochemical oxidation of phenolic wastewater in a lab-scale reactor, packed into granular activated carbon (GAC) with Ti/SnO 2 anodes and stainless steel cathodes, was interpreted in this study. GAC saturated rapidly if it was only used as sorbent, but application of suitable electric energy for the system simultaneously could recover the adsorption ability of GAC and maintain the continuous running effectively. The titanium dioxide (TiO 2 ) as catalyst and airflow were also applied to the electrochemical reactor to examine the enhancement for phenol oxidation process. Results revealed that the electrochemical degradation of phenol could be reasonably described by first-order kinetics. In addition, it was illustrated that acid region, increased voltage, more dosage of TiO 2 and higher aeration intensity were all beneficial parameters for phenol oxidation rates. By inspecting the relationship between the rate constants (k) and influencing factors, respectively, an overall kinetic model for phenol oxidation was proposed. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of phenol concentration effluent and better design of the packed bed reactor

  9. Power Packing

    Centers for Disease Control (CDC) Podcasts

    2011-08-16

    In this podcast for kids, the Kidtastics talk about how to pack a lunch safely, to help keep you from getting sick.  Created: 8/16/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/16/2011.

  10. Decontamination of pesticide packing using ionizing radiation

    International Nuclear Information System (INIS)

    Duarte, C.L.; Mori, M.N.; Kodama, Yasko; Oikawa, H.; Sampa, M.H.O.

    2007-01-01

    The Brazilian agriculture activities have consumed about 288,000 tons of pesticides per year conditioned in about 107,000,000 packing with weight of approximately 23,000 tons. The discharge of empty plastic packing of pesticides can be an environmental concern causing problems to human health, animals, and plants if done without inspection and monitoring. The objective of this work is to study the ionizing radiation effect in the main pesticides used in Brazil for plastic packing decontamination. Among the commercial pesticides, chlorpyrifos has significant importance because of its wide distribution and extensive use and persistence. The radiation-induced degradation of chlorpyrifos in liquid samples and in polyethylene pack was studied by gamma radiolysis. Packing of high-density polyethylene (HDPE) three layer coextruded, named COEX, contaminated with chlorpyrifos, were irradiated using both a multipurpose Co-60 gamma irradiator and a gamma source with 5000 Ci total activity Gamma cell type. The chemical analysis of the chlorpyrifos was made using a gas chromatography associated to the Mass Spectrometry-GCMS from Shimadzu Model QP 5000. Gamma radiation was efficient for removing chlorpyrifos from the plastic packing, in all studied cases

  11. Decontamination of pesticide packing using ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, C.L. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP Av. Lineu Prestes 2.242, 05508-900, Sao Paulo, SP (Brazil)], E-mail: clduarte@ipen.br; Mori, M.N.; Kodama, Yasko; Oikawa, H.; Sampa, M.H.O. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP Av. Lineu Prestes 2.242, 05508-900, Sao Paulo, SP (Brazil)

    2007-11-15

    The Brazilian agriculture activities have consumed about 288,000 tons of pesticides per year conditioned in about 107,000,000 packing with weight of approximately 23,000 tons. The discharge of empty plastic packing of pesticides can be an environmental concern causing problems to human health, animals, and plants if done without inspection and monitoring. The objective of this work is to study the ionizing radiation effect in the main pesticides used in Brazil for plastic packing decontamination. Among the commercial pesticides, chlorpyrifos has significant importance because of its wide distribution and extensive use and persistence. The radiation-induced degradation of chlorpyrifos in liquid samples and in polyethylene pack was studied by gamma radiolysis. Packing of high-density polyethylene (HDPE) three layer coextruded, named COEX, contaminated with chlorpyrifos, were irradiated using both a multipurpose Co-60 gamma irradiator and a gamma source with 5000 Ci total activity Gamma cell type. The chemical analysis of the chlorpyrifos was made using a gas chromatography associated to the Mass Spectrometry-GCMS from Shimadzu Model QP 5000. Gamma radiation was efficient for removing chlorpyrifos from the plastic packing, in all studied cases.

  12. Supported catalyst systems and method of making biodiesel products using such catalysts

    Science.gov (United States)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  13. Structured packing: an opportunity for energy savings

    International Nuclear Information System (INIS)

    Chavez T, R.H.; Guadarrama G, J.J.

    1996-01-01

    This work emphasizes the advantages about the use of structured packing. This type of packings allows by its geometry to reduce the processing time giving energy savings and throw down the production costs in several industries such as heavy water production plants, petrochemical industry and all industries involved with separation processes. There is a comparative results of energy consumption utilizing the structured vs. Raschig packings. (Author)

  14. The concept, reality and utility of single-site heterogeneous catalysts (SSHCs).

    Science.gov (United States)

    Thomas, John Meurig

    2014-05-07

    Very substantial advances have recently been made in the design and construction of solid catalysts and in elucidating both their mode of operation and the factors that determine their selectivity and longevity. This Perspective explains how and why such progress has been made. One important factor, the deployment of single-site heterogeneous and enzymatic catalysts, used either alone or in conjunction with other strategies, including metabolic engineering, enables a multitude of new products (for example, environmentally clean jet fuel) to be readily manufactured. In a practical sense SSHCs enable the advantages of homogeneous and to a lesser degree enzymatic catalysts to be united with those of heterogeneous ones. With the aid of the vastly increasing families of nanoporous solids, desired catalytically active sites may be engineered in atomic detail on their inner, accessible surfaces, thereby opening up new possibilities in synthetic organic chemistry - as in the smooth formation of C-C and C[double bond, length as m-dash]N bonds in a number of intermolecular reactions - as well as in photocatalysts and in fluidized catalytic cracking of hydrocarbons.

  15. 27 CFR 24.308 - Bottled or packed wine record.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bottled or packed wine... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.308 Bottled or packed wine record. A proprietor who bottles, packs, or receives bottled or packed beverage wine in bond shall...

  16. Packing stress reduction in polymer-lipid monolayers at the air-water interface: An X-ray grazing-incidence diffraction and reflectivity study

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, T.L.; Majewski, J.; Howes, P.B.; Kjaer, K.; Nahmen, A. von; Lee, K.Y.C.; Ocko, B.; Israelachvili, J.N.; Smith, G.S.

    1999-08-25

    Using synchrotron grazing-incidence X-ray diffraction (GIXD) and reflectivity (XR), the authors have determined the in-plane and out-of-plane structure of phospholipid monolayers at the air-water interface as a function of hydrophilic lipid headgroup size. Di-stearoyl-phosphatidyl-ethanolamine (DSPE) lipid monolayers were systematically modified by chemically grafting hydrophilic poly(ethylene glycol) (PEG) chains of MW = 90 g/mol (2 ethylene oxide, EO, units), MW = 350 g/mol (8 EO units), and MW = 750 g/mol (17 EO units) to the lipid headgroups. The monolayers were studied in the solid phase at a surface pressure of 42 mN/m. At these high lipid packing densities, the PEG chains are submerged in the water subphase. The increased packing stresses from these bulky polymer headgroups distort the unit cell and the in-plane packing modes of the monolayers, leading to large out-of-plane alterations and staggering of the lipid molecules. Surprisingly, a change in the molecular packing of the monolayer toward higher packing densities (lower area per molecule) was observed on increasing the PEG MW to 750 g/mol (17 EO units). This rearrangement of the monolayer structure may be due to a conformational change in the PEG chains.

  17. A Switchable Gold Catalyst by Encapsulation in a Self-Assembled Cage

    KAUST Repository

    Jans, Anne C. H.

    2016-08-19

    Dinuclear gold complexes have the ability to interact with one or more substrates in a dual-activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold-based catalytic system by site-isolation of mononuclear gold complexes by selective encapsulation. The typical dual-activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation. This strategy can be used as a switch (on/off) for a catalytic reaction and also permits reversible control over the product distribution during the course of a reaction.

  18. A Switchable Gold Catalyst by Encapsulation in a Self-Assembled Cage

    KAUST Repository

    Jans, Anne C. H.; Gó mez-Suá rez, Adriá n; Nolan, Steven P.; Reek, Joost N. H.

    2016-01-01

    Dinuclear gold complexes have the ability to interact with one or more substrates in a dual-activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold-based catalytic system by site-isolation of mononuclear gold complexes by selective encapsulation. The typical dual-activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation. This strategy can be used as a switch (on/off) for a catalytic reaction and also permits reversible control over the product distribution during the course of a reaction.

  19. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu

    2014-05-01

    An anodic alumina supported Ni-Pt bimetallic plate-type catalyst was prepared by a two-step impregnation method. The trace amount 0.08 wt% of Pt doping efficiently suppressed the nickel particle sintering and improved the nickel oxides reducibility. The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced, which was considered to be resulted from the hydrogen spillover effect over Ni-Pt alloy. In addition, an integrated combustion-reforming reactor was proposed in this study. However, the sintering of the alumina support is still a critical issue for the industrialization of Ni-Pt catalyst. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  20. Hashish Body Packing: A Case Report

    Directory of Open Access Journals (Sweden)

    Manuel Jesus Soriano-Perez

    2009-01-01

    Full Text Available A 42-year-old African male was brought by the police to the emergency department under suspicion of drug smuggling by body-packing. Plain abdominal radiograph showed multiple foreign bodies within the gastrointestinal tract. Contrast-enhanced abdominal CT confirmed the findings, and the patient admitted to have swallowed “balls” of hashish. Body-packing is a recognized method of smuggling drugs across international borders. Body packers may present to the emergency department because of drug toxicity, intestinal obstruction, or more commonly, requested by law-enforcement officers for medical confirmation or exclusion of suspected body packing.

  1. 36 CFR 34.10 - Saddle and pack animals.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Saddle and pack animals. 34... INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.10 Saddle and pack animals. The use of saddle and pack animals is prohibited without a permit from the Superintendent. ...

  2. CoolPack – Simulation tools for refrigeration systems

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal

    1999-01-01

    CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...

  3. Hardfacing and packings for improved valve performance

    International Nuclear Information System (INIS)

    Aikin, J.A.; Patrick, J.N.F.; Inglis, I.

    2003-01-01

    The CANDU Owners Group (COG), Chemistry, Materials and Components (CMC) Program has supported an ongoing program on valve maintenance and performance for several years. An overview is presented of recent work on iron-based hardfacing, packing qualification, friction testing of polytetrafluoroethylene (PTFE) packings, and an investigation of re-torquing valve packing. Based on this program, two new valve-packing materials have been qualified for use in CANDU stations. By doing this, CANDU maintenance can avoid having only one packing qualified for station use, as well as assess the potential impact of the industry trend towards using lower gland loads. The results from corrosion tests by AECL and the coefficient of friction studies at Battelle' s tribology testing facilities on Delcrome 910, an iron-based hardfacing alloy, indicate it is an acceptable replacement for Stellite 6 under certain conditions. This information can be used to update in-line valve purchasing specifications. The renewed interest in friction characteristics, and environmental qualification (EQ) of packing containing PTFE has resulted in a new test program in these areas. The COG-funded valve programs have resulted in modifications to design specifications for nuclear station in-line valves and have led to better maintenance practices and valve reliability. In the end, this means lower costs and cheaper electricity. (author)

  4. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  5. Structural characterization of the packings of granular regular polygons.

    Science.gov (United States)

    Wang, Chuncheng; Dong, Kejun; Yu, Aibing

    2015-12-01

    By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the packing structures are investigated by various structural parameters, including packing fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings of regular polygons.

  6. Max–min Bin Packing Algorithm and its application in nano-particles filling

    International Nuclear Information System (INIS)

    Zhu, Dingju

    2016-01-01

    With regard to existing bin packing algorithms, higher packing efficiency often leads to lower packing speed while higher packing speed leads to lower packing efficiency. Packing speed and packing efficiency of existing bin packing algorithms including NFD, NF, FF, FFD, BF and BFD correlates negatively with each other, thus resulting in the failure of existing bin packing algorithms to satisfy the demand of nano-particles filling for both high speed and high efficiency. The paper provides a new bin packing algorithm, Max–min Bin Packing Algorithm (MM), which realizes both high packing speed and high packing efficiency. MM has the same packing speed as NFD (whose packing speed ranks no. 1 among existing bin packing algorithms); in case that the size repetition rate of objects to be packed is over 5, MM can realize almost the same packing efficiency as BFD (whose packing efficiency ranks No. 1 among existing bin packing algorithms), and in case that the size repetition rate of objects to be packed is over 500, MM can achieve exactly the same packing efficiency as BFD. With respect to application of nano-particles filling, the size repetition rate of nano particles to be packed is usually in thousands or ten thousands, far higher than 5 or 500. Consequently, in application of nano-particles filling, the packing efficiency of MM is exactly equal to that of BFD. Thus the irreconcilable conflict between packing speed and packing efficiency is successfully removed by MM, which leads to MM having better packing effect than any existing bin packing algorithm. In practice, there are few cases when the size repetition of objects to be packed is lower than 5. Therefore the MM is not necessarily limited to nano-particles filling, and can also be widely used in other applications besides nano-particles filling. Especially, MM has significant value in application of nano-particles filling such as nano printing and nano tooth filling.

  7. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  8. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  9. Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement

    International Nuclear Information System (INIS)

    Lee, Dong-Young; Chung, Bum-Jin

    2016-01-01

    This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re d with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu d increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique

  10. Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Young; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re{sub d} with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu{sub d} increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique.

  11. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...

  12. Prevention and suppression of metal packing fires.

    Science.gov (United States)

    Roberts, Mark; Rogers, William J; Sam Mannan, M; Ostrowski, Scott W

    2003-11-14

    Structured packing has been widely used because of large surface area that makes possible columns with high capacity and efficiency. The large surface area also contributes to fire hazards because of hydrocarbon deposits that can easily combust and promote combustion of the thin metal packing materials. Materials of high surface area that can fuel fires include reactive metals, such as titanium, and materials that are not considered combustible, such as stainless steel. Column design and material selection for packing construction is discussed together with employee training and practices for safe column maintenance and operations. Presented also are methods and agents for suppression of metal fires. Guidance for prevention and suppression of metal fires is related to incidents involving packing fires in columns.

  13. Domain Discretization and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles...... to domain discretization problems such as triangulation and unstructured mesh generation techniques. We wish to ask ourselves the question: given a cloud of points in the plane (we restrict ourselves to planar domains), is it possible to construct a circle packing preserving the positions of the vertices...... and constrained meshes having predefined vertices as constraints. A standard method of two-dimensional mesh generation involves conformal mapping of the surface or domain to standardized shapes, such as a disk. Since circle packing is a new technique for constructing discrete conformal mappings, it is possible...

  14. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2000-01-01

    In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, physics, biology, and engineering, including the arrangement of soap bubbles in foam, atoms in a crystal, the architecture of the bee''s honeycomb, and the structure of the Giant''s Causeway. Using an informal style and with key references, the book also includes brief accounts of the lives of many of the scientists who devoted themselves to problems of packing over many centuries, together with wry comments on their efforts. It is an entertaining introduction to the field for both specialists and the more general public.

  15. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance

    DEFF Research Database (Denmark)

    Wang, Ze; Zeng, Ying; Lin, Weigang

    2017-01-01

    In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst...... performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major...... products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol....

  16. Random close packing of hard spheres and disks

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1983-01-01

    A simple definition of random close packing of hard spheres is presented, and the consequences of this definition are explored. According to this definition, random close packing occurs at the minimum packing fraction eta for which the median nearest-neighbor radius equals the diameter of the spheres. Using the radial distribution function at more dilute concentrations to estimate median nearest-neighbor radii, lower bounds on the critical packing fraction eta/sub RCP/ are obtained and the value of eta/sub RCP/ is estimated by extrapolation. Random close packing is predicted to occur for eta/sub RCP/ = 0.64 +- 0.02 in three dimensions and eta/sub RCP/ = 0.82 +- 0.02 in two dimensions. Both of these predictions are shown to be consistent with the available experimental data

  17. Non-PGM cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Consulting, Aiken, SC (United States); Ganesan, P. [Savannah River Consulting, Aiken, SC (United States)

    2017-09-27

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

  18. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    Science.gov (United States)

    Balvin, Manuel; Zheng, Yun

    2014-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid

  19. Tuneabilities of localized electromagnetic modes in random nanostructures for random lasing

    Science.gov (United States)

    Takeda, S.; Obara, M.

    2010-02-01

    The modal characteristics of localized electromagnetic waves inside random nanostructures are theoretically presented. It is crucial to know the tuneabilities of the localized modes systematically for demonstrating a specific random lasing application. By use of FDTD (Finite-Difference Time-Domain) method, we investigated the impulse response of two-dimensional random nanostructures consisting of closely packed cylindrical dielectric columns, and precisely analyzed the localized modes. We revealed the tuneability of the frequency of the localized modes by controlling the medium configurations: diameter, spatial density, and refractive index of the cylinders. Furthermore, it is found to be able to tune the Q (quality) factors of the localized modes dramatically by controlling simply the system size of the entire medium. The observed Q factors of approximately 1.6×104 were exhibited in our random disordered structures.

  20. New iodine filter pack design

    International Nuclear Information System (INIS)

    Blackbee, B.A.

    1977-10-01

    To enable Naval Emergency Monitoring Teams to fulfil their role in the field it was necessary to locate or design a replacement filter pack for the collection of radioactive iodine air samples. Collaboration with the Berkeley Laboratories of the Central Electricity Generating Board provided the necessary starting point for a suitable type of package. Further development by NGTE (West Drayton) yielded the improved filter pack which is the subject of this memorandum. (author)

  1. 36 CFR 1002.16 - Horses and pack animals.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Horses and pack animals. 1002... AND RECREATION § 1002.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of transporting equipment. (b) The use of...

  2. 36 CFR 2.16 - Horses and pack animals.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of transporting...

  3. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  4. Packing Smart

    Centers for Disease Control (CDC) Podcasts

    2011-08-22

    In this podcast for kids, the Kidtastics talk about packing a lunch that's not boring and is full of the power and energy kids need to make it through the day.  Created: 8/22/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/22/2011.

  5. 21 CFR 133.124 - Cold-pack cheese food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cold-pack cheese food. 133.124 Section 133.124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the food...

  6. PENGARUH POROSITAS PACKING STEEL WOOL TERHADAP PRESSURE DROP DIDALAM PACKED BED COLUMN PADA DISTILASI CAMPURAN ETANOL-AMIL-ALKOHOL-AIR

    Directory of Open Access Journals (Sweden)

    Trisna Kumala Dhaniswara

    2016-08-01

    Full Text Available Inventories of petroleum fuels are increasingly depleted and will someday run out. These shortcomings can be overcome by using alternative fuels, such as ethanol. Based on this, it is necessary to research and development of ethanol as a fuel. One way is with a separation in a packed distillation column. This study aims to assess the mass transfer phenomena that occur in the process of distilling a mixture of ethanol-water-amyl alcohol packed in column. In addition, this study aims to optimize temperature and reflux to obtain the highest levels of ethanol. This research method uses packed bed distillation system with the batch process. Feed used is synthetic ethanol, water, and solvent. Solvent used were amyl alcohol. Doing distillation with heating temperature is maintained. Distillation is done in the packing of stainless steel wool. Research carried out in a batch process with a variable temperature of  79°C; 84°C; 91°C; and porosity packing 20%; 30%; 40%; 50%; 60%; 70%; 80%.

  7. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  8. Cell packing structures

    KAUST Repository

    Pottmann, Helmut; Jiang, Caigui; Hö binger, Mathias; Wang, Jun; Bompas, Philippe; Wallner, Johannes

    2015-01-01

    optimization schemes for the computation of quad-based support structures. Hex-dominant structures may be designed via Voronoi tessellations, power diagrams, sphere packings and various extensions of these concepts. Apart from the obvious application as load

  9. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  10. Recent progress in the use of in situ X-ray methods for the study of heterogeneous catalysts in packed-bed capillary reactors

    NARCIS (Netherlands)

    Jacques, S.D.M.; Leynaud, O.; Strusevich, D.; Stukas, P.; Barnes, P.; Sankar, G.; Sheehy, M.; O’Brien, M.G.; Iglesias-Juez, A.; Beale, A.M.

    2009-01-01

    Synchrotron-based X-ray techniques, such as Diffraction and Absorption Spectroscopy (XAS), can be readily employed to study catalysts in action, thereby offering great potential for revealing the mechanism and behaviour of catalytic solids both during preparation and reaction. The continued

  11. Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks.

    Science.gov (United States)

    Agnolin, Ivana; Roux, Jean-Noël

    2007-12-01

    This is the first paper of a series of three, in which we report on numerical simulation studies of geometric and mechanical properties of static assemblies of spherical beads under an isotropic pressure. The influence of various assembling processes on packing microstructures is investigated. It is accurately checked that frictionless systems assemble in the unique random close packing (RCP) state in the low pressure limit if the compression process is fast enough, higher solid fractions corresponding to more ordered configurations with traces of crystallization. Specific properties directly related to isostaticity of the force-carrying structure in the rigid limit are discussed. With frictional grains, different preparation procedures result in quite different inner structures that cannot be classified by the sole density. If partly or completely lubricated they will assemble like frictionless ones, approaching the RCP solid fraction Phi_{RCP} approximately 0.639 with a high coordination number: z* approximately =6 on the force-carrying backbone. If compressed with a realistic coefficient of friction mu=0.3 packings stabilize in a loose state with Phi approximately 0.593 and z* approximately =4.5 . And, more surprisingly, an idealized "vibration" procedure, which maintains an agitated, collisional regime up to high densities results in equally small values of z* while Phi is close to the maximum value Phi_{RCP}. Low coordination packings have a large proportion (>10%) of rattlers--grains carrying no force--the effect of which should be accounted for on studying position correlations, and also contain a small proportion of localized "floppy modes" associated with divalent grains. Low-pressure states of frictional packings retain a finite level of force indeterminacy even when assembled with the slowest compression rates simulated, except in the case when the friction coefficient tends to infinity. Different microstructures are characterized in terms of near

  12. SEPTOPLASTY WITH AND WITHOUT NASAL PACKING: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Mitta

    2016-05-01

    Full Text Available Septoplasty is one of the most commonly performed surgeries in rhinology to relieve nasal obstruction of patients with distortion in the midline cartilage or septum of the nose to relieve nasal obstruction of patient and findings consistent with nasal endoscopy. The anterior nasal packing routinely done following septoplasty is usually conventional and not evidence based. The purpose of nasal packing is to obtain haemostasis, enhance opposition of septal flaps, avoid septal haematoma formation, close the dead space, avoid synechiae formation, provide support to septal cartilage and prevent its displacement. OBJECTIVE This study intends to evaluate the effects of nasal packing on surgical success and related complications in septoplasty. MATERIALS AND METHODS The present clinical prospective and randomised study was carried out on patients attending Otorhinolaryngology Department of Santhiram Medical College & General Hospital between March 2012 and March 2015. Patients undergoing septoplasty were randomised either to receive anterior nasal packing or to not receive nasal packing postoperatively. RESULTS Levels of pain experienced by patients with nasal packing postoperatively during the initial 24 hours postoperatively and during the removal of the pack were significantly more. Post-operative headache, epiphora, swallowing discomfort and sleep disturbance were more in patients with nasal packing and statistically (p.05. Septal haematoma, adhesions and local infections in both groups were statistically insignificant (p>.05. CONCLUSION Septoplasty enhances the standard of living of patients with septal deviation and nasal obstruction. Our study results suggest that nasal packing after septoplasty is not obligatory. Nasal packing causes considerably more pain and complications, and it should be reserved only for those who have bleeding predisposition.

  13. Characterization of metallic surfaces in phosphorous-bronze ordered packings

    International Nuclear Information System (INIS)

    Sandru, Claudia; Titescu, Gh.

    1997-01-01

    Copper and its alloys, particularly the phosphorous bronze, are characterized by a high water wettability as compared with other materials. This feature led to utilization of phosphorous bronze in fabrication of contact elements, a packing type equipping the distillation columns. For heavy water separation by isotopic distillation under vacuum, ordered packings of phosphorous bronze networks were fabricated. The superior performances of these packings are determined by the material and also by the geometrical form and the state of the metallic surface. Thus, a procedure of evaluating the wettability has been developed, based on tests of the network material. The results of the tests constitute a criterion of rating the functional performances of packings, particularly of their efficiencies. Also, investigation techniques of the chemical composition and of the thickness of superficial layer on the packing were developed. It was found that the packing surface presents a layer of about 5-20 μm formed mainly by oxides of copper, tin, and, depending on the packing treatment, of oxides of other elements coming from the treatment agent. The paper presents characterization of phosphorous bronze treated with potassium permanganate, a specific treatment for improving the functional performances of the packings used in the heavy water concentration and re-concentration installations

  14. An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

    Science.gov (United States)

    Touitou, Jamal; Burch, Robbie; Hardacre, Christopher; McManus, Colin; Morgan, Kevin; Sá, Jacinto; Goguet, Alexandre

    2013-05-21

    This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 μm (O.D.) thermocouple has been inserted in a 250 μm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

  15. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy

    Science.gov (United States)

    Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei

    2016-04-01

    We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.

  16. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  17. SPH Modelling of Sea-ice Pack Dynamics

    Science.gov (United States)

    Staroszczyk, Ryszard

    2017-12-01

    The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.

  18. Direct contact condensation in packed beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Klausner, James F.; Mei, Renwei; Knight, Jessica [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2006-12-15

    A diffusion driven desalination process was recently described where a very effective direct contact condenser with a packed bed is used to condense water vapor out of an air/vapor mixture. A laboratory scale direct contact condenser has been fabricated as a twin tower structure with two stages, co-current and countercurrent. Experiments have been operated in each stage with respective saturated air inlet temperatures of 36, 40 and 43{sup o}C. The temperature and humidity data have been collected at the inlet and exit of the packed bed for different water to air mass flow ratios that vary between 0 and 2.5. A one-dimensional model based on conservation principles has been developed, which predicts the variation of temperature, humidity, and condensation rate through the condenser stages. Agreement between the model and experiments is very good. It is observed that the countercurrent flow stage condensation effectiveness is significantly higher than that for the co-current stage. The condensation heat and mass transfer rates were found to decrease when water blockages occur within the packed bed. Using high-speed digital cinematography, it was observed that this problem can occur at any operating condition, and is dependent on the packing surface wetting characteristics. This observation is used to explain the requirement for two different empirical constants, depending on packing diameter, suggested by Onda for the air side mass transfer coefficient correlation. (author)

  19. Modi ed strip packing heuristics for the rectangular variable-sized ...

    African Journals Online (AJOL)

    Two packing problems are considered in this paper, namely the well-known strip packing problem (SPP) and the variable-sized bin packing problem (VSBPP). A total of 252 strip packing heuristics (and variations thereof) from the literature, as well as novel heuristics proposed by the authors, are compared statistically by ...

  20. Pt/glassy carbon model catalysts prepared from PS-b-P2VP micellar templates.

    Science.gov (United States)

    Gu, Yunlong; St-Pierre, Jean; Ploehn, Harry J

    2008-11-04

    Poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer was used as a micellar template to fabricate arrays of Pt nanoparticles on mica and glassy carbon (GC) supports. Polymer micellar deposition yields Pt nanoparticles with tunable particle size and surface number density on both mica and GC. After deposition of precursor-loaded micelles onto GC, oxygen plasma etching removes the polymer shell, followed by thermal treatment with H2 gas to reduce the Pt. Etching conditions were optimized to maximize removal of the polymer while minimizing damage to the GC. Arrays of Pt nanoparticles with controlled size and surface number density can be prepared on mica (for particle size characterization) and GC to make Pt/GC model catalysts. These model catalysts were characterized by tapping mode atomic force microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry to measure activity for oxidation of carbon monoxide or methanol. Cyclic voltammetry results demonstrate the existence of a correlation between Pt particle size and electrocatalytic properties including onset potential, tolerance of carbonaceous adsorbates, and intrinsic activity (based on active Pt area from CO stripping voltammetry). Results obtained with Pt/GC model catalysts duplicate prior results obtained with Pt/porous carbon catalysts therefore validating the synthesis approach and offering a new, tunable platform to study catalyst structure and other effects such as aging on proton exchange membrane fuel cell (PEMFC) reactions.

  1. Reference book for design of valve packings, sealing high temperature water

    International Nuclear Information System (INIS)

    Doubt, G.L.

    1976-01-01

    Mockups of stuffing boxes for valves in the 1/4 to 1 in. (0.6-2.54cm) pipe size range and ASA 900 and up pressure class were tested to determine how temperature, stuffing box dimensions, packing compressive stress and stem surface finish affect water leak rate, packing friction torque and packing volume loss (creep). One brand of wire-reinforced asbestos braid on graphite-and-asbestos core packing was used in all tests. The theory of leakage through porous media was reviewed with emphasis on application to packed stuffing boxes, and a mathematical framework for relating leakage and packing friction to stuffing box dimensions and compressive stress was developed. The tests gave empirical relationships (1) for leak rate vs temperature, packing compressive stress, stem diameter and packing size, (2) for packing friction torque vs the above variables and (3) for packing creep vs temperature and stress. Packing stress affected leakage far more than any other variable, the leak rate being inversely proportional to stress to the 7.3 power at a packing temperature of 350 deg F (175 deg C). Factors which increase packing compression (density) have a strong reducing effect on leakage and a moderate to zero effect on packing friction torque. Surface finish had no visible effect on leakage, torque or creep. Empirical results and theory have been combined to show how stuffing boxes can be designed for a given leakage rate. Suggestions for decreasing leakage from existing high temperature stuffing boxes are included. (author)

  2. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  3. Pack stability in dip faces fitted with scraper conveyors

    Energy Technology Data Exchange (ETDEWEB)

    Schwartzmann, R

    1978-01-01

    This paper presents an account of an investigation conducted by CERCHAR, at the request of HBNPC, into the problems of goafside pack stability. Winning method and support and stowing techniques are described. Sets out the study methods used: systematic measurement (by direct or remote means) using an instrument developed by CERCHAR to investigate all aspects of in situ pack behaviour: settling, stresses, pressure on supports, etc. Gives the results of the investigation (tables and graphs) load-bearing capacity of the supports, deformation of the surrounding rock, convergence and stresses in the pack (figures, graphs), resistance of support-timber screen, model of in situ pack behaviour. Detailed conclusions (potential techniques, detailed study, practical improvements in packing techniques) are presented.

  4. High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor

    International Nuclear Information System (INIS)

    Lu, Jianfeng; Chen, Yuan; Ding, Jing; Wang, Weilong

    2016-01-01

    Highlights: • Energy storage of methane reforming in a tubular packed reactor is investigated. • Thermochemical storage efficiency approaches maximum at optimal temperature. • Sensible heat and heat loss play important roles in the energy storage system. • The reaction and energy storage models of methane reforming reactor are established. • The simulated methane conversion and energy storage efficiency fit with experiments. - Abstract: High temperature heat transfer and energy storage performances of methane reforming with carbon dioxide in tubular packed reactor are investigated under different operating conditions. Experimental results show that the methane reforming in tubular packed reactor can efficiently store high temperature thermal energy, and the sensible heat and heat loss besides thermochemical energy storage play important role in the total energy storage process. When the operating temperature is increased, the thermochemical storage efficiency first increases for methane conversion rising and then decreases for heat loss rising. As the operating temperate is 800 °C, the methane conversion is 79.6%, and the thermochemical storage efficiency and total energy efficiency can be higher than 47% and 70%. According to the experimental system, the flow and reaction model of methane reforming is established using the laminar finite-rate model and Arrhenius expression, and the simulated methane conversion and energy storage efficiency fit with experimental data. Along the flow direction, the fluid temperature in the catalyst bed first decreases because of the endothermic reaction and then increases for the heat transfer from reactor wall. As a conclusion, the maximum thermochemical storage efficiency will be obtained under optimal operating temperature and optimal flow rate, and the total energy efficiency can be increased by the increase of bed conductivity and decrease of heat loss coefficient.

  5. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.

    Science.gov (United States)

    Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma

    2011-11-01

    This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  7. Scandinavian consumer preference for beef steaks packed with or without oxygen.

    Science.gov (United States)

    Aaslyng, M D; Tørngren, M A; Madsen, N T

    2010-07-01

    Beef steaks retail-packed with (80% O(2), 20% CO(2)) or without oxygen (either skin-packed or gas-packed (69.6% N(2), 30% CO(2), 0.04% CO or 70% N(2), 30% CO(2))) were compared by consumers in Denmark (n=382), Norway (n=316) and Sweden (n=374). Two pairs of two steaks - one steak packed in a high oxygen atmosphere and one packed without oxygen - were given to the consumers. They were instructed to prepare the steaks at home on two consecutive days, and two persons had to taste each steak. In Denmark, the oxygen-free packing was either gas packing with CO (69.6% N(2), 30% CO(2), 0.04% CO) or without CO (70% N(2), 30% CO(2)), in Norway it was either gas packing with CO (69.6% N(2), 30% CO(2), 0.04% CO) or skin packing, and in Sweden it was either skin packing or gas packing without CO (70% N(2), 30% CO(2)). The meat represented animals that were between 17 and 80 months old (Denmark) and young bulls (Norway and Sweden). Consumers in all three countries clearly preferred steaks packed without oxygen, in terms of overall liking, willingness to pay and their preferred choice of one steak. Furthermore, they preferred the oxygen-free steaks in terms of both overall liking and liking of tenderness, juiciness and flavour. In Sweden, many consumers would pay more than usual for the skin-packed steak, and it was more often chosen as the preferred steak out of the four compared with gas-packed without oxygen. No difference was seen between the two oxygen-free packing methods in Denmark and Norway. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    International Nuclear Information System (INIS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al_2O_3 model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al_2O_3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al_2O_3 model catalyst and core–shell pellet were only

  9. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amende, Max, E-mail: max.amende@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Kaftan, Andre, E-mail: andre.kaftan@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Bachmann, Philipp, E-mail: philipp.bachmann@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Brehmer, Richard, E-mail: richard.brehmer@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Preuster, Patrick, E-mail: patrick.preuster@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Koch, Marcus, E-mail: marcus.koch@crt.cbi.uni-erlangen.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); and others

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al{sub 2}O{sub 3} model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al{sub 2}O{sub 3} catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al{sub 2}O{sub 3} model catalyst and

  10. On contact numbers in random rod packings

    NARCIS (Netherlands)

    Wouterse, A.; Luding, Stefan; Philipse, A.P.

    2009-01-01

    Random packings of non-spherical granular particles are simulated by combining mechanical contraction and molecular dynamics, to determine contact numbers as a function of density. Particle shapes are varied from spheres to thin rods. The observed contact numbers (and packing densities) agree well

  11. The support effect of the Mn-Na{sub 2}WO{sub 4}/SiO{sub 2} catalyst in the oxidative coupling of methane

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, M.; Arndt, S.; Simon, U.; Aksu, Y.; Schubert, H.; Schomaecker, R. [Technische Univ. Berlin (Germany)

    2011-07-01

    Methane is the major component of natural gas with known resources rivaling those of crude oil. Therefore, a direct conversion of CH{sub 4} into value added products is of strong interest for the chemical industry. One suitable reaction is the oxidative coupling of methane, which has received great attention since the first publications. Despite the intensive research, this process is not applied yet due to a lack of active and stable catalysts. A promising candidate is the Mn-Na{sub 2}WO{sub 4}/SiO{sub 2} catalyst, which is known for its high selectivity and its remarkable stability. Although there are some suggestions on the role of the different components, the support material and the phase of the support material, reliable facts are rare for this catalyst. For this reason we carried out a wide-range variation of the support material (e.g. ZrO{sub 2}, Fe{sub 2}O{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, MgO, etc.) to reveal its effect to the activity and the stability. The prepared catalysts were characterized by BET surface area and X-ray diffraction analysis and the OCM was performed in a packed-bed reactor with respect to long term stability. We found that the catalyst is active in the OCM even without SiO{sub 2} as support material, questioning the current suggestions for the active center. (orig.)

  12. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structure of mixed ganglioside-phospholipid monolayers was investigated at the air-water interface. Mixed monolayers of 0, 5, 10, 20, and 100 mol% ganglioside GM, and the phospholipid...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...

  13. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  14. Improvement of biomass char-CO{sub 2} gasification reactivity using microwave irradiation and natural catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lahijani, Pooya, E-mail: pooya.lahijani@gmail.com [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohammadi, Maedeh, E-mail: m.mohammadi@nit.ac.ir [Faculty of Chemical Engineering, Babol Noushirvani University of Technology, 47148 Babol (Iran, Islamic Republic of); Zainal, Zainal Alimuddin, E-mail: mezainal@eng.usm.my [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-20

    Highlights: • We study microwave-induced gasification of EFB ash-loaded biomass char with CO{sub 2}. • Synergistic effect of microwave and catalyst resulted in CO{sub 2} conversion of 93%. • Gasification of pristine char using conventional heating gives CO{sub 2} conversion of 58%. • E{sub a} of 74 and 247 kJ/mol were obtained for microwave and conventional CO{sub 2} gasification. - Abstract: In char-CO{sub 2} gasification, the highly endothermic nature of the Boudouard reaction (CO{sub 2} (g) + C (s) ↔ 2CO (g)) dictates use of very high temperatures to shift the equilibrium towards CO production. In this study, such high temperature (750–900 °C) was provided by microwave irradiation. A microwave heating system was developed to perform the gasification tests by passing CO{sub 2} through a packed bed of oil palm shell (OPS) char. In order to speed up the microwave-induced CO{sub 2} gasification, ash of palm empty fruit bunch (EFB) was used as natural catalyst (rich in potassium) and incorporated into the skeleton of the OPS char. The synergistic effect of microwave and catalyst concluded to very encouraging results, where a CO{sub 2} conversion of 93% was achieved at 900 °C, within 60 min microwave gasification. In comparison, CO{sub 2} conversion in thermal gasification (conventional heating) of pristine OPS char was only 58% under the same operating condition.

  15. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    DEFF Research Database (Denmark)

    Ke, Yonggang; Voigt, Niels Vinther; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry....... Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer...... DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology....

  16. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    Science.gov (United States)

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. © 2011 American Chemical Society

  17. Coalescence preference in dense packing of bubbles

    Science.gov (United States)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  18. Granular packing as model glass formers

    International Nuclear Information System (INIS)

    Wang Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)

  19. A Harmonic Algorithm for the 3D Strip Packing Problem

    NARCIS (Netherlands)

    N. Bansal (Nikhil); X. Han; K. Iwama; M. Sviridenko; G. Zhang (Guochuan)

    2013-01-01

    htmlabstractIn the three-dimensional (3D) strip packing problem, we are given a set of 3D rectangular items and a 3D box $B$. The goal is to pack all the items in $B$ such that the height of the packing is minimized. We consider the most basic version of the problem, where the items must be packed

  20. Evaluation of Packed Distillation Columns I - Atmospheric Pressure

    National Research Council Canada - National Science Library

    Reynolds, Thaine

    1951-01-01

    .... Four column-packing combinations of the glass columns and four column-packing combinations of the steel columns were investigated at atmospheric pressure using a test mixture of methylcyclohexane...

  1. Duration of Nasal Packs in the Management of Epistaxis

    International Nuclear Information System (INIS)

    Kundi, N. A.; Raza, M.

    2015-01-01

    Objective:To compare the efficacy of nasal packs for 12 and 24 hours in the management of epistaxis. Study Design: Quasi experimental study. Place and Duration of Study: Combined Military Hospital, Nowshera and Heavy Industries Taxilla Hospital, from October 2012 to April 2013. Methodology: A total of 60 patients presenting with epistaxis were selected and were divided into two groups of 30 patients each. Patients in both the groups were managed by nasal packs. In group-A packs were removed after 12 hours while in group-B after 24 hours. Symptoms of headache, lacrimation and recurrence of bleeding were recorded. SPSS 20 was used for data analysis and p-value less than 0.01 was considered significant. Results: There was significant difference for headache between removal of nasal packs after 12 hours and 24 hours (p < 0.001). There was significant difference for excessive lacrimation at 12 and 24 hours (p = 0.001). No significant difference was observed for recurrence of bleed when nasal packs were removed at 12 and 24 hours (p = 0.317). Conclusion: Duration in removal of nasal packs after 12 or 24 hours made a difference in the management of epistaxis. Symptoms of headache and excessive lacrimation were significantly higher when nasal packs were removed after 24 hours. It is recommended that patient could be managed with lesser duration of packs after episode of epistaxis to avoid inconvenience. (author)

  2. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  3. Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use

    International Nuclear Information System (INIS)

    Bouadila, Salwa; Kooli, Sami; Lazaar, Mariem; Skouri, Safa; Farhat, Abdelhamid

    2013-01-01

    Highlights: • A new solar air heater collector using a phase change material. • Experimental study of the new solar air heater collector with latent storage. • Energy and exergy analysis of the solar heater with latent storage collector. • Nocturnal use of solar air heater collector. - Abstract: An experimental study was conducted to evaluate the thermal performance of a new solar air heater collector using a packed bed of spherical capsules with a latent heat storage system. Using both first and second law of thermodynamics, the energetic and exegetic daily efficiencies were calculated in Closed/Opened and Opened cycle mode. The solar energy was stored in the packed bed through the diurnal period and extracted at night. The experimentally obtained results are used to analyze the performance of the system, based on temperature distribution in different localization of the collectors. The daily energy efficiency varied between 32% and 45%. While the daily exergy efficiency varied between 13% and 25%

  4. Effect of packing fraction variations on reactivity in pebble-bed reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2004-01-01

    The pebble-bed reactor (PBR) core consists of large number of randomly packed spherical fuel elements. The effect of fuel element packing density variations on multiplication factor in a typical PBR is studied using WIMS code. It is observed that at normal conditions the k-eff increases with packing fraction. Effects of secondary coolant ingress (water or molten lead) in the core at accidental conditions are studied at various packing densities. The effect of water ingress on reactivity depends strongly on water density and packing fraction and is prevailingly positive, while the lead ingress reduces multiplication factor regardless of lead effective density and packing fraction. Both effects are stronger at lower packing fractions. (author)

  5. Cylinder valve packing nut studies

    Energy Technology Data Exchange (ETDEWEB)

    Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  6. The general packed column : an analytical solution

    NARCIS (Netherlands)

    Gielen, J.L.W.

    2000-01-01

    The transient behaviour of a packed column is considered. The column, uniformly packed on a macroscopic scale, is multi-structured on the microscopic level: the solid phase consists of particles, which may differ in incidence, shape or size, and other relevant physical properties. Transport in the

  7. Characteristics of illegal and legal cigarette packs sold in Guatemala.

    Science.gov (United States)

    Arevalo, Rodrigo; Corral, Juan E; Monzon, Diego; Yoon, Mira; Barnoya, Joaquin

    2016-11-25

    Guatemala, as a party to the Framework Convention on Tobacco Control (FCTC), is required to regulate cigarette packaging and labeling and eliminate illicit tobacco trade. Current packaging and labeling characteristics (of legal and illegal cigarettes) and their compliance with the FCTC is unknown. We sought to analyze package and label characteristics of illegal and legal cigarettes sold in Guatemala. We visited the 22 largest traditional markets in the country to purchase illegal cigarettes. All brands registered on tobacco industry websites were purchased as legal cigarettes. Analysis compared labeling characteristics of illegal and legal packs. Most (95%) markets and street vendors sold illegal cigarettes; 104 packs were purchased (79 illegal and 25 legal). Ten percent of illegal and none of the legal packs had misleading terms. Half of the illegal packs had a warning label covering 26 to 50% of the pack surface. All legal packs had a label covering 25% of the surface. Illegal packs were more likely to have information on constituents and emissions (85% vs. 45%, p Guatemala, neither illegal nor legal cigarette packs comply with FCTC labeling mandates. Urgent implementation and enforcement of the FCTC is necessary to halt the tobacco epidemic.

  8. Generalized network improvement and packing problems

    CERN Document Server

    Holzhauser, Michael

    2016-01-01

    Michael Holzhauser discusses generalizations of well-known network flow and packing problems by additional or modified side constraints. By exploiting the inherent connection between the two problem classes, the author investigates the complexity and approximability of several novel network flow and packing problems and presents combinatorial solution and approximation algorithms. Contents Fractional Packing and Parametric Search Frameworks Budget-Constrained Minimum Cost Flows: The Continuous Case Budget-Constrained Minimum Cost Flows: The Discrete Case Generalized Processing Networks Convex Generalized Flows Target Groups Researchers and students in the fields of mathematics, computer science, and economics Practitioners in operations research and logistics The Author Dr. Michael Holzhauser studied computer science at the University of Kaiserslautern and is now a research fellow in the Optimization Research Group at the Department of Mathematics of the University of Kaiserslautern.

  9. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  10. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  11. The influence of TiO{sub 2} and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lizhang [College of Environment and Spatial Informatics, China University of Mining and Technology, South Jiefang Road, Quanshan District, Xuzhou City, Jiangsu 221008 (China)], E-mail: wlzh0731@126.com; Zhao Yuemin [School of Chemical Engineering and Technology, China University of Mining and Technology, South Jiefang Road, Quanshan District, Xuzhou City, Jiangsu 221008 (China)], E-mail: ymzhao@cumt.edu.cn; Fu Jianfeng [Department of Environmental Engineering, Southeast University, Nanjing City, Jiangsu 210096 (China)

    2008-12-30

    The electrochemical oxidation of phenolic wastewater in a lab-scale reactor, packed into granular activated carbon (GAC) with Ti/SnO{sub 2} anodes and stainless steel cathodes, was interpreted in this study. GAC saturated rapidly if it was only used as sorbent, but application of suitable electric energy for the system simultaneously could recover the adsorption ability of GAC and maintain the continuous running effectively. The titanium dioxide (TiO{sub 2}) as catalyst and airflow were also applied to the electrochemical reactor to examine the enhancement for phenol oxidation process. Results revealed that the electrochemical degradation of phenol could be reasonably described by first-order kinetics. In addition, it was illustrated that acid region, increased voltage, more dosage of TiO{sub 2} and higher aeration intensity were all beneficial parameters for phenol oxidation rates. By inspecting the relationship between the rate constants (k) and influencing factors, respectively, an overall kinetic model for phenol oxidation was proposed. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of phenol concentration effluent and better design of the packed bed reactor.

  12. Experimental and modelling study of drinking water hydrogenotrophic denitrification in packed-bed reactors

    International Nuclear Information System (INIS)

    Vasiliadou, I.A.; Karanasios, K.A.; Pavlou, S.; Vayenas, D.V.

    2009-01-01

    The aim of this work was to study hydrogenotrophic denitrification in packed-bed reactors under draw-fill and continuous operation. Three bench-scale packed-bed reactors with gravel in different sizes (mean diameter 1.75, 2.41 and 4.03 mm) as support media were used, in order to study the effect of particle size on reactors performance. The maximum denitrification rate achieved under draw-fill operation was 4.4 g NO 3 - -N/ld for the filter with gravel of 2.41 mm. This gravel size was chosen to perform experiments under continuous operation. Feed NO 3 - -N concentrations and hydraulic loadings (HL) ranged between 20-200 mg/l and 5.7-22.8 m 3 /m 2 d, respectively. A comparison between the two operating modes showed that, for low HL the draw-fill operation achieved higher denitrification rates, while for high HL and intermediate feed concentrations (40-60 mg NO 3 - -N/l) the continuous operation achieved higher denitrification rates (4.67-5.65 g/ld). Finally, experiments with three filters in series (with gravels of 4.03, 2.41 and 1.75 mm mean diameter) were also performed under continuous operation. The maximum denitrification rate achieved was 6.2 g NO 3 - -N/ld for feed concentration of 340 mg/l and HL of 11.5 m 3 /m 2 d. A model, which describes denitrification in packed-bed reactors, was also developed. The model predicts the concentration profiles of NO 3 - -N along filter height, in draw-fill as well as in continuous operation, satisfactorily.

  13. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  14. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  15. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.; Zacher, Alan H.

    2016-08-30

    significant during hydrogenation; however, the inorganics at low concentrations had minimal impact at short times on stream, indicating that sulfur poisoning was the primary deactivation mode for the bio-oil hydrogenation catalyst. Reducing the sulfur content in bio-oil could significantly increase the lifetime of the hydrogenation catalyst used. The knowledge gained during this work will allow rational design of more effective catalysts and processes for stabilizing and upgrading bio-oils.

  16. Glottotecnologie didattiche per i migranti L’italiano fra le altre lingue nel progetto L-Pack (Citizenship Language Pack for Migrants in Europe

    Directory of Open Access Journals (Sweden)

    Pierangela Diadori

    2017-01-01

    Full Text Available Teaching languages to migrants through ICT L-Pack Project for Italian and other languages (Citizenship Language Pack for Migrants in EuropeThe most recent trends in technology and the internet, commonly called Web 2.0., have determined new concepts in teaching and learning that involve autonomy, multimodality and flexibility. New approaches to ‘knowledge by technology’ are changing both teachers’ and learners’ roles, responding to their different aims and needs. At the same time, nearly 4 million people are presently involved in massive migration processes all over Europe, coming either from outside Europe or from another EU member state. The EU policies on migrants state the importance of a basic knowledge of the host country’s language, history and institutions for an effective integration process, and EU governments are expected to contribute to this aim. This paper describes the European Project ‘L-PACK: Citizenship Language Pack For Migrants in Europe’ (2011-2016, whose main aim consisted in developing a series of internet video texts, accompanied with materials and resources to lead adult migrants to A2 level (according to QCER levels scale in different EU languages. The project has been developed in two main stages. In the first part of the programme, called L-Pack 1, from 2011 to 2013, the languages were Italian, Spanish, German, Lithuanian, Greek and Czech. In the second part, called L-Pack 2 extended, from 2014 to 2016, the project added English and French and was integrated with new resources and tools. The L-PACK course, which consists of 60 short video dialogues from everyday life, supported by comprehension activities and linguistic explanation and rules, is totally free and available through Youtube, Wikibooks and Soundcloud. The dedicated website http://www.l-pack.eu was visited by 120.000 users from 146 countries in the period 2011-2016. L-Pack teaching materials have also been used by teachers in classroom

  17. Stress concentrations in an impregnated fibre bundle with random fibre packing

    OpenAIRE

    Swolfs, Y.; Gorbatikh, L.; Romanov, V.; Orlova, S.; Lomov, S. V.; Verpoest, I.

    2013-01-01

    The stress redistribution after a single fibre break is a fundamental issue in longitudinal strength models for unidirectional composites. Current models assume hexagonal or square fibre packings. In the present work, random fibre packings were modelled using 3D finite element analysis and compared to ordered fibre packings. Significant differences in the stress redistribution are found. Compared to square and hexagonal packings, random fibre packings result in smaller stress concentration fa...

  18. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  19. Microbiological Quality of Blister Pack Tablets in Community ...

    African Journals Online (AJOL)

    Keywords: Blister pack, Community pharmacy, Good Manufacturing Practice, Microbial contamination,. Quality control ... High levels of microbial contamination in blister-packed tablets ... and their drugs approved by the Jordan Food and Drug ...

  20. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  1. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  2. Cobalt-embedded carbon nanofiber derived from a coordination polymer as a highly efficient heterogeneous catalyst for activating oxone in water.

    Science.gov (United States)

    Lin, Kun-Yi Andrew; Tong, Wai-Chi; Du, Yunchen

    2018-03-01

    Carbon fiber (CF) supported cobalt nanoparticles (NPs) are promising catalysts for activating Oxone because carbon is non-metal and earth-abundant, and CF-based catalysts exhibit a high aspect ratio, which affords more accessible and dense catalytic sites. Nevertheless, most of CF-supported catalysts are fabricated by post-synthetic methods, which involve complicated preparations. More importantly, metallic NPs are attached to the outer surface of CF rather than embedded within CF. However, there is still a great demand for developing Co-bearing carbon fibers for Oxone activation via simple and effective methods. Thus, this study proposes to develop a cobalt NP-embedded carbon nanofiber (CCNF) by a simple hydrothermal reaction of Co and nitrilotriacetic acid (NA), followed by one-step carbonization. Owing to the coordinative structure of CoNA, the derivative CCNF exhibits a fibrous carbon matrix embedded with evenly distributed and densely packed Co 3 O 4 and magnetic Co 0 nanoparticles. The fibrous structure, magnetism and embedded Co NPs enable CCNF to be a promising catalyst for Oxone activation. As degradation of Rhodamine B (RhB) is selected as a model reaction, CCNF not only rapidly activates Oxone to fully degrade RhB but also shows a much higher catalytic activity than the most common Oxone activator, Co 3 O 4 . CCNF also exhibits the lowest activation energy than any reported catalysts for Oxone activation to degrade RhB. In addition, CCNF could be re-used to activate Oxone for RhB degradation. These results indicate that CCNF is a conveniently prepared and highly effective fibrous Co/C hybrid material for activating Oxone to oxidize contaminants in water. Copyright © 2017. Published by Elsevier Ltd.

  3. Improved Taxation Rate for Bin Packing Games

    Science.gov (United States)

    Kern, Walter; Qiu, Xian

    A cooperative bin packing game is a N-person game, where the player set N consists of k bins of capacity 1 each and n items of sizes a 1, ⋯ ,a n . The value of a coalition of players is defined to be the maximum total size of items in the coalition that can be packed into the bins of the coalition. We present an alternative proof for the non-emptiness of the 1/3-core for all bin packing games and show how to improve this bound ɛ= 1/3 (slightly). We conjecture that the true best possible value is ɛ= 1/7.

  4. Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor.

    Science.gov (United States)

    Oliveira, Felisbela; Salgado, José Manuel; Abrunhosa, Luís; Pérez-Rodríguez, Noelia; Domínguez, José M; Venâncio, Armando; Belo, Isabel

    2017-07-01

    Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH 4 ) 2 SO 4 . Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g -1 (dry basis) was obtained after 7 days of fermentation.

  5. Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst

    KAUST Repository

    Vu, Khanh B.

    2015-04-03

    "Naked" metal nanoparticles (NPs) are thermodynamically and kinetically unstable in solution. Ligands, surfactants, or polymers, which adsorb at a particle\\'s surface, can be used to stabilize NPs; however, such a mode of stabilization is undesirable for catalytic applications because the adsorbates block the surface active sites. The catalytic activity and the stability of NPs are usually inversely correlated. Here, we describe an example of a bimetallic (PtFe) NP catalyst stabilized by carboxylate surface ligands that bind preferentially to one of the metals (Fe). NPs stabilized by fluorous ligands were found to be remarkably competent in catalyzing the hydrogenation of cinnamaldehyde; NPs stabilized by hydrocarbon ligands were significantly less active. The chain length of the fluorous ligands played a key role in determining the chemoselectivity of the FePt NP catalysts. (Chemical Presented). © 2015 American Chemical Society.

  6. New series of paper pack vending machines; Paper pack jido hanbaiki no shin series

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, M. [Fuji Denki Reiki Co. Ltd., Tokyo (Japan); Umino, S. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1996-07-10

    This paper presents series of paper pack vending machines. These machines may be broadly classified into those of cold drinks and of hot and cold drinks depending on the storage temperature of products. The former is the machine for cooling dairy products at 10{degree}C with a combined stacking by direct-stacked racks and chain-multiracks. The latter is provided with divided storing chambers with each chamber selectively cooled or heated. Products in the hot chamber are canned coffee and the like set at 55{degree}C. The temperature control is performed by a microcomputer. The chain-multiracks are provided with advantages such as capability of handling various kinds of container shapes, storing drinks and foods vertically, replacing products by the change of a shelf attachment with one operation, and storing one liter packs by setting pair columns. The direct-stacked racks are provided with advantages such as versatility of handling various kinds of containers and miniaturization of the mechanism other than the storage part. The installation space was reduced by devising the opening and closing of the door. The control part is capable of setting temperatures differently for cans and paper packs. 7 figs., 1 tab.

  7. Random close packing in protein cores.

    Science.gov (United States)

    Gaines, Jennifer C; Smith, W Wendell; Regan, Lynne; O'Hern, Corey S

    2016-03-01

    Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ≈ 0.75, a value that is similar to close packing of equal-sized spheres. A limitation of these analyses was the use of extended atom models, rather than the more physically accurate explicit hydrogen model. The validity of the explicit hydrogen model was proved in our previous studies by its ability to predict the side chain dihedral angle distributions observed in proteins. In contrast, the extended atom model is not able to recapitulate the side chain dihedral angle distributions, and gives rise to large atomic clashes at side chain dihedral angle combinations that are highly probable in protein crystal structures. Here, we employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high-resolution protein structures. We find that these protein cores have ϕ ≈ 0.56, which is similar to results obtained from simulations of random packings of individual amino acids. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations to protein cores and interfaces of known structure.

  8. Minimal packing duration in close reduction for nasal bone fracture treatment.

    Science.gov (United States)

    Choi, Dong Sik; Lee, Jeong Woo; Yang, Jung Dug; Chung, Ho Yun; Cho, Byung Chae; Choi, Kang Young

    2015-04-15

    Nasal bone fracture is the most common type of facial bone fracture. The optimal duration of the packing after closed reduction has been a controversial issue. The packing has several disadvantages such as blocking the nasal airway, causing infection and a headache, which is the most common immediate complication. The present study investigated the minimal and optimal duration of the nasal packing following reduction surgery of nasal bone fracture. A prospective study was performed for the patients undergoing reduction surgery following nasal bone fracture between July 2010 and June 2012. The patients were categorised into three groups according to the duration of nasal packing. For the patients treated between July 2010 and June 2011, nasal packing was maintained for 5 days. For those between July 2011 and December 2011, packing was maintained for 3 days. For those between January 2012 and June 2012, the packing was removed after 1 day. The computed tomography scan and the cephalolateral X-ray were checked at immediate postoperative period after packing removal and 6 months postoperatively. The alteration of heights, deviations, and nasal bone contours with time passage were compared among three groups. The patient satisfaction survey was also performed and compared. A total of 530 patients including 322 of the 5-days packing group, 102 of the 3-days group, and 106 of the 1-day group were enrolled. There was no statistically significant difference between the groups in terms of heights, deviations, and nasal bone contours (p-value ≥ 0.05). In the patient satisfaction survey, the 1-day packing group complained of discomfort related to nasal packing and headache symptoms much less, compared to the other two groups. The present study demonstrated that 1-day packing had comparable postoperative outcome with reducing the patients' discomfort. As such, a longer packing duration was not needed to achieve stable results one day is a reasonable packing time for most

  9. Economics Action Pack.

    Science.gov (United States)

    McDonald's Corp., Oak Brook, IL.

    One of five McDonald's Action Packs, this learning package introduces intermediate grade students to basic economic concepts. The fourteen activities include the topics of consumption (4 activities), production (5), the market system (3), a pretest, and a posttest. Specific titles under consumption include The Wonderful Treasure Tree (introduction…

  10. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  11. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  12. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  13. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    International Nuclear Information System (INIS)

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all "enclosed,"whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative "open"modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if "enclosed"concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  14. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  15. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  16. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...

  17. Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Hager, V.; Geburtig, D.; Kohr, C.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Chemische Reaktionstechnik; Haumann, M. [Chemical Reaction Engineering, FAU Busan Campus, Korea (Korea, Republic of)

    2011-07-01

    Highly acidic ionic liquid (IL) catalysts offer the opportunity to convert n-alkanes at very low reaction temperatures. The results of IL catalyzed isomerization and cracking reactions of pure n-octane are presented. Influence of IL composition, [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / H{sub 2}SO{sub 4} and [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / 1-chlorooctane, on catalyst activity and selectivities to branched alkanes was investigated. Acidic chloroaluminate IL catalysts form liquid-liquid biphasic systems with unpolar organic product mixtures. Thus, recycling of the acidic IL is enabled by simple phase separation in the liquid-liquid biphasic reaction mode or the IL can be immobilized on an inorganic support with a large specific surface area. These supported ionic liquid phase (SILP) catalysts offer the advantage to get a macroscopically heterogeneous system while still preserving all benefits of the homogeneous catalyst which can be used for the slurry-phase n-alkane isomerization. The interaction of the solid support and acidic IL influences strongly the catalytic activity. (orig.)

  18. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, G J; Themistocleous, T; Copperthwaite, R G

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  19. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    1999-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the

  20. Performance of high-rate gravel-packed oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Unneland, Trond

    2001-05-01

    Improved methods for the prediction, evaluation, and monitoring of performance in high-rate cased-hole gravel-packed oil wells are presented in this thesis. The ability to predict well performance prior to the gravel-pack operations, evaluate the results after the operation, and monitor well performance over time has been improved. This lifetime approach to performance analysis of gravel-packed oil wells contributes to increase oil production and field profitability. First, analytical models available for prediction of performance in gravel-packed oil wells are reviewed, with particular emphasis on high-velocity flow effects. From the analysis of field data from three North Sea oil fields, improved and calibrated cased-hole gravel-pack performance prediction models are presented. The recommended model is based on serial flow through formation sand and gravel in the perforation tunnels. In addition, new correlations for high-velocity flow in high-rate gravel-packed oil wells are introduced. Combined, this improves the performance prediction for gravel-packed oil wells, and specific areas can be targeted for optimized well design. Next, limitations in the current methods and alternative methods for evaluation and comparison of well performance are presented. The most widely used parameter, the skin factor, remains a convenient and important parameter. However, using the skin concept in direct comparisons between wells with different reservoir properties may result in misleading or even invalid conclusions. A discussion of the parameters affecting the skin value, with a clarification of limitations, is included. A methodology for evaluation and comparison of gravel-packed well performance is presented, and this includes the use of results from production logs and the use of effective perforation tunnel permeability as a parameter. This contributes to optimized operational procedures from well to well and from field to field. Finally, the data sources available for

  1. Effect of gravity on colloid transport through water-saturated columns packed with glass beads: modeling and experiments.

    Science.gov (United States)

    Chrysikopoulos, Constantinos V; Syngouna, Vasiliki I

    2014-06-17

    The role of gravitational force on colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q = 1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one-dimensional, colloid transport model. The effect of gravity is incorporated in the mathematical model by combining the interstitial velocity (advection) with the settling velocity (gravity effect). The results revealed that flow direction influences colloid transport in porous media. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for colloid deposition.

  2. FAILURE MODE AND EFFECT ANALYSIS (FMEA OF BUTTERFLY VALVE IN OIL AND GAS INDUSTRY

    Directory of Open Access Journals (Sweden)

    MUHAMMAD AMIRUL BIN YUSOF

    2016-04-01

    Full Text Available Butterfly valves are mostly used in various industries such as oil and gas plant. This valve operates with rotating motion using pneumatic system. Rotating actuator turns the disc either parallel or perpendicular to the flow. When the valve is fully open, the disc is rotated a quarter turn so that it allows free passage of the fluid and when fully closed, the disc rotated a quarter turns to block the fluid. The primary failure modes for valves are the valve leaks to environment through flanges, seals on the valve body, valve stem packing not properly protected, over tightened packing nuts, the valve cracks and leaks over the seat. To identify the failure of valve Failure Mode and Effects Analysis has been chosen. FMEA is the one of technique to perform failure analysis. It involves reviewing as many components to identify failure modes, and their causes and effects. For each component, the failure modes and their resulting effects on the rest of the system are recorded in a specific FMEA form. Risk priority number, severity, detection, occurrence are the factor determined in this studies. Risk priority number helps to find out the highest hazardous activities which need more attention than the other activity. The highest score of risk priority number in this research is seat. Action plan was proposed to reduce the risk priority number and so that potential failures also will be reduced.

  3. Random close packing in protein cores

    OpenAIRE

    Gaines, Jennifer C.; Smith, W. Wendell; Regan, Lynne; O'Hern, Corey S.

    2015-01-01

    Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions $\\phi \\approx 0.75$, a value that is similar to close packing equal-sized spheres. A limitation of these analyses was the use of `extended atom' models, rather than the more physically accurate `explicit hydrogen' model. The validity of using the explicit hydrogen model is proved by its ability to predict the side chain dihedral angle distributions obs...

  4. Packing Density Approach for Sustainable Development of Concrete

    Directory of Open Access Journals (Sweden)

    Sudarshan Dattatraya KORE

    2017-12-01

    Full Text Available This paper deals with the details of optimized mix design for normal strength concrete using particle packing density method. Also the concrete mixes were designed as per BIS: 10262-2009. Different water-cement ratios were used and kept same in both design methods. An attempt has been made to obtain sustainable and cost effective concrete product by use of particle packing density method. The parameters such as workability, compressive strength, cost analysis and carbon di oxide emission were discussed. The results of the study showed that, the compressive strength of the concrete produced by packing density method are closer to that of design compressive strength of BIS code method. By adopting the packing density method for design of concrete mixes, resulted in 11% cost saving with 12% reduction in carbon di oxide emission.

  5. Packing Nonspherical Particles: All Shapes Are Not Created Equal

    Science.gov (United States)

    Torquato, Salvatore

    2012-02-01

    Over the past decade there has been increasing interest in the effects of particle shape on the characteristics of dense particle packings, since deviations from sphericity can lead to more realistic models of granular media, nanostructured materials, and tissue architecture. It is clear the that the broken rotational symmetry of a nonspherical particle is a crucial aspect in determining its resulting packing characteristics, but given the infinite variety of possible shapes (ellipsoids, superballs, regular and irregular polyhedra, etc.) it is desirable to formulate packing organizing principles based the particle shape. Such principles are beginning to be elucidated; see Refs. 1 and 2 and references therein. Depending upon whether the particle has central symmetry, inequivalent principle axes, and smooth or flat surfaces, we can describe the nature of its densest packing (which is typically periodic) as well as its disordered jammed states (which may or may not be isostatic). Changing the shape of a particle can dramatically alter its packing attributes. This tunability capability via particle shape could be used to tailor many-particle systems (e.g., colloids and granular media) to have designed crystal, liquid and glassy states. [4pt] [1] S. Torquato and F. H. Stillinger, ``Jammed Hard-Particle Packings: From Kepler to Bernal and Beyond," Rev. Modern Phys. 82, 2633 (2010). [0pt] [2] Y. Jiao and S. Torquato, Communication: ``A Packing of Truncated Tetrahedra That Nearly Fills All of Space and its Melting Properties," J. Chem. Phys. 135, 151101 (2011).

  6. The benefits of hypopharyngeal packing in nasal surgery: a pilot study.

    LENUS (Irish Health Repository)

    Fennessy, B G

    2012-02-01

    BACKGROUND: Hypopharyngeal packs are used in nasal surgery to reduce the risk of aspiration and postoperative nausea and vomiting. Side effects associated with their use range from throat pain to retained packs postoperatively. AIM: To evaluate, as a pilot study, postoperative nausea\\/vomiting and throat pain scores for patients undergoing nasal surgery in whom a wet or dry hypopharyngeal pack was placed compared with patients who received no packing. METHODS: A randomized, double-blind prospective trial in a general ENT unit. RESULTS: The study failed to show a statistically significant difference between the three groups in terms of their postoperative nausea\\/vomiting and throat pain scores at 2 and 6 h postoperatively. This is the first study in which dry packs have been compared with wet and absent packs. CONCLUSION: Based on our findings, the authors recommend against placing hypopharyngeal packs for the purpose of preventing postoperative nausea and vomiting.

  7. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  8. Granular packings with moving side walls

    International Nuclear Information System (INIS)

    Landry, James W.; Grest, Gary Stephen

    2004-01-01

    The effects of movement of the side walls of a confined granular packing are studied by discrete element, molecular dynamics simulations. The dynamical evolution of the stress is studied as a function of wall movement both in the direction of gravity as well as opposite to it. For all wall velocities explored, the stress in the final state of the system after wall movement is fundamentally different from the original state obtained by pouring particles into the container and letting them settle under the influence of gravity. The original packing possesses a hydrostaticlike region at the top of the container which crosses over to a depth-independent stress. As the walls are moved in the direction opposite to gravity, the saturation stress first reaches a minimum value independent of the wall velocity, then increases to a steady-state value dependent on the wall velocity. After wall movement ceases and the packing reaches equilibrium, the stress profile fits the classic Janssen form for high wall velocities, while some deviations remain for low wall velocities. The wall movement greatly increases the number of particle-wall and particle-particle forces at the Coulomb criterion. Varying the wall velocity has only small effects on the particle structure of the final packing so long as the walls travel a similar distance.

  9. Fischer-Tropsch Synthesis over Iron Manganese Catalysts: Effect of Preparation and Operating Conditions on Catalyst Performance

    Directory of Open Access Journals (Sweden)

    Ali A. Mirzaei

    2009-01-01

    molar basis which is the most active catalyst for the conversion of synthesis gas to light olefins. The effects of different promoters and supports with loading of optimum support on the catalytic performance of catalysts are also studied. It was found that the catalyst containing 50%Fe/50%Mn/5 wt.%Al2O3 is an optimum-modified catalyst. The catalytic performance of optimal catalyst has been studied in operation conditions such as a range of reaction temperatures, H2/CO molar feed ratios and a range of total pressures. Characterization of both precursors and calcined catalysts is carried out by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, BET specific surface area and thermal analysis methods such as TGA and DSC.

  10. 7 CFR 906.340 - Container, pack, and container marking regulations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Container, pack, and container marking regulations... AGRICULTURE ORANGES AND GRAPEFRUIT GROWN IN LOWER RIO GRANDE VALLEY IN TEXAS Container and Pack Requirements § 906.340 Container, pack, and container marking regulations. (a) No handler shall handle any variety of...

  11. Deactivation and regeneration of refinery catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  12. cellPACK: a virtual mesoscope to model and visualize structural systems biology.

    Science.gov (United States)

    Johnson, Graham T; Autin, Ludovic; Al-Alusi, Mostafa; Goodsell, David S; Sanner, Michel F; Olson, Arthur J

    2015-01-01

    cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10-100 nm) between molecular and cellular biology scales. cellPACK's modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive three-dimensional models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is available as open-source code, with tools for validation of models and with 'recipes' and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org/.

  13. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al2O3) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum

  14. Homometrism in close-packed structures

    International Nuclear Information System (INIS)

    Mardix, S.

    1990-01-01

    Homometric structures are non-congruent structures having identical X-ray intensity distributions. It has so far been assumed that such structures, while theoretically interesting, would not be realized in practice. Homometrism in close-packed structures is shown to be a realistic possibility. Some general rules applicable to homometric pairs are presented; it is shown that an infinite number of them can be derived from one-dimensional homometric pairs. An exhaustive search of close-packed structures with periods of up to 26 reveals that the smallest period of a homometric pair is 15 and that their number increases rapidly with the period. Homometrism in polytypic structures is further discussed. (orig.)

  15. Avoidance of cigarette pack health warnings among regular cigarette smokers.

    Science.gov (United States)

    Maynard, Olivia M; Attwood, Angela; O'Brien, Laura; Brooks, Sabrina; Hedge, Craig; Leonards, Ute; Munafò, Marcus R

    2014-03-01

    Previous research with adults and adolescents indicates that plain cigarette packs increase visual attention to health warnings among non-smokers and non-regular smokers, but not among regular smokers. This may be because regular smokers: (1) are familiar with the health warnings, (2) preferentially attend to branding, or (3) actively avoid health warnings. We sought to distinguish between these explanations using eye-tracking technology. A convenience sample of 30 adult dependent smokers participated in an eye-tracking study. Participants viewed branded, plain and blank packs of cigarettes with familiar and unfamiliar health warnings. The number of fixations to health warnings and branding on the different pack types were recorded. Analysis of variance indicated that regular smokers were biased towards fixating the branding rather than the health warning on all three pack types. This bias was smaller, but still evident, for blank packs, where smokers preferentially attended the blank region over the health warnings. Time-course analysis showed that for branded and plain packs, attention was preferentially directed to the branding location for the entire 10s of the stimulus presentation, while for blank packs this occurred for the last 8s of the stimulus presentation. Familiarity with health warnings had no effect on eye gaze location. Smokers actively avoid cigarette pack health warnings, and this remains the case even in the absence of salient branding information. Smokers may have learned to divert their attention away from cigarette pack health warnings. These findings have implications for cigarette packaging and health warning policy. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. The investigation of cooling tower packing in various arrangements

    International Nuclear Information System (INIS)

    Golshayshi, H.R.; Missenden, J.F.

    1998-01-01

    The effect of form with corrugated packing on heat transfer and pressure drop characteristics in atmospheric cooling towers has been studied experimentally. The results showed that the heat transfer coefficient decreased with increase in packing pitch and increase in the ratio of rib pitch to rib height. Friction factors were expressed by a dimensional equation which included pitch and distance between the packings, for both smooth and rough surface. From these results, the relationship between packing heat transfer coefficient and pressure drop was deduced. The correlations were verified with additional experimental data taken with 1.1,P/D p /e 5 . This provides a useful semi experimental relation, in the area generally lacking in design and performance data. (author)

  17. Integrality gap analysis for bin packing games

    NARCIS (Netherlands)

    Kern, Walter; Qui, X.

    A cooperative bin packing game is an $N$-person game, where the player set $N$ consists of $k$ bins of capacity 1 each and $n$ items of sizes $a_1,\\dots,a_n$. The value $v(S)$ of a coalition $S$ of players is defined to be the maximum total size of items in $S$ that can be packed into the bins of

  18. Oxidative desulfurization of synthetic diesel using supported catalysts. Part 3. Support effect on vanadium-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno-Caero, Luis; Gomez-Bernal, Hilda; Fraustro-Cuevas, Adriana; Guerra-Gomez, Hector D.; Cuevas-Garcia, Rogelio [UNICAT, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria 04510, Mexico D.F. (Mexico)

    2008-04-15

    Oxidesulfurization (ODS) of benzothiophenic compounds prevailing in diesel was conducted with hydrogen peroxide in presence of various catalysts, using a model diesel and actual diesel fuel. ODS activities of dibenzothiophenes (DBTs) in hexadecane for a series of V{sub 2}O{sub 5} catalysts supported on alumina, titania, ceria, niobia and silica, were evaluated. Results show that the oxidation activity of DBTs depends on the support used. It was observed that the sulfone yield is not proportional to textural properties or V content. For all catalysts, ODS of benzothiophene (BT), dibenzothiophene (DBT), 4-methyl dibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) decreased in the following order: DBT > 4-MDBT > 4,6-DMDBT > BT. This trend does not depend on the catalyst used or the textural properties of the catalysts and supports. In presence of indole ODS activities diminish, except with catalysts supported on alumina-titania mixed oxide, whereas with V{sub 2}O{sub 5}/TiO{sub 2} catalyst the performance is the highest. ODS of Mexican diesel fuel was carried out in presence of this catalyst and S level was diminished in about 99%. (author)

  19. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  20. Isotope exchange in oxide-containing catalyst

    Science.gov (United States)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  1. Gravel packing dual zones in one trip reduces offshore completion time

    International Nuclear Information System (INIS)

    Brannon, D.H.; Harrison, D.T.; van Sickle, E.W.

    1991-01-01

    A single trip, dual-zone gravel pack system was used to successfully gravel pack two wells on Green Canyon platform 52 A in the Gulf of Mexico. An average 56 hours was saved on each well, representing reductions of about 25% in completion time and 26% in completion cost per well. Time-sensitive costs had the largest impact on Green Canyon 52 A final well completion cost; therefore, new technology or more efficient operations were required to minimize completion time. One way to enhance project economics was to gravel pack two separate zones in one trip. In this paper, four objectives are addressed during development of a single trip tool to gravel pack the stacked zones of the Marquette project. These were time and cost reduction, removal of loss circulation material (LCM) prior to gravel packing, zone isolation during gravel packing and use of conventional gravel placement techniques. The design requirement that all LCM (salt and/or viscous polymer pills), perforation debris and formation sand be removed from the wellbore prior to gravel packing was accomplished by incorporating a washdown feature that allows circulation at the bottom of the gravel pack assembly prior to landing in the sump packer

  2. Disordered strictly jammed binary sphere packings attain an anomalously large range of densities

    Science.gov (United States)

    Hopkins, Adam B.; Stillinger, Frank H.; Torquato, Salvatore

    2013-08-01

    Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly jammed binary packings (packings that remain mechanically stable under general shear deformations and compressions) can be produced with an anomalously large range of average packing fractions 0.634≤ϕ≤0.829 for small to large sphere radius ratios α restricted to α≥0.100. Surprisingly, this range of average packing fractions is obtained for packings containing a subset of spheres (called the backbone) that are exactly strictly jammed, exactly isostatic, and also generated from random initial conditions. Additionally, the average packing fractions of these packings at certain α and small sphere relative number concentrations x approach those of the corresponding densest known ordered packings. These findings suggest for entropic reasons that these high-density disordered packings should be good glass formers and that they may be easy to prepare experimentally. We also identify an unusual feature of the packing fraction of jammed backbones (packings with rattlers excluded). The backbone packing fraction is about 0.624 over the majority of the α-x plane, even when large numbers of small spheres are present in the backbone. Over the (relatively small) area of the α-x plane where the backbone is not roughly constant, we find that backbone packing fractions range from about 0.606 to 0.829, with the volume of rattler spheres comprising between 1.6% and 26.9% of total sphere volume. To generate isostatic strictly jammed packings, we use an implementation of the Torquato-Jiao sequential linear programming algorithm [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.061302 82, 061302 (2010)], which is an efficient producer of inherent structures (mechanically stable configurations at the local maxima in the density landscape). The identification and

  3. Bifunctional cobalt F-T catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  4. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  5. SimPackJ/S: a web-oriented toolkit for discrete event simulation

    Science.gov (United States)

    Park, Minho; Fishwick, Paul A.

    2002-07-01

    SimPackJ/S is the JavaScript and Java version of SimPack, which means SimPackJ/S is a collection of JavaScript and Java libraries and executable programs for computer simulations. The main purpose of creating SimPackJ/S is that we allow existing SimPack users to expand simulation areas and provide future users with a freeware simulation toolkit to simulate and model a system in web environments. One of the goals for this paper is to introduce SimPackJ/S. The other goal is to propose translation rules for converting C to JavaScript and Java. Most parts demonstrate the translation rules with examples. In addition, we discuss a 3D dynamic system model and overview an approach to 3D dynamic systems using SimPackJ/S. We explain an interface between SimPackJ/S and the 3D language--Virtual Reality Modeling Language (VRML). This paper documents how to translate C to JavaScript and Java and how to utilize SimPackJ/S within a 3D web environment.

  6. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    OpenAIRE

    Ke, Yonggang; Voigt, Niels V.; Gothelf, Kurt V.; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher r...

  7. Improved Erythrocyte Osmotic Fragility and Packed Cell Volume ...

    African Journals Online (AJOL)

    Improved Erythrocyte Osmotic Fragility and Packed Cell Volume following administration of Aloe barbadensis Juice Extract in Rats. ... Abstract. Aloe barbadensis is a popular house plant that has a long history of a multipurpose folk remedy. ... Keywords: osmotic fragility, packed cell volume, haemoglobin, Aloe vera ...

  8. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  9. The Tobacco Pack Surveillance System: A Protocol for Assessing Health Warning Compliance, Design Features, and Appeals of Tobacco Packs Sold in Low- and Middle-Income Countries.

    Science.gov (United States)

    Smith, Katherine; Washington, Carmen; Brown, Jennifer; Vadnais, Alison; Kroart, Laura; Ferguson, Jacqueline; Cohen, Joanna

    2015-01-01

    Tobacco remains the world's leading preventable cause of death, with the majority of tobacco-caused deaths occurring in low- and middle-income countries. The first global health treaty, the Framework Convention on Tobacco Control (FCTC), outlines a set of policy initiatives that have been demonstrated as effective in reducing tobacco use. Article 11 of the FCTC focuses on using the tobacco package to communicate tobacco-caused harms; it also seeks to restrict the delivery of misleading information about the product on the pack. The objective of this study was to establish a surveillance system for tobacco packs in the 14 low- and middle-income countries with the greatest number of smokers. The Tobacco Pack Surveillance System (TPackSS) monitors whether required health warnings on tobacco packages are being implemented as intended, and identifies pack designs and appeals that might violate or detract from the communication of harm-related information and undermine the impact of a country's tobacco packaging laws. The protocol outlined is intended to be applicable or adaptable for surveillance efforts in other countries. Tobacco packs were collected in 14 countries during 2013. The intention was, to the extent possible, to construct a census of "unique" pack presentations available for purchase in each country. The TPackSS team partnered with in-country field staff to implement a standardized protocol for acquiring packs from 36 diverse neighborhoods across three cities in each country. At the time of purchase, data on price and place of acquisition of each pack was recorded. The field staff, according to a standardized protocol, then photographed packs before they were shipped to the United States for coding and archiving. Each pack was coded for compliance with the country-specific health warning label laws, as well as for key design features of the pack and appeals of the branding elements. The coding protocols were developed based upon prior research, expert

  10. Scottish young people's perceptions of standardised packs - a qualitative study

    Directory of Open Access Journals (Sweden)

    Andy Macgregor

    2018-03-01

    Full Text Available Background Standardised cigarette packs were introduced into the UK in May 2016. Retailers could sell old stock until May 2017 after which only the sale of cigarettes and tobacco in standardised packs was allowed. As in Australia, pack shape, colour, opening mechanism and font are regulated, together with the size and position of health warnings and number of cigarettes in a pack. This paper explores Scottish young people's awareness of and views about standardised packs in Spring 2017. Methods The DISPLAY study is a five year study established to evaluate the national tobacco point-of sale (POS promotions ban in four communities in Scotland. This paper is based on the qualitative component, annual focus groups carried out with Secondary 2 (13 year olds and Secondary 4 (15 year olds students in four secondary schools. 16 groups (82 students convened in February - March 2017 explored students' perceptions of standardised packaging. Results There was a high level of awareness of standardised packs prior to their full implementation. Smokers had bought them, and they and other participants had seen them in possession of friends and family members, and in litter. Participants' views of the new packaging were generally negative, described as unappealing and depressing, particularly the pictorial health warnings. Packs were compared unfavourably with previous non-standardised versions. However, there was no consensus on their likely impact. Some participants argued that their impact would be widespread, while others thought that any impact would be confined to young non/occasional smokers and that established smokers would be unaffected. Conclusions In early 2017 young people in Scotland had high awareness and knowledge of standardised tobacco packs before their full implementation. Despite differing views about their likely impact on youth smoking, participants irrespective of smoking status overwhelmingly regarded them as unattractive and less

  11. Metallic witness packs for behind-armour debris characterization

    NARCIS (Netherlands)

    Verolme, J.L.; Szymczak, M.; Broos, J.P.F.

    1999-01-01

    For the experimental characterization of behind-armour debris so-called metallic witness packs can be used. A metallic witness pack consists of an array of metallic plates interspaced by polystyrene foam sheets. To quantify the fragment mass and velocity from the corresponding hole area and position

  12. Consistency Check for the Bin Packing Constraint Revisited

    Science.gov (United States)

    Dupuis, Julien; Schaus, Pierre; Deville, Yves

    The bin packing problem (BP) consists in finding the minimum number of bins necessary to pack a set of items so that the total size of the items in each bin does not exceed the bin capacity C. The bin capacity is common for all the bins.

  13. Degradation of nitrobenzene in simulated wastewater by iron-carbon micro-electrolysis packing.

    Science.gov (United States)

    Li, Meng; Zou, Donglei; Zou, Haochen; Fan, Dongyan

    2011-12-01

    The reductive degradation of nitrobenzene (NB) by iron-carbon micro-electrolysis packing was investigated. The influence of initial NB concentration, pH value and packing amount on the removal rate of NB were studied. The results showed that the reaction with packing followed the pseudo-first-order reaction. The optimum pH was 3.0 for the degradation of NB in the tested pH ranges of 3-9 and the optimum packing amount was 40 g/200 ml. The flow-through column packed with packing was designed to remove NB from simulated wastewater for approximately 68 days. The removal rate was over 90% within initial periods. It could be seen that after running for 68 days, the packing still had good performance after the long-term column experiment. In addition, the changes of the packing surfaces morphologies and matters before, during and after the column experiment were analysed by scanning electron microscopy in conjunction with energy-dispersion spectroscopy (EDS).

  14. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    Science.gov (United States)

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  15. Metal catalysts fight back

    OpenAIRE

    George Marsh

    1998-01-01

    In recent years organometallic catalysts, especially metallocenes, have been a major focus of attention in terms of polymerisation chemistry. But the news earlier this year of a family of iron-based catalysts able to rival the effectiveness of both conventional and metallocene catalysts in the polymerisation of ethylene has excited the plastics industry. Because of the impact of this discovery and its potential as a route to lower-priced commodity plastics in the future, it may be useful at t...

  16. Packing frustration in dense confined fluids.

    Science.gov (United States)

    Nygård, Kim; Sarman, Sten; Kjellander, Roland

    2014-09-07

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  17. Evaluation of Type II Fast Packs for Electrostatic Discharge Properties.

    Science.gov (United States)

    1983-08-01

    34 x 8" x 1 3/4") consisting of a reclosable cushioned carrier which mates into an outer fiberboard sleeve. A cushioning insert is used consisting of a... RECLOSABLE CUSHIONED CARRIER TEST LOAD FIGURE 1: Cancel Caddy Pack * CONVOLUTED 4* CUSHIONED I FIGURE 2: Type II Fast Pack (PPP-B-1672) TYPE II FAST PACK

  18. Important notice for Windows 2000 Service Pack 3 computers

    CERN Multimedia

    The NICE Team

    2005-01-01

    Microsoft is ending support for Windows 2000 Service Pack 3, which was introduced in 2002. As a consequence, computers running Windows 2000 Service Pack 3 (or older versions1)) must be updated. It is recommended that Windows 2000 computers be re-installed with Windows XP Service Pack 2 (see http://cern.ch/Win/Services/Installation/Diane). If this is not possible for compatibility reasons, Windows 2000 Service Pack 4 must be installed to ensure the computers continue to receive security patches (see http://cern.ch/Win/Docs/2000SP4). In the next few days, NICE 2000 computers requiring an update will receive a pop-up window with instructions. Users requiring help with the update can contact Helpdesk@cern.ch or call 78888. If your computer needs to be updated you are recommended to read the additional information available at http://cern.ch/Win/Docs/2000SP3. The NICE Team 1) To determine your Windows service pack version, use the ‘Start' button and select ‘Run'. In the new window that open...

  19. Important notice for Windows 2000 Service Pack 3 computers

    CERN Multimedia

    The NICE Team

    2005-01-01

    Microsoft is ending support for Windows 2000 Service Pack 3, which was introduced in 2002. As a consequence, computers running Windows 2000 Service Pack 3 (or older versions1) ) must be updated. It is recommended that Windows 2000 computers be re-installed with Windows XP Service Pack 2 (see http://cern.ch/Win/Services/Installation/Diane). If this is not possible for compatibility reasons, Windows 2000 Service Pack 4 must be installed to ensure the computers continue to receive security patches (see http://cern.ch/Win/Docs/2000SP4). In the next few days, NICE 2000 computers requiring an update will receive a pop-up window with instructions. Users requiring help with the update can contact Helpdesk@cern.ch or call 78888. If your computer needs to be updated you are recommended to read the additional information available at http://cern.ch/Win/Docs/2000SP3. The NICE Team 1) To determine your Windows service pack version, use the ‘Start' button and select ‘Run'. In the new window that opens, type ‘wi...

  20. Rejuvenation of the SCR catalyst at Mehrum

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Y.; Inatsume, Y.; Morita, I.; Kato, Y.; Yokoyama, K.; Ito, K. [Babcock Hitachi K.K., Kure-shi, Hiroshima-ken (Japan)

    2004-07-01

    Babcock Hitachi K.K. (BHK) received the contract of the rejuvenation of the SCR catalyst at the 750 MW coal-fired Mehrum Power Station (in Hohenhameln, Germany) in March 2003. The contractual coverage was 160 m{sup 3} of the entire catalyst layer. The catalyst, which had been in operation for 16 years since 1987, was originally supplied by BHK. The rejuvenation process developed for the Mehrum project consisted of two major steps: the first is to dust off the catalyst and remove the catalyst poison, and the second step is to add active material to enhance the catalyst activity. The catalyst must be dried after each washing. In order to minimize transportation cost and time, the rejuvenation work was done at the Mehrum station site. The scope of the rejuvenation work was shared between the owner and BHK. It took about one and a half months to complete the (total) on-site rejuvenation worked. The performance of the rejuvenated catalyst was superior to show the same level of activity as the unused catalyst and maintain the same SO{sub 2} conversion rate as the spent catalyst. This paper gives the details of the spent coal-fired SCR catalyst rejuvenation work. 13 figs., 1 tab.

  1. Quasi-Dual-Packed-Kerneled Au49 (2,4-DMBT)27 Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap.

    Science.gov (United States)

    Liao, Lingwen; Zhuang, Shengli; Wang, Pu; Xu, Yanan; Yan, Nan; Dong, Hongwei; Wang, Chengming; Zhao, Yan; Xia, Nan; Li, Jin; Deng, Haiteng; Pei, Yong; Tian, Shi-Kai; Wu, Zhikun

    2017-10-02

    Although face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix-packed (fcc and non-fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au 49 (2,4-DMBT) 27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single-crystal X-ray crystallography, which revealed that Au 49 (2,4-DMBT) 27 contains a unique Au 34 kernel consisting of one quasi-fcc-structured Au 21 and one non-fcc-structured Au 13 unit (where 2,4-DMBTH=2,4-dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non-fcc structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Productions of palm oil bio diesel whit heterogeneous basic catalysts compared to conventional homogeneous catalysts

    International Nuclear Information System (INIS)

    Rios, Luis A; Franco C, Alexander; Zuleta S, Ernesto

    2009-01-01

    The conventional process to produce biodiesel involves the presence of homogeneous basic catalysts. However, these catalysts have disadvantages associated to the need of purification steps, which increase the cost of the final product and generate pollution problems caused by the effluents. This paper compares different homogeneous and heterogeneous catalysts for the biodiesel production from palm oil. For this, heterogeneous catalysts supported on alumina were prepared and characterized by nitrogen adsorption, scanning electron microscopy, energy dispersive X ray spectroscopy and X ray diffraction. Transesterification of palm oil with methanol was accomplished at 60 celsius degrade and one hour, varying methanol/oil ratio, the type of catalyst and its concentration. Yields of the reaction and purity of the so obtained biodiesel were evaluated. Comparing the catalysts performance, based on the amount, was found that sodium methoxide (CH 3 ONa) and potassium carbonate supported on alumina (K 2 CO 3 /Al 2 O 3 ) were the catalysts that give the higher purity of biodiesel (96.8 and 95.85% respectively). When was determined the active site quality, by dividing the performance by each mole of active sites, it was found that calcined Na 2 SO 4 /Al 2 O 3 has the most active sites.

  3. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    Energy Technology Data Exchange (ETDEWEB)

    Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  4. Packing of equal discs on a parabolic spiral lattice

    International Nuclear Information System (INIS)

    Xudong, F.; Bursill, L.A.; Julin, P.

    1989-01-01

    A contact disc model is investigated to determine the most closely-packed parabolic spiral lattice. The most space-efficient packings have divergence angles in agreement with the priority ranking of natural spiral structures

  5. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  6. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...

  7. A micro alkaline direct ethanol fuel cell with platinum-free catalysts

    Science.gov (United States)

    Verjulio, R. W.; Alcaide, F.; Álvarez, G.; Sabaté, N.; Torres-Herrero, N.; Esquivel, J. P.; Santander, J.

    2013-11-01

    This paper presents the fabrication and characterization of a micro alkaline direct ethanol fuel cell. The device has been conceived as a feasibility demonstrator, using microtechnologies for the fabrication of the current collectors and traditional techniques for the membrane electrode assembly production. The fuel cell works in passive mode, as expected for the simplicity required for micro power systems. Non-noble catalysts have been used in order to implement the main advantage of alkaline systems, showing the feasibility of such a device as a potential very-low-cost power device at mini- and micro scales.

  8. 27 CFR 24.255 - Bottling or packing wine.

    Science.gov (United States)

    2010-04-01

    ... in the same tax class when that wine is removed from bond, without benefit of tolerance, when the... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bottling or packing wine..., DEPARTMENT OF THE TREASURY LIQUORS WINE Storage, Treatment and Finishing of Wine Bottling, Packing, and...

  9. A Capillary Electrochromatographic Microchip Packed with Self-Assembly Colloidal Carboxylic Silica Beads

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Sun; Kim, Shin Seon; Park, Jong Man [Konkuk University, Seoul (Korea, Republic of)

    2012-04-15

    An electrochromatographic microchip with carboxyl-group-derivatized mono-disperse silica packing was prepared from the corresponding colloidal silica solution by utilizing capillary action and self-assembly behavior. The silica beads in water were primed by the capillary action toward the ends of cross-patterned microchannel on a cyclic olefinic copolymer (COC) substrate. Slow evaporation of water at the front of packing promoted the self-assembled packing of the beads. After thermally binding a cover plate on the chip substrate, reservoirs for sample solutions were fabricated at the ends of the microchannel. The packing at the entrances of the microchannel was silver coated to fix utilizing an electroless silver-plating technique to prevent the erosion of the packed structure caused by the sudden switching of a high voltage DC power source. The electrochromatographic behavior of the microchip was explored and compared to that of the microchip with bare silica packing in basic borate buffer. Electrophoretic migration of Rhodamine B was dominant in the microchip with the carboxyl-derivatized silica packing that resulted in a migration approximated twice as fast, while the reversible adsorption was dominant in the bare silica-packed microchip. Not only the faster migration rates of the negatively charged FITC-derivatives of amino acids but also the different migration due to the charge interaction at the packing surface were observed. The electrochromatographic characteristics were studied in detail and compared with those of the bare silica packed microchip in terms of the packing material, the separation potential, pH of the running buffer, and also the separation channel length

  10. 49 CFR 173.121 - Class 3-Assignment of packing group.

    Science.gov (United States)

    2010-10-01

    ... packing group shall be determined by applying the following criteria: Packing group Flash point (closed-cup) Initial boiling point I ≤35°C (95 °F) II 35 °C (95 °F) III ≥23 °C, ≤60 °C (≥73 °F, ≤140 °F) >35...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions Classification, Packing Group Assignments...

  11. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  12. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  13. The pack size effect: Influence on consumer perceptions of portion sizes

    NARCIS (Netherlands)

    Hieke, Sophie; Palascha, Aikaterini; Jola, Corinne; Wills, Josephine; Raats, Monique M.

    2016-01-01

    Larger portions as well as larger packs can lead to larger prospective consumption estimates, larger servings and increased consumption, described as 'portion-size effects' and 'pack size effects'. Although related, the effects of pack sizes on portion estimates have received less attention. While

  14. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity.

    Science.gov (United States)

    Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang

    2006-12-07

    In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.

  15. Numerical Simulation on Dense Packing of Granular Materials by Container Oscillation

    OpenAIRE

    Jun Liu; Dongxu You

    2013-01-01

    The packing of granular materials is a basic and important problem in geomechanics. An approach, which generates dense packing of spheres confined in cylindrical and cuboidal containers in three steps, is introduced in this work. A loose packing structure is first generated by means of a reference lattice method. Then a dense packing structure is obtained in a container by simulating dropping of particles under gravitational forces. Furthermore, a scheme that makes the bottom boundary fluctua...

  16. A linear programming algorithm to test for jamming in hard-sphere packings

    International Nuclear Information System (INIS)

    Donev, Aleksandar; Torquato, Salvatore.; Stillinger, Frank H.; Connelly, Robert

    2004-01-01

    Jamming in hard-particle packings has been the subject of considerable interest in recent years. In a paper by Torquato and Stillinger [J. Phys. Chem. B 105 (2001)], a classification scheme of jammed packings into hierarchical categories of locally, collectively and strictly jammed configurations has been proposed. They suggest that these jamming categories can be tested using numerical algorithms that analyze an equivalent contact network of the packing under applied displacements, but leave the design of such algorithms as a future task. In this work, we present a rigorous and practical algorithm to assess whether an ideal hard-sphere packing in two or three dimensions is jammed according to the aforementioned categories. The algorithm is based on linear programming and is applicable to regular as well as random packings of finite size with hard-wall and periodic boundary conditions. If the packing is not jammed, the algorithm yields representative multi-particle unjamming motions. Furthermore, we extend the jamming categories and the testing algorithm to packings with significant interparticle gaps. We describe in detail two variants of the proposed randomized linear programming approach to test for jamming in hard-sphere packings. The first algorithm treats ideal packings in which particles form perfect contacts. Another algorithm treats the case of jamming in packings with significant interparticle gaps. This extended algorithm allows one to explore more fully the nature of the feasible particle displacements. We have implemented the algorithms and applied them to ordered as well as random packings of circular disks and spheres with periodic boundary conditions. Some representative results for large disordered disk and sphere packings are given, but more robust and efficient implementations as well as further applications (e.g., non-spherical particles) are anticipated for the future

  17. Comparative Analysis of Battery Behavior with Different Modes of Discharge for Optimal Capacity Sizing and BMS Operation

    OpenAIRE

    Mazhar Abbas; Eung-sang Kim; Seul-ki Kim; Yun-su Kim

    2016-01-01

    Battery-operated systems are always concerned about the proper management and sizing of a battery. A Traditional Battery Management System (BMS) only includes battery-aware task scheduling based on the discharge characteristics of a whole battery pack and do not take into account the mode of the load being served by the battery. On the other hand, an efficient and intelligent BMS should monitor the battery at a cell level and track the load with significant consideration of the load mode. Dep...

  18. Thermal conductivity model of vibro-packed fuel

    International Nuclear Information System (INIS)

    Yeon Soo, Kim

    2001-01-01

    In an effort to dispose of excess weapons grade plutonium accumulated in the cold war era in the United States and the Russian Federation, one method currently under investigation is the conversion of the plutonium into mixed oxide (MOX) reactor fuel for LWRs and fast reactors in the Russian Federation. A fuel option already partly developed at the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad is that of vibro-packed MOX. Fuel rod fabrication using powder vibro-packing is attractive because it includes neither a process too complex to operate in glove boxes (or remotely), nor a waste-producing step necessary for the conventional pellet rod fabrication. However, because of its loose bonding between fuel particles at the beginning of life, vibro-packed MOX fuel has a somewhat less effective thermal conductivity than fully sintered pellet fuel, and undergoes more restructuring. Helium would also likely be pressurized in vibro-packed MOX fuel rods for LWRs to enhance initial fuel thermal conductivity. The combination of these two factors complicates development of an accurate thermal conductivity model. But clearly in order to predict fuel thermomechanical responses during irradiation of vibro-packed MOX fuel, fuel thermal conductivity must be known. The Vibropac fuel of interest in this study refers the fuel that is compacted with irregular fragments of mixed oxide fuel. In this paper, the thermal-conductivity models in the literature that dealt with relatively similar situations to the present case are examined. Then, the best model is selected based on accuracy of prediction and applicability. Then, the selected model is expanded to fit the various situations of interest. (author)

  19. The art and science of forming packed analytical high-performance liquid chromatography columns.

    Science.gov (United States)

    Kirkland, J J; Destefano, J J

    2006-09-08

    Columns of packed particles still are the most popular devices for high-performance liquid chromatography (HPLC) separations because of their great utility, excellent performance and wide variety. However, the forming of packed beds for efficient, stable columns traditionally has been an art where the basics of how to form optimum beds generally was not well understood. The recent development of monolith rods was introduced in part to overcome the difficulty of producing stable beds of packing particles. However, these materials are less versatile than packed particle columns. Technology developments in recent years have produced a better understanding among those skilled in the practice of how to form optimized packed beds, and this has led to widely available, high-quality commercial columns. This presentation discusses the developments that led to the present state of column packing technology. Important steps in the packing of efficient, stable beds are described. The key step of selecting the best solvent for the slurry packing method is emphasized. Factors affecting the mechanical stability of packed columns also are discussed. The early art of packing columns now has evolved into a more scientific approach that allows the packing of good columns with a minimum of effort and time.

  20. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  1. ExactPack Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Robert Jr. [Los Alamos National Laboratory; Israel, Daniel M. [Los Alamos National Laboratory; Doebling, Scott William [Los Alamos National Laboratory; Woods, Charles Nathan [Los Alamos National Laboratory; Kaul, Ann [Los Alamos National Laboratory; Walter, John William Jr [Los Alamos National Laboratory; Rogers, Michael Lloyd [Los Alamos National Laboratory

    2016-05-09

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.

  2. Cell packing structures

    KAUST Repository

    Pottmann, Helmut

    2015-03-03

    This paper is an overview of architectural structures which are either composed of polyhedral cells or closely related to them. We introduce the concept of a support structure of such a polyhedral cell packing. It is formed by planar quads and obtained by connecting corresponding vertices in two combinatorially equivalent meshes whose corresponding edges are coplanar and thus determine planar quads. Since corresponding triangle meshes only yield trivial structures, we focus on support structures associated with quad meshes or hex-dominant meshes. For the quadrilateral case, we provide a short survey of recent research which reveals beautiful relations to discrete differential geometry. Those are essential for successfully initializing numerical optimization schemes for the computation of quad-based support structures. Hex-dominant structures may be designed via Voronoi tessellations, power diagrams, sphere packings and various extensions of these concepts. Apart from the obvious application as load-bearing structures, we illustrate here a new application to shading and indirect lighting. On a higher level, our work emphasizes the interplay between geometry, optimization, statics, and manufacturing, with the overall aim of combining form, function and fabrication into novel integrated design tools.

  3. Statistical theory of correlations in random packings of hard particles.

    Science.gov (United States)

    Jin, Yuliang; Puckett, James G; Makse, Hernán A

    2014-05-01

    A random packing of hard particles represents a fundamental model for granular matter. Despite its importance, analytical modeling of random packings remains difficult due to the existence of strong correlations which preclude the development of a simple theory. Here, we take inspiration from liquid theories for the n-particle angular correlation function to develop a formalism of random packings of hard particles from the bottom up. A progressive expansion into a shell of particles converges in the large layer limit under a Kirkwood-like approximation of higher-order correlations. We apply the formalism to hard disks and predict the density of two-dimensional random close packing (RCP), ϕ(rcp) = 0.85 ± 0.01, and random loose packing (RLP), ϕ(rlp) = 0.67 ± 0.01. Our theory also predicts a phase diagram and angular correlation functions that are in good agreement with experimental and numerical data.

  4. Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst

    Science.gov (United States)

    Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao

    2018-03-01

    The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.

  5. Schedulability-Driven Frame Packing for Multi-Cluster Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2003-01-01

    We present an approach to frame packing for multi-cluster distributed embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In our approach, the application messages are packed into frames such that the application is schedulable. Thus, we have...... also proposed a schedulability analysis for applications consisting of mixed event-triggered and time-triggered processes and messages, and a worst case queuing delay analysis for the gateways, responsible for routing inter-cluster traffic. Optimization heuristics for frame packing aiming at producing...... a schedulable system have been proposed. Extensive experiments and a real-life example show the efficiency of our frame-packing approach....

  6. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  7. Alkaline Ionic Liquid Modified Pd/C Catalyst as an Efficient Catalyst for Oxidation of 5-Hydroxymethylfurfural

    Directory of Open Access Journals (Sweden)

    Zou Bin

    2018-01-01

    Full Text Available Conversion of HMF into FDCA was carried out by a simple and green process based on alkaline ionic liquid (IL modified Pd/C catalyst (Pd/C-OH−. Alkaline ionic liquids were chosen to optimize Pd/C catalyst for special hydrophilicity and hydrophobicity, redox stability, and unique dissolving abilities for polar compounds. The Pd/C-OH− catalyst was successfully prepared and characterized by SEM, XRD, TG, FT-IR, and CO2-TPD technologies. Loading of alkaline ionic liquid on the surface of Pd/C was 2.54 mmol·g−1. The catalyst showed excellent catalytic activity in the HMF oxidation after optimization of reaction temperature, reaction time, catalyst amount, and solvent. Supported alkaline ionic liquid (IL could be a substitute and promotion for homogeneous base (NaOH. Under optimal reaction conditions, high HMF conversion of 100% and FDCA yield of 82.39% were achieved over Pd/C-OH− catalyst in water at 373 K for 24 h.

  8. Carbonaceous deposits on naptha reforming catalysts

    International Nuclear Information System (INIS)

    Redwan, D.S.

    1999-01-01

    Carbonaceous deposits on naphtha reforming catalysts play a decisive role in limiting process performance. The deposits negatively after catalyst activity, selectivity and the production cycle of a semi regenerative reformer. The magnitude of negative effect of those deposits is directly proportional to their amounts and complexity. Investigations on used reforming catalysts samples reveal that the amount and type (complexity of the chemical nature) of carbonaceous deposits are directly proportional to the catalysts life on stream and the severity of operating conditions. In addition, the combustibility behavior of carbonaceous deposits on the catalyst samples taken from different reformers are found to be different. Optimal carbon removal, for in situ catalyst regeneration, requires the specific conditions be developed, based on the results of well designed and properly performed investigations of the amount and type of carbonaceous deposits. (author)

  9. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  10. Optimization analysis of thermal management system for electric vehicle battery pack

    Science.gov (United States)

    Gong, Huiqi; Zheng, Minxin; Jin, Peng; Feng, Dong

    2018-04-01

    Electric vehicle battery pack can increase the temperature to affect the power battery system cycle life, charge-ability, power, energy, security and reliability. The Computational Fluid Dynamics simulation and experiment of the charging and discharging process of the battery pack were carried out for the thermal management system of the battery pack under the continuous charging of the battery. The simulation result and the experimental data were used to verify the rationality of the Computational Fluid Dynamics calculation model. In view of the large temperature difference of the battery module in high temperature environment, three optimization methods of the existing thermal management system of the battery pack were put forward: adjusting the installation position of the fan, optimizing the arrangement of the battery pack and reducing the fan opening temperature threshold. The feasibility of the optimization method is proved by simulation and experiment of the thermal management system of the optimized battery pack.

  11. Two-stage energy storage equalization system for lithium-ion battery pack

    Science.gov (United States)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.

    2017-11-01

    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  12. Molecular packing and area compressibility of lipid bilayers

    International Nuclear Information System (INIS)

    White, S.H.; King, G.I.

    1985-01-01

    Knowledge of the molecular packing of lipids and water in lipid bilayers is important for understanding bilayer mechanics and thermodynamics. Information on packing is most often obtained from x-ray or neutron diffraction measurements. Given the d spacing, composition, and partial specific volumes of the lipid and water, it is a simple matter to calculate the area per lipid molecule, bilayer thickness, and bilayer mass density. The partial specific volumes are commonly assumed to be those of bulk water and of lipid in excess water regardless of the degree of bilayer hydration. The authors present evidence here that these assumptions should be seriously questioned. At low hydrations, they find the head groups of egg and dioleoyl lecithin to be much less tightly packed than previously thought and the partial specific volume of water to be considerably smaller than 1 ml/g. Because the molecular packing affects the mechanical properties of bilayers, they use the results to reevaluate published experiments concerning the elastic area compressibility modulus of egg lecithin bilayers and the repulsive hydration force between bilayers

  13. Multi-dimensional Bin Packing Problems with Guillotine Constraints

    DEFF Research Database (Denmark)

    Amossen, Rasmus Resen; Pisinger, David

    2010-01-01

    The problem addressed in this paper is the decision problem of determining if a set of multi-dimensional rectangular boxes can be orthogonally packed into a rectangular bin while satisfying the requirement that the packing should be guillotine cuttable. That is, there should exist a series of face...... parallel straight cuts that can recursively cut the bin into pieces so that each piece contains a box and no box has been intersected by a cut. The unrestricted problem is known to be NP-hard. In this paper we present a generalization of a constructive algorithm for the multi-dimensional bin packing...... problem, with and without the guillotine constraint, based on constraint programming....

  14. An assessment concerning the preparation and application of hydrocarbon catalysis for tritium separation

    International Nuclear Information System (INIS)

    Ionita, Gh.; Kitamoto, A.; Shimizu, M.

    2001-01-01

    Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and on the reviewed references, this paper presents up-to-date R and D activities on the preparation and application of hydrophobic catalysts for tritium separation. Unlike the conventional hydrophilic catalysts, the hydrophobic catalysts repel the liquid water and allow the transport of the gaseous reactants and reaction products to and from catalytic active centers. For deuterium and tritium separation, over one hundred hydrophobic catalyst types have been prepared in different experimental conditions and tested by a large diversity of wet proofing methods. The influence on catalytic activity of about twenty parameters, have been also studied. The purpose of this paper is: (1) to provide a database for preparation and selection of he most appropriate catalyst and catalytic packing for the tritium separation; (2) to find how to use the hydrophobic catalyst and how to operate more efficiently the reactor packed with hydrophobic catalyst; (3) to evaluate the performances and potentiality of hydrophobic catalysts in tritium separation. As result, the following categories are shown: (1) the hydrophobic catalysts based on platinum and teflon as proved to have the highest activity and the longest stability by wet-proofing procedure; (2) the utilization of hydrophobic catalyst as ordered mixed catalytic packing in the trickle bed or separated bed reactors is more efficient and has been entirely tested on industrial scale; (3) the improvement of the inner geometry of the reactors and of the composition of mixed catalytic packing as well as the elaboration of the mathematical models for designing of the reactors and the evaluation of performances of separation processes constitute a major contribution of the authors; (4 ) a high resistance at radiation and chemical impurities of Pt-hydrophobic catalysts. The merits of hydrophobic Pt-catalysts

  15. Heavy metals in the snow pack of Semey town

    International Nuclear Information System (INIS)

    Panin, M.S.; Esenzholova, A.Zh.; Toropov, A.S.

    2008-01-01

    The data about the maintenance of heavy metals in the snow pack in various zones of Semey and biogeochemical operation factors of snow pack in Semey are presented in this work. Also the correlation connection between elements is calculated.

  16. Increasing the lifetime of fuel cell catalysts

    NARCIS (Netherlands)

    Latsuzbaia, R.

    2015-01-01

    In this thesis, I discuss a novel idea of fuel cell catalyst regeneration to increase lifetime of the PEM fuel cell electrode/catalyst operation and, therefore, reduce the catalyst costs. As many of the catalyst degradation mechanisms are difficult to avoid, the regeneration is alternative option to

  17. The “Theoreticals” Pack

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The Particle Zoo is a colourful set of hand-made soft toys representing the particles in the Standard Model and beyond. It includes a “theoreticals” pack where you can find yet undiscovered particles: the best-selling Higgs boson, the graviton, the tachyon, and dark matter. Supersymmetric particle soft toys are also available on demand. But what would happen to the zoo if Nature had prepared some unexpected surprises? Julie Peasley, the zookeeper, is ready to sew new smiling faces…   The "Theoreticals" pack in the Particle Zoo. There is only one place in the world where you can buy a smiling Higgs boson and it’s not at CERN, although this is where scientists hope to observe it. The blue star-shaped particle is the best seller of Julie Peasley’s Particle Zoo – a collection of tens of soft toys representing all sorts of particles, including composite and decaying particles.  Over the years Julie’s zoo ...

  18. A summary of the Chalk River valve packing evaluation program 1985 - 1990

    International Nuclear Information System (INIS)

    Aikin, J.A.; Doubt, G.L.; Lade, C.R.

    1990-12-01

    The move away from asbestos-based valve packing products has generated concern among valve manufacturers, packing manufacturers and user groups about the reliability and safety of non-asbestos based products for long-term use. AECL Research, Chalk River, has been actively evaluating these new valve packing products since 1985. This report describes the work done at Chalk River from 1985 to 1990. The report includes both Electric Power Research Institute (EPRI) and CANDU Owners Group (COG) funded studies. A description of the test programs and a brief summary of the functional performance of the more successful materials (die-formed graphite, braided asbestos and braided non-asbestos) on friction, stem leakage and consolidation are provided. At this time, Chalk River and Ontario Hydro have approved the following packing arrangements: for non-live-loaded valves, the recommended replacements packing for braided asbestos is combination flexible graphite packing sets; and, for heavy water valves originally designed with JC187I, the recommended replacement packing is approved braided-asbestos products

  19. Numerical Simulation on Dense Packing of Granular Materials by Container Oscillation

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2013-01-01

    Full Text Available The packing of granular materials is a basic and important problem in geomechanics. An approach, which generates dense packing of spheres confined in cylindrical and cuboidal containers in three steps, is introduced in this work. A loose packing structure is first generated by means of a reference lattice method. Then a dense packing structure is obtained in a container by simulating dropping of particles under gravitational forces. Furthermore, a scheme that makes the bottom boundary fluctuate up and down was applied to obtain more denser packing. The discrete element method (DEM was employed to simulate the interactions between particle-particle and particle-boundary during the particles' motions. Finally, two cases were presented to indicate the validity of the method proposed in this work.

  20. Comparative Analysis of Battery Behavior with Different Modes of Discharge for Optimal Capacity Sizing and BMS Operation

    Directory of Open Access Journals (Sweden)

    Mazhar Abbas

    2016-10-01

    Full Text Available Battery-operated systems are always concerned about the proper management and sizing of a battery. A Traditional Battery Management System (BMS only includes battery-aware task scheduling based on the discharge characteristics of a whole battery pack and do not take into account the mode of the load being served by the battery. On the other hand, an efficient and intelligent BMS should monitor the battery at a cell level and track the load with significant consideration of the load mode. Depending upon the load modes, the common modes of discharge (MOD of a battery identified so far are Constant Power Mode (CPM, Constant Current Mode (CCM and Constant Impedance Mode (CIM. This paper comparatively analyzes the discharging behavior of batteries at an individual cell level for different load modes. The difference in discharging behavior from mode to mode represents the study of the mode-dependent behavior of the battery before its deployment in some application. Based on simulation results, optimal capacity sizing and BMS operation of battery for an assumed situation in a remote microgrid has been proposed.

  1. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  2. The sintering behavior of close-packed spheres

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2012-01-01

    The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full dens...... density is reached for all systems. During sintering, the grains change shape from spherical to tetrakaidecahedron, similar to the geometry analyzed by Coble [R.L. Coble, J. Appl. Phys. 32 (1961) 787]....

  3. Extended Catalyst Longevity Via Supercritical Isobutane Regeneration of a Partially Deactivated USY Alkylation Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch; David J. Zalewski

    2005-05-01

    Off-line, in situ activity recovery of a partially deactivated USY zeolite catalyst used for isobutane/butene alkylation was examined in a continuous-flow reaction system employing supercritical isobutane. Catalyst samples were deactivated in a controlled manner by running them to either to a fixed butene conversion level of 95% or a fixed time on stream of three hours, and then exposing the catalyst to supercritical isobutane to restore activity. Activity recovery was determined by comparing alkylation activity before and after the regeneration step. Both single and multiple regenerations were performed. Use of a 95% butene conversion level criterion to terminate the reaction step afforded 86% activity recovery for a single regeneration and provided nine sequential reaction steps for the multiple regeneration studies. Employing a fixed 3 h time on stream criterion resulted in nearly complete activity recovery for a single regeneration, and 24 reaction steps were demonstrated in sequence for the multiple regeneration process, producing only minor product yield declines per step. This resulted in a 12-fold increase in catalyst longevity versus unregenerated catalyst.

  4. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  5. Study of the performance of vanadium based catalysts prepared by grafting in the oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Santacesaria, E.; Carotenuto, G.; Tesser, R.; Di Serio, M. [Naples Univ. (Italy). Dept. of Chemistry

    2011-07-01

    The oxidative dehydrogenation (ODH) of propane has been investigated by using many different vanadia based catalysts, prepared by grafting technique and containing variable amounts of active phase supported on SiO{sub 2} previously coated, by grafting in three different steps, with multilayer of TiO{sub 2}. A depth catalytic screening, conducted in a temperature range of 400-600 C, at atmospheric pressure and in a range of residence time W/F=0.08-0.33 ghmol{sub -1}, has shown that the vanadium oxide catalysts on TiO{sub 2}-SiO{sub 2} support, prepared by grafting have good performances in the ODH of propane. In particular, a preliminary study has demonstrated that higher selectivities can be obtained employing catalysts having a well dispersed active phase that can be achieved with a V{sub 2}O{sub 5} content lower than 10%{sub w}t. It is well known that, in the case of redox catalysts, an increase of the selectivity can be achieved not only by using an adequate catalytic system but also via engineering routes like decoupling catalytic steps of reduction and re-oxidation. In fact it has been observed that by operating in dehydrogenating mode, on the same catalysts, a higher selectivity is obtained although the catalyst is poisoned by the formation of coke on the surface. As consequence of the results obtained in dehydrogenation, in this work has been explored the possibility to feed low amounts of oxygen, below the stoichiometric level with the aim to keep clean the surface from coke but maintaining high the selectivity, because, dehydrogenation reaction prevails. In this work, the behavior of catalysts containing different amounts of V2O5 has been studied in the propane-propene reaction by using different ratios C{sub 3}H{sub 8}/O{sub 2} included in the range 0-2. (orig.)

  6. Radiation sterilization of plastic packing materials and aseptic packaging

    International Nuclear Information System (INIS)

    Tokuoka, Keiko

    1986-01-01

    In the present day of 'satiation', quality, not quantity, is emphasized for foods, the consumers being oriented toward raw and healthy foodstuff. Aseptic Packaging is excellent means of conservation. While conventionally chemicals have been used for sterilization of packing materials for aseptic packaging, the sterilization by radiation is used in part recently. The following are described : history of aseptic packaging and its features, sterilization by radiation, γ-ray sterilization of large-sized containers, the development of an aseptic packaging system using electron rays, the occurrence of offensive odors from packing materials (comparison of odors from various materials, volatile substances occurring in irradiated polyethylene, influence of film grade upon the formation of carboxylic acid, influence of the irradiation conditions upon the occurrences of volatile substances, volatile substances occurring in the irradiation of bag-in-box packing materials), changes in properties of the packing materials. (Mori, K.)

  7. Nitrogen oxides storage catalysts containing cobalt

    Science.gov (United States)

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  8. FCC catalyst technologies expand limits of process capability

    International Nuclear Information System (INIS)

    Leiby, S.

    1992-01-01

    This paper reports that over the past 30 or so years, many improvements in fluid catalytic cracking (FCC) operation have been achieved as the result of innovations in catalyst formulation. During the 1990s, new environmental regulations on issues such as reformulated gasoline will place new demands on both the refining industry and catalyst suppliers. An overview of cracking catalyst technology therefore seems in order. Today, high-technology innovations by catalyst manufacturers are rapid, but profit margins are slim. Catalyst formulations are shrouded in secrecy and probably depend almost as much on art as on science. Special formulations for specific cracking applications get the greatest emphasis today. To illustrate this point, OGJ's Worldwide Catalyst Report lists over 200 FCC catalyst designations. Catalysts containing components to enhance gasoline octane now account for about 70% of total U.S. FCC catalyst usage

  9. Catalyst Deactivation and Regeneration in Low Temperature Ethanol Steam Reforming with Rh/CeO2-ZrO2 Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hyun-Seog; Platon, Alex; Wang, Yong; King, David L.

    2006-08-01

    Rh/CeO2-ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.

  10. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  11. Petroleum residue upgrading with dispersed catalysts. Part 1. Catalysts activity and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, N.; Del Bianco, A.; Del Piero, G. [ENITECNOLOGIE S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy); Marchionna, M. [SNAMPROGETTI S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy)

    2000-12-04

    The results of a study aimed at the identification of the relevant chemical aspects involved in the process of upgrading heavy feedstocks in the presence of dispersed catalysts are discussed. The catalytic activity of different compounds was compared in terms of products yields and quality. Moreover, a detailed and systematic characterization of the catalysts recovered at the end of the reactions was achieved. The experimental work provided quite a large set of data, allowing to investigate the factors that may affect catalyst activity (precursor solubility, rate of activation, degree of dispersion, presence of promoters, etc.). The results of this study demonstrate that the best performances are obtained by the microcrystalline molybdenite generated in situ by oil-soluble precursors. The nature of the organic ligand does not play a very relevant role in influencing the hydrogenation activity. The presence of phosphorus, however, significantly enhances hydrodemetallation, at least in terms of vanadium removal. Bimetallic precursors show a slight synergistic effect towards the hydrodesulfurization reaction. Microsized powdered catalyst precursors have a much lower catalytic activity compared to the oil-soluble ones.

  12. Long term deactivation test of high dust SCR catalysts by straw co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Weigang Lin; Degn Jensen, A.; Bjerkvig, J.

    2009-12-15

    The consequences of carbon dioxide induced global warming cause major concern worldwide. The consumption of energy produced with fossil fuels is the major factor that contributes to the global warming. Biomass is a renewable energy resource and has a nature of CO{sub 2} neutrality. Co-combustion of biomass in existing coal fired power plants can maintain high efficiency and reduce the emission of CO{sub 2} at same time. However, one of the problems faced by co-firing is deactivation of the SCR catalysts. Understanding of the mechanisms of deactivation of the catalyst elements at co-firing conditions is crucial for long term runs of the power plants. Twenty six SCR catalyst elements were exposed at two units (SSV3 and SSV4) in the Studstrup Power Plant for a long period. Both units co-fire coal and straw with a typical fraction of 8-10% straw on an energy basis during co-firing. SSV4 unit operated in co-firing mode most of the time; SSV3 unit co-fired straw half of the operating time. The main objective of this PSO-project is to gain knowledge of a long term influence on catalyst activity when co-firing straw in coal-fired power plants, thus, to improve the basis for operating the SCR-plants for NO{sub x}-reduction. The exposure time of the applied catalyst elements (HTAS and BASF) varied from approximately 5000 to 19000 hours in the power plant by exchanging the element two times. The activity of all elements was measured before and after exposure in a bench scale test rig at the Department of Chemical and Biochemical Engineering, Technical University of Denmark. The results show that the activity, estimated by exclusion of channel clogging of the elements, decreases gradually with the total exposure time. It appears that the exposure time under co-firing condition has little effect on the deactivation of the catalyst elements and no sharp decrease of the activity was observed. The average deactivation rate of the catalyst elements is 1.6 %/1000 hours. SEM

  13. Ultratight crystal packing of a 10 kDa protein

    Energy Technology Data Exchange (ETDEWEB)

    Trillo-Muyo, Sergio [Molecular Biology Institute of Barcelona, Spanish Research Council CSIC, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona (Spain); Jasilionis, Andrius [Vilnius University, M. K. Čiurlionio 21/27, 03101 Vilnius (Lithuania); Domagalski, Marcin J. [University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0736 (United States); Chruszcz, Maksymilian [University of South Carolina, 631 Sumter Street, Columbia, SC 29208 (United States); Minor, Wladek [University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0736 (United States); Kuisiene, Nomeda [Vilnius University, M. K. Čiurlionio 21/27, 03101 Vilnius (Lithuania); Arolas, Joan L.; Solà, Maria; Gomis-Rüth, F. Xavier, E-mail: xgrcri@ibmb.csic.es [Molecular Biology Institute of Barcelona, Spanish Research Council CSIC, Barcelona Science Park, c/Baldiri Reixac 15-21, 08028 Barcelona (Spain)

    2013-03-01

    The crystal structure of the C-terminal domain of a putative U32 peptidase from G. thermoleovorans is reported; it is one of the most tightly packed protein structures reported to date. While small organic molecules generally crystallize forming tightly packed lattices with little solvent content, proteins form air-sensitive high-solvent-content crystals. Here, the crystallization and full structure analysis of a novel recombinant 10 kDa protein corresponding to the C-terminal domain of a putative U32 peptidase are reported. The orthorhombic crystal contained only 24.5% solvent and is therefore among the most tightly packed protein lattices ever reported.

  14. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Bukur, Dragomir B.; Lang, X.; Chokkaram, S.; Nowicki, L.; Wei, G.; Ding, Y.; Reddy, B.; Xiao, S.

    1999-01-01

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant

  15. Catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  16. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  17. An experimental comparison of some heuristics for cardinality constrained bin packing problem

    Directory of Open Access Journals (Sweden)

    Maja Remic

    2012-01-01

    Full Text Available Background: Bin packing is an NPhard optimization problem of packing items of given sizes into minimum number of capacitylimited bins. Besides the basic problem, numerous other variants of bin packing exist. The cardinality constrained bin packing adds an additional constraint that the number of items in a bin must not exceed a given limit Nmax. Objectives: Goal of the paper is to present a preliminary experimental study which demostrates adaptations of the new algorithms to the general cardinality constrained bin packing problem. Methods/Approach: Straightforward modifications of First Fit Decreasing (FFD, Refined First Fit (RFF and the algorithm by Zhang et al. for the bin packing problem are compared to four cardinality constrained bin packing problem specific algorithms on random lists of items with 0%, 10%, 30% and 50% of large items. The behaviour of all algorithms when cardinality constraint Nmax increases is also studied. Results: Results show that all specific algorithms outperform the general algorithms on lists with low percentage of big items. Conclusions: One of the specific algorithms performs better or equally well even on lists with high percentage of big items and is therefore of significant interest. The behaviour when Nmax increases shows that specific algorithms can be used for solving the general bin packing problem as well.

  18. Effects of kinesio taping and hot packs on premenstrual syndrome in females.

    Science.gov (United States)

    Choi, Jung-Hyun

    2017-09-01

    [Purpose] This study aimed to evaluate the effects of taping and hot packs on premenstrual syndrome, in an attempt to generate basic data for physical therapy intervention for premenstrual syndrome. [Subjects and Methods] Thirty-two females in their 20s with premenstrual syndrome were randomly assigned to a taping group (n=10), hot pack group (n=11), and taping with hot pack group (n=11). Premenstrual syndrome was assessed using the Menstrual Distress Questionnaire in each participant prior to intervention and was re-assessed after applying kinesio taping and/or hot pack from 10 days before the estimated date of menstruation until the first day of menstruation. [Results] Data revealed that the taping and taping with hot pack groups showed significantly reduced premenstrual syndrome following intervention. In terms of the differences in the Menstrual Distress Questionnaire total score among the groups, the taping with hot pack and hot pack groups showed a significant difference. [Conclusion] These findings indicate that kinesio taping is an easy, non-drug intervention for female college students with premenstrual syndrome.

  19. Catalysis Science Initiative: Catalyst Design by Discovery Informatics

    Energy Technology Data Exchange (ETDEWEB)

    Delgass, William Nicholas [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States) Department of Chemistry; Caruthers, James [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Ribeiro, Fabio [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Thomson, Kendall [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Schneider, William [Univ. of Notre Dame, IN (United States)

    2016-07-08

    Catalysts selectively enhance the rates of chemical reactions toward desired products. Such reactions provide great benefit to society in major commercial sectors such as energy production, protecting the environment, and polymer products and thereby contribute heavily to the country’s gross national product. Our premise is that the level of fundamental understanding of catalytic events at the atomic and molecular scale has reached the point that more predictive methods can be developed to shorten the cycle time to new processes. The field of catalysis can be divided into two regimes: heterogeneous and homogeneous. For the heterogeneous catalysis regime, we have used the water-gas shift (WGS) reaction (CO + H2O + CO2 + H2O) over supported metals as a test bed. Detailed analysis and strong coupling of theory with experiment have led to the following conclusions: • The sequence of elementary steps goes through a COOH intermediate • The CO binding energy is a strong function of coverage of CO adsorbed on the surface in many systems • In the case of Au catalysts, the CO adsorption is generally too weak on surface with close atomic packing, but the enhanced binding at corner atoms (which are missing bonding partners) of cubo-octahedral nanoparticles increases the energy to a near optimal value and produces very active catalysts. • Reaction on the metal alone cannot account for the experimental results. The reaction is dual functional with water activation occurring at the metal-support interface. It is clear from our work that the theory component is essential, not only for prediction of new systems, but also for reconciling data and testing hypotheses regarding potential descriptors. Particularly important is the finding that the interface between nano-sized metal particles and the oxides that are used to support them represent a new state of matter in the sense that the interfacial bonding perturbs the chemical state of both metals atoms and the support

  20. Disk Density Tuning of a Maximal Random Packing.

    Science.gov (United States)

    Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A; Mahmoud, Ahmed H; Yan, Dong-Ming; English, Shawn A; Owens, John D; Bajaj, Chandrajit L; Mitchell, Scott A

    2016-08-01

    We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations.

  1. Mass transfer models analysis for the structured packings

    International Nuclear Information System (INIS)

    Suastegui R, A.O.

    1997-01-01

    The models that have been developing, to understand the mechanism of the mass transfer through the structured packings, present limitations for their application, existing then uncertainty in order to use them in the chemical industrial processes. In this study the main parameters used in the mass transfer are: the hydrodynamic of the bed of the column, the geometry of the bed, physical-chemical properties of the mixture and the flow regime of the operation between the flows liquid-gas. The sensibility of each one of these parameters generate an arduous work to develop right proposals and good interpretation of the phenomenon. With the purpose of showing the importance of these parameters mentioned in the mass transfer, this work is analyzed the process of absorption for the system water-air, using the models to the structured packings in packed columns. The models selected were developed by Bravo and collaborators in 1985 and 1992, in order to determine the parameters previous mentioned for the system water-air, using a structured packing built in the National Institute of Nuclear Research. In this work is showed the results of the models application and their discussion. (Author)

  2. Hydrogen production from water gas shift reaction in a high gravity (Higee) environment using a rotating packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Hsin; Syu, Yu-Jhih [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-10-15

    Hydrogen production via the water gas shift reaction (WGSR) was investigated in a high gravity environment. A rotating packed bed (RPB) reactor containing a Cu-Zn catalyst and spinning in the range of 0-1800 rpm was used to create high centrifugal force. The reaction temperature and the steam/CO ratio ranged from 250 to 350 C and 2 to 8, respectively. A dimensionless parameter, the G number, was derived to account for the effect of centrifugal force on the enhancement of the WGSR. With the rotor speed of 1800 rpm, the induced centrifugal force acting on the reactants was as high as 234 g on average in the RPB. As a result, the CO conversion from the WGSR was increased up to 70% compared to that without rotation. This clearly revealed that the centrifugal force was conducive to hydrogen production, resulting from intensifying mass transfer and elongating the path of the reactants in the catalyst bed. From Le Chatelier's principle, a higher reaction temperature or a lower steam/CO ratio disfavors CO conversion; however, under such a situation the enhancement of the centrifugal force on hydrogen production from the WGSR tended to become more significant. Accordingly, a correlation between the enhancement of CO conversion and the G number was established. As a whole, the higher the reaction temperature and the lower the steam/CO ratio, the higher the exponent of the G number function and the better the centrifugal force on the WGSR. (author)

  3. Packing and Cohesive Properties of Some Locally Extracted Starches

    African Journals Online (AJOL)

    ... properties of the particles affect the packing and cohesive properties of the starches, and are important in predicting the behaviour of the starches during handling and use in pharmaceutical preparations. These properties need to be closely controlled in pre-formulation studies. Keywords: Packing and cohesive properties, ...

  4. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  5. Reactivation of a tin oxide-containing catalyst

    Science.gov (United States)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, Kenneth G. (Inventor); Hess, Robert V. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Paulin, Patricia A. (Inventor)

    1989-01-01

    A method for the reactivation of a tin oxide-containing catalyst of a CO.sub.2 laser is provided. First, the catalyst is pretreated by a standard procedure. When the catalyst experiences diminished activity during usage, the heated zone surrounding the catalyst is raised to a temperature which is the operating temperature of the laser and 400.degree. C. for approximately one hour. The catalyst is exposed to the same laser gas mixture during this period. The temperature of the heated zone is then lowered to the operating temperature of the CO.sub.2 laser.

  6. Optimal Packed String Matching

    DEFF Research Database (Denmark)

    Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany

    2011-01-01

    In the packed string matching problem, each machine word accommodates – characters, thus an n-character text occupies n/– memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/–) time and even in real-time, achieving a factor – speed...

  7. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Manos Mavrikakis; James Dumesic; Rahul Nabar; Calvin Bartholonew; Hu Zou; Uchenna Paul

    2008-09-29

    measurements. The results provide a platform for further development of microkinetic models of FTS on Fe and a basis for more precise modeling of FTS activity of Fe catalysts. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on various realistic models of industrial, Fe-based FTS catalysts. Close-packed, most stable Fe(110) facet was analyzed and subsequently carbide formation was found to be facile leading to the choice of the FeC(110) model representing a Fe facet with a sub-surface C atom. The Pt adatom (Fe{sup Pt}(110)) was found to be the most stable model for our studies into Pt promotion and finally the role of steps was elucidated by recourse to the defected Fe(211) facet. Binding Energies(BEs), preferred adsorption sites and geometries for all FTS relevant stable species and intermediates were evaluated on each model catalyst facet. A mechanistic model (comprising of 32 elementary steps involving 19 species) was constructed and each elementary step therein was fully characterized with respect to its thermochemistry and kinetics. Kinetic calculations involved evaluation of the Minimum Energy Pathways (MEPs) and activation energies (barriers) for each step. Vibrational frequencies were evaluated for the preferred adsorption configuration of each species with the aim of evaluating entropy-changes, pre exponential factors and serving as a useful connection with experimental surface science techniques. Comparative analysis among these four facets revealed important trends in their relative behavior and roles in FTS catalysis. Overall the First Principles Calculations afforded us a new insight into FTS catalysis on Fe and modified-Fe catalysts.

  8. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...... along with our recent in situ TEM studies on the sintering of Ni/MgAl2O4 catalysts. These results suggest that the rapid loss of catalyst activity in the earliest stages of catalyst sintering could result from Ostwald ripening rather than through particle migration and coalescence. The smallest...

  9. A micro alkaline direct ethanol fuel cell with platinum-free catalysts

    International Nuclear Information System (INIS)

    Verjulio, R W; Sabaté, N; Torres-Herrero, N; Esquivel, J P; Santander, J; Alcaide, F; Álvarez, G

    2013-01-01

    This paper presents the fabrication and characterization of a micro alkaline direct ethanol fuel cell. The device has been conceived as a feasibility demonstrator, using microtechnologies for the fabrication of the current collectors and traditional techniques for the membrane electrode assembly production. The fuel cell works in passive mode, as expected for the simplicity required for micro power systems. Non-noble catalysts have been used in order to implement the main advantage of alkaline systems, showing the feasibility of such a device as a potential very-low-cost power device at mini- and micro scales. (paper)

  10. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  11. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  12. Granular flow through an aperture: Influence of the packing fraction

    Science.gov (United States)

    Aguirre, M. A.; De Schant, R.; Géminard, J.-C.

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  13. EFFECT OF SHOULDER SIDE PACK ON DYNAMIC POSTURAL STABILITY IN YOUNG HEALTHY FEMALE

    Directory of Open Access Journals (Sweden)

    Enas ELsayed Mohamed Abutaleb

    2016-06-01

    Full Text Available Background: Control of balance is a complex motor skill that involves integration of sensory inputs and the planning and execution of flexible movement patterns. Carrying side packs is famous in our society especially shoulder side packs. Most students carry shoulder side packs and they don't care about the way to carry them to be more balanced. The purpose of the study is to investigate the effect of carrying shoulder side pack on dynamic postural stability and to determine the best way of carrying a shoulder side pack either on the dominant side or non-dominant side that doesn’t affect dynamic postural stability in young healthy female. Methods: Sixty female volunteers aged from 18 to 25 years old participated in the study. Biodex balance system was used to measure the dynamic postural stability in three different occasions (without carrying a shoulder side pack, with carrying a shoulder side pack on the dominant side, and on the non-dominant side with a rest period in between. Results: Repeated measure analysis of variance (ANOVA followed by Bonferroni post hoc test were used to compare dynamic posture balance without carrying and during carrying a shoulder side pack on dominant and non-dominant sides. Analysis revealed that overall, anteroposterior and mediolateral stability indexes reduced significantly (P<0.0001 when carrying shoulder side pack on dominant side in comparison with when carrying shoulder side pack on non-dominant side and without carrying bag. Conclusion: It was concluded that carrying a shoulder side pack on the non-dominant side didn't disturb the postural stability when compared to carrying on the dominant side so, we recommend the students to carry shoulder side packs on the non-dominant side.

  14. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  15. demonstrating close-packing of atoms using spherical bubble gums

    African Journals Online (AJOL)

    Admin

    chemistry and junior inorganic chemistry courses. However, the subject of three dimen- sional close-packing of atoms has always been difficult for students to understand. In particular, students find it difficult to visualize the packing of atoms in different layers. They cannot clearly identify tetrahedral and octahedral holes, and.

  16. Improvising a Posterior Nasal Pack with Equipment in a Basic First Aid Kit.

    Science.gov (United States)

    Royer, Allison K; Royer, Mark C

    2016-09-01

    Posterior epistaxis is a serious condition that can be difficult to treat in a wilderness setting. The initial standard of care involves packing the affected nostril with a 7 to 9 cm nasal pack to tamponade the bleed. These packs are often unavailable outside of the emergency or operating room. This study set out to determine whether a posterior nasal pack could be constructed from the supplies present in a basic first aid kit in order to control massive nasal hemorrhage in a wilderness setting. A basic first aid kit was utilized to construct a posterior nasal pack that was inserted into an anatomical model and visibly compared with the Rapid Rhino (Posterior, 7.5 cm; Smith & Nephew, Austin, TX) nasal packing. The shape, size, and anatomical areas of compression (ie, into nasopharynx and posterior aspect of inferior turbinate) of this pack was similar to the commercially available posterior nasal pack. Placement in an anatomical model appears to provide similar compression as the commercially available posterior pack. This technique may provide short-term hemorrhage control in cases of serious posterior nasal hemorrhage where standard treatment options are not available. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  17. Fast Searching in Packed Strings

    DEFF Research Database (Denmark)

    Bille, Philip

    2009-01-01

    Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time....... However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let m...... word-RAM with logarithmic word size we present an algorithm using time O(n/log(sigma) n + m + occ) Here occ is the number of occurrences of P in Q. For m = o(n) this improves the O(n) bound...

  18. Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage

    International Nuclear Information System (INIS)

    Barbour, Edward; Mignard, Dimitri; Ding, Yulong; Li, Yongliang

    2015-01-01

    Highlights: • The paper presents a thermodynamic analysis of A-CAES using packed bed regenerators. • The packed beds are used to store the compression heat. • A numerical model is developed, validated and used to simulate system operation. • The simulated efficiencies are between 70.5% and 71.1% for continuous operation. • Heat build-up in the beds reduces continuous cycle efficiency slightly. - Abstract: The majority of articles on Adiabatic Compressed Air Energy Storage (A-CAES) so far have focussed on the use of indirect-contact heat exchangers and a thermal fluid in which to store the compression heat. While packed beds have been suggested, a detailed analysis of A-CAES with packed beds is lacking in the available literature. This paper presents such an analysis. We develop a numerical model of an A-CAES system with packed beds and validate it against analytical solutions. Our results suggest that an efficiency in excess of 70% should be achievable, which is higher than many of the previous estimates for A-CAES systems using indirect-contact heat exchangers. We carry out an exergy analysis for a single charge–storage–discharge cycle to see where the main losses are likely to transpire and we find that the main losses occur in the compressors and expanders (accounting for nearly 20% of the work input) rather than in the packed beds. The system is then simulated for continuous cycling and it is found that the build-up of leftover heat from previous cycles in the packed beds results in higher steady state temperature profiles of the packed beds. This leads to a small reduction (<0.5%) in efficiency for continuous operation

  19. Rectangular Full Packed Format for Cholesky's Algorithm: Factorization, Solution, and Inversion

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Wasniewski, Jerzy; Dongarra, Jack J

    2010-01-01

    of the storage space but provide high performance via the use of Level 3 BLAS. Standard packed format arrays fully utilize storage (array space) but provide low performance as there is no Level 3 packed BLAS. We combine the good features of packed and full storage using RFPF to obtain high performance via using...... Level 3 BLAS as RFPF is a standard full-format representation. Also, RFPF requires exactly the same minimal storage as packed the format. Each LAPACK full and/or packed triangular, symmetric, and Hermitian routine becomes a single new RFPF routine based on eight possible data layouts of RFPF. This new...... RFPF routine usually consists of two calls to the corresponding LAPACK full-format routine and two calls to Level 3 BLAS routines. This means no new software is required. As examples, we present LAPACK routines for Cholesky factorization, Cholesky solution, and Cholesky inverse computation in RFPF...

  20. Decontamination of Chlorpyrifos packing using ionizing radiation: processing optimization

    International Nuclear Information System (INIS)

    Mori, Manoel Nunes; Sampa, Maria Helena de Oliveira; Duarte, Celina Lopes

    2007-01-01

    The discharge of empty plastic packing of pesticide can be an environmental concern causing problems to human health, animals and plants if done without inspection and monitoring. Among the commercial pesticides, chlorpyrifos, o, o- Diethyl - o- (3,5,6 - trichloro - 2 - pyridyl) phosphorothioate, has significant importance because of its wide distribution, extensive use and persistence. The most commonly used formulations include the emulsified concentrate, granule, wet powder and dispersible granule has significant importance because of its wide distribution and extensive use and persistence. The hydroxyl .OH attack is the most efficient process of chemical oxidation. The degradation-induced of chlorpyrifos by gamma radiolysis was studied in packaging of high-density polyethylene tree layer coextruded, named COEX, irradiated intact and fragments. The intact packing was irradiated with water and the fragmented packing was irradiated with water and with a solution of 50% of water and 50% of acetonitrile. An AECL 'Gammacell 2201 60 Co source and a multipurpose gamma irradiator were used in the processing. The chemical analysis of the chlorpyrifos and by-products were made using a gas chromatography associated to the mass spectrometry (MSGC-Shimadzu QP5000. Radiation processing of packing in pieces showed higher efficiency in removing chlorpyrifos than whole packing. The presence of water showed fundamental to promote the formation of frees radicals and acetonitrile facilitate the dissolution of chlorpyrifos and consequently its removal. (author)

  1. Decontamination of Chlorpyrifos packing using ionizing radiation: processing optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Manoel Nunes; Sampa, Maria Helena de Oliveira; Duarte, Celina Lopes [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: mnmori@ipen.br; mhosampa@ipen.br; clduarte@ipen.br

    2007-07-01

    The discharge of empty plastic packing of pesticide can be an environmental concern causing problems to human health, animals and plants if done without inspection and monitoring. Among the commercial pesticides, chlorpyrifos, o, o- Diethyl - o- (3,5,6 - trichloro - 2 - pyridyl) phosphorothioate, has significant importance because of its wide distribution, extensive use and persistence. The most commonly used formulations include the emulsified concentrate, granule, wet powder and dispersible granule has significant importance because of its wide distribution and extensive use and persistence. The hydroxyl .OH attack is the most efficient process of chemical oxidation. The degradation-induced of chlorpyrifos by gamma radiolysis was studied in packaging of high-density polyethylene tree layer coextruded, named COEX, irradiated intact and fragments. The intact packing was irradiated with water and the fragmented packing was irradiated with water and with a solution of 50% of water and 50% of acetonitrile. An AECL 'Gammacell 2201 {sup 60}Co source and a multipurpose gamma irradiator were used in the processing. The chemical analysis of the chlorpyrifos and by-products were made using a gas chromatography associated to the mass spectrometry (MSGC-Shimadzu QP5000. Radiation processing of packing in pieces showed higher efficiency in removing chlorpyrifos than whole packing. The presence of water showed fundamental to promote the formation of frees radicals and acetonitrile facilitate the dissolution of chlorpyrifos and consequently its removal. (author)

  2. Territoriality and inter-pack aggression in gray wolves: shaping a social carnivore's life history

    Science.gov (United States)

    Cassidy, Kira A.; Smith, Douglas W.; Mech, L. David; MacNulty, Daniel R.; Stahler, Daniel R.; Metz, Matthew C.

    2016-01-01

    When Rudyard Kipling wrote The Jungle Book in 1894 and included the famous line "For the strength of the Wolf is the Pack, and the strength of the Pack is the Wolf," he would have had no idea that over a century later, scientific research would back up his poetic phrase. Recent studies in Yellowstone have found that both the individual wolf and the collective pack rely on each other and play important roles in territoriality. At a time when most fairy tales and fables were portraying wolves as demonic killers or, at best, slapstick gluttons, Kipling seemed to have a respect or even reverence for the wolf. Wolves in The Jungle Book raise and mentor the main character Mowgli, with the pack's leader eventually dying to save the "man-cub" from a pack of wolves. Kipling may have extended intra- pack benevolence to a human boy for literary sake, but he was clearly enthralled with how pack members treat each other. As wolf packs are almost always family units, most commonly comprised of a breeding pair and their offspring from several years, amiable behavior within the pack is unsurprising. By contrast, wolf packs are fiercely intolerant of their neighbors, their rivals. And this competition is proving to be an important facet in the life of a wolf and its pack.

  3. exchanged Mg-Al hydrotalcite catalyst

    Indian Academy of Sciences (India)

    ) catalysts, ... The catalyst can be easily separated by simple filtration ... surface area by the single-point N2 adsorption method ... concentration of carbonate anions (by treating the cat- .... hydrotalcite phase along with copper hydroxide and.

  4. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  5. Polyfunctional catalyst for processiing benzene fractions

    Energy Technology Data Exchange (ETDEWEB)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

    2009-05-15

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  6. Cigarette pack labelling in 12 countries at different levels of economic development.

    Science.gov (United States)

    Mir, Hassan; Buchanan, Daniel; Gilmore, Anna; McKee, Martin; Yusuf, Salim; Chow, Clara K

    2011-05-01

    With increasing restrictions on cigarette marketing, the cigarette pack itself has become a main means of marketing. We describe a method to examine cigarette labelling and use it to evaluate packs collected from 12 countries at different stages of economic development. Health warnings were present on all 115 packs of cigarettes examined, but were on the front and back panels of only 68 per cent. Promotional labels were widespread, found on packs from all countries and more numerous (although not necessarily larger) than health warning labels in 10 of the 12 countries. Deceptive terms such as 'light' and 'mild' were observed on 42 per cent of all packs examined. The simple method described here can be used to compare cigarette labelling and potentially evaluate and track the implementation of cigarette labelling policy. We found health warning legislation poorly enforced and cigarette packs widely used to promote smoking and deceive smokers about health risks. The findings underline the need for generic (plain) packaging.

  7. Calcium and lanthanum solid base catalysts for transesterification

    Science.gov (United States)

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  8. Fragmentation and disintegration of polymerizing PE particles : role of stress, brittleness and skin

    NARCIS (Netherlands)

    Keelapandal Ramamoorthy, S.N.

    2009-01-01

    Morphology control is an important issue in the field of polyolefins as well as catalyst development. New generations of supported catalysts often show complex fragmentation behaviour. A single catalyst particle (catalyst on support) is composed of many micro-grains that are packed together. During

  9. Do gray wolves (Canis lupus) support pack mates during aggressive inter-pack interactions?

    Science.gov (United States)

    Cassidy, Kira A; McIntyre, Richard T

    2016-09-01

    For group-living mammals, social coordination increases success in everything from hunting and foraging (Crofoot and Wrangham in Mind the Gap, Springer, Berlin, 2010; Bailey et al. in Behav Ecol Sociobiol 67:1-17, 2013) to agonism (Mosser and Packer in Anim Behav 78:359-370, 2009; Wilson et al. in Anim Behav 83:277-291, 2012; Cassidy et al. in Behav Ecol 26:1352-1360, 2015). Cooperation is found in many species and, due to its low costs, likely is a determining factor in the evolution of living in social groups (Smith in Anim Behav 92:291-304, 2014). Beyond cooperation, many mammals perform costly behaviors for the benefit of group mates (e.g., parental care, food sharing, grooming). Altruism is considered the most extreme case of cooperation where the altruist increases the fitness of the recipient while decreasing its own fitness (Bell in Selection: the mechanism of evolution. Oxford University Press, Oxford 2008). Gray wolf life history requires intra-pack familiarity, communication, and cooperation in order to succeed in hunting (MacNulty et al. in Behav Ecol doi: 10.1093/beheco/arr159 2011) and protecting group resources (Stahler et al. in J Anim Ecol 82: 222-234, 2013; Cassidy et al. in Behav Ecol 26:1352-1360, 2015). Here, we report 121 territorial aggressive inter-pack interactions in Yellowstone National Park between 1 April 1995 and 1 April 2011 (>5300 days of observation) and examine each interaction where one wolf interferes when its pack mate is being attacked by a rival group. This behavior was recorded six times (17.6 % of interactions involving an attack) and often occurred between dyads of closely related individuals. We discuss this behavior as it relates to the evolution of cooperation, sociality, and altruism.

  10. Structural and luminescence properties of GaN nanowires grown using cobalt phthalocyanine as catalyst

    Science.gov (United States)

    Yadav, Shivesh; Rodríguez-Fernández, Carlos; de Lima, Mauricio M.; Cantarero, Andres; Dhar, Subhabrata

    2015-12-01

    Catalyst free methods have usually been employed to avoid any catalyst induced contamination for the synthesis of GaN nanowires with better transport and optical properties. Here, we have used a catalytic route to grow GaN nanowires, which show good optical quality. Structural and luminescence properties of GaN nanowires grown by vapor-liquid-solid technique using cobalt phthalocyanine as catalyst are systematically investigated as a function of various growth parameters such as the growth temperature and III/V ratio. The study reveals that most of the nanowires, which are several tens of microns long, grow along [ 10 1 ¯ 0 ] direction. Interestingly, the average wire diameter has been found to decrease with the increase in III/V ratio. It has also been observed that in these samples, defect related broad luminescence features, which are often present in GaN, are completely suppressed. At all temperatures, photoluminescence spectrum is found to be dominated only by a band edge feature, which comprises of free and bound excitonic transitions. Our study furthermore reveals that the bound excitonic feature is associated with excitons trapped in certain deep level defects, which result from the deficiency of nitrogen during growth. This transition has a strong coupling with the localized vibrational modes of the defects.

  11. Stability of immobilized Rhizomucor miehei lipase for the synthesis of pentyl octanoate in a continuous packed bed bioreactor

    Directory of Open Access Journals (Sweden)

    E. Skoronski

    2014-09-01

    Full Text Available The enzymatic synthesis of organic compounds in continuous bioreactors is an efficient way to obtain industrially important chemicals. However, few works have focused on the study of the operational conditions and the bioprocess performance. In this work, the aliphatic ester pentyl octanoate was obtained by direct esterification using a continuous packed bed bioreactor containing the immobilized enzyme Lipozyme® RM IM as catalyst. Enzymatic deactivation was evaluated under different conditions for the operational parameters substrate/enzyme ratio (5.00, 1.67, 0.83 and 0.55 mmol substrate∙min-1∙g-1enzyme and temperature (30, 40, 50 and 60 °C. The optimal condition was observed at 30 ºC, which gave the minimum enzymatic deactivation rate and the maximum conversion to the desired product, yielding approximately 60 mmols of ester for an enzyme loading of 0.5 g into the bioreactor. A first-order deactivation model showed good agreement with the experimental data.

  12. Cigarette pack design and perceptions of risk among UK adults and youth.

    Science.gov (United States)

    Hammond, David; Dockrell, Martin; Arnott, Deborah; Lee, Alex; McNeill, Ann

    2009-12-01

    It is illegal in the EU for tobacco packaging to suggest that some cigarettes are safer than others. This study examined consumer perceptions of cigarette packs in the UK, including perceptions of 'plain packaging', in which colour and other design elements are removed, whilst retaining the brand name. 516 adult smokers and 806 youth aged 11-17 participated in an online survey. Participants were asked to compare pairs of cigarette packs on five measures: taste, tar delivery, health risk, attractiveness and either ease of quitting (adult smokers) or brand they would choose if trying smoking (youth). Adults and youth were significantly more likely to rate packs with the terms 'smooth', 'silver' and 'gold' as lower tar, lower health risk and either easier to quit smoking (adults) or their choice of pack if trying smoking (youth). For example, more than half of adults and youth reported that brands labelled as 'smooth' were less harmful compared with the 'regular' variety. The colour of packs was also associated with perceptions of risk and brand appeal: compared with Marlboro packs with a red logo, Marlboro packs with a gold logo were rated as lower health risk by 53% and easier to quit by 31% of adult smokers. Plain packs significantly reduced false beliefs about health risk and ease of quitting, and were rated as significantly less attractive and appealing to youth for trying smoking. Current regulations have failed to remove potentially misleading information from tobacco packaging. Removing colours from packs (plain packaging), as well as terms such as 'smooth' 'gold' and 'silver' would significantly reduce false beliefs and increase compliance with existing legislation.

  13. Preventing maritime transport of pathogens: the remarkable antimicrobial properties of silver-supported catalysts for ship ballast water disinfection.

    Science.gov (United States)

    Theologides, C P; Theofilou, S P; Anayiotos, A; Costa, C N

    2017-07-01

    Ship ballast water (SBW) antimicrobial treatment is considered as a priority issue for the shipping industry. The present work investigates the possibility of utilizing antimicrobial catalysis as an effective method for the treatment of SBW. Taking into account the well-known antimicrobial properties of ionic silver (Ag + ), five silver-supported catalysts (Ag/γ-Al 2 O 3 ) with various loadings (0.05, 0.1, 0.2, 0.5, and 1 wt%) were prepared and examined for the antimicrobial treatment of SBW. The bactericidal activity of the aforementioned catalysts was investigated towards the inhibition of Escherichia coli (Gram-negative) and Escherichia faecalis (Gram-positive) bacteria. Catalytic experiments were conducted in a three-phase continuous flow stirred tank reactor, used in a semi-batch mode. It was found that using the catalyst with the lowest metal loading, the inhibition of E. coli reached 95.8% after 30 minutes of treatment of an E. coli bacterial solution, while the inhibition obtained for E. faecalis was 76.2% after 60 minutes of treatment of an E. faecalis bacterial solution. Even better results (100% inhibition after 5 min of reaction) were obtained using the catalysts with higher Ag loadings. The results of the present work indicate that the prepared monometallic catalysts exert their antimicrobial activity within a short period of time, revealing, for the first time ever, that the field of antimicrobial heterogeneous catalysis using deposited ionic silver on a solid support may prove decisive for the disinfection of SBW.

  14. Novel anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.

  15. Carbons and carbon supported catalysts in hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  16. Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.

    Science.gov (United States)

    Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A

    2016-02-14

    The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.

  17. Optimization of catalyst system reaps economic benefits

    International Nuclear Information System (INIS)

    Le Roy, C.F.; Hanshaw, M.J.; Fischer, S.M.; Malik, T.; Kooiman, R.R.

    1991-01-01

    Champlin Refining and Chemicals Inc. is learning to optimize its catalyst systems for hydrotreating Venezuelan gas oils through a program of research, pilot plant testing, and commercial unit operation. The economic results of this project have been evaluated, and the benefits are most evident in improvements in product yields and qualities. The project has involved six commercial test runs, to date (Runs 10-15), with a seventh run planned. A summary of the different types of catalyst systems used in the test runs, and the catalyst philosophy that developed is given. Runs 10 and 11 used standard CoMo and NiMo catalysts for heavy gas oils hydrotreating. These catalysts had small pore sizes and suffered high deactivation rates because of metals contamination. When it was discovered that metals contamination was a problem, catalyst options were reviewed

  18. Cardiac arrest due to hyperkalemia following irradiated packed red cells transfusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, Kazuharu [Yamamoto-kumiai General Hospital, Noshiro, Akita (Japan); Ohta, Sukejuurou; Kojima, Yukiko; Mizunuma, Takahide; Nishikawa, Toshiaki

    1998-11-01

    We describe two cases of cardiac arrest due to hyperkalemia following transfusion of irradiated packed red cells. Case 1: Because sudden, rapid and massive hemorrage occurred in a 69-year-old male patient undergoing the left lobectomy of the liver, 8 units of irradiated packed red cells were rapidly transfused, the patient developed cardiac arrest. Serum kalium concentration after transfusion was 7.6 mEq/l. Case 2: A 7-month-old girl scheduled for closure of a ventricular septal defect, developed cardiac arrest due to hyperkalemia at the start of cardiopulmonary bypass. The extracorporeal circuit was primed with 6 units of irradiated packed red blood cells. Serum kalium concentration immediately after the start of cardiopulmonary bypass was 10.6 mEq/l. Analysis of kalium concentration in the pilot tubes of the same packs revealed 56-61 mEq/l. These case reports suggest that fresh irradiated packed red cells should be transfused during massive bleeding and for pediatric patients to prevent severe hyperkalemia. (author)

  19. Investigation of hydrodynamic behaviour of a pilot-scale trickle bed reactor packed with hydrophobic and hydrophilic packings using radiotracer technique

    International Nuclear Information System (INIS)

    Rajesh Kumar; Sadhana Mohan; Pant, H.J.; Sharma, V.K.; Mahajani, S.M.

    2012-01-01

    A radiotracer study was carried out in a trickle bed reactor (TBR) independently filled with two different types of packing i.e., hydrophobic and hydrophilic. The study was aimed at to estimate liquid holdup and investigate the dispersion characteristics of liquid phase with both types of packing at different operating conditions. Water and H2 gas were used as aqueous and gas phase, respectively. The liquid and gas flow rates used ranged from 0.83 x 10 -7 -16.67 x 10 -7 m 3 /s and 0-3.33 x 10 -4 m 3 (std)/s, respectively. Residence time distribution (RTD) of liquid phase was measured using 82 Br as radiotracer and about 10 MBq activity was used in each run. Mean residence time (MRT) and holdup of liquid phase were estimated from the measured RTD data. An axial dispersion with exchange model was used to simulate the measured RTD curves and model parameters (Peclet number and MRT) were obtained. At higher liquid flow rates, the TBR behaves as a plug flow reactor, whereas at lower liquid flow rates, the flow was found to be highly dispersed. The results of investigation indicated that the dispersion of liquid phase is higher in case of hydrophobic packing, whereas holdup is higher in case of hydrophilic packing. (author)

  20. Plasma-assisted adsorption of elemental mercury on CeO2/TiO2 at low temperatures

    Science.gov (United States)

    Liu, Lu; Zheng, Chenghang; Gao, Xiang

    2017-11-01

    Mercury is a kind of pollutants contained in flue gas which is hazardous for human beings. In this work, CeO2 was packed in the discharge zone of a plasma reactor to adsorb elemental mercury at low temperatures. Plasma-catalyst reactor can remove Hg0 efficiently with CeO2/TiO2 catalysts packed in the discharge zone. The Hg0 concentration continued to decrease gradually when the plasma was turned on, but not sank rapidly. This tendency was different with other catalysts. The treatment of plasma to CeO2/TiO2 catalysts has a promotion effect on the adsorption of Hg0. Plasma has the effect of changing the surface properties of the catalysts and the changes would restitute if the condition changed. The long-running test demonstrated that this method is an effective way to remove Hg0. The removal efficiency remained at above 99% throughout 12 hours when plasma had been turned on (15kV, 0.5 g packed CeO2/TiO2).

  1. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water.

    Science.gov (United States)

    Bergquist, Allison M; Choe, Jong Kwon; Strathmann, Timothy J; Werth, Charles J

    2016-06-01

    Ion exchange (IX) is the most common approach to treating nitrate-contaminated drinking water sources, but the cost of salt to make regeneration brine, as well as the cost and environmental burden of waste brine disposal, are major disadvantages. A hybrid ion exchange-catalyst treatment system, in which waste brine is catalytically treated for reuse, shows promise for reducing costs and environmental burdens of the conventional IX system. An IX model with separate treatment and regeneration cycles was developed, and ion selectivity coefficients for each cycle were separately calibrated by fitting experimental data. Of note, selectivity coefficients for the regeneration cycle required fitting the second treatment cycle after incomplete resin regeneration. The calibrated and validated model was used to simulate many cycles of treatment and regeneration using the hybrid system. Simulated waste brines and a real brine obtained from a California utility were also evaluated for catalytic nitrate treatment in a packed-bed, flow-through column with 0.5 wt%Pd-0.05 wt%In/activated carbon support (PdIn/AC). Consistent nitrate removal and no apparent catalyst deactivation were observed over 23 d (synthetic brine) and 45 d (real waste brine) of continuous-flow treatment. Ion exchange and catalyst results were used to evaluate treatment of 1 billion gallons of nitrate-contaminated source water at a 0.5 MGD water treatment plant. Switching from a conventional IX system with a two bed volume regeneration to a hybrid system with the same regeneration length and sequencing batch catalytic reactor treatment would save 76% in salt cost. The results suggest the hybrid system has the potential to address the disadvantages of a conventional IX treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  3. Method of performing sugar dehydration and catalyst treatment

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  4. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  5. Spherical shock-wave propagation in three-dimensional granular packings.

    Science.gov (United States)

    Xue, Kun; Bai, Chun-Hua

    2011-02-01

    We investigate numerically the spherical shock-wave propagation in an open dense granular packing perturbed by the sudden expansion of a spherical intruder in the interior of the pack, focusing on the correlation between geometrical fabrics and propagating properties. The measurements of the temporal and spatial variations in a variety of propagating properties define a consistent serrated wave substructure with characteristic length on the orders of particle diameters. Further inspection of particle packing reveals a well-defined particle layering that persists several particle diameters away from the intruder, although its dominant effects are only within one to two diameters. This interface-induced layering not only exactly coincides with the serrated wave profile, but also highlights the competition between two energy transmission mechanisms involving distinct transport speeds. The alternating dominances between these two mechanisms contribute to the nonlinear wave propagation on the particle scale. Moreover, the proliferation of intricate three-dimensional contact force networks suggests the anisotropic stress transmission, which is found to also arise from the localized packing structure in the vicinity of the intruder.

  6. Hemato-biochemical responses to packing in donkeys administered ascorbic acid during the harmattan season.

    Science.gov (United States)

    Olaifa, Folashade; Ayo, Joseph Olusegun; Ambali, Suleiman Folorunsho; Rekwot, Peter Ibrahim

    2015-02-01

    Experiments were performed to investigate the effect of ascorbic acid (AA) in reducing hemato-biochemical changes in pack donkeys during the cold-dry (harmattan) season. Six experimental donkeys administered orally AA (200 mg/kg) and six control donkeys not administered ascorbic acid were subjected to packing. Blood samples were collected from all donkeys for hematological and biochemical analyses. In the control donkeys, packed cell volume (PCV), erythrocyte count and hemoglobin concentration (Hb) decreased significantly (Pdonkeys, there was no significant difference between the pre- and post-packing values of PCV, erythrocyte count and Hb. In the control donkeys, the neutrophil and neutrophil:lymphocyte ratio increased significantly (Pdonkeys, the pre- and post-packing values were not significantly different. The eosinophil count increased significantly (Pdonkeys post packing. In conclusion, packing exerted significant adverse effects on the hematological parameters ameliorated by AA administration. AA may modulate neutrophilia and induce a considerable alteration of erythroid markers in donkeys subjected to packing during the harmattan season.

  7. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  8. Towards optimal packed string matching

    DEFF Research Database (Denmark)

    Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany

    2014-01-01

    -size string-matching instruction wssm is available in contemporary commodity processors. The other word-size maximum-suffix instruction wslm is only required during the pattern pre-processing. Benchmarks show that our solution can be efficiently implemented, unlike some prior theoretical packed string...

  9. Palladium catalysts deposited on silica materials: Comparison of catalysts based on mesoporous and amorphous supports in Heck reaction

    Czech Academy of Sciences Publication Activity Database

    Demel, J.; Čejka, Jiří; Štěpnička, P.

    2010-01-01

    Roč. 329, 1-2 (2010), s. 13-20 ISSN 1381-1169 R&D Projects: GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : heterogeneous catalysts * immobolized catalysts * supported catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.872, year: 2010

  10. The generic geometry of helices and their close-packed structures

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2010-01-01

    The formation of helices is an ubiquitous phenomenon for molecular structures whether they are biological, organic, or inorganic, in nature. Helical structures have geometrical constraints analogous to close packing of three-dimensional crystal structures. For helical packing the geometrical cons...

  11. Structure and catalytic activity of regenerated spent hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Massoth, F.E.; Furimsky, E. (Utah University, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1992-11-01

    Two spent catalysts, obtained from different hydrodemetallation operations, were regenerated by two different treatments, viz. 2% (V/V) O[sub 2]/N[sub 2] and air. One spent catalyst (B), contained 3 wt% V and 15 wt% C, while the other (H) contained 10 wt% V, 14 wt% C and 8 wt% Fe. After regeneration in the O[sub 2]/N[sub 2] stream, catalyst B showed essentially complete recovery of its original surface area, whereas catalyst H showed only 70% recovery. Both catalysts showed substantial losses in surface area by the air treatment. Catalytic activity tests on the regenerated catalysts for hydrodesulfurization of thiophene and for hydrogenation of 1-hexene showed low recovery of activities, even for the regenerated catalyst in which the surface area had been completely recovered. X-ray diffraction analyses of the spent-regenerated catalysts revealed substantial changes in catalyst structure. Surface area and catalytic activity results were qualitatively explained by these catalyst structural changes. 17 refs., 1 fig., 3 tabs.

  12. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  13. Safer v. Estate of Pack.

    Science.gov (United States)

    1996-07-11

    The Superior Court of New Jersey, Appellate Division, recognized "a physician's duty to warn those known to be at risk of avoidable harm from a genetically transmissible condition." During the 1950s, Dr. George Pack treated Donna Shafer's father for a cancerous blockage of the colon and multiple polyposis. In 1990, Safer was diagnosed with the same condition, which she claims is inherited, and, if not diagnosed and treated, invariably will lead to metastic colorectal cancer. Safer alleged that Dr. Pack knew the hereditary nature of the disease, yet failed to warn the immediate family, thus breaching his professional duty to warn. The court did not follow the analysis of the trial court, that a physician has no legal duty to warn the child of a patient of the genetic risk of disease because no physician and patient relationship exists between the doctor and the child.

  14. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  15. Reactivation of a Tin-Oxide-Containing Catalyst

    Science.gov (United States)

    Hess, Robert; Sidney, Barry; Schryer, David; Miller, Irvin; Miller, George; Upchurch, Bill; Davis, Patricia; Brown, Kenneth

    2010-01-01

    The electrons in electric-discharge CO2 lasers cause dissociation of some CO2 into O2 and CO, and attach themselves to electronegative molecules such as O2, forming negative O2 ions, as well as larger negative ion clusters by collisions with CO or other molecules. The decrease in CO2 concentration due to dissociation into CO and O2 will reduce the average repetitively pulsed or continuous wave laser power, even if no disruptive negative ion instabilities occur. Accordingly, it is the primary object of this invention to extend the lifetime of a catalyst used to combine the CO and O2 products formed in a laser discharge. A promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide (Pt/SnO2). First, the catalyst is pretreated by a standard procedure. The pretreatment is considered complete when no measurable quantity of CO2 is given off by the catalyst. After this standard pretreatment, the catalyst is ready for its low-temperature use in the sealed, high-energy, pulsed CO2 laser. However, after about 3,000 minutes of operation, the activity of the catalyst begins to slowly diminish. When the catalyst experiences diminished activity during exposure to the circulating gas stream inside or external to the laser, the heated zone surrounding the catalyst is raised to a temperature between 100 and 400 C. A temperature of 225 C was experimentally found to provide an adequate temperature for reactivation. During this period, the catalyst is still exposed to the circulating gas inside or external to the laser. This constant heating and exposing the catalyst to the laser gas mixture is maintained for an hour. After heating and exposing for an appropriate amount of time, the heated zone around the catalyst is allowed to return to the nominal operating temperature of the CO2 laser. This temperature normally resides in the range of 23 to 100 C. Catalyst activity can be measured as the percentage conversion of CO to CO2. In the specific embodiment

  16. Interaction between Proppant Packing, Reservoir Depletion, and Fluid Flow in Pore Space

    Science.gov (United States)

    Fan, M.; McClure, J. E.; Han, Y.; Chen, C.

    2016-12-01

    In the oil and gas industry, the performance of proppant pack in hydraulically created fractures has a significant influence on fracture conductivity. A better understanding of proppant transport and deposition pattern in a hydraulic fracture is vital for effective and economical production within oil and gas reservoirs. In this research, a numerical modeling approach, combining Particle Flow Code (PFC) and GPU-enhanced lattice Boltzmann simulator (GELBS), is adopted to advance the understanding of the interaction between proppant particle packing, depletion of reservoir formation, and transport of reservoir flow through the pore space. In this numerical work flow, PFC is used to simulate effective stress increase and proppant particle movement and rearrangement under increasing mechanical loading. The pore structure of the proppant pack evolves subsequently and the geometrical data are output for lattice Boltzmann (LB) simulation of proppant pack permeability. Three different proppant packs with fixed particle concentration and 12/18, 16/30, and 20/40 mesh sizes are generated. These proppant packs are compressed with specified loading stress and their subsequent geometries are used for fluid flow simulations. The simulation results are in good agreement with experimental observations, e.g., the conductivity of proppant packs decreases with increasing effective stress. Three proppant packs with the same average diameter were generated using different coefficients of variation (COVs) for the proppant diameter (namely cov5%, cov20%, and cov30%). By using the coupled PFC-LBM work flow, the proppant pack permeability as functions of effective stress and porosity is investigated. The results show that the proppant pack with a higher proppant diameter COV has lower permeability and porosity under the same effective stress, because smaller particles fill in the pore space between bigger particles. The relationship between porosity and permeability is also consistent with

  17. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  18. Polymer-bound rhodium hydroformylation catalysts

    NARCIS (Netherlands)

    Jongsma, Tjeerd

    1992-01-01

    Homogeneous catalysts are superior in activity, selectivity as well as specificity, but heterogeneous catalyst are often preferred in industrial processes, because of their good recoverability and their applicability in continuous flow reactors. It would be of great environmental, commercial and

  19. Catalyst design for carbon nanotube growth using atomistic modeling

    International Nuclear Information System (INIS)

    Pint, Cary L; Bozzolo, Guillermo; Hauge, Robert

    2008-01-01

    The formation and stability of bimetallic catalyst particles, in the framework of carbon nanotube growth, is studied using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Monte Carlo-Metropolis simulations with the BFS method are utilized in order to predict and study equilibrium configurations for nanoscale catalyst particles which are directly relevant to the catalyst state prior to growth of carbon nanotubes. At the forefront of possible catalyst combinations is the popular Fe-Mo bimetallic catalyst, which we have recently studied experimentally. We explain our experimental results, which indicate that the growth observed is dependent on the order of co-catalyst deposition, in the straightforward interpretation of BFS strain and chemical energy contributions toward the formation of Fe-Mo catalyst prior to growth. We find that the competition between the formation of metastable inner Mo cores and clusters of surface-segregated Mo atoms in Fe-Mo catalyst particles influences catalyst formation, and we investigate the role of Mo concentration and catalyst particle size in this process. Finally, we apply the same modeling approach to other prominent bimetallic catalysts and suggest that this technique can be a powerful tool to understand and manipulate catalyst design for highly efficient carbon nanotube growth

  20. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  1. Novel Anode Catalyst for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    S. Basri

    2014-01-01

    Full Text Available PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni and iron (Fe. Multiwalled carbon nanotubes (MWCNTs are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR. The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst.

  2. “Synthesis-on” and “synthesis-off” modes of carbon arc operation during synthesis of carbon nanotubes

    International Nuclear Information System (INIS)

    Yatom, Shurik; Selinsky, Rachel S.

    2017-01-01

    Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, were characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.

  3. Impact of Australia's introduction of tobacco plain packs on adult smokers’ pack-related perceptions and responses: results from a continuous tracking survey

    Science.gov (United States)

    Dunlop, Sally M; Dobbins, Timothy; Young, Jane M; Perez, Donna; Currow, David C

    2014-01-01

    Objectives To investigate the impact of Australia's plain tobacco packaging policy on two stated purposes of the legislation—increasing the impact of health warnings and decreasing the promotional appeal of packaging—among adult smokers. Design Serial cross-sectional study with weekly telephone surveys (April 2006–May 2013). Interrupted time-series analyses using ARIMA modelling and linear regression models were used to investigate intervention effects. Participants 15 745 adult smokers (aged 18 years and above) in New South Wales (NSW), Australia. Random selection of participants involved recruiting households using random digit dialling and selecting the nth oldest smoker for interview. Intervention The introduction of the legislation on 1 October 2012. Outcomes Salience of tobacco pack health warnings, cognitive and emotional responses to warnings, avoidance of warnings, perceptions regarding one's cigarette pack. Results Adjusting for background trends, seasonality, antismoking advertising activity and cigarette costliness, results from ARIMA modelling showed that, 2–3 months after the introduction of the new packs, there was a significant increase in the absolute proportion of smokers having strong cognitive (9.8% increase, p=0.005), emotional (8.6% increase, p=0.01) and avoidant (9.8% increase, p=0.0005) responses to on-pack health warnings. Similarly, there was a significant increase in the proportion of smokers strongly disagreeing that the look of their cigarette pack is attractive (57.5% increase, pbrand they buy (40.6% increase, p<0.0001), makes their pack stand out (55.6% increase, p<0.0001), is fashionable (44.7% increase, p<0.0001) and matches their style (48.1% increase, p<0.0001). Changes in these outcomes were maintained 6 months postintervention. Conclusions The introductory effects of the plain packaging legislation among adult smokers are consistent with the specific objectives of the legislation in regard to reducing promotional

  4. A Heuristic Algorithm for Solving Triangle Packing Problem

    Directory of Open Access Journals (Sweden)

    Ruimin Wang

    2013-01-01

    Full Text Available The research on the triangle packing problem has important theoretic significance, which has broad application prospects in material processing, network resource optimization, and so forth. Generally speaking, the orientation of the triangle should be limited in advance, since the triangle packing problem is NP-hard and has continuous properties. For example, the polygon is not allowed to rotate; then, the approximate solution can be obtained by optimization method. This paper studies the triangle packing problem by a new kind of method. Such concepts as angle region, corner-occupying action, corner-occupying strategy, and edge-conjoining strategy are presented in this paper. In addition, an edge-conjoining and corner-occupying algorithm is designed, which is to obtain an approximate solution. It is demonstrated that the proposed algorithm is highly efficient, and by the time complexity analysis and the analogue experiment result is found.

  5. How changes in top water bother big turning packs of up-going wet air

    Science.gov (United States)

    Wood, K.

    2017-12-01

    Big turning packs of up-going wet air form near areas of warm water at the top of big bodies of water. After these turning packs form, they usually get stronger if the top water stays warm. If the top water becomes less warm, the turning packs usually get less strong. Other things can change how strong a turning pack gets, like how wet the air around it is and if that air moves faster higher up than lower down. When these turning packs hit land, their rain and winds can hurt people and the stuff they own, especially if the turning pack is really strong. But it's hard to know how much stronger or less strong it will become before it hits land. Warm top water gives a turning pack of up-going wet air a lot of power, but cool top water doesn't, so we need to know how warm the top water is. Because I can't go into every turning pack myself, flying computers in outer space tell me what the top water is doing. I look at the top water near turning packs that get strong and see how it's different from the top water near those that get less strong. Top water that changes from warm to cool in a small area bothers a turning pack of up-going wet air, which then gets less strong. If we see these top water changes ahead of time, that might help us know what a turning pack will do before it gets close to land.

  6. Continuous proline catalysis via leaching of solid proline

    Directory of Open Access Journals (Sweden)

    Suzanne M. Opalka

    2011-12-01

    Full Text Available Herein, we demonstrate that a homogeneous catalyst can be prepared continuously via reaction with a packed-bed of a catalyst precursor. Specifically, we perform continuous proline catalyzed α-aminoxylations using a packed-bed of L-proline. The system relies on a multistep sequence in which an aldehyde and thiourea additive are passed through a column of solid proline, presumably forming a soluble oxazolidinone intermediate. This transports a catalytic amount of proline from the packed-bed into the reactor coil for subsequent combination with a solution of nitrosobenzene, affording the desired optically active α-aminooxy alcohol after reduction. To our knowledge, this is the first example in which a homogeneous catalyst is produced continuously using a packed-bed. We predict that the method will not only be useful for other L-proline catalyzed reactions, but we also foresee that it could be used to produce other catalytic species in flow.

  7. Immobilization of molecular catalysts in supported ionic liquid phases.

    Science.gov (United States)

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  8. Consumer preferences for front-of-pack calories labelling.

    Science.gov (United States)

    van Kleef, Ellen; van Trijp, Hans; Paeps, Frederic; Fernández-Celemín, Laura

    2008-02-01

    In light of the emerging obesity pandemic, front-of-pack calories labels may be an important tool to assist consumers in making informed healthier food choices. However, there is little prior research to guide key decisions on whether caloric content should be expressed in absolute terms or relative to recommended daily intake, whether it should be expressed in per serving or per 100 g and whether the information should be further brought alive for consumers in terms of what the extra calorie intake implies in relation to activity levels. The present study aimed at providing more insight into consumers' appreciation of front-of-pack labelling of caloric content of food products and their specific preferences for alternative execution formats for such information in Europe. For this purpose, eight executions of front-of-pack calorie flags were designed and their appeal and information value were extensively discussed with consumers through qualitative research in four different countries (Germany, The Netherlands, France and the UK). The results show that calories are well-understood and that participants were generally positive about front-of-pack flags, particularly when flags are uniform across products. The most liked flags are the simpler flags depicting only the number of calories per serving or per 100 g, while more complex flags including references to daily needs or exercise and the flag including a phrase referring to balanced lifestyle were least preferred. Some relevant differences between countries were observed. Although participants seem to be familiar with the notion of calories, they do not seem to fully understand how to apply them. From the results, managerial implications for the design and implementation of front-of-pack calorie labelling as well as important directions for future research are discussed.

  9. Consumer preferences for front-of-pack calories labelling

    Science.gov (United States)

    van Kleef, Ellen; van Trijp, Hans; Paeps, Frederic; Fernández-Celemín, Laura

    2008-01-01

    Objective In light of the emerging obesity pandemic, front-of-pack calories labels may be an important tool to assist consumers in making informed healthier food choices. However, there is little prior research to guide key decisions on whether caloric content should be expressed in absolute terms or relative to recommended daily intake, whether it should be expressed in per serving or per 100 g and whether the information should be further brought alive for consumers in terms of what the extra calorie intake implies in relation to activity levels. The present study aimed at providing more insight into consumers’ appreciation of front-of-pack labelling of caloric content of food products and their specific preferences for alternative execution formats for such information in Europe. Design For this purpose, eight executions of front-of-pack calorie flags were designed and their appeal and information value were extensively discussed with consumers through qualitative research in four different countries (Germany, The Netherlands, France and the UK). Results The results show that calories are well-understood and that participants were generally positive about front-of-pack flags, particularly when flags are uniform across products. The most liked flags are the simpler flags depicting only the number of calories per serving or per 100 g, while more complex flags including references to daily needs or exercise and the flag including a phrase referring to balanced lifestyle were least preferred. Some relevant differences between countries were observed. Although participants seem to be familiar with the notion of calories, they do not seem to fully understand how to apply them. Conclusion From the results, managerial implications for the design and implementation of front-of-pack calorie labelling as well as important directions for future research are discussed. PMID:17601362

  10. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.

    Science.gov (United States)

    Gong, Maojun; Bohn, Paul W; Sweedler, Jonathan V

    2009-03-01

    Incorporation of nanofluidic elements into microfluidic channels is one approach for adding filtration and partition functionality to planar microfluidic devices, as well as providing enhanced biomolecular separations. Here we introduce a strategy to pack microfluidic channels with silica nanoparticles and microbeads, thereby indirectly producing functional nanostructures; the method allows selected channels to be packed, here demonstrated so that a separation channel is packed while keeping an injection channel unpacked. A nanocapillary array membrane is integrated between two patterned microfluidic channels that cross each other in vertically separated layers. The membrane serves both as a frit for bead packing and as a fluid communication conduit between microfluidic channels. Centrifugal force-assisted sedimentation is then used to selectively pack the microfluidic channels using an aqueous silica bead suspension loaded into the appropriate inlet reservoirs. This packing approach may be used to simultaneously pack multiple channels with silica microbeads having different sizes and surface properties. The chip design and packing method introduced here are suitable for packing silica particles in sizes ranging from nanometers to micrometers and allow rapid (approximately 10 min) packing with high quality. The liquid/analyte transport characteristics of these packed micro/nanofluidic devices have potential utility in a wide range of applications, including electroosmotic pumping, liquid chromatographic separations, and electrochromatography.

  11. Transient thermal response of a packed bed for energy storage unit utilizing phase change material: experimental and numerical study

    International Nuclear Information System (INIS)

    Bemansour, A.

    2006-01-01

    The present work concerns the numerical and experimental study of the transient response of a packed bed latent heat thermal energy storage system. Experiments were carried out to measures the transient temperature distributions inside a cylindrical bed, which is randomly packed with spheres having uniform sizes and encapsulated the paraffin wax as a phase change material (PCM), with air as a working fluid. A two-dimensional separate phases formulation is used to develop a numerical analysis of the transient response of the bed, considering the influence of both axial and radial thermal dispersion. The fluid energy equation was transformed by finite difference approximation and solved by alternating direction implicit scheme, while the PCM energy equation was solved using fully explicit scheme. This analysis can be applied for both charging and recovery modes and a broad range of Reynolds numbers. Measurements of both fluid and PCM temperature were conducted at different axial and radial positions and at different operating parameters. Experimental measurements of temperature distribution compare favorably with the numerical results over a broad range of Reynolds numbers.(Author)

  12. Technology development for iron Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.J.; Raje, A.; Keogh, R.A. [and others

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  13. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst

    Science.gov (United States)

    Aguilar-Tapia, Antonio; Ould-Chikh, Samy; Lahera, Eric; Prat, Alain; Delnet, William; Proux, Olivier; Kieffer, Isabelle; Basset, Jean-Marie; Takanabe, Kazuhiro; Hazemann, Jean-Louis

    2018-03-01

    The construction of a high-temperature reaction cell for operando X-ray absorption spectroscopy characterization is reported. A dedicated cell was designed to operate as a plug-flow reactor using powder samples requiring gas flow and thermal treatment at high temperatures. The cell was successfully used in the reaction of dry reforming of methane (DRM). We present X-ray absorption results in the fluorescence detection mode on a 0.4 wt. % Ni/ZrO2 catalyst under realistic conditions at 750 °C, reproducing the conditions used for a conventional dynamic microreactor for the DRM reaction. The setup includes a gas distribution system that can be fully remotely operated. The reaction cell offers the possibility of transmission and fluorescence detection modes. The complete setup dedicated to the study of catalysts is permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental sciences (CRG-FAME) and French Absorption spectroscopy beamline in Material and Environmental sciences at Ultra-High Dilution (FAME-UHD) beamlines (BM30B and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.

  14. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst

    KAUST Repository

    Aguilar Tapia, Antonio

    2018-03-22

    The construction of a high-temperature reaction cell for operando X-ray absorption spectroscopy characterization is reported. A dedicated cell was designed to operate as a plug-flow reactor using powder samples requiring gas flow and thermal treatment at high temperatures. The cell was successfully used in the reaction of dry reforming of methane (DRM). We present X-ray absorption results in the fluorescence detection mode on a 0.4 wt. % Ni/ZrO2 catalyst under realistic conditions at 750 °C, reproducing the conditions used for a conventional dynamic microreactor for the DRM reaction. The setup includes a gas distribution system that can be fully remotely operated. The reaction cell offers the possibility of transmission and fluorescence detection modes. The complete setup dedicated to the study of catalysts is permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental sciences (CRG-FAME) and French Absorption spectroscopy beamline in Material and Environmental sciences at Ultra-High Dilution (FAME-UHD) beamlines (BM30B and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.

  15. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    Science.gov (United States)

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  17. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

    1995-07-01

    The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

  18. Efficient epoxidation of propene using molecular catalysts

    DEFF Research Database (Denmark)

    Markovits, Iulius I. E.; Anthofer, Michael H.; Kolding, Helene

    2014-01-01

    The epoxidation of propene is performed in homogeneous phase using various molecular catalysts and H2O2 or tert-butyl hydroperoxide as oxidants. A comparison between some molybdenum catalysts and methyltrioxorhenium (MTO) shows that the well known Re catalyst is the best among the examined...

  19. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  20. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

    Science.gov (United States)

    Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen

    2018-02-28

    Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.