WorldWideScience

Sample records for catalysis

  1. Supramolecular catalysis: Refocusing catalysis

    NARCIS (Netherlands)

    P.W.N.M. van Leeuwen; Z. Freixa

    2008-01-01

    This chapter contains sections titled: * Introduction: A Brief Personal History * Secondary Phosphines or Phosphites as Supramolecular Ligands * Host-Guest Catalysis * Ionic Interactions as a Means to Form Heterobidentate Assembly Ligands * Ditopic Ligands for the Construction of Bidentate Phosphine

  2. Heterogeneous Catalysis.

    Science.gov (United States)

    Miranda, R.

    1989-01-01

    Described is a heterogeneous catalysis course which has elements of materials processing embedded in the classical format of catalytic mechanisms and surface chemistry. A course outline and list of examples of recent review papers written by students are provided. (MVL)

  3. Interstellar catalysis

    International Nuclear Information System (INIS)

    Since gas-phase reactions alone cannot account for the observed abundances of H2 in the typical interstellar cloud, one or more surface reactions are probably involved. Of the three possible candidates, only catalytic production of H2 on transition metal grains is supported by laboratory evidence. Using the rate equations developed in a previous paper for this process, the steady-state equilibrium abundances of H, H2, e-, H+, H-, H2+, and H3+ are calculated for large (r > 10 pcs; M > approximately 102 solar masses), tenuous (n=102-104 cm-3) hydrogen dust clouds under a wide variety of conditions. In addition to the four rate equations involved in the catalytic reactions, 18 gas-phase and one additional surface reaction - the physical adsorption of H-atoms on cold dielectric surfaces and their subsequent recombination and desorption as H2 molecules - are included in the calculations. It is found that metal grains can produce as much interstellar H2 as the best physical adsorption mechanism under optimum conditions if the extinction in the visible is less than 5sup(m).0. The three critical parameters for efficient catalysis (activation energy of desorption, grain temperature, and the number density of available sites) are examined and it is shown that catalytic reactions are efficient producers of H2 under all but the most unfavorable conditions. (Auth.)

  4. Advances in catalysis

    CERN Document Server

    Gates, Bruce C

    2012-01-01

    Advances in Catalysis fills the gap between the journal papers and the textbooks across the diverse areas of catalysis research. For more than 60 years Advances in Catalysis has been dedicated to recording progress in the field of catalysis and providing the scientific community with comprehensive and authoritative reviews. This series in invaluable to chemical engineers, physical chemists, biochemists, researchers and industrial chemists working in the fields of catalysis and materials chemistry. * In-depth, critical, state-of-the-art reviews * Comprehensive, covers of all as

  5. Advances in catalysis

    CERN Document Server

    Jentoft, Friederike C

    2014-01-01

    Advances in Catalysis fills the gap between the journal papers and the textbooks across the diverse areas of catalysis research. For more than 60 years Advances in Catalysis has been dedicated to recording progress in the field of catalysis and providing the scientific community with comprehensive and authoritative reviews. This series is invaluable to chemical engineers and chemists working in the field of catalysis in academia or industry. Authoritative reviews written by experts in the field. Topics selected to reflect progress of the field. Insightful and critical articles, fully edite

  6. Supported metals in catalysis

    CERN Document Server

    Anderson, James A

    2011-01-01

    With contributions from experts in supported metal catalysis from both the industry and academia, this book presents the latest developments in characterization and application of supported metals in heterogeneous catalysis. In addition to thorough and updated coverage of the traditional aspects of heterogeneous catalysis such as preparation, characterization and use in well-established technologies such as vehicle emission control, the book also includes emerging areas where supported metal catalysis will make significant contributions to future developments, such as fuel cells and fine chemi

  7. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  8. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  9. Surface and nanomolecular catalysis

    CERN Document Server

    Richards, Ryan

    2006-01-01

    Using new instrumentation and experimental techniques that allow scientists to observe chemical reactions and molecular properties at the nanoscale, the authors of Surface and Nanomolecular Catalysis reveal new insights into the surface chemistry of catalysts and the reaction mechanisms that actually occur at a molecular level during catalysis. While each chapter contains the necessary background and explanations to stand alone, the diverse collection of chapters shows how developments from various fields each contributed to our current understanding of nanomolecular catalysis as a whole. The

  10. Homogeneous, Heterogeneous, and Enzymatic Catalysis.

    Science.gov (United States)

    Oyama, S. Ted; Somorjai, Gabor A.

    1988-01-01

    Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)

  11. Catalysis for alternative energy generation

    CERN Document Server

    2012-01-01

    Summarizes recent problems in using catalysts in alternative energy generation and proposes novel solutions  Reconsiders the role of catalysis in alternative energy generation  Contributors include catalysis and alternative energy experts from across the globe

  12. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  13. Catalysis in VOC Abatement

    Czech Academy of Sciences Publication Activity Database

    Ojala, S.; Pitkäaho, S.; Laitinen, T.; Koivikko, N.N.; Brahmi, R.; Gaálová, Jana; Matějová, Lenka; Kucherov, A.; Päivärinta, S.; Hirschmann, Ch.

    2011-01-01

    Roč. 54, 16-18 (2011), s. 1224-1256. ISSN 1022-5528. [Nordic Symposium on Catalysis /14./. Marienlyst, Helsingør, 29.08.2010-31.08.2010] Institutional research plan: CEZ:AV0Z40720504 Keywords : voc emissions * voc regulation * effects of VOC's Subject RIV: CC - Organic Chemistry Impact factor: 2.624, year: 2011

  14. Environmental catalysis with zeolites

    Czech Academy of Sciences Publication Activity Database

    Sobalík, Zdeněk

    Kerala: Transworld Research Network, 2008 - (Čejka, J.; Peréz-Pariente, J.; Roth, W.), s. 333-356 ISBN 978-81-7895-330-4 R&D Projects: GA ČR GA104/06/1254 Institutional research plan: CEZ:AV0Z40400503 Keywords : zeolites * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry

  15. Pollution Control by Catalysis

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus

    1998-01-01

    The report summarises the results of two years of collaboration supported by INTAS between Department of Chemistry,DTU,DK , IUSTI,Universite de Provence,FR, ICE/HT University 6of Patras,GR, and Boreskov Institute of Catalysis,RU.The project has been concerned with mechanistic studies of deNOx and...

  16. Catalysis of Supramolecular Hydrogelation.

    Science.gov (United States)

    Trausel, Fanny; Versluis, Frank; Maity, Chandan; Poolman, Jos M; Lovrak, Matija; van Esch, Jan H; Eelkema, Rienk

    2016-07-19

    One often thinks of catalysts as chemical tools to accelerate a reaction or to have a reaction run under more benign conditions. As such, catalysis has a role to play in the chemical industry and in lab scale synthesis that is not to be underestimated. Still, the role of catalysis in living systems (cells, organisms) is much more extensive, ranging from the formation and breakdown of small molecules and biopolymers to controlling signal transduction cascades and feedback processes, motility, and mechanical action. Such phenomena are only recently starting to receive attention in synthetic materials and chemical systems. "Smart" soft materials could find many important applications ranging from personalized therapeutics to soft robotics to name but a few. Until recently, approaches to control the properties of such materials were largely dominated by thermodynamics, for instance, looking at phase behavior and interaction strength. However, kinetics plays a large role in determining the behavior of such soft materials, for instance, in the formation of kinetically trapped (metastable) states or the dynamics of component exchange. As catalysts can change the rate of a chemical reaction, catalysis could be used to control the formation, dynamics, and fate of supramolecular structures when the molecules making up these structures contain chemical bonds whose formation or exchange are susceptible to catalysis. In this Account, we describe our efforts to use synthetic catalysts to control the properties of supramolecular hydrogels. Building on the concept of synthesizing the assembling molecule in the self-assembly medium from nonassembling precursors, we will introduce the use of catalysis to change the kinetics of assembler formation and thereby the properties of the resulting material. In particular, we will focus on the synthesis of supramolecular hydrogels where the use of a catalyst provides access to gel materials with vastly different appearance and mechanical

  17. Anion-π catalysis.

    Science.gov (United States)

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-01

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  18. Preface: Catalysis Today

    DEFF Research Database (Denmark)

    Li, Yongdan

    2016-01-01

    This special issue of Catalysis Today with the theme “Sustain-able Energy” results from a great success of the session “Catalytic Technologies Accelerating the Establishment of Sustainable and Clean Energy”, one of the two sessions of the 1st International Symposium on Catalytic Science and...... Technology in Sustainable Energy and Environment, held in Tianjin, China during October8–10, 2014. This biennial symposium offers an international forum for discussing and sharing the cutting-edge researches and the most recent breakthroughs in energy and environmental technologies based on catalysis...... principles.A total of 29 invited contributions from the authors who madeoral and poster (very limited number) presentations are includedin this special issue. A wide spectrum of topics is covered, whichcan be broadly categorized as: Clean Fossil Fuels Renewable Fuels Efficient Catalytic Energy Processors...

  19. Applied heterogeneous catalysis

    International Nuclear Information System (INIS)

    This reference book explains the scientific principles of heterogeneous catalysis while also providing details on the methods used to develop commercially viable catalyst products. A section of the book presents reactor design engineering theory and practices for the profitable application of these catalysts in large-scale industrial processes. A description of the mechanisms and commercial applications of catalysis is followed by a review of catalytic reaction kinetics. There are five chapters on selecting catalyst agents, developing and preparing industrial catalysts, measuring catalyst properties, and analyzing the physico-chemical characteristics of solid catalyst particles. The final chapter reviews the elements of catalytic reactor design, with emphasis on flow regimes vs. reactor types, heat and mass transfer in reactor beds, single- and multi-phase flows, and the effects of thermodynamics and other catalyst properties on the process flow scheme

  20. Magnetic Catalysis in Graphene

    CERN Document Server

    Winterowd, Christopher; Zafeiropoulos, Savvas

    2015-01-01

    One of the most important developments in condensed matter physics in recent years has been the discovery and characterization of graphene. A two-dimensional layer of Carbon arranged in a hexagonal lattice, graphene exhibits many interesting electronic properties, most notably that the low energy excitations behave as massless Dirac fermions. These excitations interact strongly via the Coulomb interaction and thus non-perturbative methods are necessary. Using methods borrowed from lattice QCD, we study the graphene effective theory in the presence of an external magnetic field. Graphene, along with other $(2+1)$-dimensional field theories, has been predicted to undergo spontaneous breaking of flavor symmetry including the formation of a gap as a result of the external magnetic field. This phenomenon is known as magnetic catalysis. Our study investigates magnetic catalysis using a fully non-perturbative approach.

  1. Solid Base Catalysis

    CERN Document Server

    Ono, Yoshio

    2011-01-01

    The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to whic...

  2. Catalysis of carboxypeptidase A

    DEFF Research Database (Denmark)

    Wu, Shanshan; Zhang, Chunchun; Xu, Dingguo;

    2010-01-01

    The catalytic mechanism of carboxypeptidase A (CPA) for the hydrolysis of ester substrates is investigated using hybrid quantum mechanical/molecular mechanical (QM/MM) methods and high-level density functional theory. The prevailing mechanism was found to utilize an active-site water molecule ass...... here and in our earlier publication, a unified model is proposed to account for nearly all experimental observations concerning the catalysis of CPA....

  3. Heterogeneous radiation catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Cabicar, J.; Kudlacek, R.; Motl, A.; Mucka, V.; Pospisil, M. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Jaderna a Fysikalne Inzenyrska)

    1982-01-01

    Results of the investigation of some radiation catalysis problems are reviewed. Main attention is paid to the radiation effect on the catalytic activity of various catalysts in the decomposition of hydrogen peroxide and in the hydrogenation of maleic acid. The results presented are obtained in the study of the kinetics of reduction of several pre-irradiated metal oxides and of the radiation effect on catalysts used in some catalytic reactions important for industry.

  4. Catalysis by gold

    CERN Document Server

    Bond, Geoffrey C; Thompson, David T

    2006-01-01

    Gold has traditionally been regarded as inactive as a catalytic metal. However, the advent of nanoparticulate gold on high surface area oxide supports has demonstrated its high catalytic activity in many chemical reactions. Gold is active as a heterogeneous catalyst in both gas and liquid phases, and complexes catalyse reactions homogeneously in solution. Many of the reactions being studied will lead to new application areas for catalysis by gold in pollution control, chemical processing, sensors and fuel cell technology. This book describes the properties of gold, the methods for preparing g

  5. DNA-based hybrid catalysis

    NARCIS (Netherlands)

    Rioz-Martínez, Ana; Roelfes, Gerard

    2015-01-01

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination sphe

  6. Catalysis and prebiotic RNA synthesis

    Science.gov (United States)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  7. Practical Engineering Aspects of Catalysis in Microreactors

    Czech Academy of Sciences Publication Activity Database

    Křišťál, Jiří; Stavárek, Petr; Vajglová, Zuzana; Vondráčková, Magdalena; Pavlorková, Jana; Jiřičný, Vladimír

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9357-9371. ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Castle Trest, 16.09.2014-20.09.2014] Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * homogeneous catalysis * photo catalysis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.221, year: 2014

  8. Simulations of chemical catalysis

    Science.gov (United States)

    Smith, Gregory K.

    This dissertation contains simulations of chemical catalysis in both biological and heterogeneous contexts. A mixture of classical, quantum, and hybrid techniques are applied to explore the energy profiles and compare possible chemical mechanisms both within the context of human and bacterial enzymes, as well as exploring surface reactions on a metal catalyst. A brief summary of each project follows. Project 1 - Bacterial Enzyme SpvC The newly discovered SpvC effector protein from Salmonella typhimurium interferes with the host immune response by dephosphorylating mitogen-activated protein kinases (MAPKs) with a beta-elimination mechanism. The dynamics of the enzyme substrate complex of the SpvC effector is investigated with a 3.2 ns molecular dynamics simulation, which reveals that the phosphorylated peptide substrate is tightly held in the active site by a hydrogen bond network and the lysine general base is positioned for the abstraction of the alpha hydrogen. The catalysis is further modeled with density functional theory (DFT) in a truncated active-site model at the B3LYP/6-31 G(d,p) level of theory. The truncated model suggested the reaction proceeds via a single transition state. After including the enzyme environment in ab initio QM/MM studies, it was found to proceed via an E1cB-like pathway, in which the carbanion intermediate is stabilized by an enzyme oxyanion hole provided by Lys104 and Tyr158 of SpvC. Project 2 - Human Enzyme CDK2 Phosphorylation reactions catalyzed by kinases and phosphatases play an indispensable role in cellular signaling, and their malfunctioning is implicated in many diseases. Ab initio quantum mechanical/molecular mechanical studies are reported for the phosphoryl transfer reaction catalyzed by a cyclin-dependent kinase, CDK2. Our results suggest that an active-site Asp residue, rather than ATP as previously proposed, serves as the general base to activate the Ser nucleophile. The corresponding transition state features a

  9. Spin-modified catalysis

    International Nuclear Information System (INIS)

    First-principle calculations are used to explore the use of magnetic degrees of freedom in catalysis. We use the Vienna Ab-Initio Simulation Package to investigate both L10-ordered FePt and CoPt bulk materials and perform supercell calculations for FePt nanoclusters containing 43 atoms. As the catalytic activity of transition-metal elements and alloys involves individual d levels, magnetic alloying strongly affects the catalytic performance, because it leads to shifts in the local densities of states and to additional peaks due to magnetic-moment formation. The peak shift persists in nanoparticles but is surface-site specific and therefore depends on cluster size. Our research indicates that small modifications in stoichiometry and cluster size are a useful tool in the search for new catalysts

  10. Spin-modified catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, R. [Department of Physics and Astronomy and NCMN, University of Nebraska, Lincoln, Nebraska 68588 (United States); School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, Himachal Pradesh (India); Manchanda, P.; Enders, A.; Balamurugan, B.; Sellmyer, D. J.; Skomski, R., E-mail: rskomski@unl.edu [Department of Physics and Astronomy and NCMN, University of Nebraska, Lincoln, Nebraska 68588 (United States); Kashyap, A. [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, Himachal Pradesh (India); Sykes, E. C. H. [Department of Chemistry, Pearson Chemistry Laboratory, Tufts University, Medford, Massachusetts 02155 (United States)

    2015-05-07

    First-principle calculations are used to explore the use of magnetic degrees of freedom in catalysis. We use the Vienna Ab-Initio Simulation Package to investigate both L1{sub 0}-ordered FePt and CoPt bulk materials and perform supercell calculations for FePt nanoclusters containing 43 atoms. As the catalytic activity of transition-metal elements and alloys involves individual d levels, magnetic alloying strongly affects the catalytic performance, because it leads to shifts in the local densities of states and to additional peaks due to magnetic-moment formation. The peak shift persists in nanoparticles but is surface-site specific and therefore depends on cluster size. Our research indicates that small modifications in stoichiometry and cluster size are a useful tool in the search for new catalysts.

  11. High-throughput heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Farrusseng, David [Universite Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de recherches sur la catalyse et l' environnement de Lyon, 2 avenue Albert Einstein, F-69626 Villeurbanne (France)

    2008-11-30

    This comprehensive review of the literature (over 250 references) deals with high-throughput experimentation in heterogeneous catalysis. Approaches to library design for catalyst discovery and optimization are described and discussed. Special focus is placed on advanced methods for knowledge discovery such as high-throughput kinetic modeling and QSAR. An inventory of successful case studies in catalysis is reported. Finally, recent developments in relevant electronic data and knowledge management are described. (author)

  12. Editorial: Nanoscience makes catalysis greener

    KAUST Repository

    Polshettiwar, Vivek

    2012-01-09

    Green chemistry by nanocatalysis: Catalysis is a strategic field of science because it involves new ways of meeting energy and sustainability challenges. The concept of green chemistry, which makes the science of catalysis even more creative, has become an integral part of sustainability. This special issue is at the interface of green chemistry and nanocatalysis, and features excellent background articles as well as the latest research results. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Molecular ingredients of heterogeneous catalysis

    International Nuclear Information System (INIS)

    The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described

  14. Enhanced Micellar Catalysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Tucker, Mark David; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael

    2012-12-01

    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesota's Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  15. Photoredox Catalysis in Organic Chemistry

    Science.gov (United States)

    2016-01-01

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds. PMID:27477076

  16. Catalysis and sustainable (green) chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Centi, Gabriele; Perathoner, Siglinda [Dipartimento di Chimica Industriale ed Ingegneria dei Materiali, University of Messina, Salita Sperone 31, 98166 Messina (Italy)

    2003-01-15

    Catalysis is a key technology to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and a brief assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry is discussed and illustrated via an analysis of some selected and relevant examples. Emphasis is also given to the concept of catalytic technologies for scaling-down chemical processes, in order to develop sustainable production processes which reduce the impact on the environment to an acceptable level that allows self-depuration processes of the living environment.

  17. Photoredox Catalysis in Organic Chemistry.

    Science.gov (United States)

    Shaw, Megan H; Twilton, Jack; MacMillan, David W C

    2016-08-19

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon-carbon and carbon-heteroatom bonds. PMID:27477076

  18. EMSL and Institute for Integrated Catalysis (IIC) Catalysis Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Charles T.; Datye, Abhaya K.; Henkelman, Graeme A.; Lobo, Raul F.; Schneider, William F.; Spicer, Leonard D.; Tysoe, Wilfred T.; Vohs, John M.; Baer, Donald R.; Hoyt, David W.; Thevuthasan, Suntharampillai; Mueller, Karl T.; Wang, Chong M.; Washton, Nancy M.; Lyubinetsky, Igor; Teller, Raymond G.; Andersen, Amity; Govind, Niranjan; Kowalski, Karol; Kabius, Bernd C.; Wang, Hongfei; Campbell, Allison A.; Shelton, William A.; Bylaska, Eric J.; Peden, Charles HF; Wang, Yong; King, David L.; Henderson, Michael A.; Rousseau, Roger J.; Szanyi, Janos; Dohnalek, Zdenek; Mei, Donghai; Garrett, Bruce C.; Ray, Douglas; Futrell, Jean H.; Laskin, Julia; DuBois, Daniel L.; Kuprat, Laura R.; Plata, Charity

    2011-05-24

    Within the context of significantly accelerating scientific progress in research areas that address important societal problems, a workshop was held in November 2010 at EMSL to identify specific and topically important areas of research and capability needs in catalysis-related science.

  19. CAS Researcher Wins International Catalysis Award

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Prof. Li Can, a CAS member and director of the State Key Laboratory of Catalysis at the CAS Dalian Institute of Chemical Physics, received the International Catalysis Award at the 13th International Catalysis Congress (ICC)held from July 11 to 16 in Paris.

  20. Cyclopalladated complexes in enantioselective catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Dunina, Valeria V; Gorunova, Olga N; Zykov, P A; Kochetkov, Konstantin A

    2011-01-31

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  1. Cyclopalladated complexes in enantioselective catalysis

    Science.gov (United States)

    Dunina, Valeria V.; Gorunova, Olga N.; Zykov, P. A.; Kochetkov, Konstantin A.

    2011-01-01

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  2. Beyond relationships between homogeneous and heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David A. [Univ. of Alabama, Tuscaloosa, AL (United States); Katz, Alexander [Univ. of California, Berkeley, CA (United States); Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States)

    2014-08-13

    Scientists who regard catalysis as a coherent field have been striving for decades to articulate the fundamental unifying principles. But because these principles seem to be broader than chemistry, chemical engineering, and materials science combined, catalytic scientists commonly interact within the sub-domains of homogeneous, heterogeneous, and bio-catalysis, and increasingly within even narrower domains such as organocatalysis, phase-transfer catalysis, acid-base catalysis, zeolite catalysis, etc. Attempts to unify catalysis have motivated researchers to find relationships between homogeneous and heterogeneous catalysis and to mimic enzymes. These themes have inspired vibrant international meetings and workshops, and we have benefited from the idea exchanges and have some thoughts about a path forward.

  3. Chemical catalysis in biodiesel production (I): enzymatic catalysis processes

    International Nuclear Information System (INIS)

    There are some well known advantages related with the substitution of chemical catalysis by enzymatic catalysis processes.Some commercial immobilized lipases are useful for the catalysis of bio diesel reaction, which permits the achievement of high conversions and the recovery of high purity products, like a high quality glycerine. The main disadvantage of this alternative method is related with the last inactivation of the enzyme (by both the effect of the alcohol and the absorption of glycerol on catalyst surface), which added to the high cost of the catalyst, produces an unfavourable economical balance of the entire process. In the work the efficiency of two commercial immobilized lipases (Lipozyme TL IM y Novozyme 435 NNovozymes-Dinamarca) in the catalysis of the continuous transesterification of sunflower oil with different alcohols was studied. The intersolubility of the different mixturesinvolving reactans (S oil/alkyl esters/alcohol) and products (P mixtures with a higher content of 1% of glycerol,while for ethanol homogeneous mixtures were obtained at 12% of glycerol (44.44 12).Using and ethanolic substrate at the proportion S=19:75:6 and Lipozyme TL IM, it was possible to achieve a 98% of convertion to the corresponding biodiesel.When Novozymes 435 catalyzed the process it was possible to increase the oil concentration in the substrateaccording to proportion S=35:30:35, and a 78% conversion was obtained. The productivity shown by the firt enzyme was 70mg biodiesel g enzime-1, hora-1 while with the second one the productivity increased to 230. Results suggested that the convenient adjustement of substrate composition with the addition of biodiesel to reactants offers an efficient method for maximizing the enzyme productivity, hence improving the profitability of the enzymatic catalyzed process. (author)

  4. Methane Activation by Heterogeneous Catalysis

    OpenAIRE

    Horn, R.; Schlögl, R.

    2015-01-01

    Methane activation by heterogeneous catalysis will play a key role to secure the supply of energy, chemicals and fuels in the future. Methane is the main constituent of natural gas and biogas and it is also found in crystalline hydrates at the continental slopes of many oceans and in permafrost areas. In view of this vast reserves and resources, the use of methane as chemical feedstock has to be intensified. The present review presents recent results and developments in heterogeneous catalyti...

  5. Magnetic catalysis in nuclear matter

    OpenAIRE

    Haber, Alexander; Preis, Florian; Schmitt, Andreas

    2014-01-01

    A strong magnetic field enhances the chiral condensate at low temperatures. This so-called magnetic catalysis thus seeks to increase the vacuum mass of nucleons. We employ two relativistic field-theoretical models for nuclear matter, the Walecka model and an extended linear sigma model, to discuss the resulting effect on the transition between vacuum and nuclear matter at zero temperature. In both models we find that the creation of nuclear matter in a sufficiently strong magnetic field becom...

  6. Microwave Effects in Heterogeneous Catalysis

    Czech Academy of Sciences Publication Activity Database

    Hájek, Milan; Kurfürstová, J.

    Habana: Centro Nacional de Investigaciones Cientificas, 2005 - (Veloz, G.). s. 92-/t17/ ISBN 959-7145-09-X. [Congreso Cientifico international Simposio:Technologías de microondas: Aplicaciones en Química y Biología /14./. 27.06.2005-30.06.2005, Habana] Institutional research plan: CEZ:AV0Z40720504 Keywords : microwave * catalysis * cooling Subject RIV: CC - Organic Chemistry

  7. Cosmic strings and baryon decay catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, R.; Perkins, W.B.; Davis, A.C.; Brandenberger, R.H. (Fermi National Accelerator Lab., Batavia, IL (USA); Cambridge Univ. (UK); Brown Univ., Providence, RI (USA). Dept. of Physics)

    1989-09-01

    Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. We review the catalysis processes both in the free quark and skyrmion pictures and discuss the implications for baryogenesis. We present a computation of the cross section for monopole catalyzed skyrmion decay using classical physics. We also discuss some effects which can screen catalysis processes. 32 refs., 1 fig.

  8. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  9. Cooperative catalysis designing efficient catalysts for synthesis

    CERN Document Server

    Peters, René

    2015-01-01

    Written by experts in the field, this is a much-needed overview of the rapidly emerging field of cooperative catalysis. The authors focus on the design and development of novel high-performance catalysts for applications in organic synthesis (particularly asymmetric synthesis), covering a broad range of topics, from the latest progress in Lewis acid / Br?nsted base catalysis to e.g. metal-assisted organocatalysis, cooperative metal/enzyme catalysis, and cooperative catalysis in polymerization reactions and on solid surfaces. The chapters are classified according to the type of cooperating acti

  10. Heterogeneous catalysis fundamentals and applications

    CERN Document Server

    Ross, Julian RH

    2011-01-01

    Heterogeneous catalysis plays a part in the production of more than 80% of all chemical products. It is therefore essential that all chemists and chemical engineers have an understanding of the fundamental principles as well as the applications of heterogeneous catalysts. This book introduces the subject, starting at a basic level, and includes sections on adsorption and surface science, catalytic kinetics, experimental methods for preparing and studying heterogeneous catalysts, as well as some aspects of the design of industrial catalytic reactors. It ends with a chapter that covers a range

  11. Catalysis by Mesoporous Molecular Sieves

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Vinu, A.

    Oxford : Elsevier B.V./Ltd, 2009 - (Valtchev, V.; Mintova, S.; Tsapatsis, M.), s. 669-688 ISBN 978-0-444-53189-6 R&D Projects: GA AV ČR IAA4040411; GA AV ČR IAA400400805; GA ČR GA104/05/0192; GA ČR GA203/05/0197; GA ČR GA104/07/0383 Institutional research plan: CEZ:AV0Z40400503 Keywords : alkylations * acylations * catalysis * immobilization Subject RIV: CF - Physical ; Theoretical Chemistry

  12. Fundamental concepts in heterogeneous catalysis

    CERN Document Server

    Norskov, Jens K; Abild-Pedersen, Frank; Bligaard, Thomas

    2014-01-01

    This book is based on a graduate course and suitable as a primer for any newcomer to the field, this book is a detailed introduction to the experimental and computational methods that are used to study how solid surfaces act as catalysts.   Features include:First comprehensive description of modern theory of heterogeneous catalysisBasis for understanding and designing experiments in the field   Allows reader to understand catalyst design principlesIntroduction to important elements of energy transformation technologyTest driven at Stanford University over several semesters

  13. DOE Laboratory Catalysis Research Symposium - Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, T.

    1999-02-01

    The conference consisted of two sessions with the following subtopics: (1) Heterogeneous Session: Novel Catalytic Materials; Photocatalysis; Novel Processing Conditions; Metals and Sulfides; Nuclear Magnetic Resonance; Metal Oxides and Partial Oxidation; Electrocatalysis; and Automotive Catalysis. (2) Homogeneous Catalysis: H-Transfer and Alkane Functionalization; Biocatalysis; Oxidation and Photocatalysis; and Novel Medical, Methods, and Catalyzed Reactions.

  14. Discrete Vector Models for Catalysis and Autocatalysis

    Directory of Open Access Journals (Sweden)

    Peter Jörg Plath

    2008-06-01

    Full Text Available Based on Ruch's concept of diagram lattices formed by Young diagrams we investigated the possibility to transform incomparable diagrams into comparable ones by means of vector catalysis. Ruch's diagram lattices allow a very general description of comparing frequency distributions by their mixing-character as an order relation which is equivalent to majorisation in the mathematical theory of inequalities. Dealing with Young diagrams or vectors containing only integer components, respectively, vector catalysis is strongly related to entanglement catalysis in quantum informatics. In a very systematic way the diagram lattices of the partitions up to the number n=20 have been searched for incomparable pairs which can be catalysed. This concept opens the opportunity for regarding vector catalysis as a universal phenomenon which is not restricted to the quantum mechanical idea of entanglement catalysis. Such a general approach offers the possibility to compare vector catalysis with chemical ideas of catalysis and autocatalysis in a very fundamental sense. We emphasize that vector catalysis is a universally valid procedure for classification purposes, where incomparable sequences of symbols are transformed into comparable ones in a much higher dimensional space ignoring any physical interpretation of these symbols.

  15. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  16. Inverse Magnetic/Shear Catalysis

    CERN Document Server

    McInnes, Brett

    2015-01-01

    It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce ``inverse magnetic catalysis'', signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magne...

  17. Nanocrystal assembly for tandem catalysis

    Science.gov (United States)

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  18. Palladium catalysis for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L. D.; Datye, Abhaya

    2001-03-01

    Palladium (Pd) is an attractive catalyst for a range of new combustion applications comprising primary new technologies for future industrial energy needs, including gas turbine catalytic combustion, auto exhaust catalysts, heating and fuel cells. Pd poses particular challenges because it changes both chemical state and morphology as a function of temperature and reactant environment and those changes result in positive and negative changes in activity. Interactions with the support, additives, water, and contaminants as well as carbon formation have also been observed to affect Pd catalyst performance. This report describes the results of a 3.5 year project that resolves some of the conflicting reports in the literature about the performance of Pd-based catalysis.

  19. Magnetic Catalysis vs Magnetic Inhibition

    CERN Document Server

    Fukushima, Kenji

    2012-01-01

    We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former would enhance the chiral-symmetry breaking at finite B according to the Magnetic Catalysis, while the latter would suppress the chiral condensate once B exceeds the scale of the hadron structure. Using a chiral model we demonstrate how neutral mesons are subject to the dimensional reduction and the low dimensionality favors the chiral-symmetric phase. We point out that this effect, the Magnetic Inhibition, can be a feasible explanation for recent lattice-QCD data indicating the decreasing behavior of the chiral-restoration temperature with increasing B.

  20. Catalysis in Molten Ionic Media

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Fehrmann, Rasmus

    2013-01-01

    identified easily. It has been shown that the melt consists of vanadium oxosulfato complexes in the oxidation states III-V in an alkali pyrosulfate solvent. However, many basic data for alkali pyrosulfates and oxosulfato vanadates have turned out to be either nonexisting or unreliable. As a result, the...... of vanadium compounds, of which the majority are identified as catalyst deactivation products; and (v) studies of molecular structure and catalytic activity. Finally, the reaction mechanism is highlighted, which represents the state of the art of that catalytic process by 2013. © 2013 Elsevier Inc......This chapter deals with catalysis in molten salts and ionic liquids, which are introduced and reviewed briefly, while an in-depth review of the oxidation catalyst used for the manufacturing of sulfuric acid and cleaning of flue gas from electrical power plants is the main topic of the chapter. The...

  1. Surface science and heterogeneous catalysis

    International Nuclear Information System (INIS)

    The catalytic reactions studied include hydrocarbon conversion over platinum, the transition metal-catalyzed hydrogenation of carbon monoxide, and the photocatalyzed dissociation of water over oxide surfaces. The method of combined surface science and catalytic studies is similar to those used in synthetic organic chemistry. The single-crystal models for the working catalyst are compared with real catalysts by comparing the rates of cyclopropane ring opening on platinum and the hydrogenation of carbon monoxide on rhodium single crystal surface with those on practical commercial catalyst systems. Excellent agreement was obtained for these reactions. This document reviews what was learned about heterogeneous catalysis from these surface science approaches over the past 15 years and present models of the active catalyst surface

  2. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling but...... utilise in the case of fast chemical reactions only a small amount of expensive ionic liquid and catalyst. The novel Supported Ionic Liquid Phase (SILP) catalysis concept overcomes these drawbacks and allows the use of fixed-bed reactors for continuous reactions. In this Microreview the SILP catalysis...

  3. Selective Homogeneous Catalysis in Asymmetric Synthesis

    DEFF Research Database (Denmark)

    Fristrup, Peter

    thorough computational study succeeded in explaining the observed results, although other significant results were also obtained during this study. Finally, an intramolecular reaction was studied computationally, and the rate increase observed under phase transfer catalysis conditions could be related...

  4. Biomimetic catalysis: Taking on the turnover challenge

    Science.gov (United States)

    Hooley, Richard J.

    2016-03-01

    Emulating the efficiency with which enzymes catalyse reactions has often been used as inspiration to develop self-assembled cages. Now two studies present approaches to achieving catalyst turnover -- one of the biggest challenges in achieving truly biomimetic catalysis.

  5. A Course in Kinetics and Catalysis.

    Science.gov (United States)

    Bartholomew, C. H.

    1981-01-01

    Describes a one-semester, three-credit hour course integrating the fundamentals of kinetics and the scientific/engineering principles of heterogeneous catalysis. Includes course outline, list of texts, background readings, and topical journal articles. (SK)

  6. Theory of laser catalysis with pulses

    CERN Document Server

    Vardi, A

    2001-01-01

    The possibility of accelerating molecular reactions by lasers has attracted considerable theoretical and experimental interest. A particular example of laser-modified reaction dynamics is laser catalysis, a process in which the tunneling through a potential barrier is enhanced by transient excitation to a bound electronic state. We have performed detailed calculations of pulsed laser catalysis on one- and two-dimensional potentials, as a function of the reactants' collision energy and the laser's central frequency. In agreement with previous CW results, the reactive lineshapes are Fano-type curves, resulting from interference between nonradiative tunneling and the optically assisted pathway. In contrast to the CW process, the power requirements of pulsed laser catalysis are well within the reach of commonly used pulsed laser sources, making an experimental realization possible. The laser catalysis scenario is shown to be equivalent in the ``dressed'' state picture, to resonant tunneling through a double-barri...

  7. Organometallic catalysis: some contributions to organic synthesis

    Directory of Open Access Journals (Sweden)

    Gusevskaya Elena V.

    2003-01-01

    Full Text Available In the present paper some general aspects of metal complex catalysis and its applications for oxyfunctionalization of various olefins, including naturally occurring ones, via selective oxidation, hydroformylation and alkoxycarbonylation are discussed.

  8. Bioorthogonal catalysis: Rise of the nanobots

    Science.gov (United States)

    Unciti-Broceta, Asier

    2015-07-01

    Bioorthogonal catalysis provides new ways of mediating artificial transformations in living environs. Now, researchers have developed a nanodevice whose catalytic activity can be regulated by host-guest chemistry.

  9. Sucrose Inversion An Experiment on Heterogeneous Catalysis

    OpenAIRE

    Adélio Mendes; Magalhães, Fernão D.; Luis M. Madeira

    2003-01-01

    llustration of heterogeneous catalysis concepts in laboratory courses is not usually simple or economical. For our undergraduate senior lab course we have developed an environmentally friendly experiment dealing with several aspects of heterogeneous catalysis, having in mind the use of readily available and relatively inexpensive equipment, and chemicals on a compact setup, which students can safely operate. The experiment deals with the acid-catalyzed sucrose inversion, performed in packed b...

  10. ELECTROCHEMICAL PROMOTED CATALYSIS: TOWARDS PRACTICAL UTILIZATION

    OpenAIRE

    DIMITRIOS TSIPLAKIDES; STELLA BALOMENOU

    2008-01-01

    Electrochemical promotion (EP) of catalysis has already been recognized as “a valuable development in catalytic research” (J. Pritchard, 1990) and as “one of the most remarkable advances in electrochemistry since 1950” (J. O’M. Bockris, 1996). Laboratory studies have clearly elucidated the phenomenology of electrochemical promotion and have proven that EP is a general phenomenon at the interface of catalysis and electrochemistry. The major progress toward practical utilization of EP is survey...

  11. Applications of Chiral Anions in Asymmetric Catalysis

    OpenAIRE

    Hamilton, Gregory Lawrence

    2011-01-01

    The synthesis of molecules with control over their three-dimensional configuration, known as absolute stereochemistry, is one of the highest goals of synthetic organic chemists. As is so often the case, we strive to reach the facility and efficiency with which Nature achieves this goal. Fortunately, the chemist's imagination allows us to envision nearly unlimited possibilities for new modes of catalysis. In this dissertation, I discuss one branch of asymmetric catalysis that has in a short ti...

  12. Inverse magnetic/shear catalysis

    Science.gov (United States)

    McInnes, Brett

    2016-05-01

    It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce "inverse magnetic catalysis", signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magnetic field at low values of the baryonic chemical potential, but that it can actually decrease that effect at high chemical potentials.

  13. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  14. Advanced Resources for Catalysis Science; Recommendations for a National Catalysis Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Peden, Charles HF.; Ray, Douglas

    2005-10-05

    Catalysis is one of the most valuable contributors to our economy and historically an area where the United States has enjoyed, but is now losing, international leadership. While other countries are stepping up their work in this area, support for advanced catalysis research and development in the U.S. has diminished. Yet, more than ever, innovative and improved catalyst technologies are imperative for new energy production processes to ease our dependence on imported resources, for new energy-efficient and environmentally benign chemical production processes, and for new emission reduction technologies to minimize the environmental impact of an active and growing economy. Addressing growing concerns about the future direction of U.S. catalysis science, experts from the catalysis community met at a workshop to determine and recommend advanced resources needed to address the grand challenges for catalysis research and development. The workshop's primary conclusion: To recapture our position as the leader in catalysis innovation and practice, and promote crucial breakthroughs, the U.S. must establish one or more well-funded and well-equipped National Catalysis Research Institutes competitively selected, centered in the national laboratories and, by charter, networked to other national laboratories, universities, and industry. The Institute(s) will be the center of a national collaboratory that gives catalysis researchers access to the most advanced techniques available in the scientific enterprise. The importance of catalysis to our energy, economic, and environmental security cannot be overemphasized. Catalysis is a vital part of our core industrial infrastructure, as it is integral to chemical processing and petroleum refining, and is critical to proposed advances needed to secure a sustainable energy future. Advances in catalysis could reduce our need for foreign oil by making better use of domestic carbon resources, for example, allowing cost-effective and

  15. Green chemistry by nano-catalysis

    KAUST Repository

    Polshettiwar, Vivek

    2010-01-01

    Nano-materials are important in many diverse areas, from basic research to various applications in electronics, biochemical sensors, catalysis and energy. They have emerged as sustainable alternatives to conventional materials, as robust high surface area heterogeneous catalysts and catalyst supports. The nano-sized particles increase the exposed surface area of the active component of the catalyst, thereby enhancing the contact between reactants and catalyst dramatically and mimicking the homogeneous catalysts. This review focuses on the use of nano-catalysis for green chemistry development including the strategy of using microwave heating with nano-catalysis in benign aqueous reaction media which offers an extraordinary synergistic effect with greater potential than these three components in isolation. To illustrate the proof-of-concept of this "green and sustainable" approach, representative examples are discussed in this article. © 2010 The Royal Society of Chemistry.

  16. Geometrically induced magnetic catalysis and critical dimensions

    CERN Document Server

    Flachi, Antonino; Vitagliano, Vincenzo

    2015-01-01

    We discuss the combined effect of magnetic fields and geometry in interacting fermionic systems. At leading order in the heat-kernel expansion, the infrared singularity (that in flat space leads to the magnetic catalysis) is regulated by the chiral gap effect and the catalysis is deactivated by effect of the curvature. We discover that an infrared singularity may reappear from higher-order terms in the heat kernel expansion leading to a novel form of geometrically induced magnetic catalysis (absent in flat space). The dynamical mass squared is then modified not only due to the chiral gap effect by an amount proportional to the curvature, but also by a magnetic shift $\\propto (4-D)eB$ where $D$ represents the number of space-time dimensions. We argue that $D=4$ is a critical dimension across which the behaviour of the magnetic shift changes qualitatively.

  17. Shape-Persistent Multimetallic Cartwheel Complexes: Design, Catalysis and Recycling

    NARCIS (Netherlands)

    Dijkstra, H.P.

    2002-01-01

    An important new research area in the field of homogeneous catalysis is the development of catalytic processes which combine the advantages of homogeneous (high activity/selectivity, mild conditions, reproducibility, good catalyst description) and heterogeneous catalysis (easy catalyst recycling, lo

  18. Competing role of catalysis-coagulation and catalysis-fragmentation in kinetic aggregation behaviours

    International Nuclear Information System (INIS)

    We propose a kinetic aggregation model where species A aggregates evolve by the catalysis-coagulation and the catalysis-fragmentation, while the catalyst aggregates of the same species B or C perform self-coagulation processes. By means of the generalized Smoluchowski rate equation based on the mean-field assumption, we study the kinetic behaviours of the system with the catalysis-coagulation rate kernel K(i,j;l) ∝ lν and the catalysis-fragmentation rate kernel F(i,j;l) ∝ lμ, where l is the size of the catalyst aggregate, and ν and μ are two parameters reflecting the dependence of the catalysis reaction on the size of the catalyst aggregate. The relation between the values of parameters ν and μ reflects the competing roles between the two catalysis processes in the kinetic evolution of species A. It is found that the competing roles of the catalysis-coagulation and catalysis-fragmentation in the kinetic aggregation behaviours are not determined simply by the relation between the two parameters ν and μ, but also depend on the values of these two parameters. When ν > μ and ν ≥ 0, the kinetic evolution of species A is dominated by the catalysis-coagulation and its aggregate size distribution ak(t) obeys the conventional or generalized scaling law; when ν k(t) approaches the scale-free form; and in other cases, a balance is established between the two competing processes at large times and ak(t) obeys a modified scaling law. (cross-disciplinary physics and related areas of science and technology)

  19. Next-Generation Catalysis for Renewables: Combining Enzymatic with Inorganic Heterogeneous Catalysis for Bulk Chemical Production

    DEFF Research Database (Denmark)

    Vennestrøm, Peter Nicolai Ravnborg; Christensen, C.H.; Pedersen, S.;

    2010-01-01

    chemical platform under different conditions than those conventionally employed. Indeed, new process and catalyst concepts need to be established. Both enzymatic catalysis (biocatalysis) and heterogeneous inorganic catalysis are likely to play a major role and, potentially, be combined. One type...... of combination involves one-pot cascade catalysis with active sites from bio- and inorganic catalysts. In this article the emphasis is placed specifically on oxidase systems involving the coproduction of hydrogen peroxide, which can be used to create new in situ collaborative oxidation reactions for bulk...

  20. Catalysis by ceria and related materials

    CERN Document Server

    Trovarelli, Alessandro

    2002-01-01

    The use of CeO2-based materials in catalysis has attracted considerable attention in recent years, particularly in applications like environmental catalysis, where ceria has shown great potential. This book critically reviews the most recent advances in the field, with the focus on both fundamental and applied issues. The first few chapters cover structural and chemical properties of ceria and related materials, i.e. phase stability, reduction behaviour, synthesis, interaction with probe molecules (CO, O2, NO), and metal-support interaction - all presented from the viewpoint of catalytic appl

  1. Bioinspired catalysis metal-sulfur complexes

    CERN Document Server

    Weigand, Wolfgang

    2014-01-01

    The growing interest in green chemistry calls for new, efficient and cheap catalysts. Living organisms contain a wide range of remarkably powerful enzymes, which can be imitated by chemists in the search for new catalysts. In bioinspired catalysis, chemists use the basic principles of biological enzymes when creating new catalyst analogues. In this book, an international group of experts cover the topic from theoretical aspects to applications by including a wide variety of examples of different systems. This valuable overview of bioinspired metal-sulfur catalysis is a must-have for all sci

  2. Heterogeneous catalysis at nanoscale for energy applications

    CERN Document Server

    Tao, Franklin (Feng); Kamat, Prashant V

    2015-01-01

    This book presents both the fundamentals concepts and latest achievements of a field that is growing in importance since it represents a possible solution for global energy problems.  It focuses on an atomic-level understanding of heterogeneous catalysis involved in important energy conversion processes. It presents a concise picture for the entire area of heterogeneous catalysis with vision at the atomic- and nano- scales, from synthesis, ex-situ and in-situ characterization, catalytic activity and selectivity, to mechanistic understanding based on experimental exploration and theoretical si

  3. Catalysis by nonmetals rules for catalyst selection

    CERN Document Server

    Krylov, Oleg V

    1970-01-01

    Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-ba

  4. Keynotes in energy-related catalysis

    CERN Document Server

    Kaliaguine, S

    2011-01-01

    Catalysis by solid acids, which includes (modified) zeolites, is of special relevance to energy applications. Acid catalysis is highly important in modern petroleum refining operations - large-scale processes such as fluid catalytic cracking, catalytic reforming, alkylation and olefin oligomerization rely on the transformation of hydrocarbons by acid catalysts. (Modified) zeolites are therefore essential for the improvement of existing processes and for technical innovations in the conversion of crude. There can be little doubt that zeolite-based catalysts will play a major role in the futu

  5. Catalysis by ceria and related materials

    CERN Document Server

    Trovarelli, Alessandro

    2013-01-01

    This book follows the 2002 edition of Catalysis by Ceria and Related Materials, which was the first book entirely devoted to ceria and its catalytic properties. In the ten years since the first edition a massive amount of work has been carried out in the field, and ceria has gained a prominent position in catalysis as one of the most valuable material for several applications. This second edition covers fundamental and applied aspects of the latest advances in ceria-based materials with a special focus on structural, redox and catalytic features. Special emphasis is given to nano-engineered an

  6. RNA catalysis and the origins of life

    Science.gov (United States)

    Orgel, Leslie E.

    1986-01-01

    The role of RNA catalysis in the origins of life is considered in connection with the discovery of riboszymes, which are RNA molecules that catalyze sequence-specific hydrolysis and transesterification reactions of RNA substrates. Due to this discovery, theories positing protein-free replication as preceding the appearance of the genetic code are more plausible. The scope of RNA catalysis in biology and chemistry is discussed, and it is noted that the development of methods to select (or predict) RNA sequences with preassigned catalytic functions would be a major contribution to the study of life's origins.

  7. Holographic monopole catalysis of baryon decay

    International Nuclear Information System (INIS)

    We study how monopole catalysis of baryon decay is realized in holographic QCD. Physics of monopole catalysis becomes much simpler in holographic description as it occurs due to the violation of the Bianchi identity for the 5D gauge symmetry when magnetic monopole is present. In holographic QCD we find a unified picture of the baryon number violation under magnetic monopole or electroweak sphaleron, giving a new mechanism of baryon number violation. We also embed our set-up in the string theory model by Sakai and Sugimoto. (author)

  8. µ-reactors for Heterogeneous Catalysis

    DEFF Research Database (Denmark)

    Jensen, Robert

    described in detail. Since heating and temperature measurement is an extremely important point in heterogeneous catalysis an entire chapter is dedicated to this subject. Three different types of heaters have been implemented and tested both for repeatability and homogeneity of the heating as well as the...

  9. Diffusion and Surface Reaction in Heterogeneous Catalysis

    Science.gov (United States)

    Baiker, A.; Richarz, W.

    1978-01-01

    Ethylene hydrogenation on a platinum catalyst, electrolytically applied to a tube wall, is a good system for the study of the interactions between diffusion and surface reaction in heterogeneous catalysis. Theoretical background, apparatus, procedure, and student performance of this experiment are discussed. (BB)

  10. ELECTROCHEMICAL PROMOTED CATALYSIS: TOWARDS PRACTICAL UTILIZATION

    Directory of Open Access Journals (Sweden)

    DIMITRIOS TSIPLAKIDES

    2008-07-01

    Full Text Available Electrochemical promotion (EP of catalysis has already been recognized as “a valuable development in catalytic research” (J. Pritchard, 1990 and as “one of the most remarkable advances in electrochemistry since 1950” (J. O’M. Bockris, 1996. Laboratory studies have clearly elucidated the phenomenology of electrochemical promotion and have proven that EP is a general phenomenon at the interface of catalysis and electrochemistry. The major progress toward practical utilization of EP is surveyed in this paper. The focus is given on the electropromotion of industrial ammonia synthesis catalyst, the bipolar EP and the development of a novel monolithic electropromoted reactor (MEPR in conjunction with the electropromotion of thin sputtered metal films. Future perspectives of electrochemical promotion applications in the field of hydrogen technologies are discussed.

  11. Inverse magnetic catalysis in dense holographic matter

    CERN Document Server

    Preis, Florian; Schmitt, Andreas

    2010-01-01

    We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition ...

  12. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.;

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalyt...... performance, i.e. activity and selectivity, as well as stability of the SILP catalysts. Noticeably, a high catalyst ligand content together with presence of ionic liquid solvent are prerequisites for obtaining selective rhodium phosphine SILP catalysts systems.......The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  13. Spatially Assisted Schwinger Mechanism and Magnetic Catalysis

    CERN Document Server

    Copinger, Patrick

    2016-01-01

    Using the worldline formalism we compute an effective action for fermions under a temporally modulated electric field and a spatially modulated magnetic field. It is known that the former leads to an enhanced Schwinger Mechanism, while we find that the latter can also result in enhanced particle production and even cause a reorganization of the vacuum to acquire a larger dynamical mass in equilibrium which spatially assists the Magnetic Catalysis.

  14. Catalysis in micellar and macromoleular systems

    CERN Document Server

    Fendler, Janos

    1975-01-01

    Catalysis in Micellar and Macromolecular Systems provides a comprehensive monograph on the catalyses elicited by aqueous and nonaqueous micelles, synthetic and naturally occurring polymers, and phase-transfer catalysts. It delineates the principles involved in designing appropriate catalytic systems throughout. Additionally, an attempt has been made to tabulate the available data exhaustively. The book discusses the preparation and purification of surfactants; the physical and chemical properties of surfactants and micelles; solubilization in aqueous micellar systems; and the principles of

  15. USD Catalysis Group for Alternative Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoefelmeyer, James D.; Koodali, Ranjit; Sereda, Grigoriy; Engebretson, Dan; Fong, Hao; Puszynski, Jan; Shende, Rajesh; Ahrenkiel, Phil

    2012-03-13

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  16. Bimetallic Redox Synergy in Oxidative Palladium Catalysis

    OpenAIRE

    Powers, David Charles; Ritter, Tobias

    2012-01-01

    Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon–heteroatom bond-forming reactions, wi...

  17. Metal-Free Catalysis for Efficient Synthesis

    OpenAIRE

    Bah, Juho

    2014-01-01

    The strength of efficient metal-free catalysis will be examined in this thesis. Efforts towards more sustainable processes will be demonstrated through implementation of strategies that meet several of the 12 principles of Green Chemistry.In the first part, a stereoselective total synthesis of multiple alkaloids from the Corynantheine and Ipecac families together with their non-natural analogues will be disclosed. A highly efficient, common synthetic strategy is applied leading to high overal...

  18. Helically chiral phosphites in enantioselective catalysis

    Czech Academy of Sciences Publication Activity Database

    Žádný, Jaroslav; Clemence, Nathan; Stará, Irena G.; Starý, Ivo

    Praha : -, 2009. s. 612-612. ISBN 978-80-02-02160-5. [ESOC 2009. European Symposium on Organic Chemistry /16./. 12.07.2009-16.07.2009, Praha] R&D Projects: GA MŠk LC512; GA ČR GA203/09/1766; GA ČR GA203/07/1664 Institutional research plan: CEZ:AV0Z40550506 Keywords : helicene * asymmetric catalysis * phosphites Subject RIV: CC - Organic Chemistry

  19. Heterogeneous Catalysis on a Disordered Surface

    OpenAIRE

    Frachebourg, L.; Krapivsky, P. L.; Redner, S.

    1995-01-01

    We introduce a simple model of heterogeneous catalysis on a disordered surface which consists of two types of randomly distributed sites with different adsorption rates. Disorder can create a reactive steady state in situations where the same model on a homogeneous surface exhibits trivial kinetics with no steady state. A rich variety of kinetic behaviors occur for the adsorbate concentrations and catalytic reaction rate as a function of model parameters.

  20. Kinetics of Catalysis with Surface Disorder

    OpenAIRE

    Head, DA; Rodgers, GJ

    1996-01-01

    We study the effects of generalised surface disorder on the monomer-monomer model of heterogeneous catalysis, where disorder is implemented by allowing different adsorption rates for each lattice site. By mapping the system in the reaction-controlled limit onto a kinetic Ising model, we derive the rate equations for the one and two-spin correlation functions. There is good agreement between these equations and numerical simulations. We then study the inclusion of desorption of monomers from t...

  1. Application of scanning electron microscopy in catalysis

    OpenAIRE

    Lomić Gizela A.; Kiš Erne E.; Bošković Goran C.; Marinković-Nedučin Radmila P.

    2004-01-01

    A short survey of various information obtained by scanning electron microscopy (SEM) in the investigation of heterogeneous catalysts and nano-structured materials have been presented. The capabilities of SEM analysis and its application in testing catalysts in different fields of heterogeneous catalysis are illustrated. The results encompass the proper way of catalyst preparation, the mechanism of catalyst active sites formation catalysts changes and catalyst degradation during their applicat...

  2. Nanomaterials Engineering and Applications in Catalysis

    OpenAIRE

    Zhang, Qiao

    2012-01-01

    Catalysis plays an essential role in industrial applications of direct relevance to many aspects in our daily lives, such as petroleum refining, fine chemical and pharmaceutical production, energy conversion and storage, and automotive emissions control. Design and fabrication of highly active catalysts in an efficient and cost-effective way is thus an important topic. This dissertation discusses our efforts in the engineering and applications of nanomaterials, which could be divided into t...

  3. Nanoscale Advances in Catalysis and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  4. µ-reactors for Heterogeneous Catalysis

    OpenAIRE

    Jensen, Robert; Chorkendorff, Ib; Hansen, Ole

    2012-01-01

    This thesis is the summary of my work on the µ-reactor platform. The concept of µ-reactors is presented and some of the experimental challenges are outlined. The various experimental issues regarding the platform are discussed and the actual implementation of three generations of the setup is described in detail. Since heating and temperature measurement is an extremely important point in heterogeneous catalysis an entire chapter is dedicated to this subject. Three different types of heaters ...

  5. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    Science.gov (United States)

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane. PMID:26673736

  6. Plasma Catalysis: Synergistic Effects at the Nanoscale.

    Science.gov (United States)

    Neyts, Erik C; Ostrikov, Kostya Ken; Sunkara, Mahendra K; Bogaerts, Annemie

    2015-12-23

    Thermal-catalytic gas processing is integral to many current industrial processes. Ever-increasing demands on conversion and energy efficiencies are a strong driving force for the development of alternative approaches. Similarly, synthesis of several functional materials (such as nanowires and nanotubes) demands special processing conditions. Plasma catalysis provides such an alternative, where the catalytic process is complemented by the use of plasmas that activate the source gas. This combination is often observed to result in a synergy between plasma and catalyst. This Review introduces the current state-of-the-art in plasma catalysis, including numerous examples where plasma catalysis has demonstrated its benefits or shows future potential, including CO2 conversion, hydrocarbon reforming, synthesis of nanomaterials, ammonia production, and abatement of toxic waste gases. The underlying mechanisms governing these applications, as resulting from the interaction between the plasma and the catalyst, render the process highly complex, and little is known about the factors leading to the often-observed synergy. This Review critically examines the catalytic mechanisms relevant to each specific application. PMID:26619209

  7. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Overbury, Steven {Steve} H [ORNL; Coates, Leighton [ORNL; Herwig, Kenneth W [ORNL; Kidder, Michelle [ORNL

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  8. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    International Nuclear Information System (INIS)

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  9. Special Issue: Coinage Metal (Copper, Silver, and Gold Catalysis

    Directory of Open Access Journals (Sweden)

    Sónia Alexandra Correia Carabineiro

    2016-06-01

    Full Text Available The subject of catalysis by coinage metals (copper, silver, and gold comes up increasingly day-by-day. This Special Issue aims to cover the numerous aspects of the use of these metals as catalysts for several reactions. It deals with synthesis and characterization of copper, silver and gold based catalysis, their characterization and use, both for heterogeneous and homogeneous catalysis, and some of their potential applications.

  10. A new era of catalysis: efficiency, value, and sustainability.

    Science.gov (United States)

    Cheng, Soofin; Lin, Shawn D

    2014-06-01

    Value proposition: Global warming and climate change urge the chemical industry to develop new processes, in which sustainability is a necessity and requirement. Catalysis is recognized to be one of the key technologies in enabling sustainability. This special issue, assembled by guest editors Soofing Chen and Shawn D. Lin, highlights some of the best work presented at "The 6th Asia-Pacific Congress on Catalysis (APCAT-6)", with as major theme "New Era of Catalysis: Efficiency, Value, and Sustainability". PMID:24965342

  11. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    CERN Document Server

    Pagura, V P; Noguera, S; Scoccola, N N

    2016-01-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature our results show that nonlocal models naturally lead to the Inverse Magnetic Catalysis effect.

  12. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  13. Surface Science Foundations of Catalysis and Nanoscience

    CERN Document Server

    Kolasinski, Kurt K

    2012-01-01

    Surface science has evolved from being a sub-field of chemistry or physics, and has now established itself as an interdisciplinary topic. Knowledge has developed sufficiently that we can now understand catalysis from a surface science perspective. No-where is the underpinning nature of surface science better illustrated than with nanoscience. Now in its third edition, this successful textbook aims to provide students with an understanding of chemical transformations and the formation of structures at surfaces. The chapters build from simple to more advanced principles with each featuring exerc

  14. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.; van Hal, R.

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...... performance, i.e. activity and selectivity, as well as stability of the SILP catalysts. Noticeably, a high catalyst ligand content together with presence of ionic liquid solvent are prerequisites for obtaining selective rhodium phosphine SILP catalysts systems....

  15. Concepts of Modern Catalysis and Kinetics

    CERN Document Server

    Chorkendorff, I

    2003-01-01

    Until now, the literature has offered a rather limited approach to the use of fundamental kinetics and their application to catalytic reactions. Subsequently, this book spans the full range from fundamentals of kinetics and heterogeneous catalysis via modern experimental and theoretical results of model studies to their equivalent large-scale industrial production processes. The result is key knowledge for students at technical universities and professionals already working in industry. "...such an enterprise will be of great value to the community, to professionals as well as graduate an

  16. New strategies in chemical synthesis and catalysis

    CERN Document Server

    Pignataro, Bruno

    2012-01-01

    Providing a comprehensive overview of the essential topics, this book covers the core areas of organic, inorganic, organometallic, biochemical synthesis and catalysis.The authors are among the rising stars in European chemistry, a selection of participants in the 2010 European Young Chemists Award competition, and their contributions deal with most of the frontier issues in chemical synthesis. They give an account of the latest research results in chemistry in Europe, as well as the state of the art in their field of research and the outlook for the future.

  17. A molecular view of heterogeneous catalysis

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Nørskov, Jens Kehlet

    2008-01-01

    theoretical methods, detailed experiments on model systems, and synthesis and in situ characterization of nano-structured catalysts, we are witnessing the first examples of complete atomic-scale insight into the structure and mechanism of surface-catalyzed reactions. This insight has already proven its value......The establishment of a molecular view of heterogeneous catalysis has been hampered for a number of reasons. There are, however, recent developments, which show that we are now on the way towards reaching a molecular-scale picture of the way solids work as catalysts. By a combination of new...

  18. Factors Affecting the Relative Efficiency of General Acid Catalysis

    Science.gov (United States)

    Kwan, Eugene E.

    2005-01-01

    A simple framework for evaluating experimental kinetic data to provide support for Specific Acid Catalysis (SAC) and General Acid Catalysis (GAC) is described based on the factors affecting their relative efficiency. Observations reveal that increasing the SAC-to-GAC rate constant ratio reduces the effective pH range for GAC.

  19. The nature of the active site in heterogeneous metal catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Larsen, Britt Hvolbæk;

    2008-01-01

    This tutorial review, of relevance for the surface science and heterogeneous catalysis communities, provides a molecular-level discussion of the nature of the active sites in metal catalysis. Fundamental concepts such as "Bronsted-Evans-Polanyi relations'' and "volcano curves'' are introduced, and...

  20. LI Can elected president of int'l catalysis association

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Prof.LI Can,vice directorgeneral of the CAS Dalian Institute of Chemical Physics,was elected new president of the Executive Committee of the International Association for Catalysis Societies (IACS) at the 14th International Congress on Catalysis held from 13 to 18 July in Seoul,ROK.It is the first time for a Chinese scientist to serve the post.

  1. Structure and Catalysis of Acylaminoacyl Peptidase

    Science.gov (United States)

    Harmat, Veronika; Domokos, Klarissza; Menyhárd, Dóra K.; Palló, Anna; Szeltner, Zoltán; Szamosi, Ilona; Beke-Somfai, Tamás; Náray-Szabó, Gábor; Polgár, László

    2011-01-01

    Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism. PMID:21084296

  2. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    Science.gov (United States)

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. PMID:27203528

  3. Novel Catalysis by Gold: A Modern Alchemy

    Science.gov (United States)

    Haruta, Masatake

    Gold has long been neglected as a catalyst because of its chemical inertness. However, when gold is deposited as nanoparticles on carbon and polymer materials as well as on base metal oxides and hydroxides, it exhibits unique catalytic properties for many reactions such as CO oxidation at a temperature as low as 200 K, gas phase direct epoxidation of propylene, and aerobic oxidation of glucose to gluconic acid. The structure-catalytic activity correlations are discussed with emphasis on the contact structure, support selection, and the size control of gold particles. Gold clusters with diameters smaller than 2 nm are expected to exhibit novel properties in catalysis, optics, and electronics depending on the size (number of atoms), shape, and the electronic and chemical interaction with the support materials. The above achievements and attempts can be regarded as a modern alchemy that creates valuables by means of the noblest element with little practical use.

  4. Magnetic Catalysis in Graphene Effective Field Theory

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.

  5. Linking Protein Motion to Enzyme Catalysis

    Directory of Open Access Journals (Sweden)

    Priyanka Singh

    2015-01-01

    Full Text Available Enzyme motions on a broad range of time scales can play an important role in various intra- and intermolecular events, including substrate binding, catalysis of the chemical conversion, and product release. The relationship between protein motions and catalytic activity is of contemporary interest in enzymology. To understand the factors influencing the rates of enzyme-catalyzed reactions, the dynamics of the protein-solvent-ligand complex must be considered. The current review presents two case studies of enzymes—dihydrofolate reductase (DHFR and thymidylate synthase (TSase—and discusses the role of protein motions in their catalyzed reactions. Specifically, we will discuss the utility of kinetic isotope effects (KIEs and their temperature dependence as tools in probing such phenomena.

  6. Chiroptical Switches: Applications in Sensing and Catalysis

    Directory of Open Access Journals (Sweden)

    Wenyao Zhang

    2012-01-01

    Full Text Available Chiroptical switches have found application in the detection of a multitude of different analytes with a high level of sensitivity and in asymmetric catalysis to offer switchable stereoselectivity. A wide range of scaffolds have been employed that respond to metals, small molecules, anions and other analytes. Not only have chiroptical systems been used to detect the presence of analytes, but also other properties such as oxidation state and other physical phenomena that influence helicity and conformation of molecules and materials. Moreover, the tunable responses of many such chiroptical switches enable them to be used in the controlled production of either enantiomer or diastereomer at will in many important organic reactions from a single chiral catalyst through selective use of a low-cost inducer: Co-catalysts (guests, metal ions, counter ions or anions, redox agents or electrochemical potential, solvents, mechanical forces, temperature or electromagnetic radiation.

  7. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    Directory of Open Access Journals (Sweden)

    Sohan Jheeta

    2014-08-01

    Full Text Available This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1. Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7 produced only dimers from its monomers in water, addition of sodium chloride (1 M enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl− > Br− > I−. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  8. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    Science.gov (United States)

    Jheeta, Sohan; Joshi, Prakash C.

    2014-08-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  9. Microbial electro-catalysis in fuel cell

    International Nuclear Information System (INIS)

    Microbial fuel cells (MFC) are devices that ensure the direct conversion of organic matter into electricity using bacterial bio-films as the catalysts of the electrochemical reactions. This study aims at improving the comprehension of the mechanisms involved in electron transfer pathways between the adhered bacteria and the electrodes. This optimization of the MFC power output could be done, for example, in exploring and characterizing various electrode materials. The electrolysis experiments carried out on Geobacter sulfurreducens deal with the microbial catalysis of the acetate oxidation, on the one hand, and the catalysis of the fumarate reduction on the other hand. On the anodic side, differences in current densities appeared on graphite, DSAR and stainless steel (8 A/m2, 5 A/m2 and 0.7 A/m2 respectively). These variations were explained more by materials roughness differences rather than their nature. Impedance spectroscopy study shows that the electro-active bio-film developed on stainless steel does not seem to modify the evolution of the stainless steel oxide layer, only the imposed potential remains determining. On the cathodic side, stainless steel sustained current densities more than twenty times higher than those obtained with graphite electrodes. The adhesion study of G. sulfurreducens on various materials in a flow cell, suggests that the bio-films resist to the hydrodynamic constraints and are not detached under a shear stress threshold value. The installation of two MFC prototypes, one in a sea station and the other directly in Genoa harbour (Italy) confirms some results obtained in laboratory and were promising for a MFC scale-up. (author)

  10. Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation

    DEFF Research Database (Denmark)

    Nielsen, Martin

    2015-01-01

    for the energy sector is the application of a hydrogen economy, which transform the chemical energy in water and/or biomass into hydrogen. Considered as an energy carrier, hydrogen is then transported to the site of use where fuel cells convert its chemical energy into electricity.Here, we review the progress...... in hydrogen production from biomass using homogeneous catalysis. Homogeneous catalysis has the advance of generally performing transformations at much milder conditions than traditional heterogeneous catalysis, and hence it constitutes a promising tool for future applications for a sustainable energy sector...

  11. Nanostructured Membranes for Enzyme Catalysis and Green Synthesis of Nanoparticles

    Science.gov (United States)

    Macroporous membranes functionalized with ionizable macromolecules provide promising applications in toxic metal capture at high capacity, nanoparticle synthesis, and catalysis. Our low-pressure membrane approach is marked by reaction and separation selectivity and their tunabil...

  12. Density functional theory studies of transition metal nanoparticles in catalysis

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Rankin, Rees; Zeng, Zhenhua; Chun, Hee-Joon; Clayborne, Andre; Li, Lin; Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Larsen, Ask Hjorth; Kleis, Jesper; Jacobsen, Karsten Wedel; Romero, Nichols

    2013-01-01

    Periodic Density Functional Theory calculations are capable of providing powerful insights into the structural, energetics, and electronic phenomena that underlie heterogeneous catalysis on transition metal nanoparticles. Such calculations are now routinely applied to single crystal metal surfaces...... and to subnanometer metal clusters. Descriptions of catalysis on truly nanosized structures, however, are generally not as well developed. In this talk, I will illustrate different approaches to analyzing nanocatalytic phenomena with DFT calculations. I will describe case studies from heterogeneous...... catalysis and electrocatalysis, in which single crystal models are combined with Wulff construction-based ideas to produce descriptions of average nanocatalyst behavior. Then, I will proceed to describe explicitly DFT-based descriptions of catalysis on truly nanosized particles (<~4 nm in diameter), and I...

  13. Inverse opal ceria–zirconia: architectural engineering for heterogeneous catalysis

    OpenAIRE

    Umeda, G. A.; Chueh, William C.; Noailles, Liam; Haile, Sossina M.; Dunn, B. S.

    2008-01-01

    The application of inverse opal structured materials is extended to the ceria–zirconia (Ce_(0.5)Zr_(0.5)O_2) system and the significance of material architecture on heterogeneous catalysis, specifically, chemical oxidation, is examined.

  14. Selective Oxidation and Ammoxidation of Olefins by Heterogeneous Catalysis.

    Science.gov (United States)

    Grasselli, Robert K.

    1986-01-01

    Shows how the ammoxidation of olefins can be understood in terms of free radicals and surface bound organometallic intermediates. Also illustrates the close intellectual relationships between heterogeneous catalysis and organometallic chemistry. (JN)

  15. Density functional theory studies of transition metal nanoparticles in catalysis

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Rankin, Rees; Zeng, Zhenhua;

    2013-01-01

    Periodic Density Functional Theory calculations are capable of providing powerful insights into the structural, energetics, and electronic phenomena that underlie heterogeneous catalysis on transition metal nanoparticles. Such calculations are now routinely applied to single crystal metal surfaces...

  16. Intermetallic compounds in heterogeneous catalysis - a quickly developing field

    OpenAIRE

    Armbrüster, M.; Schlögl, R.; Grin, Y.

    2014-01-01

    The application of intermetallic compounds for understanding in heterogeneous catalysis developed in an excellent way during the last decade. This review provides an overview of concepts and developments revealing the potential of intermetallic compounds in fundamental as well as applied catalysis research. Intermetallic compounds may be considered as platform materials to address current and future catalytic challenges, e.g. in respect to the energy transition.

  17. Characterization of textural and surface properties of mesoporous metathesis catalysis

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Žilková, Naděžda; Bastl, Zdeněk; Dědeček, Jiří; Hamtil, Roman; Brabec, Libor; Zukal, Arnošt; Čejka, Jiří

    Amsterdam : Elsevier B.V./Ltd, 2007 - (Xu, R.; Gao, Z.; Chen, J.; Yan, W.), s. 1145-1152 ISBN 978-0-444-53068-4. - (Studies in surface science and catalysis. Vol. 170) R&D Projects: GA AV ČR IAA4040411; GA MPO FT-TA/042 Institutional research plan: CEZ:AV0Z40400503 Keywords : catalysis * zeolites * metathesis Subject RIV: CF - Physical ; Theoretical Chemistry

  18. 3. International conference on catalysis in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The 3. International Conference on Catalysis in Membrane Reactors, Copenhagen, Denmark, is a continuation of the previous conferences held in Villeurbanne 1994 and Moscow 1996 and will deal with the rapid developments taking place within membranes with emphasis on membrane catalysis. The approx. 80 contributions in form of plenary lectures and posters discuss hydrogen production, methane reforming into syngas, selectivity and specificity of various membranes etc. The conference is organised by the Danish Catalytic Society under the Danish Society for Chemical Engineering. (EG)

  19. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  20. Catalysis of Forster Resonances in Rubidium

    Science.gov (United States)

    Win, A. L.; Williams, W. D.; Sukenik, C. I.

    2016-05-01

    When two ultracold Rydberg atoms collide they may change their quantum state if the total electronic energy of the two atoms before and after the collision is about the same. This process can be made resonant by tuning the energy levels of the atoms with an electric field, via the Stark shift, so that the energy difference between incoming and outgoing channels vanishes. This condition is known as a ``Forster resonance.'' We have studied a particular Forster resonance in rubidium: 34p + 34p --> 34s + 35s, by investigating the time dependence of the state change in an ultracold environment. Furthermore, we have added 34d state atoms to the mix and observed an enhancement of 34s atom production. We attribute this enhancement to a catalysis effect whereby the 34d atoms alter the spatial distribution of 34p atoms that participate in the energy transfer interaction. We will present results from the experiment and compare them to model calculations. Present address: Department of Physics, Smith College, Northampton, MA.

  1. Conformational Isomerism Can Limit Antibody Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Debler, E.W.; Muller, R.; Hilvert, D.; Wilson, I.A.

    2009-05-14

    Ligand binding to enzymes and antibodies is often accompanied by protein conformational changes. Although such structural adjustments may be conducive to enzyme catalysis, much less is known about their effect on reactions promoted by engineered catalytic antibodies. Crystallographic and pre-steady state kinetic analyses of antibody 34E4, which efficiently promotes the conversion of benzisoxazoles to salicylonitriles, show that the resting catalyst adopts two interconverting active-site conformations, only one of which is competent to bind substrate. In the predominant isomer, the indole side chain of Trp{sup L91} occupies the binding site and blocks ligand access. Slow conformational isomerization of this residue, on the same time scale as catalytic turnover, creates a deep and narrow binding site that can accommodate substrate and promote proton transfer using Glu{sup H50} as a carboxylate base. Although 34E4 is among the best catalysts for the deprotonation of benzisoxazoles, its efficiency appears to be significantly limited by this conformational plasticity of its active site. Future efforts to improve this antibody might profitably focus on stabilizing the active conformation of the catalyst. Analogous strategies may also be relevant to other engineered proteins that are limited by an unfavorable conformational pre-equilibrium.

  2. Some General Themes in Catalysis at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John C. [Los Alamos National Laboratory

    2012-07-19

    Some general themes in catalysis at LANL are: (1) Storage and release of energy within chemical bonds (e.g. H{sub 2} storage in and release from covalent bonds, N{sub 2} functionalization, CO{sub 2} functionalization, H{sub 2} oxidation/evolution, O{sub 2} reduction/evolution); (2) Can we control the chemistry of reactive substrates to effect energy relevant transformations in non-traditional media (e.g. can we promote C-C couplings, dehydrations, or hydrogenations in water under relatively mild conditions)? (3) Can we supplant precious metal or rare earth catalysts to effect these transformations, by using earth abundant metals/elements instead? Can we use organocatalysis and circumvent the use of metals completely? (4) Can we improve upon existing rare earth catalyst systems (e.g. in rare earth oxides pertinent to fluid cracking or polymerization) and reduce amounts required for catalytic efficacy? Carbohydrates can be accessed from non-food based biomass sources such as woody residues and switchgrass. After extracted from the plant source, our goal is to upgrade these classes of molecules into useful fuels.

  3. Center for Catalysis at Iowa State University

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, George A.

    2006-10-17

    The overall objective of this proposal is to enable Iowa State University to establish a Center that enjoys world-class stature and eventually enhances the economy through the transfer of innovation from the laboratory to the marketplace. The funds have been used to support experimental proposals from interdisciplinary research teams in areas related to catalysis and green chemistry. Specific focus areas included: • Catalytic conversion of renewable natural resources to industrial materials • Development of new catalysts for the oxidation or reduction of commodity chemicals • Use of enzymes and microorganisms in biocatalysis • Development of new, environmentally friendly reactions of industrial importance These focus areas intersect with barriers from the MYTP draft document. Specifically, section 2.4.3.1 Processing and Conversion has a list of bulleted items under Improved Chemical Conversions that includes new hydrogenation catalysts, milder oxidation catalysts, new catalysts for dehydration and selective bond cleavage catalysts. Specifically, the four sections are: 1. Catalyst development (7.4.12.A) 2. Conversion of glycerol (7.4.12.B) 3. Conversion of biodiesel (7.4.12.C) 4. Glucose from starch (7.4.12.D) All funded projects are part of a soybean or corn biorefinery. Two funded projects that have made significant progress toward goals of the MYTP draft document are: Catalysts to convert feedstocks with high fatty acid content to biodiesel (Kraus, Lin, Verkade) and Conversion of Glycerol into 1,3-Propanediol (Lin, Kraus). Currently, biodiesel is prepared using homogeneous base catalysis. However, as producers look for feedstocks other than soybean oil, such as waste restaurant oils and rendered animal fats, they have observed a large amount of free fatty acids contained in the feedstocks. Free fatty acids cannot be converted into biodiesel using homogeneous base-mediated processes. The CCAT catalyst system offers an integrated and cooperative catalytic

  4. Catalysis-by-design impacts assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, L L; Young, J K [Pacific Northwest Lab., Richland, WA (USA); Sen, R K [Sen (R.K.) and Associates, Washington, DC (USA)

    1991-05-01

    Catalyst researchers have always recognized the need to develop a detailed understanding of the mechanisms of catalytic processes, and have hoped that it would lead to developing a theoretical predictive base to guide the search for new catalysts. This understanding allows one to develop a set of hierarchical models, from fundamental atomic-level ab-initio models to detailed engineering simulations of reactor systems, to direct the search for optimized, efficient catalyst systems. During the last two decades, the explosions of advanced surface analysis techniques have helped considerably to develop the building blocks for understanding various catalytic reactions. An effort to couple these theoretical and experimental advances to develop a set of hierarchical models to predict the nature of catalytic materials is a program entitled Catalysis-by-Design (CRD).'' In assessing the potential impacts of CBD on US industry, the key point to remember is that the value of the program lies in developing a novel methodology to search for new catalyst systems. Industrial researchers can then use this methodology to develop proprietary catalysts. Most companies involved in catalyst R D have two types of ongoing projects. The first type, what we call market-driven R D,'' are projects that support and improve upon a company's existing product lines. Project of the second type, technology-driven R D,'' are longer term, involve the development of totally new catalysts, and are initiated through scientists' research ideas. The CBD approach will impact both types of projects. However, this analysis indicates that the near-term impacts will be on market-driven'' projects. The conclusions and recommendations presented in this report were obtained by the authors through personal interviews with individuals involved in a variety of industrial catalyst development programs and through the three CBD workshops held in the summer of 1989. 34 refs., 7 figs., 7 tabs.

  5. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Yale University

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  6. Biodiesel forming reactions using heterogeneous catalysis

    Science.gov (United States)

    Liu, Yijun

    Biodiesel synthesis from biomass provides a means for utilizing effectively renewable resources, a way to convert waste vegetable oils and animal fats to a useful product, a way to recycle carbon dioxide for a combustion fuel, and production of a fuel that is biodegradable, non-toxic, and has a lower emission profile than petroleum-diesel. Free fatty acid (FFA) esterification and triglyceride (TG) transesterification with low molecular weight alcohols constitute the synthetic routes to prepare biodiesel from lipid feedstocks. This project was aimed at developing a better understanding of important fundamental issues involved in heterogeneous catalyzed biodiesel forming reactions using mainly model compounds, representing part of on-going efforts to build up a rational base for assay, design, and performance optimization of solid acids/bases in biodiesel synthesis. As FFA esterification proceeds, water is continuously formed as a byproduct and affects reaction rates in a negative manner. Using sulfuric acid (as a catalyst) and acetic acid (as a model compound for FFA), the impact of increasing concentrations of water on acid catalysis was investigated. The order of the water effect on reaction rate was determined to be -0.83. Sulfuric acid lost up to 90% activity as the amount of water present increased. The nature of the negative effect of water on esterification was found to go beyond the scope of reverse hydrolysis and was associated with the diminished acid strength of sulfuric acid as a result of the preferential solvation by water molecules of its catalytic protons. The results indicate that as esterification progresses and byproduct water is produced, deactivation of a Bronsted acid catalyst like H2SO4 occurs. Using a solid composite acid (SAC-13) as an example of heterogeneous catalysts and sulfuric acid as a homogeneous reference, similar reaction inhibition by water was demonstrated for homogeneous and heterogeneous catalysis. This similarity together with

  7. Kinetic evolutionary behavior of catalysis-select migration

    Institute of Scientific and Technical Information of China (English)

    Wu Yuan-Gang; Lin Zhen-Quan; Ke Jian-Hong

    2012-01-01

    We propose a catalysis-select migration driven evolution model of two-species (A- and B-species) aggregates,where one unit of species A migrates to species B under the catalysts of species C,while under the catalysts of species D the reaction will become one unit of species B migrating to species A.Meanwhile the catalyst aggregates of species C perform self-coagulation,as do the species D aggregates.We study this catalysis-select migration driven kinetic aggregation phenomena using the generalized Smoluchowski rate equation approach with C species catalysis-select migration rate kernel K(k;i,j) =Kkij and D species catalysis-select migration rate kernel J(k;i,j) =Jkij.The kinetic evolution behaviour is found to be dominated by the competition between the catalysis-select immigration and emigration,in which the competition is between JD0 and KC0 (D0 and C0 are the initial numbers of the monomers of species D and C,respectively).When JD0 - KC0 > 0,the aggregate size distribution of species A satisfies the conventional scaling form and that of species B satisfies a modified scaling form.And in the case of JDo - KCo < 0,species A and B exchange their aggregate size distributions as in the above JD0 - KC0 > 0 case.

  8. Kinetic evolutionary behavior of catalysis-select migration

    Science.gov (United States)

    Wu, Yuan-Gang; Lin, Zhen-Quan; Ke, Jian-Hong

    2012-06-01

    We propose a catalysis-select migration driven evolution model of two-species (A- and B-species) aggregates, where one unit of species A migrates to species B under the catalysts of species C, while under the catalysts of species D the reaction will become one unit of species B migrating to species A. Meanwhile the catalyst aggregates of species C perform self-coagulation, as do the species D aggregates. We study this catalysis-select migration driven kinetic aggregation phenomena using the generalized Smoluchowski rate equation approach with C species catalysis-select migration rate kernel K(k;i,j) = Kkij and D species catalysis-select migration rate kernel J(k;i,j)= Jkij. The kinetic evolution behaviour is found to be dominated by the competition between the catalysis-select immigration and emigration, in which the competition is between JD0 and KC0 (D0 and C0 are the initial numbers of the monomers of species D and C, respectively). When JD0 -KC0 > 0, the aggregate size distribution of species A satisfies the conventional scaling form and that of species B satisfies a modified scaling form. And in the case of JD0-KC0 0 case.

  9. Inverse Magnetic Catalysis in Bottom-Up Holographic QCD

    CERN Document Server

    Evans, Nick; Scott, Marc

    2016-01-01

    We explore the effect of magnetic field on chiral condensation in QCD via a simple bottom up holographic model which inputs QCD dynamics through the running of the anomalous dimension of the quark bilinear. Bottom up holography is a form of effective field theory and we use it to explore the dependence on the coefficients of the two lowest order terms linking the magnetic field and the quark condensate. In the massless theory, we identify a region of parameter space where magnetic catalysis occurs at zero temperature but inverse magnetic catalysis at temperatures of order the thermal phase transition. The model shows similar non-monotonic behaviour in the condensate with B at intermediate T as the lattice data. This behaviour is due to the separation of the meson melting and chiral transitions in the holographic framework. The introduction of quark mass raises the scale of B where inverse catalysis takes over from catalysis until the inverse catalysis lies outside the regime of validity of the effective descr...

  10. Kinetic evolutionary behavior of catalysis-select migration

    International Nuclear Information System (INIS)

    We propose a catalysis-select migration driven evolution model of two-species (A- and B-species) aggregates, where one unit of species A migrates to species B under the catalysts of species C, while under the catalysts of species D the reaction will become one unit of species B migrating to species A. Meanwhile the catalyst aggregates of species C perform self-coagulation, as do the species D aggregates. We study this catalysis-select migration driven kinetic aggregation phenomena using the generalized Smoluchowski rate equation approach with C species catalysis-select migration rate kernel K(k;i,j) = Kkij and D species catalysis-select migration rate kernel J(k;i,j)= Jkij. The kinetic evolution behaviour is found to be dominated by the competition between the catalysis-select immigration and emigration, in which the competition is between JD0 and KC0 (D0 and C0 are the initial numbers of the monomers of species D and C, respectively). When JD0 −KC0 > 0, the aggregate size distribution of species A satisfies the conventional scaling form and that of species B satisfies a modified scaling form. And in the case of JD0−KC0 0−KC0 > 0 case. (interdisciplinary physics and related areas of science and technology)

  11. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis

    Science.gov (United States)

    Pal, Jaya; Pal, Tarasankar

    2015-08-01

    The review addresses new advances in metal, bimetallic, metal oxide, and composite particles in their nanoregime for facet-selective catalytic applications. The synthesis and growth mechanisms of the particles have been summarized in brief in this review with a view to develop critical examination of the faceted morphology of the particles for catalysis. The size, shape and composition of the particles have been found to be largely irrelevant in comparison to the nature of facets in catalysis. Thus selective high- and low-index facets have been found to selectively promote adsorption, which eventually leads to an effective catalytic reaction. As a consequence, a high density of atoms rest at the corners, steps, stages, kinks etc on the catalyst surface in order to host the adsorbate efficiently and catalyze the reaction. Again, surface atomic arrangement and bond length have been found to play a dominant role in adsorption, leading to effective catalysis.

  12. Catalysis induced by radiations; Catalisis inducida por radiaciones

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez B, J.; Gonzalez J, J. C., E-mail: jaime.jimenez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In Mexico is generated a great quantity of residuals considered as dangerous, for its capacity of corrosion, reactivity, toxicity to the environment, inflammability and biological-infectious potential. It is important to mention that the toxic compounds cannot be discharged to the sewerage systems and much less to the receiving bodies of water. The usual treatment that receives the dangerous residuals is the incineration and the bordering. The incineration is an efficient form of treating the residuals, but it can be dioxins source and benzofurans, being the phenol and chloro phenol the precursors of these compounds. At the present time the radiolytic degradation of organic compounds has been broadly studied, especially the 4-chloro phenol and of same form the photo catalysis of organic compounds. However the combination of both processes, called radio catalysis is barely reported. In this work the results of the experiments realized for to degrade the 4-chloro phenol by means of radio catalysis are reported. (Author)

  13. A Possible Macroscopic-Photo-Catalysis Mechanism in Solar Furnace

    Institute of Scientific and Technical Information of China (English)

    HO Tsohsiu; QING Cheng-Rui; CHEN Ying-Tian

    2011-01-01

    Based on the experimental results of Chen et al.to use the solar furnace and medium frequency induction furnace to extract boron impurity from metallurgical silicon, we propose a strong radiation catalysis mechanism to explain the difference of reaction rates in these two furnaces.The postulate assuming the photons striking on the material not only increase the thermal energy of the molecules of reactants but also lower down the energy barrier of the reaction to speed up the chemical reaction.It is believed the photon catalysis mechanism is universall in most of high temperature chemical reactions and looking forward to more evidences for the postulate proposed in this article.

  14. New and future developments in catalysis activation of carbon dioxide

    CERN Document Server

    Suib, Steven L

    2013-01-01

    New and Future Developments in Catalysis is a package of books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. This volume presents a complete picture of all carbon dioxide (CO2) sources, outlines the environmental concerns regarding CO2, and critica

  15. Role of catalysis in sustainable production of synthetic elastomers

    Indian Academy of Sciences (India)

    Vivek K Srivastava; Madhuchhanda Maiti; Ganesh C Basak; Raksh V Jasra

    2014-03-01

    Elastomer business plays a significant role in the transportation industry. In fact, elastomers make the world move. Due to limited availability of natural rubber, synthetic elastomers bridge the gap between demand and supply in today’s growing tyre and automobile industry.With more than ∼10000 KTA total world productions, the impact of synthetic elastomer business cannot be overlooked. The need of synthetic elastomers for tyre and automobile industries is stringently specific. Catalysis plays an inevitable role in achieving the growing demand of specific synthetic elastomers. The present study will describe how catalysis plays a significant role in the sustainable development of elastomers with special reference to polybutadiene rubber.

  16. KCC1: First Nanoparticle developed by KAUST Catalysis Center

    KAUST Repository

    Basset, Jean-Marie

    2010-08-01

    KCC1 is the first Nanoparticle developed by KAUST Catalysis Center. Director of KAUST Catalysis Center, Dr. Jean-Marie Basset, Senior Research Scientist at KCC, Dr. Vivek Polshettiwar, and Dr. Dongkyu Cha of the Advanced Nanofabrication Imaging & Characterization Core Laboratory discuss the details of this recent discovery. This video was produced by KAUST Visualization Laboratory and KAUST Technology Transfer and Innovation - Terence McElwee, Director, Technology Transfer and Innovation - IP@kaust.edu.sa This technology is part of KAUST\\'s technology commercialization program that seeks to stimulate development and commercial use of KAUST-developed technologies. For more information email us at ip@kaust.edu.sa.

  17. Switching on Elusive Organometallic Mechanisms with Photoredox Catalysis

    OpenAIRE

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-01-01

    Transition metal-catalyzed cross-coupling reactions have become one of the most utilized carbon–carbon and carbon–heteroatom bond-forming reactions in chemical synthesis. More recently, nickel catalysis has been shown to participate in a wide variety of C–C bond forming reactions, most notably Negishi, Suzuki–Miyaura, Stille, Kumada, and Hiyama couplings 1,2 . Despite the tremendous advances in C–C fragment couplings, the ability to forge C–O bonds in a general fashion via nickel catalysis ha...

  18. Seventh BES [Basic Energy Sciences] catalysis and surface chemistry research conference

    International Nuclear Information System (INIS)

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases

  19. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  20. Functionalized pyrazines as ligands for minor actinide extraction and catalysis

    NARCIS (Netherlands)

    Nikishkin, N.

    2013-01-01

    The research presented in this thesis concerns the design of ligands for a wide range of applications, from nuclear waste treatment to catalysis. The strategies employed to design actinide-selective extractants, for instance, comprise the fine tuning of the ligand electronic properties as well as us

  1. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.

    2006-01-01

    Solid surfaces are used extensively as catalysts throughout the chemical industry, in the energy sector, and in environmental protection. Recently, density functional theory has started providing new insight into the atomic-scale mechanisms of heterogeneous catalysis, helping to interpret the large...

  2. Heterogeneous Catalysis: On Bathroom Mirrors and Boiling Stones

    Science.gov (United States)

    Philipse, Albert P.

    2011-01-01

    Though heterogeneous nucleation of liquid droplets on a smooth surface (such as a bathroom mirror) is a classical topic in nucleation theory, it is not well-known that this topic is actually a pedagogical example of heterogeneous catalysis: the one and only effect of the surface is to lower the activation Gibbs energy of droplet formation. In…

  3. A Course in Heterogeneous Catalysis Involving Video-Based Seminars.

    Science.gov (United States)

    White, Mark G.

    1984-01-01

    A video-based format was used during a graduate seminar course designed to educate students on the nature of catalysis, to help transfer information among students working on similar problems, and to improve communication skills. The mechanics of and student reaction to this seminar course are discussed. (JN)

  4. Surface Chemistry in Heterogeneous Catalysis: An Emerging Discipline.

    Science.gov (United States)

    White, J. M.; Campbell, Charles T.

    1980-01-01

    Provides background data on surface chemistry as an emerging discipline. Highlights the important role which surfaces play in catalysis by focusing on the catalyzed oxidation of carbon monoxide. Provides a demonstration of how surfaces exert their influences in heterogeneous phenomena and illustrates how experimental problems in this field are…

  5. Support and promoter effects in automotive exhaust catalysis

    NARCIS (Netherlands)

    Lepage, M.

    2009-01-01

    Automotive catalysis being a mature technology, it can only be improved by the introduction of new breakthroughs. The ideas generating these technical advances in material science can be found thanks to the synthesis and study of model systems with controlled geometries, compositions, interactions a

  6. Early Main Group Metal Catalysis : How Important is the Metal?

    NARCIS (Netherlands)

    Penafiel, Johanne; Maron, Laurent; Harder, Sjoerd

    2015-01-01

    Organocalcium compounds have been reported as efficient catalysts for various alkene transformations. In contrast to transition metal catalysis, the alkenes are not activated by metal-alkene orbital interactions. Instead it is proposed that alkene activation proceeds through an electrostatic interac

  7. Self-catalysis growth of zinc oxide nanopillar array

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhihao; DUAN Yueqin; WU Yang; BIE Lijian; FAN Shoushan

    2005-01-01

    Zn nanodot array was prepared by using a nano-masking with porous alumina membrane as mask. Based on such a nanodot array, a self-catalysis method was developed for fabricating ZnO nanopillars on Si substrate. The resultant nanopillars show a two-dimensional, and regular array with uniform size and orientation.

  8. Physical applications of muon catalysis: Muon capture in hydrogen

    Science.gov (United States)

    Filchenkov, V. V.

    2016-07-01

    Results of theoretical and experimental research on capture of negative muons in hydrogen are reported with an emphasis on the accompanying phenomenon of muon catalysis in hydrogen and subtleties of the experimental method. A conclusion is drawn that precise determination of the capture rate is important for refining the standard model.

  9. Molecular-Level Design of Heterogeneous Chiral Catalysis

    International Nuclear Information System (INIS)

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration

  10. Molecular-Level Design of Heterogeneous Chiral Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Zaera

    2012-03-21

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration

  11. Flexibility, diversity, and cooperativity: pillars of enzyme catalysis.

    Science.gov (United States)

    Hammes, Gordon G; Benkovic, Stephen J; Hammes-Schiffer, Sharon

    2011-12-01

    This brief review discusses our current understanding of the molecular basis of enzyme catalysis. A historical development is presented, beginning with steady state kinetics and progressing through modern fast reaction methods, nuclear magnetic resonance, and single-molecule fluorescence techniques. Experimental results are summarized for ribonuclease, aspartate aminotransferase, and especially dihydrofolate reductase (DHFR). Multiple intermediates, multiple conformations, and cooperative conformational changes are shown to be an essential part of virtually all enzyme mechanisms. In the case of DHFR, theoretical investigations have provided detailed information about the movement of atoms within the enzyme-substrate complex as the reaction proceeds along the collective reaction coordinate for hydride transfer. A general mechanism is presented for enzyme catalysis that includes multiple intermediates and a complex, multidimensional standard free energy surface. Protein flexibility, diverse protein conformations, and cooperative conformational changes are important features of this model. PMID:22029278

  12. Carbon mediated catalysis:A review on oxidative dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    De Chen; Anders Holmen; Zhijun Sui; Xinggui Zhou

    2014-01-01

    Carbon mediated catalysis has gained an increasing attention in both areas of nanocatalysis and nanomaterials. The progress in carbon nanomaterials provides many new opportunities to manip-ulate the types and properties of active sites of catalysts through manipulating structures, function-alities and properties of carbon surfaces. The present review focuses on progresses in carbon medi-ated oxidative dehydrogenation reactions of ethylbenzene, propane, and butane. The state-of-the-art of the developments of carbon mediated catalysis is discussed in terms of fundamental studies on adsorption of oxygen and hydrocarbons, reaction mechanism as well as effects of carbon nano-material structures and surface functional groups on the catalytic performance. We highlight the importance and challenges in tuning of the electron density of carbon and oxygen on carbon surfac-es for improving selectivity in oxidative dehydrogenation reactions.

  13. Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids

    Directory of Open Access Journals (Sweden)

    Yuanhang Ren

    2015-03-01

    Full Text Available Organic–inorganic hybrid polyoxometalate (POM compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  14. Magnetic Catalysis of Chiral Symmetry Breaking. A Holographic Prospective

    CERN Document Server

    Filev, Veselin G; 10.1155/2010/473206

    2010-01-01

    We review a recent investigation of the effect of magnetic catalysis of mass generation in holographic Yang-Mills theories. We aim at a self-contained and pedagogical form of the review. We provide a brief field theory background and review the basics of holographic flavordynamics. The main part of the review investigates the influence of external magnetic field on holographic gauge theories dual to the D3/D5-- and D3/D7-- brane intersections. Among the observed phenomena are the spontaneous breaking of a global internal symmetry, Zeeman splitting of the energy levels and the existence of pseudo Goldstone modes. An analytic derivation of the Gell-Mann--Oaks--Renner relation for the D3/D7 set up is reviewed. In the D3/D5 case the pseudo Goldstone modes satisfy non-relativistic dispersion relation. The studies reviewed confirm the universal nature of the magnetic catalysis of mass generation.

  15. Homogeneous Catalysis with Metal Complexes Fundamentals and Applications

    CERN Document Server

    Duca, Gheorghe

    2012-01-01

    The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes  in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.

  16. Advantages of Catalysis in Self-Assembled Molecular Capsules.

    Science.gov (United States)

    Catti, Lorenzo; Zhang, Qi; Tiefenbacher, Konrad

    2016-06-27

    Control over the local chemical environment of a molecule can be achieved by encapsulation in supramolecular host systems. In supramolecular catalysis, this control is used to gain advantages over classical homogeneous catalysis in bulk solution. Two of the main advantages concern influencing reactions in terms of substrate and product selectivity. Due to size and/or shape recognition, substrate selective conversion can be realized. Additionally, noncovalent interactions with the host environment facilitate alternative reaction pathways and can yield unusual products. This Concept article discusses and highlights literature examples utilizing self-assembled molecular capsules to achieve catalytic transformations displaying a high degree of substrate and/or product selectivity. Furthermore, the advantage of supramolecular hosts in multicatalyst tandem reactions is covered. PMID:27150251

  17. From Inverse to Delayed Magnetic Catalysis in Strong Magnetic Field

    CERN Document Server

    Mao, Shijun

    2016-01-01

    We study magnetic field effect on chiral phase transition in a Nambu--Jona-Lasinio model. In comparison with mean field approximation containing quarks only, including mesons as quantum fluctuations in the model leads to a transition from inverse to delayed magnetic catalysis at finite temperature and delays the transition at finite baryon chemical potential. The location of the critical end point depends on the the magnetic field non-monotonously.

  18. Catalysis in the alkylation reaction of 1-naphthol with epichlorohydrin

    Directory of Open Access Journals (Sweden)

    SLOBODANKA JOVANOVIC

    2006-09-01

    Full Text Available Two new and improved procedures were developed for the synthesis of 1-(1-naphthyloxy-2,3-epoxypropane as an important intermediate in the production of the beta-blocker and antioxidant, 1-[(1-methylethylamino]-3-(1-naphthyloxy-2-propanol (propranolol. Both base homogeneous and heterogeneous PTC catalysis were employed. High yields and remarkable selectivity were achieved. The improved purity is particularly important, in view of the quality requirements for propranolol hydrochloride as an active pharmaceutical ingredient.

  19. Selective catalysis utilizing bifunctionalized MCM-41 mesoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Strosahl, Kasey Jean

    2005-05-01

    Selective catalysis is a field that has been under intense investigation for the last 100 years. The most widely used method involves catalysts with stereochemical selectivity. In this type of catalysis, the catalyst controls which reactants will be transformed into the desired product. The secret to employing this type of catalysis, though, is to design the proper catalyst, which can be difficult. One may spend as much time developing the catalyst as spent separating the various products achieved. Another method of selective catalysis is now being explored. The method involves utilizing a multifunctional mesoporous silica catalyst with a gate-keeping capability. Properly functionalized mesoporous materials with well-defined pore morphology and surface properties can provide an ideal three-dimensional environment for anchoring various homogeneous catalysts. These materials can circumvent the multi-sited two-dimensional nature most heterogeneous systems have without adversely impacting the reactant diffusivity. These single-site nanostructured catalysts with ordered geometrical structure are advantageous in achieving high selectivity and reactivity. Mesoporous materials can be prepared to include pores lined homogeneously with tethered catalysts via co-condensation. Additionally, these materials can be reacted with another (RO){sub 3}Si{approx}Z group by using the traditional grafting method; this group is anchored predominantly at the entrances to the pores rather than inside the pores. Thus, if these {approx}Z groups are chosen properly, they can select certain molecules to enter the pores and be converted to products (Scheme 1). In such multifunctional catalysts, the selectivity depends on the discrimination of the gatekeeper. Gate-keeping MCM-41 materials are at the forefront of catalytic substances.

  20. Bionic catalysis of porphyrin for electrochemical detection of nucleic acids

    International Nuclear Information System (INIS)

    Highlights: ► This is the first application of bionic catalysis of porphyrin as detection probe in bioanalysis. ► Porphyrin–DNA–gold nanoparticle probe is synthesized. ► Binding model between FeTMPyP and DNA is verified. ► The detection probe shows excellent electrocatalytic behaviors toward the reduction of O2. ► The biosensor exhibited good performance with wide linear range and high specificity. - Abstract: A novel electrochemical strategy was designed for the detection of DNA based on the bionic catalysis of porphyrin. The detection probe was prepared via the assembly of thiolated double strand DNA (dsDNA) with gold nanoparticles (AuNPs), and then interacted with cationic iron (III) meso-tetrakis (N-methylphyridinum-4-yl) porphyrin (FeTMPyP) via groove binding along the dsDNA surface. The resulting nanocomplex was characterized with transmission electron microscopy, UV–vis absorption and circular dichroism spectroscopy. The FeTMPyP–DNA–AuNPs probe on gold electrode demonstrated the excellent electrocatalytic behaviors toward the reduction of O2 due to the largely loading of FeTMPyP and good conductivity. Based on bionic catalysis of porphyrin for the reduction of O2, the resulting biosensor exhibited a good performance for the detection of DNA with a wide linear range from 1 × 10−12 to 1 × 10−8 mol L−1 and detection limit of 2.5 × 10−13 mol L−1 at the signal/noise of 3. More importantly, the biosensor presented excellent ability to discriminate the perfectly complementary target and the mismatched stand. This strategy could be conveniently extended for detection of other biomolecules. To the best of our knowledge, this is the first application of bionic catalysis of porphyrin as detection probe and opens new opportunities for sensitive detection of biorecognition events.

  1. Collective synthesis of natural products by means of organocascade catalysis

    OpenAIRE

    Jones, Spencer B.; Simmons, Bryon; Mastracchio, Anthony; MacMillan, David W. C.

    2011-01-01

    Organic chemists are now able to synthesize small quantities of almost any known natural product, given sufficient time, resources and effort. However, translation of the academic successes in total synthesis to the large-scale construction of complex natural products and the development of large collections of biologically relevant molecules present significant challenges to synthetic chemists. Here we show that the application of two nature-inspired techniques, namely organocascade catalysi...

  2. EPR spectroscopy as a tool in homogeneous catalysis research

    OpenAIRE

    Goswami, M.; Chirila, A.; Rebreyend, C.; Bruin,, Henk

    2015-01-01

    In the context of homogeneous catalysis, open-shell systems are often quite challenging to characterize. Nuclear magnetic resonance (NMR) spectroscopy is the most frequently applied tool to characterize organometallic compounds, but NMR spectra are usually broad, difficult to interpret and often futile for the study of paramagnetic compounds. As such, electron paramagnetic resonance (EPR) has proven itself as a useful spectroscopic technique to characterize paramagnetic complexes and reactive...

  3. Highly Regioselective Indoline Synthesis under Nickel/Photoredox Dual Catalysis

    OpenAIRE

    Tasker, Sarah Z.; Jamison, Timothy F.

    2015-01-01

    Nickel/photoredox catalysis is used to synthesize indolines in one step from iodoacetanilides and alkenes. Very high regioselectivity for 3-substituted indoline products is obtained for both aliphatic and styrenyl olefins. Mechanistic investigations indicate that oxidation to Ni(III) is necessary to perform the difficult C–N bond-forming reductive elimination, producing a Ni(I) complex which in turn is reduced to Ni(0). This process serves to further demonstrate the utility of photoredox cata...

  4. Cooperative catalysis by silica-supported organic functional groups

    OpenAIRE

    Margelefsky, Eric L.; Zeidan, Ryan K.; Davis, Mark E.

    2008-01-01

    Hybrid inorganic–organic materials comprising organic functional groups tethered from silica surfaces are versatile, heterogeneous catalysts. Recent advances have led to the preparation of silica materials containing multiple, different functional groups that can show cooperative catalysis; that is, these functional groups can act together to provide catalytic activity and selectivity superior to what can be obtained from either monofunctional materials or homogeneous catalysts. This tutorial...

  5. Global Solutions for a Class of Heterogeneous Catalysis Models

    OpenAIRE

    Bothe, Dieter; Köhne, Matthias; Maier, Siegfried; Saal, Jürgen

    2015-01-01

    We consider a mathematical model for heterogeneous catalysis in a finite three-dimensional pore of cylinder-like geometry, with the lateral walls acting as a catalytic surface. The system under consideration consists of a diffusion-advection system inside the bulk phase and a reaction-diffusion-sorption system modeling the processes on the catalytic wall and the exchange between bulk and surface. We assume Fickian diffusion with constant coefficients, sorption kinetics with linear growth boun...

  6. Quasi-Stationary Distributions for Models of Heterogeneous Catalysis

    OpenAIRE

    de Oliveira, Marcelo M.; Dickman, Ronald

    2004-01-01

    We construct the quasi-stationary (QS) distribution for two models of heterogeneous catalysis having two absorbing states: the ZGB model for the oxidation of CO, and a version with noninstantaneous reactions. Using a mean-field-like approximation, we study the quasi-stationary surface coverages, moment ratios and the lifetime of the QS state. We also derive an improved, consistent one-site mean-field theory for the ZGB model.

  7. Protruding interfacial OH groups and 'on-water' heterogeneous catalysis

    International Nuclear Information System (INIS)

    The key aspect of the remarkable organic catalysis that is observed to occur at the organic/water phase boundary, the so-called 'on-water' catalysis (Narayan et al 2005 Angew. Chem. 44 3275), was recently proposed to be the protruding OH groups of water molecules at the interface that interact with the transition state (TS) via hydrogen bonding and lower activation barriers (Jung and Marcus 2007 J. Am. Chem. Soc. 129 5492). In particular, the cycloaddition reaction of quadricyclane (Q) with dimethyl azodicarboxylate (DMAD) on-water was calculated to be more than 100 000 times more efficient in terms of rate constant than the neat reaction. In this paper, we review and consider a related reaction of Q with dimethyl acetylenedicarboxylate, where nitrogen, a good H-bond acceptor, in DMAD is replaced by carbon, a poor H-bond acceptor. A very low rate acceleration of acetylenedicarboxylate on-water relative to the neat reaction is obtained theoretically, as compared to DMAD on-water, due to the relatively low H-bonding ability of acetylenedicarboxylate with water at the TS relative to the reactants. We suggest that there may also be an 'intrinsic steric effect' or orientational advantage in the on-water catalysis in general, and both electronic and steric effects may be in operation for the smaller on-water catalysis for the cycloaddition reaction of quadricyclane and acetylenedicarboxylate. A preliminary quantum mechanical/molecular mechanical (QM/MM) simulation including 1264 water molecules for the on-water reaction of DMAD + Q also suggests that there are indeed approximately two-four more H-bonds between the TS and the dangling OH groups than between the reactants and the surface.

  8. Catalysis at the Homogeneous-Heterogeneous Chemistry Interface

    Institute of Scientific and Technical Information of China (English)

    Howard; Alper

    2007-01-01

    1 Results Significant progress has been made in recent years in developing efficient, atom economical catalytic reactions of potential applicability to the pharmaceutical, petrochemical, and commodity chemical business sectors. In some cases, homogeneous catalytic processes offer advantages, but in others the use of heterogenized homogeneous catalysis provides a competitive advantage concerning recyclability and catalyst recovery. This presentation will consider new approaches to cyclization reactions a...

  9. Observations of exoelectron emission associated with heterogeneous catalysis

    Science.gov (United States)

    Hoenig, S. A.; Utter, M. G.

    1977-01-01

    It is suggested that the exoelectron emission from the catalyst may be used to monitor the rate of oxidation of CO and CH4 over palladium catalysts. Indirect heating of the catalyst and atmospheric pressure have no effect upon this monitoring system. Although the mechanism relating catalysis to exoelectron emission is not clear, it is considered possible that electron emission is triggered by the adsorption-desorption cycle.

  10. Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis

    OpenAIRE

    Kobayashi, Hirokazu; Ohta, Hidetoshi; Fukuoka, Atsushi

    2012-01-01

    Conversion of lignocellulose into renewable chemicals and fuels has received great attention for building up the sustainable societies. However, the utilisation of lignocellulose in the chemical industry has almost been limited for paper manufacturing because of the complicated chemical structure and persistent property of lignocellulose. Heterogeneous catalysis has the potential to selectively convert lignocellulosic biomasses into various useful chemicals, and this methodology has rapidly p...

  11. Membrane catalysis in the dehydrogenation and hydrogen production processes

    International Nuclear Information System (INIS)

    Data on the applications of membrane catalysis in the dehydrogenation of organic compounds and hydrogen production are analyzed and generalized. It is shown that the integration of membrane reactors into existing plants is necessary for production of hydrogen of high purity. The steam reforming and oxidative reforming of methane and steam reforming of light alcohols seem to be the most promising processes for hydrogen production in membrane reactors. The bibliography includes 165 references.

  12. Locale structure around heteroatoms in alumino- and borosilicates for catalysis

    OpenAIRE

    Nagendrachar Garaga, Mounesha

    2013-01-01

    While alumino- and borosilicate materials have paramount importance in catalysis, the molecular origin of their activity is not completely understood. This is mainly because the incorporation of heteroatoms into the silicate framework deteriorates the molecular order by generating local disorder that is particularly difficult to establish. Because of its local vision of ordered and disordered environments, solid-state nuclear magnetic resonance (NMR) can play a key role to solve this long-sta...

  13. Exploring the scope of organic syntheses with semiconductor photoredox catalysis

    OpenAIRE

    Manley, David

    2014-01-01

    Under dry, anaerobic conditions TiO₂ photoredox catalysis has been directed away from oxidative/degradative chemistry. Instead, carboxylic acid photoredox reactions resulted in carbon-carbon bond forming processes. High yields of radical homodimers were obtained from TiO₂ treatment of carboxylic acids alone. “Benzyl-type” radicals in particular performed very well in this system. Attempts at carrying out hetero-dimerisations were unsuccessful as it is thought that the differing rates of forma...

  14. A nature-inspired approach to reactor and catalysis engineering

    OpenAIRE

    Coppens, M-O

    2012-01-01

    Mechanisms used by biology to solve fundamental problems, such as those related to scalability, efficiency and robustness could guide the design of innovative solutions to similar challenges in chemical engineering. Complementing progress in bioinspired chemistry and materials science, we identify three methodologies as the backbone of nature-inspired reactor and catalysis engineering. First, biology often uses hierarchical networks to bridge scales and facilitate transport, leading to broadl...

  15. Crown ethers and phase transfer catalysis in polymer science

    CERN Document Server

    Carraher, Charles

    1984-01-01

    Phase transfer catalysis or interfacial catalysis is a syn­ thetic technique involving transport of an organic or inorganic salt from a solid or aqueous phase into an organic liquid where reaction with an organic-soluble substrate takes place. Over the past 15 years there has been an enormous amount of effort invested in the development of this technique in organic synthe­ sis. Several books and numerous review articles have appeared summarizing applications in which low molecular weight catalysts are employed. These generally include either crown ethers or onium salts of various kinds. While the term phase transfer catalysis is relatively new, the concept of using a phasetrans­ fer agent (PTA) is much older~ Both Schnell and Morgan employed such catalysts in synthesis of polymeric species in the early 1950's. Present developments are really extensions of these early applications. It has only been within the last several years that the use of phase transfer processes have been employed in polymer synthesis...

  16. Switching on elusive organometallic mechanisms with photoredox catalysis

    Science.gov (United States)

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-08-01

    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to `switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts.

  17. Compartmentalized Droplets for Continuous Flow Liquid-Liquid Interface Catalysis.

    Science.gov (United States)

    Zhang, Ming; Wei, Lijuan; Chen, Huan; Du, Zhiping; Binks, Bernard P; Yang, Hengquan

    2016-08-17

    To address the limitations of batch organic-aqueous biphasic catalysis, we develop a conceptually novel method termed Flow Pickering Emulsion, or FPE, to process biphasic reactions in a continuous flow fashion. This method involves the compartmentalization of bulk water into micron-sized droplets based on a water-in-oil Pickering emulsion, which are packed into a column reactor. The compartmentalized water droplets can confine water-soluble catalysts, thus "immobilizing" the catalyst in the column reactor, while the interstices between the droplets allow the organic (oil) phase to flow. Key fundamental principles underpinning this method such as the oil phase flow behavior, the stability of compartmentalized droplets and the confinement capability of these droplets toward water-soluble catalysts are experimentally and theoretically investigated. As a proof of this concept, case studies including a sulfuric acid-catalyzed addition reaction, a heteropolyacid-catalyzed ring opening reaction and an enzyme-catalyzed chiral reaction demonstrate the generality and versatility of the FPE method. Impressively, in addition to the excellent durability, the developed FPE reactions exhibit up to 10-fold reaction efficiency enhancement in comparison to the existing batch reactions, indicating a unique flow interface catalysis effect. This study opens up a new avenue to allow conventional biphasic catalysis reactions to access more sustainable and efficient flow chemistry using an innovative liquid-liquid interface protocol. PMID:27429173

  18. Pacific Northwest National Laboratory Catalysis Highlights for FY2007

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C.

    2007-11-15

    To reduce the nation’s dependence on imported oil, the U.S. Department of Energy (DOE) and other federal and private agencies are investing in understanding catalysis. This report focuses on catalysis research conducted by Pacific Northwest National Laboratory (PNNL) and its collaborators. Using sophisticated instruments in DOE’s Environmental Molecular Sciences Laboratory, a national scientific user facility, research was conducted to answer key questions related to the nation’s use of automotive fuels. Research teams investigated how hydrogen can be safely stored and efficiently released, critical questions to use this alternative fuel. Further, they are answering key questions to design molecular catalysts to control the transfer of hydrogen atoms, hydrides, and protons important to hydrogen production. In dealing with today’s fuels, researchers examined adsorption of noxious nitrous oxides in automotive exhaust. Beyond automotive fuel, researchers worked on catalysts to harness solar power. These catalysts include the rutile and anatase forms of titanium dioxide. Basic research was conducted on designing catalysts for these and other applications. Our scientists examined how to build catalysts with the desired properties atom by atom and molecule by molecule. In addition, this report contains brief descriptions of the outstanding accomplishments of catalysis experts at PNNL.

  19. Catalysis in electrochemistry from fundamental aspects to strategies for fuel cell development

    CERN Document Server

    Santos, Elizabeth

    2011-01-01

    Catalysis in Electrochemistry: From Fundamental Aspects to Strategies for Fuel Cell Development is a modern, comprehensive reference work on catalysis in electrochemistry, including principles, methods, strategies, and applications. It points out differences between catalysis at gas/surfaces and electrochemical interfaces, along with the future possibilities and impact of electrochemical science on energy problems. This book contributes both to fundamental science; experience in the design, preparation, and characterization of electrocatalytic materials; and the industrial application o

  20. Hybrid Organic-Inorganic Materials Based on Polyoxometalates and Ionic Liquids and Their Application in Catalysis

    OpenAIRE

    Svetlana Ivanova

    2014-01-01

    An overview of the recent advances in the field of polyoxometalate, ionic liquid hybrids, is proposed with a special attention paid to their application in catalysis, more precisely biphasic and heterogeneous catalysis. Both components of the hybrids are separately outlined pointing to their useful properties and potential for catalysis, followed by the description of the hybrids preparation and synergy between components in a large range of organic transformations. And finally a vision on th...

  1. Support for U.S. Participants at the 15th International Congress on Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wachs, Israel E.

    2013-08-05

    The grant was used to partially assist the travel expenses of U.S. academic scientists to attend the 15th International Congress on Catalysis. The conference was held in Munich, Germany from July 1-6, 2012. The importance of the International Congress was to bring together the international community of faculty members who participate in catalysis research, and to share information that would lead to further developments and directions in the field of study. Graduate students and Post Docs were invited to apply for travel assistance based on criteria established by the North American Catalysis Society (NACS) and the local Catalysis Clubs.

  2. Catalysis as a foundational pillar of green chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, Paul T. [White House Office of Science and Technology Policy, Department of Chemistry, University of Nottingham Nottingham, (United Kingdom); Kirchhoff, Mary M. [U.S. Environmental Protection Agency and Trinity College, Washington, DC (United States); Williamson, Tracy C. [U.S. Environmental Protection Agency, Washington, DC (United States)

    2001-11-30

    Catalysis is one of the fundamental pillars of green chemistry, the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. The design and application of new catalysts and catalytic systems are simultaneously achieving the dual goals of environmental protection and economic benefit. Green chemistry, the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances, is an overarching approach that is applicable to all aspects of chemistry. From feedstocks to solvents, to synthesis and processing, green chemistry actively seeks ways to produce materials in a way that is more benign to human health and the environment. The current emphasis on green chemistry reflects a shift away from the historic 'command-and-control' approach to environmental problems that mandated waste treatment and control and clean up through regulation, and toward preventing pollution at its source. Rather than accepting waste generation and disposal as unavoidable, green chemistry seeks new technologies that are cleaner and economically competitive. Utilizing green chemistry for pollution prevention demonstrates the power and beauty of chemistry: through careful design, society can enjoy the products on which we depend while benefiting the environment. The economic benefits of green chemistry are central drivers in its advancement. Industry is adopting green chemistry methodologies because they improve the corporate bottom line. A wide array of operating costs are decreased through the use of green chemistry. When less waste is generated, environmental compliance costs go down. Treatment and disposal become unnecessary when waste is eliminated. Decreased solvent usage and fewer processing steps lessen the material and energy costs of manufacturing and increase material efficiency. The environmental, human health, and the economic advantages realized through green chemistry

  3. Radio catalysis application in degradation of complex organic samples

    International Nuclear Information System (INIS)

    The generation of wastewater is a consequence of human activities, industries to be the generators of a large part of these discharges. These contaminated waters can be processed for their remediation; however the recalcitrant organic compounds are hardly removed through conventional treatments applied, so that new technologies have been developed for disposal such as the advanced oxidation technologies or processes. With the aim of the study is to apply ionizing radiation as a method of remediation in wastewater, in this work were carried out experiments of radiolysis and radio catalysis, which are techniques considered advanced oxidation technologies, that consist in irradiate with 60Co gamma radiation solutions of 4- chloro phenol and methylene blue, applied at different concentrations and using as process control measurements of the compound not degraded by UV-vis spectrophotometry at 507 and 664 nm for 4-chloro phenol and methylene blue respectively. At doses greater than 2.5 kGy were near-zero degradation. Degradation experiments were also conducted by photo catalysis by irradiation with a UV lamp of 354 nm wavelength. For 4-chloro phenol results showed that degradation is efficient (39%). With those previous results, these techniques were applied to degrade complex mixtures of organic compounds from samples of wastewater from a sewage treatment plant, where was considered as process control measurement of the dissolved organic carbon obtained by a spectrophotometric analysis at 254 nm, and a maximum of 26% degradation was obtained by applying 80 kGy. On the other hand, a series of experiments fractionating the irradiations at intervals of 20 kGy to obtain a cumulative dose of 80 kGy, which was 2.8 times greater with respect to degradation by radio catalysis with continuous irradiation. (Author)

  4. Organocatalysis: Fundamentals and Comparisons to Metal and Enzyme Catalysis

    Directory of Open Access Journals (Sweden)

    Pierre Vogel

    2016-08-01

    Full Text Available Catalysis fulfills the promise that high-yielding chemical transformations will require little energy and produce no toxic waste. This message is carried by the study of the evolution of molecular catalysis of some of the most important reactions in organic chemistry. After reviewing the conceptual underpinnings of catalysis, we discuss the applications of different catalysts according to the mechanism of the reactions that they catalyze, including acyl group transfers, nucleophilic additions and substitutions, and C–C bond forming reactions that employ umpolung by nucleophilic additions to C=O and C=C double bonds. We highlight the utility of a broad range of organocatalysts other than compounds based on proline, the cinchona alkaloids and binaphthyls, which have been abundantly reviewed elsewhere. The focus is on organocatalysts, although a few examples employing metal complexes and enzymes are also included due to their significance. Classical Brønsted acids have evolved into electrophilic hands, the fingers of which are hydrogen donors (like enzymes or other electrophilic moieties. Classical Lewis base catalysts have evolved into tridimensional, chiral nucleophiles that are N- (e.g., tertiary amines, P- (e.g., tertiary phosphines and C-nucleophiles (e.g., N-heterocyclic carbenes. Many efficient organocatalysts bear electrophilic and nucleophilic moieties that interact simultaneously or not with both the electrophilic and nucleophilic reactants. A detailed understanding of the reaction mechanisms permits the design of better catalysts. Their construction represents a molecular science in itself, suggesting that sooner or later chemists will not only imitate Nature but be able to catalyze a much wider range of reactions with high chemo-, regio-, stereo- and enantioselectivity. Man-made organocatalysts are much smaller, cheaper and more stable than enzymes.

  5. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis.

    Directory of Open Access Journals (Sweden)

    Arvind Ramanathan

    2011-11-01

    Full Text Available Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 Å away are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme-substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme-substrate interactions

  6. Electrified magnetic catalysis in 3D topological insulators

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    The gap equations for the surface quasiparticle propagators in a slab of three-dimensional topological insulator in external electric and magnetic fields perpendicular to the slab surfaces are analyzed and solved. A new type of magnetic catalysis is revealed with the dynamical generation of both Haldane and Dirac gaps. Its characteristic feature manifests itself in the crucial role that the electric field plays in dynamical symmetry breaking and the generation of a Dirac gap in the slab. It is argued that, for a sufficiently large external electric field, the ground state of the system is a phase with a homogeneous surface charge density.

  7. Hydrogen catalysis and scavenging action of Pd-POSS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A; Gee, R H; Maxwell, R; Saab, A

    2007-02-01

    Prompted by the need for a self-supported, chemically stable, and functionally flexible catalytic nanoparticle system, we explore a system involving Pd clusters coated with a monolayer of polyhedral oligomeric silsesquioxane (POSS) cages. With an initial theoretical focus on hydrogen catalysis and sequestration in the Pd-POSS system, we report Density Functional Theory (DFT) results on POSS binding energies to the Pd(110) surface, hydrogen storing ability of POSS, and possible pathways of hydrogen radicals from the catalyst surface to unsaturated bonds away from the surface.

  8. Plasma Chemistry and Catalysis in Gases and Liquids

    CERN Document Server

    Parvulescu, Vasile I; Lukes, Petr

    2012-01-01

    Filling the gap for a book that not only covers gases but also plasma methods in liquids, this is all set to become the standard reference on the topic. It considers the central aspects in plasma chemistry and plasma catalysis by focusing on the green and environmental applications, while also taking into account their practical and economic viability. With the topics addressed by an international group of major experts, this is a must-have for researchers, PhD students and postdocs specializing in the field.

  9. Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, David [Los Alamos National Laboratory

    2012-06-13

    Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

  10. Proton–hydride tautomerism in hydrogen evolution catalysis

    OpenAIRE

    Aguirre Quintana, Luis M.; Johnson, Samantha I.; Corona, Sydney L.; Villatoro, Walther; Goddard, William A.; Takase, Michael K.; VanderVelde, David G.; Winkler, Jay R.; Gray, Harry B.; Blakemore, James D.

    2016-01-01

    Efficient generation of hydrogen from renewable resources requires development of catalysts that avoid deep wells and high barriers. Information about the energy landscape for H_2 production can be obtained by chemical characterization of catalytic intermediates, but few have been observed to date. We have isolated and characterized a key intermediate in 2e^– + 2H^+ → H_2 catalysis. This intermediate, obtained by treatment of Cp*Rh(bpy) (Cp*, η^5-pentamethylcyclopentadienyl; bpy, κ^2-2,2′-bip...

  11. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    Science.gov (United States)

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  12. USD Catalysis Group for Alternative Energy - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoefelmeyer, James

    2014-10-03

    I. Project Summary Catalytic processes are a major technological underpinning of modern society, and are essential to the energy sector in the processing of chemical fuels from natural resources, fine chemicals synthesis, and energy conversion. Advances in catalyst technology are enormously valuable since these lead to reduced chemical waste, reduced energy loss, and reduced costs. New energy technologies, which are critical to future economic growth, are also heavily reliant on catalysts, including fuel cells and photo-electrochemical cells. Currently, the state of South Dakota is underdeveloped in terms of research infrastructure related to catalysis. If South Dakota intends to participate in significant economic growth opportunities that result from advances in catalyst technology, then this area of research needs to be made a high priority for investment. To this end, a focused research effort is proposed in which investigators from The University of South Dakota (USD) and The South Dakota School of Mines and Technology (SDSMT) will contribute to form the South Dakota Catalysis Group (SDCG). The multidisciplinary team of the (SDCG) include: (USD) Dan Engebretson, James Hoefelmeyer, Ranjit Koodali, and Grigoriy Sereda; (SDSMT) Phil Scott Ahrenkiel, Hao Fong, Jan Puszynski, Rajesh Shende, and Jacek Swiatkiewicz. The group is well suited to engage in a collaborative project due to the resources available within the existing programs. Activities within the SDCG will be monitored through an external committee consisting of three distinguished professors in chemistry. The committee will provide expert advice and recommendations to the SDCG. Advisory meetings in which committee members interact with South Dakota investigators will be accompanied by individual oral and poster presentations in a materials and catalysis symposium. The symposium will attract prominent scientists, and will enhance the visibility of research in the state of South Dakota. The SDCG requests

  13. Application of gold in the field of heterogeneous catalysis

    CERN Document Server

    Luo, Siwei

    2014-01-01

    Gold has been long thought as an inert metal which finds most of its use in jewelry and monetary exchange. However, catalysis by gold has rapidly become a hot topic in chemistry ever since Haruta and Hutchings found gold to be an extraordinary good heterogeneous catalyst in certain reactions. Here in this paper, several model reactions which made gold historically famous as a catalyst and a currently hot topic will be demonstrated, such as oxidation of CO, selective oxidation, and hydrodechlorination. Conclusions on the chemical nature of gold will be made as well as future perspectives of designing gold as a better catalyst.

  14. Lewis Acid Catalysis in the Oxidative Cycloaddition of Thiophenes

    OpenAIRE

    Li, Yuanqiang; Thiemann, Thies; Sawada, Tsuyoshi; Mataka, Shuntaro; Tashiro, Masashi

    1997-01-01

    Thiophenes 1 were treated with m-chloroperbenzoic acid (m-CPBA) under BF3·Et2O catalysis to afford thiophene S-monoxides. These could be reacted in situ as intermediary species with a number of dienophiles to provide arenes (with alkynes as dienophiles) or 7-thiabicyclo[2.2.1]hept-2-ene 7-oxides (with alkenes as dienophiles). It was also possible to isolate thiophene S-monoxides in solution and to cycloadd them in a second step. In either way it could be shown that the use of BF3·Et2O enhance...

  15. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.

    2006-01-01

    Solid surfaces are used extensively as catalysts throughout the chemical industry, in the energy sector, and in environmental protection. Recently, density functional theory has started providing new insight into the atomic-scale mechanisms of heterogeneous catalysis, helping to interpret the large...... amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...

  16. Metal-organic frameworks and their applications in catalysis

    International Nuclear Information System (INIS)

    Metal-organic frameworks (MOFs) form a new class of materials with well-defined yet tunable properties. These are crystalline, highly porous and exhibit strong metal-ligand interactions. Importantly, their physical and chemical properties, including pore size, pore structure, acidity, and magnetic and optical characteristics, can be tailored by choosing the appropriate ligands and metal precursors. Here we review the key aspects of synthesis and characterization of MOFs, focusing on lanthanide-based and vanadium-based materials. We also outline some of their applications in catalysis and materials science. (author)

  17. Application of microflow conditions to visible light photoredox catalysis.

    Science.gov (United States)

    Neumann, Matthias; Zeitler, Kirsten

    2012-06-01

    Applications of microflow conditions for visible light photoredox catalysis have successfully been developed. Operationally simple microreactor and FEP (fluorinated ethylene propylene copolymer) tube reactor systems enable significant improvement of several photoredox reactions using different photocatalysts such as [Ru(bpy)(3)](2+) and Eosin Y. Apart from rate acceleration, this approach facilitates previously challenging transformations of nonstabilized intermediates. Additionally, the productivity of the synergistic, catalytic enantioselective photoredox α-alkylation of aldehydes was demonstrated to be increased by 2 orders of magnitude. PMID:22587670

  18. Synthetic and mechanistic prospects of homogeneous gold catalysis

    OpenAIRE

    Pankajakshan, Sreekumar

    2009-01-01

    a) The first chapter of this thesis manifests the exploration of homogeneous gold-catalyzed conversions of furan containing aryl-ynamides and ynol ethers. Enynes boast to be the most explored substrate structures in the realm of homogeneous gold catalysis, whereas the reactivity of ene-ynamides and ene-ynol ethers are much less explored till date.34, 45 Hashmi and co-workers recently reported the homogeneous gold-catalyzed synthesis of phenols from furan containing ynamides/ynol ethers.45e Th...

  19. High-Valent Organometallic Copper and Palladium in Catalysis

    Science.gov (United States)

    Hickman, Amanda J.; Sanford, Melanie S.

    2015-01-01

    Preface Copper and palladium catalysts are critically important for numerous commercial chemical processes. Improvements in the activity, selectivity, and scope of these catalysts have the potential to dramatically reduce the environmental impact and increase the sustainability of chemical reactions. One rapidly emerging strategy to achieve these goals is to exploit “high-valent” copper and palladium intermediates in catalysis. This review describes exciting recent advances involving both the fundamental chemistry and the applications of these high-valent metal complexes in numerous synthetically useful catalytic transformations. PMID:22498623

  20. Charge Transfer and Catalysis at the Metal Support Interface

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lawrence Robert [Univ. of California, Berkeley, CA (United States)

    2012-07-31

    Kinetic, electronic, and spectroscopic characterization of model Pt–support systems are used to demonstrate the relationship between charge transfer and catalytic activity and selectivity. The results show that charge flow controls the activity and selectivity of supported metal catalysts. This dissertation builds on extensive existing knowledge of metal–support interactions in heterogeneous catalysis. The results show the prominent role of charge transfer at catalytic interfaces to determine catalytic activity and selectivity. Further, this research demonstrates the possibility of selectively driving catalytic chemistry by controlling charge flow and presents solid-state devices and doped supports as novel methods for obtaining electronic control over catalytic reaction kinetics.

  1. Inverse Magnetic Catalysis in hot quark matter within (P)NJL models

    CERN Document Server

    Ferreira, M; Providência, C; Lourenço, O; Frederico, T

    2015-01-01

    Apart from Magnetic Catalysis at low temperatures, recent LQCD studies have shown the opposite effect at temperatures near the transition region: instead of enhancing, the magnetic field suppresses the quark condensates (Inverse Magnetic Catalysis). In this paper, two approaches are discussed within NJL-type models with Polyakov Loop that reproduce both effects.

  2. New tools for the Baeyer-Villiger oxidation of ketones: Phase transfer catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, Marco; Battistel, Ezio [EniChem SpA, Centro Ricerche Novara, Novara (Italy). Ist. Guido Donegani

    1997-09-01

    The Baeyer-Villiger reaction, allowing the oxidation of ketones to esters, is an important reaction which has found a number of applications in organic synthesis. Some recent, improved procedures, involving either phase-transfer or enzymatic catalysis, will be discussed. This first part will deal with phase-transfer catalysis.

  3. Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films.

    Science.gov (United States)

    Costentin, Cyrille; Porter, Thomas R; Savéant, Jean-Michel

    2016-05-01

    Cyclic voltammetry of phosphate cobalt oxide (CoPi) films catalyzing O2-evolution from water oxidation as a function of scan rate, phosphate concentration and film thickness allowed for new insights into the coupling between charge transport and catalysis. At pH = 7 and low buffer concentrations, the film is insulating below 0.8 (V vs SHE) but becomes conductive above 0.9 (V vs SHE). Between 1.0 to 1.3 (V vs SHE), the mesoporous structure of the film gives rise to a large thickness-dependent capacitance. At higher buffer concentrations, two reversible proton-coupled redox couples appear over the capacitive response with 0.94 and 1.19 (V vs SHE) pH = 7 standard potentials. The latter is, at most, very weakly catalytic and not responsible for the large catalytic current observed at higher potentials. CV-response analysis showed that the amount of redox-active cobalt-species in the film is small, less than 10% of total. The catalytic process involves a further proton-coupled-electron-transfer and is so fast that it is controlled by diffusion of phosphate, the catalyst cofactor. CV-analysis with newly derived relationships led to a combination of the catalyst standard potential with the catalytic rate constant and a lower-limit estimation of these parameters. The large currents resulting from the fast catalytic reaction result in significant potential losses related to charge transport through the film. CoPi films appear to combine molecular catalysis with semiconductor-type charge transport. This mode of heterogeneous molecular catalysis is likely to occur in many other catalytic films. PMID:26981886

  4. Plasma–catalysis: the known knowns, the known unknowns and the unknown unknowns

    Science.gov (United States)

    Whitehead, J. Christopher

    2016-06-01

    This review describes the history and development of plasma-assisted catalysis focussing mainly on the use of atmospheric pressure, non-thermal plasma. It identifies the various interactions between the plasma and the catalyst that can modify and activate the catalytic surface and also describes how the catalyst affects the properties of the discharge. Techniques for in situ diagnostics of species adsorbed onto the surface and present in the gas-phase over a range of timescales are described. The effect of temperature on plasma–catalysis can assist in determining differences between thermal catalysis and plasma-activated catalysis and focuses on the meaning of temperature in a system involving non-equilibrium plasma. It can also help to develop an understanding of the gas-phase and surface mechanism of the plasma–catalysis at a molecular level. Our current state of knowledge and ignorance is highlighted and future directions suggested.

  5. Alkaline earths as main group reagents in molecular catalysis.

    Science.gov (United States)

    Hill, Michael S; Liptrot, David J; Weetman, Catherine

    2016-02-21

    The past decade has witnessed some remarkable advances in our appreciation of the structural and reaction chemistry of the heavier alkaline earth (Ae = Mg, Ca, Sr, Ba) elements. Derived from complexes of these metals in their immutable +2 oxidation state, a broad and widely applicable catalytic chemistry has also emerged, driven by considerations of cost and inherent low toxicity. The considerable adjustments incurred to ionic radius and resultant cation charge density also provide reactivity with significant mechanistic and kinetic variability as group 2 is descended. In an attempt to place these advances in the broader context of contemporary main group element chemistry, this review focusses on the developing state of the art in both multiple bond heterofunctionalisation and cross coupling catalysis. We review specific advances in alkene and alkyne hydroamination and hydrophosphination catalysis and related extensions of this reactivity that allow the synthesis of a wide variety of acyclic and heterocyclic small molecules. The use of heavier alkaline earth hydride derivatives as pre-catalysts and intermediates in multiple bond hydrogenation, hydrosilylation and hydroboration is also described along with the emergence of these and related reagents in a variety of dehydrocoupling processes that allow that facile catalytic construction of Si-C, Si-N and B-N bonds. PMID:26797470

  6. Microwave catalysis for the production of fine chemicals and pharmaceuticals

    International Nuclear Information System (INIS)

    Full text: There is an ever-increasing adoption of microwave heating for the stimulation of chemical reactions. In many cases microwaves provide a convenient method of rapidly superheating reaction mixtures in pressure vessels to provide reaction rates greater than those attainable under reflux conditions. However, more interestingly the chemistry observed under conditions of microwave irradiation may differ from conventionally heated reactions. The increased rate of adoption of microwaves in chemical synthesis is being aided by the development of more versatile, and sophisticated microwave equipment. Traditionally, chemists have performed microwave synthetic chemistry in equipment that was originally designed for the acid digestion of samples for elemental analysis. The new range of equipment permits automation and in some cases the use of 96 well-plates, which aid the rapid production of substances for intensive screening programmes used by the pharma/agrochemicals industries. Catalysis, as it is applied to the industrial production of materials, is both broad and complex. It has significant implications on process costs and product properties. It serves numerous and diverse industries including petroleum, chemical, polymers, fine chemicals, pharma/agrochemicals and environmental. Catalysis is responsible for the efficient, low cost manufacture of products as diverse to each other as gasoline is to aspirin, and, products manufactured using catalysts exceeds $3 trillion annually. Microwaves have been used to great effect for the stimulation of heterogeneously catalysed reactions. Much of the early work concentrated on studies involving the production of bulk chemicals. These reactions included the oxidative coupling of methane; steam reforming of methane and the reforming of hydrocarbons. The results from these studies were universal in their conclusion that microwave stimulation resulted in rates of reaction significantly greater than those observed using

  7. Is a renaissance of coal imminent?--challenges for catalysis.

    Science.gov (United States)

    Traa, Yvonne

    2010-04-01

    In the introduction, the reserves and resources of coal and other fossil fuels are discussed, also with regard to the regional distribution and consumption. Then, coalification and the classification of coal are described. The main part of the article is devoted to the most important processes using coal where challenges for catalysis still exist, with a focus on recent literature. First, technologies based on the production of synthesis gas, i.e., Fischer-Tropsch synthesis as well as MTO/MTP (Methanol To Olefins/Methanol To Propylene), are discussed. Secondly, direct coal liquefaction is treated. The last part of the article is devoted to "clean" coal and gives an outlook on the future of coal. PMID:20234900

  8. Degradation of Residual Formaldehyde in Fabric by Photo-catalysis

    Institute of Scientific and Technical Information of China (English)

    YAO Yadong; GUO Xiangli; KANG Yunqing; LI Xieji; CHEN Aizheng; YANG Weizhong; YIN Guangfu

    2008-01-01

    The residual formaldehyde (HCHO) in fabric was degraded using photo-catalysis assisted by the compound catalyst of nano-TiO2 and nano-ZnO. The effects of several factors on the degradation,such as the composing of catalyst, irradiation time, pH value and the H2CHO concentration of the immersed solution were investigated. Results showed that H2CHO of the immersed solution had degraded 93% after 5 h irradiation, and the degradation ratio of formaldehyde could be improved and the aging of the fabric can be avoided with the addition of ZnO nanoparticles and pH value of the immersed-fibric solution. The fabric with residual formaldehyde about 1 800 μg/g can be efficiently treated to satisfy the China National Standard(GB/2912.1-1998) with the photo-catalytic degradation.

  9. Molecular surface science of heterogeneous catalysis. History and perspective

    International Nuclear Information System (INIS)

    A personal account is given of how the author became involved with modern surface science and how it was employed for studies of the chemistry of surfaces and heterogeneous catalysis. New techniques were developed for studying the properties of the surface monolayers: Auger electron spectroscopy, LEED, XPS, molecular beam surface scattering, etc. An apparatus was developed and used to study hydrocarbon conversion reactions on Pt, CO hydrogenation on Rh and Fe, and NH3 synthesis on Fe. A model has been developed for the working Pt reforming catalyst. The three molecular ingredients that control catalytic properties are atomic surface structure, an active carbonaceous deposit, and the proper oxidation state of surface atoms. 40 references, 21 figures

  10. π Activation of Alkynes in Homogeneous and Heterogeneous Gold Catalysis.

    Science.gov (United States)

    Bistoni, Giovanni; Belanzoni, Paola; Belpassi, Leonardo; Tarantelli, Francesco

    2016-07-14

    The activation of alkynes toward nucleophilic attack upon coordination to gold-based catalysts (neutral and positively charged gold clusters and gold complexes commonly used in homogeneous catalysis) is investigated to elucidate the role of the σ donation and π back-donation components of the Au-C bond (where we consider ethyne as prototype substrate). Charge displacement (CD) analysis is used to obtain a well-defined measure of σ donation and π back-donation and to find out how the corresponding charge flows affect the electron density at the electrophilic carbon undergoing the nucleophilic attack. This information is used to rationalize the activity of a series of catalysts in the nucleophilic attack step of a model hydroamination reaction. For the first time, the components of the Dewar-Chatt-Duncanson model, donation and back-donation, are put in quantitative correlation with the kinetic parameters of a chemical reaction. PMID:27119994

  11. Mineral catalysis of a potentially prebiotic aldol condensation

    Science.gov (United States)

    De Graaf, R. M.; Visscher, J.; Xu, Y.; Arrhenius, G.; Schwartz, A. W.

    1998-01-01

    Minerals may have played a significant role in chemical evolution. In the course of investigating the chemistry of phosphonoacetaldehyde (PAL), an analogue of glycolaldehyde phosphate, we have observed a striking case of catalysis by the layered hydroxide mineral hydrotalcite ([Mg2Al(OH)6][Cl.nH2O]). In neutral or moderately basic aqueous solutions, PAL is unreactive even at a concentration of 0.1 M. In the presence of a large excess of NaOH (2 M), the compound undergoes aldol condensation to produce a dimer containing a C3-C4 double-bond. In dilute neutral solutions and in the presence of the mineral, however, condensation takes place rapidly, to produce a dimer which is almost exclusively the C2-C3 unsaturated product.

  12. Value-added Chemicals from Biomass by Heterogeneous Catalysis

    DEFF Research Database (Denmark)

    Voss, Bodil

    been implemented. The subject on chemical production has received less attention. This thesis describes and evaluates the quest for an alternative conversion route, based on a biomass feedstock and employing a heterogeneous catalyst capable of converting the feedstock, to a value-added chemical. The...... obtained for such a process and the hypothesis that process feasibility in comparison with the conventional synthesis gas based technologies may further be attainable, taking advantage of the conservation of chemical C-C bonds in biomass based feedstocks. With ethanol as one example of a biomass based...... feedstock, having retained one C-C bond originating from the biomass precursor, the aspects of utilising heterogeneous catalysis for its conversion to value added chemicals is investigated. Through a simple analysis of known, but not industrialised catalytic routes, the direct conversion of ethanol to...

  13. Lattice Field Theory Study of Magnetic Catalysis in Graphene

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We discuss the simulation of the low-energy effective field theory (EFT) for graphene in the presence of an external magnetic field. Our fully nonperturbative calculation uses methods of lattice gauge theory to study the theory using a hybrid Monte Carlo approach. We investigate the phenomenon of magnetic catalysis in the context of graphene by studying the chiral condensate which is the order parameter characterizing the spontaneous breaking of chiral symmetry. In the EFT, the symmetry breaking pattern is given by $U(4) \\to U(2) \\times U(2)$. We also comment on the difficulty, in this lattice formalism, of studying the time-reversal-odd condensate characterizing the ground state in the presence of a magnetic field. Finally, we study the mass spectrum of the theory, in particular the Nambu-Goldstone (NG) mode as well as the Dirac quasiparticle, which is predicted to obtain a dynamical mass.

  14. Contrast and Synergy between Electrocatalysis and Heterogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Andrzej Wieckowski

    2011-01-01

    Full Text Available The advances in spectroscopy and theory that have occurred over the past two decades begin to provide detailed in situ resolution of the molecular transformations that occur at both gas/metal as well as aqueous/metal interfaces. These advances begin to allow for a more direct comparison of heterogeneous catalysis and electrocatalysis. Such comparisons become important, as many of the current energy conversion strategies involve catalytic and electrocatalytic processes that occur at fluid/solid interfaces and display very similar characteristics. Herein, we compare and contrast a few different catalytic and electrocatalytic systems to elucidate the principles that cross-cut both areas and establish characteristic differences between the two with the hope of advancing both areas.

  15. REALCAT: A New Platform to Bring Catalysis to the Lightspeed

    Directory of Open Access Journals (Sweden)

    Paul Sébastien

    2015-03-01

    Full Text Available Catalysis, irrespective of its form can be considered as one of the most important pillars of today’s chemical industry. The development of new catalysts with improved performances is therefore a highly strategic issue. However, the a priori theoretical design of the best catalyst for a desired reaction is not yet possible and a time- and money-consuming experimental phase is still needed to develop a new catalyst for a given reaction. The REALCAT platform described in this paper consists in a complete, unique, integrated and top-level high-throughput technologies workflow that allows a significant acceleration of this kind of research. This is illustrated by some preliminary results of optimization of the operating conditions of glycerol dehydration to acrolein over an heteropolyacid-based supported catalyst. It is shown that using REALCAT high-throughput tools a more than 10-fold acceleration of the operating conditions optimization process is obtained.

  16. Atomically precise cluster catalysis towards quantum controlled catalysts

    International Nuclear Information System (INIS)

    Catalysis of atomically precise clusters supported on a substrate is reviewed in relation to the type of reactions. The catalytic activity of supported clusters has generally been discussed in terms of electronic structure. Several lines of evidence have indicated that the electronic structure of clusters and the geometry of clusters on a support, including the accompanying cluster-support interaction, are strongly correlated with catalytic activity. The electronic states of small clusters would be easily affected by cluster–support interactions. Several studies have suggested that it is possible to tune the electronic structure through atomic control of the cluster size. It is promising to tune not only the number of cluster atoms, but also the hybridization between the electronic states of the adsorbed reactant molecules and clusters in order to realize a quantum-controlled catalyst. (review)

  17. Vanadium-modified molecular sieves: preparation, characterization and catalysis

    Directory of Open Access Journals (Sweden)

    Ângela A. Teixeira-Neto

    2009-01-01

    Full Text Available Vanadium-containing molecular sieves are redox catalysts and are good candidates as substitutes for oxide-supported V2O5 in a number of reactions. These materials have the advantage of presenting better dispersion of vanadium species, as well as shape-selective properties and controllable acidities. They may be prepared by one-pot synthesis or by post-synthesis methods and a number of techniques such as diffuse reflectance UV-visible spectroscopy, 51V nuclear magnetic resonance and electron paramagnetic resonance, to name but a few, have been used to characterize these materials. In this review, methods of preparation of vanadium-modified molecular sieves, their characterization and applications in catalysis are discussed.

  18. Proton-hydride tautomerism in hydrogen evolution catalysis.

    Science.gov (United States)

    Quintana, Luis M Aguirre; Johnson, Samantha I; Corona, Sydney L; Villatoro, Walther; Goddard, William A; Takase, Michael K; VanderVelde, David G; Winkler, Jay R; Gray, Harry B; Blakemore, James D

    2016-06-01

    Efficient generation of hydrogen from renewable resources requires development of catalysts that avoid deep wells and high barriers. Information about the energy landscape for H2 production can be obtained by chemical characterization of catalytic intermediates, but few have been observed to date. We have isolated and characterized a key intermediate in 2e(-) + 2H(+) → H2 catalysis. This intermediate, obtained by treatment of Cp*Rh(bpy) (Cp*, η(5)-pentamethylcyclopentadienyl; bpy, κ(2)-2,2'-bipyridyl) with acid, is not a hydride species but rather, bears [η(4)-Cp*H] as a ligand. Delivery of a second proton to this species leads to evolution of H2 and reformation of η(5)-Cp* bound to rhodium(III). With suitable choices of acids and bases, the Cp*Rh(bpy) complex catalyzes facile and reversible interconversion of H(+) and H2. PMID:27222576

  19. Cooperative catalysis with block copolymer micelles: A combinatorial approach

    KAUST Repository

    Bukhryakov, Konstantin V.

    2015-02-09

    A rapid approach to identifying complementary catalytic groups using combinations of functional polymers is presented. Amphiphilic polymers with "clickable" hydrophobic blocks were used to create a library of functional polymers, each bearing a single functionality. The polymers were combined in water, yielding mixed micelles. As the functional groups were colocalized in the hydrophobic microphase, they could act cooperatively, giving rise to new modes of catalysis. The multipolymer "clumps" were screened for catalytic activity, both in the presence and absence of metal ions. A number of catalyst candidates were identified across a wide range of model reaction types. One of the catalytic systems discovered was used to perform a number of preparative-scale syntheses. Our approach provides easy access to a range of enzyme-inspired cooperative catalysts.

  20. Shape-Controlled Metal Nanocrystals for Heterogeneous Catalysis.

    Science.gov (United States)

    Ruditskiy, Aleksey; Peng, Hsin-Chieh; Xia, Younan

    2016-06-01

    The ability to control the shape of metal nanocrystals allows us to not only maneuver their physicochemical properties but also optimize their activity in a variety of applications. Heterogeneous catalysis, in particular, would benefit tremendously from the availability of metal nanocrystals with controlled shapes and well-defined facets or surface structures. The immediate benefits may include significant enhancements in catalytic activity and/or selectivity along with reductions in the materials cost. We provide a brief account of recent progress in the development of metal nanocrystals with controlled shapes and thereby enhanced catalytic performance for several reactions, including formic acid oxidation, oxygen reduction, and hydrogenation. In addition to monometallic nanocrystals, we also cover a bimetallic system, in which the two metals are formulated as alloyed, core-shell, or core-frame structures. We hope this article will provide further impetus for the development of next-generation heterogeneous catalysts essential to a broad range of applications. PMID:27023659

  1. Catalysis of Electroweak Baryogenesis via Fermionic Higgs Portal Dark Matter

    CERN Document Server

    Chao, Wei

    2015-01-01

    We investigate catalysis of electroweak baryogenesis by fermionic Higgs portal dark matter using a two Higgs doublet model augmented by vector-like fermions. The lightest neutral fermion mass eigenstate provides a viable dark matter candidate in the presence of a stabilizing symmetry Z_2 or gauged U(1)_D symmetry. Allowing for a non-vanishing CP-violating phase in the lowest-dimension Higgs portal dark matter interactions allows generation of the observed dark matter relic density while evading direct detection bounds. The same phase provides a source for electroweak baryogenesis. We show that it is possible to obtain the observed abundances of visible and dark matter while satisfying present bounds from electric dipole moment (EDM) searches and direct detection experiments. Improving the present electron (neutron) EDM sensitivity by one (two) orders of magnitude would provide a conclusive test of this scenario.

  2. Graphitic carbon nitride "reloaded": emerging applications beyond (photo)catalysis.

    Science.gov (United States)

    Liu, Jian; Wang, Hongqiang; Antonietti, Markus

    2016-04-21

    Despite being one of the oldest materials described in the chemical literature, graphitic carbon nitride (g-C3N4) has just recently experienced a renaissance as a highly active photocatalyst, and the metal-free polymer was shown to be able to generate hydrogen under visible light. The semiconductor nature of g-C3N4 has triggered tremendous endeavors on its structural manipulation for enhanced photo(electro)chemical performance, aiming at an affordable clean energy future. While pursuing the stem of g-C3N4 related catalysis (photocatalysis, electrocatalysis and photoelectrocatalysis), a number of emerging intrinsic properties of g-C3N4 are certainly interesting, but less well covered, and we believe that these novel applications outside of conventional catalysis can be favorably exploited as well. Thanks to the general efforts devoted to the exploration and enrichment of g-C3N4 based chemistry, the boundaries of this area have been possibly pushed far beyond what people could imagine in the beginning. This review strives to cover the achievements of g-C3N4 related materials in these unconventional application fields for depicting the broader future of these metal-free and fully stable semiconductors. This review starts with the general protocols to engineer g-C3N4 micro/nanostructures for practical use, and then discusses the newly disclosed applications in sensing, bioimaging, novel solar energy exploitation including photocatalytic coenzyme regeneration, templating, and carbon nitride based devices. Finally, we attempt an outlook on possible further developments in g-C3N4 based research. PMID:26864963

  3. Catalysis. Innovative applications in petrochemistry and refining. Preprints

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Balfanz, U.; Jess, A.; Lercher, J.A.; Lichtscheidl, J.; Marchionna, M.; Nees, F.; Santacesaria, E. (eds.)

    2011-07-01

    Within the DGMK conference at 4th to 6th October, 2011 in Dresden (Federal Republic of Germany) the following lectures were held: (1) Developing linear-alpha-olefins technology - From laboratory to a commercial plant (A. Meiswinkel); (2) New developments in oxidation catalysis (F. Rosowski); (3) Study of the performance of vanadium based catalysts prepared by grafting in the oxidative dehydrogenation of propane (E. Santacesaria); (4) Hydrocracking for oriented conversion of heavy oils: recent trends for catalyst development (F. Bertoncini); (5) Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode (C. Meyer); (6) Dual catalyst system for the hydrocracking of heavy oils and residues (G. Bellussi); (7) Understanding hydrodenitrogenation on novel unsupported sulphide Mo-W-Ni catalysts (J. Hein); (8) Hydrocracking of ethyllaurate on bifunctional micro-/mesoporous composite materials (M. Adam); (9) Catalytic dehydration of ethanol to ethylene (Ying Zhu); (10) The Evonik-Uhde HPPO process for propylene oxide production (B. Jaeger); (11) A green two-step process for adipic acid production from cyclohexene: A study on parameters affecting selectivity (F. Cavani); (12) DISY: The direct synthesis of hydrogen peroxide, a bridge for innovative applications (R, Buzzoni); (13) Solid catalyst with ionic liquid layer (SCILL) - A concept to improve the selectivity of selective hydrogenations (A. Jess); (14) Co-Zn-Al based hydrotalcites as catalysts for Fischer-Tropsch process (C.L. Bianchi); (15) Honeycomb supports with high thermal conductivity for the Fischer-Tropsch synthesis (C.G. Visconti); (16) How to make Fischer-Tropsch catalyst scale-up fully reliable (L. Fischer); (17) New developments in FCC catalysis (C.P. Kelkar); (18) The potential of medium-pore zeolites for improved propene yields from catalytic cracking (F. Bager).

  4. Catalysis Science Initiative: Catalyst Design by Discovery Informatics

    Energy Technology Data Exchange (ETDEWEB)

    Delgass, William Nicholas [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States) Department of Chemistry; Caruthers, James [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Ribeiro, Fabio [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Thomson, Kendall [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Schneider, William [Univ. of Notre Dame, IN (United States)

    2016-07-08

    Catalysts selectively enhance the rates of chemical reactions toward desired products. Such reactions provide great benefit to society in major commercial sectors such as energy production, protecting the environment, and polymer products and thereby contribute heavily to the country’s gross national product. Our premise is that the level of fundamental understanding of catalytic events at the atomic and molecular scale has reached the point that more predictive methods can be developed to shorten the cycle time to new processes. The field of catalysis can be divided into two regimes: heterogeneous and homogeneous. For the heterogeneous catalysis regime, we have used the water-gas shift (WGS) reaction (CO + H2O + CO2 + H2O) over supported metals as a test bed. Detailed analysis and strong coupling of theory with experiment have led to the following conclusions: • The sequence of elementary steps goes through a COOH intermediate • The CO binding energy is a strong function of coverage of CO adsorbed on the surface in many systems • In the case of Au catalysts, the CO adsorption is generally too weak on surface with close atomic packing, but the enhanced binding at corner atoms (which are missing bonding partners) of cubo-octahedral nanoparticles increases the energy to a near optimal value and produces very active catalysts. • Reaction on the metal alone cannot account for the experimental results. The reaction is dual functional with water activation occurring at the metal-support interface. It is clear from our work that the theory component is essential, not only for prediction of new systems, but also for reconciling data and testing hypotheses regarding potential descriptors. Particularly important is the finding that the interface between nano-sized metal particles and the oxides that are used to support them represent a new state of matter in the sense that the interfacial bonding perturbs the chemical state of both metals atoms and the support

  5. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis

    Science.gov (United States)

    Core–shell nanoparticles (CSNs) are a class of nanostructured materials that have recently received increased attention owing to their interesting properties and broad range of applications in catalysis, biology, materials chemistry and sensors. By rationally tuning the cores as ...

  6. Bimetallic alloys in action: dynamic atomistic motifs for electrochemistry and catalysis

    Czech Academy of Sciences Publication Activity Database

    Mueller, J. E.; Krtil, Petr; Kubler, L. A.; Jacob, T.

    2014-01-01

    Roč. 16, č. 29 (2014), s. 15029-15042. ISSN 1463-9076 Institutional support: RVO:61388955 Keywords : Bimetallic alloys * electrochemistry * catalysis Subject RIV: CG - Electrochemistry Impact factor: 4.493, year: 2014

  7. A Course in Heterogeneous Catalysis: Principles, Practice, and Modern Experimental Techniques.

    Science.gov (United States)

    Wolf, Eduardo E.

    1981-01-01

    Outlines a multidisciplinary course which comprises fundamental, practical, and experimental aspects of heterogeneous catalysis. The course structure is a combination of lectures and demonstrations dealing with the use of spectroscopic techniques for surface analysis. (SK)

  8. Biodiesel production through in situ transesterification of sunflower seeds by homogeneous and heterogeneous catalysis

    International Nuclear Information System (INIS)

    The objective of this work is to show the results of the in situ transesterification of sunflower seed oil with methanol on basic homogeneous and heterogeneous catalysis for the production of biodiesel. In homogeneous catalysis, the activity of KOH and K2CO3 were evaluated using the same oil:methanol ratio of 1:90. KOH showed to be more active than K2CO3, leading to total conversion in biodiesel after 1h reaction time. In the heterogeneous catalysis the activity of K2CO3/Al2O3 was comparable to the activity of K2CO3 bulk: 53.0 and 66.6% resp. The properties of samples of biodiesel produced by homogeneous and heterogeneous catalysis were evaluated and are in accordance with the recommended fuel properties. (author)

  9. Combination of sunlight irradiated oxidative processes for landfill leachate: heterogeneous catalysis (TiO2 versus homogeneous catalysis (H2O2

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Cobra Guimarães

    2013-04-01

    Full Text Available The objective of this work was to study the treatment of landfill leachate liquid in nature, after the use of a combination of advanced oxidation processes. More specifically, it compared heterogeneous catalysis with TiO2 to homogeneous catalysis with H2O2, both under photo-irradiated sunlight. The liquid used for the study was the leachate from the landfill of the city of Cachoeira Paulista, São Paulo State, Brazil. The experiments were conducted in a semi-batch reactor open to the absorption of solar UV radiation, with 120 min reaction time. The factors and their respective levels (-1, 0 and 1 were distributed in a experimental design 24-1 with duplicate and triplicate in the central point, resulting in an array with 19 treatment trials. The studied factors in comparing the two catalytic processes were: liquid leachate dilution, TiO2 concentration on the reactor plate, the H2O2 amount and pH level. The leachate had low photo-catalytic degradability, with NOPC reductions ranging from 1% to a maximum of 24.9%. When considering each factor alone, neither homogeneous catalysis with H2O2, nor heterogeneous catalysis with TiO2, could degrade the percolated liquid without significant reductions (5% level in total NOPC. On the other hand, the combined use of homogenous catalysis with H2O2 and heterogeneous catalysis H2O2 resulted in the greatest reductions in NOPC. The optimum condition for the NOPC reduction was obtained at pH 7, dilution of percolated:water at 1:1 (v v-1 rate; excess of 12.5% H2O2 and coating plate reactor with 0.025 g cm-2 TiO2.

  10. Inverse Magnetic Catalysis in Nambu--Jona-Lasinio Model beyond Mean Field

    CERN Document Server

    Mao, Shijun

    2016-01-01

    We study inverse magnetic catalysis in the Nambu--Jona-Lasinio model beyond mean field approximation. The feed-down from mesons to quarks is embedded in an effective coupling constant at finite temperature and magnetic field. While the magnetic catalysis is still the dominant effect at low temperature, the meson dressed quark mass drops down with increasing magnetic field at high temperature due to the dimension reduction of the Goldstone mode in the Pauli-Villars regularization scheme.

  11. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  12. Mechanistic insights into enzymatic and homogeneous transition metal catalysis from quantum-chemical calculations

    OpenAIRE

    Crawford, Luke

    2015-01-01

    Catalysis is a key area of chemistry. Through catalysis it is possible to achieve better synthetic routes, exploit molecules normally considered to be inactive and also attain novel chemical transformations. The development of new catalysts is crucial to furthering chemistry as a field. Computational chemistry, arising from applying the equations of quantum and classical mechanics to solving chemical problems, offers an essential route to investigating the underlying atomistic detail of ca...

  13. Interrelation of chemistry and process design in biodiesel manufacturing by heterogeneous catalysis

    OpenAIRE

    Dimian, A.C.; Srokol, Z.W.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.

    2010-01-01

    The pros and cons of using heterogeneous catalysis for biodiesel manufacturing are introduced, and explained from a chemistry and engineering viewpoint. Transesterification reactions of various feed types are then compared in batch and continuous process operation modes. The results show that the reaction chemistry and process kinetics characterising a particular feedstock are determinant factors for obtaining high-grade biodiesel. When using heterogeneous catalysis, the biodiesel quality of ...

  14. Inverse magnetic catalysis in Nambu-Jona-Lasinio model beyond mean field

    Science.gov (United States)

    Mao, Shijun

    2016-07-01

    We study inverse magnetic catalysis in the Nambu-Jona-Lasinio model beyond mean field approximation. The feed-down from mesons to quarks is embedded in an effective coupling constant at finite temperature and magnetic field. While the magnetic catalysis is still the dominant effect at low temperature, the meson dressed quark mass drops down with increasing magnetic field at high temperature due to the dimension reduction of the Goldstone mode in the Pauli-Villars regularization scheme.

  15. Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase

    OpenAIRE

    Frushicheva, Maria P.; Cao, Jie; Chu, Zhen T.; Warshel, Arieh

    2010-01-01

    One of the fundamental challenges in biotechnology and in biochemistry is the ability to design effective enzymes. Doing so would be a convincing manifestation of a full understanding of the origin of enzyme catalysis. Despite an impressive progress, most of the advances on this front have been made by placing the reacting fragments in the proper places, rather than by optimizing the environment preorganization, which is the key factor in enzyme catalysis. Rational improvement of the preorgan...

  16. Effect of Water Vapor on Toluene Removal in Catalysis-DBD Plasma Reactors

    Science.gov (United States)

    Wang, Jingting; Cao, Xu; Zhang, Renxi; Gong, Ting; Hou, Huiqi; Chen, Shanping; Zhang, Ruina

    2016-04-01

    The experiment was carried out in a cylindrical dielectric barrier discharge (DBD) reactor assisted with a catalyst to decompose toluene under different humidity. In order to explore the synergistic effect on removing toluene in the catalysis-DBD reactor, this paper investigated the decomposition efficiency and the energy consumption in the catalysis-DBD and the non-catalyst DBD reactors under different humidity. The results showed that the catalysis-DBD reactor had a better performance than the non-catalysis one at the humidity ratio of 0.4%, and the removal efficiency of toluene could reach 88.6% in the catalysis-DBD reactor, while it was only 59.9% in the non-catalytic reactor. However, there was no significant difference in the removal efficiency of toluene between the two reactors when the humidities were 1.2% and 2.4%. Additionally, the degradation products were also analyzed in order to gain a better understanding of the mechanism of decomposing toluene in a catalysis-DBD reactor. supported by the Key Project which is sponsored by the Science and Technology Commission of Shanghai Municipality (No. 13231201903), the Key Programs for Science and Technology Development sponsored by the Science and Technology Commission of Shanghai Municipality (Nos. 13231201901 and 14DZ1208401), and the Key Project sponsored by the State-owned Assets Supervision and Administration Commission of Shanghai, China (No. 2013019)

  17. Ferroelectrics: A pathway to switchable surface chemistry and catalysis

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab; Altman, Eric I.

    2016-08-01

    It has been known for more than six decades that ferroelectricity can affect a material's surface physics and chemistry thereby potentially enhancing its catalytic properties. Ferroelectrics are a class of materials with a switchable electrical polarization that can affect surface stoichiometry and electronic structure and thus adsorption energies and modes; e.g., molecular versus dissociative. Therefore, ferroelectrics may be utilized to achieve switchable surface chemistry whereby surface properties are not fixed but can be dynamically controlled by, for example, applying an external electric field or modulating the temperature. Several important examples of applications of ferroelectric and polar materials in photocatalysis and heterogeneous catalysis are discussed. In photocatalysis, the polarization direction can control band bending at water/ferroelectric and ferroelectric/semiconductor interfaces, thereby facilitating charge separation and transfer to the electrolyte and enhancing photocatalytic activity. For gas-surface interactions, available results suggest that using ferroelectrics to support catalytically active transition metals and oxides is another way to enhance catalytic activity. Finally, the possibility of incorporating ferroelectric switching into the catalytic cycle itself is described. In this scenario, a dynamic collaboration of two polarization states can be used to drive reactions that have been historically challenging to achieve on surfaces with fixed chemical properties (e.g., direct NOx decomposition and the selective partial oxidation of methane). These predictions show that dynamic modulation of the polarization can help overcome some of the fundamental limitations on catalytic activity imposed by the Sabatier principle.

  18. Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design.

    Science.gov (United States)

    Greeley, Jeffrey

    2016-06-01

    Scaling relationships are theoretical constructs that relate the binding energies of a wide variety of catalytic intermediates across a range of catalyst surfaces. Such relationships are ultimately derived from bond order conservation principles that were first introduced several decades ago. Through the growing power of computational surface science and catalysis, these concepts and their applications have recently begun to have a major impact in studies of catalytic reactivity and heterogeneous catalyst design. In this review, the detailed theory behind scaling relationships is discussed, and the existence of these relationships for catalytic materials ranging from pure metal to oxide surfaces, for numerous classes of molecules, and for a variety of catalytic surface structures is described. The use of the relationships to understand and elucidate reactivity trends across wide classes of catalytic surfaces and, in some cases, to predict optimal catalysts for certain chemical reactions, is explored. Finally, the observation that, in spite of the tremendous power of scaling relationships, their very existence places limits on the maximum rates that may be obtained for the catalyst classes in question is discussed, and promising strategies are explored to overcome these limitations to usher in a new era of theory-driven catalyst design. PMID:27088666

  19. [Progress on biodiesel production with enzymatic catalysis in China].

    Science.gov (United States)

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Zhang, Haixia; Deng, Li; Wang, Fang

    2010-07-01

    This paper reports the progress of biodiesel production with enzymatic catalysis in Beijing University of Chemical Technology, one of the leaders in biodiesel R & D in China, which includes screening of high-yield lipase production strains, optimization and scale-up of the lipase fermentation process, lipase immobilization, bioreactor development and scale-up, biodiesel separation and purification and the by-product glycerol utilization. Firstly, lipase fermentation was carried out at industrial scale with the 5 m3 stirred tank bioreactor, and the enzyme activity as high as 8 000 IU/mL was achieved by the species Candida sp. 99-125. Then, the lipase was purified and immobilized on textile membranes. Furthermore, biodiesel production was performed in the 5 m3 stirred tank bioreactor with an enzyme dosage as low as 0.42%, and biodiesel that met the German biodiesel standard was produced. And in the meantime, the byproduct glycerol was used for the production of 1,3-propanediol to partly offset the production cost of biodiesel, and 76.1 g/L 1,3-propanediol was obtained in 30 L fermentor with the species Klebsiella pneumoniae. PMID:20954390

  20. State of Supported Nanoparticle Ni during Catalysis in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Chase, Zizwe; Vjunov, Aleksei; Fulton, John; Camaioni, Donald; Balasubramanian, Mahalingam; Lercher, Johannes

    2015-11-09

    The state of Ni supported on HZSM-5 zeolite, silica, and sulfonated carbon was studied during aqueous-phase catalysis of phenol hydrodeoxygenation using in situ extended X-ray absorption fine structure spectroscopy. On sulfonated carbon and HZSM-5 supports, NiO and Ni(OH)(2) were readily reduced to Ni-0 under reaction conditions (approximate to 35bar H-2 in aqueous phenol solutions containing up to 0.5wt.% phosphoric acid at 473K). In contrast, Ni supported on SiO2 was not stable in a fully reduced Ni-0 state. Water enables the formation of Ni-II phyllosilicate, which is more stable, that is, difficult to reduce, than either -Ni(OH)(2) or NiO. Leaching of Ni from the supports was not observed over a broad range of reaction conditions. Ni-0 particles on HZSM-5 were stable even in presence of 15wt.% acetic acid at 473K and 35bar H-2.

  1. Hydrogen and methane synthesis through radiation catalysis. Final report

    International Nuclear Information System (INIS)

    The goal of this research was to evaluate the potential for using reactor wastes to synthesize useful products in quasi-photochemical configuration. It was found that semiconductor oxides act as heterogenous catalysts for the formation of H2 in aqueous media under 60Co irradiation. The principle of a gamma-ray solar cell was demonstrated experimentally. Experiments with ultraviolet irradiated TiO2 and ZnO grains demonstrated that both H2 and H2O2 were formed, in contrast to the results of work by previous authors. These results were rationalized by energy band diagram representations and by applying principles of semiconductor photoelectrochemistry. The concept of gamma-ray assisted desulfurization of coal through radiological degradation and heterogenous catalysis was experimentally demonstrated. The proof-of-concept experiments in the present study provide the basis for further fundamental and applied investigations, particularly in a potentially efficient system with a fresh source and 1.5 m path length

  2. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2015-09-01

    Full Text Available Heterogeneous semiconductor photoredox catalysis (SCPC, particularly with TiO2, is evolving to provide radically new synthetic applications. In this review we describe how photoactivated SCPCs can either (i interact with a precursor that donates an electron to the semiconductor thus generating a radical cation; or (ii interact with an acceptor precursor that picks up an electron with production of a radical anion. The radical cations of appropriate donors convert to neutral radicals usually by loss of a proton. The most efficient donors for synthetic purposes contain adjacent functional groups such that the neutral radicals are resonance stabilized. Thus, ET from allylic alkenes and enol ethers generated allyl type radicals that reacted with 1,2-diazine or imine co-reactants to yield functionalized hydrazones or benzylanilines. SCPC with tertiary amines enabled electron-deficient alkenes to be alkylated and furoquinolinones to be accessed. Primary amines on their own led to self-reactions involving C–N coupling and, with terminal diamines, cyclic amines were produced. Carboxylic acids were particularly fruitful affording C-centered radicals that alkylated alkenes and took part in tandem addition cyclizations producing chromenopyrroles; decarboxylative homo-dimerizations were also observed. Acceptors initially yielding radical anions included nitroaromatics and aromatic iodides. The latter led to hydrodehalogenations and cyclizations with suitable precursors. Reductive SCPC also enabled electron-deficient alkenes and aromatic aldehydes to be hydrogenated without the need for hydrogen gas.

  3. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis.

    Science.gov (United States)

    Manley, David W; Walton, John C

    2015-01-01

    Heterogeneous semiconductor photoredox catalysis (SCPC), particularly with TiO2, is evolving to provide radically new synthetic applications. In this review we describe how photoactivated SCPCs can either (i) interact with a precursor that donates an electron to the semiconductor thus generating a radical cation; or (ii) interact with an acceptor precursor that picks up an electron with production of a radical anion. The radical cations of appropriate donors convert to neutral radicals usually by loss of a proton. The most efficient donors for synthetic purposes contain adjacent functional groups such that the neutral radicals are resonance stabilized. Thus, ET from allylic alkenes and enol ethers generated allyl type radicals that reacted with 1,2-diazine or imine co-reactants to yield functionalized hydrazones or benzylanilines. SCPC with tertiary amines enabled electron-deficient alkenes to be alkylated and furoquinolinones to be accessed. Primary amines on their own led to self-reactions involving C-N coupling and, with terminal diamines, cyclic amines were produced. Carboxylic acids were particularly fruitful affording C-centered radicals that alkylated alkenes and took part in tandem addition cyclizations producing chromenopyrroles; decarboxylative homo-dimerizations were also observed. Acceptors initially yielding radical anions included nitroaromatics and aromatic iodides. The latter led to hydrodehalogenations and cyclizations with suitable precursors. Reductive SCPC also enabled electron-deficient alkenes and aromatic aldehydes to be hydrogenated without the need for hydrogen gas. PMID:26664577

  4. Mesoporous Phosphate Heterostructures: Synthesis and Application on Adsorption and Catalysis

    Science.gov (United States)

    Moreno-Tost, Ramón; Jiménez-Jiménez, José; Infantes-Molina, Antonia; Cavalcante, Celio L.; Azevedo, Diana C. S.; Soriano, María Dolores; López Nieto, José Manuel; Jiménez-López, Antonio; Rodríguez-Castellón, Enrique

    Porous phosphate heterostructures (PPHs) are solids formed by a layered metal(IV) phosphate expanded with silica galleries obtained by combining the two main strategies for obtaining mesoporous materials [pillared layered structures (PLS') and MCM-41]. The different synthetic pathways for obtaining mesoporous phosphate structures with silica galleries with Zr- or Ti-doped silica, the study of their structural, textural and acid properties, its functionalisation with different organic substances such as propionitrile, 3-aminopropyl triethoxysilane, (3-mercaptopropyl)trimethoxysilane, vinyltrimethoxysilane, phenyltriethoxysilane and 3-(triethoxysilyl)propionitrile are discussed. The preparation of metal-supported catalysts and their application in gas separation, adsorption and catalysis are reviewed. Specifically, the use of Cu- and Fe-exchanged PPH for the adsorption of benzothiophene and the separation of propane/propene is the main application as adsorbent. The hydrotreating of aromatic hydrocarbons using ruthenium-impregnated catalysts via hydrogenation and hydrogenolysis/hydrocracking for the production of clean diesel fuels, the selective catalytic reduction of NO from stationary and mobile sources by using Cu-PPH with 1, 3 and 7 wt% of Cu and the selective oxidation of hydrogen sulphide to sulphur with vanadium-containing PPH are the three catalytic reactions of environmental interest studied.

  5. Application of solid ash based catalysts in heterogeneous catalysis.

    Science.gov (United States)

    Wang, Shaobin

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe2O3 could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H2 production, deSO(x), deNO(x), hydrocarbon oxidation,and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. PMID:18939526

  6. Polarization-driven catalysis via ferroelectric oxide surfaces.

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2016-07-20

    The surface chemistry and physics of oxide ferroelectric surfaces with a fixed polarization state have been studied experimentally for some time. Here, we discuss the possibility of using these materials in a different mode, namely under cyclically changing polarization conditions achievable via periodic perturbations by external fields (e.g., temperature, strain or electric field). We use Density Functional Theory (DFT) and electronic structure analysis to understand the polarization-dependent surface physics and chemistry of ferroelectric oxide PbTiO3 as an example of this class of materials. This knowledge is then applied to design catalytic cycles for industrially important reactions including NOx direct decomposition and SO2 oxidation into SO3. The possibility of catalyzing direct partial oxidation of methane to methanol is also investigated. More generally, we discuss how using ferroelectrics under cyclically changing polarization conditions can help overcome some of the fundamental challenges facing the catalysis community such as the limitations imposed by the Sabatier principle and scaling relations. PMID:27381676

  7. Dihydrofolate reductase as a model for studies of enzyme dynamics and catalysis [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Amnon Kohen

    2015-12-01

    Full Text Available Dihydrofolate reductase from Escherichia coli (ecDHFR serves as a model system for investigating the role of protein dynamics in enzyme catalysis. We discuss calculations predicting a network of dynamic motions that is coupled to the chemical step catalyzed by this enzyme. Kinetic studies testing these predictions are presented, and their potential use in better understanding the role of these dynamics in enzyme catalysis is considered. The cumulative results implicate motions across the entire protein in catalysis.

  8. Selective continuous flow catalysis using transition metal complexes in supported ionic liquid phase with supercritical carbon dioxide

    OpenAIRE

    Hintermair, Ulrich

    2011-01-01

    The present thesis deals with the development of a novel, efficient reaction concept which allows selective catalysis mediated by molecularly defined transition metal complexes to be conducted in a continuous manner with fully integrated product separation. Such systems may open up new opportunities in chemical synthesis and catalysis research, and also pave the way for a broader application of organometallic catalysis in the chemical industry. In this context, the general merits and conceptu...

  9. Solar photo-catalysis to remove paper mill wastewater pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Amat, A.M.; Arques, A. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Lopez, F. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Miranda, M.A. [Departamento de Quimica, Instituto de Tecnologia Quimica, Universidad Politecnica de Valencia, UPV-CSIC, 46071 Valencia (Spain)

    2005-10-01

    Solar degradation of effluents in board paper industries has been studied using different photo-catalysts: Fenton reagent and TiO{sub 2}. p-Toluenesulfonic acid was chosen as a model compound for sulfonated pollutants already present in the incoming waters. The abatement of a 0.005M solution of this pollutant after 6h was found to be 47% for photo-Fenton and 27% for TiO{sub 2} (pseudo-first-order rate constants 0.002 and 0.001min{sup -1}, respectively). Eugenol and guaiacol were chosen as models for lignin degradation products. They were efficiently degraded by both photo-catalysts, and reaction rates were higher for eugenol (0.0024min{sup -1}) than for guaiacol (0.0018min{sup -1}). A solution of sodium acetate, sodium butyrate and d-glucose was chosen to study the effect of photo-catalysis towards volatile fatty acids and saccharides arising from starch degradation. In this case a clearly worse performance was observed: only 20% degradation was observed after 7h of treatment. When the real wastewater was treated with photo-catalytic methods, the best performance was obtained in closed circuits, when the COD values were higher. This fact can be explained by taking into account that closure of the circuits results in an accumulation of reluctant phenolic pollutants, while starch derivatives are continuously degraded by microorganisms in the circuits; as phenolic compounds are more easily degraded by photo-catalytic means, these methods are suitable for closed circuits. Finally, changes in the BOD{sub st} were determined by means of active sludges respirometry. A noticeable BOD{sub st} increase (30-50%) was observed in all cases, attributable to chemical oxidation of biodegradable species. (author)

  10. Supported Molten Metal Catalysis. A New Class of Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra Datta; Ajeet Singh; Manuela Serban; Istvan Halasz

    2006-06-02

    We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to conventional catalysts for this reaction. A discussion is also provided on the characterization of the active surface area and dispersion of these novel supported catalysts. It is clear based on the results described that the development of new active and selective supported molten metal catalysts for practical applications is entirely plausible.

  11. State of Supported Nickel Nanoparticles during Catalysis in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Chase, Zizwe; Kasakov, Stanislav; Shi, Hui; Vjunov, Aleksei; Fulton, John L.; Camaioni, Donald M.; Balasubramanian, Mahalingam; Zhao, Chen; Wang, Yong; Lercher, Johannes A.

    2015-11-09

    The state of Ni supported on HZSM-5 zeolite, silica, and sulfonated carbon was determined during aqueous phase catalysis of phenol hydrodeoxygenation using in situ extended X-ray absorption fine structure spectroscopy (EXAFS). On sulfonated carbon and HZSM-5 supports, the NiO and Ni(OH)2 were readily reduced to Ni(0) under reaction conditions (~35 bar H2 in aqueous phenol solutions containing up to 0.5 wt. % phosphoric acid at 473 K). On the silica support, less than 70% of the Ni was converted to Ni(0) under reaction conditions, which is attributed to the formation of Ni phyllosilicates. Over a broad range of reaction conditions there was no leaching of Ni from the supports. In contrast, rapid leaching of the Ni(II) from HZSM-5 was observed, when 15 wt. % aqueous acetic acid was substituted for the aqueous phenol solution. Once the metallic state of Ni was established there was no leaching in 15 wt. % acetic acid at 473 K and 35 bar H2. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences & Biosciences. The STEM was supported under the Laboratory Directed Research and Development Program: Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. STEM was performed at EMSL, a DOE Office of Science user facility sponsored by the Office of Biological and Environmental Research and located at PNNL.

  12. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis.

    Science.gov (United States)

    Huang, Daria L; Beltrán-Suito, Rodrigo; Thomsen, Julianne M; Hashmi, Sara M; Materna, Kelly L; Sheehan, Stafford W; Mercado, Brandon Q; Brudvig, Gary W; Crabtree, Robert H

    2016-03-01

    This paper introduces Ir(I)(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*Ir(III)(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue Ir(IV) species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting Ir(IV) species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By (1)H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3. PMID:26901517

  13. Mechanistic Insights into Homogeneous and Heterogeneous Asymmetric Iron Catalysis

    Science.gov (United States)

    Sonnenberg, Jessica

    Our group has been focused on replacing toxic and expensive precious metal catalysts with iron for the synthesis of enantiopure compounds for industrial applications. During an investigation into the mechanism of asymmetric transfer hydrogenation with our first generation iron-(P-N-N-P) catalysts we found substantial evidence for zero-valent iron nanoparticles coated in chiral ligand acting as the active site. Extensive experimental and computational experiments were undertaken which included NMR, DFT, reaction profile analysis, substoichiometric poisoning, electron microscope imaging, XPS and multiphasic analysis, all of which supported the fact that NPs were the active species in catalysis. Reversibility of this asymmetric reaction on the nanoparticle surface was then probed using oxidative kinetic resolution of racemic alcohols, yielding modest enantiopurity and high turnover frequencies (TOF) for a range of aromatic alcohols. Efficient dehydrogenation of ammonia-borane for hydrogen evolution and the formation of B-N oligomers was also shown using the NP system, yielding highly active systems, with a maximum TOF of 3.66 H2/s-1 . We have also begun to focus on the development of iron catalysts for asymmetric direct hydrogenation of ketones using hydrogen gas. New chiral iron-(P-N-P) catalysts were developed and shown to be quite active and selective for a wide range of substrates. Mechanistic investigations primarily using NMR and DFT indicated that a highly active trans-dihydride species was being formed during catalyst activation. Lastly, a new library of chiral P-N-P and P-NH-P ligands were developed, as well as their corresponding iron complexes, some of which show promise for the development of future generations of active asymmetric direct hydrogenation catalysts.

  14. RNA folding and catalysis mediated by iron (II.

    Directory of Open Access Journals (Sweden)

    Shreyas S Athavale

    Full Text Available Mg²⁺ shares a distinctive relationship with RNA, playing important and specific roles in the folding and function of essentially all large RNAs. Here we use theory and experiment to evaluate Fe²⁺ in the absence of free oxygen as a replacement for Mg²⁺ in RNA folding and catalysis. We describe both quantum mechanical calculations and experiments that suggest that the roles of Mg²⁺ in RNA folding and function can indeed be served by Fe²⁺. The results of quantum mechanical calculations show that the geometry of coordination of Fe²⁺ by RNA phosphates is similar to that of Mg²⁺. Chemical footprinting experiments suggest that the conformation of the Tetrahymena thermophila Group I intron P4-P6 domain RNA is conserved between complexes with Fe²⁺ or Mg²⁺. The catalytic activities of both the L1 ribozyme ligase, obtained previously by in vitro selection in the presence of Mg²⁺, and the hammerhead ribozyme are enhanced in the presence of Fe²⁺ compared to Mg²⁺. All chemical footprinting and ribozyme assays in the presence of Fe²⁺ were performed under anaerobic conditions. The primary motivation of this work is to understand RNA in plausible early earth conditions. Life originated during the early Archean Eon, characterized by a non-oxidative atmosphere and abundant soluble Fe²⁺. The combined biochemical and paleogeological data are consistent with a role for Fe²⁺ in an RNA World. RNA and Fe²⁺ could, in principle, support an array of RNA structures and catalytic functions more diverse than RNA with Mg²⁺ alone.

  15. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.

    Science.gov (United States)

    Anderton, Grant I; Bangerter, Alyssa S; Davis, Tyson C; Feng, Zhiyuan; Furtak, Aric J; Larsen, Jared O; Scroggin, Triniti L; Heemstra, Jennifer M

    2015-08-19

    Bioorthogonal conjugation reactions such as strain-promoted azide-alkyne cycloaddition (SPAAC) have become increasingly popular in recent years, as they enable site-specific labeling of complex biomolecules. However, despite a number of improvements to cyclooctyne design, reaction rates for SPAAC remain significantly lower than those of the related copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Here we explore micellar catalysis as a means to increase reaction rate between a cyclooctyne and hydrophobic azide. We find that anionic and cationic surfactants provide the most efficient catalysis, with rate enhancements of up to 179-fold for reaction of benzyl azide with DIBAC cyclooctyne. Additionally, we find that the presence of surfactant can provide up to 51-fold selectivity for reaction with a hydrophobic over hydrophilic azide. A more modest, but still substantial, 11-fold rate enhancement is observed for micellar catalysis of the reaction between benzyl azide and a DIBAC-functionalized DNA sequence, demonstrating that micellar catalysis can be successfully applied to hydrophilic biomolecules. Together, these results demonstrate that micellar catalysis can provide higher conjugation yields in reduced time when using hydrophobic SPAAC reagents. PMID:26056848

  16. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis.

    Science.gov (United States)

    Gawande, Manoj B; Goswami, Anandarup; Felpin, François-Xavier; Asefa, Tewodros; Huang, Xiaoxi; Silva, Rafael; Zou, Xiaoxin; Zboril, Radek; Varma, Rajender S

    2016-03-23

    The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis. The synthesis part discusses numerous preparative protocols for Cu and Cu-based nanoparticles, whereas the application sections describe their utility as catalysts, including electrocatalysis, photocatalysis, and gas-phase catalysis. We believe this critical appraisal will provide necessary background information to further advance the applications of Cu-based nanostructured materials in catalysis. PMID:26935812

  17. Converting Homogeneous to Heterogeneous in Electrophilic Catalysis using Monodisperse Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witham, Cole A.; Huang, Wenyu; Tsung, Chia-Kuang; Kuhn, John N.; Somorjai, Gabor A.; Toste, F. Dean

    2009-10-15

    A continuing goal in catalysis is the transformation of processes from homogeneous to heterogeneous. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this conversion is supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl{sub 2}, and catalyze a range of {pi}-bond activation reactions previously only homogeneously catalyzed. Multiple experimental methods are utilized to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, our size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared to larger, polymer-capped analogues.

  18. A competitive and reversible deactivation approach to catalysis-based quantitative assays.

    Science.gov (United States)

    Koide, Kazunori; Tracey, Matthew P; Bu, Xiaodong; Jo, Junyong; Williams, Michael J; Welch, Christopher J

    2016-01-01

    Catalysis-based signal amplification makes optical assays highly sensitive and widely useful in chemical and biochemical research. However, assays must be fine-tuned to avoid signal saturation, substrate depletion and nonlinear performance. Furthermore, once stopped, such assays cannot be restarted, limiting the dynamic range to two orders of magnitude with respect to analyte concentrations. In addition, abundant analytes are difficult to quantify under catalytic conditions due to rapid signal saturation. Herein, we report an approach in which a catalytic reaction competes with a concomitant inactivation of the catalyst or consumption of a reagent required for signal generation. As such, signal generation proceeds for a limited time, then autonomously and reversibly stalls. In two catalysis-based assays, we demonstrate restarting autonomously stalled reactions, enabling accurate measurement over five orders of magnitude, including analyte levels above substrate concentration. This indicates that the dynamic range of catalysis-based assays can be significantly broadened through competitive and reversible deactivation. PMID:26891765

  19. Asymmetric Catalysis with CO2 : The Direct α-Allylation of Ketones.

    Science.gov (United States)

    Pupo, Gabriele; Properzi, Roberta; List, Benjamin

    2016-05-10

    Quaternary stereocenters are found in numerous bioactive molecules. The Tsuji-Trost reaction has proven to be a powerful C-C bond forming process, and, at least in principle, should be well suited to access quaternary stereocenters via the α-allylation of ketones. However, while indirect approaches are known, the direct, catalytic asymmetric α-allylation of branched ketones has been elusive until today. By combining "enol catalysis" with the use of CO2 as a formal catalyst for asymmetric catalysis, we have now developed a solution to this problem: we report a direct, highly enantioselective and highly atom-economic Tsuji-Trost allylation of branched ketones with allylic alcohol. Our reaction delivers products bearing quaternary stereocenters with high enantioselectivity and water as the sole by-product. We expect our methodology to be of utility in asymmetric catalysis and inspire the design of other highly atom-economic transformations. PMID:27071633

  20. Trends in heterogeneous catalysis and their applications in process engineering (abstract)

    International Nuclear Information System (INIS)

    Interest in heterogeneous catalysis has increased dramatically in the last decade. The extent of interest in this and related field can be accessed from the newly coined terms like, semi-heterogeneous catalysis, for the processes and mechanisms that are amalgam of homogeneous and heterogeneous catalysis. Whereas the progresses made I the area of science and technology of nano materials has provided the main impetus, the innovative processing of carbon nano tubes has added to potential applications in process engineering and consumer applications. The graphene based catalysts are yet another emerging class of catalysts with huge potential. This technical review summarizes the developments made in the area of material developments, a better understanding of processes involved and role of computational chemistry in the recent achievements. The emerging applications in the areas of process engineering have also been discussed. (author)

  1. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    Science.gov (United States)

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. PMID:27542447

  2. Direct asymmetric vinylogous Michael addition of cyclic enones to nitroalkenes via dienamine catalysis

    Science.gov (United States)

    Bencivenni, Giorgio; Galzerano, Patrizia; Mazzanti, Andrea; Bartoli, Giuseppe; Melchiorre, Paolo

    2010-01-01

    In spite of the many catalytic methodologies available for the asymmetric functionalization of carbonyl compounds at their α and β positions, little progress has been achieved in the enantioselective carbon–carbon bond formation γ to a carbonyl group. Here, we show that primary amine catalysis provides an efficient way to address this synthetic issue, promoting vinylogous nucleophilicity upon selective activation of unmodified cyclic α,β-unsaturated ketones. Specifically, we document the development of the unprecedented direct and vinylogous Michael addition of β-substituted cyclohexenone derivatives to nitroalkenes proceeding under dienamine catalysis. Besides enforcing high levels of diastereo- and enantioselectivity, chiral primary amine catalysts derived from natural cinchona alkaloids ensure complete γ-site selectivity: The resulting, highly functionalized vinylogous Michael adducts, having two stereocenters at the γ and δ positions, are synthesized with very high fidelity. Finally, we describe the extension of the dienamine catalysis-induced vinylogous nucleophilicity to the asymmetric γ-amination of cyclohexene carbaldehyde. PMID:20566884

  3. Induced-fit catalysis of corannulene bowl-to-bowl inversion.

    Science.gov (United States)

    Juríček, Michal; Strutt, Nathan L; Barnes, Jonathan C; Butterfield, Anna M; Dale, Edward J; Baldridge, Kim K; Stoddart, J Fraser; Siegel, Jay S

    2014-03-01

    Stereoelectronic complementarity between the active site of an enzyme and the transition state of a reaction is one of the tenets of enzyme catalysis. This report illustrates the principles of enzyme catalysis (first proposed by Pauling and Jencks) through a well-defined model system that has been fully characterized crystallographically, computationally and kinetically. Catalysis of the bowl-to-bowl inversion processes that pertain to corannulene is achieved by combining ground-state destabilization and transition-state stabilization within the cavity of an extended tetracationic cyclophane. This synthetic receptor fulfils a role reminiscent of a catalytic antibody by stabilizing the planar transition state for the bowl-to-bowl inversion of (ethyl)corannulene (which accelerates this process by a factor of ten at room temperature) by an induced-fit mechanism first formulated by Koshland. PMID:24557137

  4. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    KAUST Repository

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  5. Uncovering the Role of Metal Catalysis in Tetrazole Formation by an In Situ Cycloaddition Reaction: An Experimental Approach.

    Science.gov (United States)

    Zhong, Di-Chang; Wen, Ya-Qiong; Deng, Ji-Hua; Luo, Xu-Zhong; Gong, Yun-Nan; Lu, Tong-Bu

    2015-09-28

    Using an experimental approach, the role of metal catalysis has been investigated in the in situ cycloaddition reaction of nitrile with azide to form tetrazoles. It has been shown that metal catalysis serves to activate the cyano group in the nitrile reagent by a coordinative interaction. PMID:26293313

  6. Visible light photoredox catalysis with [Ru(bpy)3]2+: General principles and the twentieth century roots

    Czech Academy of Sciences Publication Activity Database

    Teplý, Filip

    Berlin : de Gruyter, 2013 - (König, B.), s. 111-138 ISBN 978-3-11-026916-1 R&D Projects: GA ČR GAP207/10/2391 Institutional support: RVO:61388963 Keywords : ruthenium complexes * catalysis with dyes * photocatalysis * photoredox catalysis * [Ru(bpy)3]2+ * visible light * organic synthesis * synthetic methods Subject RIV: CC - Organic Chemistry

  7. Catalysis applications of size-selected cluster deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Vajda, Stefan; White, Michael G.

    2015-12-01

    In this Perspective, we review recent studies of size-selected cluster deposition for catalysis applications performed at the U.S. DOE National Laboratories, with emphasis on work at Argonne National Laboratory (ANL) and Brookhaven National Laboratory (BNL). The focus is on the preparation of model supported catalysts in which the number of atoms in the deposited clusters is precisely controlled using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques. This approach is particularly effective for investigations of small nanoclusters, 0.5-2 nm (<200 atoms), where the rapid evolution of the atomic and electronic structure makes it essential to have precise control over cluster size. Cluster deposition allows for independent control of cluster size, coverage, and stoichiometry (e.g., the metal-to-oxygen ratio in an oxide cluster) and can be used to deposit on any substrate without constraints of nucleation and growth. Examples are presented for metal, metal oxide, and metal sulfide cluster deposition on a variety of supports (metals, oxides, carbon/diamond) where the reactivity, cluster-support electronic interactions, and cluster stability and morphology are investigated. Both UHV and in situ/operando studies are presented that also make use of surface-sensitive X-ray characterization tools from synchrotron radiation facilities. Novel applications of cluster deposition to electrochemistry and batteries are also presented. This review also highlights the application of modern ab initio electronic structure calculations (density functional theory), which can essentially model the exact experimental system used in the laboratory (i.e., cluster and support) to provide insight on atomic and electronic structure, reaction energetics, and mechanisms. As amply demonstrated in this review, the powerful combination of atomically precise cluster deposition and theory is able to address fundamental aspects of size-effects, cluster

  8. Catalysis by Design Using Surface Organometallic Nitrogen-Containing Fragments

    KAUST Repository

    Hamzaoui, Bilel

    2016-06-14

    The aim of this thesis is to explore the chemistry of well-defined silica-supported group 4 and group 5 complexes that contain one or more multiply-bonded nitrogen atoms. Such species have been recognized as crucial intermediates in many catalytic reactions (e.g. hydroaminoalkylation, olefin hydrogenation, imine metathesis…). The first chapter provided a bibliographic overview of the preparation and the reactivity of group 4 and 5 complexes towards hydroaminoalkylation and imine metathesis catalysis. The second chapter deals with the isolation and the characterization of a series of well-defined group 4 ƞ2-imine complexes surfaces species. 2D solid-state NMR (1H–13C HETCOR, Multiple Quantum) experiments have revealed consistently a unique structural rearrangement, viz azametallacycle occurring on the immobilized metal-amido ligands. Hydrogenolysis of the sole Zr-C bond in such species gives selectively a silica-supported zirconium monohydride that can perform the catalytic hydrogenation of olefins. The third chapter examines the mechanistic studies of the intermolecular hydroaminoalkylation using SOMC to identify the key metallacyclic surface intermediates (silica-supported three-membred and five-membered). The catalyst was regenerated by protonolysis and afforded pure amine. Catalytic testing of a selection of amine compounds with variable electronic properties was carried out. The fourth chapter deals with the generation and the characterization of well-defined silica-supported zirconium-imido complexes. The resulting species effectively catalyzes imine/imine cross-metathesis and thus considered as the first heterogeneous catalysts active for imine metathesis reaction. The fifth chapter studies the reaction of SBA15.1100 ºC with dry aniline and derivatives leading to opening strained siloxane bridges into acid-base paired functionalities (formation of N-phenylsilanamine-silanol pairs). This approach was successfully applied to the design of a series of

  9. Combined heterogeneous metal/chiral amine: multiple relay catalysis for versatile eco-friendly synthesis.

    Science.gov (United States)

    Deiana, Luca; Jiang, Yan; Palo-Nieto, Carlos; Afewerki, Samson; Incerti-Pradillos, Celia A; Verho, Oscar; Tai, Cheuk-Wai; Johnston, Eric V; Córdova, Armando

    2014-03-24

    Herein is described a versatile and broad synergistic strategy for expansion of chemical space and the synthesis of valuable molecules (e.g. carbocycles and heterocycles), with up to three quaternary stereocenters, in a highly enantioselective fashion from simple alcohols (31 examples, 95:5 to >99.5:0.5 e.r.) using integrated heterogeneous metal/chiral amine multiple relay catalysis and air/O₂ as the terminal oxidant. A novel highly 1,4-selective heterogeneous metal/amine co-catalyzed hydrogenation of enals was also added to the relay catalysis sequences. PMID:24677482

  10. Combination of organotrifluoroborates with photoredox catalysis marking a new phase in organic radical chemistry.

    Science.gov (United States)

    Koike, Takashi; Akita, Munetaka

    2016-08-01

    Combination of organotrifluoroborates and visible-light-driven photoredox catalysis, both of which have attracted the attention of synthetic chemists, marks a new phase in the field of organic radical chemistry. We have developed photoredox-catalyzed radical reactions with organotrifluoroborates, which turn out to serve not only as a source of organic radicals but also as radical acceptors. The first part of this Perspective deals with the generation of organic radicals from organotrifluoroborates, and the latter part describes addition of the CF3 radical to alkenyltrifluoroborates. The good chemistry between organoborates and photoredox catalysis and its future will be discussed. PMID:27282517

  11. Main group redox catalysis: reversible P(III)/P(V) redox cycling at a phosphorus platform.

    Science.gov (United States)

    Dunn, Nicole L; Ha, Minji; Radosevich, Alexander T

    2012-07-18

    A planar, trivalent phosphorus compound is shown to undergo reversible two-electron redox cycling (P(III)/P(V)) enabling its use as catalyst for a transfer hydrogenation reaction. The trivalent phosphorus compound activates ammonia-borane to furnish a 10-P-5 dihydridophosphorane, which in turn is shown to transfer hydrogen cleanly to azobenzene, yielding diphenylhydrazine and regenerating the initial trivalent phosphorus species. This result constitutes a rare example of two-electron redox catalysis at a main group compound and suggests broader potential for this nonmetal platform to support bond-modifying redox catalysis of the type dominated by transition metal catalysts. PMID:22746974

  12. Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jie, E-mail: jie.sun@chalmers.se; Lindvall, Niclas; Yurgens, August [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Nam, Youngwoo [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Cole, Matthew T. [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA Cambridge (United Kingdom); Teo, Kenneth B. K. [AIXTRON Nanoinstruments Ltd., Swavesey, CB24 4FQ Cambridge (United Kingdom); Woo Park, Yung [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-04-14

    A model of the graphene growth mechanism of chemical vapor deposition on platinum is proposed and verified by experiments. Surface catalysis and carbon segregation occur, respectively, at high and low temperatures in the process, representing the so-called balance and segregation regimes. Catalysis leads to self-limiting formation of large area monolayer graphene, whereas segregation results in multilayers, which evidently “grow from below.” By controlling kinetic factors, dominantly monolayer graphene whose high quality has been confirmed by quantum Hall measurement can be deposited on platinum with hydrogen-rich environment, quench cooling, tiny but continuous methane flow and about 1000 °C growth temperature.

  13. Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation

    International Nuclear Information System (INIS)

    A model of the graphene growth mechanism of chemical vapor deposition on platinum is proposed and verified by experiments. Surface catalysis and carbon segregation occur, respectively, at high and low temperatures in the process, representing the so-called balance and segregation regimes. Catalysis leads to self-limiting formation of large area monolayer graphene, whereas segregation results in multilayers, which evidently “grow from below.” By controlling kinetic factors, dominantly monolayer graphene whose high quality has been confirmed by quantum Hall measurement can be deposited on platinum with hydrogen-rich environment, quench cooling, tiny but continuous methane flow and about 1000 °C growth temperature

  14. Chiral P,N-bidentate ligands in coordination chemistry and organic catalysis involving rhodium and palladium

    International Nuclear Information System (INIS)

    Published data on the synthesis of rhodium and palladium complexes with optically active P,N-bidentate ligands and their applications in homogeneous asymmetric catalysis are summarised and discussed. The effect of the nature of the P,N-bidentate compounds on the structure of the metal complexes and on enantioselectivity in catalysis is examined. Allylic substitution, cross-coupling, hydroboration and hydrosilylation catalysed by Rh or Pd complexes with optically active P,N-bidentate ligands are considered. The prospects for the development of this field of chemistry are demonstrated. The bibliography includes 186 references.

  15. Synthesis of a Small Library of Imidazolidin-2-ones using Gold Catalysis on Solid Phase.

    Science.gov (United States)

    La-Venia, Agustina; Medran, Noelia S; Krchňák, Viktor; Testero, Sebastián A

    2016-08-01

    An efficient and high-yielding solid phase synthesis of a small library of imidazolidin-2-ones and imidazol-2-ones was carried out employing a high chemo- and regioselective gold-catalyzed cycloisomerization as a key step. Polymer-supported amino acids derivatized with several alkyne functionalities combined with tosyl- and phenylureas have been subjected to gold-catalysis exhibiting exclusively C-N bond formation. The present work proves the potential of solid phase synthesis and homogeneous gold catalysis as an efficient and powerful synthetic tool for the generation of drug-like heterocycles. PMID:27337593

  16. Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions?: A Fruitful Interplay Anyway. Part 3. Catalysis by Group 10 to Group 11 Elements and Bimetallic Catalysis

    Czech Academy of Sciences Publication Activity Database

    Jahn, Ullrich

    Heidelberg : Springer, 2012 - (Heinrich, M.; Gansäuer, A.), s. 323-452 ISBN 978-3-642-28122-8. - (Topic in Current Chemistry. 320) R&D Projects: GA ČR GA203/09/1936 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * cross-coupling * cyclization * electron transfer * radicals * transition metals * addition Subject RIV: CC - Organic Chemistry

  17. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Parks, II, James E [ORNL; Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Ponnusamy, Senthil [ORNL; Ferguson, Harley Douglas [ORNL; Williams, Aaron M [ORNL; Tassitano, James B [ORNL

    2007-09-01

    efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial

  18. Taille des particules et catalyse Particle Size and Catalysis

    Directory of Open Access Journals (Sweden)

    Boitiaux J. P.

    2006-11-01

    hydrogène pouvaient tout à fait rendre compte des phénomènes observés. En plus de cela un métal déposé sur silice et un métal déposé sur alumine peuvent se comporter de façon tout à fait différente. Tout ceci montre que certaines interprétations sont trop simplistes et que faire varier la taille des particules par n'importe quel moyen et étudier les conséquences sur l'acte catalytique n'est pas suffisant. Les deux approches complémentaires, celle du cristallographe qui tente de décrire les petites particules à partir des paramètres du métal massique et celle du chimiste qui tente de déduire la structure du comportement du catalyseur observé dans la réaction étudiée, n'arrivent pas vraiment à se rejoindre pour aboutir à une description en tout point acceptable de la structure de la particule. D'un côté le physico-chimiste utilise des simplifications outrancières lorsqu'il tente de décrire ses structures grâce à l'usage de fonctions d'état qui n'ont pas toujours des solutions évidentes. D'un autre le chimiste manipule des objets réels mais arrive difficilement à isoler le paramètre qu'il veut étudier. Ses conclusions ne sont jamais à l'abri des artefacts apportés par les conditions opératoires ou les effets de support. Ce dilemme existe aussi pour le physicien qui tente de synthétiser des agrégats bien définis dans un flux gazeux mais loin de la réalité de la catalyse. De même pour le chimiste qui veut ramener les effets de structure à de simples comparaisons entre les faces exposées par les monocristaux. Néanmoins l'apport des deux est indispensable car ils donnent des idées directrices indispensables pour l'homme de catalyse qui tente de maîtriser l'ensemble des paramètres. While heterogeneous catalysis, and especially catalysis by metals, is concerned with the size of the particles and hence with the developed surface area, this is not only to prepare an effective product at minimum cost. The study of the

  19. Enzyme-Like Catalysis of the Nazarov Cyclization by Supramolecular Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Courtney; Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2010-03-29

    A primary goal in the design and synthesis of molecular hosts has been the selective recognition and binding of a variety of guests using non-covalent interactions. Supramolecular catalysis, which is the application of such hosts towards catalysis, has much in common with many enzymatic reactions, chiefly the use of both spatially appropriate binding pockets and precisely oriented functional groups to recognize and activate specific substrate molecules. Although there are now many examples which demonstrate how selective encapsulation in a host cavity can enhance the reactivity of a bound guest, all have failed to reach the degree of increased reactivity typical of enzymes. We now report the catalysis of the Nazarov cyclization by a self-assembled coordination cage, a carbon-carbon bond-forming reaction which proceeds under mild, aqueous conditions. The acceleration in this system is over a million-fold, and represents the first example of supramolecular catalysis that achieves the level of rate enhancement comparable to that observed in several enzymes. We explain the unprecedented degree of rate increase as due to the combination of (a) preorganization of the encapsulated substrate molecule, (b) stabilization of the transition state of the cyclization by constrictive binding, and (c) increase in the basicity of the complexed alcohol functionality.

  20. The Power of High-Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals

    NARCIS (Netherlands)

    Vries, Johannes G. de; Vries, André H.M. de

    2003-01-01

    The use of high-throughput experimentation (HTE) in homogeneous catalysis research for the production of fine chemicals is an important breakthrough. Whereas in the past stoichiometric chemistry was often preferred because of time-to-market constraints, HTE allows catalytic solutions to be found wit

  1. Present Trends in the Application of Genetic Algorithms to Heterogeneous Catalysis

    Czech Academy of Sciences Publication Activity Database

    Holeňa, Martin

    Weinheim: WileyVCH, 2004 - (Hagemeyer, A.; Strasser, P.; Volpe, jr., A.), s. 153-173 ISBN 3-527-30814-8 Source of funding: V - iné verejné zdroje Keywords : combinatorial catalysis * genetic algorithms * artificial neural networks * catalyst description language * program generator Subject RIV: IN - Informatics, Computer Science

  2. Ligand Self-Sorting and Nonlinear Effects in Dinuclear Asymmetric Hydrogenation: Complexity in Catalysis

    NARCIS (Netherlands)

    Terrade, F.G.; Lutz, M.; Reek, J.N.H.

    2013-01-01

    Nature has been a source of inspiration for scientists as billion years of evolution have resulted in magnificent examples of how processes can be controlled efficiently. In the field of supramolecular catalysis, enzymes have been the major source of inspiration. As such, many synthetic systems have

  3. An investigation into the Ti-grafting structure on MCM-41 and epoxidation catalysis

    DEFF Research Database (Denmark)

    Yuan, Q.C.; Hagen, A.; Roessner, F.

    2006-01-01

    The structure of titanium species grafted on a purely siliceous MCM-41 and their catalysis in the epoxidation of cyclohexene with tert-butyl hydroperoxide (TBHP) were investigated. FT-IR, XANES and UV-vis were used for the examination of the Ti-grafted MCM-41. The results indicated that the titan...

  4. Kinetic of Adsorption of Urea Nitrogen onto Chitosan Coated Dialdehyde Cellulose under Catalysis of Immobilized Urease

    Institute of Scientific and Technical Information of China (English)

    Zu Pei LIANG; Ya Qing FENG; Zhi Yan LIANG; Shu Xian MENG

    2005-01-01

    The adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose (CDAC)under catalysis of immobilized urease in gelatin membrane (IE) was studied in batch system. The pseudo first-order and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model.

  5. Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis

    Science.gov (United States)

    Zuo, Zhiwei; Cong, Huan; Li, Wei; Choi, Junwon; Fu, Gregory C.; MacMillan, David W. C.

    2016-01-01

    An asymmetric decarboxylative Csp3–Csp2 cross-coupling has been achieved via the synergistic merger of photoredox and nickel catalysis. This mild, operationally simple protocol transforms a wide variety of naturally abundant α-amino acids and readily available aryl halides into valuable chiral benzylic amines in high enantiomeric excess, thereby producing motifs found in pharmacologically active agents. PMID:26849354

  6. Appreciating Formal Similarities in the Kinetics of Homogeneous, Heterogeneous, and Enzyme Catalysis

    Science.gov (United States)

    Ashby, Michael T.

    2007-01-01

    Because interest in catalysts is widespread, the kinetics of catalytic reactions have been investigated by widely diverse groups of individuals, including chemists, engineers, and biologists. This has lead to redundancy in theories, particularly with regard to the topics of homogeneous, heterogeneous, and enzyme catalysis. From a pedagogical…

  7. Formal kinetics of heterogeneous catalysis and absorption treatment of compound solutions

    International Nuclear Information System (INIS)

    Approach creation of a tool for analyzing and estimating sorption processes for treating compound solutions of radioactively contaminated waters (RCW), based on formalization of heterogeneous catalysis kinetics mechanism for small volume level, is seen. It is the first work of series devoted to development of high-tech RCW treatment systems, and, in particular, liquid radwaste management

  8. Silica immobilized pincer-metal complexes : catalysis, recycling, and retrospect on active species

    NARCIS (Netherlands)

    Mehendale, N.C.

    2007-01-01

    Science is continuously striving for a sustainable progress of society. This progress must be made on the economical as well as the environmental front concomitantly. Many industrial processes are being reviewed to make them environmentally more sustainable. Catalysis emerges as an important player

  9. Acyl Radicals from Aromatic Carboxylic Acids by Means of Visible-Light Photoredox Catalysis

    OpenAIRE

    Bergonzini, Giulia; Cassani, Carlo; Wallentin, Carl-Johan

    2015-01-01

    Simple and abundant carboxylic acids have been used as acyl radical precursor by means of visible-light photoredox catalysis. By the transient generation of a reactive anhydride intermediate, this redox-neutral approach offers a mild and rapid entry to high-value heterocyclic compounds without the need of UV irradiation, high temperature, high CO pressure, tin reagents, or peroxides.

  10. Theoretical mo delling of nanoparticles with applications to catalysis and sustainable energy

    DEFF Research Database (Denmark)

    Brodersen, Simon Hedegaard

    The aim of this thesis is to gain a better understanding of the shape and structure of nanoparticles. Nanoparticles are important in heterogeneous catalysis, where the chemical reaction happens at the surface, since they maximise the available surface area for a given amount of catalyst. Studies ...

  11. Interaction of 1,5-Substituted Pyrrolin-2-ones with Dichlorocarbene under Phase Transfer Catalysis Conditions

    Directory of Open Access Journals (Sweden)

    Zlata Yu. Timofeyeva

    2000-10-01

    Full Text Available Treatment of 5-alkyl(aryl-3H-pyrrolin-2-ones with dichlorocarbene under phase transfer catalysis conditions at 20-30ºC results in a cycloaddition of the carbene to the C=C bond followed by skeletal rearrangement.

  12. Catalysis looks to the future. Panel on new directions in catalytic science and technology

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Catalysts play a vital role in providing society with fuels, commodity and fine chemicals, pharmaceuticals, and means for protecting the environment. To be useful, a good catalyst must have a high turnover frequency (activity), produce the right kind of product (selectivity), and have a long life (durability), all at an acceptable cost. Research in the field of catalysis provides the tools and understanding required to facilitate and accelerate the development of improved catalysts and to open opportunities for the discovery of new catalytic processes. The aim of this report is to identify the research opportunities and challenges for catalysis in the coming decades and to detail the resources necessary to ensure steady progress. Chapter 2 discusses opportunities for developing new catalysts to meet the demands of the chemical and fuel industries, and the increasing role of catalysis in environmental protection. The intellectual challenges for advancing the frontiers of catalytic science are outlined in Chapter 3. The human and institutional resources available in the US for carrying out research on catalysis are summarized in Chapter 4. The findings and recommendations of the panel for industry, academe, the national laboratories, and the federal government are presented in Chapter 5.

  13. ISHHC XIII International Symposium on the Relations betweenHomogeneous and Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai (Ed.), G.A.

    2007-06-11

    The International Symposium on Relations between Homogeneous and Heterogeneous Catalysis (ISHHC) has a long and distinguished history. Since 1974, in Brussels, this event has been held in Lyon, France (1977), Groeningen, The Netherlands (1981); Asilomar, California (1983); Novosibirsk, Russia (1986); Pisa, Italy (1989); Tokyo, Japan (1992); Balatonfuered, Hungary (1995); Southampton, United Kingdom (1999); Lyon, France (2001); Evanston, Illinois (2001) and Florence, Italy (2005). The aim of this international conference in Berkeley is to bring together practitioners in the three fields of catalysis, heterogeneous, homogeneous and enzyme, which utilize mostly nanosize particles. Recent advances in instrumentation, synthesis and reaction studies permit the nanoscale characterization of the catalyst systems, often for the same reaction, under similar experimental conditions. It is hoped that this circumstance will permit the development of correlations of these three different fields of catalysis on the molecular level. To further this goal we aim to uncover and focus on common concepts that emerge from nanoscale studies of structures and dynamics of the three types of catalysts. Another area of focus that will be addressed is the impact on and correlation of nanosciences with catalysis. There is information on the electronic and atomic structures of nanoparticles and their dynamics that should have importance in catalyst design and catalytic activity and selectivity.

  14. An efficient approach to highly functionalized nitrogen heterocycles via oxidative SET catalysis

    Czech Academy of Sciences Publication Activity Database

    Hidasová, Denisa; Jahn, Ullrich

    Praha: Czech Chemical Society, 2014. s. 61. [Liblice 2014. Advances in Organic, Bioorganic and Pharmaceutical Chemistry /49./. 07.11.2014-09.11.2014, Lázně Bělohrad] R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : oxidative SET catalysis * highly functionalized nitrogen heterocycles Subject RIV: CC - Organic Chemistry

  15. Development of time-resolved XAFS spectroscopy techniques : applications in homogeneous catalysis

    NARCIS (Netherlands)

    2004-01-01

    Catalysis is one of the most important methods to obtain products in a selective and sustainable manner, i.e. in an environmental responsible manner. To be able to modify and optimize these catalytic production pathways, it is important to obtain knowledge on the reaction mechanisms occurring. X-ray

  16. Chemo- and regioselective reductive transposition of allylic alcohol derivatives via iridium or rhodium catalysis.

    Science.gov (United States)

    Lundgren, Rylan J; Thomas, Bryce N

    2016-01-18

    We report highly chemo- and regioselective reductive transpositions of methyl carbonates to furnish olefin products with complementary regioselectivity to that of established Pd-catalysis. These Rh- and Ir-catalysed transformations proceed under mild conditions and enable selective deoxygenation in the presence of functional groups that are susceptible to reduction by metal hydrides. PMID:26587569

  17. A Clean and Selective Radical Homocoupling Employing Carboxylic Acids with Titania Photoredox Catalysis

    OpenAIRE

    Manley, David W; Walton, John C

    2014-01-01

    A titania photoredox catalysis protocol was developed for the homocoupling of C-centered radicals derived from carboxylic acids. Intermolecular reactions were generally efficient and selective, furnishing the desired dimers in good yields under mild neutral conditions. Selective cross-coupling with two acids proved unsuccessful. An intramolecular adaptation enabled macrocycles to be prepared, albeit in modest yields.

  18. Li+ catalysis and other new methodologies for the radical polymerization of less activated olefins

    Czech Academy of Sciences Publication Activity Database

    Merna, J.; Vlček, Petr; Volkis, V.; Michl, Josef

    2016-01-01

    Roč. 116, č. 3 (2016), s. 771-785. ISSN 0009-2665 Institutional support: RVO:61389013 ; RVO:61388963 Keywords : Li+ catalysis * radical polymerization * less activated olefins Subject RIV: CD - Macromolecular Chemistry; CC - Organic Chemistry (UOCHB-X) Impact factor: 46.568, year: 2014

  19. Biphasic Catalysis with Disaccharide Phosphorylases: Chemoenzymatic Synthesis of alpha-D-Glucosides Using Sucrose Phosphorylase

    Czech Academy of Sciences Publication Activity Database

    De Winter, K.; Desmet, T.; Devlamynck, T.; Van Renterghem, L.; Verhaeghe, T.; Pelantová, Helena; Křen, Vladimír; Soetaert, W.

    2014-01-01

    Roč. 18, č. 6 (2014), s. 781-787. ISSN 1083-6160 R&D Projects: GA MŠk(CZ) 7E11011 Institutional support: RVO:61388971 Keywords : biphasic systems * pyrogallol * biphasic catalysis Subject RIV: CE - Biochemistry Impact factor: 2.528, year: 2014

  20. Catalysis by Using TiO2 Nanoparticles and Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Chien Shu-Hua; Kuo Ming-Chih; Liou Yuh-Cherng

    2004-01-01

    TiO2 has attracted considerable attention due to its stability, non-toxicity, low cost, and great potential for use as a photocatalyst in environmental applications. Since strong metal-support interaction (SMSI) of titania-supported noble metals was first reported in 1978, titania supported catalyst has been intensively studied in heterogeneous catalysis. However, the effective catalytic activity was restricted due to the low surface area of TiO2. Recently, TiO2-based nanotubes were extensively investigated because of their potentials in many areas such as highly efficient photocatalysis and hydrogen sensor.In the present study, formation of titanium oxide (TiO2) nanotubes was carried out by hydrothermal method, with TiO2 nanoparticle-powders immersed in concentrated NaOH solution in an autoclave at 110 ℃. Preparation of nano-size Pt on TiO2-nanoparticles or TiO2-nanotubes was performed by photochemical deposition method with UV irradiation on an aqueous solution containing TiO2 and hexachloroplatinic acid or tetrachloroauric acid. The TEM micrographs show that TiO2-nanotubes exhibit ~300 nm in length with an inner diameter of ~ 6 nm and the wall thickness of ~ 2 nm, and homogeneous nanosize Pt particles (~ 2 nm) were well-dispersed on both nanoparticle- and nanotube- titania supports. It also shows the nanotube morphology was retained up2o n Pt-immobilization. Nitrogen adsorption isotherm at 77K resulted a high surface area (~ 200m/g) of TiO2-nanotubes, which is about 40 times greater than that of "mother" TiO2 nanoparticles (~5 m/g). All the spectroscopic results exhibited that the nanotube structure was not significantly affected by the immobilized Pt particles. Ti K-edge XANES spectra of TiO2 nanotube and Pt/TiO2-nanotube represent that most titanium are in a tetrahedral coordination with few retained in the octahedral structure.In the in-situ FT-IR experiments, an IR cell was evacuated to a pressure of 10-5 torr at room temperature as soon as the

  1. Uma perspectiva computacional sobre catálise enzimática A computational perspective on enzymatic catalysis

    Directory of Open Access Journals (Sweden)

    Guilherme M. Arantes

    2008-01-01

    Full Text Available Enzymes are extremely efficient catalysts. Here, part of the mechanisms proposed to explain this catalytic power will be compared to quantitative experimental results and computer simulations. Influence of the enzymatic environment over species along the reaction coordinate will be analysed. Concepts of transition state stabilisation and reactant destabilisation will be confronted. Divided site model and near-attack conformation hypotheses will also be discussed. Molecular interactions such as covalent catalysis, general acid-base catalysis, electrostatics, entropic effects, steric hindrance, quantum and dynamical effects will also be analysed as sources of catalysis. Reaction mechanisms, in particular that catalysed by protein tyrosine phosphatases, illustrate the concepts.

  2. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO2. The yield for this phenomenon is on the order of 10-4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D2 compared to H2, contrary to what is expected given the higher mass of D2. Reversible changes in the rectification factor of the diode are observed when switching between D2 and H2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H2 oxidation. Absorption of the light in the Si, combined with

  3. Alkaline earth organometallic compounds in homogeneous catalysis : Synthesis, characterization and catalytic activity of calcium and magnesium complexes

    NARCIS (Netherlands)

    Penafiel, Johanne

    2016-01-01

    Homogeneous catalysis has been developed mainly through the use of transition metal complexes. However, transition-metal catalysts, often highly toxic, are becoming increasingly rare and consequently more expensive. Therefore, the search for sustainable alternatives is nowadays of great importance.

  4. Comparison of the role that entropy has played in processes of non-enzymatic and enzymatic catalysis

    International Nuclear Information System (INIS)

    The function that entropy has played is compared in processes of non-enzymatic and enzymatic catalysis. The processes followed are showed: the kinetics of the acid hydrolysis of 3-pentyl acetate and cyclopentyl acetate catalyzed by hydrochloric acid and enzymatic hydrolysis of ethyl acetate and γ-butyrolactone catalyzed by pig liver esterase. The activation parameters of Eyring were determined for each process and interpreted the contribution of the entropy of activation for catalysis in this type of model reactions. (author)

  5. Without Spectroscopy at the Beginning, Catalysis Research Proceeded in the Wrong Direction for More Than 100 Years

    OpenAIRE

    Gardner-Chavis, Ralph A.; Reye, John T.; Selover Jr, Theodore B.; Zhang, Huixiong

    2008-01-01

    A study by infrared spectroscopy of the physisorbed region of catalysis demonstrated that the intermediates of catalysis exist on the surface as a two dimensional gas. Data in the Atomic Energy Level tables show that of the thousands of positive ions tabulated only approximately one hundred have the low-lying excited states that produce surface electric fields with a fractional charge. The specific catalyst for a reaction has the electric field with the fractional charge which when imparted t...

  6. On (no) inverse magnetic catalysis in the QCD hard and soft wall models

    CERN Document Server

    Dudal, D; Mertens, T G

    2015-01-01

    In this paper, we study the influence of an external magnetic field in holographic QCD models where the backreaction is modeled in via an appropriate choice of the background metric. We add a phenomenological soft wall dilaton to incorporate better IR behavior (confinement). Elaborating on previous studies conducted by [JHEP 1505 (2015) 121], we first discuss the Hawking-Page transition, the dual of the deconfinement transition, as a function of the magnetic field. We confirm that the critical deconfinement temperature can drop with the magnetic field. Secondly, we study the quark condensate holographically as a function of the applied magnetic field and demonstrate that this model does not exhibit inverse magnetic catalysis at the level of the chiral transition. The quest for a holographic QCD model that qualitatively describes the inverse magnetic catalysis at finite temperature is thus still open. Throughout this work, we pay special attention to the different holographic parameters and we attempt to fix t...

  7. Strength testing and SEM imaging of hydroxide-catalysis bonds between silicon

    Energy Technology Data Exchange (ETDEWEB)

    Van Veggel, A A; Scott, J; Skinner, D A; Cunningham, W; Hough, J; Martin, I; Murray, P; Reid, S; Rowan, S [Department of Physics and Astronomy, SUPA Institute for Gravitational Research, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Bezensek, B, E-mail: m.veggel@physics.gla.ac.u [Materials Group, Department of Mechanical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2009-09-07

    Silicon is under consideration as a substrate material for the mirror masses and quasi-monolithic suspension stages of 'third generation' gravitational wave detectors. Identifying a jointing technique to attach the silicon suspension elements to the optics with repeatable high strength and low mechanical loss is critical. Hydroxide-catalysis bonding is the method of choice for current quasi-monolithic silica suspensions. Here we present measurements of the shear strength of hydroxide-catalysis bonds between silicon samples. Strengths of approximately 3.9 N mm{sup -2} are found, comparable to strengths found for silica to silica bonds. Scanning electron microscope imaging shows that the bonds between two silicon parts with thermally grown SiO{sub 2} layers are wedged with bond thicknesses varying from 30 nm to several micrometres. We suggest a possible explanation for this observation.

  8. Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Li, Yimin

    2009-11-21

    Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science.

  9. A search for inverse magnetic catalysis in thermal quark–meson models

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, E.S. [Institute for Theoretical Physics, Goethe University, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Goethe University, D-60438 Frankfurt am Main (Germany); Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Mintz, B.W. [Departamento de Física Teórica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil); Schaffner-Bielich, J. [Institute for Theoretical Physics, Goethe University, D-60438 Frankfurt am Main (Germany)

    2014-04-04

    We explore the parameter space of the two-flavor thermal quark–meson model and its Polyakov loop-extended version under the influence of a constant external magnetic field B. We investigate the behavior of the pseudo critical temperature for chiral symmetry breaking taking into account the likely dependence of two parameters on the magnetic field: the Yukawa quark–meson coupling and the parameter T{sub 0} of the Polyakov loop potential. Under the constraints that magnetic catalysis is realized at zero temperature and the chiral transition at B=0 is a crossover, we find that the quark–meson model leads to thermal magnetic catalysis for the whole allowed parameter space, in contrast to the present picture stemming from lattice QCD.

  10. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage

    Science.gov (United States)

    Cullen, William; Misuraca, M. Cristina; Hunter, Christopher A.; Williams, Nicholas H.; Ward, Michael D.

    2016-03-01

    The hollow cavities of coordination cages can provide an environment for enzyme-like catalytic reactions of small-molecule guests. Here, we report a new example (catalysis of the Kemp elimination reaction of benzisoxazole with hydroxide to form 2-cyanophenolate) in the cavity of a water-soluble M8L12 coordination cage, with two features of particular interest. First, the rate enhancement is among the largest observed to date: at pD 8.5, the value of kcat/kuncat is 2 × 105, due to the accumulation of a high concentration of partially desolvated hydroxide ions around the bound guest arising from ion-pairing with the 16+ cage. Second, the catalysis is based on two orthogonal interactions: (1) hydrophobic binding of benzisoxazole in the cavity and (2) polar binding of hydroxide ions to sites on the cage surface, both of which were established by competition experiments.

  11. A two-step approach to achieve secondary amide transamidation enabled by nickel catalysis

    Science.gov (United States)

    Baker, Emma L.; Yamano, Michael M.; Zhou, Yujing; Anthony, Sarah M.; Garg, Neil K.

    2016-01-01

    A long-standing challenge in synthetic chemistry is the development of the transamidation reaction. This process, which involves the conversion of one amide to another, is typically plagued by unfavourable kinetic and thermodynamic factors. Although some advances have been made with regard to the transamidation of primary amide substrates, secondary amide transamidation has remained elusive. Here we present a simple two-step approach that allows for the elusive overall transformation to take place using non-precious metal catalysis. The methodology proceeds under exceptionally mild reaction conditions and is tolerant of amino-acid-derived nucleophiles. In addition to overcoming the classic problem of secondary amide transamidation, our studies expand the growing repertoire of new transformations mediated by base metal catalysis. PMID:27199089

  12. Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong; MENG Lie; CHEN Rizhi; JIN Wanqin; XING Weihong; XU Nanping

    2013-01-01

    Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes,but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry.A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis.This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis,which covers classification of configurations of porous ceramic membrane reactor,major considerations and some important industrial applications.A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design,optimization of ceramic membrane reactor performance and membrane fouling mechanism.Finally,brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.

  13. Entropic and Dynamical Origins of Catalysis in a B12 Enzyme

    Science.gov (United States)

    Warncke, Kurt; Wang, Miao

    2010-03-01

    The kinetics of the diffusive radical pair separation process in the adenosylcobalamin (coenzyme B12) -dependent ethanolamine ammonia-lyase from Salmonella typhimurium at 234-248 K in a dimethylsulfoxide/water cryosolvent system [1] were determined by using time-resolved, full-spectrum electron paramagnetic resonance spectroscopy. Substrate hydrogen isotope effects show that the cofactor cobalt-carbon bond cleavage event rate is rate determining, and that catalysis (relative to solution) is almost entirely entropic. The results challenge the proposed, traditional enthalpy-based mechanisms, and show that delocalized, dynamical sources are central in bond cleavage catalysis. Changes in configurational freedom of surface residues and hydration waters are proposed as the microscopic origin. [1] M. Wang and K. Warncke, J. Am. Chem. Soc. 2008, 130, 4846.

  14. State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, China

    Institute of Scientific and Technical Information of China (English)

    Can Li

    2002-01-01

    @@ I. Introduction The State Key Laboratory of Catalysis (SKLC)was founded in 1987 as one of the first state key labo-ratories in China. The current director of the SKLC isProfessor Can Li (the previous directors were Profes-sor Xiexian Guo and Professor Yide Xu). ProfessorLiwu Lin chairs the Academic Committee, which iscomposed of 15 distinguished Chinese catalytic scien-tists. In addition, the SKLC appoints internationallyknown scientists in the field of catalysis to its Inter-national Advisory Committee. There are about 35permanent staff members including professors, tech-nicians, and administrators, over 80 Ph.D. and M.S.graduate students and 10 post-doctoral fellows.

  15. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    Science.gov (United States)

    Xu, Xue-xiang; Yuan, Hong-chun

    2016-07-01

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality.

  16. Challenges and perspectives for catalysis in production of diesel from biomass

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Søndergaard, Helle; Fehrmann, Rasmus;

    2011-01-01

    oils or waste fats with methanol is the most prominent and has been applied industrially for a decade. Homogeneous acid and base catalysis is normally used, but solid acids, solid bases, ionic liquids and lipases are being developed as replacements. Hydrodeoxygenation of vegetable oils has likewise...... been commercialized. Diesel from biomass may also be produced by catalytic upgrading of bio-oils from flash pyrolysis, by aqueous-phase reforming of carbohydrates into non- or mono-functionalized hydrocarbons via consecutive reduction-condensation reactions, or by gasification of biomass to synthesis...... gas of CO and H2 and liquefaction to alkanes via Fischer-Tropsch synthesis. Here, the current challenges and perspectives regarding catalysis and raw materials for diesel production from biomass are surveyed. © Future Science Ltd....

  17. On the role of interfacial hydrogen bonds in "on-water" catalysis

    CERN Document Server

    Karhan, Kristof; Kühne, Thomas D

    2014-01-01

    Numerous experiments have demonstrated that many classes of organic reactions exhibit increased reaction rates when performed in heterogeneous water emulsions. Despite enormous practical importance of the observed "on-water" catalytic effect and several mechanistic studies, its microscopic origins remains unclear. In this work, the second generation Car-Parrinello molecular dynamics method is extended to self-consistent charge density-functional based tight-binding in order to study "on-water" catalysis of the Diels-Alder reaction between dimethyl azodicarboxylate and quadricyclane. We find that the stabilization of the transition state by dangling hydrogen bonds exposed at the aqueous interfaces plays a significantly smaller role in "on-water" catalysis than has been suggested previously.

  18. Trimerization catalysis of phenylisocyanate in the presence of phenolic mannich bases

    Energy Technology Data Exchange (ETDEWEB)

    Selivanov, A.V.; Zenitova, L.A.; Bakirova, I.N.; Kirpichnikov, P.A.

    1988-11-01

    The kinetics of the cyclic trimerization of phenylisocyanate in the presence of phenolic Mannich bases have been studied by IR spectroscopy; a catalysis mechanism for the reaction is proposed. It was found that in order for trimerization to occur the catalyst molecule must contain both a hydroxyl group and a tertiary nitrogen atom, which leads to reaction at the OH group of the catalyst and its conversion via a urethane derivative to an allophanate; the latter species undergoes tautomeric rearrangement to a bipolar ion, which is the actual catalysis site. The effects of the number of aminomethyl, hydroxyl, and other electron-donating and electron-withdrawing substituents on the structure of Mannich bases have also been investigated.

  19. Kokes Awards for the 22nd North American Catalysis Society Meeting, June 5-10, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Fabio H. Ribeiro

    2011-06-05

    The biennial North American Catalysis Society (NACS) Meetings are the premiere conferences in the area of catalysis, surface science, and reaction engineering. The 22nd meeting will be held the week of June 5-10, 2011 in Detroit, Michigan. The objective of the Meetings is to bring together leading researchers for intensive scientific exchange and interactions. Financial support that offsets some of the associated costs (specifically, registration fee, airline tickets, and hotel accommodations) would encourage graduate students, and for the first time undergraduate students, to attend and participate meaningfully in this conference. The funds sought in this proposal will help support the Richard J. Kokes Travel Award program. Graduate students eligible for these merit-based Awards are those who study at a North American university and who will present at the Meeting. We have currently 209 applications and we expect to be able to fund about half of them. The NACS has traditionally sought to encourage graduate student, and this year for the first time undergraduate studies, participation at the National Meetings and providing financial support is the most effective means to do so. Their attendance would contribute significantly to their scientific training and communication and presentation skills. They would be exposed to the leading researchers from the US and abroad; they would meet their peers from other universities; they would learn about cutting-edge results that could benefit their research projects; and they may become interested in becoming active participants in the catalysis community. These young investigators represent the next generation of scientists and engineers, and their proper training will lead to future scientific breakthroughs and technological innovations that benefit the US economy. Advances in catalysis can come in the form of more energy-efficient and environmentally-friendly chemical processes, improved fuel cell performance, efficient

  20. Green catalysis by nanoparticulate catalysts developed for flow processing? Case study of glucose hydrogenation

    OpenAIRE

    Gericke, Dörthe; Ott, Denise; Matveeva, Valentina G.; Sulman, Esther; Aho, Atte; Murzin, Dmitry Yu.; Roggan, Stefan; Danilova, Lyudmila; Hessel, Volker; Löb, Patrick; Kralisch, Dana

    2015-01-01

    Heterogeneous catalysis, flow chemistry, continuous processing, green solvents, catalyst immobilization and recycling are some of the most relevant, emerging key technologies to achieve green synthesis. However, a quantification of potential effects on a case to case level is required to provide a profound answer, whether they can lead to a superior process compared to the industrial standard. To do so, holistic environmental assessment approaches are very useful tools providing insights and ...

  1. Irving Langmuir Prize Lecture - A predictive theory of transition metal surface catalysis

    Science.gov (United States)

    Norskov, Jens

    2015-03-01

    The lecture will outline a theory of heterogeneous catalysis that allows a detailed understanding of elementary chemical processes at transition metal surfaces and singles out the most important parameters determining catalytic activity and selectivity. It will be shown how scaling relations allow the identification of descriptors of catalytic activity and how they can be used to construct activity and selectivity maps. The maps can be used to define catalyst design rules and examples of their use will be given.

  2. Magnetic Catalysis of Dynamical Symmetry Breaking and Aharonov-Bohm Effect

    OpenAIRE

    Miransky, V.A.

    1998-01-01

    The phenomenon of the magnetic catalysis of dynamical symmetry breaking is based on the dimensional reduction $D\\to D-2$ in the dynamics of fermion pairing in a magnetic field. We discuss similarities between this phenomenon and the Aharonov-Bohm effect. This leads to the interpretation of the dynamics of the (1+1)-dimensional Gross-Neveu model with a non-integer number of fermion colors as a quantum field theoretical analogue of the Aharonov-Bohm dynamics.

  3. Kokes Awards for the 23rd North American Catalysis Society Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Gary [University of Kentucky Research Foundation, Lexington, KY (United States)

    2014-01-31

    The Tri-State Catalysis Society awarded 107 Kokes Travel Awards. The program was very successful and to date this was the most Kokes Travel Awards ever awarded at a North American Catalysis Society Meeting. It provided students who merited an award the opportunity to attend the meeting, present a paper in the form of either an oral presentation or a poster presentation, and to serve the North American Catalysis Society by participating in the organization of the meeting. Students worked very hard during the week of the meeting to make it a success. Financial support for the Kokes awards was provided by DOE, NSF, NACS, as well as the Tri-State Catalysis Society, the latter through fund raising activities, and other donations. AT the meeting, each student received over $1050 in kind to offset the costs of registration fees ($260), hotel accommodations ($295.7), transportation ($400 travel allowance), as well as T-shirts ($20), and banquet tickets ($95 provided by donations from society members). In addition, for the first time, students received certificates that were signed by the President of NACS, Professor Enrique Iglesia, and by the Kokes Awards Chair, Gary Jacobs (see last page). A list of meeting co-chairs (i.e., Uschi M. Graham, Umit S. Ozkan, and Madan Bhassin) and the honorary chair (Burtron H. Davis) was also included on the certificate, along with the name of the recipient. The awardees were chosen on a merit-based guideline which also included the requirements of having a presentation accepted at the meeting and being a student at a North American University. The Richard J. Kokes Student Travel Award Committee (Gary Jacobs, Rodney Andrews, and Peter Smirniotis) with help from the Organizing Committee were able to secure money from four sources as detailed in Table 1. As detailed by our Treasurer, Dr. Helge Toufar of Clariant, the total amount spent was $105,000.

  4. Towards the pressure and material gap in heterogeneous catalysis: hydrogenation of acrolein over silver catalysts

    OpenAIRE

    Bron, M.; Bonifer, M.; Knop-Gericke, A; Teschner, D; Kröhnert, J.; Jentoft, F.; Schlögl, R.; Claus, P.

    2004-01-01

    Introduction In recent time, increasing effort has been undertaken in order to answer the question, whether it is justified to transfer results from surface science studies, mostly obtained with idealised surfaces under UHV conditions, to "real" catalysis, i.e. high pressures and complex materials (the so-called pressure and material gaps). The DFG (German research foundation) has initialised a priority program (SPP 1091) in order to bring together experts from surface science, materials s...

  5. Dehydrogenation in lithium borohydride/conventional metal hydride composite based on a mutual catalysis

    DEFF Research Database (Denmark)

    Yu, X.B.; Shi, Qing; Vegge, Tejs;

    2009-01-01

    The dehydrogenation of LiBH4 ball-milled with hydrogenated 40Ti–15Mn–15Cr–30V alloy was investigated. It was found that there is a mutual catalysis between the two hydrides, lowering the temperature of hydrogen release from both hydrides. In the case of 1h milled LiBH4/40Ti–15Mn–15Cr–30V with a...

  6. On model materials designed by atomic layer deposition for catalysis purposes

    OpenAIRE

    2011-01-01

    The aim of this work was to investigate the potential of model materials designed by atomic layer deposition toward applications in catalysis research. Molybdenum based catalysts promoted with cobalt were selected as target materials, considering their important roles in various industrial processes. Particular attention was paid to understand the growth dynamics of the ALD processes involved and further to characterize the obtained materials carefully. It was of main concern to verify the fe...

  7. Asymmetric Hydroarylation of Vinylarenes Using a Synergistic Combination of CuH and Pd Catalysis.

    Science.gov (United States)

    Friis, Stig D; Pirnot, Michael T; Buchwald, Stephen L

    2016-07-13

    Detailed in this Communication is the enantioselective synthesis of 1,1-diarylalkanes, a structure found in a range of pharmaceutical drug agents and natural products, through the employment of copper(I) hydride and palladium catalysis. Judicious choice of ligand for both Cu and Pd enabled this hydroarylation protocol to work for an extensive array of aryl bromides and styrenes, including β-substituted vinylarenes and six-membered heterocycles, under relatively mild conditions. PMID:27346525

  8. Nonconventional amide bond formation catalysis: programming enzyme specificity with substrate mimetics

    OpenAIRE

    F. Bordusa

    2000-01-01

    This article reports on the design and characteristics of substrate mimetics in protease-catalyzed reactions. Firstly, the basis of protease-catalyzed peptide synthesis and the general advantages of substrate mimetics over common acyl donor components are described. The binding behavior of these artificial substrates and the mechanism of catalysis are further discussed on the basis of hydrolysis, acyl transfer, protein-ligand docking, and molecular dynamics studies on the trypsin model. The g...

  9. Chemistry of Platinum and Palladium Metal Complexes in Homogeneous and Heterogeneous Catalysis: A Mini Review

    OpenAIRE

    Mehrban Ashiq; Fareeha Mukhtar; Sineen Bari; Muhammad Danish; Muhammad Ali Mohsin

    2013-01-01

    Transition metal complexes of platinum and palladium are most widely used in catalysis. Many synthetic reactions have been carried out with such complexes (used as a catalyst) which have specifically polymer ligands, through hydrosilylation, acetoxylation, hydrogenation, hydro-formylation, oligo-merisation and polymerization. Almost many platinum and palladium catalysts are heterogeneous in nature i.e. the reaction taking place on a solid surface. Now from few years homogeneou...

  10. First Principles Molecular Dynamics Study of Catalysis for Polyolefins: the Ziegler-Natta Heterogeneous System.

    OpenAIRE

    Michele Parrinello; Kiyoyuki Terakura; Mauro Boero

    2002-01-01

    Abstract: We review part of our recent ab initio molecular dynamics study on the Ti-based Ziegler-Natta supported heterogeneous catalysis of α-olefins. The results for the insertion of ethylene in the metal-carbon bond are discussed as a fundamental textbook example of polymerization processes. Comparison with the few experimental data available has shown that simulation can reproduce activation barriers and the overall energetics of the reaction with sufficient accuracy. This puts these q...

  11. Highly Enantioselective Cascade Transformations by Merging Heterogeneous Transition Metal Catalysis with Asymmetric Aminocatalysis

    OpenAIRE

    Luca Deiana; Samson Afewerki; Carlos Palo-Nieto; Oscar Verho; Johnston, Eric V.; Armando Córdova

    2012-01-01

    The concept of combining heterogeneous transition metal and amine catalysis for enantioselective cascade reactions has not yet been realized. This is of great advantage since it would allow for the recycling of expensive and non-environmentally friendly transition metals. We disclose that the use of a heterogeneous Pd-catalyst in combination with a simple chiral amine co-catalyst allows for highly enantioselective cascade transformations. The preparative power of this process has been demonst...

  12. François Garin: Pioneer work in catalysis through synchrotron radiation

    OpenAIRE

    Bazin, Dominique

    2014-01-01

    Progress in the kinetics and mechanisms of chemical reactions at the atomic and molecular levels. Dedicated to the scientific work of François Garin International audience Starting from the late seventies, the progressively increased availability of beamlines dedicated to X-ray absorption spectroscopy allowed the execution of experiments in chemistry. In this manuscript, I describe the contribution of François Garin at the frontier of heterogeneous catalysis and synchrotron radiation. W...

  13. The applications of Mössbauer Spectroscopy in heterogeneous catalysis research

    OpenAIRE

    Bussière, P.

    1981-01-01

    The importance of Mössbauer Spectroscopy in heterogeneous catalysis research is increasing, since more and more catalysts are complex finely dispersed solids, sufficient characterization cannot be achieved easily with more conventional methods. After summarizing the special features of Mössbauer Spectroscopy of solid catalysts, we show and discuss some examples of its use in identifying catalytically active phases, in studying adsorption phenomena, and reaction mechanisms. Questions that rema...

  14. Surface- and Tip-Enhanced Raman Spectroscopy as Operando Probes for Monitoring and Understanding Heterogeneous Catalysis

    OpenAIRE

    Harvey, Clare E.; Weckhuysen, Bert M.

    2014-01-01

    Abstract Surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) were until recently limited in their applicability to the majority of heterogeneous catalytic reactions. Recent developments begin to resolve the conflicting experimental requirements for SERS and TERS on the one hand, and heterogeneous catalysis on the other hand. This article discusses the development and use of SERS and TERS to study heterogeneous catalytic reactions, and the exciting possibiliti...

  15. Understanding the Optimal Adsorption Energies for Catalyst Screening in Heterogeneous Catalysis

    OpenAIRE

    Yang, Bo; Burch, Robbie; Hardacre, Christopher; Headdock, Gareth; Hu, P

    2014-01-01

    The fundamental understanding of the activity in heterogeneous catalysis has long been the major subject in chemistry. This paper shows the development of a two-step model to understand this activity. Using the theory of chemical potential kinetics with Bronsted-Evans-Polanyi relations, the general adsorption energy window is determined from volcano curves, using which the best catalysts can be searched. Significant insights into the reasons for catalytic activity are obtained.

  16. Modern catalysis in the synthesis of some pharmaceuticals and fine chemicals

    OpenAIRE

    Petrović Slobodan D.; Mišić-Vuković Milica M.; Mijin Dušan Ž.

    2002-01-01

    Catalysis in the synthesis of Pharmaceuticals and line chemicals nowadays becomes more and more important. Synthesis that minimizes wastes is important from the economical aspect, as well as from the environmental aspect. "Green chemistry" or "green technology" is an effort to protect the environment by increasing the efficiency of the overall synthetic processes in the chemical industry by minimizing or eliminating wasteful by-products. Modern catalytic methods in the synthesis of some Pharm...

  17. THE USAGE OF MICROWAVE ENERGY IN ANALYTICAL CHEMISTRY AREA AND PREPERATION OF CATALYSIS

    OpenAIRE

    KUŞLU, Soner; Feyza ÇAVUŞ

    2008-01-01

    In this article, microwave energy, because of its excellent properties, has been used in the analytical chemistry applications such as sample digestion, solvent extraction, sample drying, the measurement of moisture, analyt desorption and adsorption, sample clean-up, chromogenic reaction, speciation and nebulization of analytical samples, the effect of microwaves on catalysis preperation used in industry, the hypotesis and the ideas written on this matter and the examples concerned with the p...

  18. Practical Direct α-Arylation of Cyclopentanones by Palladium/Enamine Cooperative Catalysis.

    Science.gov (United States)

    Xu, Yan; Su, Tianshun; Huang, Zhongxing; Dong, Guangbin

    2016-02-12

    Direct arylation of cyclopentanones has been a long-standing challenge because of competitive self-aldol condensation and multiple arylations. Reported herein is a direct mono-α-C-H arylation of cyclopentanones with aryl bromides which is enabled by palladium/amine cooperative catalysis. This method is scalable and chemoselective with broad functional-group tolerance. Application to controlled sequential arylation of cyclopentanones has been also demonstrated. PMID:26840218

  19. Silica immobilized pincer-metal complexes : catalysis, recycling, and retrospect on active species

    OpenAIRE

    Mehendale, N.C.

    2007-01-01

    Science is continuously striving for a sustainable progress of society. This progress must be made on the economical as well as the environmental front concomitantly. Many industrial processes are being reviewed to make them environmentally more sustainable. Catalysis emerges as an important player to achieve this goal. No wonder, about 85% of the present chemical processes are run using a catalyst. Out of these about 75% are run based on heterogeneous catalysts due to their advantage of easy...

  20. Enantioselective Synthesis of Isoquinolines: Merging Chiral-Phosphine and Gold Catalysis.

    Science.gov (United States)

    Gao, Yu-Ning; Shi, Feng-Chen; Xu, Qin; Shi, Min

    2016-05-10

    The highly enantioselective synthesis of dihydroisoquinoline derivatives from aromatic sulfonated imines tethered with an alkyne moiety, through a one-pot asymmetric relay catalysis of chiral-phosphine and gold catalysts, is reported. Enantiomerically enriched dihydroisoquinoline derivatives were afforded in good yields and good-to-excellent ee values under mild conditions, based on the asymmetric aza-Morita-Baylis-Hillman reaction. Dihydroisoquinoline derivatives containing two chiral centers were also synthesized through further transformations. PMID:26990120

  1. Dithiocarbamate Complexes as Single Source Precursors to Metal Sulfide Nanoparticles for Applications in Catalysis

    OpenAIRE

    Roffey, A. R.

    2014-01-01

    Herein we report the solvothermal decomposition of a range of metal dithiocarbamate complexes for the synthesis of metal sulfide nanoparticles. Metal sulfides exist in a variety of structural phases, some of which are known to be catalytically active towards various processes. The aim of this work was to synthesise a variety of different metal sulfide phases for future catalysis testing, particularly the iron sulfide greigite (Fe3S4, a thiospinel containing Fe2+ and Fe3+) which is to be teste...

  2. Synthesis, Characterization and Applications in Catalysis of Polyoxometalate/Zeolite Composites

    OpenAIRE

    Frédéric Lefebvre

    2016-01-01

    An overview of the synthesis, characterization and catalytic applications of polyoxometalates/zeolites composites is given. The solids obtained by direct synthesis of the polyoxometalate in the presence of the zeolite are first described with their applications in catalysis. Those obtained by a direct mixing of the two components are then reviewed. In all cases, special care is taken in the localization of the polyoxometalate, inside the zeolite crystal, in mesopores or at the external surfac...

  3. Preparation and Characterisation of Activated Ni(Mn)/Mg/Al Hydrotalcites for Combustion Catalysis

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Čuba, Pavel; Kovanda, F.; Hilaire, L.; Pitchon, V.

    2002-01-01

    Roč. 76, č. 1 (2002), s. 43-53. ISSN 0920-5861. [European Congress on Catalysis EuropaCat V /5./. Limerick, 02.09.2001-07.09.2001] R&D Projects: GA ČR GA106/02/0523 Institutional research plan: CEZ:AV0Z4072921 Keywords : hydrotalcites * metal oxide catalysts * methane combustion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.146, year: 2002

  4. Functional lipid membranes: Bio-inspired nanomaterials for sensing and catalysis

    OpenAIRE

    Gruber, Benjamin

    2013-01-01

    This work describes the functionalization of biomimetic vesicle membranes by the incorporation of various synthetic amphiphiles. The presented approach enables rapid and simple development of bio-inspired nanomaterials for applications in biomolecule sensing and catalysis. Chapter 1 introduces the general concept of functional synthetic vesicle membranes and provides a brief overview about significant developments in this area. Chapter 2 describes synthesis and membrane-embedding of amp...

  5. Palladium/norbornene catalysis for selective aromatic functionalization via C-H activation

    OpenAIRE

    Fontana, Marco

    2015-01-01

    The subject of this PhD thesis is the study of new processes in homogeneous catalysis for the synthesis of selectively substituted compounds containing the biaryl unit. The methodology, discovered in our laboratory, utilizes simple and readily available starting materials to form complex molecular structures under mild conditions. It takes advantage of the catalytic system based on palladium and norbornene. The metal, the strained olefin and an aryl halide work in a cooperative way to build u...

  6. Synthesis of phosphine ligands with helical chirality for applications in asymmetric catalysis

    Czech Academy of Sciences Publication Activity Database

    Andronova, Angelina; Stará, Irena G.; Starý, Ivo

    Praha : -, 2009. s. 90-90. ISBN 978-80-02-02160-5. [ESOC 2009. European Symposium on Organic Chemistry /16./. 12.07.2009-16.07.2009, Praha] R&D Projects: GA MŠk LC512; GA ČR GA203/09/1766; GA ČR GA203/07/1664 Institutional research plan: CEZ:AV0Z40550506 Keywords : helicene * asymmetric catalysis * phosphites Subject RIV: CC - Organic Chemistry

  7. Analysis methods in the novel manner of the study of multiple muon catalysis process

    International Nuclear Information System (INIS)

    A package of calculation programs is written to create and analyze the main physical distributions related to the muon catalyzed fusion reactions in the D/T mixture. It involves the simulation of both the muon catalysis processes and registration systems with FADC. Special attention is paid to the absolute calibration problem. It follows from our consideration that in principle it is not necessary to make special calibration measurements. The programs are intended for the use in the large international project TRITON

  8. Catalysis of Hydrogen De-sorption from MgH2

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; David, Bohumil

    Ostrava: TANGER, spol. s r.o., 2011, s. 108. ISBN 978-80-87294-22-2. [Anniversary International Conference on Metallurgy and Materials METAL 2011/20th./. Brno (CZ), 18.05.2011-20.05.2011] R&D Projects: GA ČR GA106/09/0814 Institutional research plan: CEZ:AV0Z20410507 Keywords : hydrogen storag * hydrogen hydride * catalysi Subject RIV: BJ - Thermodynamics

  9. Facile Synthesis and Catalysis of Pure-Silica and Heteroatom LTA

    OpenAIRE

    Boal, Ben W.; Schmidt, Joel E.; Deimund, Mark A.; Deem, Michael W.; Henling, Lawrence M.; Brand, Stephen K.; Zones, Stacey I.; Davis, Mark E.

    2015-01-01

    Zeolite A (LTA) has many large-scale uses in separations and ion exchange applications. Because of the high aluminum content and lack of high-temperature stability, applications in catalysis, while highly desired, have been extremely limited. Herein, we report a robust method to prepare pure-silica, aluminosilicate (product Si/Al = 12–42), and titanosilicate LTA in fluoride media using a simple, imidazolium-based organic structure-directing agent. The aluminosilicate material is an active cat...

  10. On the mechanism of hydrogen evolution catalysis by proteins: A case study with bovine serum albumin

    Czech Academy of Sciences Publication Activity Database

    Doneux, T.; Ostatná, Veronika; Paleček, Emil

    2011-01-01

    Roč. 56, č. 25 (2011), s. 9337-9343. ISSN 0013-4686 R&D Projects: GA MŠk(CZ) ME09038; GA MŠk(CZ) LC06035 Grant ostatní: GA ČR(CZ) GAP301/11/2055 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : hydrogen evolution reaction * mediated catalysis * proton transfer Subject RIV: BO - Biophysics Impact factor: 3.832, year: 2011

  11. Synergistic Rhodium/Copper Catalysis: Synthesis of 1,3-Enynes and N-Aryl Enaminones.

    Science.gov (United States)

    Wang, Nan-Nan; Huang, Lei-Rong; Hao, Wen-Juan; Zhang, Tian-Shu; Li, Guigen; Tu, Shu-Jiang; Jiang, Bo

    2016-03-18

    Synergistic rhodium/copper catalysis enables new three-component coupling reactions of terminal alkynes and α-diazoketones and/or arylamines, allowing dediazotized carbene C-H insertion for the synthesis of functionalized 1,3-enynes and N-aryl enaminones with high stereoselectivity. The synthetic utility of these transformations results in subsequent C-C or/and C-N bond-forming reactions to effectively build up functional molecules with potential significance. PMID:26987884

  12. Direct asymmetric vinylogous Michael addition of cyclic enones to nitroalkenes via dienamine catalysis

    OpenAIRE

    Bencivenni, Giorgio; Galzerano, Patrizia; Mazzanti, Andrea; Bartoli, Giuseppe; Melchiorre, Paolo

    2010-01-01

    In spite of the many catalytic methodologies available for the asymmetric functionalization of carbonyl compounds at their α and β positions, little progress has been achieved in the enantioselective carbon–carbon bond formation γ to a carbonyl group. Here, we show that primary amine catalysis provides an efficient way to address this synthetic issue, promoting vinylogous nucleophilicity upon selective activation of unmodified cyclic α,β-unsaturated ketones. Specifically, we document the deve...

  13. Insights into Materials Properties from Ab Initio Theory : Diffusion, Adsorption, Catalysis & Structure

    OpenAIRE

    Blomqvist, Andreas

    2010-01-01

    In this thesis, density functional theory (DFT) calculations and DFT based ab initio molecular dynamics simulations have been employed in order to gain insights into materials properties like diffusion, adsorption, catalysis, and structure. In transition metals, absorbed hydrogen atoms self-trap due to localization of metal d-electrons. The self-trapping state is shown to highly influence hydrogen diffusion in the classical over-barrier jump temperature region. Li diffusion in Li-N-H systems ...

  14. The Role of Protein Electrostatics in Facilitating the Catalysis of DEAD-box Proteins

    OpenAIRE

    Frenz, Christopher M.

    2008-01-01

    Protein electrostatic states have been demonstrated to play crucial roles in catalysis, ligand binding, protein stability, and in the modulation of allosteric effects. Electrostatic states are demonstrated to appear conserved among DEAD-box motifs and evidence is presented that the structural changes that occur to DEAD box proteins upon ligand binding alter the DEAD-box motif electrostatics in a way the facilitates the catalytic role of the DEAD-box glutatmate.

  15. Nickel-Catalyzed Regiodivergent Opening of Epoxides with Aryl Halides: Co-Catalysis Controls Regioselectivity

    OpenAIRE

    Zhao, Yang; Weix, Daniel J.

    2013-01-01

    Epoxides are versatile intermediates in organic synthesis, but have rarely been employed in cross-coupling reactions. We report that bipyridine-ligated nickel can mediate the addition of functionalized aryl halides, a vinyl halide, and a vinyl triflate to epoxides under reducing conditions. For terminal epoxides, the regioselectivity of the reaction depends upon the co-catalyst employed. Iodide co-catalysis results in opening at the less hindered position via an iodohydrin intermediate. Titan...

  16. Kinetic Studies on the Selective Oxidation of Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-07-01

    Full Text Available Kinetic studies on the oxidation of benzyl alcohol and substituted benzyl alcohols in benzene as the reaction medium have been studied by using potassium dichromate under phase transfer catalysis (PTC. The phase transfer catalysts (PT catalysts used were tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB.  Benzyl alcohols were selectively oxidised to corresponding benzaldehydes in good yield (above 90%.  The order of reactivity among the studied benzyl alcohols is p - OCH3 > p - CH3 > - H > p - Cl.  Plots of log k2 versus Hammett's substituent constant (s has been found to be curve shaped and this suggests that there should be a continuous change in transition state with changes in substituent present in the substrate from electron donating to electron withdrawing. A suitable mechanism has been suggested in which the rate determining step involves both C - H bond cleavage and C - O bond formations in concerted manner. © 2014 BCREC UNDIP. All rights reserved.Received: 16th March 2014; Revised: 18th May 2014; Accepted: 18th May 2014[How to Cite: Bijudas, K., Bashpa, P., Nair, T.D.R. (2014. Kinetic Studies on the Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-147. (doi:10.9767/bcrec.9.2.6476.142-147][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6476.142-147] 

  17. Perspective: Defining and quantifying the role of dynamics in enzyme catalysis.

    Science.gov (United States)

    Warshel, Arieh; Bora, Ram Prasad

    2016-05-14

    Enzymes control chemical reactions that are key to life processes, and allow them to take place on the time scale needed for synchronization between the relevant reaction cycles. In addition to general interest in their biological roles, these proteins present a fundamental scientific puzzle, since the origin of their tremendous catalytic power is still unclear. While many different hypotheses have been put forward to rationalize this, one of the proposals that has become particularly popular in recent years is the idea that dynamical effects contribute to catalysis. Here, we present a critical review of the dynamical idea, considering all reasonable definitions of what does and does not qualify as a dynamical effect. We demonstrate that no dynamical effect (according to these definitions) has ever been experimentally shown to contribute to catalysis. Furthermore, the existence of non-negligible dynamical contributions to catalysis is not supported by consistent theoretical studies. Our review is aimed, in part, at readers with a background in chemical physics and biophysics, and illustrates that despite a substantial body of experimental effort, there has not yet been any study that consistently established a connection between an enzyme's conformational dynamics and a significant increase in the catalytic contribution of the chemical step. We also make the point that the dynamical proposal is not a semantic issue but a well-defined scientific hypothesis with well-defined conclusions. PMID:27179464

  18. Transition metal catalysis in the generation of petroleum and natural gas

    Science.gov (United States)

    Mango, Frank D.

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. I propose that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.

  19. NMR Computational Studies of Solid Acidity/Fundamental Studies of Catalysis by Solid Acids

    Energy Technology Data Exchange (ETDEWEB)

    James F. Haw

    2008-06-28

    This project focused on catalysis by zeolites and the synergy of spectroscopic characterization and theoretical modeling. In collaboration with the Waroquier group in Belgium we used state-of-the-art quantum chemical simulations on a supramolecular model of both the HZSM-5 zeolite and the co-catalytic hydrocarbon pool species and calculated a full catalytic cycle (including all rate constants) for methanol-to-olefin (MTO) catalysis involving a hydrocarbon pool species. This work not only represents the most robust computational analysis of a successful MTO route to date, but it also succeeds in tying together the many experimental clues. That work was featured on the cover of Angewandte Chemie. More recently we elucidated several unsuspected roles for formaldehyde in methanol to olefin catalysis. Formaldehyde proves to be a key species responsible for both the growth of the catalytically active hydrocarbon pool and its inevitable aging into deactivated polycyclic aromatic species. The apparent inevitability of formaldehyde formation at high temperatures, in particular in contact with active metal or metal oxide surfaces, may put some fundamental limitations on the economic potential of conversion of methanol to olefins.

  20. Perspective: Defining and quantifying the role of dynamics in enzyme catalysis

    Science.gov (United States)

    Warshel, Arieh; Bora, Ram Prasad

    2016-01-01

    Enzymes control chemical reactions that are key to life processes, and allow them to take place on the time scale needed for synchronization between the relevant reaction cycles. In addition to general interest in their biological roles, these proteins present a fundamental scientific puzzle, since the origin of their tremendous catalytic power is still unclear. While many different hypotheses have been put forward to rationalize this, one of the proposals that has become particularly popular in recent years is the idea that dynamical effects contribute to catalysis. Here, we present a critical review of the dynamical idea, considering all reasonable definitions of what does and does not qualify as a dynamical effect. We demonstrate that no dynamical effect (according to these definitions) has ever been experimentally shown to contribute to catalysis. Furthermore, the existence of non-negligible dynamical contributions to catalysis is not supported by consistent theoretical studies. Our review is aimed, in part, at readers with a background in chemical physics and biophysics, and illustrates that despite a substantial body of experimental effort, there has not yet been any study that consistently established a connection between an enzyme’s conformational dynamics and a significant increase in the catalytic contribution of the chemical step. We also make the point that the dynamical proposal is not a semantic issue but a well-defined scientific hypothesis with well-defined conclusions. PMID:27179464

  1. Catalysis in the 3rd Dimension: How Organic Molecules May be Formed

    Science.gov (United States)

    Freund, Friedemann; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Catalysis is often little more than a word to phenomenologically describe the fact that a reaction follows a pat1 that leads to products of an unexpected kind or of unexpected yield. Low activation energy barriers for intermediates are recognized as the most likely cause why a system deviates from the thermodynamic pull towards minimizing its free energy and ends up in a metastable state. Seldom is the mechanism known. This i: particularly true for heterogeneous catalysis under hydrothermal conditions with minerals as catalysts. It is commonly assumed that catalytic action takes place across solid-fluid interfaces and that, on the atomic level, interfaces are just 2-dimensional contacts. This makes it difficult to understand, for instance, the assembly of long-chain carboxylic (fatty) acids. 3y studying single crystals that grew from a melt in the presence of H2O and CO2, we can show: (1) that numerals take up the fluid components into solid solution, (2) that some-thing happens converting them to -educedH and C, (3) that C atoms segregate into dislocations and tie C-C bonds. The products are medium-to-long chain Cn protomolecules, with some C-H attached, pre-assembled in the dislocations. Upon solvent extraction, these proto-molecules turn into carboxylic and dicarboxylic acids. This observation suggests that, in a very elementary step, catalysis under hydrothermal conditions leading to fatty acids involves the pre-assembly of Cn entities in the interface that is not 2-D but extends into the 3rd dimension, with dislocations as synthesis sites.

  2. K2CO3 catalysis on the reactivity of top charged coke and stamp charged coke

    Science.gov (United States)

    Pang, Qing-hai; Zhang, Jian-liang; Qi, Cheng-lin; Ma, Chao; Kong, De-wen; Mao, Rui

    2013-01-01

    The catalysis of K2CO3 on the reactivity of top charged coke and stamp charged coke from Pansteel in China was studied. The coke reaction index of the stamp charged coke was 1%-2% higher than that of the top charged coke. Under the catalysis of K2CO3, the coke reaction index of both cokes approximately increased by 4%, 6%, 10% and 6% at 900, 1000, 1100 and 1200°C, respectively. The reactivity of the K-enriched stamp charged coke was 1%-2% higher than that of the K-enriched top charged coke below 1100°C. However, only negligible differences were found in the temperature zone between 1100 and 1200°C. Scanning electron microscopy images illustrated that pores in the top charged coke were smaller and equally distributed, while relatively more big pores exist non-homogenously in stamp charged coke. Due to the different processes in production, the stamp charged coke was more porous and most of the pores tended to be applanate. Cracks were observed in the microstructure of the stamp charged coke during the carbon solution reaction, implying the inferior quality of the stamp charged coke to the top charged coke at high temperature. Diffusion of K during the carbon solution reaction was studied by the energy dispersive spectrometry. It is found that K gradually spreads into the center of lumpy coke with the rising of temperature and is equally distributed on the edges of pores at 1200°C. Besides, oxidation reactions of functional groups become faster with the catalysis of K.content

  3. Asymmetric catalysis in Brazil: development and potential for advancement of Brazilian chemical industry

    International Nuclear Information System (INIS)

    The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country. (author)

  4. Electric-field enhanced performance in catalysis and solid-state devices involving gases

    Science.gov (United States)

    Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin

    2015-05-19

    Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.

  5. Site selectivity of specific reaction steps important for catalysis:CO dissociation on ruthenium surfaces

    OpenAIRE

    Nielsen, Kenneth; Nielsen, Jane Hvolbæk

    2011-01-01

    This thesis presents the results of two dierent projects, both focused on catalysis. The main part is about the investigation of the structure sensitivity of the CO dissociation reaction with STM on a Ru(0 1 54) single crystal and the second part concerns the STM structure study of the Bi/Pt(111) overlayer system. In the STM study of the structure sensitivity of the CO dissociation reaction on the Ru(0 1 54) sample, it was determined that after cooling the sample from 700K to 400K in 10-8Torr...

  6. Conversion of CO2 via Visible Light Promoted Homogeneous Redox Catalysis

    Directory of Open Access Journals (Sweden)

    Bernhard Rieger

    2012-11-01

    Full Text Available This review gives an overview on the principles of light-promoted homogeneous redox catalysis in terms of applications in CO2 conversion. Various chromophores and the advantages of different structures and metal centers as well as optimization strategies are discussed. All aspects of the reduction catalyst site are restricted to CO2 conversion. An important focus of this review is the question of a replacement of the sacrificial donor which is found in most of the current publications. Furthermore, electronic parameters of supramolecular systems are reviewed with reference to the requisite of chromophores, oxidation and reduction sites.

  7. Kokes Award for the 24th North American Catalysis Society Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Pennsylvania State Univ., University Park, PA (United States)

    2016-05-02

    The objective of the Richard. J. Kokes Travel Award program is to encourage the participation of students in the biennial North American Catalysis Society (NACS) Meetings. The Kokes Award covers a significant portion of the transportation, lodging, and conference registration costs. Eligible students must be enrolled at a North American university and need to present a paper at the meeting. The Kokes awardee will be required to contribute some time to the organizing committee to assist in meeting operations and to be present at the meeting during the entire time. Similar to the 23rd Kokes Award program, undergraduate students are also eligible for the 24th Kokes Award program.

  8. Comparison of homogeneous and heterogeneous catalysis for synthesis of biodiesel from Madhuca indica oil

    OpenAIRE

    Singh, B.; FAIZAL BUX; Y.C. SHARMA

    2011-01-01

    Biodiesel was developed by transesterification of Madhuca indica oil by homogeneous and heterogeneous catalysis. KOH and CaO were taken as homogeneous and heterogeneous catalysts, respectively. It was found that the homogeneous catalyst (KOH) took 1.0 h of reaction time, 6:1 methanol to oil molar ratio, 0.75 mass% of catalyst amount, 55±0.5 C reaction temperature for completion of the reaction. The heterogeneous catalyst (CaO) was found to give optimum yield in 2.5 h of reaction time at 8:1 ...

  9. Anionic chiral tridentate N-donor pincer ligands in asymmetric catalysis.

    Science.gov (United States)

    Deng, Qing-Hai; Melen, Rebecca L; Gade, Lutz H

    2014-10-21

    Tridentate monoanionic ligands known as "pincers" have gained a prominent place as ligands for transition metals and, more recently, for main-group metals and lanthanides. They have been widely employed as ancillary ligands for metal complexes studied inter alia in bond activation steps relevant to catalytic processes. The central formally anionic aryl or heteroaryl unit acts as an "anchor" in the coordination to the metal, which kinetically stabilizes the resulting complexes. Their stability, activity, and reactivity can be tuned by subtle modifications of substitution patterns on the pincer ligand or by modifying the donor atoms. The challenges in pincer ligand design for enantioselective catalysis have been met by their assembly from rigid heterocycles and chiral ligating units in the "wingtip" positions, which generally contain the stereochemical information. The resulting well-defined geometry and shape of the reactive sector of the molecular catalyst favor orientational control of the substrates. On the other hand, the kinetic stability allows reduced catalyst loadings. Recently, a new generation of tridentate anionic N(∧)N(∧)N pincer ligands has been developed which give rise to highly enantioselective transformations. Their applications in asymmetric catalysis have focused primarily on the asymmetric Nozaki-Hiyama-Kishi coupling of aldehydes with halogenated hydrocarbons as well as Lewis acid catalysis involving enantioselective electrophilic attack onto metal-activated β-keto esters, oxindoles, and related substrates. These include highly selective protocols for Friedel-Crafts alkylations with Michael acceptors, electrophilic fluorinations, trifluoromethylations, azidations, and alkylations and subsequent transformations. Increasingly, these stereodirecting ligands are being employed in other types of transformations, including hydrosilylations, cyclopropanations, and epoxidations. The stability and well-defined nature of the molecular catalysts have

  10. Metal-organic frameworks and their applications in catalysis; Redes metalorganicas e suas aplicacoes em catalise

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Andre Luis Dantas, E-mail: aldramos@ufs.br [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil). Departamento de Engenharia Quimica; Tanase, Stefania; Rothenberg, Gadi [Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam (Netherlands)

    2014-07-01

    Metal-organic frameworks (MOFs) form a new class of materials with well-defined yet tunable properties. These are crystalline, highly porous and exhibit strong metal-ligand interactions. Importantly, their physical and chemical properties, including pore size, pore structure, acidity, and magnetic and optical characteristics, can be tailored by choosing the appropriate ligands and metal precursors. Here we review the key aspects of synthesis and characterization of MOFs, focusing on lanthanide-based and vanadium-based materials. We also outline some of their applications in catalysis and materials science. (author)

  11. Transition processes in the novel method of the muon catalysis investigation

    International Nuclear Information System (INIS)

    The problem of modifying the interpretation of the results to be obtained with the novel method of muon catalysis investigation to take into account the fast transition processes is first considered. The results of exploring the process kinetics are compared with the ones found from the analysis of the appropriate Monte Carlo distributions. The calculation programs simulate both the kinetics and the registration system of the experiment which is now performed in the frame of the large international project TRITON. The main conclusion is that the multiplicity distribution of the fusion neutrons is 'invariant' under any assumptions of the fast transition stage

  12. Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research.

    Science.gov (United States)

    Altman, Eric I; Baykara, Mehmet Z; Schwarz, Udo D

    2015-09-15

    Although atomic force microscopy (AFM) was rapidly adopted as a routine surface imaging apparatus after its introduction in 1986, it has not been widely used in catalysis research. The reason is that common AFM operating modes do not provide the atomic resolution required to follow catalytic processes; rather the more complex noncontact (NC) mode is needed. Thus, scanning tunneling microscopy has been the principal tool for atomic scale catalysis research. In this Account, recent developments in NC-AFM will be presented that offer significant advantages for gaining a complete atomic level view of catalysis. The main advantage of NC-AFM is that the image contrast is due to the very short-range chemical forces that are of interest in catalysis. This motivated our development of 3D-AFM, a method that yields quantitative atomic resolution images of the potential energy surfaces that govern how molecules approach, stick, diffuse, and rebound from surfaces. A variation of 3D-AFM allows the determination of forces required to push atoms and molecules on surfaces, from which diffusion barriers and variations in adsorption strength may be obtained. Pushing molecules towards each other provides access to intermolecular interaction between reaction partners. Following reaction, NC-AFM with CO-terminated tips yields textbook images of intramolecular structure that can be used to identify reaction intermediates and products. Because NC-AFM and STM contrast mechanisms are distinct, combining the two methods can produce unique insight. It is demonstrated for surface-oxidized Cu(100) that simultaneous 3D-AFM/STM yields resolution of both the Cu and O atoms. Moreover, atomic defects in the Cu sublattice lead to variations in the reactivity of the neighboring O atoms. It is shown that NC-AFM also allows a straightforward imaging of work function variations which has been used to identify defect charge states on catalytic surfaces and to map charge transfer within an individual

  13. Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis

    KAUST Repository

    Dong, G.

    2011-09-15

    Alcohol synthesis is critical to the chemical and pharmaceutical industries. The addition of water across olefins to form primary alcohols (anti-Markovnikov olefin hydration) would be a broadly useful reaction but has largely proven elusive; an indirect hydroboration/oxidation sequence requiring stoichiometric borane and oxidant is currently the most practical methodology. Here, we report a more direct approach with the use of a triple relay catalysis system that couples palladium-catalyzed oxidation, acid-catalyzed hydrolysis, and ruthenium-catalyzed reduction cycles. Aryl-substituted terminal olefins are converted to primary alcohols by net reaction with water in good yield and excellent regioselectivity.

  14. Towards quantum-based modeling of enzymatic reaction pathways: Application to the acetylholinesterase catalysis

    Science.gov (United States)

    Polyakov, Igor V.; Grigorenko, Bella L.; Moskovsky, Alexander A.; Pentkovski, Vladimir M.; Nemukhin, Alexander V.

    2013-01-01

    We apply computational methods aiming to approach a full quantum mechanical treatment of chemical reactions in proteins. A combination of the quantum mechanical - molecular mechanical methodology for geometry optimization and the fragment molecular orbital approach for energy calculations is examined for an example of acetylcholinesterase catalysis. The codes based on the GAMESS(US) package operational on the 'RSC Tornado' computational cluster are applied to determine that the energy of the reaction intermediate upon hydrolysis of acetylcholine is lower than that of the enzyme-substrate complex. This conclusion is consistent with the experiments and it is free from the empirical force field contributions.

  15. Synergy between experimental and theoretical methods in the exploration of homogeneous transition metal catalysis

    DEFF Research Database (Denmark)

    Lupp, Daniel; Christensen, Niels Johan; Fristrup, Peter

    2014-01-01

    n this Perspective, we will focus on the use of both experimental and theoretical methods in the exploration of reaction mechanisms in homogeneous transition metal catalysis. We briefly introduce the use of Hammett studies and kinetic isotope effects (KIE). Both of these techniques can be...... complemented by computational chemistry – in particular in cases where interpretation of the experimental results is not straightforward. The good correspondence between experiment and theory is only possible due to recent advances within the applied theoretical framework. We therefore also highlight the...

  16. Innovative Catalysis in Organic Synthesis Oxidation, Hydrogenation, and C-X Bond Forming Reactions

    CERN Document Server

    Andersson, Pher G

    2012-01-01

    Authored by a European team of leaders in the field, this book compiles innovative approaches for C-X bond forming processes frequently applied in organic synthesis. It covers all key types of catalysis, including homogeneous, heterogeneous, and organocatalysis, as well as mechanistic and computational studies. Special attention is focused on the improvement of efficiency and sustainability of important catalytic processes, such as selective oxidations, hydrogenation and cross-coupling reactions.The result is a valuable resource for both advanced researchers in academia and industry, as well a

  17. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy.

    Science.gov (United States)

    Wang, Xuewan; Sun, Gengzhi; Li, Nan; Chen, Peng

    2016-04-21

    Quantum dots (QDs) derived from the atomically-thin two-dimensional (2D) sheets (graphene, transition metal dichalcogenide, graphitic carbon nitride, hexagonal boron nitride, and phosphorene) are emerging extraordinary zero-dimensional materials. Covering a broad spectrum of interesting optical, catalytic, electronic, chemical and electrochemical properties, these 2D-QDs promise a wide range of novel applications including imaging, sensing, cancer therapy, optoelectronics, display, catalysis, and energy. In this article, we discuss the synthesis methods and the properties of these 2D-QDs and emphasize their applications in electrocatalysis, photocatalysis, supercapacitors, batteries, and photovoltaics. PMID:26848039

  18. A Conformational Sampling Model for Radical Catalysis in Pyridoxal Phosphate- and Cobalamin-dependent Enzymes*

    OpenAIRE

    Menon, Binuraj R K; Fisher, Karl; Rigby, Stephen E. J.; Scrutton, Nigel S.; Leys, David

    2014-01-01

    Cobalamin-dependent enzymes enhance the rate of C–Co bond cleavage by up to ∼1012-fold to generate cob(II)alamin and a transient adenosyl radical. In the case of the pyridoxal 5′-phosphate (PLP) and cobalamin-dependent enzymes lysine 5,6-aminomutase and ornithine 4,5 aminomutase (OAM), it has been proposed that a large scale domain reorientation of the cobalamin-binding domain is linked to radical catalysis. Here, OAM variants were designed to perturb the interface between the cobalamin-bindi...

  19. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.

    Science.gov (United States)

    Deraedt, Christophe; Astruc, Didier

    2014-02-18

    Catalysis by palladium derivatives is now one of the most important tools in organic synthesis. Whether researchers design palladium nanoparticles (NPs) or nanoparticles occur as palladium complexes decompose, these structures can serve as central precatalysts in common carbon-carbon bond formation. Palladium NPs are also valuable alternatives to molecular catalysts because they do not require costly and toxic ligands. In this Account, we review the role of "homeopathic" palladium catalysts in carbon-carbon coupling reactions. Seminal studies from the groups of Beletskaya, Reetz, and de Vries showed that palladium NPs can catalyze Heck and Suzuki-Miyaura reactions with aryl iodides and, in some cases, aryl bromides at part per million levels. As a result, researchers coined the term "homeopathic" palladium catalysis. Industry has developed large-scale applications of these transformations. In addition, chemists have used Crooks' concept of dendrimer encapsulation to set up efficient nanofilters for Suzuki-Miyaura and selective Heck catalysis, although these transformations required high PdNP loading. With arene-centered, ferrocenyl-terminated dendrimers containing triazolyl ligands in the tethers, we designed several generations of dendrimers to compare their catalytic efficiencies, varied the numbers of Pd atoms in the PdNPs, and examined encapsulation vs stabilization. The catalytic efficiencies achieved "homeopathic" (TON = 540 000) behavior no matter the PdNP size and stabilization type. The TON increased with decreasing the Pd/substrate ratio, which suggested a leaching mechanism. Recently, we showed that water-soluble arene-centered dendrimers with tri(ethylene glycol) (TEG) tethers stabilized PdNPs involving supramolecular dendritic assemblies because of the interpenetration of the TEG branches. Such PdNPs are stable and retain their "homeopathic" catalytic activities for Suzuki-Miyaura reactions for months. (TONs can reach 2.7 × 10(6) at 80 °C for aryl

  20. Supported Ionic Liquid Phase (SILP) Catalysis for the Production of Acetic acid by Methanol Carbonylation

    DEFF Research Database (Denmark)

    Hanning, Christopher William

    The work presented here is focused on the development of a new reaction process. It applies Supported Ionic Liquid Phase (SILP) catalysis to a specific reaction. By reacting methanol and carbon monoxide over a rhodium catalyst, acetic acid can be formed. This reaction is important on a large scale...... at the beginning with the construction of a suitable test reactor, then followed by the synthesis and testing of all the catalysts reported. A variety of nitrogen based ionic liquids were initially tested, giving good results and stability in the system. Later a number of phosphonium based salts were...

  1. Donor-Flexible Nitrogen Ligands for Efficient Iridium-Catalyzed Water Oxidation Catalysis.

    Science.gov (United States)

    Navarro, Miquel; Li, Mo; Müller-Bunz, Helge; Bernhard, Stefan; Albrecht, Martin

    2016-05-10

    A pyridylideneamide ligand with variable donor properties owing to a pronounced zwitterionic and a neutral diene-type resonance structure was used as a dynamic ligand at a Cp* iridium center to facilitate water oxidation catalysis, a reaction that requires the stabilization of a variety of different iridium oxidation states and that is key for developing an efficient solar fuel device. The ligand imparts high activity (nearly three-fold increase of turnover frequency compared to benchmark systems), and exceptionally high turnover numbers, which indicate a robust catalytic cycle and little catalyst degradation. PMID:26919306

  2. Copper Phthalocyanine Catalysis to Oxidation of Adrenaline by Oxygen and Its Application in Adrenaline Detection

    Institute of Scientific and Technical Information of China (English)

    HUANG Jun; LI Mingtian; TANG Yan; FANG Hua; DING Liyun

    2008-01-01

    The oxidation of adrenaline by dioxygen using copper phthalocyanine (CuPc) as the catalyzer was studied. CuPc has the optimal catalytic pH of 8.0 and the optimal catalytic temperature of 55 ℃. It also has good storage and operation stability. The fiber optic adrenaline biosensor based on CuPc catalysis and fluorescence quenching was fabricated and studied. This sensor has the detection range of 7.0×10-5 -1.5×10-4 mol/L, the response time of 4 min, good reproducibility and stability.

  3. Solvation dynamics and enzyme catalysis in a designed enzyme undergoing directed evolution

    Science.gov (United States)

    Schreck, Carl; Head-Gordon, Teresa

    2014-03-01

    We explore whether catalysis of a de novo designed enzyme-substrate complex is correlated to necessary solvent fluctuations to induce a chemical reaction. By studying a designed KEMP Eliminase as it goes through rounds of directed evolution to improve it's catalytic activity, we have found that catalytic activity correlates with an increase in density and structure of water near the active site. This suggests fluctuations in the solvation water near the active site couple to fluctuations in KEMP Eliminase to facilitate the catalytic process. To flesh this idea out, we are studying the progression of vibrational properties and cooperative fluctuations of solvation water by simulating the terahertz observable.

  4. Asymmetric dual catalysis via fragmentation of a single rhodium precursor complex.

    Science.gov (United States)

    Song, Liangliang; Gong, Lei; Meggers, Eric

    2016-06-01

    A strategy for dual transition metal catalysis and organocatalysis is reported via the in situ disintegration of a single rhodium complex. The hereby generated chiral Lewis acid and l-β-phenylalanine synergistically catalyze the Michael addition of α,α-disubstituted aldehydes to α,β-unsaturated 2-acyl imidazoles under the formation of vicinal quaternary/tertiary stereocenters. Conveniently, the chiral-at-metal rhodium catalyst can be synthesized in just two steps starting from rhodium trichloride without the need for any chromatography. PMID:27231188

  5. Contribution of a Low-Barrier Hydrogen Bond to Catalysis Is Not Significant in Ketosteroid Isomerase

    OpenAIRE

    Jang, Do Soo; Choi, Gildon; Cha, Hyung Jin; Shin, Sejeong; Hong, Bee Hak; Lee, Hyeong Ju; Lee, Hee Cheon; Choi, Kwan Yong

    2015-01-01

    Low-barrier hydrogen bonds (LBHBs) have been proposed to have important influences on the enormous reaction rate increases achieved by many enzymes. Δ5-3-ketosteroid isomerase (KSI) catalyzes the allylic isomerization of Δ5-3-ketosteroid to its conjugated Δ4-isomers at a rate that approaches the diffusion limit. Tyr14, a catalytic residue of KSI, has been hypothesized to form an LBHB with the oxyanion of a dienolate steroid intermediate generated during the catalysis. The unusual chemical shi...

  6. Critical endpoint and inverse magnetic catalysis for finite temperature and density quark matter in a magnetic background

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, M., E-mail: marco.ruggieri@lns.infn.it [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95125 Catania (Italy); Oliva, L. [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Castorina, P. [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN-CT, Via S. Sofia 62, I-95123 Catania (Italy); Gatto, R. [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneve 4 (Switzerland); Greco, V. [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy)

    2014-06-27

    In this article we study chiral symmetry breaking for quark matter in a magnetic background, B, at finite temperature and quark chemical potential, μ, making use of the Ginzburg–Landau effective action formalism. As a microscopic model to compute the effective action we use the renormalized quark–meson model in the chiral limit. Our main goal is to study the evolution of the critical endpoint, CP, as a function of the magnetic field strength, and investigate the realization of inverse magnetic catalysis at finite chemical potential. We find that the phase transition at zero chemical potential is always of the second order; for small and intermediate values of B, CP moves towards small μ, while for larger B it moves towards moderately larger values of μ. Our results are in agreement with the inverse magnetic catalysis scenario at finite chemical potential and not too large values of the magnetic field, while at larger B direct magnetic catalysis sets in.

  7. A chemical route to the formation of water in circumstellar envelopes around carbon-rich asymptotic branch stars: Fischer-Tropsch catalysis

    Science.gov (United States)

    Willacy, K.

    2004-01-01

    Fischer-Tropsch catalysis has been suggested as a means of driving hydrocarbon chemistry in oxygen rich regions such as the protosolar nebula. In addition to producing hydrocarbons, Fischer-Tropsch catalysis also produces water, and it is therefore possible that such processes could account for the recent observations of water in the circumstellar envelope of asymptotic giant branch star IRC +10216.

  8. Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots

    Czech Academy of Sciences Publication Activity Database

    Teplý, Filip

    2011-01-01

    Roč. 76, č. 7 (2011), s. 859-917. ISSN 0010-0765 R&D Projects: GA ČR GAP207/10/2391 Institutional research plan: CEZ:AV0Z40550506 Keywords : Ruthenium complexes * catalysis with dyes * visible light photoredox catalysis * photocatalysis * review Subject RIV: CC - Organic Chemistry Impact factor: 1.283, year: 2011

  9. N-Heterocyclic carbene/Brønsted acid cooperative catalysis as a powerful tool in organic synthesis

    Directory of Open Access Journals (Sweden)

    Rob De Vreese

    2012-03-01

    Full Text Available The interplay between metals and N-heterocyclic carbenes (NHCs has provided a window of opportunities for the development of novel catalytic strategies within the past few years. The recent successful combination of Brønsted acids with NHCs has added a new dimension to the field of cooperative catalysis, enabling the stereoselective synthesis of functionalized pyrrolidin-2-ones as valuable scaffolds in heterocyclic chemistry. This Commentary will briefly highlight the concept of N-heterocyclic carbene/Brønsted acid cooperative catalysis as a new and powerful methodology in organic chemistry.

  10. Refinery, petrochemistry and environmental protection - contributions of heterogeneous catalysis. Raffinerie, Petrochemie und Umweltschutz - Beitraege der heterogenen Katalyse

    Energy Technology Data Exchange (ETDEWEB)

    Polanek, P. (BASF AG, Ludwigshafen am Rhein (Germany)); Posselt, D. (BASF AG, Ludwigshafen am Rhein (Germany)); Herion, C. (BASF AG, Ludwigshafen am Rhein (Germany))

    Already today heterogeneous catalysis provides essential contributions to environmental protection in the areas of refinery and petrochemicals production. Main points are the removal of environment polluting compounds, the purification and upgrading of products and the development of highly selective catalysts and processes. For each of these main points the essential role of the catalyst and important process parameters are discussed by typical examples. These examples are the catalytic combustion of industrial off-gases, the hydroraffination of paraffins to food grade quality and the selective hydrogenation of butadiene-rich streams. Finally, a short outlook to future challenges to heterogeneous catalysis under the aspect of environmental protection is given. (orig.)

  11. Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species

    Science.gov (United States)

    Pike, Sebastian D.; Weller, Andrew S.

    2015-01-01

    Acting as a bridge between the heterogeneous and homogeneous realms, the use of discrete, well-defined, solid-state organometallic complexes for synthesis and catalysis is a remarkably undeveloped field. Here, we present a review of this topic, focusing on describing the key transformations that can be observed at a transition-metal centre, as well as the use of well-defined organometallic complexes in the solid state as catalysts. There is a particular focus upon gas–solid reactivity/catalysis and single-crystal-to-single-crystal transformations. PMID:25666064

  12. Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies

    Science.gov (United States)

    Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun

    2016-01-01

    Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions. PMID:27405843

  13. Inverse Magnetic Catalysis within a Confining Contact Interaction Model for Quarks

    CERN Document Server

    Ahmad, Aftab

    2016-01-01

    We evaluate the impact of an external magnetic field on the chiral symmetry and confinement-deconfinement transition temperatures by using a vector-vector contact interaction model for quarks regularized so as to include an explicit confining scale in the corresponding gap equation. Exploring the evolution of the chiral condensate and the confining scale with temperature $T$ and magnetic field strength $eB$ ($e$ represents the fundamental electric charge), we determine the pseudo-critical temperatures for the chiral ($T_c^\\chi$) and deconfinement ($T_c^c$) transitions from their inflection points, respectively. By construction, $T_c^\\chi= T_c^c$ in the chiral limit. Within a mean field approximation, we observe the magnetic catalysis phenomenon, characterized by a rising behavior of $T_c^\\chi$ and $T_c^c$ with growing $eB$. Considering a lattice inspired running coupling which monotonically decreases with $eB$, inverse magnetic catalysis takes place in our model. Our findings are also in agreement with predic...

  14. Residue 182 influences the second step of protein-tyrosine phosphatase-mediated catalysis

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Guo, X.; Møller, K.B.;

    2004-01-01

    Previous enzyme kinetic and structural studies have revealed a critical role for Asp(181) (PTP1B numbering) in PTP (protein-tyrosine phosphatase)-mediated catalysis. In the E-P (phosphoenzyme) formation step, Asp(181) functions as a general acid, while in the E-P hydrolysis step it acts as a gene......Previous enzyme kinetic and structural studies have revealed a critical role for Asp(181) (PTP1B numbering) in PTP (protein-tyrosine phosphatase)-mediated catalysis. In the E-P (phosphoenzyme) formation step, Asp(181) functions as a general acid, while in the E-P hydrolysis step it acts...... as a general base. Most of our understanding of the role of Asp(181). is derived from studies with the Yersinia PTP and the mammalian PTP1B, and to some extent also TC (T-cell)-PTP and, the related PTPalpha and PTPepsilon. The neighbouring residue 182 is a phenylalanine in these four mammalian enzymes......, in comparison with Phe(182)-PTPs, have significantly decreased k(cat) values, and to a lesser degree, decreased k(cat)/K-m values. Combined enzyme kinetic, X-ray crystallographic and molecular dynamics studies indicate that the effect of His(182) is due to interactions with Asp(181) and with Gln(262). We...

  15. Structure and catalysis of acylaminoacyl peptidase: closed and open subunits of a dimer oligopeptidase.

    Science.gov (United States)

    Harmat, Veronika; Domokos, Klarissza; Menyhárd, Dóra K; Palló, Anna; Szeltner, Zoltán; Szamosi, Ilona; Beke-Somfai, Tamás; Náray-Szabó, Gábor; Polgár, László

    2011-01-21

    Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism. PMID:21084296

  16. A new paradigm of DNA synthesis: three-metal-ion catalysis.

    Science.gov (United States)

    Yang, Wei; Weng, Peter J; Gao, Yang

    2016-01-01

    Enzyme catalysis has been studied for over a century. How it actually occurs has not been visualized until recently. By combining in crystallo reaction and X-ray diffraction analysis of reaction intermediates, we have obtained unprecedented atomic details of the DNA synthesis process. Contrary to the established theory that enzyme-substrate complexes and transition states have identical atomic composition and catalysis occurs by the two-metal-ion mechanism, we have discovered that an additional divalent cation has to be captured en route to product formation. Unlike the canonical two metal ions, which are coordinated by DNA polymerases, this third metal ion is free of enzyme coordination. Its location between the α- and β-phosphates of dNTP suggests that the third metal ion may drive the phosphoryltransfer from the leaving group opposite to the 3'-OH nucleophile. Experimental data indicate that binding of the third metal ion may be the rate-limiting step in DNA synthesis and the free energy associated with the metal-ion binding can overcome the activation barrier to the DNA synthesis reaction. PMID:27602203

  17. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip

    Science.gov (United States)

    Navin, Chelliah V.; Krishna, Katla Sai; Theegala, Chandra S.; Kumar, Challa S. S. R.

    2016-03-01

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors.Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06752a

  18. Implications of microbial redox catalysis in analogue systems for repository safety cases - 16336

    International Nuclear Information System (INIS)

    A detailed assessment of studies of oxidising redox fronts around fractures at depth in otherwise 'reducing' environments suggests that the usual explanation, in terms of past disturbances that have resulted in deep penetration of oxidising water, are incompatible with hydrogeological and/or geochemical observations. An alternative hypothesis, microbial catalysis of kinetically slow or hindered reactions involving oxyanions such as sulphate or carbonate, appears potentially more credible. Although still not always taken into account by the geochemical community, the role of microbial metabolism in low temperature geochemistry is supported by the rapidly expanding database on subsurface microbial populations. These populations are demonstrated to be viable and, therefore, could potentially be active at levels close to or below current detection limits in deep geological systems. Indeed, inspection of information available from several analogue studies or repository site characterisation programmes suggests that such activity may explain some of the geochemical anomalies encountered. This paper examines the current (indirect) evidence for microbial redox catalysis in relevant subsurface rock matrix environments and considers the implications that this would have for the development of site understanding - and in particular the identification of factors that may distinguish between different locations during site selection. Further, it examines the wider implications of more extensive roles of microbes in repository systems on the overall post-closure safety case and the need for further focused analogue studies to develop answers to these open questions. (authors)

  19. Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies

    Science.gov (United States)

    Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun

    2016-07-01

    Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions.

  20. Surface science and model catalysis with ionic liquid-modified materials.

    Science.gov (United States)

    Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M

    2011-06-17

    Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. PMID:21520462

  1. Carbon ceramic electrodes obtained by basic catalysis of sol–gel process

    International Nuclear Information System (INIS)

    Highlights: • The CCE prepared by basic catalysis of sol–gel process are more porous. • The synthesized electrodes showed higher sensitivity. • The preparation conditions of CCE were obtained with factorial design. - Abstract: The preparation and characterization of carbon ceramic electrodes (CCEs) produced by the sol–gel method was reported. Different parameters for the manufacture of CCE were studied. Some factors such as the preparation method, type of precursor and catalyst, directly influence the conductive properties, mechanical and morphological characteristics of CCEs, and these are reflected in their electrochemical response. Such factors were evaluated using a 24 (two factors and four levels) factorial design analyzing the anodic peak currents (Ipa) and the variation of peak potential (ΔEp) responses of the respective cyclic voltammograms in presence of potassium ferrocyanide. Analyzing the set of results obtained from cyclic voltammetry, a higher reversibility was observed for the electrodes prepared by basic catalysis using methyltrimethoxysilicate, MTMS, as Si precursor. It is suggested that the obtained material presents a porous morphological structure, providing higher reversibility and better definition of voltammetric peaks. These electrodes were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XDR)

  2. Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility.

    Science.gov (United States)

    Sorndech, Waraporn; Meier, Sebastian; Jansson, Anita M; Sagnelli, Domenico; Hindsgaul, Ole; Tongta, Sunanta; Blennow, Andreas

    2015-11-01

    Starch provides our main dietary caloric intake and over-consumption of starch-containing foods results in escalating life-style disease including diabetes. By increasing the content of α-1,6 branch points in starch, digestibility by human amylolytic enzymes is expected to be retarded. Aiming at generating a soluble and slowly digestible starch by increasing the content and changing the relative positioning of the branch points in the starch molecules, we treated cassava starch with amylomaltase (AM) and branching enzyme (BE). We performed a detailed molecular analysis of the products including amylopectin chain length distribution, content of α-1,6 glucosidic linkages, absolute molecular weight distribution and digestibility. Step-by-step enzyme catalysis was the most efficient treatment, and it generated branch structures even more extreme than those of glycogen. All AM- and BE-treated samples showed increased resistance to degradation by porcine pancreatic α-amylase and glucoamylase as compared to cassava starch. The amylolytic products showed chain lengths and branching patterns similar to the products obtained from glycogen. Our data demonstrate that combinatorial enzyme catalysis provides a strategy to generate potential novel soluble α-glucan ingredients with low dietary digestibility assets. PMID:26256365

  3. Molecular Heterogeneous Catalysis: a Single-Site Zeolite-Supported Rhodium Complex for Acetylene Cyclotrimerization

    International Nuclear Information System (INIS)

    By anchoring metal complexes to supports, researchers have attempted to combine the high activity and selectivity of molecular homogeneous catalysis with the ease of separation and lack of corrosion of heterogeneous catalysis. However, the intrinsic nonuniformity of supports has limited attempts to make supported catalysts truly uniform. We report the synthesis and performance of such a catalyst, made from (Rh(C2H4)2(CH3COCHCOCH3)) and a crystalline support, dealuminated Y zeolite, giving {Rh(C2H4)2} groups anchored by bonds to two zeolite oxygen ions, with the structure determined by extended X-ray absorption fine structure (EXAFS) spectroscopy and the uniformity of the supported complex demonstrated by 13C NMR spectroscopy. When the ethylene ligands are replaced by acetylene, catalytic cyclotrimerization to benzene ensues. Characterizing the working catalyst, we observed evidence of intermediates in the catalytic cycle by NMR spectroscopy. Calculations at the level of density functional theory confirmed the structure of the as-synthesized supported metal complex determined by EXAFS spectroscopy. With this structure as an anchor, we used the computational results to elucidate the catalytic cycle (including transition states), finding results in agreement with the NMR spectra.

  4. Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD

    CERN Document Server

    Bali, G S; Endrodi, G; Gruber, F; Schaefer, A

    2013-01-01

    We study the influence of strong external magnetic fields on gluonic and fermionic observables in the QCD vacuum at zero and nonzero temperatures, via lattice simulations with N_f=1+1+1 staggered quarks of physical masses. The gluonic action density is found to undergo magnetic catalysis at low temperatures and inverse magnetic catalysis near and above the transition temperature, similar to the quark condensate. Moreover, the gluonic action develops an anisotropy: the chromo-magnetic field parallel to the external field is enhanced, while the chromo-electric field in this direction is suppressed. We demonstrate that the same hierarchy is obtained using the Euler-Heisenberg effective action. Conversely, the topological charge density correlator does not reveal a significant anisotropy up to magnetic fields eB~1 GeV^2. Furthermore, we show that the pressure remains isotropic even for nonzero magnetic fields, if it is defined through a compression of the system at fixed external field. In contrast, if the flux o...

  5. Multi-Scale Computational Enzymology: Enhancing Our Understanding of Enzymatic Catalysis

    Directory of Open Access Journals (Sweden)

    Rami Gherib

    2013-12-01

    Full Text Available Elucidating the origin of enzymatic catalysis stands as one the great challenges of contemporary biochemistry and biophysics. The recent emergence of computational enzymology has enhanced our atomistic-level description of biocatalysis as well the kinetic and thermodynamic properties of their mechanisms. There exists a diversity of computational methods allowing the investigation of specific enzymatic properties. Small or large density functional theory models allow the comparison of a plethora of mechanistic reactive species and divergent catalytic pathways. Molecular docking can model different substrate conformations embedded within enzyme active sites and determine those with optimal binding affinities. Molecular dynamics simulations provide insights into the dynamics and roles of active site components as well as the interactions between substrate and enzymes. Hybrid quantum mechanical/molecular mechanical (QM/MM can model reactions in active sites while considering steric and electrostatic contributions provided by the surrounding environment. Using previous studies done within our group, on OvoA, EgtB, ThrRS, LuxS and MsrA enzymatic systems, we will review how these methods can be used either independently or cooperatively to get insights into enzymatic catalysis.

  6. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide

    Science.gov (United States)

    Chou, Stanley S.; Sai, Na; Lu, Ping; Coker, Eric N.; Liu, Sheng; Artyushkova, Kateryna; Luk, Ting S.; Kaehr, Bryan; Brinker, C. Jeffrey

    2015-10-01

    Establishing processing-structure-property relationships for monolayer materials is crucial for a range of applications spanning optics, catalysis, electronics and energy. Presently, for molybdenum disulfide, a promising catalyst for artificial photosynthesis, considerable debate surrounds the structure/property relationships of its various allotropes. Here we unambiguously solve the structure of molybdenum disulfide monolayers using high-resolution transmission electron microscopy supported by density functional theory and show lithium intercalation to direct a preferential transformation of the basal plane from 2H (trigonal prismatic) to 1T' (clustered Mo). These changes alter the energetics of molybdenum disulfide interactions with hydrogen (ΔGH), and, with respect to catalysis, the 1T' transformation renders the normally inert basal plane amenable towards hydrogen adsorption and hydrogen evolution. Indeed, we show basal plane activation of 1T' molybdenum disulfide and a lowering of ΔGH from +1.6 eV for 2H to +0.18 eV for 1T', comparable to 2H molybdenum disulfide edges on Au(111), one of the most active hydrogen evolution catalysts known.

  7. No inverse magnetic catalysis in the QCD hard and soft wall models

    Science.gov (United States)

    Dudal, David; Granado, Diego R.; Mertens, Thomas G.

    2016-06-01

    In this paper, we study the influence of an external magnetic field in holographic QCD models where the backreaction is modeled via an appropriate choice of the background metric. We add a phenomenological soft wall dilaton to incorporate better IR behavior (confinement). Elaborating on previous studies conducted by [K. A. Mamo, J. High Energy Phys. 05 (2015) 121.], we first discuss the Hawking-Page transition, the dual of the deconfinement transition, as a function of the magnetic field. We confirm that the critical deconfinement temperature can drop with the magnetic field. Secondly, we study the quark condensate holographically as a function of the applied magnetic field and demonstrate that this model does not exhibit inverse magnetic catalysis at the level of the chiral transition. The quest for a holographic QCD model that qualitatively describes the inverse magnetic catalysis at finite temperature is thus still open. Throughout this work, we pay special attention to the different holographic parameters and we attempt to fix them by making the link to genuine QCD as close as possible. This leads to several unanticipated and so far overlooked complications (such as the relevance of an additional length scale ℓc in the confined geometry) that we discuss in detail.

  8. Substrate Recognition and Catalysis by the Cofactor-Independent Dioxygenase DpgC+

    Energy Technology Data Exchange (ETDEWEB)

    Fielding,E.; Widboom, P.; Bruner, S.

    2007-01-01

    The enzyme DpgC belongs to a small class of oxygenases not dependent on accessory cofactors for activity. DpgC is in the biosynthetic pathway for the nonproteinogenic amino acid 3, 5-dihydroxyphenylglycine in actinomycetes bacteria responsible for the production of the vancomycin/teicoplanin family of antibiotic natural products. The X-ray structure of DpgC confirmed the absence of cofactors and defined a novel hydrophobic dioxygen binding pocket adjacent to a bound substrate analogue. In this paper, the role specific amino acids play in substrate recognition and catalysis is examined through biochemical and structural characterization of site-specific enzyme mutations and alternate substrates. The results establish the importance of three amino acids, Arg254, Glu299, and Glu189, in the chemistry of DpgC. Arg254 and Glu189 join to form a specific contact with one of the phenolic hydroxyls of the substrate, and this interaction plays a key role in both substrate recognition and catalysis. The X-ray crystal structure of Arg254Lys was determined to address the role this residue plays in the chemistry. In addition, characterization of alternate substrate analogues demonstrates the presence and position of phenol groups are necessary for both enzyme recognition and downstream oxidation chemistry. Overall, this work defines the mechanism of substrate recognition and specificity by the cofactor-independent dioxygenase DpgC.

  9. An aptamer assay using rolling circle amplification coupled with thrombin catalysis for protein detection.

    Science.gov (United States)

    Guo, Limin; Hao, Lihua; Zhao, Qiang

    2016-07-01

    We describe a sensitive aptamer-based sandwich assay for protein detection on microplate by using rolling circle amplification (RCA) coupled with thrombin catalysis. This assay takes advantage of RCA generating long DNA oligonucleotides with repeat thrombin-binding aptamer sequence, specific aptamer affinity binding to achieve multiple thrombin labeling, and enzyme activity of thrombin for signal generation. Protein target is specifically captured by antibody-coated microplate. Then, an oligonucleotide containing an aptamer for protein and a primer sequence is added to form a typical sandwich structure. Following a template encoded with complementary sequence of aptamer for thrombin, RCA reaction extends the primer sequence into a long oligonucleotide. Many thrombin molecules bind with the RCA product. Thrombin catalyzes the conversion of its chromogenic or fluorogenic peptide substrates into detectable products for final quantification of protein targets. We applied this strategy to the detection of a model protein target, platelet-derived growth factor-BB (PDGF-BB). Due to double signal amplifications from RCA and thrombin catalysis, this assay enabled the detection of PDGF-BB as low as 3.1 pM when a fluorogenic peptide substrate was used. This assay provides a new way for signal generation in RCA-involved assay through direct thrombin labeling, circumventing time-consuming preparation of enzyme-conjugate and affinity probes. This method has promise for a variety of analytical applications. PMID:27108282

  10. Chlorobenzene degradation by electro-heterogeneous catalysis in aqueous solution: intermediates and reaction mechanism

    Institute of Scientific and Technical Information of China (English)

    WANG Jiade; MEI Yu; LIU Chenliang; CHEN Jianmeng

    2008-01-01

    This study was performed to investigate the variables that influence chlorobenzene (CB) degradation in aqueous solution by electro-heterogeneous catalysis. The effects of current density, pH, and electrolyte concentration on CB degradation were determined. The degradation efficiency of CB was almost 100% with an initial CB concentration of 50 mg/L, current density 15 mA/cm2, initial pH 10, electrolyte concentration 0.1 mol/L, and temperature 25℃ after 90 min of reaction. Under the same conditions, the degradation efficiency of CB was only 51% by electrochemical (EC) process, which showed that electro-heterogeneous catalysis was more efficient than EC alone. The analysis results of Purge-and-Trap chromatography-mass spectrometry (P&T/GC/MS) and ion chromatography the release of Cl-. Further oxidation of phenol and biphenyl produced p-Vinylbenzoic acid and hydroquinol. Finally, the compounds were oxidized to butenedioic acid and other small-molecule acids.

  11. Combining the Benefits of Homogeneous and Heterogeneous Catalysis with Tunable Solvents and Nearcritical Water

    Directory of Open Access Journals (Sweden)

    Charles A. Eckert

    2010-11-01

    Full Text Available The greatest advantage of heterogeneous catalysis is the ease of separation, while the disadvantages are often limited activity and selectivity.  We report solvents that use tunable phase behavior to achieve homogeneous catalysis with ease of separation.  Tunable solvents are homogeneous mixtures of water or polyethylene glycol with organics such as acetonitrile, dioxane, and THF that can be used for homogeneously catalyzed reactions. Modest pressures of a soluble gas, generally CO2, achieve facile post-reaction heterogeneous separation of products from the catalyst. Examples shown here are rhodium-catalyzed hydroformylation of 1-octene and p-methylstyrene and palladium catalyzed C-O coupling to produce o-tolyl-3,5-xylyl ether and 3,5-di-tert-butylphenol. Both were successfully carried out in homogeneous tunable solvents followed by separation efficiencies of up to 99% with CO2 pressures of 3 MPa. Further examples in tunable solvents are enzyme catalyzed reactions such as kinetic resolution of rac-1-phenylethyl acetate and hydrolysis of 2-phenylethyl acetate (2PEA to 2-phenylethanol (2PE. Another tunable solvent is nearcritical water (NCW, whose unique properties offer advantages for developing sustainable alternatives to traditional processes. Some examples discussed are Friedel-Crafts alkylation and acylation, hydrolysis of benzoate esters, and water-catalyzed deprotection of N-Boc-protected amine compounds.

  12. SYNTHESIS OF ACRYLIC ESTERS IN PHASE TRANSFER CATALYSIS: KINETICS AND ECOLOGICAL ASPECTS

    Directory of Open Access Journals (Sweden)

    GAGIK TOROSYAN

    2012-06-01

    Full Text Available Phase-Transfer Catalysis (PTC technology is used in the commercial manufacture and also in pollution mitigation treatment processes. In the paper is demonstrated the synthesis of esters of acrylic and metacrylic acids, which have wide applications in the industry for the synthesis of unique polymeric materials, by phase transfer catalysis method. It is necessary to notice that the synthesis of acrylic acids in PTC medium is more important because that compounds are more sensitive at acidic and basic conditions. Here is shown that the offered method has more advantages in comparison with the traditional methods. PTC is characterized by a higher degree of conversion of raw materials into useful products, smaller material and power resources consumption. The offered method for acrylic ester synthesis in comparison with the traditional methods has more advantages: higher process rates, mild reaction conditions, allowing lower energy costs, the complete elimination of hazardous and dangerous organic solvents, all leading to a sharp reduction of air pollution, and volume of generated wastewaters.

  13. Routes to covalent catalysis by reactive selection for nascent protein nucleophiles.

    Science.gov (United States)

    Reshetnyak, Andrey V; Armentano, Maria Francesca; Ponomarenko, Natalia A; Vizzuso, Domenica; Durova, Oxana M; Ziganshin, Rustam; Serebryakova, Marina; Govorun, Vadim; Gololobov, Gennady; Morse, Herbert C; Friboulet, Alain; Makker, Sudesh P; Gabibov, Alexander G; Tramontano, Alfonso

    2007-12-26

    Reactivity-based selection strategies have been used to enrich combinatorial libraries for encoded biocatalysts having revised substrate specificity or altered catalytic activity. This approach can also assist in artificial evolution of enzyme catalysis from protein templates without bias for predefined catalytic sites. The prevalence of covalent intermediates in enzymatic mechanisms suggests the universal utility of the covalent complex as the basis for selection. Covalent selection by phosphonate ester exchange was applied to a phage display library of antibody variable fragments (scFv) to sample the scope and mechanism of chemical reactivity in a naive molecular library. Selected scFv segregated into structurally related covalent and noncovalent binders. Clones that reacted covalently utilized tyrosine residues exclusively as the nucleophile. Two motifs were identified by structural analysis, recruiting distinct Tyr residues of the light chain. Most clones employed Tyr32 in CDR-L1, whereas a unique clone (A.17) reacted at Tyr36 in FR-L2. Enhanced phosphonylation kinetics and modest amidase activity of A.17 suggested a primitive catalytic site. Covalent selection may thus provide access to protein molecules that approximate an early apparatus for covalent catalysis. PMID:18044899

  14. Negative-Ion Catalysis of Methane to Methanol without CO2 Emission

    Science.gov (United States)

    Tesfamichael, A.; Suggs, K.; Felfli, Z.; Msezane, A. Z.

    2013-05-01

    We have carried out a theoretical investigation of the catalytic activities of the atomic Y-, Ru-, At-, In-, Pd-, Ag-, Os- and Pt- ions for the selective partial oxidation of methane to methanol without CO2 emission. The objective was to identify effective atomic negative ion catalysts using the data for the atomic Au- ion as the benchmark. The role of the atomic negative ions in catalysis is essentially to disrupt the C-H bonding in CH4 oxidation thereby eliminate the competition from the carbon dioxide formation. Dispersion-corrected density-functional theory has been used for the investigation. From the energy barrier calculations and the thermodynamics of the reactions, we conclude that the catalytic effect of the atomic Ag-, At-, Ru-, and Os- ions is higher than that of the atomic Au- ion catalysis of CH4 conversion to methanol. By controlling the temperature around 290, 300, 310, 320 and 325 K methane can be completely oxidized to methanol without the emission of the CO2 through the atomic Os-, Ag-, At-, Ru- and Au- ion catalysts, respectively. We conclude by recommending the investigation of the catalytic activities of combinations of the above negative ions for significant enhancement of the selective partial oxidation of methane to methanol. Research supported by Army Research Office (Grant W911NF-11-1-0194); the US DOE, Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research and AFOSR (Grants FA9550-10-1-0254).

  15. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization

  16. Proton-Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    International Nuclear Information System (INIS)

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pKa units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization of

  17. Heterogeneous Catalysis

    OpenAIRE

    Schlögl, R.

    2015-01-01

    A heterogeneous catalyst is a functional material that continually creates active sites with its reactants under reaction conditions. These sites change the rates of chemical reactions of the reactants localized on them without changing the thermodynamic equilibrium between the materials.

  18. Illustrating Catalysis with Interlocking Building Blocks: Correlation between Structure of a Metallocene Catalyst and the Stereoregularity of Polypropylene

    Science.gov (United States)

    Horikoshi, Ryo; Kobayashi, Yoji; Kageyama, Hiroshi

    2013-01-01

    Catalysis with transition-metal complexes is a part of the inorganic chemistry curriculum and a challenging topic for upper-level undergraduate and graduate students. A hands-on teaching aid has been developed for use during conventional lectures to help students understand these catalytic reactions. A unique method of illustrating the…

  19. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    Science.gov (United States)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified. PMID:23556828

  20. Thermodynamic Properties of Mixtures Containing Ionic Liquids Base on Bis[Trifluoromthyl) Sulfonyl] Imide for Application in Homogeneous Catalysis

    Czech Academy of Sciences Publication Activity Database

    Machanová, Karolina; Bendová, Magdalena; Jacquemin, J.; Troncoso, J.; Wagner, Zdeněk

    -: -, 2012, s. 31. ISBN N. [International Symposium on Solubility Phenomena and Related Equilibrium Processes /15./. Xining (CN), 23.07.2012-27.07.2012] Institutional support: RVO:67985858 Keywords : ionic liquids * homogeneous catalysis * experimental data Subject RIV: CF - Physical ; Theoretical Chemistry http://issp2012.csp.escience.cn/dct/page/1

  1. First-principles kinetic modeling in heterogeneous catalysis: an industrial perspective on best-practice, gaps and needs

    OpenAIRE

    Sabbe, Maarten; Reyniers, Marie-Françoise; Reuter, Karsten

    2012-01-01

    Electronic structure calculations have emerged as a key contributor in modern heterogeneous catalysis research, though their application in chemical reaction engineering remains largely limited to academia. This perspective aims at encouraging the judicious use of first-principles kinetic models in industrial settings based on a critical discussion of present-day best practices, identifying existing gaps, and defining where further progress is needed.

  2. One-Pot Catalysis Using a Chiral Iridium Complex/Brønsted Base: Catalytic Asymmetric Synthesis of Catalponol.

    Science.gov (United States)

    Suzuki, Takeyuki; Ismiyarto; Ishizaka, Yuka; Zhou, Da-Yang; Asano, Kaori; Sasai, Hiroaki

    2015-11-01

    Tandem asymmetric hydrogen transfer oxidation/aldol condensation under relay catalysis of a chiral iridium complex/achiral Brønsted base binary system is described for the synthesis of α-benzylidene-γ-hydroxytetralones with high ee's. A two-step synthesis of catalponol was achieved using this sequential methodology together with regio- and stereoselective hydroboration. PMID:26496409

  3. Catalysis of Oxygen Reduction by Metal-Free Porphyrins in One- and Two-Phase Liquid Systems

    Czech Academy of Sciences Publication Activity Database

    Samec, Zdeněk; Langmaier, Jan; Trojánek, Antonín; Záliš, Stanislav

    vol. 34. Harnessing Solar Energy. New Jersey: World Scientific Publ, 2014, s. 97-146. ISBN 978-981-4417-28-0 R&D Projects: GA ČR GAP208/11/0697 Institutional support: RVO:61388955 Keywords : catalysis * two-phase liquid systems * oxygen reduction Subject RIV: CG - Electrochemistry

  4. Electrochemical evidence of catalysis of oxygen reduction at the polarized liquid–liquid interface by tetraphenylporphyrin monoacid and diacid

    Czech Academy of Sciences Publication Activity Database

    Trojánek, Antonín; Langmaier, Jan; Su, B.; Girault, H. H.; Samec, Zdeněk

    2009-01-01

    Roč. 11, č. 10 (2009), s. 1940-1943. ISSN 1388-2481 R&D Projects: GA ČR(CZ) GA203/07/1257; GA MŠk OC 177 Institutional research plan: CEZ:AV0Z40400503 Keywords : liquid-liquid interface * oxygen reduction * decamethylferrocene * catalysis Subject RIV: CG - Electrochemistry Impact factor: 4.243, year: 2009

  5. Switching activation barriers: new insights in E-field driven processes at the interface: perspectives in physical chemistry and catalysis

    NARCIS (Netherlands)

    Susarrey Arce, A.

    2014-01-01

    The research described in this thesis aimed to explore new concepts in catalysis with the use of a homemade ATR-IR silicon-based microreactor. During this journey we have performed multidisciplinary research at the interface between physics and chemistry. New insights in the fabrication, integration

  6. The amino-terminal segment in the β-domain of δ-cadinene synthase is essential for catalysis.

    Science.gov (United States)

    González, Verónica; Grundy, Daniel J; Faraldos, Juan A; Allemann, Rudolf K

    2016-08-21

    Despite its distance from the active site the flexible amino-terminal segment (NTS) in the β-domain of the plant sesquiterpene cyclase δ-cadinene synthase (DCS) is essential for active site closure and desolvation events during catalysis. PMID:27431578

  7. Radicals and Transition-Metal Catalysis: An Alliance Par Excellence to Increase Reactivity and Selectivity in Organic Chemistry

    Czech Academy of Sciences Publication Activity Database

    Ford, Leigh Robert; Jahn, Ullrich

    2009-01-01

    Roč. 48, č. 35 (2009), s. 6386-6389. ISSN 1433-7851 Institutional research plan: CEZ:AV0Z40550506 Keywords : cross-coupling * elimination * homogeneous catalysis * hydrogen transfer * radicals Subject RIV: CC - Organic Chemistry Impact factor: 11.829, year: 2009

  8. Introduction to Homogenous Catalysis with Ruthenium-Catalyzed Oxidation of Alcohols: An Experiment for Undergraduate Advanced Inorganic Chemistry Students

    Science.gov (United States)

    Miecznikowski, John R.; Caradonna, John P.; Foley, Kathleen M.; Kwiecien, Daniel J.; Lisi, George P.; Martinez, Anthony M.

    2011-01-01

    A three-week laboratory experiment, which introduces students in an advanced inorganic chemistry course to air-sensitive chemistry and catalysis, is described. During the first week, the students synthesize RuCl[subscript 2](PPh[subscript 3])[subscript 3]. During the second and third weeks, the students characterize the formed coordination…

  9. Electro-Catalysis System for Biodiesel Synthesis from Palm Oil over Dielectric-Barrier Discharge Plasma Reactor

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2014-07-01

    Full Text Available Biodiesel synthesis reaction routes from palm oil using plasma electro-catalysis process over Dielectric-Barrier Discharge (DBD plasma reactor were studied. The study was focused on finding possible reaction mechanism route during plasma electro-catalysis process. The prediction was performed based on the changes of Gas Chromatography Mass Spectrometer (GC-MS and Fourier Transform Infra Red (FT-IR analyses to the biodiesel products with respect to time length of plasma treatment. It was found that main reaction mechanism occurred in the plasma electro-catalysis system was non-thermal pyrolysis rather than transesterification. The main reactions within the plasma treatment were due to collision between high energetic electrons (supplied from high voltage power supply through high voltage electrode and the reaction mixtures. The high energetic electrons affected the electrons pair of covalent bonding to be excited or dissociated even ionized at higher energy. Therefore, this plasma electro-catalysis system was promising for biodiesel synthesis from vegetable oils due to only very short time reaction was needed, even no need a catalyst, no soap formation, and no glycerol by-product. This system could produce fatty acid methyl ester yield of 75.65% at 120 seconds and other possible chemicals, such as alkynes, alkanes, esters, carboxylic acid, and aldehydes. However, during the plasma process, the reaction mechanisms were still difficult to be controlled due the action of available high energetic electrons. The advanced studies on how to control the reaction mechanism selectively in the plasma electro-catalysis will be published elsewhere. © 2014 BCREC UNDIP. All rights reservedReceived: 23rd January 2014; Revised: 20th March 2014; Accepted: 23rd March 2014[How to Cite: Istadi, I., Yudhistira, A.D., Anggoro, D.D., Buchori, L. (2014. Electro-Catalysis System for Biodiesel Synthesis from Palm Oil over Dielectric-Barrier Discharge Plasma Reactor

  10. Photokinetic determination of molybdenum based on catalysis of sensitized 0oxidation of -aminophenol

    International Nuclear Information System (INIS)

    A new method for determining molybdenum in alloyed steels is proposed. It is based on the molybdenum catalysis of photosensitized oxidation of O-aminophenol. Optimum conditions for quantitative determination of molybdenum are chosen from the experimental data: concentration of sensitizer - anthraquinone - 2, 6-sodium disulfonate = 7.5x10-5 mol/g, concentration of reagent - O-aminophenol = 2x10-3 mol/g; ethanol = 60% (vol.); irradiation time = 7 min; distance from the light source = 30 cm, the irradiated solution pH = 4.6+-0.05; temperature = 23+-2 deg C. The interference effect of accompanying ions is studied. The detection limit is equal to 0.03 μg/ml Mo

  11. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; Meyer, Tricia L.; Zhang, Zhiyong; Lutterman, Daniel A.; Lee, Ho Nyung

    2016-03-02

    Strain is known to greatly influence low temperature oxygen electro catalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and Metal-air batteries. However, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals' such as Pt. We attribute the improved bifunctionality to strain induced splitting of the e(g) Orbitals, which can customize orbital asymmetry at the surface. Analogous to strain induced shifts in the d-band center of noble metals relative to the Fermi level, :such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active Oxides.

  12. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    Science.gov (United States)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal–semiconductor, and metal–insulator–metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

  13. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    Science.gov (United States)

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime. PMID:26633128

  14. Low-temperature strength tests and SEM imaging of hydroxide catalysis bonds in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Beveridge, N L; Van Veggel, A A; Hendry, M; Murray, P; Montgomery, R A; Scott, J; Cunningham, L; Hough, J; Nawrodt, R; Reid, S; Rowan, S [School of Physics and Astronomy, SUPA Institute for Gravitational Research, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Jesse, E [Embry-Riddle Aeronautical University, 3700 Willow Creek Road, Prescott, AZ 86301-3720 (United States); Bezensek, R B, E-mail: n.beveridge@physics.gla.ac.uk [Hunting Energy Services, Aberdeen, AB12 4YB (United Kingdom)

    2011-04-21

    Silicon is under consideration as a substrate material for the test masses and suspension elements of gravitational wave detectors of improved sensitivity. Hydroxide catalysis bonding is a candidate technique for jointing silicon elements with the potential for both high strength and low mechanical loss. A future detector with quasi-monolithic silicon final stages may operate at cryogenic temperatures. Here we present the first studies of the strength of silicon-silicon bonds at 77 K (liquid nitrogen temperature) and show characteristic strengths of {approx}44 MPa. When comparing cryogenic to room temperature results, no significant difference is apparent in the strength. We also show that a minimum thickness of oxide layer of 50 nm is desirable to achieve reliably strong bonds. Bonds averaging 47 nm in thickness are achieved for oxide thicknesses greater than 50 nm.

  15. Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis.

    Science.gov (United States)

    Gadda, Giovanni; Francis, Kevin

    2010-01-01

    Nitronate monooxygenase (NMO), formerly referred to as 2-nitropropane dioxygenase, is an FMN-dependent enzyme that uses molecular oxygen to oxidize (anionic) alkyl nitronates and, in the case of the enzyme from Neurospora crassa, (neutral) nitroalkanes to the corresponding carbonyl compounds and nitrite. Over the past 5 years, a resurgence of interest on the enzymology of NMO has driven several studies aimed at the elucidation of the mechanistic and structural properties of the enzyme. This review article summarizes the knowledge gained from these studies on NMO, which has been emerging as a model system for the investigation of anionic flavosemiquinone intermediates in the oxidative catalysis of organic molecules, and for the effect that branching of reaction intermediates has on both the kinetic parameters and isotope effects associated with enzymatic reactions. A comparison of the catalytic mechanism of NMO with other flavin-dependent enzymes that oxidize nitroalkane and nitronates is also presented. PMID:19577534

  16. Cascade enzymatic catalysis in poly(acrylic acid) brushes-nanospherical silica for glucose detection.

    Science.gov (United States)

    Zhao, Yan; Wang, Ying; Zhang, Xiaobin; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-08-01

    The ultrasensitive monitoring of glucose with a fast and accurate method is significant in potential therapeutics and optimizes protein biosynthesis. Incorporation of enzyme into matrix is considered as promising candidates for constructing highly sensitive glucose-responsive systems. In this study, three-dimensional poly(acrylic acid) brushes-nanospherical silica (PAA-nano silica) with high amplification capability and stability were used to covalently immobilize bienzymes for cascade enzymatic catalysis. The major advantages of PAA-nano silica-bienzyme co-incorporation is that the enzymes are proximity distribution, and such close confinement both minimized the diffusion of intermediates among the enzymes in the consecutive reaction and improve the utilization efficiency of enzymes, thereby enhancing the overall reaction efficiency and specificity. Thus, this present bienzymatic biosensor shows robust signal amplification and ultrasensitivity of glucose-responsive properties with a detection limit of 0.04μM. PMID:27216683

  17. Difluoromethanesulfonyl hypervalent iodonium ylides for electrophilic difluoromethylthiolation reactions under copper catalysis.

    Science.gov (United States)

    Arimori, Sadayuki; Matsubara, Okiya; Takada, Masahiro; Shiro, Motoo; Shibata, Norio

    2016-05-01

    Difluoromethanesulfonyl hypervalent iodonium ylides 2 were developed as electrophilic difluoromethylthiolation reagents for a wide range of nucleophiles. Enamines, indoles, β-keto esters, silyl enol ethers and pyrroles were effectively reacted with 2 affording desired difluoromethylthio (SCF2H)-substituted compounds in good to high yields under copper catalysis. The reaction of allyl alcohols with 2 under the same conditions provided difluoromethylsulfinyl (S(O)CF2H) products in good yields. The difluoromethylthiolation of enamines is particularly effective with wide generality, thus the enamine method was nicely extended to the synthesis of a series of difluoromethythiolated cyclic and acyclic β-keto esters, 1,3-diketones, pyrazole and pyrimidine derivatives by a consecutive, two-step one-pot reaction using 2. PMID:27293790

  18. Specificity and catalysis hardwired at the RNA-protein interface in a translational proofreading enzyme

    Science.gov (United States)

    Ahmad, Sadeem; Muthukumar, Sowndarya; Kuncha, Santosh Kumar; Routh, Satya Brata; Yerabham, Antony S. K.; Hussain, Tanweer; Kamarthapu, Venu; Kruparani, Shobha P.; Sankaranarayanan, Rajan

    2015-06-01

    Proofreading modules of aminoacyl-tRNA synthetases are responsible for enforcing a high fidelity during translation of the genetic code. They use strategically positioned side chains for specifically targeting incorrect aminoacyl-tRNAs. Here, we show that a unique proofreading module possessing a D-aminoacyl-tRNA deacylase fold does not use side chains for imparting specificity or for catalysis, the two hallmark activities of enzymes. We show, using three distinct archaea, that a side-chain-stripped recognition site is fully capable of solving a subtle discrimination problem. While biochemical probing establishes that RNA plays the catalytic role, mechanistic insights from multiple high-resolution snapshots reveal that differential remodelling of the catalytic core at the RNA-peptide interface provides the determinants for correct proofreading activity. The functional crosstalk between RNA and protein elucidated here suggests how primordial enzyme functions could have emerged on RNA-peptide scaffolds before recruitment of specific side chains.

  19. The catalysis of nucleotide polymerization by compounds of divalent lead. [prebiotic synthesis

    Science.gov (United States)

    Sleeper, H. L.; Orgel, L. E.

    1979-01-01

    The nonenzymatic, nontemplate catalysis of nucleotide polymerization by Pb(2+) ions, a possible prebiotic catalyst, is reported. Adenosine and uridine phosphoimidazoles were reacted in buffered solutions of lead salts and products were analyzed by means of paper chromatography and electrophoresis. In the presence of Pb(2+) ion at pH 8.0 and 7.0 the reaction is found to progress rapidly with excellent yields of oligomers, with optimal yields observed at pH 8.0. Little temperature dependence in the range 0 to 30 C is observed, however hydrolysis of the reaction products is minimal when the reaction is carried out at 0 C. Results show that the yield of oligomers is insensitive to mixing or the source of lead ions, indicating that naturally occurring minerals or precipitates could be a source of Pb(2+) ions under prebiotic conditions.

  20. Methane Oxidation to Methanol without CO2 Emission: Catalysis by Atomic Negative Ions

    CERN Document Server

    Tesfamichael, Aron; Felfli, Zineb; Msezane, Alfred Z

    2014-01-01

    The catalytic activities of the atomic Y-, Ru-, At-, In-, Pd-, Ag-, Pt-, and Os- ions have been investigated theoretically using the atomic Au- ion as the benchmark for the selective partial oxidation of methane to methanol without CO2 emission. Dispersion-corrected density-functional theory has been used for the investigation. From the energy barrier calculations and the thermodynamics of the reactions, we conclude that the catalytic effect of the atomic Ag-, At-, Ru-, and Os- ions is higher than that of the atomic Au- ion catalysis of CH4 conversion to methanol. By controlling the temperature around 290K (Os-), 300K (Ag-), 310K (At-), 320K (Ru-) and 325K (Au-) methane can be completely oxidized to methanol without the emission of CO2. We conclude by recommending the investigation of the catalytic activities of combinations of the above negative ions for significant enhancement of the selective partial oxidation of methane to methanol.

  1. Structural domains in NADPH: Protochlorophyllide oxidoreductases involved in catalysis and substrate binding. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Timko, Michael P.

    1999-09-24

    Until recently little direct information was available about specific structural determinants within the light-dependent NADPH: protochlorophyllide oxidoreductases (PORs) required for substrate and cofactor binding, catalytic activity, and thylakoid membrane localization. Based on our previous DOE-funded studies, during the past year we brought to fruition a number of ongoing experiments, initiated several new avenues of investigations, and overall have made considerable progress towards establishing the basic structural parameters governing POR function. Our studies to date have defined residues and domains involved in substrate and cofactor binding and catalysis, and elaborated on the mechanism for membrane localization of POR in developing plastids. Our results and their significance, as well as our work in progress, are detailed.

  2. NATO Advanced Research Workshop on Frontiers in Polymerization Catalysis and Polymer Synthesis

    CERN Document Server

    Guyot, A

    1987-01-01

    Due to their specific properties, polymers with well-defined structures have been receiving increasing attention over the last several years. Owing to the wide variability of their properties, these specialty polymers have been used in various areas from biomedical engineering to electronics or energy applications. The synthesis of such polymers necessi­ tates the use of new methods of polymerization which derived from an insight into the mechanism of polymerization reactions. A NATO Advanced Research Workshop on "Frontiers in Polymerization Catalysis and Polymer Synthesis" was held in BANDOl (FRANCE) in February 1987. Its aim was to assess the new polymerization methods, as well as the latest advances in the mechanisms of conventional polymerization reactions together with their applications to the synthesis of new macromolecular structures. The financial support from the NATO Scientific Affairs Division which covered the "lecturers' accomodation and travel expenses as well as the organization charges of th...

  3. The effect of hot electrons and surface plasmons on heterogeneous catalysis.

    Science.gov (United States)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-29

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles. PMID:27166263

  4. Neutral and charged clusters in the atmosphere - Their importance and potential role in heterogeneous catalysis

    Science.gov (United States)

    Castleman, A. W., Jr.

    1982-01-01

    An assessment is presented of current knowledge concerning the role and importance of neutral and charged clusters in atmospheric heterogeneous catalysis, with a view to the recommendation of future studies needed for progress in the quantification of aerosol formation and catalytic reactivity. It is established that nucleation from the gaseous to the aerosol state commences via the formation of clusters among molecules participating in the phase-transformation process. Nucleation may proceed in some cases by way of the formation of prenucleation embryos, which then evolve through the energy barrier and undergo phase transformation. In other cases, cluster-cluster interaction among neutral particles or stagewise building of alternate-sign ion clusters may be important in the gas-to-particle conversion process.

  5. Catalysis:An old but new challenge for graphene-based materials

    Institute of Scientific and Technical Information of China (English)

    Ljubisa R. Radovic; Camila Mora-Vilches; Adolfo J. A. Salgado-Casanova

    2014-01-01

    An assessment is offered regarding the progress made, and the remaining challenges, in the field of carbocatalysis. The fundamental principles that govern the preparation and performance of sp2-hybridized carbon materials in heterogeneous catalysis have been known for decades, and the level of understanding of key issues-especially the importance of textural and ion-exchange prop-erties (i.e., surface area, pore size distribution, and proton transfer)-remains quite satisfactory. The opportunities for novel catalytic materials-especially graphene nanosheets and carbon nanotubes-are tremendous, especially when it comes to taking advantage of their structural order, such that electron transfer can be both better understood and controlled to enhance catalytic activity and selectivity.

  6. Birnessite catalysis of the Maillard Reaction: Its significance in natural humification

    Science.gov (United States)

    Jokic, A.; Frenkel, A. I.; Vairavamurthy, M. A.; Huang, P. M.

    Although mineral colloids are known to play a significant role in transforming organic matter in soils and sediments, there still are many gaps in our understanding of the mechanisms of organic-mineral interactions. In this study, we investigated the role of a major oxide-mineral birnessite (a form of Mn(IV) oxide) in catalyzing the condensation reaction between sugars and amino acids, the Maillard reaction, for forming humic substances. The Maillard reaction is perceived to be a major pathway in natural humification. Using a suite of spectroscopic methods (including ESR, XANES, EXAFS and 13C NMR), our results show that Mn(IV) oxide markedly accelerates the Maillard reaction between glucose and glycine at ranges of temperatures and pH typical of natural environments. These results demonstrate the importance of manganese oxide catalysis in the Maillard reaction, and its significance in the natural abiotic formation of humic substances.

  7. In situ/operando soft x-ray spectroscopy characterization of ion solvation and catalysis

    Science.gov (United States)

    Liu, Yi-Sheng; Guo, Jinghua

    Many important systems especially in energy-related regime are based on the complexity of material architecture, chemistry and interactions among constituents within. To understand and thus ultimately control the varying applications calls for in-situ/operando characterization tools. We will present the recent development of the in-situ/operando soft X-ray spectroscopic in the studies of catalytic and alkali ion solvation under bias condition, and reveal how to overcome the challenge that soft X-rays cannot easily peek into the high-pressure catalytic cells or liquid electrochemical cells. Also the different feasible detection approaches can provide surface and bulk sensitivity experimentally from those in-situ cells. The unique design of in-situ/operando soft X-ray spectroscopy instrumentation and fabrication principle with examples in Ca, Na, Mg based solutions at ambient pressure/temperature and high temperature (~250°C) gas catalysis will be shown.

  8. Ethyl oleate production by means of pervaporation-assisted esterification using heterogeneous catalysis

    Directory of Open Access Journals (Sweden)

    K. C. S. Figueiredo

    2010-12-01

    Full Text Available Pervaporation-assisted esterification of oleic acid and ethanol was investigated by means of heterogeneous acid catalysis with the aim of increasing the ethyl oleate yield. The experimental strategy comprised kinetic tests with Amberlyst 15 Wet (Rohm & Haas, the characterization of hydrophilic Pervap 1000 membrane (Sulzer and the evaluation of the membrane-assisted reactor. Kinetic tests were carried out to study the effect of temperature, catalyst loading and ethanol/organic acid molar ratio for the esterification of oleic acid and ethanol. The ester yield and initial reaction rate were used as response. The hydrophilic poly(vinyl alcohol membrane was able to remove water from the reaction medium and, hence, the ester yield was increased. The potential of coupling esterification and pervaporation was demonstrated, with a two-fold increase in the reaction yield of ethyl oleate.

  9. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    Science.gov (United States)

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-01

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers. PMID:23539180

  10. Catalysis of Tetraphenylboron by Pd Nanoclusters in the Presence of Hg

    International Nuclear Information System (INIS)

    More than 300-million L of high-level radioactive waste (HLW), a fission-product material associated with the dissolution of spent nuclear fuel for recovery of plutonium, await treatment at U.S. Department of Energy (DOE) sites. Previous attempts to concentrate radiocesium by precipitation with tetraphenylborate (TPB) produced unexpected high levels of benzene (a TPB decomposition product). The waste contains noble metal catalysts, but elevated levels of Hg in the waste could inhibit catalysis. Our studies with simulated HLW shows Hg enhances the Pd-catalyzed decomposition of TPB. After reaction, Pd exists as 3 to 10 nm nanoclusters and a PdHg amalgram. These studies provide more information about the fundamental mechanisms of TPB decomposition. A better understanding of these complex systems will aid in the development of treatment strategies - should precipitation of radiocesium with TPB ion be considered in the future

  11. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment

    Science.gov (United States)

    White, D. H.; Erickson, J. C.

    1980-01-01

    The condensation of glycine to form oligoglycines during wet-dry fluctuations on clay surfaces was enhanced up to threefold or greater by small amounts of histidyl-histidine. In addition, higher relative yields of the longer oligomers were produced. Other specific dipeptides tested gave no enhancement, and imidazole, histidine, and N-acetylhistidine gave only slight enhancements. Histidyl-histidine apparently acts as a true catalyst (in the sense of repeatedly catalyzing the reaction), since up to 52 nmol of additional glycine were incorporated into oligoglycine for each nmol of catalyst added. This is the first known instance of a peptide or similar molecule demonstrating a catalytic turnover number greater than unity in a prebiotic oligomer synthesis reaction, and suggests that histidyl-histidine is a model for a primitive prebiotic proto-enzyme. Catalysis of peptide bond synthesis by a molecule which is itself a peptide implies that related systems may be capable of exhibiting autocatalytic growth.

  12. Nanocomposite catalyst with palladium nanoparticles encapsulated in a polymeric acid: A model for tandem environmental catalysis

    KAUST Repository

    Isimjan, Tayirjan T.

    2013-04-01

    The synthesis and characterization of a novel hybrid nanocomposite catalyst comprised of palladium nanoparticles embedded in polystyrene sulfonic acid (PSSH) and supported on metal oxides is reported. The catalysts are intended for application in green catalysis, and they are shown to be effective in the hydrolysisreduction sequence of tandem catalytic reactions required for conversion of 2-phenyl-1,3-dioxolane to toluene or of phenol to cyclohexane. The two distinct components in the catalyst, Pd nanoparticles and acidic PSSH, are capable of catalyzing sequential reactions in one pot under mild conditions. This work has demonstrated a powerful approach toward designing highperformance, multifunctional, scalable, and environmentally friendly nanostructured tandem catalysts. © 2013 American Chemical Society.

  13. Luminescent Lanthanide Metal Organic Frameworks for cis-Selective Isoprene Polymerization Catalysis

    Directory of Open Access Journals (Sweden)

    Samantha Russell

    2015-11-01

    Full Text Available In this study, we are combining two areas of chemistry; solid-state coordination polymers (or Metal-Organic Framework—MOF and polymerization catalysis. MOF compounds combining two sets of different lanthanide elements (Nd3+, Eu3+/Tb3+ were used for that purpose: the use of neodymium was required due to its well-known catalytic properties in dienes polymerization. A second lanthanide, europium or terbium, was included in the MOF structure with the aim to provide luminescent properties. Several lanthanides-based MOF meeting these criteria were prepared according to different approaches, and they were further used as catalysts for the polymerization of isoprene. Stereoregular cis-polyisoprene was received, which in some cases exhibited luminescent properties in the UV-visible range.

  14. Spot-free catalysis using gold carbon nanotube & gold graphene composites for hydrogen evolution reaction

    Science.gov (United States)

    Sai Siddhardha, R. S.; Lakshminarayanan, V.; Ramamurthy, Sai Sathish

    2015-08-01

    Hydrogen has been proposed as the green fuel of the future in the wake of depleting fossil fuels. Recently, carbon paste electrodes (CPE) modified with nanomaterials as electrocatalysts have drawn wide attention for hydrogen evolution reaction (HER) in acid medium. The CPEs are advantageous owing to their chemical stability and ease of fabrication. Their applications for HER without any modification, however, are hampered on account of large hydrogen overpotential associated with carbon surface. In the present study, CPE has been modified with novel gold composites as electro-catalysts for HER in acid medium. The nanocomposites have shown ∼100 fold increased current density than unmodified CPE at -0.3 V. Most strikingly for the first time, this study has quantitatively brought out the difference in catalysis between surfactant capped and pristine gold nanoparticles in terms of their application as spot-free catalysts towards hydrogen gas production by electrochemical route.

  15. New Tools for CO2 Fixation by Homogeneous Catalysis - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, Phillip G.

    2006-01-20

    The overall goal is the development of new or more efficient methods for the conversion of CO{sub 2} into useful organic products, via the design or discovery of new catalysts, ligands, solvents, and methods. Specific objectives for this funded period: (1) To develop a high-throughput screening technique and use it to develop an efficient catalyst/reagent/solvent system for the synthesis of ureas or carboxylic acids. (2) To use in-situ spectroscopic and kinetic methods to study the mechanism of the synthesis of ureas or carboxylic acids. (3) To develop bifunctional ligands capable of secondary interactions with CO{sub 2}, to detect the interactions, and to demonstrate applications to catalysis.

  16. Carbon-doped BN nanosheets for metal-free photoredox catalysis.

    Science.gov (United States)

    Huang, Caijin; Chen, Cheng; Zhang, Mingwen; Lin, Lihua; Ye, Xinxin; Lin, Sen; Antonietti, Markus; Wang, Xinchen

    2015-01-01

    The generation of sustainable and stable semiconductors for solar energy conversion by photoredox catalysis, for example, light-induced water splitting and carbon dioxide reduction, is a key challenge of modern materials chemistry. Here we present a simple synthesis of a ternary semiconductor, boron carbon nitride, and show that it can catalyse hydrogen or oxygen evolution from water as well as carbon dioxide reduction under visible light illumination. The ternary B-C-N alloy features a delocalized two-dimensional electron system with sp(2) carbon incorporated in the h-BN lattice where the bandgap can be adjusted by the amount of incorporated carbon to produce unique functions. Such sustainable photocatalysts made of lightweight elements facilitate the innovative construction of photoredox cascades to utilize solar energy for chemical conversion. PMID:26159752

  17. Tunable Cascade Reactions of Alkynols with Alkynes under Combined Sc(OTf)3 and Rhodium Catalysis.

    Science.gov (United States)

    Li, Deng Yuan; Chen, Hao Jie; Liu, Pei Nian

    2016-01-01

    Two tunable cascade reactions of alkynols and alkynes have been developed by combining Sc(OTf)3 and rhodium catalysis. In the absence of H2O, an endo-cycloisomerization/C-H activation cascade reaction provided 2,3-dihydronaphtho[1,2-b]furans in good to high yields. In the presence of H2O, the product of alkynol hydration underwent an addition/C-H activation cascade reaction with an alkyne, which led to the formation of 4,5-dihydro-3H-spiro[furan-2,1'-isochromene] derivatives in good yields under mild reaction conditions. Mechanistic studies of the cascade reactions indicated that the rate-determining step involves C-H bond cleavage and that the hydration of the alkynol plays a key role in switching between the two reaction pathways. PMID:26531133

  18. Asymmetry of rotational catalysis of single membrane-bound F0F1-ATP synthase

    CERN Document Server

    Zarrabi, Nawid; Diez, Manuel; Graeber, Peter; Wrachtrup, Joerg; Boersch, Michael

    2007-01-01

    Synthesis of the cellular 'energy currency' ATP is catalyzed by membrane-bound F0F1-ATP synthases. The chemical reaction at three binding sites in the F1 part is coupled to proton translocation through the membrane-integrated F0 part by an internal rotation of subunits. We examined the rotary movements of the epsilon-subunit of the 'rotor' with respect to the b-subunits of the 'stator' by single-molecule fluorescence resonance energy transfer (FRET). Rotation of epsilon during ATP hydrolysis is divided into three major steps with constant FRET level corresponding to three binding sites. Different catalytic activities of the individual binding sites were observed depending on the relative orientation of the 'rotor'. Computer simulations of the FRET signals and non-equally distributed orientations of epsilon strongly corroborate asymmetry of catalysis in F0F1-ATP synthase.

  19. Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis.

    Science.gov (United States)

    Lairson, Luke L; Watts, Andrew G; Wakarchuk, Warren W; Withers, Stephen G

    2006-12-01

    Despite their unparalleled catalytic prowess and environmental compatibility, enzymes have yet to see widespread application in synthetic chemistry. This lack of application and the resulting underuse of their enormous potential stems not only from a wariness about aqueous biological catalysis on the part of the typical synthetic chemist but also from limitations on enzyme applicability that arise from the high degree of substrate specificity possessed by most enzymes. This latter perceived limitation is being successfully challenged through rational protein engineering and directed evolution efforts to alter substrate specificity. However, such programs require considerable effort to establish. Here we report an alternative strategy for expanding the substrate specificity, and therefore the synthetic utility, of a given enzyme through a process of "substrate engineering". The attachment of a readily removable functional group to an alternative glycosyltransferase substrate induces a productive binding mode, facilitating rational control of substrate specificity and regioselectivity using wild-type enzymes. PMID:17057723

  20. Role of noble metal nanoparticles in DNA base damage and catalysis: a radiation chemical investigation

    International Nuclear Information System (INIS)

    In the emerging field of nanoscience and nanotechnology, tremendous focus has been made by researcher to explore the applications of nanomaterials for human welfare by converting the findings into technology. Some of the examples have been the use of nanoparticles in the field of opto-electronic, fuel cells, medicine and catalysis. These wide applications and significance lies in the fact that nanoparticles possess unique physical and chemical properties very different from their bulk precursors. Numerous methods for the synthesis of noble nanoparticles with tunable shape and size have been reported in literature. The goal of our group is to use different methods of synthesis of noble metal nanoparticles (Au, Ag, Pt and Pd) and test their protective/damaging role towards DNA base damage induced by ionizing radiation (Au and Ag) and to test the catalytic activity of nanoparticles (Pt and Pd) in certain known organic synthesis/electron transfer reactions. Using radiation chemical techniques such as pulse radiolysis and steady state radiolysis complemented by the product analysis using HPLC/LC-MS, a detailed mechanism for the formation of transient species, kinetics leading to the formation of stable end products is studied in the DNA base damage induced by ionizing radiation in presence and absence of Au and Ag nanoparticles. Unraveling the complex interaction between catalysts and reactants under operando conditions is a key step towards gaining fundamental insight in catalysis. The catalytic activity of Pt and Pd nanoparticles in electron transfer and Suzuki coupling reactions has been determined. Investigations are currently underway to gain insight into the interaction between catalysts and reactants using time resolved spectroscopic measurements. These studies will be detailed during the presentation. (author)

  1. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal.

    Science.gov (United States)

    Horrell, Sam; Antonyuk, Svetlana V; Eady, Robert R; Hasnain, S Samar; Hough, Michael A; Strange, Richard W

    2016-07-01

    Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines. PMID:27437114

  2. Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation

    Science.gov (United States)

    Wu, Jiang; Mao, Wujian; Wu, Zheng; Xu, Xiaoli; You, Huilin; Xue, A'xi; Jia, Yanmin

    2016-03-01

    A strong pyro-catalytic dye degradation with an ultrahigh degradation efficiency (>99%) in hydrothermally synthesized pyroelectric BiFeO3 nanoparticles was achieved under a room-temperature cold-hot alternating excitation (between 27 °C to 38 °C). The pyro-catalysis originated from a combination of the pyroelectric effect and the electrochemical oxidation-reduction reaction. The intermediate products (hydroxyl radicals and superoxide radicals) of pyro-electro-catalysis were observed. Pyro-catalysis provides a highly efficient and reusable dye wastewater decomposition technology through utilizing environmental day-night temperature variation.

  3. Impaired Acid Catalysis by Mutation of a Protein Loop Hinge Residue in a YopH Mutant Revealed by Crystal Structures

    OpenAIRE

    Brandão, Tiago A. S.; Robinson, Howard; Johnson, Sean J.; Hengge, Alvan C.

    2009-01-01

    Catalysis by the Yersinia protein-tyrosine phosphatase YopH is significantly impaired by the mutation of the conserved Trp354 residue to Phe. Though not a catalytic residue, this Trp is a hinge residue in a conserved flexible loop (the WPD-loop) that must close during catalysis. To learn why this seemingly conservative mutation reduces catalysis by 2 orders of magnitude, we have solved high-resolution crystal structures for the W354F YopH in the absence and in the presence of tungstate and va...

  4. Is It Homogeneous or Heterogeneous Catalysis Derived from [RhCp*Cl2]2? In Operando-XAFS, Kinetic and Crucial Kinetic Poisoning Evidence for Subnanometer Rh4 Cluster-Based Benzene Hydrogenation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Bayram, Ercan; Linehan, John C.; Fulton, John L.; Roberts, John A.; Szymczak, Nathaniel; Smurthwaite, Tricia D.; Ozkar, Saim; Balasubramanian, Mahalingam; Finke, Richard G.

    2011-11-23

    Determining the true, kinetically dominant catalytically active species, in the classic benzene hydrogenation system pioneered by Maitlis and co-workers 34 years ago starting with [RhCp*Cl2]2 (Cp* = [{eta}5-C5(CH3)5]), has proven to be one of the most challenging case studies in the quest to distinguish single-metal-based 'homogeneous' from polymetallic, 'heterogeneous' catalysis. The reason, this study will show, is the previous failure to use the proper combination of (i) operando spectroscopy to determine the dominant form(s) of the precatalyst's mass under catalysis (i.e., operating) conditions, plus then and crucially also (ii) the previous lack of the necessary kinetic studies, catalysis being a 'wholly kinetic phenomenon' as J. Halpern long ago noted. An important contribution from this study will be to reveal the power of quantitiative kinetic poisoning experiments for distinguishing single-metal, or in this case subnanometer Rh4 cluster-based catalysis from larger, polymetallic Rh(0)n nanoparticle catalysis, at least under favorable conditions. The combined operando-XAFS (X-ray absorption fine structure) spectroscopy and kinetic evidences provide a compelling case for Rh4-based, with average stoichiometry 'Rh4Cp*2.4Cl4Hc', benzene hydrogenation catalysis in 2-propanol with added Et3N and at 100 C and 50 atm initial H2 pressure. The results also reveal, however, that if even ca. 1.4% of the total soluble Rh(0)n had formed nanoparticles, then those Rh(0)n nanoparticles would have been able to account for all the observed benzene hydrogenation catalytic rate (using commercial, ca. 2 nm, polyethyleneglycol-dodecylether hydrosol stabilized Rh(0)n nanoparticles as a model system). The results 'especially the poisoning methodology developed and employed' are of significant, broader interest since determining the nature of the true catalyst continues to be a central, often vexing issue in any and all catalytic

  5. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.

    Science.gov (United States)

    Sunoj, Raghavan B

    2016-05-17

    In asymmetric catalysis, a chiral catalyst bearing chiral center(s) is employed to impart chirality to developing stereogenic center(s). A rich and diverse set of chiral catalysts is now available in the repertoire of synthetic organic chemistry. The most recent trends point to the emergence of axially chiral catalysts based on binaphthyl motifs, in particular, BINOL-derived phosphoric acids and phosphoramidites. More fascinating ideas took shape in the form of cooperative multicatalysis wherein organo- and transition-metal catalysts are made to work in concert. At the heart of all such manifestations of asymmetric catalysis, classical or contemporary, is the stereodetermining transition state, which holds a perennial control over the stereochemical outcome of the catalytic process. Delving one step deeper, one would find that the origin of the stereoselectivity is delicately dependent on the relative stabilization of one transition state, responsible for the formation of the predominant stereoisomer, over the other transition state for the minor stereoisomer. The most frequently used working hypothesis to rationalize the experimentally observed stereoselectivity places an undue emphasis on steric factors and tends to regard the same as the origin of facial discrimination between the prochiral faces of the reacting partners. In light of the increasing number of asymmetric catalysts that rely on hydrogen bonding as well as other weak non-covalent interactions, it is important to take cognizance of the involvement of such interactions in the sterocontrolling transition states. Modern density functional theories offer a pragmatic and effective way to capture non-covalent interactions in transition states. Aided by the availability of such improved computational tools, it is quite timely that the molecular origin of stereoselectivity is subjected to more intelligible analysis. In this Account, we describe interesting molecular insights into the stereocontrolling

  6. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts.

    Science.gov (United States)

    Pelletier, Jérémie D A; Basset, Jean-Marie

    2016-04-19

    Heterogeneous catalysis, a field important industrially and scientifically, is increasingly seeking and refining strategies to render itself more predictable. The main issue is due to the nature and the population of catalytically active sites. Their number is generally low to very low, their "acid strengths" or " redox properties" are not homogeneous, and the material may display related yet inactive sites on the same material. In many heterogeneous catalysts, the discovery of a structure-activity reationship is at best challenging. One possible solution is to generate single-site catalysts in which most, if not all, of the sites are structurally identical. Within this context and using the right tools, the catalyst structure can be designed and well-defined, to reach a molecular understanding. It is then feasible to understand the structure-activity relationship and to develop predictable heterogeneous catalysis. Single-site well-defined heterogeneous catalysts can be prepared using concepts and tools of surface organometallic chemistry (SOMC). This approach operates by reacting organometallic compounds with surfaces of highly divided oxides (or of metal nanoparticles). This strategy has a solid track record to reveal structure-activity relationship to the extent that it is becoming now quite predictable. Almost all elements of the periodical table have been grafted on surfaces of oxides (from simple oxides such as silica or alumina to more sophisticated materials regarding composition or porosity). Considering catalytic hydrocarbon transformations, heterogeneous catalysis outcome may now be predicted based on existing mechanistic proposals and the rules of molecular chemistry (organometallic, organic) associated with some concepts of surface sciences. A thorough characterization of the grafted metal centers must be carried out using tools spanning from molecular organometallic or surface chemistry. By selection of the metal, its ligand set, and the support taken

  7. Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Charles P. Casey

    2012-11-14

    Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis Charles P. Casey, Principal Investigator Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706 Phone 608-262-0584 FAX: 608-262-7144 Email: casey@chem.wisc.edu http://www.chem.wisc.edu/main/people/faculty/casey.html Executive Summary. Our goal was to learn the intimate mechanistic details of reactions involved in homogeneous catalysis and to use the insight we gain to develop new and improved catalysts. Our work centered on the hydrogenation of polar functional groups such as aldehydes and ketones and on hydroformylation. Specifically, we concentrated on catalysts capable of simultaneously transferring hydride from a metal center and a proton from an acidic oxygen or nitrogen center to an aldehyde or ketone. An economical iron based catalyst was developed and patented. Better understanding of fundamental organometallic reactions and catalytic processes enabled design of energy and material efficient chemical processes. Our work contributed to the development of catalysts for the selective and mild hydrogenation of ketones and aldehydes; this will provide a modern green alternative to reductions by LiAlH4 and NaBH4, which require extensive work-up procedures and produce waste streams. (C5R4OH)Ru(CO)2H Hydrogenation Catalysts. Youval Shvo described a remarkable catalytic system in which the key intermediate (C5R4OH)Ru(CO)2H (1) has an electronically coupled acidic OH unit and a hydridic RuH unit. Our efforts centered on understanding and improving upon this important catalyst for reduction of aldehydes and ketones. Our mechanistic studies established that the reduction of aldehydes by 1 to produce alcohols and a diruthenium bridging hydride species occurs much more rapidly than regeneration of the ruthenium hydride from the diruthenium bridging hydride species. Our mechanistic studies require simultaneous transfer of hydride from ruthenium to

  8. Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis.

    Science.gov (United States)

    Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng

    2013-12-01

    Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol. PMID:24129356

  9. Tunable Catalysis of Water to Peroxide with Anionic, Cationic, and Neutral Atomic Au, Ag, Pd, Rh, and Os

    CERN Document Server

    Suggs, Kelvin; Tesfamichael, Aaron; Felfli, Zineb; Msezane, Alfred Z

    2014-01-01

    Fundamental anionic, cat-ionic, and neutral atomic metal predictions utilizing density functional theory calculations validate the recent discovery identifying the interplay between the resonances and the RT minimum obtained through complex angular momentum analysis as the fundamental atomic mechanism underlying nano-scale catalysis. Here we investigate the optimization of the catalytic behavior of Au, Ag, Pd, Rh, and Os atomic systems via polarization effects and conclude that anionic atomic systems are optimal and therefore ideal for catalyzing the oxidation of water to peroxide, with anionic Os being the best candidate. The discovery that cat-ionic systems increase the transition energy barrier in the synthesis of peroxide could be important as inhibitors in controlling and regulating catalysis. These findings usher in a fundamental and comprehensive atomic theoretical framework for the generation of tun-able catalytic systems.

  10. Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces.

    Science.gov (United States)

    Cotelle, Yoann; Benz, Sebastian; Avestro, Alyssa-Jennifer; Ward, Thomas R; Sakai, Naomi; Matile, Stefan

    2016-03-18

    To integrate anion-π, cation-π, and ion pair-π interactions in catalysis, the fundamental challenge is to run reactions reliably on aromatic surfaces. Addressing a specific question concerning enolate addition to nitroolefins, this study elaborates on Leonard turns to tackle this problem in a general manner. Increasingly refined turns are constructed to position malonate half thioesters as close as possible on π-acidic surfaces. The resulting preorganization of reactive intermediates is shown to support the disfavored addition to enolate acceptors to an absolutely unexpected extent. This decisive impact on anion-π catalysis increases with the rigidity of the turns. The new, rigidified Leonard turns are most effective with weak anion-π interactions, whereas stronger interactions do not require such ideal substrate positioning to operate well. The stunning simplicity of the motif and its surprisingly strong relevance for function should render the introduced approach generally useful. PMID:26916316

  11. An Upstream By-product from Ester Activation via NHC-Catalysis Catalyzes Downstream Sulfonyl Migration Reaction.

    Science.gov (United States)

    Han, Runfeng; He, Liwenze; Liu, Lin; Xie, Xingang; She, Xuegong

    2016-01-01

    A sequential reaction combining N-heterocyclic carbene (NHC) and N-hydroxyphthalimide (NHPI) catalysis allowed for the upstream by-product NHPI, which was generated in the NHC-catalyzed cycloaddition reaction, to act as the catalyst for a downstream nitrogen-to-carbon sulfonyl migration reaction. Enantiomeric excess of the major product in the cycloaddition reaction remained intact in the follow-up sulfonyl migration reaction. PMID:26522328

  12. Structural and dynamic insights into substrate binding and catalysis of human lipocalin prostaglandin D synthase[S

    OpenAIRE

    Lim, Sing Mei; Chen, Dan; Teo, Hsiangling; Roos, Annette; Jansson, Anna Elisabet; Nyman, Tomas; Trésaugues, Lionel; Pervushin, Konstantin; Nordlund, Pär

    2013-01-01

    Lipocalin prostaglandin D synthase (L-PGDS) regulates synthesis of an important inflammatory and signaling mediator, prostaglandin D2 (PGD2). Here, we used structural, biophysical, and biochemical approaches to address the mechanistic aspects of substrate entry, catalysis, and product exit of this enzyme. Structure of human L-PGDS was solved in a complex with a substrate analog (SA) and in ligand-free form. Its catalytic Cys 65 thiol group was found in two different conformations, each making...

  13. Inverse magnetic catalysis in the Polyakov-Nambu-Jona-Lasinio and entangled Polyakov-Nambu-Jona-Lasinio models

    OpenAIRE

    Providência, Constança; Ferreira, Márcio; Costa, Pedro

    2014-01-01

    We investigate the QCD phase diagram at zero chemical potential and finite temperature in the presence of an external magnetic field within the three flavor Polyakov-Nambu-Jona-Lasinio and entangled Polyakov-Nambu-Jona-Lasinio models looking for the inverse magnetic catalysis. Two scenarios for a scalar coupling parameter dependent on the magnetic field intensity are considered. These dependencies of the coupling allow to reproduce qualitatively lattice QCD results for the quark condensates a...

  14. Probing the Impact of the EchinT C-Terminal Domain on Structure and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    S Bardaweel; J Pace; T Chou; V Cody; C Wagner

    2011-12-31

    Histidine triad nucleotide binding protein (Hint) is considered as the ancestor of the histidine triad protein superfamily and is highly conserved from bacteria to humans. Prokaryote genomes, including a wide array of both Gram-negative bacteria and Gram-positive bacteria, typically encode one Hint gene. The cellular function of Hint and the rationale for its evolutionary conservation in bacteria have remained a mystery. Despite its ubiquity and high sequence similarity to eukaryote Hint1 [Escherichia coli Hint (echinT) is 48% identical with human Hint1], prokaryote Hint has been reported in only a few studies. Here we report the first conformational information on the full-length N-terminal and C-terminal residues of Hint from the E. coli complex with GMP. Structural analysis of the echinT-GMP complex reveals that it crystallizes in the monoclinic space group P2{sub 1} with four homodimers in the asymmetric unit. Analysis of electron density for both the N-terminal residues and the C-terminal residues of the echinT-GMP complex indicates that the loops in some monomers can adopt more than one conformation. The observation of conformational flexibility in terminal loop regions could explain the presence of multiple homodimers in the asymmetric unit of this structure. To explore the impact of the echinT C-terminus on protein structure and catalysis, we conducted a series of catalytic radiolabeling and kinetic experiments on the C-terminal deletion mutants of echinT. In this study, we show that sequential deletion of the C-terminus likely has no effect on homodimerization and a modest effect on the secondary structure of echinT. However, we observed a significant impact on the folding structure, as reflected by a significant lowering of the T{sub m} value. Kinetic analysis reveals that the C-terminal deletion mutants are within an order of magnitude less efficient in catalysis compared to wild type, while the overall kinetic mechanism that proceeds through a fast step

  15. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    Science.gov (United States)

    Lewan, M.D.; Kotarba, M.J.; Wieclaw, D.; Piestrzynski, A.

    2008-01-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977–984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  16. Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Deshlahra, Prashant; Carr, Robert T.; Chai, Song-Hai; Iglesia, Enrique

    2015-02-06

    Acid and redox reaction rates of CH₃OH-O₂ mixtures on polyoxometalate (POM) clusters, together with isotopic, spectroscopic, and theoretical assessments of catalyst properties and reaction pathways, were used to define rigorous descriptors of reactivity and to probe the compositional effects for oxidative dehydrogenation (ODH) and dehydration reactions. ³¹P-MAS NMR, transmission electron microscopy and titrations of protons with di-tert-butylpyridine during catalysis showed that POM clusters retained their Keggin structure upon dispersion on SiO₂ and after use in CH₃OH reactions. The effects of CH₃OH and O₂ pressures and of D-substitution on ODH rates show that C-H activation in molecularly adsorbed CH₃OH is the sole kinetically relevant step and leads to reduced centers as intermediates present at low coverages; their concentrations, measured from UV-vis spectra obtained during catalysis, are consistent with the effects of CH₃OH/O₂ ratios predicted from the elementary steps proposed. First-order ODH rate constants depend strongly on the addenda atoms (Mo vs W) but weakly on the central atom (P vs Si) in POM clusters, because C-H activation steps inject electrons into the lowest unoccupied molecular orbitals (LUMO) of the clusters, which are the d-orbitals at Mo⁶⁺ and W⁶⁺ centers. H-atom addition energies (HAE) at O-atoms in POM clusters represent the relevant theoretical probe of the LUMO energies and of ODH reactivity. The calculated energies of ODH transition states at each O-atom depend linearly on their HAE values with slopes near unity, as predicted for late transition states in which electron transfer and C-H cleavage are essentially complete. HAE values averaged over all accessible O-atoms in POM clusters provide the appropriate reactivity descriptor for oxides whose known structures allow accurate HAE calculations. CH₃OH dehydration proceeds via parallel pathways mediated by late carbenium-ion transition states; effects of

  17. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    Energy Technology Data Exchange (ETDEWEB)

    Daniela Rodica Radu

    2005-12-19

    The central theme of this dissertation is represented by the versatility of mesoporous silica nanomaterials in various applications such as catalysis and bio-applications, with main focus on biological applications of Mesoporous Silica Nanospheres (MSN). The metamorphosis that we impose to these materials from catalysis to sensing and to drug and gene delivery is detailed in this dissertation. First, we developed a synthetic method that can fine tune the amount of chemically accessible organic functional groups on the pores surface of MSN by exploiting electrostatic and size matching between the cationic alkylammonium head group of the cetyltrimethylammonium bromide (CTAB) surfactant and various anionic organoalkoxysilane precursors at the micelle-water interface in a base-catalyzed condensation reaction of silicate. Aiming nature imitation, we demonstrated the catalytic abilities of the MSNs, We utilized an ethylenediamine functional group for chelating Cu{sup 2+} as a catalytic functional group anchored inside the mesopores. Thus, a polyalkynylene-based conducting polymer (molecular wire) was synthesized within the Cu-functionalized MSNs silica catalyst. For sensing applications, we have synthesized a poly(lactic acid) coated mesoporous silica nanosphere (PLA-MSN) material that serves as a fluorescence sensor system for detection of amino-containing neurotransmitters in neutral aqueous buffer. We exploited the mesoporosity of MSNs for encapsulating pharmaceutical drugs. We examined bio-friendly capping molecules such as polyamidoamine dendrimers of generations G2 to G4, to prevent the drug leaching. Next, the drug delivery system employed MSNs loaded with Doxorubicin, an anticancer drug. The results demonstrated that these nano-Trojan horses have ability to deliver Doxorubicin to cancer cells and induce their death. Finally, to demonstrate the potential of MSN as an universal cellular transmembrane nanovehicle, we anchored positively charged dendrimers on the

  18. Enzyme catalysis enhanced dark-field imaging as a novel immunohistochemical method

    Science.gov (United States)

    Fan, Lin; Tian, Yanyan; Yin, Rong; Lou, Doudou; Zhang, Xizhi; Wang, Meng; Ma, Ming; Luo, Shouhua; Li, Suyi; Gu, Ning; Zhang, Yu

    2016-04-01

    Conventional immunohistochemistry is limited to subjective judgment based on human experience and thus it is clinically required to develop a quantitative immunohistochemical detection. 3,3'-Diaminobenzidin (DAB) aggregates, a type of staining product formed by conventional immunohistochemistry, were found to have a special optical property of dark-field imaging for the first time, and the mechanism was explored. On this basis, a novel immunohistochemical method based on dark-field imaging for detecting HER2 overexpressed in breast cancer was established, and the quantitative analysis standard and relevant software for measuring the scattering intensity was developed. In order to achieve a more sensitive detection, the HRP (horseradish peroxidase)-labeled secondary antibodies conjugated gold nanoparticles were constructed as nanoprobes to load more HRP enzymes, resulting in an enhanced DAB deposition as a dark-field label. Simultaneously, gold nanoparticles also act as a synergistically enhanced agent due to their mimicry of enzyme catalysis and dark-field scattering properties.Conventional immunohistochemistry is limited to subjective judgment based on human experience and thus it is clinically required to develop a quantitative immunohistochemical detection. 3,3'-Diaminobenzidin (DAB) aggregates, a type of staining product formed by conventional immunohistochemistry, were found to have a special optical property of dark-field imaging for the first time, and the mechanism was explored. On this basis, a novel immunohistochemical method based on dark-field imaging for detecting HER2 overexpressed in breast cancer was established, and the quantitative analysis standard and relevant software for measuring the scattering intensity was developed. In order to achieve a more sensitive detection, the HRP (horseradish peroxidase)-labeled secondary antibodies conjugated gold nanoparticles were constructed as nanoprobes to load more HRP enzymes, resulting in an enhanced DAB

  19. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis.

    Science.gov (United States)

    Lohr, Tracy L; Li, Zhi; Marks, Tobin J

    2016-05-17

    To reduce global reliance on fossil fuels, new renewable sources of energy that can be used with the current infrastructure are required. Biomass represents a major source of renewable carbon based fuel; however, the high oxygen content (∼40%) limits its use as a conventional fuel. To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C-O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. Once selective methods of C-O cleavage are understood and perfected, application to processing real biomass feedstocks such as lignin can be undertaken. This Laboratory previously reported that recyclable "green" lanthanide triflates are excellent catalysts for C-O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C-O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C-O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether C-O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C-O cleavage reaction. This Account reviews recent developments on thermodynamically leveraged tandem catalysis for ether and more recently, ester C-O bond cleavage undertaken at Northwestern University. First, the fundamentals of lanthanide-catalyzed hydroelementation are reviewed, with particular focus on ether C-O bond formation (hydroalkoxylation). Next, the reverse C-O cleavage/retrohydroalkoxylation processes enabled by tandem catalysis are

  20. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    Science.gov (United States)

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523