WorldWideScience

Sample records for catalase

  1. Recombinant Helicobacter pylori catalase

    Institute of Scientific and Technical Information of China (English)

    Yang Bai; Ya-Li Zhang; Jian-Feng Jin; Ji-De Wang; Zhao-Shan Zhang

    2003-01-01

    AIM: To construct a recombinant strain which highly expresses catalase of Helicobacter pylori(H.pylori) and assay the activity of H. pylori catalase.METHODS: The catalase DNA was amplified from H. pylori chromosomal DNA with PCR techniques and inserted into the prokaryotie expression vector pET-22b (+), and then was transformed into the BL21 (DE3) E. coli strain which expressed catalase recombinant protein. The activity of H.pylori catalase was assayed by the Beers & Sizers.RESULTS: DNA sequence analysis showed that the sequence of catalase DNA was the same as GenBank's research. The catalase recombinant protein amounted to 24.4 % of the total bacterial protein after induced with IPTG for 3 hours at 37 ℃ and the activity of H. pylori catalase was high in the BL21 (DE3) E. coli strain.CONCLUSION: A clone expressing high activity H. pylori catalase is obtained, laying a good foundation for further studies.

  2. In vitro assembly of catalase.

    Science.gov (United States)

    Baureder, Michael; Barane, Elisabeth; Hederstedt, Lars

    2014-10-10

    Most aerobic organisms contain catalase, which functions to decompose hydrogen peroxide. Typical catalases are structurally complex homo-tetrameric enzymes with one heme prosthetic group buried in each subunit. It is not known how catalase in the cell is assembled from its constituents. The bacterium Enterococcus faecalis cannot synthesize heme but can acquire it from the environment to form a cytoplasmic catalase. We have in E. faecalis monitored production of the enzyme polypeptide (KatA) depending on the availability of heme and used our findings to devise a procedure for the purification of preparative amounts of in vivo-synthesized apocatalase. We show that fully active catalase can be obtained in vitro by incubating isolated apoprotein with hemin. We have characterized features of the assembly process and describe a temperature-trapped hemylated intermediate of the enzyme maturation process. Hemylation of apocatalase does not require auxiliary cell components, but rapid assembly of active enzyme seemingly is assisted in the cell. Our findings provide insight about catalase assembly and offer new experimental possibilities for detailed studies of this process.

  3. 7 CFR 58.432 - Catalase.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Catalase. 58.432 Section 58.432 Agriculture... Material § 58.432 Catalase. The catalase preparation shall be a stable, buffered solution, neutral in pH, having a potency of not less than 100 Keil units per milliliter. The source of the catalase,...

  4. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B. T.; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  5. The Role of Catalase in Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Takigawa Tomoko

    2010-12-01

    Full Text Available Abstract Background Catalase is preferentially expressed in bronchiolar and alveolar epithelial cells, and acts as an endogenous antioxidant enzyme in normal lungs. We thus postulated epithelial damage would be associated with a functional deficiency of catalase during the development of lung fibrosis. Methods The present study evaluates the expression of catalase mRNA and protein in human interstitial pneumonias and in mouse bleomycin-induced lung injury. We examined the degree of bleomycin-induced inflammation and fibrosis in the mice with lowered catalase activity. Results In humans, catalase was decreased at the levels of activity, protein content and mRNA expression in fibrotic lungs (n = 12 compared to control lungs (n = 10. Immunohistochemistry revealed a decrease in catalase in bronchiolar epithelium and abnormal re-epithelialization in fibrotic areas. In C57BL/6J mice, catalase activity was suppressed along with downregulation of catalase mRNA in whole lung homogenates after bleomycin administration. In acatalasemic mice, neutrophilic inflammation was prolonged until 14 days, and there was a higher degree of lung fibrosis in association with a higher level of transforming growth factor-β expression and total collagen content following bleomycin treatment compared to wild-type mice. Conclusions Taken together, these findings demonstrate diminished catalase expression and activity in human pulmonary fibrosis and suggest the protective role of catalase against bleomycin-induced inflammation and subsequent fibrosis.

  6. Evolution of catalases from bacteria to humans.

    Science.gov (United States)

    Zamocky, Marcel; Furtmüller, Paul G; Obinger, Christian

    2008-09-01

    Excessive hydrogen peroxide is harmful for almost all cell components, so its rapid and efficient removal is of essential importance for aerobically living organisms. Conversely, hydrogen peroxide acts as a second messenger in signal-transduction pathways. H(2)O(2) is degraded by peroxidases and catalases, the latter being able both to reduce H(2)O(2) to water and to oxidize it to molecular oxygen. Nature has evolved three protein families that are able to catalyze this dismutation at reasonable rates. Two of the protein families are heme enzymes: typical catalases and catalase-peroxidases. Typical catalases comprise the most abundant group found in Eubacteria, Archaeabacteria, Protista, Fungi, Plantae, and Animalia, whereas catalase-peroxidases are not found in plants and animals and exhibit both catalatic and peroxidatic activities. The third group is a minor bacterial protein family with a dimanganese active site called manganese catalases. Although catalyzing the same reaction (2 H(2)O(2)--> 2 H(2)O+ O(2)), the three groups differ significantly in their overall and active-site architecture and the mechanism of reaction. Here, we present an overview of the distribution, phylogeny, structure, and function of these enzymes. Additionally, we report about their physiologic role, response to oxidative stress, and about diseases related to catalase deficiency in humans.

  7. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid : Growth profiles and catalase activities in relation to microbody proliferation

    NARCIS (Netherlands)

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    1990-01-01

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two olei

  8. Evolution of catalase activity during nystatin biosynthesis

    Directory of Open Access Journals (Sweden)

    Cristina Bota

    2009-03-01

    Full Text Available The research studies focused on the dynamics of catalase during nystatin biosynthesis by Streptomyces noursei. The catalase activity was determined by growing a pure culture of Streptomyces noursei from the strain collection owned by the company S.C. Antibiotice Iasi on biosynthesis medium. The test was performed on two experimental models of biosynthesis, one using sunflower oil, while the other soybean oil as basic nutrients. Special attention was paid to the connection between the evolution of the biomass and the level of catalase activity.

  9. Studies on the catalase of Histoplasma capsulatum.

    OpenAIRE

    Howard, D H

    1983-01-01

    Factors which control the levels of catalase within yeast cells of Histoplasma capsulatum were studied. Only a small fraction of the total catalase activity could be detected in whole cells. The bulk of the activity was revealed in cell-free extracts or in cells permeabilized with acetone. The formation of the enzyme was regulated by glucose and by oxygen. There were large, consistent differences in the levels of catalase among strains of H. capsulatum. The sensitivity of the strains to H2O2 ...

  10. The three catalases in Deinococcus radiodurans: Only two show catalase activity.

    Science.gov (United States)

    Jeong, Sun-Wook; Jung, Jong-Hyun; Kim, Min-Kyu; Seo, Ho Seong; Lim, Heon-Man; Lim, Sangyong

    2016-01-15

    Deinococcus radiodurans, which is extremely resistant to ionizing radiation and oxidative stress, is known to have three catalases (DR1998, DRA0146, and DRA0259). In this study, to investigate the role of each catalase, we constructed catalase mutants (Δdr1998, ΔdrA0146, and ΔdrA0259) of D. radiodurans. Of the three mutants, Δdr1998 exhibited the greatest decrease in hydrogen peroxide (H2O2) resistance and the highest increase in intracellular reactive oxygen species (ROS) levels following H2O2 treatments, whereas ΔdrA0146 showed no change in its H2O2 resistance or ROS level. Catalase activity was not attenuated in ΔdrA0146, and none of the three bands detected in an in-gel catalase activity assay disappeared in ΔdrA0146. The purified His-tagged recombinant DRA0146 did not show catalase activity. In addition, the phylogenetic analysis of the deinococcal catalases revealed that the DR1998-type catalase is common in the genus Deinococcus, but the DRA0146-type catalase was found in only 4 of 23 Deinococcus species. Taken together, these results indicate that DR1998 plays a critical role in the anti-oxidative system of D. radiodurans by detoxifying H2O2, but DRA0146 does not have catalase activity and is not involved in the resistance to H2O2 stress.

  11. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid: Growth profiles and catalase activities in relation to microbody proliferation

    OpenAIRE

    van der Klei, Ida J.; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    1990-01-01

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two oleic acid-grown A+-strains (A+T+ and A+T-) high catalase activities were found; catalase activity invariably remained low in the A-T+ strain and was never detected in the A-T- strain. The levels of β-...

  12. RESTORATION INDUCED BY CATALASE IN IRRADIATED MICROORGANISMS

    Science.gov (United States)

    Latarjet, Raymond; Caldas, Luis Renato

    1952-01-01

    1. E. coli, strain K-12, and B. megatherium 899, irradiated in strict but still undefined physiological conditions with certain heavy doses of ultraviolet light, are efficiently restored by catalase, which acts on or fixes itself upon the bacteria in a few minutes. This restoration (C. R.), different from photorestoration, is aided by a little visible light. 2. At 37° the restorability lasts for about 2 hours after UV irradiation; the restored cells begin to divide at the same time as the normal survivors. 3. C. R. is not produced after x-irradiation. 4. B. megatherium Mox and E. coli, strain B/r show little C. R.; E. coli strain B shows none. None of these three strains is lysogenic, whereas the two preceding catalase-restorable strains are. 5. Phage production in the system "K-12 infected with T2 phage" is restored by catalase after UV irradiation, whereas phage production in the system "infected B" is not. 6. With K-12, catalase does not prevent the growth of phage and the lysis induced by UV irradiation (Lwoff's phenomenon). 7. Hypotheses are discussed concerning: (a) the chemical nature of this action of catalase; (b) a possible relation between C. R. and lysogenicity of the sensitive bacteria; (c) the consequences of such chemical restorations on the general problem of cell radiosensitivity. PMID:14898028

  13. PURIFICATION OF CATALASE ENZYME FROM PLEUROTUS OSTREATUS

    Directory of Open Access Journals (Sweden)

    Susmitha.S

    2014-03-01

    Full Text Available The oyster mushroom Pleurotus ostreatus is the most commonly cultivated mushroom, and are effective for antitumor, antibacterial, anti viral and hematological agents and in immune modulating treatments. Several compounds from oyster mushrooms, potentially beneficial for human health have been isolated and studied. The aim of this research is to purify an enzyme catalase from Pleurotus ostreatus through Sephadox G-75 column, its molecular weight was determined by polyacrylamide gel electrophoresis and the catalase enzyme stability were observed at various temperature and different pH condition. Under denaturing conditions, polyacrylamide gel electrophoresis revealed dissociation of a major component of molecular weight 62,000 kDa, which constituted 90% of the total protein of the stained gel, suggesting that the native enzyme is tetrameric. The optimum temperature and pH for the purified enzyme catalase from Pleurotus ostreatus enzymatic reaction were 30°C and pH 7.5.

  14. Potential enzyme toxicity of oxytetracycline to catalase

    Energy Technology Data Exchange (ETDEWEB)

    Chi Zhenxing; Liu Rutao; Zhang Hao, E-mail: Trutaoliu@sdu.edu.cn [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment and Health, Shandong Province, 27 Shanda South Road, Jinan 250100 (China)

    2010-10-15

    Oxytetracycline (OTC) is a kind of widely used veterinary drugs. The residue of OTC in the environment is potentially harmful. In the present work, the non-covalent toxic interaction of OTC with catalase was investigated by the fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy at physiological pH 7.4. OTC can interact with catalase to form a complex mainly by van der Waals' interactions and hydrogen bonds with one binding site. The association constants K were determined to be K{sub 293K} = 7.09 x 10{sup 4} L mol{sup -1} and K{sub 311K} = 3.31 x 10{sup 4} L mol{sup -1}. The thermodynamic parameters ({Delta}H{sup o}, {Delta}G{sup o} and {Delta}S{sup o}) of the interaction were calculated. Based on the Foerster theory of non-radiative energy transfer, the distance between bound OTC and the tryptophan residues of catalase was determined to be 6.48 nm. The binding of OTC can result in change of the micro-environment of the tryptophan residues and the secondary structure of catalase. The activity of catalase was also inhibited for the bound OTC. This work establishes a new strategy to probe the enzyme toxicity of veterinary drug residues and is helpful for clarifying the molecular toxic mechanism of OTC in vivo. The established strategy can be used to investigate the potential enzyme toxicity of other small organic pollutants and drugs.

  15. Bacillus subtilis Vegetative Catalase Is an Extracellular Enzyme

    OpenAIRE

    Naclerio, G; Baccigalupi, L; Caruso, C; De Felice, M; Ricca, E

    1995-01-01

    Strong catalase activity was secreted by Bacillus subtilis cells during stationary growth phase in rich medium but not in sporulation-inducing medium. N-terminal sequencing indicated that the secreted activity was due to the vegetative catalase KatA, previously considered an endocellular enzyme. Extracellular catalase protected B. subtilis cells from oxidative assault.

  16. 21 CFR 184.1034 - Catalase (bovine liver).

    Science.gov (United States)

    2010-04-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Catalase (bovine liver). 184.1034 Section 184.1034... Listing of Specific Substances Affirmed as GRAS § 184.1034 Catalase (bovine liver). (a) Catalase...

  17. A Eukaryote without Catalase-Containing Microbodies : Neurospora crassa Exhibits a Unique Cellular Distribution of Its Four Catalases

    NARCIS (Netherlands)

    Schliebs, Wolfgang; Würtz, Christian; Kunau, Wolf-Hubert; Veenhuis, Marten; Rottensteiner, Hanspeter; Wuertz, Christian

    2006-01-01

    Microbodies usually house catalase to decompose hydrogen peroxide generated within the organelle by the action of various oxidases. Here we have analyzed whether peroxisomes (i.e., catalase-containing microbodies) exist in Neurospora crassa. Three distinct catalase isoforms were identified by native

  18. Developmentally related responses of maize catalase genes to salicylic acid.

    OpenAIRE

    L. Guan; Scandalios, J G

    1995-01-01

    The response of the maize catalase genes (Cat1, Cat2, and Cat3) to salicylic acid (SA) was examined at two distinct developmental stages: embryogenesis and germination. A unique, germination-related differential response of each maize catalase gene to various doses of SA was observed. During late embryogenesis, total catalase activity in scutella increased dramatically with 1 mM SA treatment. The accumulation of Cat2 transcript and CAT-2 isozyme protein provided the major contribution to the ...

  19. Development of a new biosensor for determination of catalase activity.

    Science.gov (United States)

    Teke, Mustafa

    2014-01-01

    Catalase is one of the major antioxidant enzymes that catalyzes the hydrolysis of H2O2. The aim of this study was to suggest a new method for the assay of catalase activity. For this purpose, an amperometric biosensor based on glucose oxidase for determination of catalase activity was developed. Immobilization of glucose oxidase was made by a cross-linking method with glutaraldehyde on a Clark-type electrode (dissolved oxygen probe). Optimization and characterization properties of the biosensor were studied and determination of catalase activity in defined conditions was investigated in artificial serum solution. The results were compared with a reference method. PMID:24499365

  20. Properties of erythrocyte catalase from heterozygotes for Japanese type acatalasemia.

    Directory of Open Access Journals (Sweden)

    Ogata,Masana

    1979-06-01

    Full Text Available The level of blood catalase activity in heterozygotes for Japanese type acatalasemia was demonstrated to be about half of normal levels by means of titration and spectrophotometric methods. A distribution plot of catalase activities in heterozygous blood was completely separate from that of normal blood. Comparative analysis of the partially purified erythrocyte catalase preparations obtained from normal and heterozygous individuals revealed no distinct differences between them regarding stability to heat, sodium dodecyl sulfate and some enzyme inhibitors or pH dependency. The erythrocyte catalase in heterozygotes for Japanese type acatalasemia contains about half the normal specific activity and as stable as that in normal individuals.

  1. 21 CFR 173.135 - Catalase derived from Micrococcus lysodeikticus.

    Science.gov (United States)

    2010-04-01

    ... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.135 Catalase derived from... cheese, in accordance with the following conditions. (a) The organism Micrococcus lysodeikticus...

  2. Developmental expression of a catalase inhibitor in maize

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, J.C.; Scandalios, J.G.

    1976-01-01

    The expression of an endogenous catalase inhibitor has been studied during development of Zea mays. In the 3-day seedling, the inhibitor is expressed primarily in the scutellum and in the aleurone layer of the endosperm. These tissues also show the highest catalase activity at this stage. Inhibitor expression has also been studied temporally in the scutellum, roots, and shoot over the first 12 days of germination. Inhibitor expression shows an inverse relationship with catalase activity in the scutellum and in the shoot. The relationship is less rigid in the root, due probably to the low levels of inhibitor found in that tissue. The role of the inhibitor in catalase regulation is discussed.

  3. Catalase and NO CATALASE ACTIVITY1 Promote Autophagy-Dependent Cell Death in Arabidopsis

    DEFF Research Database (Denmark)

    Hackenberg, Thomas; Juul, Trine; Auzina, Aija;

    2013-01-01

    Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an Arabidop......Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify...... an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase...

  4. High catalase production by Rhizobium radiobacter strain 2-1.

    Science.gov (United States)

    Nakayama, Mami; Nakajima-Kambe, Toshiaki; Katayama, Hideki; Higuchi, Kazuhiko; Kawasaki, Yoshio; Fuji, Ryujiro

    2008-12-01

    To promote the application of catalase for treating wastewater containing hydrogen peroxide, bacteria exhibiting high catalase activity were screened. A bacterium, designated strain 2-1, with high catalase activity was isolated from the wastewater of a beverage factory that uses hydrogen peroxide. Strain 2-1 was identified as Rhizobium radiobacter (formerly known as Agrobacterium tumefaciens) on the basis of both phenotypic and genotypic characterizations. Although some strains of R. radiobacter are known plant pathogens, polymerase chain reaction (PCR) analysis showed that strain 2-1 has no phytopathogenic factor. Compared with a type strain of R. radiobacter, the specific catalase activity of strain 2-1 was approximately 1000-fold. Moreover, Strain 2-1 grew faster and exhibited considerably higher catalase activity than other microorganisms that have been used for industrial catalase production. Strain 2-1 is harmless to humans and the environment and produces catalase efficiently, suggesting that strain 2-1 is a good resource for the mass production of catalase for the treatment of hydrogen peroxide-containing wastewater. PMID:19134550

  5. Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions

    NARCIS (Netherlands)

    Kawalek, Adam; Lefevre, Sophie D.; Veenhuis, Marten; van der Klei, Ida J.

    2013-01-01

    We studied the role of peroxisomal catalase in chronological aging of the yeast Hansenula polymorpha in relation to various growth substrates. Catalase-deficient (cat) cells showed a similar chronological life span (CLS) relative to the wild-type control upon growth on carbon and nitrogen sources th

  6. Immobilization and characterization of bovine liver catalase on eggshell

    Directory of Open Access Journals (Sweden)

    ÖZLEM ALPTEKİN

    2008-06-01

    Full Text Available Bovine liver catalase immobilized on eggshell particles was characterized and the reusability of the immobilized catalase was investigated in a batch type reactor. For immobilized catalase onto ground eggshell (ICATG, the optimum initial amount of catalase was 85 mg g-1 of eggshells, the optimum pH was 6.0 (75 mM citrate buffer and the temperature was 30 °C. The Vmax and Km values of ICATG were determined as 29.1±1.2 U/mg of protein and 41.9±2.7 mM, respectively. The reusability of ICATG was tested and the remaining activity of ICATG was found to be 73 % of the initial activity after 80 cycles of batch operation. The amount of catalase bound onto the carrier was estimated by using the results of induced coupled plasma measurements. The catalytic efficiencies (kcat/Km of free catalase and ICATG were found to be 1.4´106 and 2.8´103 dm3 s-1 mol-1, respectively. Catalase immobilization onto eggshell is economic and has good reusability. Hence, it can be concluded that eggshell is an efficient carrier for immobilizing catalase.

  7. Regulation of catalase expression in healthy and cancerous cells.

    Science.gov (United States)

    Glorieux, Christophe; Zamocky, Marcel; Sandoval, Juan Marcelo; Verrax, Julien; Calderon, Pedro Buc

    2015-10-01

    Catalase is an important antioxidant enzyme that dismutates hydrogen peroxide into water and molecular oxygen. The catalase gene has all the characteristics of a housekeeping gene (no TATA box, no initiator element sequence, high GC content in promoter) and a core promoter that is highly conserved among species. We demonstrate in this review that within this core promoter, the presence of DNA binding sites for transcription factors, such as NF-Y and Sp1, plays an essential role in the positive regulation of catalase expression. Additional transcription factors, such as FoxO3a, are also involved in this regulatory process. There is strong evidence that the protein Akt/PKB in the PI3K signaling pathway plays a major role in the expression of catalase by modulating the activity of FoxO3a. Over the past decade, other transcription factors (PPARγ, Oct-1, etc.), as well as genetic, epigenetic, and posttranscriptional processes, have emerged as crucial contributors to the regulation of catalase expression. Altered expression levels of catalase have been reported in cancer tissues compared to their normal counterparts. Deciphering the molecular mechanisms that regulate catalase expression could, therefore, be of crucial importance for the future development of pro-oxidant cancer chemotherapy.

  8. Catalase Enhances Growth and Biofilm Production of Mycoplasma pneumoniae.

    Science.gov (United States)

    Simmons, Warren L; Dybvig, Kevin

    2015-08-01

    Mycoplasma pneumoniae causes chronic respiratory disease in humans. Factors thought to be important for colonization include the ability of the mycoplasma to form a biofilm on epithelial surfaces and the production of hydrogen peroxide to damage host tissue. Almost all of the mycoplasmas, including M. pneumoniae, lack superoxide dismutase and catalase and a balance should exist between peroxide production and growth. We show here that the addition of catalase to cultures enhanced the formation of biofilms and altered the structure. The incorporation of catalase in agar increased the number of colony-forming units detected and hence could improve the clinical diagnosis of mycoplasmal diseases.

  9. Isolation of the catalase T structural gene of Saccharomyces cerevisiae by functional complementation.

    OpenAIRE

    Spevak, W; Fessl, F; Rytka, J; Traczyk, A; Skoneczny, M; Ruis, H

    1983-01-01

    The catalase T structural gene of Saccharomyces cerevisiae was cloned by functional complementation of a mutation causing specific lack of the enzyme (cttl). Catalase T-deficient mutants were obtained by UV mutagenesis of an S. cerevisiae strain bearing the cas1 mutation, which causes insensitivity of catalase T to glucose repression. Since the second catalase protein of S. cerevisiae, catalase A, is completely repressed on 10% glucose, catalase T-deficient mutant colonies could be detected u...

  10. The Cryptococcus neoformans Catalase Gene Family and Its Role in Antioxidant Defense

    OpenAIRE

    Giles, Steven S.; Stajich, Jason E.; Nichols, Connie; Gerrald, Quincy D.; Alspaugh, J. Andrew; Dietrich, Fred; Perfect, John R.

    2006-01-01

    In the present study, we sought to elucidate the contribution of the Cryptococcus neoformans catalase gene family to antioxidant defense. We employed bioinformatics techniques to identify four members of the C. neoformans catalase gene family and created mutants lacking single or multiple catalase genes. Based on a phylogenetic analysis, CAT1 and CAT3 encode putative spore-specific catalases, CAT2 encodes a putative peroxisomal catalase, and CAT4 encodes a putative cytosolic catalase. Only Ca...

  11. A Laboratory Experiment of the Purification of Catalase.

    Science.gov (United States)

    Busquets, Montserrat; Franco, Rafael

    1986-01-01

    Describes a simple method for purifying catalase for the study of proteins. Procedures are systematically and diagramatically presented. Also identifies polyacrylamide gel electrophoresis, kinetic studies, and apparent molecular weight determination as possible techniques to be used in studying proteins. (ML)

  12. Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions

    OpenAIRE

    Kawalek, Adam; Lefevre, Sophie D; Veenhuis, Marten; van der Klei, Ida J.

    2013-01-01

    We studied the role of peroxisomal catalase in chronological aging of the yeast Hansenula polymorpha in relation to various growth substrates. Catalase-deficient (cat) cells showed a similar chronological life span (CLS) relative to the wild-type control upon growth on carbon and nitrogen sources that are not oxidized by peroxisomal enzymes. However, when media contained methylamine, which is oxidized by peroxisomal amine oxidase, the CLS of cat cells was significantly reduced. Conversely, th...

  13. Growth-Dependent Catalase Localization in Exiguobacterium oxidotolerans T-2-2T Reflected by Catalase Activity of Cells

    OpenAIRE

    Yoshiko Hanaoka; Fumihiko Takebe; Yoshinobu Nodasaka; Isao Hara; Hidetoshi Matsuyama; Isao Yumoto

    2013-01-01

    A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2(T), exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In ...

  14. The localization of catalase in the pulmonary alveolar macrophage.

    Science.gov (United States)

    Davies, P; Drath, D B; Engel, E E; Huber, G L

    1979-02-01

    A combined biochemical and cytochemical study of catalase was performed on alveolar macrophages lavaged from the lungs of adult male rats. Biochemically, catalase activity was present in both a high-speed granule fraction and in the supernatant. The granule-associated activity exhibited latency. Two methods of cell breakage, sonication and homogenization, yielded similar levels and distributions of catalase activity. Catalase activity in whole cells was identified cytochemically by the alkaline diaminobenzidine method and was localized within membrane-lined cytoplasmic granules similar in size to microperoxisomes and associated with cisternae of smooth endoplasmic reticulum. Localization of the reaction product was inhibited by 0.04 M aminotriazole, by cyanide, and by boiling prior to incubation. The cytochemical reaction continued in the absence of exogenous peroxide, but could be prevented by addition of catalase or pyruvate to the peroxide-free medium. Enzyme activity was also localized within a portion of the membrane-bound granules present in the cell fractions used for the biochemical assays. PMID:431040

  15. Response of soil catalase activity to chromium contamination

    Institute of Scientific and Technical Information of China (English)

    Zofia St(e)pniewska; Agnieszka Woli(n)ska; Joanna Ziomek

    2009-01-01

    The impact of chromium (III) and (VI) forms on soil catalase activity is presented.The Orthic Podzol, Haplic Phaeozem and Mollic Gleysol from different depths were used in the experiment.The soil samples were amended with solution of Cr(III) using CrCl3, and with Cr(VI) using K2Cr2O7 in the concentration range from 0 to 20 mg/kg, whereas the samples without the addition of chromium served as control.Catalase activity was assayed by one of the commonly used spectrophotometric methods.As it is demonstrated in the experiment, both Cr(III) and Cr(VI) forms have ability to reduce soil catalase activity.A chromium dose of 20 mg/kg caused the inhibition of catalase activity and the corresponding contamination levels ranged from 75% to 92% for Cr(III) and 68% to 76% for Cr(VI), with relation to the control.Catalase activity reached maximum in the soil material from surface layers (0-25 cm), typically characterized by the highest content of organic matter creating favorable conditions for microorganisms.

  16. HIGHLY SENSITIVE CATALASE ELECTRODE BASED ON POLYPYRROLE FILMS WITH MICROCONTAINERS

    Institute of Scientific and Technical Information of China (English)

    Yu-ying Gao; Gao-quan Shi

    2006-01-01

    Highly sensitive catalase electrodes for sensing hydrogen peroxide have been fabricated based on polypyrrole films with microcontainers. The microcontainers have a cup-like morphology and are arranged in a density of 4000 units cm-2.Catalase was immobilized into the polypyrrole films with microcontainers (Ppy-mc), which were coated on a Pt substrate electrode. The catalase/Ppy-mc/Pt electrode showed linear response to hydrogen peroxide in the range of 0-18 mmol/L at a potential of -0.3 V (versus SCE). Its sensitivity was measured to be approximately 3.64 μA (mmol/L)-1 cm-2, which is about two times that of the electrode fabricated from a flat Ppy film (catalase/Ppy-flat/Pt electrode). The electrode is highly selective for hydrogen peroxide and its sensitivity is interfered by potential interferents such as ascorbic acid, urea and fructose. Furthermore, such catalase electrodes showed long-term storage stability of 15 days under dry conditions at 4℃.

  17. Fused-expression and characterization of catalase-TAT%Catalase-TAT的融合表达与表征

    Institute of Scientific and Technical Information of China (English)

    李仁宽; 孙立国; 吕元辉; 刘树滔; 饶平凡

    2012-01-01

    利用RT-PCR技术从人的肝细胞中克隆出成熟蛋白过氧化氢酶(catalase)的基因,通过PCR将其与TAT基因融合形成融合基因(catalase-TAT);将catalase-TAT基因构建到表达质粒pET21a(+)中,转入大肠杆菌Rosetta2 (DE3);通过IPTG诱导,转化子成功表达出catalase-TAT融合蛋白.重组菌发酵菌体破碎液经过硫酸铵沉降和Sp-5pw阳离子交换色谱,分离得到电泳纯的目的蛋白,其纯化倍数为18.51倍;经理化性质分析确定了此融合蛋白的最适pH和温度稳定性;细胞实验表明融合蛋白catalase-TAT能够明显提高胞内的过氧化氢酶活性.%Human catalase gene was amplified from liver cells via RT - PCR and fused to TAT. The catalase - TAT was cloned into the expression vector pET21a ( + ) and transformed into Rosettal ( DE3). After induction with IPTG, the recombinant catalase - TAT fusion protein was successfully expressed. The lecombinant bacteria were sonicated and the targeted protein was purified to a single band on SDS - PAGE after ammonium sulfate precipitation and Sp -5pw cation exchange chromatogra-phy, with the purification factor of 18. 51. With physical and chemical analyses, the optimum pH and thermal stability of the fusion protein was determined.

  18. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Miller-Pinsler, Lutfiya [Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Wells, Peter G., E-mail: pg.wells@utoronto.ca [Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada); Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada)

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • Et

  19. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    International Nuclear Information System (INIS)

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Catb/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • EtOH developmental

  20. Catalases as biocatalysts in technical applications : current state and perspectives

    NARCIS (Netherlands)

    Lončar, Nikola; Fraaije, Marco W

    2015-01-01

    Catalases represent a class of enzymes which has found its place among industrially relevant biocatalysts due to their exceptional catalytic rate and high stability. Textile bleaching prior to the dyeing process is the main application and has been performed on a large scale for the past few decades

  1. Improving catalase-based propelled motor endurance by enzyme encapsulation

    Science.gov (United States)

    Simmchen, Juliane; Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, Maria

    2014-07-01

    Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed.Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02459a

  2. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    Science.gov (United States)

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (pcatalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (pcatalase is a determinant of risk for EtOH embryopathies.

  3. Hepatic catalase activity after whole-body irradiation of the mouse

    International Nuclear Information System (INIS)

    Using biochemical techniques, the effect of irradiation on catalase rate of different tissues is studied. With cytochemistry, the decrease of catalase activity is studied in situ, after exposure to great ionizing radiation doses

  4. Development of lyophilization cycle and effect of excipients on the stability of catalase during lyophilization

    OpenAIRE

    Lale, Shantanu V; Goyal, Monu; Bansal, Arvind K

    2011-01-01

    Introduction: The purpose of the present study was to screen excipients such as amino acids and non-aqueous solvents for their stabilizing effect on catalase, a model protein, for lyophilization. The present study also includes optimization of lyophilization cycle for catalase formulations, which is essential from the commercial point of view, since lyophilization is an extremely costly process. Materials and Methods: Activity of catalase was determined using catalase activity assay. Differen...

  5. Effect of menadione and hydrogen peroxide on catalase activity in Saccharomyces yeast strains

    OpenAIRE

    Nadejda EFREMOVA; Elena MOLODOI; Agafia USATÎI; Ludmila FULGA; Tamara BORISOVA

    2013-01-01

    It has been studied the possibility of utilization of two important oxidant factors as regulators of catalase activity in Saccharomyces yeasts. In this paper results of the screening of some Saccharomyces yeast strains for potential producers of catalase are presented. Results of the screening for potential catalase producer have revealed that Saccharomyces cerevisiae CNMN-Y-11 strain possesses the highest catalase activity (2900 U/mg protein) compared with other samples. Maximum increase of ...

  6. Catalase Deficiency Accelerates Diabetic Renal Injury Through Peroxisomal Dysfunction

    OpenAIRE

    Hwang, Inah; Lee, Jiyoun; Huh, Joo Young; Park, Jehyun; Lee, Hi Bahl; Ho, Ye-Shih; Ha, Hunjoo

    2012-01-01

    Mitochondrial reactive oxygen species (ROS) play an important role in diabetes complications, including diabetic nephropathy (DN). Plasma free fatty acids (FFAs) as well as glucose are increased in diabetes, and peroxisomes and mitochondria participate in FFA oxidation in an interconnected fashion. Therefore, we investigated whether deficiency of catalase, a major peroxisomal antioxidant, accelerates DN through peroxisomal dysfunction and abnormal renal FFA metabolism. Diabetes was induced by...

  7. Dual targeting of yeast catalase A to peroxisomes and mitochondria.

    Science.gov (United States)

    Petrova, Ventsislava Y; Drescher, Diane; Kujumdzieva, Anna V; Schmitt, Manfred J

    2004-06-01

    Yeast catalase A (Cta1p) contains two peroxisomal targeting signals (SSNSKF) localized at its C-terminus and within the N-terminal third of the protein, which both can target foreign proteins to peroxisomes. In the present study we demonstrated that Cta1p can also enter mitochondria, although the enzyme lacks a classical mitochondrial import sequence. Cta1p co-targeting was studied in a catalase A null mutant after growth on different carbon sources, and expression of a Cta1p-GFP (green fluorescent protein)-fusion protein or a Cta1p derivative containing either a c-Myc epitope (Cta1p(myc)) or a SKF-extended tag (Cta1p(myc-SKF)). Peroxisomal and mitochondrial co-import of catalase A were tested qualitatively by fluorescence microscopy and functional complementation of a Delta cta1 null mutation, and quantitatively by subcellular fractionation followed by Western blot analysis and enzyme activity assays. Efficient Cta1p import into peroxisomes was observed when cells were cultivated under peroxisome-inducing conditions (i.e. growth on oleate), whereas significant co-import of Cta1p-GFP into mitochondria occurred when cells were grown under respiratory conditions that favour oxygen stress and ROS (reactive oxygen species) accumulation within this organelle. In particular, when cells were grown on the non-fermentable carbon source raffinose, respiration is maximally enhanced, and catalase A was efficiently targeted to the mitochondrial matrix where it presumably functions as scavenger of H2O2 and mitochondrial-derived ROS. PMID:14998369

  8. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Directory of Open Access Journals (Sweden)

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  9. The relevance of the non-canonical PTS1 of peroxisomal catalase

    NARCIS (Netherlands)

    Williams, Chris; Aksam, Eda Bener; Gunkel, Katja; Veenhuis, Marten; van der Klei, Ida J.

    2012-01-01

    Catalase is sorted to peroxisomes via a C-terminal peroxisomal targeting signal 1 (PTS1), which binds to the receptor protein Pex5. Analysis of the C-terminal sequences of peroxisomal catalases from various species indicated that catalase never contains the typical C-terminal PTS1 tripeptide-SKL, bu

  10. Structure–Function Relationships in Fungal Large-Subunit Catalases

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, A.; Valdez, V; Rudino-Pinera, E; Horjales, E; Hansberg, W

    2009-01-01

    Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H{sub 2}O{sub 2}) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In the CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H{sub 2}O{sub 2} to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-{gamma}-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H{sub 2}O{sub 2} concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics.

  11. Antigenic role of stress-induced catalase of Salmonella typhimurium in cell-mediated immunity.

    OpenAIRE

    Kagaya, K; Miyakawa, Y; Watanabe, K.; Fukazawa, Y.

    1992-01-01

    The ability of the H2O2-induced catalase of Salmonella typhimurium to induce cell-mediated immunity against S. typhimurium infection in mice was examined. When exponentially growing cells of S. typhimurium were treated with 20 microM H2O2, the cells resisted killing by 1 mM H2O2 and showed the induction of a new species of catalase in addition to the constitutively produced one. Two molecules of catalases in S. typhimurium were isolated from mutant strains: H2O2-induced catalase (catalase II,...

  12. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1

    Science.gov (United States)

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and Km of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications. PMID:27579320

  13. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1

    Directory of Open Access Journals (Sweden)

    Xianbo Jia

    2016-01-01

    Full Text Available Catalases are widely used in many scientific areas. A catalase gene (Kat from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli, which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and Km of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications.

  14. Novel insights in mammalian catalase heme maturation: effect of NO and thioredoxin-1.

    Science.gov (United States)

    Chakravarti, Ritu; Gupta, Karishma; Majors, Alana; Ruple, Lisa; Aronica, Mark; Stuehr, Dennis J

    2015-05-01

    Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorporation was associated with defective oligomerization of catalase, such that inactive catalase monomers and dimers accumulated in place of the mature tetrameric enzyme. We also found that GAPDH plays a key role in mediating these NO effects on the structure and activity of catalase. Moreover, the NO sensitivity of catalase maturation could be altered up or down by manipulating the cellular expression level or activity of thioredoxin-1, a known protein-SNO denitrosylase enzyme. In a mouse model of allergic inflammatory asthma, we found that lungs from allergen-challenged mice contained a greater percentage of dimeric catalase relative to tetrameric catalase in the unchallenged control, suggesting that the mechanisms described here are in play in the allergic asthma model. Together, our study shows how maturation of active catalase can be influenced by NO, S-nitrosylated GAPDH, and thioredoxin-1, and how maturation may become compromised in inflammatory conditions such as asthma.

  15. [Fermentation production of microbial catalase and its application in textile industry].

    Science.gov (United States)

    Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-11-01

    Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.

  16. Effect of TiO₂ nanoparticles on the structure and activity of catalase.

    Science.gov (United States)

    Zhang, Hong-Mei; Cao, Jian; Tang, Bo-Ping; Wang, Yan-Qing

    2014-08-01

    TiO₂ nanoparticles are the most widely used metal oxide nanoparticles and have oxidative toxicity. Catalase is an important antioxidant enzyme. Here the understanding of an effect of TiO₂ nanoparticles on the activity and structure of catalase is crucial to characterize the toxicity of TiO₂ nanoparticles. These experimental data revealed that TiO₂ nanoparticles could bind to catalase by the electrostatic and hydrogen bonding forces. On binding TiO₂ nanoparticles, catalase got destabilized with the decrease of α-helices content, the solvent polarity of environment around the fluorescence chromophores on catalase were also affected. In addition, TiO₂ nanoparticles also affected the activity of catalase. TiO₂ nanoparticles acted as an activator of catalase activity at a low molar concentration and as an inhibitor at a higher molar concentration. With regard to human health, the present study could provide a better understanding of the potential nanotoxicity of TiO₂ nanoparticles.

  17. Atypical refsum disease with pipecolic acidemia and abnormal catalase distribution.

    Science.gov (United States)

    Baumgartner, M R; Jansen, G A; Verhoeven, N M; Mooyer, P A; Jakobs, C; Roels, F; Espeel, M; Fourmaintraux, A; Bellet, H; Wanders, R J; Saudubray, J M

    2000-01-01

    We describe an 18-year-old patient with psychomotor retardation and abnormally short metatarsi and metacarpals but no other signs of classic Refsum disease. Molecular analysis of the phytanoyl-coenzyme A hydroxylase gene revealed a homozygous deletion causing a frameshift. Surprisingly, L-pipecolic acid was elevated in plasma, and microscopy of the liver showed a reduced number of peroxisomes per cell and a larger average peroxisome size. These abnormal peroxisomes lacked catalase as did peroxisomes in fibroblasts of this patient. Such generalized peroxisomal abnormalities are not present in classic Refsum disease.

  18. Purification and Characterization of Catalase from Marine Bacterium Acinetobacter sp. YS0810

    Directory of Open Access Journals (Sweden)

    Xinhua Fu

    2014-01-01

    Full Text Available The catalase from marine bacterium Acinetobacter sp. YS0810 (YS0810CAT was purified and characterized. Consecutive steps were used to achieve the purified enzyme as follows: ethanol precipitation, DEAE Sepharose ion exchange, Superdex 200 gel filtration, and Resource Q ion exchange. The active enzyme consisted of four identical subunits of 57.256 kDa. It showed a Soret peak at 405 nm, indicating the presence of iron protoporphyrin IX. The catalase was not apparently reduced by sodium dithionite but was inhibited by 3-amino-1,2,4-triazole, hydroxylamine hydrochloride, and sodium azide. Peroxidase-like activity was not found with the substrate o-phenylenediamine. So the catalase was determined to be a monofunctional catalase. N-terminal amino acid of the catalase analysis gave the sequence SQDPKKCPVTHLTTE, which showed high degree of homology with those of known catalases from bacteria. The analysis of amino acid sequence of the purified catalase by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed that it was a new catalase, in spite of its high homology with those of known catalases from other bacteria. The catalase showed high alkali stability and thermostability.

  19. Identification of a Catalase-Phenol Oxidase in Betalain Biosynthesis in Red Amaranth (Amaranthus cruentus).

    Science.gov (United States)

    Teng, Xiao-Lu; Chen, Ning; Xiao, Xing-Guo

    2015-01-01

    Betalains are a group of nitrogen-containing pigments that color plants in most families of Caryophyllales. Their biosynthesis has long been proposed to begin with hydroxylation of L-tyrosine to L-DOPA through monophenolase activity of tyrosinase, but biochemical evidence in vivo remains lacking. Here we report that a Group 4 catalase, catalase-phenol oxidase (named as AcCATPO), was identified, purified and characterized from leaves of Amaranthus cruentus, a betalain plant. The purified enzyme appeared to be a homotrimeric protein composed of subunits of about 58 kDa, and demonstrated not only the catalase activity toward H2O2, but also the monophenolase activity toward L-tyrosine and diphenolase activity toward L-DOPA. Its catalase and phenol oxidase activities were inhibited by common classic catalase and tyrosinase inhibitors, respectively. All its peptide fragments identified by nano-LC-MS/MS were targeted to catalases, and matched with a cDNA-encoded polypeptide which contains both classic catalase and phenol oxidase active sites. These sites were also present in catalases of non-betalain plants analyzed. AcCATPO transcript abundance was positively correlated with the ratio of betaxanthin to betacyanin in both green and red leaf sectors of A. tricolor. These data shows that the fourth group catalase, catalase-phenol oxidase, is present in plant, and might be involved in betaxanthin biosynthesis. PMID:26779247

  20. Identification of a catalase-phenol oxidase in betalain biosynthesis in red amaranth (Amaranthus cruentus

    Directory of Open Access Journals (Sweden)

    Xiao-Lu eTeng

    2016-01-01

    Full Text Available Betalains are a group of nitrogen-containing pigments that color plants in most families of Caryophyllales. Their biosynthesis has long been proposed to begin with hydroxylation of L-tyrosine to L-DOPA through monophenolase activity of tyrosinase, but biochemical evidence in vivo remains lacking. Here we report that a Group 4 catalase, catalase-phenol oxidase (named as AcCATPO, was identified, purified and characterized from leaves of Amaranthus cruentus, a betalain plant. The purified enzyme appeared to be a homotrimeric protein composed of subunits of about 58 kDa, and demonstrated not only the catalase activity toward H2O2, but also the monophenolase activity toward L-tyrosine and diphenolase activity toward L-DOPA. Its catalase and phenol oxidase activities were inhibited by common classic catalase and tyrosinase inhibitors, respectively. All its peptide fragments identified by nano-LC-MS/MS were targeted to catalases, and matched with a cDNA-encoded polypeptide which contains both classic catalase and phenol oxidase active sites. These sites were also present in catalases of non-betalain plants analyzed. AcCATPO transcript abundance was positively correlated with the ratio of betaxanthin to betacyanin in both green and red leaf sectors of A. tricolor. These data shows that the fourth group catalase, catalase-phenol oxidase, is present in plant, and might be involved in betaxanthin biosynthesis.

  1. A gasometric method to determine erythrocyte catalase activity

    Directory of Open Access Journals (Sweden)

    A.J.S. Siqueira

    1999-09-01

    Full Text Available We describe a new gasometric method to determine erythrocyte catalase activity by the measurement of the volume of oxygen produced as a result of hydrogen peroxide decomposition in a system where enzyme and substrate are separated in a special reaction test tube connected to a manometer and the reagents are mixed with a motor-driven stirrer. The position of the reagents in the test tube permits the continuous measurement of oxygen evolution from the time of mixing, without the need to stop the reaction by the addition of acid after each incubation time. The enzyme activity is reported as KHb, i.e., mg hydrogen peroxide decomposed per second per gram of hemoglobin (s-1 g Hb-1. The value obtained for catalase activity in 28 samples of hemolyzed human blood was 94.4 ± 6.17 mg H2O2 s-1 g Hb-1. The results obtained were precise and consistent, indicating that this rapid, simple and inexpensive method could be useful for research and routine work.

  2. A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis.

    Science.gov (United States)

    Li, Jing; Liu, Juntao; Wang, Guoqiang; Cha, Joon-Yung; Li, Guannan; Chen, She; Li, Zhen; Guo, Jinghua; Zhang, Caiguo; Yang, Yongqing; Kim, Woe-Yeon; Yun, Dae-Jin; Schumaker, Karen S; Chen, Zhongzhou; Guo, Yan

    2015-03-01

    Catalases are key regulators of reactive oxygen species homeostasis in plant cells. However, the regulation of catalase activity is not well understood. In this study, we isolated an Arabidopsis thaliana mutant, no catalase activity1-3 (nca1-3) that is hypersensitive to many abiotic stress treatments. The mutated gene was identified by map-based cloning as NCA1, which encodes a protein containing an N-terminal RING-finger domain and a C-terminal tetratricopeptide repeat-like helical domain. NCA1 interacts with and increases catalase activity maximally in a 240-kD complex in planta. In vitro, NCA1 interacts with CATALASE2 (CAT2) in a 1:1 molar ratio, and the NCA1 C terminus is essential for this interaction. CAT2 activity increased 10-fold in the presence of NCA1, and zinc ion binding of the NCA1 N terminus is required for this increase. NCA1 has chaperone protein activity that may maintain the folding of catalase in a functional state. NCA1 is a cytosol-located protein. Expression of NCA1 in the mitochondrion of the nca1-3 mutant does not rescue the abiotic stress phenotypes of the mutant, while expression in the cytosol or peroxisome does. Our results suggest that NCA1 is essential for catalase activity.

  3. Roles of Catalase and Trehalose in the Protection from Hydrogen Peroxide Toxicity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nishimoto, Takuto; Watanabe, Takeru; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2016-01-01

    The roles of catalase and trehalose in Saccharomyces cerevisiae subject to hydrogen peroxide (H2O2) treatment were examined by measuring the catalase activity and intracellular trehalose levels in mutants lacking catalase or trehalose synthetase. Intracellular trehalose was elevated but the survival rate after H2O2 treatment remained low in mutants with deletion of the Catalase T gene. On the other hand, deletion of the trehalose synthetase gene increased the catalase activity in mutated yeast to levels higher than those in the wild-type strain, and these mutants exhibited some degree of tolerance to H2O2 treatment. These results suggest that Catalase T is critical in the yeast response to oxidative damage caused by H2O2 treatment, but trehalose also plays a role in protection against H2O2 treatment. PMID:27667523

  4. Effect of menadione and hydrogen peroxide on catalase activity in Saccharomyces yeast strains

    Directory of Open Access Journals (Sweden)

    Nadejda EFREMOVA

    2013-05-01

    Full Text Available It has been studied the possibility of utilization of two important oxidant factors as regulators of catalase activity in Saccharomyces yeasts. In this paper results of the screening of some Saccharomyces yeast strains for potential producers of catalase are presented. Results of the screening for potential catalase producer have revealed that Saccharomyces cerevisiae CNMN-Y-11 strain possesses the highest catalase activity (2900 U/mg protein compared with other samples. Maximum increase of catalase activity with 50-60% compared to the reference sample was established in the case of hydrogen peroxide and menadione utilization in optimal concentrations of 15 and 10 mM. This research has been demonstrated the potential benefits of application of hydrogen peroxide and menadione as stimulatory factors of catalase activity in Saccharomyces yeasts.

  5. The role of cytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae

    OpenAIRE

    França, Mauro Braga; Panek, Anita Dolly; Eleutherio, Elis Cristina Araujo

    2005-01-01

    In this study, we investigated the role played by cytoplasmic catalase (Ctt1) in resistance against water loss using the yeast Saccharomyces cerevisiae as eukaryotic cell model. Comparing a mutant possessing a specific lesion in CTT1 with its parental strain, it was observed that both control and ctt1 strains exhibited increased levels of lipid peroxidation after dehydration, suggesting that catalase does not protect membranes during drying. Although the ctt1 strain has only 1 catalase isofor...

  6. Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases

    OpenAIRE

    Haas, Albert; Brehm, Klaus; Kreft, Jürgen; Goebel, Werner

    2011-01-01

    A gene coding for catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase; EC 1.11.1.6) of the gram-positive bacterium Listeria seeligeri was cloned from a plasmid library of EcoRI-digested chromosomal DNA, with Escherichia coli DH5 alpha as a host. The recombinant catalase was expressed in E. coli to an enzymatic activity approximately 50 times that of the combined E. coli catalases. The nucleotide sequence was determined, and the deduced amino acid sequence revealed 43.2% amino acid se...

  7. Extracellular localization of catalase is associated with the transformed state of malignant cells.

    Science.gov (United States)

    Böhm, Britta; Heinzelmann, Sonja; Motz, Manfred; Bauer, Georg

    2015-12-01

    Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase.

  8. Superoxide Dismutase and Catalase Genotypes in Pediatric Migraine Patients.

    Science.gov (United States)

    Saygi, Semra; Erol, İlknur; Alehan, Füsun; Yalçın, Yaprak Yılmaz; Kubat, Gözde; Ataç, Fatma Belgin

    2015-10-01

    This study compared superoxide dismutase (SOD) and catalase (CAT) alleles in 97 consecutive children and adolescents with migraine to 96 healthy children and adolescents. Isolated genomic DNA was used as a template for SOD1 (35 A/C), SOD2 16 C/T, and CAT2 [(-262 C/T) and (-21 A/T)] allele genotyping. The SOD2 16 C/T genotype and C allele frequency differed significantly between controls and migraine (P = .047; P = .038). CAT -21 AA genotype and A allele frequency were significantly higher in both migraine with aura patients (P = .013; P = .004) and migraine without aura patients (P = .003; P = .001) compared to controls. To our knowledge, this is the first demonstration of differences in SOD and CAT genotypes between pediatric migraine patients and age-matched controls. Further studies on the functional implications of these genetic variants on neural antioxidant capacity and the use of antioxidant modulators for migraine treatment are warranted.

  9. Effect of Catalase on Biocatalytic Synthesis of Pyruvate by Enzymes from Pseudomonas sp.

    Institute of Scientific and Technical Information of China (English)

    Jing Song GU; Yuan Xiu WANG; Qiang JIAO

    2004-01-01

    Pyruvate was produced from DL-lactate by a kind of green-chemical biocatalyst - cell-free extract from bacterial strain Pseudomonas sp. SM-6. Catalase in cell-free extract, which could stabilize the pyruvate formed by lactate oxidase, played an important role in pyruvate preparation. The effect of catalase in conversion process was evaluated.

  10. Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum

    NARCIS (Netherlands)

    Fraaije, Marco W.; Roubroeks, Hanno P.; Hagen, Wilfred R.; Berkel, Willem J.H. van

    1996-01-01

    The first dimeric catalase-peroxidase of eucaryotic origin, an intracellular hydroperoxidase from Penicillium simplicissimum which exhibited both catalase and peroxidase activities, has been isolated. The enzyme has an apparent molecular mass of about 170 kDa and is composed of two identical subunit

  11. Covalent Immobilization of Catalase onto Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-Linking.

    Science.gov (United States)

    Wang, Ping; Qi, Chenglong; Yu, Yuanyuan; Yuan, Jiugang; Cui, Li; Tang, Gengtie; Wang, Qiang; Fan, Xuerong

    2015-09-01

    Regenerated silk fibroins could be used as medical scaffolds and carrier materials for enzyme immobilization. In the present work, tyrosinase enzyme was used for enzymatic oxidation of silk fibroins, followed by immobilization of catalase onto the fibroin surfaces through physical adsorption and covalent cross-linking as well. Spectrophotometry, SDS-PAGE, and Fourier transform infrared spectroscopy (FTIR) were used to examine the efficiency of enzymatic oxidation and catalase immobilization, respectively. The results indicate that tyrosine residues in silk fibroins could be oxidized and converted to the active o-quinones. Incubating silk fibroins with catalase and tyrosinase led to a noticeable change of molecular weight distribution, indicating the occurrence of the cross-links between silk fibroins and catalase molecules. Two different pathways were proposed for the catalase immobilizations, and the method based on grafting of catalase onto the freeze-dried fibroin membrane is more acceptable. The residual enzyme activity for the immobilized catalase exhibited higher than that of the control after repeated washing cycles. Meanwhile, the thermal stability and alkali resistance were also slightly improved as compared to free catalase. The mechanisms of enzymatic immobilization are also concerned.

  12. Location of catalase in crystalline peroxisomes of methanol-grown Hansenula polymorpha

    NARCIS (Netherlands)

    Keizer, Ineke; Roggenkamp, Rainer; Harder, Willem; Veenhuis, Marten

    1992-01-01

    We have studied the intraperoxisomal location of catalase in peroxisomes of methanol-grown Hansenula polymorpha by (immuno)cytochemical means. In completely crystalline peroxisomes, in which the crystalline matrix is composed of octameric alcohol oxidase (AO) molecules, most of the catalase protein

  13. Effects of cysteine on growth, protease production, and catalase activity of Pseudomonas fluorescens.

    OpenAIRE

    Himelbloom, B H; Hassan, H.M.

    1986-01-01

    Cysteine inhibits growth of and protease production by Pseudomonas fluorescens NC3. Catalase activity in P. fluorescens NC3 was increased by cysteine. The addition of exogenous hydrogen peroxide did not increase catalase activity, thus suggesting a role for the endogenous generation of hydrogen peroxide via the autoxidation of cysteine.

  14. Catalase activity in the soil of the wood biogeocenoses in the Samara-river region

    Directory of Open Access Journals (Sweden)

    A. F. Kulik

    2009-11-01

    Full Text Available Research of catalase activity changes in connection with the free-radical oxidation is soil of natural and artificial ecosystems is conducted. The catalase is a plants’ enzyme of antioxidative protection. The catalase activity is a marker of variety and improvement of soils. It is important for the problems solutions in applied soil science. The aberrations of catalase, peroxidase and polyphenol oxidase activities characterise not only the metabolizing of plants, microorganisms and soils, but the level of the environmental pollution. The general activity of enzymatic systems allows ascertaining their role in the forming of biota components’ resistance to the exogenous influence. The seasonal dynamics of the soils’ catalase activity subject to the type of a biogeocenosis is disclosed.

  15. A simple method of catalase purification for the undergraduate experimental course.

    Science.gov (United States)

    Chen, Qian; Cheng, Meng; Wang, Yinnan; Yao, Ming; Chen, Yongchun; Gao, Yuan; Ding, Wenyuan

    2015-02-01

    Catalase is a characteristic enzyme of peroxisomes, of which it is the most abundant protein. This enzyme serves as a typical example of a peroxisomal enzyme and is important in the teaching of biochemistry and molecular biology. Although there is substantial information regarding catalase purification, purifying catalase for the junior‑grade undergraduate experimental course face challenges in obtaining materials and increasingly expensive purification equipment. This study presents a simple method for the purification of mouse liver catalase using ethanol‑chloroform treatment, sodium sulfate fractionation, dialysis and Sephadex G‑200 gel filtration chromatography. Catalase was purified 31.8‑fold with an 18.3% yield. The advantages of this method were its low operating environment requirements, simple procedure and reduced cost. Furthermore, the method was designed to improve students' comprehensive ability and manipulative ability and to introduce a sense of innovation in the fields of biochemistry and molecular biology during their junior year.

  16. Forchlorfenuron detection based on its inhibitory effect towards catalase immobilized on boron nitride substrate.

    Science.gov (United States)

    Xu, Qin; Cai, Lijuan; Zhao, Huijie; Tang, Jiaqian; Shen, Yuanyuan; Hu, Xiaoya; Zeng, Haibo

    2015-01-15

    An enzymatic procedure based on a catalase biosensor for the detection of forchlorfenuron (CPPU) has been reported in this work. Catalase was immobilized on boron nitride (BN) sheets dispersed in chitosan by adsorption. The immobilized catalase exhibited direct electron transfer character and excellent electrocatalytic activity towards H2O2 reduction. After introducing CPPU into the H2O2 containing phosphate buffer solution, the catalase-catalyzed H2O2 reduction current decreased. By measuring the current decrease, CPPU can be determined in the range of 0.5-10.0 µM with the detection limit of 0.07 μM. The non-competitive inhibition behavior of CPPU towards catalase was verified by the Lineweaver-Burk plots. Long stability character has been ascribed to this biosensor. Possible use of this biosensor in flow systems is illustrated. The proposed biosensor has been successfully applied to CPPU determination in fruits samples with satisfactory results.

  17. The utilization of some iron and zinc compounds as regulators of catalase activity at Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Efremova, N.

    2013-11-01

    Full Text Available The main aim of this study was to examine the impact of some zinc and iron compounds as oxidative stress factors on catalase activity, which is known to be important defense system of microorganisms to metal stress. For the investigation was used baker's yeast strain - Saccharomyces cerevisiae CNMN-Y-11 previously selected as a source of protein and catalase. The obtained results have revealed that compounds of iron and zinc with citrate and acetate contributes to the accumulation of yeast biomass and have beneficial effect on the catalase activity at selected yeast strain. The maximum increase of catalase activity in yeast biomass was established in case of iron and zinc citrate supplementation to the nutritive medium in optimal concentration of 15.0 mg/l. Results of the present study could be used for the elaboration of new procedures of catalase obtaining by directed synthesis with the utilization of selected metal compounds.

  18. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  19. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  20. Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study

    Directory of Open Access Journals (Sweden)

    Nathaniel G. N. Milton

    2010-01-01

    Full Text Available The diabetes-associated human islet amyloid polypeptide (IAPP is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ and prion protein (PrP fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  1. Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres.

    Science.gov (United States)

    Wu, Hong; Liang, Yanpeng; Shi, Jiafu; Wang, Xiaoli; Yang, Dong; Jiang, Zhongyi

    2013-04-01

    In this study, a novel approach combing the chelation and covalent binding was explored for facile and efficient enzyme immobilization. The unique capability of titania to chelate with catecholic derivatives at ambient conditions was utilized for titania surface functionalization. The functionalized titania was then used for enzyme immobilization. Titania submicrospheres (500-600 nm) were synthesized by a modified sol-gel method and functionalized with carboxylic acid groups through a facile chelation method by using 3-(3,4-dihydroxyphenyl) propionic acid as the chelating agent. Then, catalase (CAT) was covalently immobilized on these functionalized titania submicrospheres through 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The immobilized CAT retained 65% of its free form activity with a loading capacity of 100-150 mg/g titania. The pH stability, thermostability, recycling stability and storage stability of the immobilized CAT were evaluated. A remarkable enhancement in enzyme stability was achieved. The immobilized CAT retained 90% and 76% of its initial activity after 10 and 16 successive cycles of decomposition of hydrogen peroxide, respectively. Both the Km and the Vmax values of the immobilized CAT (27.4 mM, 13.36 mM/min) were close to those of the free CAT (25.7 mM, 13.46 mM/min). PMID:23827593

  2. A Review on Direct Electrochemistry of Catalase for Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Periasamy Arun Prakash

    2009-03-01

    Full Text Available Catalase (CAT is a heme enzyme with a Fe(III/II prosthetic group at its redox centre. CAT is present in almost all aerobic living organisms, where it catalyzes the disproportionation of H2O2 into oxygen and water without forming free radicals. In order to study this catalytic mechanism in detail, the direct electrochemistry of CAT has been investigated at various modified electrode surfaces with and without nanomaterials. The results show that CAT immobilized on nanomaterial modified electrodes shows excellent catalytic activity, high sensitivity and the lowest detection limit for H2O2 determination. In the presence of nanomaterials, the direct electron transfer between the heme group of the enzyme and the electrode surface improved significantly. Moreover, the immobilized CAT is highly biocompatible and remains extremely stable within the nanomaterial matrices. This review discusses about the versatile approaches carried out in CAT immobilization for direct electrochemistry and electrochemical sensor development aimed as efficient H2O2 determination. The benefits of immobilizing CAT in nanomaterial matrices have also been highlighted.

  3. Over-Expression of Catalase in Myeloid Cells Confers Acute Protection Following Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    E. Bernadette Cabigas

    2014-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in the United States and new treatment options are greatly needed. Oxidative stress is increased following myocardial infarction and levels of antioxidants decrease, causing imbalance that leads to dysfunction. Therapy involving catalase, the endogenous scavenger of hydrogen peroxide (H2O2, has been met with mixed results. When over-expressed in cardiomyocytes from birth, catalase improves function following injury. When expressed in the same cells in an inducible manner, catalase showed a time-dependent response with no acute benefit, but a chronic benefit due to altered remodeling. In myeloid cells, catalase over-expression reduced angiogenesis during hindlimb ischemia and prevented monocyte migration. In the present study, due to the large inflammatory response following infarction, we examined myeloid-specific catalase over-expression on post-infarct healing. We found a significant increase in catalase levels following infarction that led to a decrease in H2O2 levels, leading to improved acute function. This increase in function could be attributed to reduced infarct size and improved angiogenesis. Despite these initial improvements, there was no improvement in chronic function, likely due to increased fibrosis. These data combined with what has been previously shown underscore the need for temporal, cell-specific catalase delivery as a potential therapeutic option.

  4. Catalase from the white shrimp Penaeus (Litopenaeus) vannamei: molecular cloning and protein detection.

    Science.gov (United States)

    Tavares-Sánchez, Olga L; Gómez-Anduro, Gracia A; Felipe-Ortega, Ximena; Islas-Osuna, Maria A; Sotelo-Mundo, Rogerio R; Barillas-Mury, Carolina; Yepiz-Plascencia, Gloria

    2004-08-01

    Catalase is an antioxidant enzyme that plays a very important role in the protection against oxidative damage by breaking down hydrogen peroxide. It is a very highly conserved enzyme that has been identified from numerous species including bacteria, fungi, plants and animals, but the information about catalase in crustaceans is very limited. A cDNA containing the complete coding sequence for catalase from the shrimp Penaeus (Litopenaeus) vannamei was sequenced and the mRNA was detected by RT-PCR in selected tissues. Catalase was detected in hepatopancreas crude extracts by Western blot analysis with anti-human catalase polyclonal antibodies. The nucleotide sequence is 1692 bp long, including a 72-bp 5'-UTR, a coding sequence of 1515 bp and a 104-bp 3'-UTR. The deduced amino acid sequence corresponds to 505 amino acids with high identity to invertebrate, vertebrate and even bacterial catalases and contains the catalytic residues His71, Asn144, and Tyr354. The predicted protein has a calculated molecular mass of 57 kDa; which coincides with the size of the subunit (approximately 55 kDa) and the tetrameric protein (approximately 230 kDa) detected in hepatopancreas extracts under native conditions. Catalase mRNA level was higher in hepatopancreas, followed by gills and was not detected in muscle. PMID:15325332

  5. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed.

  6. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Eun Jeong; Kim, Dae Won; Kim, Young Nam; Kim, So Mi [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Lim, Soon Sung [Department of Food Science and Nutrition and RIC Center, Hallym University, Chunchon 200-702 (Korea, Republic of); Kang, Tae-Cheon [Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Kwon, Hyeok Yil [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Kim, Duk-Soo [Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 330-090 (Korea, Republic of); Cho, Sung-Woo [Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Hwang, Hyun Sook, E-mail: wazzup@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2011-03-18

    Research highlights: {yields} We studied effects of pergolide mesylate (PM) on in vitro and in vivo transduction of PEP-1-catalase. {yields} PEP-1-catatase inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. {yields} PM enhanced the transduction of PEP-1-catalase into HaCaT cells and skin tissue. {yields} PM increased anti-inflammatory activity of PEP-1-catalase. {yields} PM stimulated therapeutic action of anti-oxidant enzyme catalase in oxidative-related diseases. -- Abstract: The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1{beta}, and tumor necrosis factor-{alpha} induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.

  7. The Molecular Mechanism of the Catalase-like Activity in Horseradish Peroxidase.

    Science.gov (United States)

    Campomanes, Pablo; Rothlisberger, Ursula; Alfonso-Prieto, Mercedes; Rovira, Carme

    2015-09-01

    Horseradish peroxidase (HRP) is one of the most relevant peroxidase enzymes, used extensively in immunochemistry and biocatalysis applications. Unlike the closely related catalase enzymes, it exhibits a low activity to disproportionate hydrogen peroxide (H2O2). The origin of this disparity remains unknown due to the lack of atomistic information on the catalase-like reaction in HRP. Using QM(DFT)/MM metadynamics simulations, we uncover the mechanism for reduction of the HRP Compound I intermediate by H2O2 at atomic detail. The reaction begins with a hydrogen atom transfer, forming a peroxyl radical and a Compound II-like species. Reorientation of the peroxyl radical in the active site, concomitant with the transfer of the second hydrogen atom, is the rate-limiting step, with a computed free energy barrier (18.7 kcal/mol, ∼ 6 kcal/mol higher than the one obtained for catalase) in good agreement with experiments. Our simulations reveal the crucial role played by the distal pocket residues in accommodating H2O2, enabling formation of a Compound II-like intermediate, similar to catalases. However, out of the two pathways for Compound II reduction found in catalases, only one is operative in HRP. Moreover, the hydrogen bond network in the distal side of HRP compensates less efficiently than in catalases for the energetic cost required to reorient the peroxyl radical at the rate-determining step. The distal Arg and a water molecule in the "wet" active site of HRP have a substantial impact on the reaction barrier, compared to the "dry" active site in catalase. Therefore, the lower catalase-like efficiency of heme peroxidases compared to catalases can be directly attributed to the different distal pocket architecture, providing hints to engineer peroxidases with a higher rate of H2O2 disproportionation.

  8. Direct Electrochemistry of Catalase on Single Wall Carbon Nanotubes Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiang ZHAO; Lun Hui GUAN; Zhen Nan GU; Qian Kun ZHUANG

    2005-01-01

    Direct electrochemistry of catalase (Ct) has been studied on single wall carbon nanotubes (SWNTs) modified glassy carbon (GC) electrode. A pair of well-defined nearly reversible redox peaks is given at --0.48 V (vs. SCE) in 0.1 mol/L phosphate solution (pH 7.0).The peak current in cyclic voltammogram is proportional to the scan rate. The peak potential of catalase is shifted to more negative value when the pH increases. Catalase can adsorb on the SWNTs modified electrode.

  9. The catalase gene differentiates between some strains of Staphylococcus aureus ssp. anaerobius

    OpenAIRE

    Musa, N. O.; Eltom, K.; Gessler, F.; H. Böhnel; Babiker, A.; Sanousi, S. M.

    2010-01-01

    Staphylococcus aureus ssp anaerobius strain S10 was isolated from an outbreak of sheep abscess disease. Sequence of the catalase gene of this strain showed 99 % identity to the catalase gene (katB) sequence of the reference strain (S. aureus ssp. anaerobius strain MVF213) with mismatching of three base pairs. An important substitution located 1036 nucleotides upstream of the initiation codon from “C” in katB to “T” in the catalase gene of strain S10 originated a stop codon. The de...

  10. Catalase-negative, methicillin-resistant Staphylococcus aureus as a cause of septicemia Staphylococcus aureus catalase-negativo resistente a meticilina como causa de septicemia

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Innaco de Carvalho

    2003-01-01

    Full Text Available A catalase-negative methicillin-resistant Staphylococcus aureus (MRSA was isolated from blood, venous catheter spike and bone marrow collected from an HIV-positive man with lobar pneumonia and sepsis after ten days of hospitalization. The isolate was resistant to oxacillin (positive for penicillin-binding protein 2', ceftriaxone, clindamycin and clarithromycin, and susceptible to vancomycin. This is the first case of septicemia due to a catalase-negative S. aureus reported in Brazil, and, to our knowledge, it is the first case of catalase-negative MRSA reported in the literature. We believe that the patient acquired the S. aureus infection within the hospital environment since it was isolated ten days after hospitalization, it was isolated in a venous catheter spike, and the antibiotic resistance profile is similar to other S. aureus isolates recovered from infections in our hospital.Em um paciente HIV-positivo, com pneumonia lobar e septicemia, foi isolada, após dez dias de internação, uma cepa de Staphylococcus aureus catalase-negativa, resistente a meticilina/oxacilina (MRSA, de culturas de sangue, cateter venoso central e medula óssea. A cepa era resistente a oxacilina (PBP 2' positivo, ceftriaxona, clindamicina e claritromicina, e sensível a vancomicina. Este é o primeiro caso, reportado no Brasil, de uma septicemia por S. aureus catalase-negativo e, em nosso conhecimento, o primeiro caso de um S. aureus catalase-negativo resistente a meticilina. Nós acreditamos que o paciente tenha adquirido a infecção no ambiente hospitalar, uma vez que esta cepa foi isolada aos dez dias de internação, foi isolada em cateter venoso central e o perfil de sensibilidade aos antimicrobianos é semelhante ao dos S. aureus de infecções nosocomiais que ocorrem em nosso hospital.

  11. An oxyferrous heme/protein-based radical intermediate is catalytically competent in the catalase reaction of Mycobacterium tuberculosis catalase-peroxidase (KatG).

    Science.gov (United States)

    Suarez, Javier; Ranguelova, Kalina; Jarzecki, Andrzej A; Manzerova, Julia; Krymov, Vladimir; Zhao, Xiangbo; Yu, Shengwei; Metlitsky, Leonid; Gerfen, Gary J; Magliozzo, Richard S

    2009-03-13

    A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed.

  12. Simultaneous production of catalase, glucose oxidase and gluconic acid by Aspergillus niger mutant.

    Science.gov (United States)

    Fiedurek, J; Gromada, A; Pielecki, J

    1998-01-01

    The production of gluconic acid, extracellular glucose oxidase and catalase in submerged culture by a number of biochemical mutants has been evaluated. Optimization of stirrer speed, time cultivation and buffering action of some chemicals on glucose oxidase, catalase and gluconic acid production by the most active mutant, AM-11, grown in a 3-L glass bioreactor was investigated. Three hundred rpm appeared to be optimum to ensure good growth and best glucose oxidase production, but gluconic acid or catalase activity obtained maximal value at 500 or 900 rpm, respectively. Significant increase of dissolved oxygen concentration in culture (16-21%) and extracellular catalase activity were obtained when the traditional aeration was employed together with automatic dosed hydrogen peroxide.

  13. Mitochondrial catalase suppresses naturally occurring lung cancer in old mice

    Directory of Open Access Journals (Sweden)

    Xuang Ge

    2015-09-01

    Full Text Available Lung cancer is generally difficult to detect until the late stages of disease, when it is much more difficult to treat because of the more aggressive and invasive behavior. Advanced lung cancer is much more common in older adults making it even more challenging to treat. Adenocarcinoma belongs to a category of non-small cell lung cancers, which comprise up to 40% of all lung cancers, and about half of these have an activating K-ras mutation. Because treatment relapses are common, more effective unconventional treatment and prevention methods are needed. In this regard, the antioxidant enzyme catalase targeted to mitochondria (mCAT has been shown to delay aging and cancer in mice, and the progression of transgenic oncogene and syngeneic tumors was suppressed, helping support the notion that attenuation of mitochondria-generated hydrogen peroxide signaling is associated with an antitumor effect. In order to determine if mCAT has any effect on naturally occurring lung cancer of the adenocarcinoma type in old mice, the tumor incidence and progression were examined in the lungs of old mCAT transgenic and wild-type (WT mice with a CB6F1 (Balb/c X C57BL/6 background. CB6F1 mice with a WT genotype were found to have a high incidence of adenomas at 24 months of age, which progressed to adenocarcinomas at 32 months of age. CB6F1 mice with the mCAT genotype had significantly reduced incidence and severity of lung tumors at both ages. Fibroblasts isolated from the lungs of old mCAT mice, but not WT mice, were shown to secrete soluble factors that inhibited lung tumor cell growth suggesting that stromal fibroblasts play a role in mediating the antitumor effects of mCAT. The aged CB6F1 mouse, with its high incidence of K-ras mutant lung cancer, is an excellent model to further study the anticancer potential of mitochondria-targeted therapy.

  14. Interference of a commercial catalase preparation in laccase and peroxidase activities

    Directory of Open Access Journals (Sweden)

    Nara Ballaminut

    2009-10-01

    Full Text Available The influence of commercial catalase preparations (fungal and bovine origin on laccase and peroxidase activity assays was evaluated using enzymatic extracts obtained from several basidiomycetes grown under different culture conditions. No hydrogen peroxide was detected in the extracts. Inhibition of laccase activity by 40 to 80% was related to the catalase source. In addition, oxidation of the substrate (ABTS by fungal catalase in the absence of the enzymatic extract from basidiomycetes was observed. The results demonstrated the need for the evaluation of interference of the commercial catalase preparation when its use was required in the reaction mixture.A influência da preparação comercial de catalase (origem fúngica e bovina nos ensaios de atividade absence and presence of a fungal or bovine de lacase e de peroxidases foi avaliada empregando-se extratos enzimáticos obtidos do crescimento de diversos basidiomicetos em diferentes condições de cultivo. Não foi detectado H2O2 nos extratos. Inibição de 40 a 80% da atividade de lacase foi relacionada à fonte de catalase. Além disso, foi observada oxidação do substrato (ABTS pela catalase fúngica, na ausência de extrato enzimático do basidiomiceto. Os resultados evidenciaram a necessidade de se proceder a uma avaliação da interferência da preparação comercial de catalase, quando o seu uso se fizer necessário na mistura reacional.

  15. katGI and katGII encode two different catalases-peroxidases in Mycobacterium fortuitum.

    OpenAIRE

    Menéndez, M C; Ainsa, J A; Martín, C.; García, M.J.

    1997-01-01

    It has been suggested that catalase-peroxidase plays an important role in several aspects of mycobacterial metabolism and is a virulence factor in the main pathogenic mycobacteria. In this investigation, we studied genes encoding for this protein in the fast-growing opportunistic pathogen Mycobacterium fortuitum. Nucleotide sequences of two different catalase-peroxidase genes (katGI and katGII) of M. fortuitum are described. They show only 64% homology at the nucleotide level and 55% identity...

  16. The utilization of some iron and zinc compounds as regulators of catalase activity at Saccharomyces cerevisiae

    OpenAIRE

    Efremova, N.; Molodoi, E.; Usatîi, A.; Fulga, L.

    2013-01-01

    The main aim of this study was to examine the impact of some zinc and iron compounds as oxidative stress factors on catalase activity, which is known to be important defense system of microorganisms to metal stress. For the investigation was used baker's yeast strain - Saccharomyces cerevisiae CNMN-Y-11 previously selected as a source of protein and catalase. The obtained results have revealed that compounds of iron and zinc with citrate and acetate contributes to the accumulation of yeast bi...

  17. INVOLVEMENT OF CATALASE IN SACCHAROMYCES CEREVISIAE HORMETIC RESPONSE TO HYDROGEN PEROXIDE

    Directory of Open Access Journals (Sweden)

    Ruslana Vasylkovska

    2015-05-01

    Full Text Available In this study, we investigated the relationship between catalase activity and H2O2-induced hormetic response in budding yeast S. cerevisiae. In general, our data suggest that: (i hydrogen peroxide induces hormesis in a concentration- and time-dependent manner; and (ii the effect of hydrogen peroxide on yeast colony growth positively correlates with the activity of catalase that suggests the enzyme involvement in overall H2O2-induced stress response and hormetic response in yeast.

  18. INVOLVEMENT OF CATALASE IN SACCHAROMYCES CEREVISIAE HORMETIC RESPONSE TO HYDROGEN PEROXIDE

    OpenAIRE

    Ruslana Vasylkovska; Nadia Burdylyuk; Halyna Semchyshyn

    2015-01-01

    In this study, we investigated the relationship between catalase activity and H2O2-induced hormetic response in budding yeast S. cerevisiae. In general, our data suggest that: (i) hydrogen peroxide induces hormesis in a concentration- and time-dependent manner; and (ii) the effect of hydrogen peroxide on yeast colony growth positively correlates with the activity of catalase that suggests the enzyme involvement in overall H2O2-induced stress response and hormetic response in yeast.

  19. Reversible adsorption of catalase onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogels.

    Science.gov (United States)

    Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2015-05-01

    In this presented study, poly(acrylamide-glycidyl methacrylate) [poly(AAm-GMA)] cryogels were synthesized by cryopolymerization technique at sub-zero temperature. Prepared cryogels were then functionalized with iminodiacetic acid (IDA) and chelated with Fe(3+) ions in order produce the metal chelate affinity matrix. Synthesized cryogels were characterized with FTIR, ESEM and EDX analysis, and it was found that the cryogel had sponge like structure with interconnected pores and their pore diameter was about 200 μm. Fe(3+) chelated poly(AAm-GMA)-IDA cryogels were used for the adsorption of catalase and optimum adsorption conditions were determined by varying the medium pH, initial catalase concentration, temperature and ionic strength. Maximum catalase adsorption onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was found to be 12.99 mg/g cryogel at 25 °C, by using pH 5.0 acetate buffer. Adsorbed catalase was removed from the cryogel by using 1.0M of NaCl solution and desorption yield was found to be 96%. Additionally, reusability profile of the Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was also investigated and it was found that, adsorption capacity of the cryogels didn't decrease significantly at the end of the 40 reuses. Catalase activity studies were also tested and it was demonstrated that desorbed catalase retained 70% of its initial activity.

  20. Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase.

    Science.gov (United States)

    Mashhadi, Zahra; Boeglin, William E; Brash, Alan R

    2014-11-01

    True catalases efficiently breakdown hydrogen peroxide, whereas the catalase-related enzyme allene oxide synthase (cAOS) is completely unreactive and instead metabolizes a fatty acid hydroperoxide. In cAOS a Thr residue adjacent to the distal His restrains reaction with H2O2 (Tosha et al. (2006) J. Biol. Chem. 281:12610; De Luna et al. (2013) J. Phys. Chem. B 117: 14635) and its mutation to the consensus Val of true catalases permits the interaction. Here we investigated the effects of the reciprocal experiment in which the Val74 of human catalase is mutated to Thr, Ser, Met, Pro, or Ala. The Val74Thr substitution decreased catalatic activity by 3.5-fold and peroxidatic activity by 3-fold. Substitution with Ser had similar negative effects (5- and 3-fold decreases). Met decreased catalatic activity 2-fold and eliminated peroxidatic activity altogether, whereas the Val74Ala substitution was well tolerated. (The Val74Pro protein lacked heme). We conclude that the conserved Val74 of true catalases helps optimize catalysis. There are rare substitutions of Val74 with Ala, Met, or Pro, but not with Ser of Thr, possibly due their hydrogen bonding affecting the conformation of His75, the essential distal heme residue for activity in catalases.

  1. Not so monofunctional--a case of thermostable Thermobifida fusca catalase with peroxidase activity.

    Science.gov (United States)

    Lončar, Nikola; Fraaije, Marco W

    2015-03-01

    Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and overexpressed in Escherichia coli with a yield of 400 mg/L. Heat treatment of disrupted cells at 60 °C for 1 h resulted in enzyme preparation of high purity; hence, no chromatography steps are needed for large-scale production. Except for catalyzing the dismutation of hydrogen peroxide, TfuCat was also found to catalyze oxidations of phenolic compounds. The catalase activity was comparable to other described catalases while peroxidase activity was quite remarkable with a k obs of nearly 1000 s(-1) for catechol. Site directed mutagenesis was used to alter the ratio of peroxidase/catalase activity. Resistance to inhibition by classic catalase inhibitors and an apparent melting temperature of 74 °C classifies this enzyme as a robust biocatalyst. As such, it could compete with other commercially available catalases while the relatively high peroxidase activity also offers new biocatalytic possibilities.

  2. Fluorescence Spectrometry of the Interaction of Multi-Walled Carbon Nanotubes with Catalase

    Science.gov (United States)

    Fan, Y.; Li, Y.; Cai, H.; Li, J.; Miao, J.; Fu, D.; Yang, Q.

    2014-11-01

    The interaction of multi-walled carbon nanotubes (MWCNTs) with catalase is investigated using fluorescence and circular dichroism spectroscopic techniques. The results of the fluorescence experiments suggest that MWCNTs quench the intrinsic fluorescence of catalase via a static quenching mechanism. The circular dichroism spectral results reveal the unfolding of catalase with a significant decrease in the α-helix content in the presence of MWCNTs, which indicates that the conformation of catalase is changed in the binding process, thereby remarkably decreasing its activity. The binding constants and the number of binding sites of the MWCNT to the catalase are calculated at different temperatures. The thermodynamic parameters, such as the changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), are calculated using thermodynamic equations. The fact that all negative values of ΔG, ΔH, and ΔS are obtained suggests that the interaction of the MWCNTs with catalase is spontaneous, and that hydrogen bonding and van der Waals interactions play an important role in the binding process.

  3. Milk catalase activity as an indicator of thermization treatments used in the manufacture of cheddar cheese.

    Science.gov (United States)

    Hirvi, Y; Griffiths, M W

    1998-02-01

    Pilot-scale studies were carried out to determine the effect of different heat treatments on catalase activity during the manufacture and maturation of Cheddar cheese. Three trials were conducted to monitor catalase activity using disk flotation and polarographic methods. Cheese was manufactured from raw milk and from milk that had been treated at 60, 65 and 72 degrees C for 16 s using a high temperature, short time heat exchanger. Catalase activity was also determined in samples of commercial milk and in samples of mild, medium, sharp, and extra sharp Cheddar cheeses obtained from different manufacturers in order to verify that the enzyme could be used as an indicator of the type of heat treatment applied to cheese milk. Catalase activity was present in cheese made from raw milk but was only present at low concentrations in cheese manufactured from thermized milk. However, high catalase activity was observed in commercial samples of sharp and extra sharp Cheddar cheese that was apparently due to the growth of catalase-producing yeasts in the cheese during maturation.

  4. Reduction of hydrogen peroxide accumulation and toxicity by a catalase from Mycoplasma iowae.

    Directory of Open Access Journals (Sweden)

    Rachel E Pritchard

    Full Text Available Mycoplasma iowae is a well-established avian pathogen that can infect and damage many sites throughout the body. One potential mediator of cellular damage by mycoplasmas is the production of H2O2 via a glycerol catabolic pathway whose genes are widespread amongst many mycoplasma species. Previous sequencing of M. iowae serovar I strain 695 revealed the presence of not only genes for H2O2 production through glycerol catabolism but also the first documented mycoplasma gene for catalase, which degrades H2O2. To test the activity of M. iowae catalase in degrading H2O2, we studied catalase activity and H2O2 accumulation by both M. iowae serovar K strain DK-CPA, whose genome we sequenced, and strains of the H2O2-producing species Mycoplasma gallisepticum engineered to produce M. iowae catalase by transformation with the M. iowae putative catalase gene, katE. H2O2-mediated virulence by M. iowae serovar K and catalase-producing M. gallisepticum transformants were also analyzed using a Caenorhabditis elegans toxicity assay, which has never previously been used in conjunction with mycoplasmas. We found that M. iowae katE encodes an active catalase that, when expressed in M. gallisepticum, reduces both the amount of H2O2 produced and the amount of damage to C. elegans in the presence of glycerol. Therefore, the correlation between the presence of glycerol catabolism genes and the use of H2O2 as a virulence factor by mycoplasmas might not be absolute.

  5. Evaluation on the Toxic Effects of NanoAg to Catalase.

    Science.gov (United States)

    Zhang, Bin; Zhai, Wenxin; Liu, Rutao; Yu, Zehua; Shen, Hengmei; Hu, Xinxin

    2015-02-01

    Protein is the functional actor of life. Research on protein damage induced by nanomaterials may give insight into the toxicity mechanisms of nanoparticles. Studying nano silver over the impact of the structure and function of catalase (CAT) at the molecular level, is of great significance for a comprehensive evaluation of their toxic effects. The toxic effects of nanoAg on catalase were thoroughly investigated using steady state and time resolved fluorescence quenching measurements, ultraviolet-visible absorption spectroscopy, resonance light scattering spectroscopy (RLS), circular dichroism spectroscopy (CD) and transmission electron microscopy (TEM). NanoAg could decrease the amount of alpha-helix and increase the beta sheet structure, leading to loose the skeleton structure of catalase. The characteristic fluorescence of catalase was obviously quenched, which showed the exposal of internal hydrophobic amino acids enhanced, and its quenching type is dynamic quenching. The result of RLS and TEM showed that the distribution and size of nanoAg become more uniform and smaller after their interaction, resulting in a decrease of RLS intensity. NanoAg could make the activity of catalase rise. By changing the structure of catalase, nanoAg increases its enzymatic activity to a certain extent, breaking down its balance in vivo, thereby affecting the normal physiological activities. NanoAg has obvious toxic effects on catalase. This paper provided a new perspective and method for the toxic effects of nanoAg to biological macromolecules; provided basic data and reference gist for the hygienics and toxicology studies of nanoAg. It is conducive to the toxicity prevention and control work of nanoAg, promoting nano-technology applied to human production and living better.

  6. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    Science.gov (United States)

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (Pcatalase transfection significantly attenuated AngII‑induced ROS generation, macrophage infiltration, collagen deposition and adventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  7. The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens.

    Science.gov (United States)

    Eason, Mia M; Fan, Xin

    2014-09-01

    Respiratory tract bacterial pathogens are the etiologic agents of a variety of illnesses. The ability of these bacteria to cause disease is imparted through survival within the host and avoidance of pathogen clearance by the immune system. Respiratory tract pathogens are continually bombarded by reactive oxygen species (ROS), which may be produced by competing bacteria, normal metabolic function, or host immunological responses. In order to survive and proliferate, bacteria have adapted defense mechanisms to circumvent the effects of ROS. Bacteria employ the use of anti-oxidant enzymes, catalases and catalase-peroxidases, to relieve the effects of the oxidative stressors to which they are continually exposed. The decomposition of ROS has been shown to provide favorable conditions in which respiratory tract opportunistic bacterial pathogens such as Haemophilus influenzae, Mycobacterium tuberculosis, Legionella pneumophila, and Neisseria meningitidis are able to withstand exposure to highly reactive molecules and yet survive. Bacteria possessing mutations in the catalase gene have a decreased survival rate, yet may be able to compensate for the lack of catalatic activity if peroxidatic activity is present. An incomplete knowledge of the mechanisms by which catalase and catalase-peroxidases are regulated still persists, however, in some bacterial species, a regulatory factor known as OxyR has been shown to either up-regulate or down-regulate catalase gene expression. Yet, more research is still needed to increase the knowledge base in relation to this enzyme class. As with this review, we focus on major respiratory tract opportunistic bacterial pathogens in order to elucidate the function and regulation of catalases. The importance of the research could lead to the development of novel treatments against respiratory bacterial infections.

  8. Adeno-Associated Viral-Mediated Catalase Expression Suppresses Optic Neuritis in Experimental Allergic Encephalomyelitis

    Science.gov (United States)

    Guy, John; Qi, Xiaoping; Hauswirth, William W.

    1998-11-01

    Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

  9. Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    Full Text Available Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 10(12 vector genome particles per mouse. Three months later, we observed a approximately 2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy and ameliorate muscle disease.

  10. Purification and characterization of oxygen-inducible haem catalase from oxygen-tolerant Bifidobacterium asteroides.

    Science.gov (United States)

    Hayashi, Kyohei; Maekawa, Itaru; Tanaka, Kunifusa; Ijyuin, Susumu; Shiwa, Yu; Suzuki, Ippei; Niimura, Youichi; Kawasaki, Shinji

    2013-01-01

    Bifidobacterium asteroides, originally isolated from honeybee intestine, was found to grow under 20% O(2) conditions in liquid shaking culture using MRS broth. Catalase activity was detected only in cells that were exposed to O(2) and grown in medium containing a haem source, and these cells showed higher viability on exposure to H(2)O(2). Passage through multiple column chromatography steps enabled purification of the active protein, which was identified as a homologue of haem catalase on the basis of its N-terminal sequence. The enzyme is a homodimer composed of a subunit with a molecular mass of 55 kDa, and the absorption spectrum shows the typical profile of bacterial haem catalase. A gene encoding haem catalase, which has an amino acid sequence coinciding with the N-terminal amino acid sequence of the purified protein, was found in the draft genome sequence data of B. asteroides. Expression of the katA gene was induced in response to O(2) exposure. The haem catalase from B. asteroides shows about 70-80% identity with those from lactobacilli and other lactic acid bacteria, and no homologues were found in other bifidobacterial genomes. PMID:23154971

  11. Fluorimetry as a Simple and Sensitive Method for Determination of Catalase

    Directory of Open Access Journals (Sweden)

    Mehdi Hedayati

    2014-02-01

    Full Text Available Background: Catalase enzyme plays an important role in the anti-oxidation defense of body so it is important to measure its activity. Nowadays catalase activity measurement is performed by expensive imported kits in various scientific fields. The purpose of this study was to design a sensitive fluorimetry method for measuring catalase activity with improved sensitivity, accuracy and speed. Materials and Methods: In this study, the reaction of hydrogen peroxide with peroxidase (as a reaction accelerator was used in fluorimetry for catalase activity measuring in serum samples in order to increase the sensitivity of the assay. The sensitivity and intra- and inter-assay accuracy, verification test, recovery and parallelism tests, comparison method and correlation and coherence investigation methods were also performed. In order to increase the accuracy and speed of reading, the assay was performed in microplates and reading was done in fluorimetry plates. Results: The percentage of intra- and inter-assay variation coefficients were measured 3.8- 6.6 % and 4.1-7.3%, respectively. Comparison of the results of mentioned method for 50 serum samples with common colorimetric method showed a good correlation (0.917. In assessing the accuracy, the recovery percent was obtained 91% to 107%. The test sensitivity was measured 0.02 IU/ml. Conclusion: The fluorimetry method by microplate reading has a sufficient precision, accuracy and efficiency for catalase activity measuring as well as speed of measurement. Thus it can be an alternative method to conventional imported colorimetric methods.

  12. Arrhenius activation energy of damage to catalase during spray-drying.

    Science.gov (United States)

    Schaefer, Joachim; Lee, Geoffrey

    2015-07-15

    The inactivation of catalase during spray-drying over a range of outlet gas temperatures could be closely represented by the Arrhenius equation. From this an activation energy for damage to the catalase could be calculated. The close fit to Arrhenius suggests that the thermally-induced part of inactivation of the catalase during the complex drying and particle-formation processes takes place at constant temperature. These processes are rapid compared with the residence time of the powder in the collecting vessel of the cyclone where dried catalase is exposed to a constant temperature equal to approximately the drying gas outlet temperature. A lower activation energy after spray drying with the ultrasonic nozzle was found than with the 2-fluid nozzle under otherwise identical spray drying conditions. It is feasible that the ultrasonic nozzle when mounted in the lid of the spray dryer heats up toward the drying gas inlet temperature much more that the air-cooled 2-fluid nozzle. Calculation of the Arrhenius activation energy also showed how the stabilizing efficacy of trehalose and mannitol on the catalase varies in strength across the range of drying gas inlet and outlet temperatures examined. PMID:25940040

  13. Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Ye Seul Park

    2016-01-01

    Full Text Available Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1 and inflammation but suppressed alternative activation (M2 regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance.

  14. Purification and characterization of catalase from sprouted black gram (Vigna mungo) seeds.

    Science.gov (United States)

    Kandukuri, Sai Srikar; Noor, Ayesha; Ranjini, S Shiva; Vijayalakshmi, M A

    2012-03-15

    Black gram (Vigna mungo) is a legume which belongs to Fabaceae family. It is a rich source of protein. It has been known to have interesting small molecule antioxidant activity. However, its enzymatic antioxidant properties have not been explored much. In the present work we studied catalase, a principal antioxidant enzyme from black gram seeds. Day four sprouted black gram seeds were found to have a significant catalase content approximately of 15,240 U/g seeds. IMAC (Seph 4B-IDA-Zn(II)) was used for purifying this catalase, a purification fold of 106 and a high specific activity of 25,704 U/mg was obtained. The K(m) and V(max) of the purified catalase were found to be 16.2 mM and 2.5 μmol/min. The effect of inhibitors like Sodium azide (NaN(3)) and EDTA and different metal ions on catalase activity were studied. NaN(3), Fe(3+)and Cu(2+) were found to have profound inhibitory effects on the enzyme activity. Other metal ions like Ni(2+), Ca(2+), Mg(2+) and Mn(2+) had both enhancing and inhibitory effects. The enzyme showed optimal activity at a temperature of 40°C and pH 7.0. It was stable over a broad range of pH 6.0-10.0 and had a half life of 7h 30 min at 50°C.

  15. Direct measurement of catalase activity in living cells and tissue biopsies.

    Science.gov (United States)

    Scaglione, Christine N; Xu, Qijin; Ramanujan, V Krishnan

    2016-01-29

    Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies - can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Using catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1 μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharmacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings.

  16. Arrhenius activation energy of damage to catalase during spray-drying.

    Science.gov (United States)

    Schaefer, Joachim; Lee, Geoffrey

    2015-07-15

    The inactivation of catalase during spray-drying over a range of outlet gas temperatures could be closely represented by the Arrhenius equation. From this an activation energy for damage to the catalase could be calculated. The close fit to Arrhenius suggests that the thermally-induced part of inactivation of the catalase during the complex drying and particle-formation processes takes place at constant temperature. These processes are rapid compared with the residence time of the powder in the collecting vessel of the cyclone where dried catalase is exposed to a constant temperature equal to approximately the drying gas outlet temperature. A lower activation energy after spray drying with the ultrasonic nozzle was found than with the 2-fluid nozzle under otherwise identical spray drying conditions. It is feasible that the ultrasonic nozzle when mounted in the lid of the spray dryer heats up toward the drying gas inlet temperature much more that the air-cooled 2-fluid nozzle. Calculation of the Arrhenius activation energy also showed how the stabilizing efficacy of trehalose and mannitol on the catalase varies in strength across the range of drying gas inlet and outlet temperatures examined.

  17. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor

    Science.gov (United States)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-01

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based ‘cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  18. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress.

    Science.gov (United States)

    Sari, Ece; Tunc-Sarisozen, Yeliz; Mutlu, Hulya; Shahbazi, Reza; Ucar, Gulberk; Ulubayram, Kezban

    2015-01-01

    Targeted delivery of therapeutics is the favourable idea, whereas it is possible to distribute the therapeutically active drug molecule only to the site of action. For this purpose, in this study, catalase encapsulated poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles were developed and an endothelial target molecule (anti-ICAM-1) was conjugated to this carrier system in order to decrease the oxidative stress level in the target site. According to the enzymatic activity results, initial catalase activity of nanoparticles was increased from 27.39 U/mg to up to 45.66 U/mg by adding 5 mg/mL bovine serum albumin (BSA). After 4 h, initial catalase activity was preserved up to 46.98% while free catalase retained less than 4% of its activity in proteolytic environment. Furthermore, FITC labelled anti-ICAM-1 targeted catalase encapsulated nanoparticles (anti-ICAM-1/CatNPs) were rapidly taken up by cultured endothelial cells and concomitantly endothelial cells were resistant to H2O2 induced oxidative impairment.

  19. Functional and structural changes of human erythrocyte catalase induced by cimetidine: proposed model of binding.

    Science.gov (United States)

    Yazdi, Fatemeh; Minai-Tehrani, Dariush; Jahngirvand, Mahboubeh; Almasirad, Ali; Mousavi, Zahra; Masoud, Masoudeh; Mollasalehi, Hamidreza

    2015-06-01

    In erythrocyte, catalase plays an important role to protect cells from hydrogen peroxide toxicity. Hydrogen peroxide is a byproduct compound which is produced during metabolic pathway of cells. Cimetidine, a histamine H2 receptor antagonist, is used for gastrointestinal tract diseases and prevents the extra release of gastric acid. In this study, the effect of cimetidine on the activity of human erythrocyte catalase was investigated. Erythrocytes were broken by hypotonic solution. The supernatant was used for catalase assay and kinetics study. Lineweaver-Burk plot was performed to determine the type of inhibition. The kinetics data revealed that cimetidine inhibited the catalase activity by mixed inhibition. The IC50 (1.54 μM) and Ki (0.45 μM) values of cimetidine determined that the drug was bound to the enzyme with high affinity. Circular dichroism and fluorescence measurement showed that the binding of cimetidine to the enzyme affected the content of secondary structure of the enzyme as well as its conformational changes. Docking studies were carried out to detect the site in which the drug was bound to the enzyme. Molecular modeling and energy calculation of the binding showed that the cyanoguanidine group of the drug connected to Asp59 via two hydrogen bonds, while the imidazole group of the drug interacted with Phe64 in the enzyme by a hydrophobic interaction. In conclusion, cimetidine could bind to human erythrocyte catalase, and its interaction caused functional and conformational changes in the enzyme.

  20. The catalase gene differentiates between some strains of Staphylococcus aureus ssp. anaerobius.

    Science.gov (United States)

    Musa, N O; Eltom, K; Gessler, F; Böhnel, H; Babiker, A; El Sanousi, S M

    2010-05-01

    Staphylococcus aureus ssp anaerobius strain S10 was isolated from an outbreak of sheep abscess disease. Sequence of the catalase gene of this strain showed 99% identity to the catalase gene (katB) sequence of the reference strain (S. aureus ssp. anaerobius strain MVF213) with mismatching of three base pairs. An important substitution located 1036 nucleotides upstream of the initiation codon from "C" in katB to "T" in the catalase gene of strain S10 originated a stop codon. The deduced protein (345 amino acids) is 105 amino acids shorter than that of katB. Partial sequence of the catalase gene of other 8 local isolates in addition to another reference strain (DSM 20714/ATCC 35844) revealed the same mutations in all local (African) strains, whereas the sequence of the reference (European) strain was typical to that of katB. Sequence of the catalase gene of S. aureus ssp. anaerobius strain S10 was deposited in GenBank under accession no. EU281993. PMID:20526831

  1. Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles

    International Nuclear Information System (INIS)

    We introduce a novel and versatile approach for the preparation of multilayers, based on catalase-encapsulated gold nanoparticles (CAT-AuNP), allowing electrostatic charge reversal and structural transformation through pH adjustment. CAT-AuNP, which are synthesized directly from CAT stabilizer, can be electrostatically assembled with anionic and cationic PEs as a result of the charge reversal of the catalase stabilizers through pH control. In particular, at pH 5.2, near the pI of catalase, dispersed CAT-AuNP are structurally transformed into colloidal or network CAT-AuNP nanocomposites. Furthermore, we demonstrate that the layer-by-layer assembled multilayers composed of PEs and CAT-AuNP induce an effective electron transfer between CAT and the electrode as well as a high loading of CAT and AuNP, and resultantly exhibit a highly catalytic activity toward H2O2.

  2. Enzymatic exploration of catalase from a nanoparticle producing and biodecolorizing algae Shewanella xiamenensis BC01.

    Science.gov (United States)

    Ng, I-Son; Xu, Fangxin; Zhang, Xia; Ye, Chiming

    2015-05-01

    Shewanella xiamenensis (SXM) was found to produce nanoparticles (NPs) under aerobic condition. The oxidoreductase enzymatic activities including of catalase, manganese peroxidase, laccase, NADH dehydrogenase, flavin reductase, azoreductase and Fe reductase are first investigated. Catalase showed the greatest enzymatic activity among all oxidoreductases in SXM, which with strong activities in multiple substrates of ABTS, guaiacol and 2,6-DMP. The optimum temperature, pH, concentrations of H2O2 and 2,6-DMP for this enzyme were found to be 65 °C, pH 4.0, 128.7 mM and 10 mM, respectively. Finally, from the kinetic parameters and structure simulation of catalase, implied that SXM would potentially apply in bioremediation, microbe fuel cells (MFCs) and nano-biotechnology based on its distinguished enzymatic system.

  3. Insights into the selective binding and toxic mechanism of microcystin to catalase

    Science.gov (United States)

    Hu, Yuandong; Da, Liangjun

    2014-03-01

    Microcystin is a sort of cyclic nonribosomal peptides produced by cyanobacteria. It is cyanotoxin, which can be very toxic for plants and animals including humans. The present study evaluated the interaction of microcystin and catalase, under physiological conditions by means of fluorescence, three-dimensional (3D) fluorescence, circular dichroism (CD), Fourier Transform infrared (FT-IR) spectroscopy, and enzymatic reactionkinetic techniques. The fluorescence data showed that microcystin could bind to catalase to form a complex. The binding process was a spontaneous molecular interaction procedure, in which electrostatic interactions played a major role. Energy transfer and fluorescence studies proved the existence of a static binding process. Additionally, as shown by the three-dimensional fluorescence, CD and FT-IR results, microcystin could lead to conformational and microenvironmental changes of the protein, which may affect the physiological functions of catalase. The work provides important insights into the toxicity mechanism of microcystin in vivo.

  4. Metabolic Damage and Premature Thymus Aging Caused by Stromal Catalase Deficiency.

    Science.gov (United States)

    Griffith, Ann V; Venables, Thomas; Shi, Jianjun; Farr, Andrew; van Remmen, Holly; Szweda, Luke; Fallahi, Mohammad; Rabinovitch, Peter; Petrie, Howard T

    2015-08-18

    T lymphocytes are essential mediators of immunity that are produced by the thymus in proportion to its size. The thymus atrophies rapidly with age, resulting in progressive diminution of new T cell production. This decreased output is compensated by duplication of existing T cells, but it results in gradual dominance by memory T cells and decreased ability to respond to new pathogens or vaccines. Here, we show that accelerated and irreversible thymic atrophy results from stromal deficiency in the reducing enzyme catalase, leading to increased damage by hydrogen peroxide generated by aerobic metabolism. Genetic complementation of catalase in stromal cells diminished atrophy, as did chemical antioxidants, thus providing a mechanistic link between antioxidants, metabolism, and normal immune function. We propose that irreversible thymic atrophy represents a conventional aging process that is accelerated by stromal catalase deficiency in the context of an intensely anabolic (lymphoid) environment.

  5. ENVIRONMENTAL EFFECTS ON SUPEROXIDE DISMUTASE AND CATALASE ACTIVITY AND EXPRESSION IN HONEY BEE.

    Science.gov (United States)

    Nikolić, Tatjana V; Purać, Jelena; Orčić, Snežana; Kojić, Danijela; Vujanović, Dragana; Stanimirović, Zoran; Gržetić, Ivan; Ilijević, Konstantin; Šikoparija, Branko; Blagojević, Duško P

    2015-12-01

    Understanding the cellular stress response in honey bees will significantly contribute to their conservation. The aim of this study was to analyze the response of the antioxidative enzymes superoxide dismutase and catalase in honey bees related to the presence of toxic metals in different habitats. Three locations were selected: (i) Tunovo on the mountain Golija, as control area, without industry and large human impact, (ii) Belgrade as urban area, and (iii) Zajača, as mining and industrial zone. Our results showed that the concentrations of lead (Pb) in whole body of bees vary according to habitat, but there was very significant increase of Pb in bees from investigated industrial area. Bees from urban and industrial area had increased expression of both Sod1 and Cat genes, suggesting adaptation to increased oxidative stress. However, in spite increased gene expression, the enzyme activity of catalase was lower in bees from industrial area suggesting inhibitory effect of Pb on catalase.

  6. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics.

  7. Metabolic Damage and Premature Thymus Aging Caused by Stromal Catalase Deficiency

    Directory of Open Access Journals (Sweden)

    Ann V. Griffith

    2015-08-01

    Full Text Available T lymphocytes are essential mediators of immunity that are produced by the thymus in proportion to its size. The thymus atrophies rapidly with age, resulting in progressive diminution of new T cell production. This decreased output is compensated by duplication of existing T cells, but it results in gradual dominance by memory T cells and decreased ability to respond to new pathogens or vaccines. Here, we show that accelerated and irreversible thymic atrophy results from stromal deficiency in the reducing enzyme catalase, leading to increased damage by hydrogen peroxide generated by aerobic metabolism. Genetic complementation of catalase in stromal cells diminished atrophy, as did chemical antioxidants, thus providing a mechanistic link between antioxidants, metabolism, and normal immune function. We propose that irreversible thymic atrophy represents a conventional aging process that is accelerated by stromal catalase deficiency in the context of an intensely anabolic (lymphoid environment.

  8. Effect of helium-neon laser on activity and optical properties of catalase.

    Science.gov (United States)

    Artyukhov, V G; Basharina, O V; Pantak, A A; Sveklo, L S

    2000-06-01

    The effects of laser (632.8 nm) on functional and spectral properties of catalase at pH 6.0-7.4 were studied. Laser irradiation led to photoactivation of the enzyme at pH 7.1-7.4. Changes in the spectral properties of photomodified hemoprotein were found in the absorption spectrum of the protein component: apoenzyme displayed protective effects in relation to ferroporphyrin. Structural modifications of catalase induced by helium-neon laser irradiation correlated with its functional properties. These results can be used in clinical practice to design the individual management program.

  9. Computational study concerning the effect of some pesticides on the Proteus Mirabilis catalase activity

    Science.gov (United States)

    Isvoran, Adriana

    2016-03-01

    Assessment of the effects of the herbicides nicosulfuron and chlorsulfuron and the fungicides difenoconazole and drazoxlone upon catalase produced by soil microorganism Proteus mirabilis is performed using the molecular docking technique. The interactions of pesticides with the enzymes are predicted using SwissDock and PatchDock docking tools. There are correlations for predicted binding energy values for enzyme-pesticide complexes obtained using the two docking tools, all the considered pesticides revealing favorable binding to the enzyme, but only the herbicides bind to the catalytic site. These results suggest the inhibitory potential of chlorsulfuron and nicosulfuron on the catalase activity in soil.

  10. Isolation and characterization of a novel catalase-negative, urease-positive Campylobacter from cattle faeces

    DEFF Research Database (Denmark)

    Atabay, H.I.; Corry, J.E.L.; On, S.L.W.

    1997-01-01

    characteristics typical for Campylobacter species. However, they were unusual in that they produced urease and copious H2S in triple sugar iron (TSI) medium, but did not produce catalase. They did not grow aerobically. None of the strains grew on modified cefoperazone charcoal deoxycholate agar (m......CCDA). Macrorestriction profiles of chromosomal DNA were prepared for 15 strains using pulsed-field gel electrophoresis (PFGE). Twelve of 15 profiles were identical and all appeared to be closely related. These catalase-negative, urease-positive campylobacters (CNUPC) represent a group not previously reported...

  11. Translational control of catalase synthesis by hemin in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Hamilton, Barbara; Hofbauer, Reinhold; Ruis, Helmut

    1982-01-01

    mRNA-dependent cell-free protein synthesis systems were prepared from a heme-deficient ole3 mutant of the yeast Saccharomyces cerevisiae grown either in the absence or in the presence of the heme precursor δ-aminolevulinate. When supplemented with total yeast mRNA, the two systems—from heme-deficient and from heme-containing cells—translate most mRNAs with comparable efficiencies. mRNAs coding for the hemoproteins catalase T and catalase A, however, are translated at a low rate by the system ...

  12. Catalase and sodium fluoride mediated rehabilitation of enamel bleached with 37% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ruchi Thakur

    2015-01-01

    Full Text Available Background: Bleaching agents bring about a range of unwanted changes in the physical structure of enamel which needs to be restored qualitatively and timely. Catalase being an antioxidant ensures the effective removal of free radicals and improvement in fluoride mediated remineralization from the enamel microstructure which if retained may harm the integrity and affect the hardness of enamel. Materials and Methods: Thirty freshly extracted incisors were sectioned to 6 slabs which were divided into 5 groups: Group A, control; Group B, treatment with 37% hydrogen peroxide (HP; Group C, treatment with 37% HP and catalase, Group D, treatment with 37% HP and 5% sodium fluoride application, Group E, treatment with 37% HP followed by catalase and 5% sodium fluoride. Scanning electron microscope and microhardness analysis were done for all slabs. One-way ANOVA test was applied among different groups. Results: Vicker′s microhardness number (VHN of Group B and C was significantly lower. No significant difference between VHN of Group B and C. VHN of Group D was significantly higher than Group A, B, and C; but significantly lower than Group E. VHN of Group E was significantly higher than any other experimental group. One-way ANOVA revealed a highly significant P value (P = 0.0001 and so Tukey′s post-hoc Test for the group comparisons was employed. Conclusion: Subsequent treatment of bleached enamel with catalase and fluoride varnish separately results in repairing and significantly increasing the microhardness.

  13. Brain catalase mediates potentiation of social recognition memory produced by ethanol in mice.

    Science.gov (United States)

    Manrique, Héctor M; Miquel, Marta; Aragon, Carlos M G

    2005-09-01

    The involvement of catalase in ethanol-induced locomotion has been clearly proven. However, studies addressing the role of this enzyme in the effects that ethanol exerts on memory are lacking. In the present study, the social recognition test (SRT) was used to evaluate ethanol effects on memory. In this test, the reduction in investigation time of a juvenile conspecific, when this social stimulus is presented for the second time, is considered a reliable index of memory. Exploration ratios (ER) were calculated to evaluate the recognition capacity of mice. Ethanol (0.0, 0.5, 1.0 or 1.5g/kg, i.p.) was administered immediately after the first juvenile presentation, and 2h later the juvenile was re-exposed to the adult. Additionally, adult mice received aminotriazole (AT) or sodium azide (two catalase inhibitors) 5h or 30 min before juvenile presentation, respectively. Ethanol (1.0 and 1.5g/kg) was able to reduce ER, indicating an improving effect on memory. This improvement was prevented by either AT or sodium azide pre-treatment. However, neither AT nor sodium azide attenuated the memory-enhancing capacity of NMDA or nicotine, suggesting a specific interaction between catalase inhibitors and ethanol in their effects on memory. The present results suggest that brain catalase activity could mediate the memory-enhancing capacity of ethanol and add further support to the idea that this enzyme mediates some of the psychopharmacological effects produced by ethanol. PMID:16102377

  14. A study of the inhibition of catalase by dipotassium trioxohydroxytetrafluorotriborate K₂[B₃O₃F₄OH].

    Science.gov (United States)

    Islamovic, Safija; Galic, Borivoj; Milos, Mladen

    2014-10-01

    In the development of boronic acid-based enzyme inhibitors as potential pharmaceutical drugs, dipotassium trioxohydroxytetrafluorotriborate K2[B3O3F4OH] was listed as a promising new therapeutic for treatment of these diseases. The catalase-mediated conversion of hydrogen peroxide, in the presence and absence of K2[B3O3F4OH] was studied. The kinetics conformed to the Michaelis-Menten model. Lineweaver-Burk plots were linear and plotted the family of straight lines intersected on the abscissa indicating non-competitive inhibition of the catalase. It appears that in the absence of inhibitor, catalase operates the best at conditions around pH 7.1 and in the presence of K2[B3O3F4OH] the optimum is around pH 6.2. The uncatalyzed reaction of hydrogen peroxide decomposition generally has a value of activation energy of 75 kJ mole(-1), whereas catalase, in the absence of inhibitor, lowers the value to 11.2 kJ mole(-1), while in the presence 69 mmoles L(-1) of K2[B3O3F4OH] it was 37.8 kJ mole(-1).

  15. Not so monofunctional-a case of thermostable Thermobifida fusca catalase with peroxidase activity

    NARCIS (Netherlands)

    Lončar, Nikola; Fraaije, Marco W

    2014-01-01

    Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and overexpre

  16. HUMAN CATALASE IS IMPORTED AND ASSEMBLED IN PEROXISOMES OF SACCHAROMYCES-CEREVISIAE

    NARCIS (Netherlands)

    DEHOOP, MJ; HOLTMAN, WL; AB, G

    1993-01-01

    To study the conservation of peroxisomal targeting signals, we have determined the intracellular localization of human peroxisomal catalase when expressed in yeast. Using immunofluorescence, differential centrifugation and immuno-electron microscopy, we show that the protein is targeted to the perox

  17. Catalase C-262T polymorphism and risk of prostate cancer: evidence from meta-analysis.

    Science.gov (United States)

    Hu, Jieping; Feng, Fupeng; Zhu, Shimiao; Sun, Libin; Li, Gang; Jiang, Ning; Shang, Zhiqun; Niu, Yuanjie

    2015-03-10

    Catalase is an important endogenous antioxidant enzyme that detoxifies hydrogen peroxide to oxygen and water, thus limiting the deleterious effects of reactive oxygen species. Several studies investigated the role of the Catalase (CAT) C-262T gene polymorphism on the risk of prostate cancer (PCa), but get conflicting results. We performed a meta-analysis based on five studies, to determine whether Catalase C-262T polymorphism contributes to the risk of prostate cancer using odds ratios (OR) with 95% confidence intervals (CI). On the whole, our evidence indicates that CAT C-262T polymorphism significantly increases PCa risk in the allele comparison model (OR=1.094, 95% CI=1.015-1.178, P=0.018). In the stratified analysis by ethnicity, the same results are found among Caucasians (allele model, OR=1.090, 95% CI=1.009-1.177, P=0.028, dominant model, OR=1.108, 95% CI=1.023-1.201, P=0.012, recessive model, OR=1.379, 95% CI=1.158-1.641, P=0.000, homozygous model, OR=1.429, 95% CI=1.196-1.707, P=0.000, and heterozygote model, OR=1.224, 95% CI=1.020-1.469, P=0.030). In conclusion, this meta-analysis suggests a positive correlation between Catalase C-262T polymorphism and the development of PCa.

  18. Do Superoxide Dismutase (SOD) and Catalase (CAT) protect Cells from DNA Damage Induced by Active Arsenicals?

    Science.gov (United States)

    Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide, which can be converted to water and oxygen through the action of catalase. Heterozygous mice of strain B6: 129S7-SodltmlLeb/J were obtained from Jackson Laboratories and bred to produce offspr...

  19. Decrease in catalase activity of Folsomia candida fed a Bt rice diet

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Yiyang, E-mail: yuanyy@ioz.ac.cn [State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Ke Xin, E-mail: xinke@sibs.ac.cn [Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China); Chen Fajun, E-mail: fajunchen@njau.edu.cn [College of Plant Protection, Department of Entomology, Nanjing Agricultural University, Nanjing 210095 (China); Krogh, Paul Henning, E-mail: phk@dmu.dk [Department of Bioscience, University of Aarhus, P.O. Box 314, Vejlsoevej 25, DK-8600 Silkeborg (Denmark); Ge Feng, E-mail: gef@ioz.ac.cn [State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101 (China)

    2011-12-15

    Here we report the effects of three Bt-rice varieties and their non-Bt conventional isolines on biological traits including survival, reproduction, and the activities of three antioxidant enzymes superoxide dismutase, catalase and peroxidase, in the Collembolan, Folsomia candida. The reproduction was significantly lower when fed Kemingdao and Huahui1 than those feeding on their non-GM near-isogenic varieties Xiushui and Minghui63 respectively, this can be explained by the differences of plant compositions depended on variety of rice. The catalase activity of F. candida was significantly lower when fed the Bt-rice variety Kemingdao compared to the near-isogenic non-Bt-rice variety Xiushui. This suggests that some Bt-rice varieties may impose environmental stress to collembolans. We emphasize that changes in activity of antioxidant enzymes of non-target organisms are important in understanding the ecological consequences for organisms inhabiting transgenic Bt-rice plantations. - Highlights: > We examine the effects of Bt-rice on Folsomia candida with laboratory test. > The reproduction of F. candida was decreased by two Bt-rice varieties. > Decreased reproduction caused by the differences of varieties or C/N ratio of rice. > The catalase activity was decreased by Bt-rice Kemingdao. > Some Bt-rice may impose environmental stress on NTOs. - The catalase of the collembolan (Folsomia candida) was decreased when fed Bt-rice, Kemingdao.

  20. Preparation and Characterization of Catalase-Loaded Solid Lipid Nanoparticles Protecting Enzyme against Proteolysis

    Directory of Open Access Journals (Sweden)

    Ce Qi

    2011-07-01

    Full Text Available Catalase-loaded solid lipid nanoparticles (SLNs were prepared by the double emulsion method (w/o/w and solvent evaporation techniques, using acetone/methylene chloride (1:1 as an organic solvent, lecithin and triglyceride as oil phase and Poloxmer 188 as a surfactant. The optimized SLN was prepared by lecithin: triglyceride ratio (5%, 20-second + 30-second sonication, and 2% Poloxmer 188. The mean particle size of SLN was 296.0 ± 7.0 nm, polydispersity index range and zeta potential were 0.322–0.354 and −36.4 ± 0.6, respectively, and the encapsulation efficiency reached its maximum of 77.9 ± 1.56. Catalase distributed between the solid lipid and inner aqueous phase and gradually released from Poloxmer coated SLNs up to 20% within 20 h. Catalase-loaded SLN remained at 30% of H2O2-degrading activity after being incubated with Proteinase K for 24 h, while free catalase lost activity within 1 h.

  1. Different thermal unfolding pathways of catalase in the presence of cationic surfactants.

    Science.gov (United States)

    Blanco, Elena; Ruso, Juan M; Prieto, Gerardo; Sarmiento, Félix

    2007-03-01

    In this paper we have corroborated the usefulness of spectroscopic techniques, such as UV-visible, in the study and thermodynamic characterization of the thermal unfolding of catalase as a function of the concentration and alkyl chain length of n-alkyltrimethylammonium bromides (CnTAB, n = 8, 10, and 12). For this reason, a thermodynamic model was used which included experimental data corresponding to the pre- and posttransition into the observable transition. It has been found that n-alkyltrimethylammonium bromides play two opposite roles in the folding and stability of catalase. They act as a structure stabilizer at a low molar concentration and as a destabilizer at a higher concentration. The maximum of the unfolding temperature has been found to decrease with the alkyl chain. The reason for this difference has been suggested to be the side chains involved. In the presence of C8TAB and C10TAB, Gibbs energies of unfolding (DeltaG(T)) decrease with concentration, whereas for C12TAB an increase has been observed. These findings can be explained by the fact that when differences in the hydrophobic nature of the surfactants exist, different pathways of unfolding may occur. Also, the presence of surfactants has been observed to affect the cold denaturation of catalase. Thermodynamic results suggest that the thermal denaturation of catalase in the presence of n-alkyltrimethylammonium bromides is a perfect transition between two states.

  2. Overexpression of Catalase Enhances Benzo(a)pyrene Detoxification in Endothelial Microsomes

    Science.gov (United States)

    Yang, Fang; Yang, Hong; Ramesh, Aramandla; Goodwin, J. Shawn; Okoro, Emmanuel U.; Guo, ZhongMao

    2016-01-01

    We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active organelle involved in BaP metabolism. To examine the involvement of ER in catalase-induced BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP intermediates in the microsomes of wild-type and catalase transgenic endothelial cells. Our data showed that endothelial microsomes were enriched in cytochrome P450 (CYP) 1A1, CYP1B1 and epoxide hydrolase 1 (EH1), and contained considerable levels of NAD(P)H: quinone oxidoreductase-1 (NQO1) and glutathione S-transferase-pi (GSTP). Treatment of wild-type MAECs with 1μM BaP for 2 h increased the expression of microsomal CYP1A1, 1B1 and NQO1 by ~300, 64 and 116%, respectively. However, the same treatment did not significantly alter the expression of EH1 and GSTP. Overexpression of catalase did not significantly increase EH1, but upregulated BaP-induced expression of microsomal CYP1A1, 1B1, NQO1 and GSTP in the following order: 1A1>NQO1>GSTP>1B1. Overexpression of catalase did not alter the distribution of each of these enzymes in the microsomes. In contrast to our previous report showing lower level of BaP phenols versus BaP diols/diones in the whole-cell, this report demonstrated that the sum of microsomal BaP phenolic metabolites were ~60% greater than that of the BaP diols/diones after exposure of microsomes to BaP. Overexpression of catalase reduced the concentrations of microsomal BaP phenols and diols/diones by ~45 and 95%, respectively. This process enhanced the ratio of BaP phenol versus diol/dione metabolites in a potent manner. Taken together, upregulation of phase II XMEs and CYP1 proteins, but not EH1 in the ER might be the mechanism by which overexpression of catalase reduces the levels of all the BaP metabolites

  3. Cytochemical localization of catalase and several hydrogen peroxide-producing oxidases in the nucleoids and matrix of rat liver peroxisomes

    NARCIS (Netherlands)

    Veenhuis, M.; Wendelaar Bonga, S.E.

    1979-01-01

    The distribution of catalase, amino acid oxidase, α-hydroxy acid oxidase, urate oxidase and alcohol oxidase was studied cytochemically in rat hepatocytes. The presence of catalase was demonstrated with the conventional diaminobenzidine technique. Oxidase activities were visualized with methods based

  4. On the enzymatic activity of catalase : an iron L-edge X-ray absorption study of the active centre

    NARCIS (Netherlands)

    Bergmann, Nora; Bonhommeau, Sebastien; Lange, Kathrin M.; Greil, Stefanie M.; Eisebitt, Stefan; de Groot, Frank; Chergui, Majed; Aziz, Emad F.

    2010-01-01

    Catalase and methaemoglobin have very similar haem groups, which are both ferric, yet catalase decomposes hydrogen peroxide to water and oxygen very efficiently, while methaemoglobin does not. Structural studies have attributed this behaviour to their different distal environments. Here we present F

  5. Purification, crystallization and preliminary crystallographic analysis of KatB, a manganese catalase from Anabaena PCC 7120.

    Science.gov (United States)

    Bihani, Subhash Chandra; Chakravarty, Dhiman; Ballal, Anand

    2013-11-01

    Catalases are enzymes that play an important role in the detoxification of hydrogen peroxide (H2O2) in aerobic organisms. Among catalases, haem-containing catalases are ubiquitously distributed and their enzymatic mechanism is very well understood. On the other hand, manganese catalases that contain a bimanganese core in the active site have been less well characterized and their mode of action is not fully understood. The genome of Anabaena PCC 7120 does not show the presence of a haem catalase-like gene; instead, two ORFs encoding manganese catalases (Mn-catalases) are present. Here, the crystallization and preliminary X-ray crystallographic analysis of KatB, one of the two Mn-catalases from Anabaena, are reported. KatB was crystallized using the hanging-drop vapour-diffusion method with PEG 400 as a precipitant and calcium acetate as an additive. Diffraction data were collected in-house on an Agilent SuperNova system using a microfocus sealed-tube X-ray source. The crystal diffracted to 2.2 Å resolution at 100 K. The tetragonal crystal belonged to space group P4(1)2(1)2 (or enantiomer), with unit-cell parameters a = b = 101.87, c = 138.86 Å. Preliminary X-ray diffraction analysis using the Matthews coefficient and self-rotation function suggests the presence of a trimer in the asymmetric unit.

  6. Improved human sperm recovery using superoxide dismutase and catalase supplementation in semen cryopreservation procedure.

    Science.gov (United States)

    Rossi, T; Mazzilli, F; Delfino, M; Dondero, F

    2001-01-01

    The aim of this work was to evaluate the effects of ROS scavenger supplementation in human semen samples undergoing cryopreservation procedures.After screening out andrological pathologies, we selected 25 male partners of infertile couples with the following semen profile: volume >/= 2.0 ml, normal viscosity, sperm count >/=20 x 10(6)/ml, straight progressive motility (classes 1 and 2) >/= 40% (Mazzilli, Rossi, Delfino and Nofroni (1999) Andrologia 31: 187-194), atypical forms semen analysis and the Hypoosmotic Viability Test (HVT) were carried out; the samples were then divided into 4 aliquots. The first was untreated as a control; 200 U/ml of superoxide dismutase (SOD) was added to the second, 200 U/ml of catalase to the third and both SOD (100 U/ml) and catalase (100 U/ml) were added to the fourth aliquot. Each aliquot was mixed (v/v) with TEST yolk buffer freezing medium (Irvine Scientific) and then frozen at -196 degrees C. The percent recovery of progressive motile and swollen spermatozoa was evaluated after thawing.No significant variation in the recovery of progressive motility was seen in the aliquots with added SOD or catalase alone, compared to the control group. On the other hand, a significant improvement in sperm parameter recovery was seen in the aliquot with both SOD and catalase supplementation; perhaps because of their combined and simultaneous action on superoxide anion and hydrogen peroxide. These results suggest that, in some selected cases, SOD and catalase supplementation can contribute greatly to the prevention of sperm membrane lipid peroxidation by ROS and thus allow good sperm parameter recovery after freezing-thawing procedures. PMID:15256925

  7. The effect of superoxide dismutase mimetic and catalase on the quality of postthawed goat semen.

    Science.gov (United States)

    Shafiei, Mojtaba; Forouzanfar, Mohsen; Hosseini, Sayyed Morteza; Esfahani, Mohammad Hossein Nasr

    2015-05-01

    Manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin chloride (MnTE) is a cell-permeable superoxide dismutase mimetic agent which can convert superoxide to hydrogen peroxide (H2O2). Supplementation of MnTE to a commercial semen extender can protect sperm from superoxide but not H2O2. Therefore, we proposed that addition of catalase (0.0, 200, or 400 IU/mL) in combination with MnTE (0.1 μM) may further improve the cryopreservation efficiency of goat semen in commercially optimized freezing media such as Andromed. Therefore, ejaculates were obtained from three adult bucks twice a week during the breeding season and diluted with Andromed supplemented with or without MnTE and catalase and were frozen in liquid nitrogen. Sperm parameters and reactive oxygen species contents were evaluated 2 hours after dilution (before freezing) and after freezing/thawing. The results revealed that all the treatments significantly (P ≤ 0.05) improved sperm motility, viability, and membrane integrity after freezing and reduced reactive oxygen species content compared with the control group, but maximum improvement was obtained in MnTE + 400 IU/mL catalase. In addition, supplementation with these antioxidants significantly (P ≤ 0.05) increases the cleavage rate after IVF. In conclusion, the results of present study suggest that addition of antioxidant MnTE or catalase to commercial optimized media, such as Andromed, improves total motility, membrane integrity, and viability of goat semen samples after thawing. But the degree of improvement for these parameters significantly (P ≤ 0.05) higher when MnTE and catalase were simultaneously added to the cryopreservation media.

  8. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE.

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E; Calcutt, Wade M; Brash, Alan R; Samel, Nigulas

    2015-08-01

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using (18)O-labeled substrate and incubations in H2(18)O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom.

  9. Activation of Peroxisome Proliferator-Activated Receptor Alpha Improves Aged and UV-Irradiated Skin by Catalase Induction

    Science.gov (United States)

    Shin, Mi Hee; Lee, Se-Rah; Kim, Min-Kyoung; Shin, Chang-Yup

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear hormone receptor involved in the transcriptional regulation of lipid metabolism, fatty acid oxidation, and glucose homeostasis. Its activation stimulates antioxidant enzymes such as catalase, whose expression is decreased in aged human skin. Here we investigated the expression of PPARα in aged and ultraviolet (UV)-irradiated skin, and whether PPARα activation can modulate expressions of matrix metalloproteinase (MMP)-1 and procollagen through catalase regulation. We found that PPARα mRNA level was significantly decreased in intrinsically aged and photoaged human skin as well as in UV-irradiated skin. A PPARα activator, Wy14643, inhibited UV-induced increase of MMP-1 and decrease of procollagen expression and caused marked increase in catalase expression. Furthermore, production of reactive oxygen species (ROS) was suppressed by Wy14643 in UV-irradiated and aged dermal fibroblasts, suggesting that the PPARα activation-induced upregulation of catalase leads to scavenging of ROS produced due to UV irradiation or aging. PPARα knockdown decreased catalase expression and abolished the beneficial effects of Wy14643. Topical application of Wy14643 on hairless mice restored catalase activity and prevented MMP-13 and inflammatory responses in skin. Our findings indicate that PPARα activation triggers catalase expression and ROS scavenging, thereby protecting skin from UV-induced damage and intrinsic aging. PMID:27611371

  10. Effect of a protease inhibitor on the stability of catalase in liver and blood from acatalasemic and normal mice.

    Directory of Open Access Journals (Sweden)

    Suzuki,Kazuhiko

    1991-10-01

    Full Text Available Effects of Gabexate mesilate (GM (([ethyl-4-(6-guanidino hexanoyloxy benzoate] methane sulfonate, a protease inhibitor, on the activities of catalase in liver, erythrocytes and reticulocytes from acatalasemic mice were examined. Preincubation without GM at 37 degrees C for 160 min lowered the catalase activities of liver, erythrocytes and reticulocytes from acatalasemic mice, to 24%, 40% and 10% of the initial levels, respectively. But, preincubation with GM at 37 degrees C for 160 min delayed the rapid decrease in activities of residual catalases in the liver, erythrocytes and reticulocytes of acatalasemic mice to 65%, 93% and 85% of the initial values, respectively. At 20 degrees C or below, no reduction in catalase activity of reticulocytes from acatalasemic mice occurred with or even without GM. At pH 5.0, the decrease in catalase activity of acatalasemic mice was small both in the presence and the absence of GM. In the alkaline range, the reduction in the enzyme activity of the mutant mice without GM was enhanced with increase in pH values up to 8.5. But the presence of GM during preincubation at pH 7.5, retained the catalase activity of acatalasemic mice, to 64% of the activity at pH 6.5. These data suggest that some factors affected by GM, might be responsible for the low stability and activity of catalase in the acatalasemic mice.

  11. Differential activation of catalase expression and activity by PPAR agonists: Implications for astrocyte protection in anti-glioma therapy

    Directory of Open Access Journals (Sweden)

    Nicholas K.H. Khoo

    2013-01-01

    Full Text Available Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas.

  12. Catalase-Modified Carbon Electrodes: Persuading Oxygen To Accept Four Electrons Rather Than Two.

    Science.gov (United States)

    Sepunaru, Lior; Laborda, Eduardo; Compton, Richard G

    2016-04-18

    We successfully exploited the natural highly efficient activity of an enzyme (catalase) together with carbon electrodes to produce a hybrid electrode for oxygen reduction, very appropriate for energy transformation. Carbon electrodes, in principle, are cheap but poor oxygen reduction materials, because only two-electron reduction of oxygen occurs at low potentials, whereas four-electron reduction is key for energy-transformation technology. With the immobilization of catalase on the surface, the hydrogen peroxide produced electrochemically is decomposed back to oxygen by the enzyme; the enzyme natural activity on the surface regenerates oxygen, which is further reduced by the carbon electrode with no direct electron transfer between the enzyme and the electrode. Near full four-electron reduction of oxygen is realised on a carbon electrode, which is modified with ease by a commercially available enzyme. The value of such enzyme-modified electrode for energy-transformation devices is evident.

  13. A Laboratory Experiment Investigating Different Aspects of Catalase Activity in an Inquiry - Based Approach

    Science.gov (United States)

    Kimbrough, Doris R.; Magoun, Mary Ann; Langfur, Meg

    1997-02-01

    The action of the enzyme catalase on aqueous hydrogen peroxide to generate oxygen gas is a well-established demonstration (1-3). Catalase is typically obtained by aqueous extraction of a potato, and the potato extract is mixed together with 3% hydrogen peroxide. The oxygen that is produced can be collected over water. Variations on the procedure can demonstrate the dependence of catalytic activity on temperature or the presence of inhibitors (1, 2). The University of Colorado at Denver has used a version of this procedure as a laboratory in its second-semester course for nonmajors. Recently, students have been allowed to expand upon the procedures prescribed in the laboratory handout in an open-ended project format. We explored some of these variations in detail, and the results provided here offer ideas, centered around this laboratory, for open-ended projects that can be used in an inquiry-based approach.

  14. Binding of chrysoidine to catalase: spectroscopy, isothermal titration calorimetry and molecular docking studies.

    Science.gov (United States)

    Yang, Bingjun; Hao, Fang; Li, Jiarong; Chen, Dongliang; Liu, Rutao

    2013-11-01

    Chrysoidine is an industrial azo dye and the presence of chrysoidine in water and food has become an environmental concern due to its negative effects on human beings. In this work, the interactions between chrysoidine and bovine liver catalase (BLC) were explored. Obvious loss in catalytic activity was observed after incubation of BLC with chrysoidine, and the inhibition effect of BLC was found to be of the non-competitive type. No profound conformational change of BLC occurs in the presence of chrysoidine as revealed by UV-vis absorption, circular dichroism and fluorescence spectroscopy studies. Isothermal titration calorimetry results indicate that catalase has two sets of binding sites for chrysoidine. Further, molecular docking simulations show that chrysoidine is located within the bottleneck in the main channel of the substrate to the active site of BLC, which explain the activity inhibition of BLC by chrysoidine.

  15. Overexpression of Ref-1 Inhibits Lead-induced Endothelial Cell Death via the Upregulation of Catalase.

    Science.gov (United States)

    Lee, Kwon Ho; Lee, Sang Ki; Kim, Hyo Shin; Cho, Eun Jung; Joo, Hee Kyoung; Lee, Eun Ji; Lee, Ji Young; Park, Myoung Soo; Chang, Seok Jong; Cho, Chung-Hyun; Park, Jin Bong; Jeon, Byeong Hwa

    2009-12-01

    The role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the lead (Pb)-induced cellular response was investigated in the cultured endothelial cells. Pb caused progressive cellular death in endothelial cells, which occurred in a concentration- and time-dependent manner. However, Ref-1 overexpression with AdRef-1 significantly inhibited Pb-induced cell death in the endothelial cells. Also the overexpression of Ref-1 significantly suppressed Pb-induced superoxide and hydrogen peroxide elevation in the endothelial cells. Pb exposure induced the downregulation of catalase, it was inhibited by the Ref-1 overexpression in the endothelial cells. Taken together, our data suggests that the overexpression of Ref-1 inhibited Pb-induced cell death via the upregulation of catalase in the cultured endothelial cells.

  16. Endogenous superoxide dismutase and catalase activities and radiation resistance in mouse cell lines

    International Nuclear Information System (INIS)

    The relationship between the endogenous cytoplasmic levels of the enzymes superoxide dismutase and catalase and the inhibition of cell proliferation by γ-radiation has been studied in 11 mouse cell lines. The resistance of these mouse cell lines to radiation was found to vary by over 25-fold. No correlation was found between the cytoplasmic level of CuZn-superoxide dismutase or catalase and the resistance to radiation as measured by extrapolation number (EN), quasi-threshold dose (Dsub(q)), or Dsub(o). None of the cell lines had detectable cytoplasmic Mn-superoxide dismutase. The apparent Ksub(i) of potassium cyanide for mouse CuZn-superoxide dismutase was determined (Ksub(i) = 6.5 μmol dm-3). (author)

  17. Understanding the role of the catalase/peroxide genes in H2O2 resistance of E. coli serotype O157:H7 biofilms

    Science.gov (United States)

    Introduction: Escherichia coli serotype O157:H7 defenses against H2O2 include the peroxiredoxin AhpC and three catalases: KatG (catalase-peroxidase), KatE (catalase), and the plasmid-encoded KatP (catalase/peroxidase). AhpC, KatG, and KatP are induced by OxyR in exponential phase, while KatE is indu...

  18. Bacterial Catalase in the Microsporidian Nosema locustae: Implications for Microsporidian Metabolism and Genome Evolution

    OpenAIRE

    Fast, Naomi M; Law, Joyce S.; Williams, Bryony A P; Patrick J Keeling

    2003-01-01

    Microsporidia constitute a group of extremely specialized intracellular parasites that infect virtually all animals. They are highly derived, reduced fungi that lack several features typical of other eukaryotes, including canonical mitochondria, flagella, and peroxisomes. Consistent with the absence of peroxisomes in microsporidia, the recently completed genome of the microsporidian Encephalitozoon cuniculi lacks a gene for catalase, the major enzymatic marker for the organelle. We show, howe...

  19. Molecular Insights into the Potential Toxicological Interaction of 2-Mercaptothiazoline with the Antioxidant Enzyme—Catalase

    OpenAIRE

    Zhenxing Huang; Ming Huang; Chenyu Mi; Tao Wang; Dong Chen; Yue Teng

    2016-01-01

    2-mercaptothiazoline (2-MT) is widely used in many industrial fields, but its residue is potentially harmful to the environment. In this study, to evaluate the biological toxicity of 2-MT at protein level, the interaction between 2-MT and the pivotal antioxidant enzyme—catalase (CAT) was investigated using multiple spectroscopic techniques and molecular modeling. The results indicated that the CAT fluorescence quenching caused by 2-MT should be dominated by a static quenching mechanism throug...

  20. The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics

    Directory of Open Access Journals (Sweden)

    AMORIM ALEXANDRA M.

    2002-01-01

    Full Text Available Results of dyeing of cotton fabrics with a bifunctional reactive dye were significantly improved when the fabric after bleaching with hydrogen peroxide was treated with catalase for the elimination of hydrogen peroxide residues from the fabrics. Compared to processes with a varying number of washing steps, with and without commercial reducing agents, the consumption of water could be significantly reduced, without altering the final color shade.

  1. Molecular cloning, characterization and expression analysis of a catalase gene inPaphia textile

    Institute of Scientific and Technical Information of China (English)

    WU Xiangwei; LI Jiakai; TAN Jing; LIU Xiande

    2016-01-01

    Catalase is an important antioxidant protein that can protect organisms against various forms of oxidative damage by eliminating hydrogen peroxide. In this study, the catalase cDNA ofPaphia textile (PtCAT) was cloned using RT-PCR and rapid amplification of cDNA ends (RACE).PtCAT is 1 921 bp long and consists of a 5′-UTR of 50 bp, a 3′-UTR of 349 bp, and an ORF of 1 542 bp that encodes 513 amino acids with a molecular weight of 58.4 kD and an estimated isoelectric point of 8.2. Sequence alignment indicated that PtCAT contained a highly conserved catalytic signature motif (61FNRERIPERVVHAKGAG77), a proximal heme-ligand signature sequence (352RLFSYSDP359), and three catalytic amino acid residues (H72, N145, and Y356). PtCAT also contains two putative N-glycosylation sites (34NKT36 and437NFT439) and a peroxisome-targeting signal (511AQL513). Furthermore, PtCAT shares 53%–88% identity and 29%–89% similarity with other catalase amino acid sequences.PtCAT mRNA was present in all tested organs, including the heart, digestive gland, adductor muscle, gonad, gill, and mantle, but its expression was highest in the digestive gland. High-temperature-induced stress produced two expression patterns ofPtCAT mRNA: first, an initial up-regulation followed by a down-regulation in the heart, digestive gland, and gonad and, second, consistent down-regulation in all other organs. These results demonstrate that PtCAT is a typical member of the catalase family and might be involved in the responses to harmful environmental factors.

  2. High-catalase strains of Mycobacterium kansasii isolated from water in Texas.

    OpenAIRE

    Steadham, J E

    1980-01-01

    Isolation techniques with membrane-filtered potable water samples resulted in the isolation of potentially pathogenic high-catalase strains of Mycobacterium kansasii from 8 of 19 representative outlets in a small central Texas town. Mycobacterium gordonae was isolated from all samples, and Mycobacterium fortuitum was isolated from two samples. Data on chlorine levels are presented along with a possible explanation for the unusually high numbers of mycobacteria in these potable water samples. ...

  3. Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungwoo; Park, Jeongju [School of Advanced Materials Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Cho, Jinhan, E-mail: jinhan71@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

    2010-09-17

    We introduce a novel and versatile approach for the preparation of multilayers, based on catalase-encapsulated gold nanoparticles (CAT-Au{sub NP}), allowing electrostatic charge reversal and structural transformation through pH adjustment. CAT-Au{sub NP}, which are synthesized directly from CAT stabilizer, can be electrostatically assembled with anionic and cationic PEs as a result of the charge reversal of the catalase stabilizers through pH control. In particular, at pH 5.2, near the pI of catalase, dispersed CAT-Au{sub NP} are structurally transformed into colloidal or network CAT-Au{sub NP} nanocomposites. Furthermore, we demonstrate that the layer-by-layer assembled multilayers composed of PEs and CAT-Au{sub NP} induce an effective electron transfer between CAT and the electrode as well as a high loading of CAT and Au{sub NP}, and resultantly exhibit a highly catalytic activity toward H{sub 2}O{sub 2}.

  4. Structure Characteristic and Catalase Activity of Vitreoscilla Hemoglobin Bound with Membrane

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hai-feng; WU Lei; LU Ming; HU Yu-lin; HAN Xiao; LI Zheng-qiang

    2011-01-01

    Lipid-bound [VHb(406)] and lipid-free [VHb(402)] wide type Vitreoscilla hemoglobin were separated from E. coli BL21(DE3). The Rz is 3.30 for [VHb(406)] and 3.15 for [VHb(402)], respectively. VHb(406) shows a characteristic absorption band at 626 nm, while VHb(402) shows one at 644 nm, and it has more a-helix than VHb(402). Data of Raman spectra experiment shows under the excitation wavelength 488 nm, v4 vibration of both VHb(402) and VHb(406) had a pure and strong signal at 1375 cm-l, which proves that iron porphyrin of both the samples is at their trivalence oxidation state. And no matter lipid binds VHb or not, the vinyl of porphyrin is at cis state. The catalase activity of Vitreoscilla hemoglobin was explored with L-dopa and H2O2 as substrates. The results indicate that VHb(406) has more catalase activity than VHb(402), VHb is a cell's oxygen modulator and its catalase ability is modulated by the membrane.

  5. Human catalase gene polymorphism (CAT C-262T) and risk of male infertility.

    Science.gov (United States)

    Sabouhi, S; Salehi, Z; Bahadori, M H; Mahdavi, M

    2015-02-01

    Infertility is the failure of a couple to engender after endeavouring at least one full year of unprotected intercourse. It has been reported that reactive oxygen species contributed to pathogenesis of various disease. To inactivate ROS cells biosynthesise several antioxidant enzymes, one of them is catalase which contributes H2 O2 to H2 O and O2 . This study set out to delineate the association of catalase C-262T polymorphism with idiopathic male infertility. The study included 195 men with idiopathic infertility and 190 healthy volunteers. Genomic DNA was extracted from peripheral blood leucocytes. Genotype and allele frequencies were determined in patients and controls using allele-specific PCR (AS-PCR). The prevalence of genotype frequencies of the CAT CC/CT/TT was 31.79%, 65.12% and 3.07%, respectively, in infertile subjects, as against 24.73%, 55.26% and 20%, respectively, in healthy volunteers. Statistical analysis has emerged significant difference from the comparison of either genotype (P catalase C-262T polymorphism indicates that CAT-262T/T genotype confers less susceptibility to male infertility. Further studies with larger numbers of patients are required for further evaluation and confirmation of our finding.

  6. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    Science.gov (United States)

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate.

  7. Prevalence of Catalase (-21 A/T Gene Variant in South Indian (Tamil Population

    Directory of Open Access Journals (Sweden)

    A. Lourdhu Mary

    2014-01-01

    Full Text Available Catalase, an endogenous antioxidant enzyme, is responsible for regulating reactive species levels. Several epidemiologic studies have suggested that single nucleotide polymorphism in catalase gene may be associated with many diseases. The genotype of CAT (-21 A/T point mutation in promoter region of catalase gene was determined by polymerase chain based restriction fragment length polymorphism analysis in the DNA of 100 healthy volunteers. The frequency of CAT (-21 A/T gene polymorphism AA, AT, and TT genotypes was found to be 7, 23, and 70 percent, respectively. The mutant “T” allele frequency was found to be 0.82 among the south Indian (Tamil population. Chi square analysis showed that the study population lies within the Hardy-Weinberg equilibrium. The wild type genotype (AA was found to be very low (7% and the mutant genotype (AT/TT was found to be more prevalent (93% among the south Indian population. This suggests that the high prevalence of mutant genotype may increase the susceptibility to oxidative stress associated diseases.

  8. Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion.

    Science.gov (United States)

    Hao, Fang; Jing, Mingyang; Zhao, Xingchen; Liu, Rutao

    2015-02-01

    In this research, the binding mechanism of Cu(2+) to bovine liver catalase (BLC) was studied by fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC) and molecular docking methods. The cellar experiment was firstly carried out to investigate the inhibition effect of catalase. During the fluorescence quenching study, after correcting the inner filter effect (IFE), the fluorescence of BLC was found to be quenched by Cu(2+). The quenching mechanism was determined by fluorescence lifetime measurement, and was confirmed to be the dynamic mode. The secondary structure content of BLC was changed by the addition of Cu(2+), as revealed by UV-vis absorption and CD spectra, which further induces the decrease in BLC activity. Molecular simulation study indicates that Cu(2+) is located between two β-sheets and two random coils of BLC near to the heme group, and interacts with His 74 and Ser 113 residues near a hydrophilic area. The decrease of α-helix and the binding of His 74 are considered to be the major reason for the inhibition of BLC activity caused by Cu(2+). The ITC results indicate that the binding stoichiometry of Cu(2+) to catalase is 11.4. Moreover, the binding of Cu(2+) to BLC destroyed H-bonds, which was confirmed by the CD result.

  9. Terazosin-induced alterations in catalase expression and lipid peroxidation in the rat seminal vesicles.

    Science.gov (United States)

    Mitropoulos, D; Patris, E; Deliconstantinos, G; Kyroudi-Voulgari, A; Anastasiou, I; Perea, D

    2013-04-01

    Previous studies have shown that alpha1-adrenergic receptor antagonists may alter seminal vesicle contractility and impair fertility in male rats. This study was designed to investigate the effects of terazosin on the catalase expression in the seminal vesicles and the lipid peroxidation of the seminal fluid in normal adult rats. Wistar rats were treated with terazosin (1.2 mg kg(-1) body weight, given orally every second day) for 120 days. Catalase expression was assessed immunohistochemically in tissue sections of the seminal vesicles, and lipid peroxidation was estimated by measuring the malondialdehyde (MDA) levels in the seminal vesicles' fluid. The seminal vesicles in terazosin-treated rats were particularly distended in comparison with those of controls, and their secreting epithelium was suppressed. Cytoplasmic catalase expression in the secreting epithelial cells (% of cells) was increased in terazosin-treated specimens in comparison with controls (76.1 ± 17.1 versus 51.3 ± 25.1, P = 0.005). MDA levels (μm) were also higher in samples from treated subjects in comparison with controls (2.67 ± 1.19 versus 1.39 ± 0.19, P = 0.01). Although the direct effect of terazosin treatment on the seminal vesicles is that of impaired contractility, an indirect effect is that on fertility by increasing lipid peroxidation in the seminal fluid and/or through degrading of hydrogen peroxide that is essential for sperm capacitation.

  10. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    International Nuclear Information System (INIS)

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN-) for murine Cu-Zn-SOD was determined to be 6.8 x 10-6 M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied

  11. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    Energy Technology Data Exchange (ETDEWEB)

    Halaban, R.; Moellmann, G. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1990-06-01

    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B{sup lt}/B{sup lt}) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B{sup lt} mutation renders the protein susceptible to rapid proteolytic degradation.

  12. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants.

    OpenAIRE

    Willekens, H; Chamnongpol, S; Davey, M; Schraudner, M; Langebartels, C; Van Montagu, M; Inzé, D; Van Camp, W

    1997-01-01

    Hydrogen peroxide (H2O2) has been implicated in many stress conditions. Control of H2O2 levels is complex and dissection of mechanisms generating and relieving H2O2 stress is difficult, particularly in intact plants. We have used transgenic tobacco with approximately 10% wild-type catalase activity to study the role of catalase and effects of H2O2 stress in plants. Catalase-deficient plants showed no visible disorders at low light, but in elevated light rapidly developed white necrotic lesion...

  13. The monofunctional catalase KatE of Xanthomonas axonopodis pv. citri is required for full virulence in citrus plants.

    Directory of Open Access Journals (Sweden)

    María Laura Tondo

    Full Text Available BACKGROUND: Xanthomonas axonopodis pv. citri (Xac is an obligate aerobic phytopathogen constantly exposed to hydrogen peroxide produced by normal aerobic respiration and by the plant defense response during plant-pathogen interactions. Four putative catalase genes have been identified in silico in the Xac genome, designated as katE, catB, srpA (monofunctional catalases and katG (bifunctional catalase. METHODOLOGY/PRINCIPAL FINDINGS: Xac catalase activity was analyzed using native gel electrophoresis and semi-quantitative RT-PCR. We demonstrated that the catalase activity pattern was regulated in different growth stages displaying the highest levels during the stationary phase. KatE was the most active catalase in this phase of growth. At this stage cells were more resistant to hydrogen peroxide as was determined by the analysis of CFU after the exposition to different H(2O(2 concentrations. In addition, Xac exhibited an adaptive response to hydrogen peroxide, displaying higher levels of catalase activity and H(2O(2 resistance after treatment with sub-lethal concentrations of the oxidant. In the plant-like medium XVM2 the expression of KatE was strongly induced and in this medium Xac was more resistant to H(2O(2. A XackatE mutant strain was constructed by insertional mutagenesis. We observed that catalase induction in stationary phase was lost meanwhile the adaptive response to peroxide was maintained in this mutant. Finally, the XackatE strain was assayed in planta during host plant interaction rendering a less aggressive phenotype with a minor canker formation. CONCLUSIONS: Our results confirmed that in contrast to other Xanthomonas species, Xac catalase-specific activity is induced during the stationary phase of growth in parallel with the bacterial resistance to peroxide challenge. Moreover, Xac catalases expression pattern is modified in response to any stimuli associated with the plant or the microenvironment it provides. The catalase Kat

  14. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.

    Science.gov (United States)

    Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella

    2015-05-01

    Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat  = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat  = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase.

  15. An SNP polymorphism (-844C/T) in the promoter of catalase gene leads to differential expression

    Institute of Scientific and Technical Information of China (English)

    LI Yanping; ZHANG Xin; WANG Zhimin; LU Daru; HANG Wei; JIN Li

    2004-01-01

    @@ Imbalance of redox state has been associated with human diseases, such as cardiovascular diseases, Huntington's disease and Alzheimer's disease[1]. Catalase, an important antioxidant enzyme, decomposes H2O2 into O2and H2O, therefore limiting the deleterious effect of the reactive oxygen species (ROS)[1 -4]. Previous study showed that a C-T polymorphism, located at -844 bp from the translational start site of catalase, is strongly associated with essential hypertension in an isolated Chinese population of Xiangchang country, Anhui Province[5]. To explore the impact of SNP-844C/T on the expression of catalase, human catalase promoters containing either SNP-844C or T variant were subcloned into the pGL3-Basic luciferase vector.

  16. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells.

    Science.gov (United States)

    Bauer, Georg

    2015-12-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  17. Catalase, superoxide dismutase, and hemolysin activities and heat susceptibility of Listeria monocytogenes after growth in media containing sodium chloride.

    OpenAIRE

    Dallmier, A W; Martin, S E

    1990-01-01

    The activities of catalase, superoxide dismutase, and a thiol-activated hemolysin produced by four strains of Listeria monocytogenes propagated in media containing various concentrations of sodium chloride were examined. L. monocytogenes 7644 showed an increase in catalase, superoxide dismutase, and thiol-activated hemolysin activities when grown in a medium containing 2.5% (wt/vol) NaCl followed by a decrease in activities when propagated in media containing salt concentrations higher than 2...

  18. Purification, cloning, expression, and biochemical characterization of a monofunctional catalase, KatP, from Pigmentiphaga sp. DL-8.

    Science.gov (United States)

    Dong, Weiliang; Hou, Ying; Li, Shuhuan; Wang, Fei; Zhou, Jie; Li, Zhoukun; Wang, Yicheng; Huang, Fei; Fu, Lei; Huang, Yan; Cui, Zhongli

    2015-04-01

    Catalases are essential components of the cellular equipment used to cope with oxidative stress. The monofunctional catalase KatP was purified from Pigmentiphaga sp. using ammonium sulfate precipitation (ASP), diethylaminoethyl ion exchange chromatography (IEC), and hydrophobic interaction chromatography (HIC). The purified catalase formed polymer with an estimated monomer molecular mass of 54kDa, which were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis. KatP exhibited a specific catalytic activity of 73,000U/mg, which was higher than that of catalase-1 of Comamonas terrigena N3H (55,900U/mg). Seven short tryptic fragments of this catalase were obtained by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS/MS), and the gene, katP, was cloned by PCR amplification and overexpressed in Escherichia coli BL21 (DE3). Based on the complete amino acid sequence, KatP was identified as a clade 3 monofunctional catalase. The specific activities of recombinant KatP for hydrogen peroxide (690,000U/mg) increased 9-fold over that of the parent strain. The Km and Vmax of recombinant KatP were 9.48mM and 81.2mol/minmg, respectively. The optimal pH and temperature for KatP were 7.0 and 37°C, respectively, and the enzyme displayed abroad pH-stable range of 4.0-11.0. The enzyme was inhibited by Zn(2+), Cu(2+), Cr(2+), and Mn(2+), whereas Fe(3+) and Mg(2+) stimulated KatP enzymatic activity. Interestingly, the catalase activity of recombinant KatP displayed high stability under different temperature and pH conditions, suggesting that KatP is a potential candidate for the production of catalase.

  19. Effect of gibberellic acid foliar and kinetin on the antioxidant catalase anzymes and peroxidase in maize under drought stress

    OpenAIRE

    MEHRİ, Shahram

    2015-01-01

    Abstract. To study relation between water scarcity and gibberllic acid hormone and kinetin in three hybrids tested corn in two years as a split plot factorial based on randomized complete block design with 3 replications and antioxidant catalase enzymes and peroxidase leaves, the resulted measuremens are that drought stress is a change in the hormonal balance of corn so that amount of catalase and peroxidase enzymes compared to control were increased by foliar of hormones.however most of the ...

  20. Release time of residual oxygen after dental bleaching with 35% hydrogen peroxide: effect of a catalase-based neutralizing agent.

    Science.gov (United States)

    Guasso, Bárbara; Salomone, Paloma; Nascimento, Paulo Cícero; Pozzobon, Roselaine Terezinha

    2016-01-01

    This article assessed the effect of a catalase-based agent on residual oxygen (O2) release from teeth exposed to 35% hydrogen peroxide (H2O2). The use of the catalase-based neutralizer agent for 2-3 minutes was able to release residual O2 5 days after exposure to a 35% H2O2-based bleaching gel. PMID:27148658

  1. Contribution of Catalase and Superoxide Dismutase to the Intracellular Survival of Clinical Isolates of Staphylococcus aureus in Murine Macrophages

    OpenAIRE

    Das, Debaditya; Bishayi, Biswadev

    2010-01-01

    The present study was performed in order to carefully investigate the interaction of Staphylococcus aureus with murine macrophages and the contribution of catalase and superoxide dismutase in intracellular persistence of Staphylococcus aureus within murine macrophages during in vitro infection. We have reported that Staphylococcus aureus internalized by murine macrophages did not appear to be rapidly killed. Data indicating the contribution of a single catalase and superoxide dismutase in int...

  2. A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics.

    Science.gov (United States)

    Tovmasyan, Artak; Maia, Clarissa G C; Weitner, Tin; Carballal, Sebastián; Sampaio, Romulo S; Lieb, Dominik; Ghazaryan, Robert; Ivanovic-Burmazovic, Ivana; Ferrer-Sueta, Gerardo; Radi, Rafael; Reboucas, Julio S; Spasojevic, Ivan; Benov, Ludmil; Batinic-Haberle, Ines

    2015-09-01

    Because of the increased insight into the biological role of hydrogen peroxide (H2O2) under physiological and pathological conditions and the role it presumably plays in the action of natural and synthetic redox-active drugs, there is a need to accurately define the type and magnitude of reactions that may occur with this intriguing and key species of redoxome. Historically, and frequently incorrectly, the impact of catalase-like activity has been assigned to play a major role in the action of many redox-active drugs, mostly SOD mimics and peroxynitrite scavengers, and in particular MnTBAP(3-) and Mn salen derivatives. The advantage of one redox-active compound over another has often been assigned to the differences in catalase-like activity. Our studies provide substantial evidence that Mn(III) N-alkylpyridylporphyrins couple with H2O2 in actions other than catalase-related. Herein we have assessed the catalase-like activities of different classes of compounds: Mn porphyrins (MnPs), Fe porphyrins (FePs), Mn(III) salen (EUK-8), and Mn(II) cyclic polyamines (SOD-active M40403 and SOD-inactive M40404). Nitroxide (tempol), nitrone (NXY-059), ebselen, and MnCl2, which have not been reported as catalase mimics, were used as negative controls, while catalase enzyme was a positive control. The dismutation of H2O2 to O2 and H2O was followed via measuring oxygen evolved with a Clark oxygen electrode at 25°C. The catalase enzyme was found to have kcat(H2O2)=1.5×10(6)M(-1) s(-1). The yield of dismutation, i.e., the maximal amount of O2 evolved, was assessed also. The magnitude of the yield reflects an interplay between the kcat(H2O2) and the stability of compounds toward H2O2-driven oxidative degradation, and is thus an accurate measure of the efficacy of a catalyst. The kcat(H2O2) values for 12 cationic Mn(III) N-substituted (alkyl and alkoxyalkyl) pyridylporphyrin-based SOD mimics and Mn(III) N,N'-dialkylimidazolium porphyrin, MnTDE-2-ImP(5+), ranged from 23 to 88M(-1) s

  3. Catalase Induced by All-Trans Retinoic Acid Is Involved in Antiproliferation of 36B10 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Woo Yoon [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of); Yu, Jae Ran [Konkuk University College of Medicine, Chungju (Korea, Republic of)

    2010-11-15

    All-trans retinoic acid (ATRA) has antiproliferative effects against brain tumor cells. Recently, ATRA has been reported to induce catalase. We investigated whether catalase induction by ATRA is associated with its antiproliferative effects. 36B10 cells were exposed to 0-50{mu}M ATRA for 24 or 48 hours and mRNA, protein, and activity of catalase were measured. Reactive oxygen species (ROS) were measured using 2',7'-dichlorofluorescin diacetate. A clonogenic assay was used to confirm the cytotoxic effect. The mRNA, protein, and activity of catalase were found to increase in a concentration- and incubation- time-dependent manner. The increase in catalase activity induced by ATRA was decreased by the addition of 3-amino-1,2,4-triazole (ATZ). ROS was also increased with ATRA and decreased by the addition of ATZ. The decrease in cell survival induced by ATRA was partly rescued by ATZ. Catalase induction by ATRA is involved in ROS overproduction and thus inhibits the proliferation of 36B10 cells.

  4. MicroRNA-30b-mediated regulation of catalase expression in human ARPE-19 cells.

    Directory of Open Access Journals (Sweden)

    Rashidul Haque

    Full Text Available BACKGROUND: Oxidative injury to retinal pigment epithelium (RPE and retinal photoreceptors has been linked to a number of retinal diseases, including age-related macular degeneration (AMD. Reactive oxygen species (ROS-mediated gene expression has been extensively studied at transcriptional levels. Also, the post-transcriptional control of gene expression at the level of translational regulation has been recently reported. However, the microRNA (miRNA/miR-mediated post-transcriptional regulation in human RPE cells has not been thoroughly looked at. Increasing evidence points to a potential role of miRNAs in diverse physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated for the first time in a human retinal pigment epithelial cell line (ARPE-19 that the post-transcriptional control of gene expression via miRNA modulation regulates human catalase, an important and potent component of cell's antioxidant defensive network, which detoxifies hydrogen peroxide (H(2O(2 radicals. Exposure to several stress-inducing agents including H(2O(2 has been reported to alter miRNA expression profile. Here, we demonstrated that a sublethal dose of H(2O(2 (200 µM up-regulated the expression of miR-30b, a member of the miR-30 family, which inhibited the expression of endogenous catalase both at the transcript and protein levels. However, antisense (antagomirs of miR-30b was not only found to suppress the miR-30b mimics-mediated inhibitions, but also to dramatically increase the expression of catalase even under an oxidant environment. CONCLUSIONS/SIGNIFICANCE: We propose that a microRNA antisense approach could enhance cytoprotective mechanisms against oxidative stress by increasing the antioxidant defense system.

  5. Effect of catalase on the liquid storage of mithun (Bos frontalis) semen

    Institute of Scientific and Technical Information of China (English)

    P Peruma; JK Chamuah; C Rajkhowa

    2013-01-01

    Objective: To assess the effect of catalase (CAT) on sperm motility, viability, total sperm abnormality, acrosomal and plasma membrane integrity, enzymatic profiles such as aspartate amino transaminase (AST), alanine amino transaminase (ALT), biochemical profiles such as cholesterol efflux and malonaldehyde (MDA) production and antioxidant profiles such as reduced glutathione (GSH), superoxide dismutase (SOD) and total antioxidant capacity (TAC). Methods: Total numbers of 50 ejaculates were collected twice a week from eight mithun bulls and semen was split into four equal aliquots, diluted with the TEYC extender. Group 1: semen without additives (control), group 2 to group 4: semen was diluted with 50 U/mL, 100 U/mL and 150 U/mL of catalase, respectively. These seminal, enzymatic, biochemical and antioxidant profiles were assessed at 5 ℃ for 0, 6, 12, 24 and 30 h of incubation. Results: Inclusion of catalase into diluent resulted in significant (P < 0.05) decrease in percentages of dead spermatozoa, abnormal spermatozoa and acrosomal abnormalities at different hours of storage periods as compared with control group. Additionally, CAT at 50 and 150 U/mL were inferior to CAT 100 U/mL treatments as regards to these characteristics and CAT at 100 U/mL has significant improvement in quality of mithun semen in in- vitro stored for up to 30 h.Conclusions:It was concluded that the possible protective effects of CAT on sperm parameters are it prevent efflux of cholesterol from cell membrane, MDA production and protect the function of antioxidants during preservation.

  6. Role of oxyR from Sinorhizobium meliloti in Regulating the Expression of Catalases

    Institute of Scientific and Technical Information of China (English)

    Li LUO; Ming-Sheng QI; Shi-Yi YAO; Hai-Ping CHENG; Jia-Bi ZHU; Guan-Qiao YU

    2005-01-01

    The process of symbiotic nitrogen fixation results in the generation of reactive oxygen species such as the superoxide anion (O2-) and hydrogen peroxide (H2O2). The response of rhizobia to these toxic oxygen species is an important factor in nodulation and nitrogen fixation. In Sinorhizobium meliloti, one oxyR homologue and three catalase genes, katA, katB, and katC were detected by sequence analysis. This oxyR gene is located next to and divergently from katA on the chromosome. To investigate the possible roles of oxyR in regulating the expression of catalases at the transcriptional level in S. meliloti, an insertion mutant of this gene was constructed. The mutant was more sensitive and less adaptive to H2O2 than the wild type strain, and total catalase/peroxidase activity was reduced approximately fourfold with the OxyR mutation relative to controls. The activities of KatA and KatB and the expression of katA::lacZ and katB::lacZ promoter fusions were increased in the mutant strain compared with the parental strain grown in the absence of H2O2,indicating that katA and katB are repressed by OxyR. However, when exposed to H2O2, katA expression was also increased in both S. meliloti and Escherichia coli. When exposed to H2O2, OxyR is converted from a reduced to an oxidized form in E. coli. We concluded that the reduced form of OxyR functions as a repressor of katA and katB expression. Thus, in the presence of H2O2, reduced OxyR is converted to the oxidized form of OxyR that then results in increased katA expression. We further showed that oxyR expression is autoregulated via negative feedback.

  7. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria.

    Science.gov (United States)

    Kathiresan, Meena; Martins, Dorival; English, Ann M

    2014-12-01

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1's heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼ 85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification. PMID:25422453

  8. X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole

    Science.gov (United States)

    Borovik, A. A.; Grebenko, A. I.; Melik-Adamyan, V. R.

    2011-07-01

    The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.

  9. Biomimetic Mn-Catalases Based on Dimeric Manganese Complexes in Mesoporous Silica for Potential Antioxidant Agent.

    Science.gov (United States)

    Escriche-Tur, Luis; Corbella, Montserrat; Font-Bardia, Mercè; Castro, Isabel; Bonneviot, Laurent; Albela, Belén

    2015-11-01

    Two new structural and functional models of the Mn-catalase with formula [{Mn(III)(bpy)(H2O)}(μ-2-MeOC6H4CO2)2(μ-O){Mn(III)(bpy)(X)}]X, where X = NO3 (1) and ClO4 (2) and bpy = 2,2'-bipyridine, were synthesized and characterized by X-ray diffraction. In both cases, a water molecule and an X ion occupy the monodentate positions. The magnetic properties of these compounds reveal a weak antiferromagnetic behavior (2J = -2.2 cm(-1) for 1 and -0.7 cm(-1) for 2, using the spin Hamiltonian H = -2J S1·S2) and negative zero-field splitting parameter DMn (-4.6 cm(-1) and -3.0 cm(-1) for 1 and 2, respectively). This fact, together with the nearly orthogonal orientation of the Jahn-Teller axes of the Mn(III) ions explain the unusual shape of χMT versus T plot at low temperature. Compound 1 presents a better catalase activity than 2 in CH3CN-H2O media, probably due to a beneficial interaction of the NO3(-) ion with the Mn complex in solution. These compounds were successfully inserted inside two-dimensional hexagonal mesoporous silica (MCM-41 type) leading to the same hybrid material ([Mn2O]@SiO2), without the X group. The manganese complex occupies approximately half of the available pore volume, keeping the silica's hexagonal array intact. Magnetic measurements of [Mn2O]@SiO2 suggest that most of the dinuclear unit is preserved, as a non-negligible interaction between Mn ions is still observed. The X-ray photoelectron spectroscopy analysis of the Mn 3s peak confirms that Mn remains as Mn(III) inside the silica. The catalase activity study of material [Mn2O]@SiO2 reveals that the complex is more active inside the porous silica, probably due to the surface silanolate groups of the pore wall. Moreover, the new material shows catalase activity in water media, while the coordination compounds are not active. PMID:26484833

  10. Isonicotinic Acid Hydrazide Conversion to Isonicotinyl-NAD by Catalase-peroxidases*

    OpenAIRE

    Wiseman, Ben; Carpena, Xavi; Feliz, Miguel; Donald, Lynda J.; Pons, Miquel; Fita, Ignacio; Loewen, Peter C.

    2010-01-01

    Activation of the pro-drug isoniazid (INH) as an anti-tubercular drug in Mycobacterium tuberculosis involves its conversion to isonicotinyl-NAD, a reaction that requires the catalase-peroxidase KatG. This report shows that the reaction proceeds in the absence of KatG at a slow rate in a mixture of INH, NAD+, Mn2+, and O2, and that the inclusion of KatG increases the rate by >7 times. Superoxide, generated by either Mn2+- or KatG-catalyzed reduction of O2, is an essential intermediate in the r...

  11. X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole

    International Nuclear Information System (INIS)

    The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.

  12. Activity of superoxide dismutase and catalase in fenugreek (Trigonella foenum-graecum in response to carbendazim

    Directory of Open Access Journals (Sweden)

    Sangeetha R

    2010-01-01

    Full Text Available Fenugreek (Trigonella foenum-graecum is an annual herb, used as a spice and traditionally as medicine. Fenugreek finds its uses in treating hyperglycemia, hyperlipidemia and disorders of gastro-intestinal and cardiovascular systems. Fenugreek cultivation in India is affected by fungal diseases like root-rot and damping-off and fungicides like carbendazim are used to overcome these infections. Fungicides play both positive and negative role in plants; fungicides protect plants from diseases and also exert oxidative stress simultaneously. This report is on the response of antioxidants, superoxide dismutase and catalase in fenugreek seeds and plants treated to different concentrations of carbendazim.

  13. Catalase-negative Staphylococcus aureus isolated from a diabetic foot ulcer

    Directory of Open Access Journals (Sweden)

    MR Zali

    2010-12-01

    Full Text Available We report a catalase-negative Staphylococcus aureus isolated from a 56-year-old male diabetic patient with foot ulcer who attended our surgery ward. Species identification was confirmed by Gram staining, standard biochemical tests and PCR amplification of the nuc and fem genes. Antibiotic susceptibility showed that the strain was sensitive to imepenem, chloramphenicol, amoxicillin, vancomycin and resistant to oxacillin, penicillin, ceftriaxone, erythromycin, clindamycin, and amikacin. Clinicians and microbiologists must be encouraged to identify and report these atypical strains and the infections associated with them in order to establish their role in pathogenesis.

  14. Activity of Superoxide Dismutase and Catalase in Fenugreek (Trigonella foenum-graecum) in Response to Carbendazim.

    Science.gov (United States)

    Sangeetha, R

    2010-01-01

    Fenugreek (Trigonella foenum-graecum) is an annual herb, used as a spice and traditionally as medicine. Fenugreek finds its uses in treating hyperglycemia, hyperlipidemia and disorders of gastro-intestinal and cardiovascular systems. Fenugreek cultivation in India is affected by fungal diseases like root-rot and damping-off and fungicides like carbendazim are used to overcome these infections. Fungicides play both positive and negative role in plants; fungicides protect plants from diseases and also exert oxidative stress simultaneously. This report is on the response of antioxidants, superoxide dismutase and catalase in fenugreek seeds and plants treated to different concentrations of carbendazim. PMID:20582202

  15. In Vivo Role of Catalase-Peroxidase in Synechocystis sp. Strain PCC 6803

    OpenAIRE

    Tichy, Martin; Vermaas, Wim

    1999-01-01

    The katG gene coding for the only catalase-peroxidase in the cyanobacterium Synechocystis sp. strain PCC 6803 was deleted in this organism. Although the rate of H2O2 decomposition was about 30 times lower in the ΔkatG mutant than in the wild type, the strain had a normal phenotype and its doubling time as well as its resistance to H2O2 and methyl viologen were indistinguishable from those of the wild type. The residual H2O2-scavenging capacity was more than sufficient to deal with the rate of...

  16. Reduction of Hydrogen Peroxide Accumulation and Toxicity by a Catalase from Mycoplasma iowae

    OpenAIRE

    Rachel E Pritchard; Prassinos, Alexandre J.; Osborne, John D.; Raviv, Ziv; Balish, Mitchell F.

    2014-01-01

    Mycoplasma iowae is a well-established avian pathogen that can infect and damage many sites throughout the body. One potential mediator of cellular damage by mycoplasmas is the production of H2O2 via a glycerol catabolic pathway whose genes are widespread amongst many mycoplasma species. Previous sequencing of M. iowae serovar I strain 695 revealed the presence of not only genes for H2O2 production through glycerol catabolism but also the first documented mycoplasma gene for catalase, which d...

  17. X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole

    Energy Technology Data Exchange (ETDEWEB)

    Borovik, A. A.; Grebenko, A. I.; Melik-Adamyan, V. R., E-mail: mawr@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.

  18. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    Directory of Open Access Journals (Sweden)

    Kandadi Machender R

    2012-11-01

    Full Text Available Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.. Cardiomyocyte contractile and intracellular Ca2+ properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Results Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca2+ handling, the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Conclusions Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca2+ anomalies, possibly through regulation of autophagy and mitochondrial function.

  19. N-glycosylation-negative catalase: a useful tool for exploring the role of hydrogen peroxide in the endoplasmic reticulum.

    Science.gov (United States)

    Lortz, S; Lenzen, S; Mehmeti, I

    2015-03-01

    Disulfide bond formation during protein folding of nascent proteins is associated with the generation of H2O2 in the endoplasmic reticulum (ER). Approaches to quantifying H2O2 directly within the ER failed because of the oxidative environment in the ER lumen, and ER-specific catalase expression to detoxify high H2O2 concentrations resulted in an inactive protein owing to N-glycosylation. Therefore, the N-glycosylation motifs at asparagine-244 and -439 of the human catalase protein were deleted by site-directed mutagenesis. The ER-targeted expression of these variants revealed that the deletion of the N-glycosylation motif only at asparagine-244 (N244) was associated with the maintenance of full enzymatic activity in the ER. Expression of catalase N244 in the ER (ER-Catalase N244) was ER-specific and protected the cells significantly against exogenously added H2O2. With the expression of ER-Catalase N244, a highly effective H2O2 inactivation within the ER was achieved for the first time. Catalase has a high H2O2-inactivation capacity without the need of reducing cofactors, which might interfere with the ER redox homeostasis, and is not involved in protein folding. With these characteristics ER-Catalase N244 is an ideal tool to explore the impact of ER-generated H2O2 on the generation of disulfide bonds or to study the induction of ER-stress pathways through protein folding overload and accumulation of H2O2.

  20. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    Science.gov (United States)

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  1. Distribution of a Nocardia brasiliensis catalase gene fragment in members of the genera Nocardia, Gordona, and Rhodococcus.

    Science.gov (United States)

    Vera-Cabrera, L; Johnson, W M; Welsh, O; Resendiz-Uresti, F L; Salinas-Carmona, M C

    1999-06-01

    An immunodominant protein from Nocardia brasiliensis, P61, was subjected to amino-terminal and internal sequence analysis. Three sequences of 22, 17, and 38 residues, respectively, were obtained and compared with the protein database from GenBank by using the BLAST system. The sequences showed homology to some eukaryotic catalases and to a bromoperoxidase-catalase from Streptomyces violaceus. Its identity as a catalase was confirmed by analysis of its enzymatic activity on H2O2 and by a double-staining method on a nondenaturing polyacrylamide gel with 3,3'-diaminobenzidine and ferricyanide; the result showed only catalase activity, but no peroxidase. By using one of the internal amino acid sequences and a consensus catalase motif (VGNNTP), we were able to design a PCR assay that generated a 500-bp PCR product. The amplicon was analyzed, and the nucleotide sequence was compared to the GenBank database with the observation of high homology to other bacterial and eukaryotic catalases. A PCR assay based on this target sequence was performed with primers NB10 and NB11 to confirm the presence of the NB10-NB11 gene fragment in several N. brasiliensis strains isolated from mycetoma. The same assay was used to determine whether there were homologous sequences in several type strains from the genera Nocardia, Rhodococcus, Gordona, and Streptomyces. All of the N. brasiliensis strains presented a positive result but only some of the actinomycetes species tested were positive in the PCR assay. In order to confirm these findings, genomic DNA was subjected to Southern blot analysis. A 1.7-kbp band was observed in the N. brasiliensis strains, and bands of different molecular weight were observed in cross-reacting actinomycetes. Sequence analysis of the amplicons of selected actinomycetes showed high homology in this catalase fragment, thus demonstrating that this protein is highly conserved in this group of bacteria. PMID:10325357

  2. 精神分裂症患者与过氧化氢酶(Catalase)基因多态性%The Association between Schizophrenics and Catalase Gene Polymorphism

    Institute of Scientific and Technical Information of China (English)

    赵昌烈; 李光哲; 崔成虎; 许妍姬

    2009-01-01

    目的:探讨过氧化氢酶(Catalase)基因多态性与精神分裂症的相关性.方法:采用Amp-RFLP(amplication-restriction fregment lengh polymorphis)方法对精神分裂症患者和对照组的过氧化氢酶基因相关性进行了研究.结果:167例精神分裂症患者与155例对照组之间过氧化氢酶基因型频率和等位基因频率无统计学意义,76例女性精神分裂症患者与60例对照组之间过氧化氢酶基因型频率(χ2=11.096,df=2,P=0.004)有显著性差异.结论:过氧化氢酶多态性与精神分裂症的遗传学并不存在关联性,但是研究表明过氧化氢酶基因型频率与女性精神分裂症患者有显著性差异.

  3. Comprehensive Functional Analysis of the Catalase Gene Family in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Yan-Yan Du; Peng-Cheng Wang; Jia Chen; Chun-Peng Song

    2008-01-01

    In Arabidopsis, catalase (CAT) genes encode a small family of proteins including CAT1, CAT2 and CAT3, which catalyze the decomposition of hydrogen peroxide (H2O2) and play an important role in controlling homeostasis of reactive oxygen species (ROS). Here, we analyze the expression profiles and activities of three catalases under different treatments including drought, cold, oxidative stresses, abscisic acid and salicylic acid in Arabidopsis. Our results reveal that CAT1 is an important player in the removal of H2O2 generated under various environmental stresses. CAT2 and CAT3 are major H2O2 scavengers that contribute to ROS homeostasis in light or darkness, respectively. In addition, CAT2 is activated by cold and drought stresses and CAT3 is mainly enhanced by abscisic acid and oxidative treatments as well as at the senescence stage. These results, together with previous data, suggest that the network of transcriptional control explains how CATs and other scavenger enzymes such as peroxidase and superoxide dismutase may be coordinately regulated during development, but differentially expressed in response to different stresses for controlling ROS homeostasis.

  4. Catalase, carbonic anhydrase and xanthine oxidase activities in patients with mycosis fungoides.

    Science.gov (United States)

    Cengiz, Fatma Pelin; Beyaztas, Serap; Gokce, Basak; Arslan, Oktay; Guler, Ozen Ozensoy

    2015-04-01

    Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma. In several studies the relationship between catalase (CAT), human cytosolic carbonic anhydrases (CA; hCA-I and hCA-II) and xanthine oxidase (XO) enzyme activities have been investigated in various types of cancers but carbonic anhydrase, catalase and xanthine oxidase activities in patients with MF have not been previously reported. Therefore, in this preliminary study we aim to investigate CAT, CA and XO activities in patients with MF. This study enrolled 32 patients with MF and 26 healthy controls. According to the results, CA and CAT activities were significantly lower in patients with mycosis fungoides than controls (p < 0.001) (p < 0.001). There was no significant difference in XO activity between patient and control group (p = 0.601). Within these findings, we believe these enzyme activity levels might be a potentially important finding as an additional diagnostic biochemical tool for MF.

  5. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice.

  6. Molecular Cloning and Expression Analysis of a Catalase Gene (NnCAT) from Nelumbo nucifera.

    Science.gov (United States)

    Dong, Chen; Zheng, Xingfei; Diao, Ying; Wang, Youwei; Zhou, Mingquan; Hu, Zhongli

    2015-11-01

    Rapid amplification cDNA end (RACE) assay was established to achieve the complete cDNA sequence of a catalase gene (NnCAT) from Nelumbo nucifera. The obtained full-length cDNA was 1666 bp in size and contained a 1476-bp open reading frame. The 3D structural model of NnCAT was constructed by homology modeling. The putative NnCAT possessed all the main characteristic amino acid residues and motifs of catalase (CAT) protein family, and the phylogenetic analysis revealed that NnCAT grouped together with high plants. Moreover, recombinant NnCAT showed the CAT activity (758 U/mg) at room temperature, holding high activity during temperature range of 20-50 °C, then the optimal pH of recombinant protein was assessed from pH 4 to pH 11. Additionally, real-time PCR assay demonstrated that NnCAT mRNA was expressed in various tissues of N. nucifera, with the highest expression in young leaf and lowest level in the root, and mRNA level of NnCAT was significantly augmented in response to short-time mechanical wounding. Different expression pattern of NnCAT gene suggested that NnCAT probably played a defensive role in the initial stages of oxidative stress, regulating the level of reactive oxygen species (ROS) by extracellular stimuli such as short-time mechanical wounding.

  7. Superoxide dismutase, catalase, and. alpha. -tocopherol content of stored potato tubers. [Solanum tuberosum L

    Energy Technology Data Exchange (ETDEWEB)

    Spychalla, J.P.; Desborough, S.L. (Univ. of Minnesota, St. Paul (USA))

    1990-11-01

    Activated oxygen or oxygen free radical mediated damage to plants has been established or implicated in many plant stress situations. The extent of activated oxygen damage to potato (Solanum tuberosum L.) tubers during low temperature storage and long-term storage is not known. Quantitation of oxygen free radical mediated damage in plant tissues is difficult. However, it is comparatively easy to quantitate endogenous antioxidants, which detoxify potentially damaging forms of activated oxygen. Three tuber antioxidants, superoxide dismutase, catalase, and {alpha}-tocopherol were assayed from four potato cultivars stored at 3{degree}C and 9{degree}C for 40 weeks. Tubers stored at 3{degree}C demonstrated increased superoxide dismutase activities (up to 72%) compared to tubers stored at 9{degree}C. Time dependent increases in the levels of superoxide dismutase, catalase, and {alpha}-tocopherol occurred during the course of the 40 week storage. The possible relationship between these increases in antioxidants and the rate of activated oxygen production in the tubers is discussed.

  8. Mn(II) complexes with bipyridine, phenanthroline and benzoic acid: Biological and catalase-like activity

    Indian Academy of Sciences (India)

    Ibrahim Kani; Özlem Atlier; Kiymet Güven

    2016-04-01

    Five mononuclear Mn(II) complexes, [Mn(phen)2(ClO4)2] (1), [Mn(phen)3](ClO4)2(H2CO3)2(2), [Mn(bipy)2(ClO4)2] (3), [Mn(bipy)3](ClO4)2) (4), and Mn(phen)2(ba)(H2O)](ClO4)(CH3OH) (5), where bipy = 2,2’-bipyridine, phen = 1,10-phenanthroline, and ba = benzoic acid were prepared and characterized by Xray, IR and UV-Vis spectroscopies, and their catalase-like and biological activities were studied. The presence of two different types and the number of chelating NN-donor neutral ligands allowed for analysis of their effects on the catalase and biological activities. It was observed that the presence and number of phen ligands improved the activity more than the bipy ligand. Complexes 1 and 2, which contain more basic phen ligands, disproportionate H2O2 faster than complexes 3 and 4, which contain less basic bipy ligands. The in vitro antimicrobial activities of all the complexes were also tested against seven bacterial strains by microdilution tests. All the bacterial isolates demonstrated sensitivity to the complexes and the antifungal (anticandidal) activities of the Mn(II) complexes were remarkably higher than the reference drug ketoconazole.

  9. Role of catalase in monocytic differentiation of U937 cells by TPA: hydrogen peroxide as a second messenger.

    Science.gov (United States)

    Yamamoto, T; Sakaguchi, N; Hachiya, M; Nakayama, F; Yamakawa, M; Akashi, M

    2009-04-01

    Human promonocytic cell line U937 cells can be induced to differentiate into macrophages by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA). TPA treatment induced the expression of the monocytic differentiation markers CD11b and CD36, with concomitant morphological changes. Moreover, TPA enhanced reactive oxygen species (ROS) generation in these cells, and phagocytic ability was also stimulated during differentiation. The antioxidant agent N-acetyl-L-cysteine inhibited the TPA-induced differentiation of U937 cells. TPA treatment decreased the expression level of catalase, which catalyzes the decomposition of hydrogen peroxide (H(2)O(2)) to H(2)O and O(2). In contrast, TPA increased the level of manganese superoxide dismutase, which catalyzes the dismutation of superoxide into H(2)O(2) and O(2) without affecting the levels of copper-zinc superoxide dismutase or glutathione peroxidase 1, which removes H(2)O(2) using glutathione as substrate. Treatment of U937 cells with catalase inhibited the enhancement of ROS generation induced by TPA, and blocked the TPA-induced differentiation of U937 cells. Human promyelocytic cell line HL60 cells were also induced to differentiate into macrophages by TPA. However, HP100-1 cells, its variant cell line overexpressing catalase, were resistant to TPA-induced differentiation. Our results suggest that catalase inhibits monocytic differentiation by TPA; the decrease in catalase level and the accumulation of H(2)O(2) are significant events for monocyte/macrophage differentiation by TPA.

  10. Important role of catalase in the cellular response of the budding yeast Saccharomyces cerevisiae exposed to ionizing radiation.

    Science.gov (United States)

    Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2015-03-01

    Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation.

  11. A factor converting viable but nonculturable Vibrio cholerae to a culturable state in eukaryotic cells is a human catalase.

    Science.gov (United States)

    Senoh, Mitsutoshi; Hamabata, Takashi; Takeda, Yoshifumi

    2015-08-01

    In our previous work, we demonstrated that viable but nonculturable (VBNC) Vibrio cholerae O1 and O139 were converted to culturable by coculture with eukaryotic cells. Furthermore, we isolated a factor converting VBNC V. cholerae to culturable (FCVC) from a eukaryotic cell line, HT-29. In this study, we purified FCVC by successive column chromatographies comprising UNO Q-6 anion exchange, Bio-Scale CHT2-1 hydroxyapatite, and Superdex 200 10/300 GL. Homogeneity of the purified FCVC was demonstrated by SDS-PAGE. Nano-LC MS/MS analysis showed that the purified FCVC was a human catalase. An experiment of RNAi knockdown of catalase mRNA from HT-29 cells and treatment of the purified FCVC with a catalase inhibitor, 3-amino-1,2,4-triazole confirmed that the FCVC was a catalase. A possible role of the catalase in converting a VBNC V. cholerae to a culturable state in the human intestine is discussed.

  12. PRODUCING OF ENZYME PREPARATION AND ANALYSIS OF ENZYME PREPARATION OF PEROXIDASE AND CATALASE OF SOME SPECIES OF BASIDIOMYCETES

    Directory of Open Access Journals (Sweden)

    Fedotov O.V.

    2013-04-01

    Full Text Available A method for obtaining of enzyme preparations of enzyme preparations (EP of peroxidases and catalases fungal extracellular and inracellular origin from cultures of Basidiomycetes was developed. The strains Flammulina velutipes F-vv, Agrocybe cylindracea167; Fistulina hepatica Fh-08 and Pleurotus ostreatus P-208 and P-01 were used as producers of oxidoreductases. Strains were grown on modified glucose-peptone media. Fractionation was carried out by salting out the enzymes with ammonium sulfate at 40-70% saturation of peroxidases and 80% of saturation - for catalase. These solutions protein fractions was further purified by dialysis and gel filtration on Molselekt granules G-50 and G-75. The enzyme solution was subjected to freeze-drying. The individual characteristics of the enzyme preparations were found. The individual characteristics of the enzyme preparations are the activity of enzymes, the protein content and amino-acid composition of enzyme preparations. It was established that strain F. velutipes F-vv was an active producer of intracellular and strain of A. cylindracea 167 was an active producer of extracellular peroxidase. The strains of P. ostreatus P-01 and P-208 were the active producers of extracellular catalase, and the strainsof F. hepatica Fh-08 were active producers of intracellular catalase. The developed methods for producing of enzymes catalase and peroxidase preparations of extra-and intracellular origin provided new antioxidant enzymes, which have their own properties and application prospects in various sectors of industry and science research.

  13. Effects of some environmental parameters on catalase activity measured in the mussel (Mytilus galloprovincialis) exposed to lindane

    Energy Technology Data Exchange (ETDEWEB)

    Khessiba, Asma [Laboratoire de Bio-surveillance de l' Environnement, Unite d' Ecologie Cotiere, Faculte des Sciences de Bizerte, 7021, Zarzouna (Tunisia); Romeo, Michele [UMR INRA-UNSA 1112, ROSE - Reponse des Organismes aux Stress Environnementaux, Faculte des Sciences, BP 71, 06108, Nice Cedex 2 (France)]. E-mail: romeo@unice.fr; Aissa, Patricia [Laboratoire de Bio-surveillance de l' Environnement, Unite d' Ecologie Cotiere, Faculte des Sciences de Bizerte, 7021, Zarzouna (Tunisia)

    2005-01-01

    Mussels (Mytilus galloprovincialis), collected from the Bizerta lagoon, were acclimated for four days to various conditions of temperature, salinity, photoperiod and food supply and then exposed to lindane at a concentration of 40 {mu}g l{sup -1}. Catalase activity, which is a biomarker of exposure to an oxidative stress, was measured in the whole soft tissues of control and assay groups. In control mussels, high temperature, high salinity and light duration significantly increased catalase activity whereas this activity decreased when food, composed of freeze-dried, algae was available. When mussels were treated with lindane, catalase activities were higher than in controls. This increase was significant with temperature, salinity and light duration. The food supply did not change catalase activity, which was always higher compared to controls. Oxidative stress was shown in mussels exposed to lindane. The results highlight the need of considering abiotic parameters in biomonitoring studies, and especially when using catalase as a biomarker. - Oxidative stress in mussels exposed to lindane was also influenced by a number of abiotic parameters.

  14. Uncaria tomentosa extracts protect human erythrocyte catalase against damage induced by 2,4-D-Na and its metabolites.

    Science.gov (United States)

    Bukowska, Bożena; Bors, Milena; Gulewicz, Krzysztof; Koter-Michalak, Maria

    2012-06-01

    The effect of ethanolic and aqueous extracts from leaves and bark of Uncaria tomentosa was studied, with particular attention to catalase activity (CAT - EC. 1.11.1.6). We observed that all tested extracts, at a concentration of 250 μg/mL were not toxic to erythrocyte catalase because they did not decreased its activity. Additionally, we investigated the protective effect of extracts on changes in CAT activity in the erythrocytes incubated with sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D-Na) and its metabolites i.e., 2,4-dichlorophenol (2,4-DCP) and catechol. Previous investigations showed that these chemicals decreased activity of erythrocyte catalase (Bukowska et al., 2000; Bukowska and Kowalska, 2004). The erythrocytes were divided into two portions. The first portion was incubated for 1 and 5h at 37°C with 2,4-D-Na, 2,4-DCP and catechol, and second portion was preincubated with extracts for 10 min and then incubated with xenobiotics for 1 and 5h. CAT activity was measured in the first and second portion of the erythrocytes. We found a protective effect of the extracts from U. tomentosa on the activity of catalase incubated with xenobiotics studied. Probably, phenolic compounds contained in U. tomentosa scavenged free radicals, and therefore protected active center (containing -SH groups) of catalase.

  15. Important role of catalase in the cellular response of the budding yeast Saccharomyces cerevisiae exposed to ionizing radiation.

    Science.gov (United States)

    Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2015-03-01

    Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation. PMID:25416226

  16. Cloning of catalase and expression patterns of catalase and selenium-dependent glutathione peroxidase fromExopalaemon carinicauda in response to low salinity stress

    Institute of Scientific and Technical Information of China (English)

    REN Hai; LI Jian; LI Jitao; YING Yu; GE Hongxing; LI Dongli; YU Tianji

    2015-01-01

    Catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GPx) play a vital role in protecting organisms against various oxidative stresses by eliminating H2O2. The objective of this paper is to evaluate the roles of these antioxidant molecules in the ridgetail white prawnExopalaemon carinicauda in response to low salinity stress. A complementary DNA (cDNA) containing the complete coding sequence of CAT was cloned from the hepatopancreas using reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of CAT (2 649 bp) contains a 5'-untranslated region (UTR) of 78 bp, a 3'- UTR of 1 017 bp, with a poly (A) tail, and an open reading frame of 1 554 bp encoding a 517-amino-acid polypeptide with predicted molecular mass of 58.46 kDa and estimated isoelectric point of 6.64. This CAT sequence contained the proximal active site signature (60FDRERIPERVVHAKGAG76), proximal heme-ligand signature sequence (350RLFSYPDTH358) and three catalytic amino acid residues (His71, Asn144 and Tyr354). Sequence comparison showed that the CAT deduced amino acid sequence ofE.carinicauda shared 68%-92% of identities with those of other species. Quantitative real-time PCR analysis revealed that CAT mRNA was widely expressed in the hepatopancreas (highest), hemocyte, eyestalk, heart, gill, muscle, ovary and stomach. Under low salinity stress, CAT and GPx mRNA expression levels both in the gill and hepatopancreas increased significantly at the first 48 h and 6 h respectively, indicating a tissue- and time-dependent antioxidant response inE.carinicauda. All these results indicate thatE.carinicauda CAT is a member of the CAT family and might be involved in the acute response against low salinity stress.

  17. Crystallization and preliminary X-ray diffraction analysis of a cold-adapted catalase from Vibrio salmonicida

    International Nuclear Information System (INIS)

    Monoclinic (P21) crystals of a His-tagged form of V. salmonicida catalase without cofactor diffract X-rays to 1.96 Å. Catalase (EC 1.11.1.6) catalyses the breakdown of hydrogen peroxide to water and molecular oxygen. Recombinant Vibrio salmonicida catalase (VSC) possesses typical cold-adapted features, with higher catalytic efficiency, lower thermal stability and a lower temperature optimum than its mesophilic counterpart from Proteus mirabilis. Crystals of VSC were produced by the hanging-drop vapour-diffusion method using ammonium sulfate as precipitant. The crystals belong to the monoclinic space group P21, with unit-cell parameters a = 98.15, b = 217.76, c = 99.28 Å, β = 110.48°. Data were collected to 1.96 Å and a molecular-replacement solution was found with eight molecules in the asymmetric unit

  18. Crystallization and preliminary X-ray analysis of a bifunctional catalase-phenol oxidase from Scytalidium thermophilum

    International Nuclear Information System (INIS)

    The bifunctional enzyme catalase-phenol oxidase from S. thermophilum was crystallized by the hanging-drop vapour-diffusion method in space group P21 and diffraction data were collected to 2.8 Å resolution. Catalase-phenol oxidase from Scytalidium thermophilum is a bifunctional enzyme: its major activity is the catalase-mediated decomposition of hydrogen peroxide, but it also catalyzes phenol oxidation. To understand the structural basis of this dual functionality, the enzyme, which has been shown to be a tetramer in solution, has been purified by anion-exchange and gel-filtration chromatography and has been crystallized using the hanging-drop vapour-diffusion technique. Streak-seeding was used to obtain larger crystals suitable for X-ray analysis. Diffraction data were collected to 2.8 Å resolution at the Daresbury Synchrotron Radiation Source. The crystals belonged to space group P21 and contained one tetramer per asymmetric unit

  19. Crystallization and preliminary X-ray diffraction analysis of a cold-adapted catalase from Vibrio salmonicida

    Energy Technology Data Exchange (ETDEWEB)

    Riise, Ellen Kristin [The Norwegian Structural Biology Centre, Faculty of Science, University of Tromsø, N-9037 Tromsø (Norway); Lorentzen, Marit Sjo [Department of Molecular Biotechnology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, N-9037 Tromsø (Norway); Helland, Ronny [The Norwegian Structural Biology Centre, Faculty of Science, University of Tromsø, N-9037 Tromsø (Norway); Willassen, Nils Peder, E-mail: nilspw@fagmed.uit.no [The Norwegian Structural Biology Centre, Faculty of Science, University of Tromsø, N-9037 Tromsø (Norway); Department of Molecular Biotechnology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, N-9037 Tromsø (Norway)

    2006-01-01

    Monoclinic (P2{sub 1}) crystals of a His-tagged form of V. salmonicida catalase without cofactor diffract X-rays to 1.96 Å. Catalase (EC 1.11.1.6) catalyses the breakdown of hydrogen peroxide to water and molecular oxygen. Recombinant Vibrio salmonicida catalase (VSC) possesses typical cold-adapted features, with higher catalytic efficiency, lower thermal stability and a lower temperature optimum than its mesophilic counterpart from Proteus mirabilis. Crystals of VSC were produced by the hanging-drop vapour-diffusion method using ammonium sulfate as precipitant. The crystals belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 98.15, b = 217.76, c = 99.28 Å, β = 110.48°. Data were collected to 1.96 Å and a molecular-replacement solution was found with eight molecules in the asymmetric unit.

  20. The catalase C-262T gene polymorphism and cancer risk: a systematic review and meta-analysis.

    Science.gov (United States)

    Shen, Yongchun; Li, Diandian; Tian, Panwen; Shen, Konglong; Zhu, Jing; Feng, Mei; Wan, Chun; Yang, Ting; Chen, Lei; Wen, Fuqiang

    2015-04-01

    Many studies suggest that catalase C-262T gene polymorphism is associated with cancer risk, but with inconsistent results. This study aimed to summarize the overall association between catalase C-262T polymorphism and cancer risk. Literature search was performed in PubMed, Embase, and other databases, studies regarding the association between catalase C-262T polymorphism and cancer risk were identified, and data were retrieved and analyzed by using Review Manager 5.0.24 and STATA 12.0. A total of 18 publications with 22 case-control studies, including 9777 cancer patients and 12,223 controls, met the inclusion criteria. Meta-analysis results showed significant association between catalase C-262 T polymorphism and cancer risk (TT vs CT + CC: odds ratio [OR] = 1.17, 95% confidence interval [CI] = 1.03-1.31, P = 0.01). Subgroup analyses stratified by cancer types suggested the catalase C-262T polymorphism was significantly associated with an increased prostate cancer risk (TT vs CT + CC: OR = 1.61, 95% CI = 1.17-2.22, P = 0.004); for subgroup analyses stratified by ethnicity, no associations between this polymorphism and Asians or whites were identified (CT + TT vs CC: OR = 1.11, 95% CI = 0.98-1.26, P = 0.09 for whites; OR = 1.19, 95% CI = 0.78-1.80, P = 0.42 for Asians). In summary, the catalase C-262T polymorphism may be a risk factor for cancer with cancer type-specific effects. Further studies should be performed to confirm these findings.

  1. Catalase regulates cell growth in HL60 human promyelocytic cells: evidence for growth regulation by H(2)O(2).

    Science.gov (United States)

    Hachiya, Misao; Akashi, Makoto

    2005-03-01

    Reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)) are generated constitutively in mammalian cells. Because of its relatively long life and high permeability across membranes, H(2)O(2) is thought to be an important second messenger. Generation of H(2)O(2) is increased in response to external insults, including radiation. Catalase is located at the peroxisome and scavenges H(2)O(2). In this study, we investigated the role of catalase in cell growth using the H(2)O(2)-resistant variant HP100-1 of human promyelocytic HL60 cells. HP100-1 cells had an almost 10-fold higher activity of catalase than HL60 cells without differences in levels of glutathione peroxidase, manganese superoxide dismutase (MnSOD), and copper-zinc SOD (CuZnSOD). HP100-1 cells had higher proliferative activity than HL60 cells. Treatment with catalase or the introduction of catalase cDNA into HL60 cells stimulated cell growth. Exposure of HP100-1 cells to a catalase inhibitor resulted in suppression of cell growth with concomitant increased levels of intracellular H(2)O(2). Moreover, exogenously added H(2)O(2) or depletion of glutathione suppressed cell growth in HL60 cells. Extracellular signal regulated kinase 1/2 (ERK1/2) was constitutively phosphorylated in HP100-1 cells but not in HL60 cells. Inhibition of the ERK1/2 pathway suppressed the growth of HP100-1 cells, but inhibition of p38 mitogen-activated protein kinase (p38MAPK) did not affect growth. Moreover, inhibition of catalase blocked the phosphorylation of ERK1/2 but not of p38MAPK in HP100-1 cells. Thus our results suggest that catalase activates the growth of HL60 cells through dismutation of H(2)O(2), leading to activation of the ERK1/2 pathway; H(2)O(2) is an important regulator of growth in HL60 cells.

  2. The catalase gene family in cucumber: genome-wide identification and organization

    Science.gov (United States)

    Hu, Lifang; Yang, Yingui; Jiang, Lunwei; Liu, Shiqiang

    2016-01-01

    Abstract Catalase (CAT) is a common antioxidant enzyme in almost all living organisms. Currently, detailed reports on cucumber (Cucumis sativus L.) CAT (CsCAT) genes and tissue expression profiling are limited. In the present study, four candidate CsCAT genes were identified in cucumber. Phylogenetic analysis indicated that CsCAT1-CsCAT3 are closely related to Arabidopsis AtCAT1-AtCAT3, but no obvious counterpart was observed for CsCAT4. Intron/exon structure analysis revealed that only one of the 15 positions was completely conserved. Motif analysis showed that, unlike the CAT genes of other species, none of CsCAT genes contained all 10 motifs. Expression data showed that transcripts of all of the CsCAT genes, except CsCAT4, were detected in five tissues. Moreover, their transcription levels displayed differences under different stress treatments. PMID:27560990

  3. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J. (Michigan)

    2012-03-27

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P212121, with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 {angstrom}. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedron motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies.

  4. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    Science.gov (United States)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  5. Potentiometric measurement of glucose concentration with an immobilized glucose oxidase/catalase electrode.

    Science.gov (United States)

    Wingard, L B; Liu, C C; Wolfson, S K; Yao, S J; Drash, A L

    1982-01-01

    A series of enzyme electrodes for measurement of glucose have been constructed. The electrodes contain glucose oxidase immobilized on platinum, either with or without co-immobilization of catalase. When placed in buffered glucose, the enzyme electrodes show a potentiometric response to glucose with respect to a Ag/AgCl reference electrode. This response is reproducible in the physiologic range of glucose concentrations. The immobilization technique, some of the environmental variables such as oxygen concentration and pH, and several compounds that might interfere with the selectivity of the enzyme electrodes for glucose have received preliminary study. This direct potentiometric approach is undergoing further evaluation to determine the basic electrochemical mechanism responsible for the potentiometric signal and whether it can be adapted for continuous in vivo monitoring of the glucose concentration in body fluids. PMID:7172983

  6. Simultaneous co-immobilization of glucose oxidase and catalase in their substrates.

    Science.gov (United States)

    Ozyilmaz, G; Tukel, S S

    2007-01-01

    Glucose oxidase (GOD) and catalase (CAT) were simultaneously co-immobilized onto magnesium silicate (florisil) by covalent coupling. Glucose was added in immobilization mixture and hydrogen peroxide which is the substrate of CAT was produced in coupling mixture during immobilization time. Therefore, co-immobilization of GOD and CAT was carried out in presence of both their substrate: glucose and hydrogen peroxide, respectively. The effect of glucose concentration in immobilization mixture on activities of GOD and CAT of co-immobilized samples were investigated. Maximum GOD and CAT activities were determined for samples co-immobilized in presence of 15 and 20 mM glucose, respectively. Co-immobilization of GOD and CAT in presence of their substrates highly improved the activity and reusability of both enzymes. PMID:17345856

  7. Investigation on the toxic interaction of superparamagnetic iron oxide nanoparticles with catalase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zehua [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Liu, Hongwei [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hu, Xinxin; Song, Wei [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Liu, Rutao, E-mail: rutaoliu@sdu.edu.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China)

    2015-03-15

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for various applications in targeted drug delivery and magnetic resonance imaging. Given their clinical relevance, there is a need to understand these particles' potential cytotoxic effects and possible mechanisms of cytotoxicity. Using a variety of spectroscopic techniques, we investigated the interaction of SPIONs with catalase (CAT) in an aqueous environment. Catalase is an important enzyme that protects cells and tissues from oxidative damage by reactive oxygen species (ROS). Therefore, in this work, CAT served as a model protein for examining the physiological effects of SPIONs due to is function in eliminating H{sub 2}O{sub 2}. Synchronous fluorescence spectroscopy results showed that SPIONs have little effect on tryptophan residues in CAT. Data from circular dichroism (CD) and UV–vis spectroscopies showed that CAT α-helical content decreased from 32.4% to 29.1% in the presence of SPIONs. Moreover, a ca. 10% decrease in CAT activity was observed in the presence of SPIONs at a 20:1 particle:protein ratio. These results show that SPIONs can interact with proteins to alter both their structure and function. Further studies with CAT or other toxicologically relevant enzymes may be used for elucidating the mechanisms of SPION cytotoxicity. - Highlights: • This work established the binding mode of SPIONs with CAT on molecular level. • The interaction mechanism was explored by multiple spectroscopic techniques. • SPIONs can loosen the skeleton of protein and increase the exposure of amide moieties in the hydrophobic pocket. • SPIONs can inhibit CAT activity and trigger conformational changes in CAT.

  8. Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity.

    Science.gov (United States)

    Shakerley, Nicole L; Chandrasekaran, Akshaya; Trebak, Mohamed; Miller, Barbara A; Melendez, J Andrés

    2016-02-19

    As an innate defense mechanism, macrophages produce reactive oxygen species that weaken pathogens and serve as secondary messengers involved in immune function. The Gram-negative bacterium Francisella tularensis utilizes its antioxidant armature to limit the host immune response, but the mechanism behind this suppression is not defined. Here we establish that F. tularensis limits Ca(2+) entry in macrophages, thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild type (live vaccine strain) or catalase-deficient F. tularensis (ΔkatG) show distinct profiles in their H2O2 scavenging rates, 1 and 0.015 pm/s, respectively. Murine alveolar macrophages infected with ΔkatG display abnormally high basal intracellular Ca(2+) concentration that did not increase further in response to H2O2. Additionally, ΔkatG-infected macrophages displayed limited Ca(2+) influx in response to ionomycin, as a result of ionophore H2O2 sensitivity. Exogenously added H2O2 or H2O2 generated by ΔkatG likely oxidizes ionomycin and alters its ability to transport Ca(2+). Basal increases in cytosolic Ca(2+) and insensitivity to H2O2-mediated Ca(2+) entry in ΔkatG-infected cells are reversed by the Ca(2+) channel inhibitors 2-aminoethyl diphenylborinate and SKF-96365. 2-Aminoethyl diphenylborinate but not SKF-96365 abrogated ΔkatG-dependent increases in macrophage actin remodeling and IL-6 secretion, suggesting a role for H2O2-mediated Ca(2+) entry through the transient receptor potential melastatin 2 (TRPM2) channel in macrophages. Indeed, increases in basal Ca(2+), actin polymerization, and IL-6 production are reversed in TRPM2-null macrophages infected with ΔkatG. Together, our findings provide compelling evidence that F. tularensis catalase restricts reactive oxygen species to temper macrophage TRPM2-mediated Ca(2+) signaling and limit host immune function.

  9. Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity.

    Science.gov (United States)

    Shakerley, Nicole L; Chandrasekaran, Akshaya; Trebak, Mohamed; Miller, Barbara A; Melendez, J Andrés

    2016-02-19

    As an innate defense mechanism, macrophages produce reactive oxygen species that weaken pathogens and serve as secondary messengers involved in immune function. The Gram-negative bacterium Francisella tularensis utilizes its antioxidant armature to limit the host immune response, but the mechanism behind this suppression is not defined. Here we establish that F. tularensis limits Ca(2+) entry in macrophages, thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild type (live vaccine strain) or catalase-deficient F. tularensis (ΔkatG) show distinct profiles in their H2O2 scavenging rates, 1 and 0.015 pm/s, respectively. Murine alveolar macrophages infected with ΔkatG display abnormally high basal intracellular Ca(2+) concentration that did not increase further in response to H2O2. Additionally, ΔkatG-infected macrophages displayed limited Ca(2+) influx in response to ionomycin, as a result of ionophore H2O2 sensitivity. Exogenously added H2O2 or H2O2 generated by ΔkatG likely oxidizes ionomycin and alters its ability to transport Ca(2+). Basal increases in cytosolic Ca(2+) and insensitivity to H2O2-mediated Ca(2+) entry in ΔkatG-infected cells are reversed by the Ca(2+) channel inhibitors 2-aminoethyl diphenylborinate and SKF-96365. 2-Aminoethyl diphenylborinate but not SKF-96365 abrogated ΔkatG-dependent increases in macrophage actin remodeling and IL-6 secretion, suggesting a role for H2O2-mediated Ca(2+) entry through the transient receptor potential melastatin 2 (TRPM2) channel in macrophages. Indeed, increases in basal Ca(2+), actin polymerization, and IL-6 production are reversed in TRPM2-null macrophages infected with ΔkatG. Together, our findings provide compelling evidence that F. tularensis catalase restricts reactive oxygen species to temper macrophage TRPM2-mediated Ca(2+) signaling and limit host immune function. PMID:26679996

  10. Investigation on the toxic interaction of superparamagnetic iron oxide nanoparticles with catalase

    International Nuclear Information System (INIS)

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for various applications in targeted drug delivery and magnetic resonance imaging. Given their clinical relevance, there is a need to understand these particles' potential cytotoxic effects and possible mechanisms of cytotoxicity. Using a variety of spectroscopic techniques, we investigated the interaction of SPIONs with catalase (CAT) in an aqueous environment. Catalase is an important enzyme that protects cells and tissues from oxidative damage by reactive oxygen species (ROS). Therefore, in this work, CAT served as a model protein for examining the physiological effects of SPIONs due to is function in eliminating H2O2. Synchronous fluorescence spectroscopy results showed that SPIONs have little effect on tryptophan residues in CAT. Data from circular dichroism (CD) and UV–vis spectroscopies showed that CAT α-helical content decreased from 32.4% to 29.1% in the presence of SPIONs. Moreover, a ca. 10% decrease in CAT activity was observed in the presence of SPIONs at a 20:1 particle:protein ratio. These results show that SPIONs can interact with proteins to alter both their structure and function. Further studies with CAT or other toxicologically relevant enzymes may be used for elucidating the mechanisms of SPION cytotoxicity. - Highlights: • This work established the binding mode of SPIONs with CAT on molecular level. • The interaction mechanism was explored by multiple spectroscopic techniques. • SPIONs can loosen the skeleton of protein and increase the exposure of amide moieties in the hydrophobic pocket. • SPIONs can inhibit CAT activity and trigger conformational changes in CAT

  11. Expression, Tag Cleavage and Identification of Catalase/GST Fusion Protein of Helicobacterpylori%幽门杆菌Catalase/GST融合蛋白的表达、标签切除及鉴定

    Institute of Scientific and Technical Information of China (English)

    姜茵; 奚月; 李妍

    2012-01-01

    旨在利用GST融合基因表达系统表达幽门螺杆菌Catalase融合蛋白,并利用凝血酶切除GST标签.将重组质粒Catalase/pGEX-4T-1转化大肠杆菌BL21( DE3)感受态中,用IPTG进行诱导表达,菌体经反复冻融、溶菌酶裂解及超声破菌后,Catalase/GST融合蛋白以部分可溶性的形式表达在上清中.采用谷胱甘肽琼脂糖树脂Glutathione Sepharose 4B对其进行纯化,得到Catalase/GST融合蛋白,再用凝血酶进行GST标签的切除,所得产物进行Western blotting鉴定.高效表达出Catalase/GST融合蛋白的相对分子质量约85 kD,凝血酶成功地切除了GST标签,Western blotting证实Catalase蛋白能被鼠抗Catalase单克隆抗体识别.

  12. High levels of catalase in sod mutants of Saccharomyces cerevisiae in high aeration conditions Altos níveis de catalase em mutantes sod de Saccharomyces cerevisiae em condições de alta aeração

    Directory of Open Access Journals (Sweden)

    Vanessa Martins

    2005-12-01

    Full Text Available Saccharomyces cerevisiae mutants deficient in superoxide dismutase genes (sod1delta, sod2delta and sod1deltasod2delta mutants in a stationary phase of growth under high aeration conditions were subjected to H2O2 stress. All the mutants were sensitive after H2O2 treatment. Glutathione peroxidase levels were significantly lower in sod1delta and sod2delta single mutants than in the wild-type without treatment. After exposure to H2O2 concentrations, glutathione peroxidase levels were increased in sod1deltasod2delta double mutants and the sod2delta single mutant, while sod1delta maintained lower gluthatione peroxidase activities. The sod2delta mutant demonstrated a similar catalase activity to that of the wild-type without treatment, whilst decreased catalase activity was observed in conditions of low aeration. Untreated sod1deltasod2delta double mutant cells presented a lower catalase activity. Catalase levels were higher under high aeration conditions than under microaerophilic conditions, including in sod1deltasod2delta cells that contain less H2O2, since SOD catalyzes the cleavage of superoxide producing H2O2 and oxygen. We suggest that catalase is not essential for sod mutants under normal conditions, but plays an important role in the acquisition of tolerance to oxidative stress induced by high aerationSaccharomyces cerevisiae deficientes nos genes da superóxido dismutase (mutantes sod1delta, sod2deltae sod1deltasod2delta cultivados em fase estacionária sob condições de alta aeração foram submetidos ao estresse com peróxido de hidrogênio (H2O2. Todos os mutantes mostraram-se sensíveis após o tratamento com o H2O2. A enzima glutationa peroxidase (GPx apresentou níveis significativamente mais baixos nos simples mutantes sod1D e sod2delta que na cepa selvagem sem tratamento. Após, a exposição a diferentes concentrações de H2O2, os níveis da glutationa peroxidase aumentaram no duplo mutante sod1deltasod2delta e no simples mutante

  13. Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents.

    Science.gov (United States)

    Paar, A; Costa, S; Tzanov, T; Gudelj, M; Robra, K H; Cavaco-Paulo, A; Gübitz, G M

    2001-08-23

    Three thermoalkaliphilic bacteria, which were grown at pH 9.3-10 and 60-65 degrees C were isolated out of a textile wastewater drain. The unknown micro-organisms were identified as thermoalkaliphilic Bacillus sp. Growth conditions were studied and catalase activities and stabilities compared. Catalases from Bacillus SF showed high stabilities at 60 degrees C and pH 9 (t1/2=38 h) and thus this strain was chosen for further investigations, such as electron microscopy, immobilization of catalase and hydrogen peroxide degradation studies. Degradation of hydrogen peroxide with an immobilized catalase from Bacillus SF enabled the reuse of the water for the dyeing process. In contrast, application of the free enzyme for treatment of bleaching effluents, caused interaction between the denaturated protein and the dye, resulting in reduced dye uptake, and a higher color difference of 1.3DeltaE* of dyed fabrics compared to 0.9DeltaE* when using the immobilized enzyme.

  14. Differential mRNA expression of Sporothrix schenckii catalase gene in two growth phases and effect factors

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hui; LI Ruo-yu; CAO Cun-wei; WANG Yu-hong; LIU Wei; QIAO Jian-jun; LI Yu-zhen

    2008-01-01

    @@ Sporothrix schenckii (S. schenckii), a dimorphic fungus, is the etiological agent of sporotrichosis. After entrance of microconidia or mycelial fragments into a mammalian host, the fungus differentiates into the parasitic yeast form. Meanwhile, several defensive signals would be triggered when the innate immune system was stimulated by 5. schenckii invasion and microbe-specific phagocytosis. The success of 5. schenckii infection partly depends on its ability to avoid oxidative damage from reactive oxygen species (ROS) released by polymorphonuclear leukocytes and activated macrophages. However, the antioxidant defense mechanisms of S. schenckii remains unknown. Catalases, one of the central enzymes involved in scavenging ROS via converting hydrogen peroxide (H2O2) to water and molecular oxygen, play an essential role in protecting intracellular pathogenic fungi against ROS1,2 and regulating growth and development in some fungi.3'4 No catalase in 5. schenckii has been identified and characterized previously. Recently we have cloned a catalase homologous gene from the yeast form of 5. schenckii and designated it Sscat. In this report, we used quantitative real-time polymerase chain reaction (PCR) to measure and compare mRNA expression of Sscat in the mycelium-to-yeast transition and H2O2-challenge induced microenvironments in vitro. The results presented may help in understanding the role of 5. schenckii catalase in the fungus-host interaction with respect to ROS.

  15. Horizontal gene transfer confers adaptive advantages to phytopathogenic fungi: a case study of catalase-peroxidase in Fusarium verticillioides

    Science.gov (United States)

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different evolutionary lineages, is widely observed in fungi. We hypothesize that successful stabilization of HGT elements provides adaptive advantages (e.g., virulence). Catalase/peroxidases (KatGs) are ...

  16. Cloning and expression of the catalase-peroxidase gene from the hyperthermophilic archaeon Archaeoglobus fulgidus and characterization of the enzyme

    NARCIS (Netherlands)

    Kengen, S.W.M.; Bikker, F.; Vos, de W.M.; Oost, van der J.

    2001-01-01

    A putative perA gene from Archaeoglobus fulgidus was cloned and expressed in Escherichia coli BL21(DE3), and the recombinant catalase-peroxidase was purified to homogeneity. The enzyme is a homodimer with a subunit molecular mass of 85 kDa. UV-visible spectroscopic analysis indicated the presence of

  17. Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature.

    Science.gov (United States)

    Xu, Juan; Luo, Hui; López, Claudia; Xiao, Jing; Chang, Yanhong

    2015-10-01

    The main goal of the present work is to investigate a novel process of purification and immobilization of a thermophilic catalase at high temperatures. The catalase, originated from Bacillus sp., was overexpressed in a recombinant Escherichia coli BL21(DE3)/pET28-CATHis and efficiently purified by heat treatment, achieving a threefold purification. The purified catalase was then immobilized onto an epoxy support at different temperatures (25, 40, and 55 °C). The immobilizate obtained at higher temperatures reached its maximum activity in a shorter time than that obtained at lower temperatures. Furthermore, immobilization at higher temperatures required a lower ionic strength than immobilization at lower temperatures. The characteristics of immobilized enzymes prepared at different temperatures were investigated. The high-temperature immobilizate (55 °C) showed the highest thermal stability, followed by the 40 °C immobilizate. And the high-temperature immobilizate (55 °C) had slightly higher operational stability than the 25 °C immobilizate. All of the immobilized catalase preparations showed higher stability than the free enzyme at alkaline pH 10.0, while the alkali resistance of the 25 °C immobilizate was slightly better than that of the 40 and 55 °C immobilizates.

  18. Catalase activity in Smicridea McLachlan, 1871 (Insecta, Trichoptera collected from natural and altered/impacted streams

    Directory of Open Access Journals (Sweden)

    Cristiane Biasus

    2015-06-01

    Full Text Available Aim: We compare catalase activity in SmicrideaMcLachlan, 1871 (Insecta, Trichoptera collected in natural and agricultural streams and correlates the enzyme pattern with metal content in the water.MethodsOrganisms were collected in sites classified as natural (riparian vegetation in buffer zone and altered/impacted (agricultural land use in drainage area environments, located at Cravo River and Campo River sub-basins (RS, Brazil. Next the collected larvae were identified and used to proteins quantification and catalase activity measure. The concentration of Mg, Cr, Cu, Pb and Cd in the water was determined by atomic absorption spectrometry.ResultsCatalase activity in Smicridea ranged from 1.5 to 6 U, with mean values about 2.63 ± 0.096 U (SEM. The presence of metals was higher in the streams located at agricultural drainage area, except for Mg at the Cravo sub-basin and Cu at the Campo sub-basin. Catalase was higher in Smicridea collected in natural streams as compared to that agriculture streams and was correlated with Pb and Cd levels.ConclusionsThe data showed the potential of this biomarker as a useful tool for complementation of water quality biomonitoring studies using Smicridea as bioindicator.

  19. Erythrocyte Catalase Activity in More Frequent Microcytic Hypochromic Anemia: Beta-Thalassemia Trait and Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Sandra Stella Lazarte

    2015-01-01

    Full Text Available Most common microcytic hypochromic anemias are iron deficiency anemia (IDA and β-thalassemia trait (BTT, in which oxidative stress (OxS has an essential role. Catalase causes detoxification of H2O2 in cells, and it is an indispensable antioxidant enzyme. The study was designed to measure erythrocyte catalase activity (ECAT in patients with IDA (10 or BTT (21, to relate it with thalassemia mutation type (β0 or β+ and to compare it with normal subjects (67. Ninety-eight individuals were analyzed since September 2013 to June 2014 in Tucumán, Argentina. Total blood count, hemoglobin electrophoresis at alkaline pH, HbA2, catalase, and iron status were performed. β-thalassemic mutations were determined by real-time PCR. Normal range for ECAT was 70,0–130,0 MU/L. ECAT was increased in 14% (3/21 of BTT subjects and decreased in 40% (4/10 of those with IDA. No significant difference (p=0,245 was shown between normal and BTT groups, while between IDA and normal groups the difference was proved to be significant (p=0,000. In β0 and β+ groups, no significant difference (p=0,359 was observed. An altered ECAT was detected in IDA and BTT. These results will help to clarify how the catalase activity works in these anemia types.

  20. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    Science.gov (United States)

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. PMID:26555900

  1. Amelioration of radiation induced decrease in activity of catalase and superoxide dismutase in mouse liver by Punica granatum

    International Nuclear Information System (INIS)

    Ionizing radiation generates reactive oxygen species (ROS) in irradiated tissue. Cells of liver have their own defence system, the antioxidant system to deactivate ROS. Antioxidant system includes enzymatic and non-enzymatic components. Liver is rich in endogenous antioxidants and related enzymes. Catalase and Superoxide dismutase (SOD) are powerful antioxidant enzymes. In the present study Punica granatum fruit rind Ethanol extract (PGFRE) was tested against 60Co gamma radiation induced alteration in Swiss albino mouse. Healthy adult (25±2) Swiss albino mouse were selected and divided into four groups. The first group was sham irradiated. The second group was irradiated with 8 Gy 60Co gamma radiation only and served as control. The third group was administered with Ethanol extract of Punica granatum fruit rind one hour before irradiation at the dose rate of 10 mg/kg body weight orally. Animals were exposed to 8 Gy 60Co gamma radiation. Fourth group was administered with Ethanol extract of Punica granatum fruit rind at the dose rate of 10 mg/kg body weight. Mice were sacrificed at various post irradiation intervals and liver was removed, weighed and analysed biochemically for Catalase and SOD activity. Catalase and SOD activity decreased up till 7th post irradiation day in 8 Gy irradiated group than normal. In PGFRE pretreated irradiated group catalase and SOD activity were higher than the corresponding control group at all the intervals. These results indicate that PGFRE extract protects damage to the catalase and SOD activity in liver of Swiss albino mouse against lethal dose of gamma radiation. (author)

  2. Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Yachun Su

    Full Text Available Catalase is an iron porphyrin enzyme, which serves as an efficient scavenger of reactive oxygen species (ROS to avoid oxidative damage. In sugarcane, the enzymatic activity of catalase in a variety (Yacheng05-179 resistant to the smut pathogen Sporisorium scitamineum was always higher than that of the susceptible variety (Liucheng03-182, suggesting that catalase activity may have a positive correlation with smut resistance in sugarcane. To understand the function of catalase at the molecular level, a cDNA sequence of ScCAT1 (GenBank Accession No. KF664183, was isolated from sugarcane infected by S. scitamineum. ScCAT1 was predicted to encode 492 amino acid residues, and its deduced amino acid sequence shared a high degree of homology with other plant catalases. Enhanced growth of ScCAT1 in recombinant Escherichia coli Rosetta cells under the stresses of CuCl2, CdCl2 and NaCl indicated its high tolerance. Q-PCR results showed that ScCAT1 was expressed at relatively high levels in the bud, whereas expression was moderate in stem epidermis and stem pith. Different kinds of stresses, including S. scitamineum challenge, plant hormones (SA, MeJA and ABA treatments, oxidative (H2O2 stress, heavy metal (CuCl2 and hyper-osmotic (PEG and NaCl stresses, triggered a significant induction of ScCAT1. The ScCAT1 protein appeared to localize in plasma membrane and cytoplasm. Furthermore, histochemical assays using DAB and trypan blue staining, as well as conductivity measurement, indicated that ScCAT1 may confer the sugarcane immunity. In conclusion, the positive response of ScCAT1 to biotic and abiotic stresses suggests that ScCAT1 is involved in protection of sugarcane against reactive oxidant-related environmental stimuli.

  3. Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53.

    Science.gov (United States)

    Bai, Jingxiang; Cederbaum, Arthur I

    2003-02-14

    Oxidants such as H(2)O(2) play a role in the toxicity of certain DNA-damaging agents, a process that often involves the tumor suppressor p53. H(2)O(2) is rapidly degraded by catalase, which protects cells against oxidant injury. To study the effect of catalase on apoptosis induced by DNA-damaging agents, HepG2 cells were infected with adenovirus containing the cDNA of catalase (Ad-Cat). Forty-eight hours after infection, catalase protein and activity was increased 7-10-fold compared with control cells infected with Ad-LacZ. After treatment with Vp16 or mitomycin C, control cells underwent apoptosis in a p53-dependent manner; however, overexpression of catalase inhibited this apoptosis. Basal levels as well as Vp16- or mitomycin C-stimulated levels of p53 and p21 protein were decreased in the catalase-overexpressing cells as compared with control cells; however, p53 mRNA levels were not decreased by catalase. There was no difference in p53 protein synthesis between catalase-overexpressing cells and control cells. However, pulse-chase experiments indicated that p53 protein degradation was enhanced in the catalase-overexpressing cells. Proteasome inhibitors but not calpeptin prevented the catalase-mediated decrease of p53 content. Whereas Vp16 increased, catalase overexpression decreased the phosphorylation of p53. The protein phosphatase inhibitor okadaic acid did not prevent the catalase-mediated down-regulation of p53 or phosphorylated p53. These results demonstrate that catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents in association with decreasing p53 phosphorylation; the latter may lead to an acceleration in the degradation of p53 protein by the proteasome complex. This suggests that the level of catalase may play a critical role in cell-induced resistance to the effects of anti-cancer drugs which up-regulate p53. PMID:12468545

  4. Nanospherical Brush as Catalase Container for Enhancing the Detection Sensitivity of Competitive Plasmonic ELISA.

    Science.gov (United States)

    Huang, Xiaolin; Chen, Rui; Xu, Hengyi; Lai, Weihua; Xiong, Yonghua

    2016-02-01

    Plasmonic enzyme-linked immunosorbent assay (pELISA) based on catalase (CAT)-mediated gold nanoparticle growth shows great potential for the determination of disease-related biomarkers at ultralow concentrations by using sandwich formats. However, the relatively low sensitivity of this strategy using competitive formats limits its adoption for hapten detection. Herein, we present an improved competitive pELISA for ultrasensitive detection of ochratoxin A (OTA), where silica nanoparticles carrying poly(acrylic acid) brushes (SiO2@PAA) were used to decrease the affinity of competing antigens to anti-OTA monoclonal antibodies and amplify the signal as a "CAT container" (SiO2@PAA@CAT). The developed competitive pELISA exhibits extremely high sensitivity for OTA with detection limits of 10(-18) and 5 × 10(-20) g/mL by the naked eye and microplate reader, respectively. These values are at least 7 orders of magnitude lower than that of competitive CAT-based pELISA (10(-11) g/mL by the naked eye) and 8 orders of magnitude lower than that of horseradish peroxidase-based conventional ELISA (10(-11) g/mL by the microplate reader), respectively. Reliability and robustness of the proposed method were evaluated using actual agricultural products and human serum samples. This study demonstrated the potential of this modified method in practical applications involving the ultrasensitive detection of mycotoxins or other haptens.

  5. Bisphenol S Interacts with Catalase and Induces Oxidative Stress in Mouse Liver and Renal Cells.

    Science.gov (United States)

    Zhang, Rui; Liu, Rutao; Zong, Wansong

    2016-08-31

    Bisphenol S (BPS) is present in multitudinous consumer products and detected in both food and water. It also has been a main substitute for bisphenol A (BPA) in the food-packaging industry. Yet, the toxicity of BPS is not fully understood. The present study of the toxicity of BPS was divided into two parts. First, oxidative stress, cell viability, apoptosis level, and catalase (CAT) activity in mouse hepatocytes and renal cells were investigated after BPS exposure. After 12 h of incubation with BPS, all of these parameters of hepatocytes and renal cells changed by >15% as the concentration of BPS ranged from 0.1 to 1 mM. Second, the direct interaction between BPS and CAT on the molecule level was investigated by multiple spectral methods and molecular docking investigations. BPS changed the structure and the activity of CAT through binding to the Gly 117 residue on the substrate channel of the enzyme. The main binding forces were hydrogen bond and hydrophobic force. PMID:27508457

  6. Study on the interaction of catalase with pesticides by flow injection chemiluminescence and molecular docking.

    Science.gov (United States)

    Tan, Xijuan; Wang, Zhuming; Chen, Donghua; Luo, Kai; Xiong, Xunyu; Song, Zhenghua

    2014-08-01

    The interaction mechanisms of catalase (CAT) with pesticides (including organophosphates: disulfoton, isofenphos-methyl, malathion, isocarbophos, dimethoate, dipterex, methamidophos and acephate; carbamates: carbaryl and methomyl; pyrethroids: fenvalerate and deltamethrin) were first investigated by flow injection (FI) chemiluminescence (CL) analysis and molecular docking. By homemade FI-CL model of lg[(I0-I)/I]=lgK+nlg[D], it was found that the binding processes of pesticides to CAT were spontaneous with the apparent binding constants K of 10(3)-10(5) L mol(-1) and the numbers of binding sites about 1.0. The binding abilities of pesticides to CAT followed the order: fenvalerate>deltamethrin>disulfoton>isofenphos-methyl>carbaryl>malathion>isocarbophos>dimethoate>dipterex>acephate>methomyl>methamidophos, which was generally similar to the order of determination sensitivity of pesticides. The thermodynamic parameters revealed that CAT bound with hydrophobic pesticides by hydrophobic interaction force, and with hydrophilic pesticides by hydrogen bond and van der Waals force. The pesticides to CAT molecular docking study showed that pesticides could enter into the cavity locating among the four subdomains of CAT, giving the specific amino acid residues and hydrogen bonds involved in CAT-pesticides interaction. It was also found that the lgK values of pesticides to CAT increased regularly with increasing lgP, Mr, MR and MV, suggesting that the hydrophobicity and steric property of pesticide played essential roles in its binding to CAT.

  7. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats.

    Science.gov (United States)

    Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Lee, Tae-Kyeong; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Lee, Jae-Chul; Tae, Hyun-Jin; Lee, Choong-Hyun; Won, Moo-Ho; Lee, Yun Lyul; Choi, Soo Young; Hong, Seongkweon

    2016-07-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN‑immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  8. A Single Nucleotide Polymorphism in Catalase Is Strongly Associated with Ovarian Cancer Survival.

    Science.gov (United States)

    Belotte, Jimmy; Fletcher, Nicole M; Saed, Mohammed G; Abusamaan, Mohammed S; Dyson, Gregory; Diamond, Michael P; Saed, Ghassan M

    2015-01-01

    Ovarian cancer is the deadliest of all gynecologic cancers. Recent evidence demonstrates an association between enzymatic activity altering single nucleotide polymorphisms (SNP) with human cancer susceptibility. We sought to evaluate the association of SNPs in key oxidant and antioxidant enzymes with increased risk and survival in epithelial ovarian cancer. Individuals (n = 143) recruited were divided into controls, (n = 94): healthy volunteers, (n = 18), high-risk BRCA1/2 negative (n = 53), high-risk BRCA1/2 positive (n = 23) and ovarian cancer cases (n = 49). DNA was subjected to TaqMan SNP genotype analysis for selected oxidant and antioxidant enzymes. Of the seven selected SNP studied, no association with ovarian cancer risk (Pearson Chi-square) was found. However, a catalase SNP was identified as a predictor of ovarian cancer survival by the Cox regression model. The presence of this SNP was associated with a higher likelihood of death (hazard ratio (HR) of 3.68 (95% confidence interval (CI): 1.149-11.836)) for ovarian cancer patients. Kaplan-Meier survival analysis demonstrated a significant median overall survival difference (108 versus 60 months, pcancer patients, and thus may serve as a prognosticator.

  9. Molecular Insights into the Potential Toxicological Interaction of 2-Mercaptothiazoline with the Antioxidant Enzyme—Catalase

    Science.gov (United States)

    Huang, Zhenxing; Huang, Ming; Mi, Chenyu; Wang, Tao; Chen, Dong; Teng, Yue

    2016-01-01

    2-mercaptothiazoline (2-MT) is widely used in many industrial fields, but its residue is potentially harmful to the environment. In this study, to evaluate the biological toxicity of 2-MT at protein level, the interaction between 2-MT and the pivotal antioxidant enzyme—catalase (CAT) was investigated using multiple spectroscopic techniques and molecular modeling. The results indicated that the CAT fluorescence quenching caused by 2-MT should be dominated by a static quenching mechanism through formation of a 2-MT/CAT complex. Furthermore, the identifications of the binding constant, binding forces, and the number of binding sites demonstrated that 2-MT could spontaneously interact with CAT at one binding site mainly via Van der Waals’ forces and hydrogen bonding. Based on the molecular docking simulation and conformation dynamic characterization, it was found that 2-MT could bind into the junctional region of CAT subdomains and that the binding site was close to enzyme active sites, which induced secondary structural and micro-environmental changes in CAT. The experiments on 2-MT toxicity verified that 2-MT significantly inhibited CAT activity via its molecular interaction, where 2-MT concentration and exposure time both affected the inhibitory action. Therefore, the present investigation provides useful information for understanding the toxicological mechanism of 2-MT at the molecular level. PMID:27537873

  10. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Qixiong; Tao, Hui; Lin, Yongyao; Hu, Ying; An, Huijie; Zhang, Dinglin; Feng, Shibin; Hu, Houyuan; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2016-10-01

    Oxidative stress, resulting from excessive generation of reactive oxygen species (ROS), plays a pivotal role in the initiation and progression of inflammatory bowel disease (IBD). To develop an efficacious and safe nanotherapy against IBD, we designed and developed a superoxide dismutase/catalase mimetic nanomedicine comprising a hydrogen peroxide-eliminating nanomatrix and a free radical scavenger Tempol (Tpl). To this end, an oxidation-responsive β-cyclodextrin material (OxbCD) was synthesized, and a Tpl-loaded OxbCD nanoparticle (Tpl/OxbCD NP) was produced. Hydrolysis of OxbCD NP could be triggered by hydrogen peroxide, leading to on-demand release of loaded Tpl molecules from Tpl/OxbCD NP. OxbCD NP was able to efficiently accumulate in the inflamed colon in mice, thereby dramatically reducing nonspecific distribution after oral delivery. In three mouse colitis models, oral administration of Tpl/OxbCD NP notably mitigated manifestations relevant to colitis, and significantly suppressed expression of proinflammatory mediators, with the efficacy superior over free Tpl or a control nanomedicine based on poly(lactide-co-glycolide) (PLGA). Accordingly, by scavenging multiple components of ROS, Tpl/OxbCD NP may effectively reduce ulcerative colitis in mice, and it can be intensively developed as a translational nanomedicine for the management of IBD and other inflammatory diseases. PMID:27525680

  11. Effect of covalent attachment of neomycin on conformational and aggregation properties of catalase.

    Science.gov (United States)

    Hashemnia, S; Mokhtari, Z; Tashkhourian, J; Moosavi-Movahedi, A A

    2015-04-01

    The carboxylic groups of glutamic acid and aspartic acid residues of catalase (CAT) were chemically modified using the treatment of the enzyme with 1-ethyl-3-(3'-dimethylamino) carbodiimide hydrochloride (EDC) and neomycin. The effect of covalent attachment of neomycin on the enzymatic activity, conformational and aggregation properties of CAT was investigated. The modification of CAT with different concentrations of neomycin showed two different types of behavior, depending up on the concentration range of neomycin. In the concentration range from 0.0 to 5.2 mM, neomycin-modified CAT, compared to the native enzyme exhibited higher a-helix content, reduced surface hydrophobicity, little enhancement in CAT activity and a better protection against thermal aggregation, whereas at concentrations greater than 5.2 mM, the modified enzyme exhibited a significant decrease in CAT activity and an increase in random coil content which may result in disorder in the protein structure and increase in thermal aggregation. This modification is a rapid and simple approach to investigate the role of aspartate and glutamate residues in the structure, function and folding of CAT.

  12. Catalase eliminates reactive oxygen species and influences the intestinal microbiota of shrimp.

    Science.gov (United States)

    Yang, Hui-Ting; Yang, Ming-Chong; Sun, Jie-Jie; Guo, Fang; Lan, Jiang-Feng; Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2015-11-01

    Intestinal innate immune response is an important defense mechanism of animals and humans against external pathogens. The mechanism of microbiota homeostasis in host intestines has been well studied in mammals and Drosophila. The reactive oxygen species (ROS) and antimicrobial peptides have been reported to play important roles in homeostasis. However, how to maintain the microbiota homeostasis in crustacean intestine needs to be elucidated. In this study, we identified a novel catalase (MjCAT) involved in ROS elimination in kuruma shrimp, Marsupenaeus japonicus. MjCAT mRNA was widely distributed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine. After the shrimp were challenged with pathogenic bacteria via oral infection, the expression level of MjCAT was upregulated, and the enzyme activity was increased in the intestine. ROS level was also increased in the intestine at early time after oral infection and recovered rapidly. When MjCAT was knocked down by RNA interference (RNAi), high ROS level maintained longer time, and the number of bacteria number was declined in the shrimp intestinal lumen than those in the control group, but the survival rate of the MjCAT-RNAi shrimp was declined. Further study demonstrated that the intestinal villi protruded from epithelial lining of the intestinal wall were damaged by the high ROS level in MjCAT-knockdown shrimp. These results suggested that MjCAT participated in the intestinal host-microbe homeostasis by regulating ROS level.

  13. Association of Catalase and Glutathione Peroxidase 1 Polymorphisms with Chronic Hepatitis C Outcome.

    Science.gov (United States)

    Sousa, Vanessa C S D; Carmo, Rodrigo F; Vasconcelos, Luydson R S; Aroucha, Dayse C B L; Pereira, Leila M M B; Moura, Patrícia; Cavalcanti, Maria S M

    2016-05-01

    The hepatic damage caused by hepatitis C virus (HCV) infection is associated with the host immune response and viral regulatory factors. Catalase (CAT) and glutathione peroxidase 1 (GPX1) are antioxidant enzymes located in the peroxisomes and mitochondria, respectively, and are responsible for the control of intracellular hydrogen peroxide levels. Polymorphisms in CAT (C-262T) and GPX1 (Pro198Leu) are correlated with serum levels and enzyme activity. This study aimed to investigate the association of genetic polymorphisms of CAT C-262T (rs1001179) and GPX1 Pro198Leu (rs1050450) with different stages of liver fibrosis and development of hepatocellular carcinoma (HCC). This study included 445 patients with chronic hepatitis C, of whom 139 patients had mild fibrosis (F0-F1), 200 had moderate/severe fibrosis (F2-F4), and 106 had HCC. Genotyping of SNPs was performed by real-time PCR using TaqMan probes. The Pro/Pro genotype of GPX1 was significantly associated with fibrosis severity, HCC, Child Pugh score, and BCLC staging. Additionally, patients carrying both CT+TT genotypes in the CAT gene and the Pro/Pro genotype in the GPX1 gene had higher risk for developing moderate/severe fibrosis or HCC (p = 0.009, OR 2.40 and p = 0.002, OR 3.56, respectively). CAT and GPX1 polymorphisms may be implicated in the severity of liver fibrosis and HCC caused by HCV.

  14. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    Science.gov (United States)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P0.05), and the quadratic effects of copper ion concentration were significant ( P0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  15. Bisphenol S Interacts with Catalase and Induces Oxidative Stress in Mouse Liver and Renal Cells.

    Science.gov (United States)

    Zhang, Rui; Liu, Rutao; Zong, Wansong

    2016-08-31

    Bisphenol S (BPS) is present in multitudinous consumer products and detected in both food and water. It also has been a main substitute for bisphenol A (BPA) in the food-packaging industry. Yet, the toxicity of BPS is not fully understood. The present study of the toxicity of BPS was divided into two parts. First, oxidative stress, cell viability, apoptosis level, and catalase (CAT) activity in mouse hepatocytes and renal cells were investigated after BPS exposure. After 12 h of incubation with BPS, all of these parameters of hepatocytes and renal cells changed by >15% as the concentration of BPS ranged from 0.1 to 1 mM. Second, the direct interaction between BPS and CAT on the molecule level was investigated by multiple spectral methods and molecular docking investigations. BPS changed the structure and the activity of CAT through binding to the Gly 117 residue on the substrate channel of the enzyme. The main binding forces were hydrogen bond and hydrophobic force.

  16. Melanocortin 1 receptor agonist protects podocytes through catalase and RhoA activation.

    Science.gov (United States)

    Elvin, Johannes; Buvall, Lisa; Lindskog Jonsson, Annika; Granqvist, Anna; Lassén, Emelie; Bergwall, Lovisa; Nyström, Jenny; Haraldsson, Börje

    2016-05-01

    Drugs containing adrenocorticotropic hormone have been used as therapy for patients with nephrotic syndrome. We have previously shown that adrenocorticotropic hormone and a selective agonist for the melanocortin 1 receptor (MC1R) exert beneficial actions in experimental membranous nephropathy with reduced proteinuria, reduced oxidative stress, and improved glomerular morphology and function. Our hypothesis is that MC1R activation in podocytes elicits beneficial effects by promoting stress fibers and maintaining podocyte viability. To test the hypothesis, we cultured podocytes and used highly specific agonists for MC1R. Podocytes were subjected to the nephrotic-inducing agent puromycin aminonucleoside, and downstream effects of MC1R activation on podocyte survival, antioxidant defense, and cytoskeleton dynamics were studied. To increase the response and enhance intracellular signals, podocytes were transduced to overexpress MC1R. We showed that puromycin promotes MC1R expression in podocytes and that activation of MC1R promotes an increase of catalase activity and reduces oxidative stress, which results in the dephosphorylation of p190RhoGAP and formation of stress fibers through RhoA. In addition, MC1R agonists protect against apoptosis. Together, these mechanisms protect the podocyte against puromycin. Our findings strongly support the hypothesis that selective MC1R-activating agonists protect podocytes and may therefore be useful to treat patients with nephrotic syndromes commonly considered as podocytopathies. PMID:26887829

  17. Analysis of oxidative stress status, catalase and catechol-O-methyltransferase polymorphisms in Egyptian vitiligo patients.

    Directory of Open Access Journals (Sweden)

    Dina A Mehaney

    Full Text Available Vitiligo is the most common depigmentation disorder of the skin. Oxidative stress is implicated as one of the probable events involved in vitiligo pathogenesis possibly contributing to melanocyte destruction. Evidence indicates that certain genes including those involved in oxidative stress and melanin synthesis are crucial for development of vitiligo. This study evaluates the oxidative stress status, the role of catalase (CAT and catechol-O-Methyltransferase (COMT gene polymorphisms in the etiology of generalized vitiligo in Egyptians. Total antioxidant capacity (TAC and malondialdehyde (MDA levels as well as CAT exon 9 T/C and COMT 158 G/A polymorphisms were determined in 89 patients and 90 age and sex-matched controls. Our results showed significantly lower TAC along with higher MDA levels in vitiligo patients compared with controls. Meanwhile, genotype and allele distributions of CAT and COMT polymorphisms in cases were not significantly different from those of controls. Moreover, we found no association between both polymorphisms and vitiligo susceptibility. In conclusion, the enhanced oxidative stress with the lack of association between CAT and COMT polymorphisms and susceptibility to vitiligo in our patients suggest that mutations in other genes related to the oxidative pathway might contribute to the etiology of generalized vitiligo in Egyptian population.

  18. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Qixiong; Tao, Hui; Lin, Yongyao; Hu, Ying; An, Huijie; Zhang, Dinglin; Feng, Shibin; Hu, Houyuan; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2016-10-01

    Oxidative stress, resulting from excessive generation of reactive oxygen species (ROS), plays a pivotal role in the initiation and progression of inflammatory bowel disease (IBD). To develop an efficacious and safe nanotherapy against IBD, we designed and developed a superoxide dismutase/catalase mimetic nanomedicine comprising a hydrogen peroxide-eliminating nanomatrix and a free radical scavenger Tempol (Tpl). To this end, an oxidation-responsive β-cyclodextrin material (OxbCD) was synthesized, and a Tpl-loaded OxbCD nanoparticle (Tpl/OxbCD NP) was produced. Hydrolysis of OxbCD NP could be triggered by hydrogen peroxide, leading to on-demand release of loaded Tpl molecules from Tpl/OxbCD NP. OxbCD NP was able to efficiently accumulate in the inflamed colon in mice, thereby dramatically reducing nonspecific distribution after oral delivery. In three mouse colitis models, oral administration of Tpl/OxbCD NP notably mitigated manifestations relevant to colitis, and significantly suppressed expression of proinflammatory mediators, with the efficacy superior over free Tpl or a control nanomedicine based on poly(lactide-co-glycolide) (PLGA). Accordingly, by scavenging multiple components of ROS, Tpl/OxbCD NP may effectively reduce ulcerative colitis in mice, and it can be intensively developed as a translational nanomedicine for the management of IBD and other inflammatory diseases.

  19. A simple method to measure effective catalase activities: optimization, validation, and application in green coffee.

    Science.gov (United States)

    Montavon, Philippe; Kukic, Koraljka Rade; Bortlik, Karlheinz

    2007-01-15

    Oxidative metabolism in coffee cherries during maturation appears to be regulated by the timely expression of redox enzymes such as catalase (CAT), peroxidase (POD), and polyphenoloxidase (PPO). Among these enzymes, CAT is suspected to contribute significantly in setting the redox status of the healthy cherry and the processed bean. The initial redox status of the green bean might further control the nature and dynamics of reactions induced by roasting and eventually quality aspects of the end product. In this respect, Arabica (Coffea arabica) and Robusta (Coffea canephora) typically differ by their cup coffee flavor profiles. We developed an assay that allowed us to screen numerous green coffee samples for effective CAT activities. The proposed assay, which monitors CAT activities by online oxygen sensing in green coffee crude suspensions incubated with H2O2, seeks to integrate potential effects of endogenous inhibitors and activators. After optimization and validation of the assay, 23 Arabicas, 23 Robustas, and 8 Arabustas were analyzed. Nearly all Arabicas (22 of 23) harbored high CAT activity levels, whereas all Robustas harbored low ones. Arabustas performed like Arabicas of the lower CAT activity range. The traditional spectrophotometric assay did not reveal these specificities. Because of its simplicity, our assay might be valuable for assessing effective CAT activities in various plant tissues. PMID:17141173

  20. Improving of catalase stability properties by encapsulation in alginate/Fe3O4 magnetic composite beads for enzymatic removal of H2O2.

    Science.gov (United States)

    Doğaç, Yasemin Ispirli; Çinar, Mürvet; Teke, Mustafa

    2015-01-01

    The aim of this study was enhancing of stability properties of catalase enzyme by encapsulation in alginate/nanomagnetic beads. Amounts of carrier (10-100 mg) and enzyme concentrations (0.25-1.5 mg/mL) were analyzed to optimize immobilization conditions. Also, the optimum temperature (25-50°C), optimum pH (3.0-8.0), kinetic parameters, thermal stability (20-70°C), pH stability (4.0-9.0) operational stability (0-390 min), and reusability were investigated for characterization of the immobilized catalase system. The optimum pH levels of both free and immobilized catalase were 7.0. At the thermal stability studies, the magnetic catalase beads protected 90% activity, while free catalase maintained only 10% activity at 70°C. The thermal profile of magnetic catalase beads was spread over a large area. Similarly, this system indicated the improving of the pH stability. The reusability, which is especially important for industrial applications, was also determined. Thus, the activity analysis was done 50 times in succession. Catalase encapsulated magnetic alginate beads protected 83% activity after 50 cycles.

  1. The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine.

    Science.gov (United States)

    Röcker, Jessica; Schmitt, Matthias; Pasch, Ludwig; Ebert, Kristin; Grossmann, Manfred

    2016-11-01

    Due to the increase of sugar levels in wine grapes as one of the impacts of climate change, alcohol reduction in wines becomes a major focus of interest. This study combines the use of glucose oxidase and catalase activities with the aim of rapid conversion of glucose into non-fermentable gluconic acid. The H2O2 hydrolysing activity of purified catalase is necessary in order to stabilize glucose oxidase activity. After establishing the adequate enzyme ratio, the procedure was applied in large-scale trials (16L- and 220L-scale) of which one was conducted in a winery under industrial wine making conditions. Both enzyme activity and wine flavour were clearly influenced by the obligatory aeration in the different trials. With the enzyme treatment an alcohol reduction of 2%vol. was achieved after 30h of aeration. However the enzyme treated wines were significantly more acidic and less typical. PMID:27211694

  2. Influence of the lead ions and low dose radiation on the catalase activity in the maize germinant

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2006-02-01

    Full Text Available The experimental results of changes of the catalase activity in the maize germinants under the influence of the lead ions and low doses of radiation separately and simultaneously are presented. The consentration of the lead was 1 · 10 – 4 M and the radiation dozes were 2, 5, 10, and 15 R.

  3. Salicylic acid is a modulator of catalase isozymes in chickpea plants infected with Fusarium oxysporum f. sp. ciceri.

    Science.gov (United States)

    Gayatridevi, S; Jayalakshmi, S K; Sreeramulu, K

    2012-03-01

    The relationship between salicylic acid level catalases isoforms chickpea cv. ICCV-10 infected with Fusarium oxysporum f. sp. ciceri was investigated. Pathogen-treated chickpea plants showed high levels of SA compared with the control. Two isoforms of catalases in shoot extract (CAT-IS and CAT-IIS) and single isoform in root extract (CAT-R) were detected in chickpea. CAT-IS and CAT-R activities were inhibited in respective extracts treated with pathogen whereas, CAT-IIS activity was not inhibited. These isoforms were purified and their kinetic properties studied in the presence or absence of SA. The molecular mass determined by SDS-PAGE of CAT-IS, CAT-IIS and CAT-R was found to be 97, 40 and 66 kDa respectively. Kinetic studies indicated that Km and V(max) of CAT-IS were 0.2 mM and 300 U/mg, 0.53 mM and 180 U/mg for CAT-IIS and 0.25 mM and 280 U/mg for CAT-R, respectively. CAT-IS and CAT-R were found to be more sensitive to SA and 50% of their activities were inhibited at 6 and 4 μM respectively, whereas CAT-IIS was insensitive to SA up to 100 μM. Quenching of the intrinsic tryptophan fluorescence of purified catalases were used to quantitate SA binding; the estimated K(d) value for CAT-IS, CAT-IIS and CAT-R found to be 2.3 μM, 3.1 mM and 2.8 μM respectively. SA is a modulator of catalase isozymes activity, supports its role in establishment of SAR in chickpea plants infected with the pathogen.

  4. Effects of Saponin from Solanum anguivi Lam. Fruit on Heart and Kidney Superoxide Dismutase, Catalase and Malondialdehyde in Rat

    OpenAIRE

    O.O. Elekofehinti; I.G. Adanlawo; Fakoya, A; J.A. Saliu; S.A. Sodehinde

    2012-01-01

    Reactive Oxygen Species (ROS) are generated via normal metabolic processes or as the products of exogenous insults. They are capable of damaging essential biomolecules and accelerating cancer, cardiovascular diseases and neurodegenerative diseases. In this study, the effect saponin from Solanum anguivi (SAS) fruits on Superoxide Dismutase (SOD), catalase (CAT) and Lipid Peroxidation (LPO) in the homogenates of the hearts and kidney was evaluated. Thirty six male Wister rats of average weight1...

  5. Ultraviolet Light B-Mediated Inhibition of Skin Catalase Activity Promotes Gr-1+CD11b+ Myeloid Cell Expansion

    OpenAIRE

    Sullivan, Nicholas J.; Tober, Kathleen L.; Burns, Erin M.; Schick, Jonathan S.; Riggenbach, Judith A.; Mace, Thomas A.; Bill, Matthew A.; Gregory S. Young; Oberyszyn, Tatiana M.; Lesinski, Gregory B.

    2011-01-01

    Skin cancer incidence and mortality are higher in men compared to women, but the causes of this sex discrepancy remain largely unknown. Ultraviolet light exposure induces cutaneous inflammation and neutralizes cutaneous antioxidants. Gr-1+CD11b+ myeloid cells are heterogeneous bone marrow-derived cells that promote inflammation-associated carcinogenesis. Reduced activity of catalase, an antioxidant present within skin, has been associated with skin carcinogenesis. We utilized the outbred, imm...

  6. recA and catalase in H sub 2 O sub 2 -mediated toxicity in Neisseria gonorrhoeae

    Energy Technology Data Exchange (ETDEWEB)

    Hassett, D.J.; Charniga, L.; Cohen, M.S. (Univ. of North Carolina, Chapel Hill (USA))

    1990-12-01

    Neisseria gonorrhoeae cells defective in the biosynthesis of the recA gene product are no more sensitive to hydrogen peroxide than wild-type cells. Although gonococci possess nearly 100-fold-greater catalase levels than Escherichia coli, they are more susceptible to hydrogen peroxide than this organism. The natural niche of gonococci undoubtedly results in exposure to oxidant stress; however, they do not demonstrate particularly efficient antioxidant defense systems.

  7. Effects of Soy-Germ Protein on Catalase Activity of Plasma and Erythocyte of Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    Hery Winarsi

    2015-01-01

    Full Text Available Oxidative stress always accompany patients with metabolic syndrome (MS. Several researchers reported that soy-protein is able to decrease oxidative stress level. However, there is no report so far about soy-germ protein in relation to its potential to the decrease oxidative stress level of MS patients. The aim of this study was to explore the potential of soy-germ protein on activity of catalase enzyme in blood’s plasma as well as erythrocytes of MS patients. Double-blind randomized clinical trial was used as an experimental study. Thirty respondents were included in this study with MS, normal level blood sugar, low-HDL cholesterol but high in triglyceride, 40-65 years old, Body Mass Index > 25 kg/m2, live in Purwokerto and agreed to sign the informed consent. They were randomly grouped into 3 different groups, 10 each: Group I, was given special milk that contains soy-germ protein and Zn; Group II, soy-germ protein, while Group III was placebo; for two consecutive months. Data were taken from blood samples in 3 different periods i.e. 0, 1, and 2 months after treatment. Two months after treatment, there was an increase from 5.36 to 20.17 IU/mg (P = 0.028 in activity of catalase enzyme in blood’s plasma respondents who consumed milk containing soy-germ protein with or without Zn. A similar trend of catalase activity, but at a lower level, was also noticed in erythrocyte; which increased from 88.31 to 201.11 IU/mg (P = 0.013. The increase in activity of catalase enzyme in blood’s plasma was 2.2 times higher than that in erythrocytes.

  8. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures.

    Science.gov (United States)

    Wang, Ying; Hougaard, Anni B; Paulander, Wilhelm; Skibsted, Leif H; Ingmer, Hanne; Andersen, Mogens L

    2015-09-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals.

  9. Two-dimensional HYSCORE spectroscopy of superoxidized manganese catalase: a model for the oxygen-evolving complex of photosystem II.

    Science.gov (United States)

    Coates, Christopher S; Milikisiyants, Sergey; Chatterjee, Ruchira; Whittaker, Mei M; Whittaker, James W; Lakshmi, K V

    2015-04-16

    The solar water-splitting protein complex, photosystem II (PSII), catalyzes one of the most energetically demanding reactions in Nature by using light energy to drive a catalyst capable of oxidizing water. The water oxidation reaction takes place at the tetra-nuclear manganese calcium-oxo (Mn4Ca-oxo) cluster at the heart of the oxygen-evolving complex (OEC) of PSII. Previous studies have determined the magnetic interactions between the paramagnetic Mn4Ca-oxo cluster and its environment in the S2 state of the OEC. The assignments for the electron-nuclear magnetic interactions that were observed in these studies were facilitated by the use of synthetic dimanganese di-μ-oxo complexes. However, there is an immense need to understand the effects of the protein environment on the coordination geometry of the Mn4Ca-oxo cluster in the OEC of PSII. In the present study, we use a proteinaceous model system to examine the protein ligands that are coordinated to the dimanganese catalytic center of manganese catalase from Lactobacillus plantarum. We utilize two-dimensional hyperfine sublevel correlation (2D HYSCORE) spectroscopy to detect the weak magnetic interactions of the paramagnetic dinuclear manganese catalytic center of superoxidized manganese catalase with the nitrogen and proton atoms of the surrounding protein environment. We obtain a complete set of hyperfine interaction parameters for the protons of a water molecule that is directly coordinated to the dinuclear manganese center. We also obtain a complete set of hyperfine and quadrupolar interaction parameters for two histidine ligands as well as a coordinated azide ligand, in azide-treated superoxidized manganese catalase. On the basis of the values of the hyperfine interaction parameters of the dimanganese model, manganese catalase, and those of the S2 state of the OEC of PSII, for the first time, we discuss the impact of a proteinaceous environment on the coordination geometry of multinuclear manganese clusters.

  10. Response of Superoxide Dismutase, Catalase, and ATPase Activity in Bacteria Exposed to Acetamiprid

    Institute of Scientific and Technical Information of China (English)

    XIAO-HUA YAO; HANG MIN; ZHEN-MEI LV

    2006-01-01

    To investigate how acetamiprid, a new insecticide, affects the activity of superoxide dismutase (SOD),catalase (CAT), and ATPase and the SOD isozyme patterns in two G- bacteria, E. coli K12 and Pse. FH2, and one G+ bacterum,B. subtilis. Methods The SOD, CAT, and ATPase specific activities of cell lysates were determined spectrophotometrically at 550 nm, 240 nm, and 660 nm, respectively, with kits A001, A016, and A007. SOD isozyme patterns were detected by native PAGE analysis. Results SOD and CAT activities in the tested bacteria increased significantly in a concentration-dependent manner after different concentrations of acetamiprid were applied. The activity of SOD in B. subtilis and Pse. FH2 was stimulated and reached the highest level after treatment with 100 mg/L acetamiprid for 0.5 h. For Pse. FH2, there was another stimulation of SOD activity after acetamiprid application for about 8.0 h and the second stimulation was stronger than the first.The stimulation by acetamiprid showed a relative lag for E. coli K12. Acetamiprid seemed to exhibit a similar effect on CAT activity of the two G- bacteria and had an evident influence on ATPase activity in the three bacteria within a relatively short period. Only one SOD isozyme was detectable in Pse. FH2 and B. subtilis, while different isozyme compositions in E. coli could be detected by native PAGE analysis. Conclusion Acetamiprid causes a certain oxidative stress on the three bacteria which may not only elevate SOD and CAT activities but also generate new SOD isozymes to antagonize oxidative stress.However, this oxidative stress lasts for a relatively short time and does not cause a long-term damage.

  11. Effect of soil contamination with azadirachtin on dehydrogenase and catalase activity of soil

    Directory of Open Access Journals (Sweden)

    Rıdvan Kızılkaya

    2012-07-01

    Full Text Available nsecticides are used in modern agriculture in large quantities to control pests and increase crop yield. Their use, however, has resulted in the disruption of ecosystems because of the effects on non-target soil microorganisms, some environmental problems, and decreasing soil fertility. These negative effects of synthetic pesticides on the environment have led to the search for alternative means of pest control. One such alternative is use of natural plant products such as azadirachtin that have pesticidal activity. The aim of this experiment was to study the effect of soil contamination by azadirachtin (C35H44O16 on dehydrogenase (DHA and catalase activity (CA of soil under field conditions in Perm, Russia. The tests were conducted on loamy soil (pHH2O 6.7, ECH2O 0.213 dSm-1, organic carbon 0.99%, to which the following quantities of azadirachtin were added: 0, 15, 30 and 60 mL da-1 of soil. Experimental design was randomized plot design with three replications. The DHA and CA analyses were performed 7, 14 and 21 days after the field experiment was established. The results of field experiment showed that azadirachtin had a positive influence on the DHA and CA at different soil sampling times. The increased doses of azadirachtin applied resulted in the higher level of DHA and CA in soil. The soil DHA and CA showed the highest activity on the 21th day after 60 mL azadirachtin da-1 application doses.

  12. Catalase inhibition accelerates dormancy release and sprouting in potato (Solanum tuberosum L. tubers

    Directory of Open Access Journals (Sweden)

    Mohammed Bajji

    2007-01-01

    Full Text Available The involvement of hydrogen peroxide (H2O2 metabolism in dormancy release and sprouting of potato (Solanum tuberosum L. tubers has been investigated using three complementary approaches. In the first approach, the evolution of the sprouting kinetics, H2O2 content and antioxidant enzyme activities were examined during tuber storage. The most important changes occurred at the « bud/sprout » level. In particular, dormancy release was accompanied by a transient but remarkable increase in H2O2 content. In the second approach, the effect of a catalase (CAT, EC 1.11.1.6 inhibitor (thiourea or of exogenous H2O2 application on tuber sprouting behaviour was assessed. Both treatments resulted in a reduction of the dormancy period and in rapid and synchronised sprouting of the treated tubers when compared to the control as well as in increased sprout number per tuber. In the third approach, the effect of CAT inhibition on potato tuber dormancy and sprouting was evaluated using the transgenic technology. Plants partially repressed in their CAT activity were produced and, once again, CAT inhibition resulted in acceleration of the sprouting kinetics and in increased sprout number of the transgenic tubers compared to those from the wild type. It thus appears that tuber dormancy and sprouting can be controlled in potato by the manipulation of H2O2 metabolism via the inhibition of CAT activity. The possible mechanisms whereby CAT inhibitors or H2O2 overcome dormancy and promote sprouting in the potato tuber are discussed in relation to what is known in other plant models (seeds and fruit tree buds.

  13. Transcriptional inhibition of the Catalase gene in phosphine-induced oxidative stress in Drosophila melanogaster.

    Science.gov (United States)

    Liu, Tao; Li, Li; Zhang, Fanhua; Wang, Yuejin

    2015-10-01

    Phosphine (PH3) is a toxic substance to pest insects and is therefore commonly used in pest control. The oxidative damage induced by PH3 is considered to be one of the primary mechanisms of its toxicity in pest insects; however, the precise mode of PH3 action in this process is still unclear. In this study, we evaluated the responses of several oxidative biomarkers and two of the main antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD), after fumigation treatment with PH3 in Drosophila melanogaster as a model system. The results showed that larvae exposed to sub-lethal levels of PH3 (0.028 mg/L) exhibited lower aerobic respiration rates and higher levels of hydrogen peroxide (H2O2) and lipid peroxidation (LPO). Furthermore, unlike SOD, the activity and expression of CAT and its encoding gene were downregulated by PH3 in a time- and dose-dependent manner. Finally, the responses of six potential transcription factors of PH3 were determined by real-time polymerase chain reaction to explore the regulation mechanism of DmCAT by PH3. There were no significant effects of PH3 on three nuclear factor-kappa B homologs (DORSAL, DIF, and RELISH) or two activator protein-1 genes (JUN and FOS), while dramatic inhibition of DNA replication-related element factor (DREF) expression was observed after fumigation with PH3, suggesting that PH3 could inhibit the expression of DmCAT via the DRE/DREF system. These results confirmed that PH3 induces oxidative stress and targets CAT by downregulating its encoding gene in Drosophila. Our results provide new insight into the signal transduction mechanism between PH3 and its target genes.

  14. Lack of significant effects of superoxide dismutase and catalase on development of reperfusion arrhythmias.

    Science.gov (United States)

    Hagar, J M; Hale, S L; Ilvento, J P; Kloner, R A

    1991-01-01

    It has been reported that agents having the ability to scavenge oxygen-derived free radicals reduce the severity of ventricular arrhythmias that occur after brief coronary occlusion and reperfusion. Superoxide dismutase plus catalase (SOD + CAT) or placebo was administered in a blinded randomized fashion prior to coronary occlusion in rats (n = 25 each group) undergoing a 5-min left coronary occlusion followed by 15 min of reperfusion. During reperfusion, ventricular tachycardia (VT) developed in 96% of animals in both groups. Reperfusion ventricular fibrillation (VF) developed in 60% of the placebo group vs 56% in the SOD + CAT group (p = 1.0). Irreversible VF occurred in 40% of the placebo group vs 20% in the SOD + CAT group (p = 0.22). Atrioventricular block occurred in 12% of placebo and 4% of SOD + CAT animals (p = 0.61). There were no significant difference between groups in duration of VT (85 +/- 15 s (mean +/- SEM) placebo vs 81 +/- 14 s SOD + CAT, p = 0.81), total duration of VT plus VF (391 +/- 76 s placebo vs 256 +/- 64 SOD + CAT, p = 0.45) or numbers of single ventricular ectopic beats (65 +/- 15 placebo vs 97 +/- 18 SOD + CAT, p = 0.18). Heart rate at reperfusion was slightly higher in control than SOD + CAT animals (340 +/- 33 vs 319 +/- 32, p = 0.02). Risk zone size, determined by Monastral blue injection, was equal in both groups (34 +/- 2% of ventricular mass). The occurrence of reperfusion VF in this model could not be predicted by heart rate at reperfusion (331 +/- 33 VF animlas vs 328 +/- 36 no VF, p = 0.77), or by risk zone size (34 +/- 2%, VF and no VF groups).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1877967

  15. Simultaneous and sequential co-immobilization of glucose oxidase and catalase onto florisil.

    Science.gov (United States)

    Ozyilmaz, Gul; Tukel, S Seyhan

    2007-06-01

    The co-immobilization of Aspergillus niger glucose oxidase (GOD) with bovine liver catalase (CAT) onto florisil (magnesium silicate-based porous carrier) was investigated to improve the catalytic efficiency of GOD against H2O2 inactivation. The effect of the amount of bound CAT on the GOD activity was also studied for 12 different initial combinations of GOD and CAT, using simultaneous and sequential coupling. The sequentially co-immobilized GOD-CAT showed a higher efficiency than the simultaneously co-immobilized GOD-CAT in terms of the GOD activity and economic costs. The highest activity was shown by the sequentially co-immobilized GOD-CAT when the initial amounts of GOD and CAT were 10 mg and 5 mg per gram of carrier. The optimum pH, buffer concentration, and temperature for GOD activity for the same co-immobilized GOD-CAT sample were then determined as pH 6.5, 50 mM, and 30 degrees C, respectively. When compared with the individually immobilized GOD, the catalytic activity of the co-immobilized GOD-CAT was 70% higher, plus the reusability was more than two-fold. The storage stability of the co-immobilized GOD-CAT was also found to be higher than that of the free form at both 5 degrees C and 25 degrees C. The increased GOD activity and reusability resulting from the co-immobilization process may have been due to CAT protecting GOD from inactivation by H2O2 and supplying additional O2 to the reaction system. PMID:18050914

  16. Biophysical perspective of the binding of ester-functionalized gemini surfactants with catalase.

    Science.gov (United States)

    Akram, Mohd; Bhat, Imtiyaz Ahmad; Anwar, Sana; Ahmad, Ajaz; Kabir-Ud-Din

    2016-07-01

    Interaction of surfactants with biomacromolecules is an essential subject of biophysical chemistry to address their diverse applications in industry, biomedical, and cosmetic domains. In this context, we have examined the binding interactions of three ester-functionalized surfactants (m-E2-m) with bovine liver catalase (BLC, 10μM) by employing a multi-technique approach. The m-E2-m geminis quench fluorescence intensity of BLC through static procedure. The binding ability of concerned gemini surfactants was found to be in the order 12-E2-12 (Kb=2.3×10(2))>16-E2-16 (Kb=1.1×10(2))>14-E2-14 (Kb=1.0×10(2)). Quenching efficacy, as determined by Ksv values, were observed as 12-E2-12 (3.0×10(2))>16-E2-16 (1.4×10(2))>14-E2-14 (1.0×10(2)). The negative ΔG°b values (12-E2-12 (-13.48kJ/mol)>16-E2-16 (-11.65kJ/mol)>14-E2-14 (-11.41kJ/mol)) indicate spontaneous nature of m-E2-m-BLC interactions. UV-vis spectroscopy, circular dichroism (CD) and micropolarity (F1/F3) assessments indicate conformational changes in BLC upon m-E2-m combination. ITC confirms the stability of BLC upon gemini combination. Docking provides support to fluorescence results by presenting the localization site of m-E2-m surfactants near to aromatic residues (mainly Tyr, Trp and Phe). Moreover, since surfactant-protein interactions have essential miscellaneous implications, therefore, this study can be significant for industrial and biomedical realms. PMID:27060016

  17. Application of different molecular techniques for characterization of catalase-positive cocci isolated from sucuk.

    Science.gov (United States)

    Kesmen, Zülal; Yarimcam, Burcu; Aslan, Hakiye; Ozbekar, Esra; Yetim, Hasan

    2014-02-01

    This study was carried out for the characterization and discrimination of the indigenous Gram positive, catalase-positive cocci (GCC) population in sucuk, a traditional Turkish dry-fermented sausage. Sucuk samples, produced by the traditional method without starter culture were collected from 8 local producers in Kayseri/Turkey and a total of 116 GCC isolates were identified by using different molecular techniques. Two different molecular fingerprinting methods; namely, randomly amplified polymorphic DNA-PCR (RAPD-PCR) and repetitive extragenic palindrome-PCR (rep-PCR), were used for the clustering of isolates and identification at species level was carried out by full length sequencing of 16S rDNA. Combining the results obtained from molecular fingerprinting and 16S rDNA sequencing showed that the dominant GCC species isolated from the sucuk samples was Staphylococcus saprophyticus followed by Staphylococcus succinus and Staphylococcus equorum belonging to the Staphylococcus genus. Real-time PCR DNA melting curve analysis and high-resolution melting (HRM) analysis targeting the V1 + V3 regions of 16S rDNA were also applied for the discrimination of isolates belonging to different species. It was observed statistically different Tm values and species-specific HRM profiles for all except 2 species (S. saprophyticus and Staphylococcus xylosus) that have high 16S rDNA sequence similarity. The combination of rep-PCR and/or PCR-RAPD with 16S rRNA gene sequencing was an efficient approach for the characterization and identification of the GCC population in spontaneously fermented sucuk. On the other hand, intercalating dye assays were found to be a simple and very promising technique for the differentiation of the GCC population at species level. PMID:24410408

  18. Impact of Microscale and Pilot-Scale Freeze-Drying on Protein Secondary Structures: Sucrose Formulations of Lysozyme and Catalase.

    Science.gov (United States)

    Peters, Björn-Hendrik; Leskinen, Jari T T; Molnár, Ferdinand; Ketolainen, Jarkko

    2015-11-01

    Microscale (MS) freeze-drying offers rapid process cycles for early-stage formulation development. The effects of the MS approach on the secondary structures of two model proteins, lysozyme and catalase, were compared with pilot-scale (PS) vial freeze-drying. The secondary structures were assessed by attenuated total reflection Fourier transformed infrared spectroscopy. Formulations were made with increasing sucrose-protein ratios. Freeze-drying protocols involved regular cooling without thermal treatment and annealing with MS and PS equipment, and cooling rate variations with the MS. Principal component analysis of smoothed second-derivative amide I spectra revealed sucrose-protein ratio-dependent shifts toward α-helical structures. Transferability of sucrose-protein formulations from MS to PS vial freeze-drying was evidenced at regular cooling rates. Local differences in protein secondary structures between the bottom and top of sucrose-catalase samples could be detected at the sucrose-catalase ratios of 1 and 2, this being related to the initial filling height and ice crystal morphology. Annealing revealed temperature, protein, formulation, and sample location-dependent effects influencing surface morphology at the top, or causing protein secondary structure perturbation at the bottom. With the MS approach, protein secondary structure differences at different cooling rates could be detected for sucrose-lysozyme samples at the sucrose-lysozyme ratio of 1.

  19. Influence of nutritive substrate and pH on catalase and peroxidase production in saprophytic fungus Rhizopus nigricans

    Directory of Open Access Journals (Sweden)

    Tamara Barbaneagra

    2012-10-01

    Full Text Available Aerobic organisms are vulnerable to action of reactive oxygen species that are very noxious and may beresponsible for damage of all cellular constituents. Most organisms have developed defense mechanisms to protect cells from high levels of free radicals. The purpose of this paper is to determine the antioxidant response in fungus Rhizopus nigricans, materialized trough enzymatic activity of biochemical markers of oxidative stress – catalase and peroxidase.We followed the influence of culture medium pH and nutrient substrate on development of the two enzymes. Enzymaticassays were performed at intervals of 5, 10 and 15 days, using both fungus mycelium and culture liquid. Development of the fungus was completely inhibited at pH 2. Catalase and peroxidase production was mostly endocellular because in theculture liquid in most work variants enzymatic assay was not possible and in the remaining work variants were recordedlow values for catalase and extremely low, near to zero for peroxidase.

  20. The Catalase –262C/T Promoter Polymorphism and Diabetic Complications in Caucasians with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Kátia Gonçalves dos Santos

    2006-01-01

    Full Text Available Catalase is a central antioxidant enzyme constituting the primary defense against oxidative stress. In this study, we investigated whether the functional –262C/T polymorphism in the promoter of catalase gene is associated with the presence of diabetic retinopathy (DR, diabetic nephropathy (DN and ischemic heart disease (IHD in 520 Caucasian-Brazilians with type 2 diabetes. The –262C/T polymorphism was also examined in 100 Caucasian blood donors. Patients underwent a clinical and laboratory evaluation consisting of a questionnaire, physical examination, assessment of diabetic complications and laboratory tests. Genotype analysis was performed using the polymerase chain reaction followed by digestion with restriction enzyme. The genotype and allele frequencies of the –262C/T polymorphism in patients with type 2 diabetes were very similar to those of blood donors (T allele frequency = 0.20 and 0.18, respectively. Likewise, there were no differences in either genotype or allele frequencies between type 2 diabetic patients with or without DR, DN or IHD. Thus, our results do not support the hypothesis that the –262C/T polymorphism is related to the development of DR, DN or IHD in patients with type 2 diabetes. Further studies are necessary to elucidate the role of catalase gene polymorphisms in the pathogenesis of diabetic complications.

  1. Manganese L-edge X-ray absorption spectroscopy of manganese catalase from Lactobacillus plantarum and mixed valence manganese complexes

    Energy Technology Data Exchange (ETDEWEB)

    Grush, M.M.; Chen, J.; George, S.J. [Univ. of California, Davis, CA (United States)] [and others

    1996-01-10

    The first Mn L-edge absorption spectra of a Mn metalloprotein are presented in this paper. Both reduced and superoxidized Mn catalase have been examined by fluorescence-detected soft X-ray absorption spectroscopy, and their Mn L-edge spectra are dramatically different. The spectrum of reduced Mn(II)Mn(II) catalase has been interpreted by ligand field atomic multiplet calculations and by comparison to model compound spectra. The analysis finds a 10 Dq value of nearly 1.1 eV, consistent with coordination by predominately nitrogen and oxygen donor ligands. For interpretation of mixed valence Mn spectra, an empirical simulation procedure based on the addition of homovalent model compound spectra has been developed and was tested on a variety of Mn complexes and superoxidized Mn catalase. This routine was also used to determine the oxidation state composition of the Mn in [Ba{sub 8}Na{sub 2}ClMn{sub 16}(OH){sub 8}(CO{sub 3}){sub 4}L{sub 8}] .53 H{sub 2}O (L=1,3-diamino-2-hydroxypropane-N,N,N`N`-tetraacetic acid). 27 refs., 6 figs.

  2. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae.

    Science.gov (United States)

    DeJong, Randall J; Miller, Lisa M; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-02-13

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (refractory to Plasmodium infection) strains than in the S (highly susceptible to Plasmodium) strain. Reduction of ROS levels in G3 and R females by administration of antioxidants reversed this age-related decline in fecundity. The S and G3 strains were fixed for two functionally different catalase alleles that differ at the second amino acid position (Ser2Trp). Biochemical analysis of recombinant proteins revealed that the Trp isoform has lower specific activity and higher Km than the Ser isoform, indicating that the former is a less efficient enzyme. The Trp-for-Ser substitution appears to destabilize the functional tetrameric form of the enzyme. Both alleles are present in the R strain, and Ser/Ser females had significantly higher fecundity than Trp/Trp females. Finally, a systemic reduction in catalase activity by dsRNA-mediated knockdown significantly reduced the reproductive output of mosquito females, indicating that catalase plays a central role in protecting the oocyte and early embryo from ROS damage. PMID:17284604

  3. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae

    Science.gov (United States)

    DeJong, Randall J.; Miller, Lisa M.; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-01-01

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (refractory to Plasmodium infection) strains than in the S (highly susceptible to Plasmodium) strain. Reduction of ROS levels in G3 and R females by administration of antioxidants reversed this age-related decline in fecundity. The S and G3 strains were fixed for two functionally different catalase alleles that differ at the second amino acid position (Ser2Trp). Biochemical analysis of recombinant proteins revealed that the Trp isoform has lower specific activity and higher Km than the Ser isoform, indicating that the former is a less efficient enzyme. The Trp-for-Ser substitution appears to destabilize the functional tetrameric form of the enzyme. Both alleles are present in the R strain, and Ser/Ser females had significantly higher fecundity than Trp/Trp females. Finally, a systemic reduction in catalase activity by dsRNA-mediated knockdown significantly reduced the reproductive output of mosquito females, indicating that catalase plays a central role in protecting the oocyte and early embryo from ROS damage. PMID:17284604

  4. Identification of Festuca arundinacea Schreb Cat1 Catalase Gene and Analysis of its Expression Under Abiotic Stresses

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Abiotic stresses, such as drought, high salinity, and cold/freezing, lead plants to produce excess reactive oxygen species. Catalase, a unique hydrogen peroxide-scavenging enzyme, plays a very important role in plants. To characterize the catalase involved in plant response to abiotic stresses, we constructed a cDNA library from 4 ℃-treated Festuca arundinacea Schreb seedlings and isolated a catalase gene from this library.The cDNA (FaCat1, 1 735 bp) contained an open reading frame of 1 479 bp. BLAST analysis indicated that the deduced amino acid sequence showed 96% identity with that from wheat TaCat1 and 87% identity with that from maize ZmCat2. Northern blotting analysis showed an obvious increase of FaCat1 transcripts in leaves in contrast with roots. Time-course analysis of the expression of FaCat1 in F. arundinacea leaves showed that FaCat1 expression was upregulated in cold- and salt-stressed leaves, with the FaCat1 transcripts accumulating mostly at 4 or 2 h after cold or salt stress, respectively. No significant changes in FaCat1 transcription were observed in dried leaves and inhibition of FaCat1 transcription was found in abscisic acid (ABA)-treated leaves,indicating that the FaCat1 gene is differentially expressed during cold, high salt, drought, and ABA treatment in F. arundinacea leaves.

  5. A volumetric meter chip for point-of-care quantitative detection of bovine catalase for food safety control.

    Science.gov (United States)

    Cui, Xingye; Hu, Jie; Choi, Jane Ru; Huang, Yalin; Wang, Xuemin; Lu, Tian Jian; Xu, Feng

    2016-09-01

    A volumetric meter chip was developed for quantitative point-of-care (POC) analysis of bovine catalase, a bioindicator of bovine mastitis, in milk samples. The meter chip displays multiplexed quantitative results by presenting the distance of ink bar advancement that is detectable by the naked eye. The meter chip comprises a poly(methyl methacrylate) (PMMA) layer, a double-sided adhesive (DSA) layer and a glass slide layer fabricated by the laser-etching method, which is typically simple, rapid (∼3 min per chip), and cost effective (∼$0.2 per chip). Specially designed "U shape" reaction cells are covered by an adhesive tape that serves as an on-off switch, enabling the simple operation of the assay. As a proof of concept, we employed the developed meter chip for the quantification of bovine catalase in raw milk samples to detect catalase concentrations as low as 20 μg/mL. The meter chip has great potential to detect various target analytes for a wide range of POC applications.

  6. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals.

    Science.gov (United States)

    Shieh, Fa-Kuen; Wang, Shao-Chun; Yen, Chia-I; Wu, Chang-Cheng; Dutta, Saikat; Chou, Lien-Yang; Morabito, Joseph V; Hu, Pan; Hsu, Ming-Hua; Wu, Kevin C-W; Tsung, Chia-Kuang

    2015-04-01

    We develop a new concept to impart new functions to biocatalysts by combining enzymes and metal-organic frameworks (MOFs). The proof-of-concept design is demonstrated by embedding catalase molecules into uniformly sized ZIF-90 crystals via a de novo approach. We have carried out electron microscopy, X-ray diffraction, nitrogen sorption, electrophoresis, thermogravimetric analysis, and confocal microscopy to confirm that the ~10 nm catalase molecules are embedded in 2 μm single-crystalline ZIF-90 crystals with ~5 wt % loading. Because catalase is immobilized and sheltered by the ZIF-90 crystals, the composites show activity in hydrogen peroxide degradation even in the presence of protease proteinase K.

  7. Catalase (KatA plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Shengchang Su

    Full Text Available Pseudomonas aeruginosa (PA is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2, a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC, indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM. Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic

  8. Prognostic significance of catalase expression and its regulatory effects on hepatitis B virus X protein (HBx) in HBV-related advanced hepatocellular carcinomas.

    Science.gov (United States)

    Cho, Mi-Young; Cheong, Jae Youn; Lim, Wonchung; Jo, Sujin; Lee, Youngsoo; Wang, Hee-Jung; Han, Kyou-Hoon; Cho, Hyeseong

    2014-12-15

    Hepatitis B virus X protein (HBx) plays a role in liver cancer development. We previously showed that ROS increased HBx levels and here, we investigated the role of antioxidants in the regulation of HBx expression and their clinical relevance. We found that overexpression of catalase induced a significant loss in HBx levels. The cysteine null mutant of HBx (Cys-) showed a dramatic reduction in its protein stability. In clonogenic proliferation assays, Huh7-X cells produced a significant number of colonies whereas Huh7-Cys- cells failed to generate them. The Cys at position 69 of HBx was crucial to maintain its protein stability and transactivation function in response to ROS. Among 50 HBV-related hepatocellular carcinoma (HCC) specimens, 72% of HCCs showed lower catalase levels than those of surrounding non-tumor tissues. In advanced stage IV, catalase levels in non-tumor tissues were increased whereas those in tumors were further reduced. Accordingly, patients with a high T/N ratio for catalase showed significantly longer survival than those with a low T/N ratio. Together, catalase expression in HCC patients can be clinically useful for prediction of patient survival, and restoration of catalase expression in HCCs could be an important strategy for intervention in HBV-induced liver diseases.

  9. Cardiac-specific overexpression of catalase prevents diabetes-induced pathological changes by inhibiting NF-κB signaling activation in the heart.

    Science.gov (United States)

    Cong, Weitao; Ruan, Dandan; Xuan, Yuanhu; Niu, Chao; Tao, Youli; Wang, Yang; Zhan, Kungao; Cai, Lu; Jin, Litai; Tan, Yi

    2015-12-01

    Catalase is an antioxidant enzyme that specifically catabolizes hydrogen peroxide (H2O2). Overexpression of catalase via a heart-specific promoter (CAT-TG) was reported to reduce diabetes-induced accumulation of reactive oxygen species (ROS) and further prevent diabetes-induced pathological abnormalities, including cardiac structural derangement and left ventricular abnormity in mice. However, the mechanism by which catalase overexpression protects heart function remains unclear. This study found that activation of a ROS-dependent NF-κB signaling pathway was downregulated in hearts of diabetic mice overexpressing catalase. In addition, catalase overexpression inhibited the significant increase in nitration levels of key enzymes involved in energy metabolism, including α-oxoglutarate dehydrogenase E1 component (α-KGD) and ATP synthase α and β subunits (ATP-α and ATP-β). To assess the effects of the NF-κB pathway activation on heart function, Bay11-7082, an inhibitor of the NF-κB signaling pathway, was injected into diabetic mice, protecting mice against the development of cardiac damage and increased nitrative modifications of key enzymes involved in energy metabolism. In conclusion, these findings demonstrated that catalase protects mouse hearts against diabetic cardiomyopathy, partially by suppressing NF-κB-dependent inflammatory responses and associated protein nitration.

  10. The effect of alcohol and hydrogen peroxide on liver hepcidin gene expression in mice lacking antioxidant enzymes, glutathione peroxidase-1 or catalase.

    Science.gov (United States)

    Harrison-Findik, Duygu Dee; Lu, Sizhao

    2015-01-01

    This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1(-/-)) and catalase (catalase(-/-)) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1(-/-) displayed significantly higher hepatic H2O2 levels than catalase(-/-) compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1(-/-) mice. Alcohol increased H2O2 production in catalase(-/-) and wild-type, but not gpx-1(-/-), mice. Hepcidin expression was inhibited in alcohol-fed catalase(-/-) and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1(-/-) mice. Gpx-1(-/-) mice also displayed higher level of basal liver CHOP protein expression than catalase(-/-) mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1(-/-) mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1(-/-) mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH.

  11. Efeito tóxico dos praguicidas maneb e paraquat sobre a atividade da enzima antioxidante catalase em ratos

    Directory of Open Access Journals (Sweden)

    M. D. Arbo

    2009-01-01

    Full Text Available

    Os radicais livres estão envolvidos em um grande número de enfermidades do ser humano. O cérebro tem níveis baixos de enzimas antioxidantes e um conteúdo lípidico elevado, tornando-se muito susceptível ao ataque de espécies reativas de oxigênio. Neste trabalho avaliou- se a lipoperoxidação em hipocampo e a atividade da enzima catalase em estriado e hipocampo de ratos tratados com o fungicida maneb (30 mg/kg e o herbicida paraquat (10 mg/kg. Não houve alteração na lipoperoxidação nem na atividade enzimática no hipocampo dos animais tratados com ambos os praguicidas, porém foi observada uma inibição da catalase no estriado dos ratos tratados com maneb e com paraquat. Com estes resultados pode-se sugerir, de forma preliminar, uma ação tóxica maior sobre centros dopaminérgicos. Estudos sobre a toxicidade destes compostos são essenciais na compreensão do papel destes praguicidas e dos radicais livres na etiologia das doenças. Palavras-chave: catalase; paraquat; maneb; estriado; hipocampo; radicais livres.

  12. Breast tumors in PyMT transgenic mice expressing mitochondrial catalase have decreased labeling for macrophages and endothelial cells

    Directory of Open Access Journals (Sweden)

    Sy Fatemie

    2012-05-01

    Full Text Available We show by immunohistochemical labeling that prominent cell types in the tumor microenvironment of PyMT transgenic mice are tumor-associated macrophages (TAMs and endothelial cells, and that both populations are decreased in the presence of mitochondrial targeted catalase (mCAT. This observation suggests that mitochondrial ROS can drive tumor invasiveness in conjunction with the presence of TAMs and increased angiogenesis. Since primary PyMT tumor cells expressing mCAT undergo increased apoptosis, mitochondrial antioxidants might be attractive anti-tumor agents.

  13. Oxidative stress, hemoglobin content, superoxide dismutase and catalase activity influenced by sulphur baths and mud packs in patients with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Jokić Aleksandar

    2010-01-01

    Full Text Available Background/Aim. It is weel-known that sulphur baths and mud paks demonstrate beneficial effects on patients suffering from degenerative knee and hip osteoarthritis (OA through the increased activity of protective antioxidant enzymes. The aim of this study was to assess lipid peroxidation level, i.e. malondialdehyde concetration, in individuals with knee and/or hip osteoarthritis (OA, as well as to determine the influence of sulphur baths and mud packs application on the activity of superoxide dismutase (SOD and catalase (CAT in order to minimize or eliminate excessive free radical species production (oxidative stress. Methods. Thirty one patiens with knee and/or hip OA of both sexes were included in the study. All OA patients received mud pack and sulphur bath for 20 minutes a day, for 6 consecutive days a week, over 3 weeks. Blood lipid peroxidation, ie malondialdehyde concentration, superoxide dismutase and catalase activity were measured spectrophotometrically, before, on day 5 during the treatment and at the end of spa cure. Healthy volunteers (n = 31 were the controls. Results. The sulphur baths and mud packs treatment of OA patients caused a significant decrease in plasma malondialdehyde concentration compared to the controls ( p < 0.001. The mean SOD activity before the terapy was 1 836.24 U/gHb, on day 5 it rose to 1 942.15 U/gHb and after the spa cure dropped to 1 745.98 U/gHb. Catalase activity before the therapy was 20.56 kU/gHb and at the end of the terapy decreased to 16.16 kU/gHb. The difference in catalase activity before and after the therapy was significant (p < 0.001, and also significant as compared to control (p < 0.001. At the end of the treatment significant increase of hemoglobin level and significant decrease of pain intensity were noticed. Conclusion. A combined 3-week treatment by sulphur bath and mud packs led to a significant decrease of lipid peroxidation in plasma, as well as pain intensity in the patients with OA

  14. Characterization of OxyR as a negative transcriptional regulator that represses catalase production in Corynebacterium diphtheriae.

    Science.gov (United States)

    Kim, Ju-Sim; Holmes, Randall K

    2012-01-01

    Corynebacterium diphtheriae and Corynebacterium glutamicum each have one gene (cat) encoding catalase. In-frame Δcat mutants of C. diphtheriae and C. glutamicum were hyper-sensitive to growth inhibition and killing by H(2)O(2). In C. diphtheriae C7(β), both catalase activity and cat transcription decreased ~2-fold during transition from exponential growth to early stationary phase. Prototypic OxyR in Escherichia coli senses oxidative stress and it activates katG transcription and catalase production in response to H(2)O(2). In contrast, exposure of C. diphtheriae C7(β) to H(2)O(2) did not stimulate transcription of cat. OxyR from C. diphtheriae and C. glutamicum have 52% similarity with E. coli OxyR and contain homologs of the two cysteine residues involved in H(2)O(2) sensing by E. coli OxyR. In-frame ΔoxyR deletion mutants of C. diphtheriae C7(β), C. diphtheriae NCTC13129, and C. glutamicum were much more resistant than their parental wild type strains to growth inhibition by H(2)O(2). In the C. diphtheriae C7(β) ΔoxyR mutant, cat transcripts were about 8-fold more abundant and catalase activity was about 20-fold greater than in the C7(β) wild type strain. The oxyR gene from C. diphtheriae or C. glutamicum, but not from E. coli, complemented the defect in ΔoxyR mutants of C. diphtheriae and C. glutamicum and decreased their H(2)O(2) resistance to the level of their parental strains. Gel-mobility shift, DNaseI footprint, and primer extension assays showed that purified OxyR from C. diphtheriae C7(β) bound, in the presence or absence of DTT, to a sequence in the cat promoter region that extends from nucleotide position -55 to -10 with respect to the +1 nucleotide in the cat ORF. These results demonstrate that OxyR from C. diphtheriae or C. glutamicum functions as a transcriptional repressor of the cat gene by a mechanism that is independent of oxidative stress induced by H(2)O(2). PMID:22438866

  15. Characterization of OxyR as a negative transcriptional regulator that represses catalase production in Corynebacterium diphtheriae.

    Directory of Open Access Journals (Sweden)

    Ju-Sim Kim

    Full Text Available Corynebacterium diphtheriae and Corynebacterium glutamicum each have one gene (cat encoding catalase. In-frame Δcat mutants of C. diphtheriae and C. glutamicum were hyper-sensitive to growth inhibition and killing by H(2O(2. In C. diphtheriae C7(β, both catalase activity and cat transcription decreased ~2-fold during transition from exponential growth to early stationary phase. Prototypic OxyR in Escherichia coli senses oxidative stress and it activates katG transcription and catalase production in response to H(2O(2. In contrast, exposure of C. diphtheriae C7(β to H(2O(2 did not stimulate transcription of cat. OxyR from C. diphtheriae and C. glutamicum have 52% similarity with E. coli OxyR and contain homologs of the two cysteine residues involved in H(2O(2 sensing by E. coli OxyR. In-frame ΔoxyR deletion mutants of C. diphtheriae C7(β, C. diphtheriae NCTC13129, and C. glutamicum were much more resistant than their parental wild type strains to growth inhibition by H(2O(2. In the C. diphtheriae C7(β ΔoxyR mutant, cat transcripts were about 8-fold more abundant and catalase activity was about 20-fold greater than in the C7(β wild type strain. The oxyR gene from C. diphtheriae or C. glutamicum, but not from E. coli, complemented the defect in ΔoxyR mutants of C. diphtheriae and C. glutamicum and decreased their H(2O(2 resistance to the level of their parental strains. Gel-mobility shift, DNaseI footprint, and primer extension assays showed that purified OxyR from C. diphtheriae C7(β bound, in the presence or absence of DTT, to a sequence in the cat promoter region that extends from nucleotide position -55 to -10 with respect to the +1 nucleotide in the cat ORF. These results demonstrate that OxyR from C. diphtheriae or C. glutamicum functions as a transcriptional repressor of the cat gene by a mechanism that is independent of oxidative stress induced by H(2O(2.

  16. Oxidative DNA damage levels and catalase activity in the clam Ruditapes decussatus as pollution biomarkers of Tunisian marine environment.

    Science.gov (United States)

    Jebali, Jamel; Banni, Mohamed; de Almeida, Eduardo Alves; Boussetta, Hamadi

    2007-01-01

    Levels of the oxidative DNA damage 7, 8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) and catalase (CAT) activity were measured in the digestive gland and gills of clams Ruditapes decussatus, related to the presence of pollutants along Tunisian marine environment. Increased levels of CAT were observed in tissues of clams from all the sites studied, compared to control values, and elevated 8-oxodG levels were observed at specific sites. Results obtained in this work indicate that the measurement of 8-oxodG levels and CAT activity in tissues of R. decussatus is promising in pollution monitoring studies of the Tunisian marine environment. PMID:16897518

  17. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: Study of direct voltammetry and bioelectrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Saadati, Shagayegh [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman; Rostami, Amin [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Catalase and amine-terminated ionic liquid were immobilized to GC/TiNnp with LBL assembly method. Black-Right-Pointing-Pointer First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation. Black-Right-Pointing-Pointer With alternative assemble of IL and catalase with positive and negative charged, multilayer was formed. Black-Right-Pointing-Pointer Immobilized catalase shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Black-Right-Pointing-Pointer Biosensor response is directly correlated to the number of bilayers. - Abstract: A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH{sub 2}-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH{sub 2}-IL and negatively charged catalase a sensitive H{sub 2}O{sub 2} biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}) of immobilized catalase were 3.32 Multiplication-Sign 10{sup -12} mol cm{sup -2}, 5.28 s{sup -1} and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 {mu}A mM{sup -1} cm{sup -2} and low detection limit of 100 nM at concentration range up to 2.1 mM.

  18. Influence of Foreign DNA Introduction and Periplasmic Expression of Recombinant Human Interleukin-2 on Hydrogen Peroxide Quantity and Catalase Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lena Mahmoudi Azar

    2013-08-01

    Full Text Available Purpose: Oxidative stress is generated through imbalance between composing and decomposing of reactive oxygen species (ROS. This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Effect of cytoplasmic recombinant protein expression on Hydrogen peroxide concentration and catalase activity was previously reported. In comparison with cytoplasm, periplasmic space has different oxidative environment. Therefore, in present study we describe the effect of periplasmic expression of recombinant human interleukin-2 (hIL-2 on H2O2 concentration and catalase activity in Escherichia coli and their correlation with cell growth. Methods: Having constructed pET2hIL2 vector, periplasmic expression of hIL-2 was confirmed. Then, H2O2 concentration and catalase activity were determined at various ODs. Wild type and empty vector transformed cells were used as negative controls. Results: It was shown that H2O2 concentration in hIL-2 expressing cells was significantly higher than its concentration in wild type and empty vector transformed cells. Catalase activity and growth rate reduced significantly in hIL-2 expressing cells compared to empty vector transformed and wild type cells. Variation of H2O2 concentration and catalase activity is intensive in periplasmic hIL-2 expressing cells than empty vector containing cells. Correlation between H2O2 concentration elevation and catalase activity reduction with cell growth depletion are also demonstrated. Conclusion: Periplasmic expression of recombinant hIL-2 elevates the host cell’s hydrogen peroxide concentration possibly due to reduced catalase activity which has consequent suppressive effect on growth rate.

  19. Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast.

    Science.gov (United States)

    Martins, Dorival; English, Ann M

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD) and in phosphate buffer (pH 7.4). Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media. PMID:24563848

  20. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast

    Directory of Open Access Journals (Sweden)

    Dorival Martins

    2014-01-01

    Full Text Available Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1 protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4. This we attributed to our observation that catalase activity is depressed when yeast are challenged with H2O2 in nutrient-poor media. Hence, we performed a systematic comparison of catalase activity and cell viability of wild-type yeast and of the single catalase knockouts, ctt1∆ and cta1∆, following H2O2 challenge in nutrient-rich medium (YPD and in phosphate buffer (pH 7.4. Ctt1 but not Cta1 activity is strongly induced by H2O2 when cells are challenged in YPD but suppressed when cells are challenged in buffer. Consistent with the activity results, exponentially growing ctt1∆ cells in YPD are more sensitive to H2O2 than wild-type or cta1∆ cells, whereas in buffer all three strains exhibit comparable H2O2 hypersensitivity. Furthermore, catalase activity is increased during adaptation to sublethal H2O2 concentrations in YPD but not in buffer. We conclude that induction of cytosolic Ctt1 activity is vital in protecting yeast against exogenous H2O2 but this activity is inhibited by H2O2 when cells are challenged in nutrient-free media.

  1. [Influence of low dozes of ionizing radiation on accumulation of melanin pigments and catalase and superoxidedismutase activities in Cladosporium cladosporioides].

    Science.gov (United States)

    Tuhaĭ, T I

    2007-01-01

    Influence of low dozes of ionizing radiation on melanin pigments synthesis and activity of antioxidant enzymes catalase and superoxidedismutase of two strains of Cladosporium cladosporioides 4, (isolated from radioactive soil) and 396 (control) were investigated. It was shown, that in C. cladosporioides 4 under the exposure of ionizing radiation an increase of melanin synthesis in a stationary growth phase and increase of superoxidedismutase activity in a logarithmic phase were observed; in the control strain C. cladosporioides 396 activation of melanin synthesis and superoxide dismutase activity in both growth phases was revealed. It was established that in C. cladosporioides 4 the endocellular catalase activity in a logarithmic phase is 3.2 times higher, than in control strain. Under the action of ionizing radiation a 2-fold increase of this enzyme activity unlike the control strain in which the activity inhibition was revealed. The obtained results testify to the complex response of antioxidant systems and melanin to the action of low dozes of radiation which depends on the growth phase and presence of radioadaptation properties in the investigated fungi.

  2. Effects of Saponin from Solanum anguivi Lam. Fruit on Heart and Kidney Superoxide Dismutase, Catalase and Malondialdehyde in Rat

    Directory of Open Access Journals (Sweden)

    O.O. Elekofehinti

    2012-07-01

    Full Text Available Reactive Oxygen Species (ROS are generated via normal metabolic processes or as the products of exogenous insults. They are capable of damaging essential biomolecules and accelerating cancer, cardiovascular diseases and neurodegenerative diseases. In this study, the effect saponin from Solanum anguivi (SAS fruits on Superoxide Dismutase (SOD, catalase (CAT and Lipid Peroxidation (LPO in the homogenates of the hearts and kidney was evaluated. Thirty six male Wister rats of average weight125±12 g were divided into six groups of six animals each. Five treated groups received a daily dose of saponin at 20 40 60 80 and 100 mg/kg, respectively, while distilled water was administered to the control group for 3 weeks. Solanum anguivi saponin significantly increased (p<0.05 both catalase and SOD activities in the heart, There was also corresponding increase in activities of both enzymes in the kidney but was not significant. MDA concentration was reduced significantly (p<0.05 in both tissues. SAS exhibit both antioxidant and antiperoxidative properties. Saponin from Solanum anguivi could therefore be employed as sources of natural antioxidant boosters and for the treatment of some oxidative stress disorders in which free radicals are implicated.

  3. Contact-dependent depletion of hydrogen peroxide by catalase is a novel mechanism of myeloid-derived suppressor cell induction operating in human hepatic stellate cells.

    Science.gov (United States)

    Resheq, Yazid J; Li, Ka-Kit; Ward, Stephen T; Wilhelm, Annika; Garg, Abhilok; Curbishley, Stuart M; Blahova, Miroslava; Zimmermann, Henning W; Jitschin, Regina; Mougiakakos, Dimitrios; Mackensen, Andreas; Weston, Chris J; Adams, David H

    2015-03-15

    Myeloid-derived suppressor cells (MDSC) represent a unique cell population with distinct immunosuppressive properties that have been demonstrated to shape the outcome of malignant diseases. Recently, human hepatic stellate cells (HSC) have been reported to induce monocytic-MDSC from mature CD14(+) monocytes in a contact-dependent manner. We now report a novel and unexpected mechanism by which CD14(+)HLADR(low/-) suppressive cells are induced by catalase-mediated depletion of hydrogen peroxide (H2O2). Incubation of CD14(+) monocytes with catalase led to a significant induction of functional MDSC compared with media alone, and H2O2 levels inversely correlated with MDSC frequency (r = -0.6555, p Catalase was detected in primary HSC and a stromal cell line, and addition of the competitive catalase inhibitor hydroxylamine resulted in a dose-dependent impairment of MDSC induction and concomitant increase of H2O2 levels. The NADPH-oxidase subunit gp91 was significantly increased in catalase-induced MDSC as determined by quantitative PCR outlining the importance of oxidative burst for the induction of MDSC. These findings represent a so far unrecognized link between immunosuppression by MDSC and metabolism. Moreover, this mechanism potentially explains how stromal cells can induce a favorable immunological microenvironment in the context of tissue oxidative stress such as occurs during cancer therapy.

  4. Extraction of superoxide dismutase, catalase, and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase.

    Science.gov (United States)

    Guo, C; Gynn, M; Chang, T M S

    2015-06-01

    We report a novel method to simultaneously extract superoxide dismutase (SOD), catalase (CAT), and carbonic anhydrase (CA) from the same sample of red blood cells (RBCs). This avoids the need to use expensive commercial enzymes, thus enabling a cost-effective process for large-scale production of a nanobiotechnological polyHb-SOD-CAT-CA complex, with enhancement of all three red blood cell functions. An optimal concentration of phosphate buffer for ethanol-chloroform treatment results in good recovery of CAT, SOD, and CA after extraction. Different concentrations of the enzymes can be used to enhance the activity of polyHb-SOD-CAT-CA to 2, 4, or 6 times that of RBC.

  5. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  6. [Total Peroxidase and Catalase Activity of Luminous Basidiomycetes Armillaria borealis and Neonothopanus nambi in Comparison with the Level of Light Emission].

    Science.gov (United States)

    Mogil'naya, O A; Ronzhin, N O; Medvedeva, S E; Bondar, V S

    2015-01-01

    The peroxidase and catalase activities in the mycelium of luminous basidiomycetes Armillaria borealis and Neonothopanus nambi in normal conditions and under stress were compared. An increase in the luminescence level was observed under stress, as well as an increase in peroxidase and catalase activities. Moreover, the peroxidase activity in extracts of A. borealis mycelium was found to be almost one and a half orders of magnitude higher, and the catalase activity more than two orders of magnitude higher in comparison with the N. nambi mycelium. It can be suggested that the difference between the brightly luminescent and dimly luminescent mycelium of N. nambi is due to the content of H2O2 or other peroxide compounds.

  7. In vitro and in vivo inhibitory effects of some fungicides on catalase produced and purified from white-rot fungus Phanerochaete chrysosporium.

    Science.gov (United States)

    Kavakçıoğlu, Berna; Tarhan, Leman

    2014-10-01

    In this study, in vitro and in vivo effects of some commonly used fungicides, antibiotics, and various chemicals on isolated and purified catalase from Phanerochaete chrysosporium were investigated. The catalase was purified 129.10-fold by using 60% ammonium sulfate and 60% ethanol precipitations, DEAE-cellulose anion exchange and Sephacryl-S-200 gel filtration chromatographies from P. chrysosporium growth in carbon- and nitrogen-limited medium for 12 days. The molecular weight of native purified catalase from P. chrysosporium was found to be 290 ± 10 kDa, and sodium dodecyl sulfate (SDS)-PAGE results indicated that enzyme consisted of four apparently identical subunits, with a molecular weight of 72.5 ± 2.5 kDa. Kinetic characterization studies showed that optimum pH and temperature, Km and Vmax values of the purified catalase which were stable in basic region and at comparatively high temperatures were 7.5, 30°C, 289.86 mM, and 250,000 U/mg, respectively. The activity of purified catalase from P. chrysosporium was significantly inhibited by dithiothreitol (DTT), 2-mercaptoethanol, iodoacetamide, EDTA, and sodium dodecyl sulfate (SDS). It was found that while antibiotics had no inhibitory effects, 45 ppm benomyl, 144 ppm captan, and 47.5 ppm chlorothalonil caused 14.52, 10.82, and 38.86% inhibition of purified catalase, respectively. The inhibition types of these three fungicides were found to be non-competitive inhibition with the Ki values of 1.158, 0.638, and 0.145 mM and IC50 values of 0.573, 0.158, 0.010 mM, respectively. The results of in vivo experiments also showed that benomyl, captan and chlorothalonil caused 15.25, 1.96, and 36.70% activity decreases after 24-h treatments compared to that of the control.

  8. Purification, biochemical characterization, and implications of an alkali-tolerant catalase from the spacecraft-associated and oxidation-resistant Acinetobacter gyllenbergii 2P01AA.

    Science.gov (United States)

    Muster, N; Derecho, I; Dallal, F; Alvarez, R; McCoy, K B; Mogul, R

    2015-04-01

    Herein, we report on the purification, characterization, and sequencing of catalase from Acinetobacter gyllenbergii 2P01AA, an extremely oxidation-resistant bacterium that was isolated from the Mars Phoenix spacecraft assembly facility. The Acinetobacter are dominant members of the microbial communities that inhabit spacecraft assembly facilities and consequently may serve as forward contaminants that could impact the integrity of future life-detection missions. Catalase was purified by using a 3-step chromatographic procedure, where mass spectrometry provided respective subunit and intact masses of 57.8 and 234.6 kDa, which were consistent with a small-subunit tetrameric catalase. Kinetics revealed an extreme pH stability with no loss in activity between pH 5 and 11.5 and provided respective kcat/Km and kcat values of ∼10(7) s(-1) M(-1) and 10(6) s(-1), which are among the highest reported for bacterial catalases. The amino acid sequence was deduced by in-depth peptide mapping, and structural homology suggested that the catalases from differing strains of A. gyllenbergii differ only at residues near the subunit interfaces, which may impact catalytic stability. Together, the kinetic, alkali-tolerant, and halotolerant properties of the catalase from A. gyllenbergii 2P01AA are significant, as they are consistent with molecular adaptations toward the alkaline, low-humidity, and potentially oxidizing conditions of spacecraft assembly facilities. Therefore, these results support the hypothesis that the selective pressures of the assembly facilities impact the microbial communities at the molecular level, which may have broad implications for future life-detection missions.

  9. Effect of various levels of catalase antioxidant in semen extenders on lipid peroxidation and semen quality after the freeze-thawing bull semen

    Directory of Open Access Journals (Sweden)

    Reza Asadpour

    2011-11-01

    Full Text Available The objective of this study was to evaluate effect of different concentrations of catalase in two extenders on motility, viability and lipid peroxidation bull spermatozoa during semen freezing process. Thirty ejaculates collected from ten Holstein bulls were pooled and evaluated at 37 °C. Pool ejaculated was split into two main experimental groups, 1 and 2. In experiment 1, specimen was diluted to a final concentration of 30 × 106 spermatozoa with citrate-egg yolk and in experiment 2; specimen was diluted with tris-egg yolk extender to the same concentration. In both experiments diluted semen was divided into three aliquots, including a control and two test groups. Each aliquot was rediluted with an equal volume of extender either without (control or with one of the antioxidants contained one of the following antioxidants: catalase (CAT; 100 IU mL-1 catalase (CAT; 200 IU mL-1 and control group. No significant differences were observed in sperm viability and motility following addition of catalase enzyme at concentration of 100 IU mL-1 and 200 IU mL-1 to citrate-egg yolk extender. But the highest sperm viability was achieved by addition of 100 IU mL-1 and 200 IU mL-1 catalase to tris-egg yolk semen extender compared with the control group (P < 0.05. Malondialdehyde levels did not change with addition of catalase in both extenders compared with the control group. The obtained results provide a new approach to the cryopreservation of bull semen, and could positively contribute to intensive cattle production.

  10. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2015-03-01

    Salicylic acid and anthocyanidins are known as plant-derived antioxidants, but also can provoke paradoxically seeming prooxidant effects in vitro. These prooxidant effects are connected to the potential of salicylic acid and anthocyanidins to induce apoptosis selectively in tumor cells in vitro and to inhibit tumor growth in animal models. Several epidemiological studies have shown that salicylic acid and its prodrug acetylsalicylic acid are tumor-preventive for humans. The mechanism of salicylic acid- and anthocyanidin-dependent antitumor effects has remained enigmatic so far. Extracellular apoptosis-inducing reactive oxygen species signaling through the NO/peroxynitrite and the HOCl signaling pathway specifically induces apoptosis in transformed cells. Tumor cells have acquired resistance against intercellular reactive oxygen species signaling through expression of membrane-associated catalase. Here, we show that salicylic acid and anthocyanidins inactivate tumor cell protective catalase and thus reactive apoptosis-inducing intercellular reactive oxygen species signaling of tumor cells and the mitochondrial pathway of apoptosis Salicylic acid inhibits catalase directly through its potential to transform compound I of catalase into the inactive compound II. In contrast, anthocyanidins provoke a complex mechanism for catalase inactivation that is initiated by anthocyanidin-mediated inhibition of NO dioxygenase. This allows the formation of extracellular singlet oxygen through the reaction between H(2)O(2) and peroxynitrite, amplification through a caspase8-dependent step and subsequent singlet oxygen-mediated inactivation of catalase. The combination of salicylic acid and anthocyanidins allows for a remarkable synergistic effect in apoptosis induction. This effect may be potentially useful to elaborate novel therapeutic approaches and crucial for the interpretation of epidemiological results related to the antitumor effects of secondary plant compounds.

  11. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.

    Science.gov (United States)

    Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao

    2014-12-10

    In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be

  12. Infantile Refsum disease: deficiency of catalase-containing particles (peroxisomes), alkyldihydroxyacetone phosphate synthase and peroxisomal beta-oxidation enzyme proteins.

    Science.gov (United States)

    Wanders, R J; Schutgens, R B; Schrakamp, G; van den Bosch, H; Tager, J M; Schram, A W; Hashimoto, T; Poll-Thé, B T; Saudubrau, J M

    1986-08-01

    In recent years a number of biochemical abnormalities have been described in patients with the infantile form of Refsum disease, including the accumulation of very long chain fatty acids, trihydroxycoprostanoic acid and pipecolic acid. In this paper we show that catalase-containing particles (peroxisomes), alkyl dihydroxyacetone phosphate synthase and acyl-CoA oxidase protein are deficient in patients with infantile Refsum disease. These findings suggest that in the infantile form of Refsum disease, as in the cerebro-hepato-renal (Zellweger) syndrome the multiplicity of biochemical abnormalities is due to a deficiency of peroxisomes and hence to a generalized loss of peroxisomal functions. As a consequence the infantile form of Refsum disease can be diagnosed biochemically by methods already available for the prenatal and postnatal diagnosis of the cerebro-hepato-renal (Zellweger) syndrome.

  13. Effect of N+ Beam Exposure on Superoxide Dismutase and Catalase Activities and Induction of Mn-SOD in Deinococcus Radiodurans

    Science.gov (United States)

    Song, Dao-jun; Chen, Ruo-lei; Shao, Chun-lin; Wu, Li-jun; Yu, Zeng-liang

    2000-10-01

    Though bacteria of the radiation-resistant Deinococcus radiodurans have a high resistance to the lethal and mutagenic effects of many DNA-damaging agents, the mechanisms involved in the response of these bacteria to oxidative stress are poorly understood. In this report, the superoxide dismutase (SOD) and catalase (CAT) activities produced by these bacteria were measured, and the change of SOD and CAT activities by 20 keV N+ beam exposure was examined. Their activities were increased by N+ beam exposure from 8×1014 ions/cm2 to 6×1015 ions/cm2. The treatment of H2O2 and [CHCl3 +CH3CH2OH] and the measurement of absorption spectrum showed that the increase in SOD activity was resulted from inducible activities of Mn-SOD in D. radiodurans AS1.633 by N+ beam exposure. These results suggested that this bacteria possess inducible defense mechanisms against the deleterious effects of oxidization.

  14. Oversynthesis of riboflavin in the yeast Pichia guilliermondii is accompanied by reduced catalase and superoxide dismutases activities.

    Science.gov (United States)

    Prokopiv, Tetyana M; Fedorovych, Dariya V; Boretsky, Yuriy R; Sibirny, Andriy A

    2013-01-01

    Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. Under iron deprivation conditions, Pichia guilliermondii cells increase production of riboflavin and malondialdehyde and the formation of protein carbonyl groups, which reflect increased intracellular content of reactive oxygen species. In this study, we found that P. guilliermondii iron deprived cells showed dramatically decreased catalase and superoxide dismutase activities. Previously reported mutations rib80, rib81, and hit1, which affect repression of riboflavin synthesis and iron accumulation by iron ions, caused similar drops in activities of the mentioned enzymes. These findings could explain the previously described development of oxidative stress in iron deprived or mutated P. guilliermondii cells that overproduce riboflavin. Similar decrease in superoxide dismutase activities was observed in iron deprived cells in the non-flavinogenic yeast Saccharomyces cerevisiae. PMID:23053489

  15. Copper and resveratrol attenuates serum catalase, glutathione peroxidase, and element values in rats with DMBA-induced mammary carcinogenesis.

    Science.gov (United States)

    Skrajnowska, Dorota; Bobrowska-Korczak, Barbara; Tokarz, Andrzej; Bialek, Slawomir; Jezierska, Ewelina; Makowska, Justyna

    2013-12-01

    In this paper, a hypothesis was assessed whether or not the intoxication with copper and supplementation with copper plus resveratrol would result in changes in the activities of catalase and glutathione peroxidase and moreover if the characteristic changes would appear in concentrations of copper, iron, calcium, magnesium, and zinc in the serum of rats with chemically induced carcinogenesis. Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet, were treated with copper (42.6 mg Cu/kg food as CuSO4·5H2O) or copper plus resveratrol (0.2 mg/kg body) via gavage for a period from 40 days until 20 weeks of age. In cancer groups, the rats were treated with a dose of 80 mg/body weight of 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) given in rapeseed oil at 50 and 80 days of age to induce mammary carcinogenesis. The control groups included the rats kept in the same conditions and fed with the same diet as the animals from the study groups, but not DMBA-treated. The activity of catalase significantly decreased in groups of rats with mammary carcinogenesis that were supplemented with copper (p copper plus resveratrol (p cancer groups of nonsupplemented rats, the increase of glutathione peroxidase activity was observed. The process of carcinogenesis and the applied supplementation significantly altered the concentrations of trace elements in serum, in particular as concerns iron and copper. The mean serum iron levels in rats with breast cancer were significantly lower than those in the control groups (p copper levels significantly decreased in the groups of rats with mammary carcinogenesis that were supplemented with copper or copper plus resveratrol in comparison with the control groups that received the same diets (p copper and zinc/iron ratios in blood may be used as one of the prognostic factors in breast cancer research.

  16. Copper and resveratrol attenuates serum catalase, glutathione peroxidase, and element values in rats with DMBA-induced mammary carcinogenesis.

    Science.gov (United States)

    Skrajnowska, Dorota; Bobrowska-Korczak, Barbara; Tokarz, Andrzej; Bialek, Slawomir; Jezierska, Ewelina; Makowska, Justyna

    2013-12-01

    In this paper, a hypothesis was assessed whether or not the intoxication with copper and supplementation with copper plus resveratrol would result in changes in the activities of catalase and glutathione peroxidase and moreover if the characteristic changes would appear in concentrations of copper, iron, calcium, magnesium, and zinc in the serum of rats with chemically induced carcinogenesis. Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet, were treated with copper (42.6 mg Cu/kg food as CuSO4·5H2O) or copper plus resveratrol (0.2 mg/kg body) via gavage for a period from 40 days until 20 weeks of age. In cancer groups, the rats were treated with a dose of 80 mg/body weight of 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) given in rapeseed oil at 50 and 80 days of age to induce mammary carcinogenesis. The control groups included the rats kept in the same conditions and fed with the same diet as the animals from the study groups, but not DMBA-treated. The activity of catalase significantly decreased in groups of rats with mammary carcinogenesis that were supplemented with copper (p iron and copper. The mean serum iron levels in rats with breast cancer were significantly lower than those in the control groups (p iron content and the zinc/copper and zinc/iron ratios in blood may be used as one of the prognostic factors in breast cancer research. PMID:24213724

  17. Detection of Catalase as a major protein target of the lipid peroxidation product 4-HNE and the lack of its genetic association as a risk factor in SLE

    Directory of Open Access Journals (Sweden)

    Matsumoto Hiroyuki

    2008-07-01

    Full Text Available Abstract Background Systemic lupus erythematosus (SLE is a multifactorial disorder characterized by the presence of autoantibodies. We and others have implicated free radical mediated peroxidative damage in the pathogenesis of SLE. Since harmful free radical products are formed during this oxidative process, including 4-hydroxy 2-nonenol (4-HNE and malondialdehyde (MDA, we hypothesized that specific HNE-protein adducts would be present in SLE red blood cell (RBC membranes. Catalase is located on chromosome 11p13 where linkage analysis has revealed a marker in the same region of the genome among families with thrombocytopenia, a clinical manifestation associated with severe lupus in SLE affected pedigrees. Moreover, SLE afflicts African-Americans three times more frequently than their European-American counterparts. Hence we investigated the effects of a genetic polymorphism of catalase on risk and severity of SLE in 48 pedigrees with African American ancestry. Methods Tryptic digestion followed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS analysis was used to identify the protein modified by HNE, following Coomassie staining to visualize the bands on the acrylamide gels. Genotyping analysis for the C → T, -262 bp polymorphism in the promoter region of catalase was performed by PCR-RFLP and direct PCR-sequencing. We used a "pedigree disequilibrium test" for the family based association analysis, implemented in the PDT program to analyze the genotyping results. Results We found two proteins to be HNE-modified, migrating around 80 and 50 kD respectively. Tryptic digestion followed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS analysis of the Coomassie stained 80 kD band revealed that the target of HNE modification was catalase, a protein shown to associate with RBC membrane proteins. All the test statistics carried out on the genotyping analysis for the

  18. VCP Is an integral component of a novel feedback mechanism that controls intracellular localization of catalase and H2O2 Levels.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Murakami

    Full Text Available Catalase is a key antioxidant enzyme that catalyzes the decomposition of hydrogen peroxide (H2O2 to water and oxygen, and it appears to shuttle between the cytoplasm and peroxisome via unknown mechanisms. Valosin-containing protein (VCP belongs to the AAA class of ATPases and is involved in diverse cellular functions, e.g. cell cycle and protein degradation, etc. Here we show that VCP and PEX19, a protein essential for peroxisome biogenesis, interact with each other. Knockdown of either VCP or PEX19 resulted in a predominantly cytoplasmic redistribution of catalase, and loss of VCP ATPase activity also increased its cytoplasmic redistribution. Moreover, VCP knockdown decreased intracellular ROS levels in normal and H2O2-treated cells, and an oxidation-resistant VCP impaired the ROS-induced cytoplasmic redistribution of catalase. These observations reveal a novel feedback mechanism, in which VCP can sense H2O2 levels, and regulates them by controlling the localization of catalase.

  19. Coexpressed Catalase Protects Chimeric Antigen Receptor-Redirected T Cells as well as Bystander Cells from Oxidative Stress-Induced Loss of Antitumor Activity.

    Science.gov (United States)

    Ligtenberg, Maarten A; Mougiakakos, Dimitrios; Mukhopadhyay, Madhura; Witt, Kristina; Lladser, Alvaro; Chmielewski, Markus; Riet, Tobias; Abken, Hinrich; Kiessling, Rolf

    2016-01-15

    Treatment of cancer patients by adoptive T cell therapy has yielded promising results. In solid tumors, however, T cells encounter a hostile environment, in particular with increased inflammatory activity as a hallmark of the tumor milieu that goes along with abundant reactive oxygen species (ROS) that substantially impair antitumor activity. We present a strategy to render antitumor T cells more resilient toward ROS by coexpressing catalase along with a tumor specific chimeric Ag receptor (CAR) to increase their antioxidative capacity by metabolizing H2O2. In fact, T cells engineered with a bicistronic vector that concurrently expresses catalase, along with the CAR coexpressing catalase (CAR-CAT), performed superior over CAR T cells as they showed increased levels of intracellular catalase and had a reduced oxidative state with less ROS accumulation in both the basal state and upon activation while maintaining their antitumor activity despite high H2O2 levels. Moreover, CAR-CAT T cells exerted a substantial bystander protection of nontransfected immune effector cells as measured by CD3ζ chain expression in bystander T cells even in the presence of high H2O2 concentrations. Bystander NK cells, otherwise ROS sensitive, efficiently eliminate their K562 target cells under H2O2-induced oxidative stress when admixed with CAR-CAT T cells. This approach represents a novel means for protecting tumor-infiltrating cells from tumor-associated oxidative stress-mediated repression.

  20. A natural xanthone increases catalase activity but decreases NF-kappa B and lipid peroxidation in U-937 and HepG2 cell lines.

    Science.gov (United States)

    Sahoo, Binay K; Zaidi, Adeel H; Gupta, Pankaj; Mokhamatam, Raveendra B; Raviprakash, Nune; Mahali, Sidhartha K; Manna, Sunil K

    2015-10-01

    Mangiferin, a C-glycosyl xanthone, has shown anti-inflammatory, antioxidant, and anti-tumorigenic activities. In the present study, we investigated the molecular mechanism for the antioxidant property of mangiferin. Considering the role of nuclear transcription factor kappa B (NF-κB) in inflammation and tumorigenesis, we hypothesized that modulating its activity will be a viable therapeutic target in regulating the redox-sensitive ailments. Our results show that mangiferin blocks several inducers, such as tumor necrosis factor (TNF), lypopolysaccharide (LPS), phorbol-12-myristate-13-acetate (PMA) or hydrogen peroxide (H2O2) mediated NF-κB activation via inhibition of reactive oxygen species generation. In silico docking studies predicted strong binding energy of mangiferin to the active site of catalase (-9.13 kcal/mol), but not with other oxidases such as myeloperoxidase, glutathione peroxidase, or inducible nitric oxide synthase. Mangiferin increased activity of catalase by 44%, but had no effect on myeloperoxidase activity in vitro. Fluorescence spectroscopy further revealed the binding of mangiferin to catalase at the single site with binding constant and binding affinity of 3.1×10(-7) M(-1) and 1.046 respectively. Mangiferin also inhibits TNF-induced lipid peroxidation and thereby protects apoptosis. Hence, mangiferin with its ability to inhibit NF-κB and increase the catalase activity may prove to be a potent therapeutic.

  1. Modulatory effect of pineapple peel extract on lipid peroxidation, catalase activity and hepatic biomarker levels in blood plasma of alcohol-induced oxidative stressed rats

    Institute of Scientific and Technical Information of China (English)

    Okafor OY; Erukainure OL; Ajiboye JA; Adejobi RO; Owolabi FO; Kosoko SB

    2011-01-01

    Objective: To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation, changes in catalase activities and hepatic biochemical marker levels in blood plasma. Methods: Oxidative stress was induced by oral administration of ethanol (20% w/v) at a dosage of 5 mL/kg bw in rats. After 28 days of treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Blood was collected with a 2 mL syringe by cardiac puncture and was centrifuged at 3000 rpm for 10 min. The plasma was analyzed to evaluate malondialdehyde (MDA), catalase activity, aspartate aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT) concentrations. Results: Administration of alcohol caused a drastic increase (87.74%) in MDA level compared with the control. Pineapple peel extract significantly reduced the MDA level by 60.16% at 2.5 mL/kg bw. Rats fed alcohol only had the highest catalase activity, treatment with pineapple peel extract at 2.5 mL/kg bw however, reduced the activity. Increased AST, ALP and ALT activities were observed in rats fed alcohol only respectively, treatment with pineapple peel extract drastically reduced their activities. Conclusions: The positive modulation of lipid peroxidation, catalase activities as well as hepatic biomarker levels of blood plasma by the methanolic extract of pineapple peels under alcohol-induced oxidative stress is an indication of its protective ability in the management of alcohol-induced toxicity.

  2. The Effect of Atrazine on Soil Catalase Activity%阿特拉津对土壤过氧化氢酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    那日苏; 林泮; 张爽; 陈鹏; 王慧芳; 张凤杰

    2014-01-01

    采用室内培养方法,研究了阿特拉津胁迫对土壤中过氧化氢酶的活性的影响。结果发现:在培养期间,阿特拉津对土壤过氧化氢酶表现为明显的抑制作用。3种模型拟合阿特拉津浓度与酶活性关系均达到显著相关关系。土壤阿特拉津对过氧化氢酶的生态阈值的平均值为103 mg/kg。%This article adopts indoor culture method to analyze the effects of atrazine stress on catalase activity in soil . The results show that during the culture ,atrazine has a remarkable inhibiting effect on soil catalase .The three model-fittings show the obvious significant correlation between soil catalase activity and atrazine concentration .Soil atrazine's mean ecological threshold to catalase is103 mg/kg .

  3. 1,25-Dihydroxyvitamin D3 and its analogues increase catalase at the mRNA, protein and activity level in a canine transitional carcinoma cell line.

    Science.gov (United States)

    Middleton, R P; Nelson, R; Li, Q; Blanton, A; Labuda, J A; Vitt, J; Inpanbutr, N

    2015-12-01

    Antioxidant enzymes, such as catalase, superoxide dismutases (SOD), MnSOD and Cu/ZnSOD, protect cells by scavenging reactive oxygen species (ROS). Numerous studies have reported the anti-cancer effects of 1,25-dihydroxyvitamin D3 (calcitriol) and its related analogues, seocalcitol and analogue V. In this study, canine bladder transitional cell carcinoma (cbTCC) cells were used to determine effects of calcitriol and its related analogues on antioxidant enzyme gene expression, protein expression and activity. Catalase mRNA was increased in response to calcitriol (10(-7) M), and seocalcitol (10(-7) and 10(-9) M). MnSOD mRNA was decreased in response to calcitriol at 10(-7) M. Catalase was significantly increased in response to calcitriol (10(-7) and 10(-9) M), and seocalcitol (10(-9) M). Catalase enzymatic activity increased in response to calcitriol, seocalcitol and analogue V (10(-9) M). In addition, global gene expression analysis identified the involvement of mitogen-activated protein kinase (MAPK) signalling in cbTCC's response to calcitriol and seocalcitol treatment.

  4. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling.

  5. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  6. Fluconazole and amphotericin-B resistance are associated with increased catalase and superoxide dismutase activity in Candida albicans and Candida dubliniensis

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Blanco Linares

    2013-12-01

    Full Text Available Introduction Candida dubliniensis, a new species of Candida that has been recovered from several sites in healthy people, has been associated with recurrent episodes of oral candidiasis in AIDS and HIV-positive patients. This species is closely related to C. albicans. The enzymatic activity of C. dubliniensis in response to oxidative stress is of interest for the development of drugs to combat C. dubliniensis. Methods Fluconazole- and amphotericin B-resistant strains were generated as described by Fekete-Forgács et al. (2000. Superoxide dismutase (SOD and catalase assays were performed as described by McCord and Fridovich (1969 and Aebi (1984, respectively. Results We demonstrated that superoxide dismutase (SOD and catalase activities were significantly higher (p<0.05 in the fluconazole- and amphotericin B-resistant strains of C. dubliniensis and C. albicans than in the sensitive strains. The catalase and SOD activities were also significantly (p<0.01 higher in the sensitive and resistant C. albicans strains than in the respective C. dubliniensis strains. Conclusions These data suggest that C. albicans is better protected from oxidative stress than C. dubliniensis and that fluconazole, like amphotericin B, can induce oxidative stress in Candida; oxidative stress induces an adaptive response that results in a coordinated increase in catalase and SOD activities.

  7. Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars

    NARCIS (Netherlands)

    Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y.

    2011-01-01

    Drought stress is one of the major abiotic stresses in agriculture worldwide. This study was carried out to investigate the effects of drought stress and subsequent recovery on protein, carbohydrate content, catalase (CAT), and peroxidase (POX) activities in three varieties of chickpea (drought tole

  8. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2013-05-01

    Aerobic organisms have devised several enzymatic and non-enzymatic antioxidant defenses to deal with reactive oxygen species (ROS) produced by cellular metabolism. To combat such stress, cells induce ROS scavenging enzymes such as catalase, peroxidase, superoxide dismutase (SOD) and glutathione reductase. In the present research, we have used a double staining technique of SOD and catalase enzymes in the same polyacrylamide gel to analyze the different antioxidant enzymatic activities and protein isoforms present in Saccharomyces and non-Saccharomyces yeast species. Moreover, we used a technique to differentially detect Sod1p and Sod2p on gel by immersion in NaCN, which specifically inhibits the Sod1p isoform. We observed unique SOD and catalase zymogram profiles for all the analyzed yeasts and we propose this technique as a new approach for Saccharomyces and non-Saccharomyces yeast strains differentiation. In addition, we observed functional correlations between SOD and catalase enzyme activities, accumulation of essential metabolites, such as glutathione and trehalose, and the fermentative performance of different yeasts strains with industrial relevance. PMID:23354444

  9. Effects of the administration of a catalase inhibitor into the fourth cerebral ventricle on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2013-06-01

    Full Text Available OBJECTIVE: Previous studies have demonstrated a relationship between brain oxidative stress and cardiovascular regulation. We evaluated the effects of central catalase inhibition on cardiovascular responses in spontaneously hypertensive rats exposed to sidestream cigarette smoke. METHODS: Male Wistar Kyoto (WKY rats and spontaneously hypertensive rats (SH (16 weeks old were implanted with a stainless steel guide cannula leading into the fourth cerebral ventricle (4th V. The femoral artery and vein were cannulated for arterial pressure and heart rate measurement and drug infusion, respectively. The rats were exposed to sidestream cigarette smoke for 180 minutes/day, 5 days/week for 3 weeks (CO: 100-300 ppm. The baroreflex was tested using a pressor dose of phenylephrine (8 μg/kg, bolus and a depressor dose of sodium nitroprusside (50 μg/kg, bolus. Cardiovascular responses were evaluated before and 5, 15, 30 and 60 minutes after injection of a catalase inhibitor (3-amino-1,2,4-triazole, 0.001 g/100 μL into the 4th V. RESULTS: Vehicle administration into the 4th V did not affect the cardiovascular response, whereas administration of the central catalase inhibitor increased the basal HR and attenuated the bradycardic peak (p<0.05 to a greater extent in WKY rats exposed to sidestream cigarette smoke than in WKY rats exposed to fresh air. However, in spontaneously hypertensive rats, the effect of the catalase inhibitor treatment was stronger in the fresh air condition (p<0.05. CONCLUSION: Administration of a catalase inhibitor into the 4th V combined with exposure to sidestream cigarette smoke has a stronger effect in WKY rats than in SH rats.

  10. Cytoplasmic expression of recombinant interleukin-2 and interleukin-4 proteins results in hydrogen peroxide accumulation and reduction in catalase activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    M.S Hejazi

    2009-08-01

    Full Text Available Background and the purpose of the study: The Reactive oxygen species (ROS is induced in the cells following various stresses but the effect of recombinant protein expression on ROS generation has not been studied yet. In this study, H2O2 concentration and catalase activity variations and their correlation with cell growth following cytoplasmic expression of human interleukin-2 (hIL-2 and mouse interleukin-4 (mIL-4 in Escherichia coli were investigated. Additionally, the effect of recombinant protein expression under different conditions was compared to the effect of foreign DNA introduction on these factors. Methods: Plasmids pEThIL-2 and pETmIL-4 were used for expression of human interleukin-2 (hIL-2 and mouse interleukin-4 (mIL-4 inside the cytoplasm of the cells. Having confirmed protein expression using SDS-PAGE analysis and ELISA assay, H2O2 concentration and catalase activity were measured at various ODs. Results and major conclusion: Empty vector introduction increased significantly H2O2 concentration of the cells. However, H2O2 concentration in hIL-2 and mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells. Catalase activity was reduced in foreign DNA introduced cells. It was more lowered following expression of recombinant proteins. Results of this study revealed the relationship between foreign DNA introduction and protein expression with H2O2 elevation and catalase activity reduction. There was also correlation between H2O2 elevation and reduction in catalase activity with the cell growth depression.

  11. Identification of a member of the catalase multigene family on wheat chromosome 7A associated with flour b* colour and biological significance of allelic variation.

    Science.gov (United States)

    Li, Dora A; Walker, Esther; Francki, Michael G

    2015-12-01

    Carotenoids (especially lutein) are known to be the pigment source for flour b* colour in bread wheat. Flour b* colour variation is controlled by a quantitative trait locus (QTL) on wheat chromosome 7AL and one gene from the carotenoid pathway, phytoene synthase, was functionally associated with the QTL on 7AL in some, but not all, wheat genotypes. A SNP marker within a sequence similar to catalase (Cat3-A1snp) derived from full-length (FL) cDNA (AK332460), however, was consistently associated with the QTL on 7AL and implicated in regulating hydrogen peroxide (H2O2) to control carotenoid accumulation affecting flour b* colour. The number of catalase genes on chromosome 7AL was investigated in this study to identify which gene may be implicated in flour b* variation and two were identified through interrogation of the draft wheat genome survey sequence consisting of five exons and a further two members having eight exons identified through comparative analysis with the single catalase gene on rice chromosome 6, PCR amplification and sequencing. It was evident that the catalase genes on chromosome 7A had duplicated and diverged during evolution relative to its counterpart on rice chromosome 6. The detection of transcripts in seeds, the co-location with Cat3-A1snp marker and maximised alignment of FL-cDNA (AK332460) with cognate genomic sequence indicated that TaCat3-A1 was the member of the catalase gene family associated with flour b* colour variation. Re-sequencing identified three alleles from three wheat varieties, TaCat3-A1a, TaCat3-A1b and TaCat3-A1c, and their predicted protein identified differences in peroxisomal targeting signal tri-peptide domain in the carboxyl terminal end providing new insights into their potential role in regulating cellular H2O2 that contribute to flour b* colour variation.

  12. 琼脂固定化过氧化氢酶的催化活性%Catalytic activity of agar-immobilized catalase

    Institute of Scientific and Technical Information of China (English)

    张俊; 李云平; 应坤

    2012-01-01

    采用琼脂包埋法对过氧化氢酶进行固定化,考察了固定化过氧化氢酶催化过氧化氢降解的活性,确定了最佳催化反应条件.结果表明,经琼脂包埋法固定化后,过氧化氢酶仍保留较高的催化活性,其催化过氧化氢分解反应的最佳条件为温度35℃、pH 9.0.与此同时,固定化过氧化氢酶具有更强的温度适应能力和更宽的pH作用范围,并具有一定的重复使用性能.%Catalase was immobilized by encapsulation with agar. The catalytic activity of as-obtained immobilized catalase for the degradation of hydrogen peroxide was evaluated, and the optimal condition for the catalytic reaction was established. Results indicate that agar-immobi-lized catalase retains good catalytic activity. The optimal temperature and pH value for the agar-immobilized catalase to catalyze the decomposition and degradation of H2O2 are suggested as 35 °C and 9.0. In the meantime, agar-immobilized catalase possesses improved ability to adapt to temperature and pH, and it can be reused for several times.

  13. Revealing mechanisms of selective, concentration-dependent potentials of 4-hydroxy-2-nonenal to induce apoptosis in cancer cells through inactivation of membrane-associated catalase.

    Science.gov (United States)

    Bauer, Georg; Zarkovic, Neven

    2015-04-01

    Tumor cells generate extracellular superoxide anions and are protected against superoxide anion-mediated intercellular apoptosis-inducing signaling by the expression of membrane-associated catalase. 4-Hydroxy-2-nonenal (4-HNE), a versatile second messenger generated during lipid peroxidation, has been shown to induce apoptosis selectively in malignant cells. The findings described in this paper reveal the strong, concentration-dependent potential of 4-HNE to specifically inactivate extracellular catalase of tumor cells both indirectly and directly and to consequently trigger apoptosis in malignant cells through superoxide anion-mediated intercellular apoptosis-inducing signaling. Namely, 4-HNE caused apoptosis selectively in NOX1-expressing tumor cells through inactivation of their membrane-associated catalase, thus reactivating subsequent intercellular signaling through the NO/peroxynitrite and HOCl pathways, followed by the mitochondrial pathway of apoptosis. Concentrations of 4-HNE of 1.2 µM and higher directly inactivated membrane-associated catalase of tumor cells, whereas at lower concentrations, 4-HNE triggered a complex amplificatory pathway based on initial singlet oxygen formation through H2O2 and peroxynitrite interaction. Singlet-oxygen-dependent activation of the FAS receptor and caspase-8 increased superoxide anion generation by NOX1 and amplification of singlet oxygen generation, which allowed singlet-oxygen-dependent inactivation of catalase. 4-HNE and singlet oxygen cooperate in complex autoamplificatory loops during this process. The finding of these novel anticancer pathways may be useful for understanding the role of 4-HNE in the control of malignant cells and for the optimization of ROS-dependent therapeutic approaches including antioxidant treatments.

  14. Inhibitory effects of deferasirox on the structure and function of bovine liver catalase: a spectroscopic and theoretical study.

    Science.gov (United States)

    Moradi, M; Divsalar, A; Saboury, A A; Ghalandari, B; Harifi, A R

    2015-01-01

    Deferasirox (DFX), as an oral chelator, is used for treatment of transfusional iron overload. In this study, we have investigated the effects of DFX as an iron chelator, on the function and structure of bovine liver catalase (BLC) by different spectroscopic methods of UV-visible, fluorescence, and circular dichroism (CD) at two temperatures of 25 and 37 °C. In vitro kinetic studies showed that DFX can inhibit the enzymatic activity in a competitive manner. KI value was calculated 39 nM according to the Lineweaver-Burk plot indicating a high rate of inhibition of the enzyme. Intrinsic fluorescence data showed that increasing the drug concentrations leads to a significant decrease in the intrinsic emission of the enzyme indicating a significant change in the three-dimensional environment around the chromophores of the enzyme structure. By analyzing the fluorescence quenching data, it was found that the BLC has two binding sites for DFX and the values of binding constant at 25 and 37 °C were calculated 1.7 × 10(7) and 3 × 10(7) M(-1), respectively. The static type of quenching mechanism is involved in the quenching of intrinsic emission of enzyme. The thermodynamic data suggest that hydrophobic interactions play a major role in the binding reaction. UV-vis spectroscopy results represented the changes in tryptophan (Trp) absorption and Soret band spectra, which indicated changes in Trp and heme group position caused by the drug binding. Also, CD data represented that high concentrations of DFX lead to a significant decreasing in the content of β-sheet and random coil accompanied an increasing in α-helical content of the protein. The molecular docking results indicate that docking may be an appropriate method for prediction and confirmation of experimental results and also useful for determining the binding mechanism of proteins and drugs. According to above results, it can be concluded that the DFX can chelate the Fe(III) on the enzyme active site leading

  15. Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses

    Directory of Open Access Journals (Sweden)

    Adriano Sofo

    2015-06-01

    Full Text Available Hydrogen peroxide (H2O2, an important relatively stable non-radical reactive oxygen species (ROS is produced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts as a signal molecule involved in the regulation of specific biological/physiological processes (photosynthetic functions, cell cycle, growth and development, plant responses to biotic and abiotic stresses. Oxidative stress and eventual cell death in plants can be caused by excess H2O2 accumulation. Since stress factors provoke enhanced production of H2O2 in plants, severe damage to biomolecules can be possible due to elevated and non-metabolized cellular H2O2. Plants are endowed with H2O2-metabolizing enzymes such as catalases (CAT, ascorbate peroxidases (APX, some peroxiredoxins, glutathione/thioredoxin peroxidases, and glutathione sulfo-transferases. However, the most notably distinguished enzymes are CAT and APX since the former mainly occurs in peroxisomes and does not require a reductant for catalyzing a dismutation reaction. In particular, APX has a higher affinity for H2O2 and reduces it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space, utilizing ascorbate as specific electron donor. Based on recent reports, this review highlights the role of H2O2 in plants experiencing water deficit and salinity and synthesizes major outcomes of studies on CAT and APX activity and genetic regulation in drought- and salt-stressed plants.

  16. Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejing, E-mail: kejinghuang@163.co [College of Chemistry and Chemical Engineering, Xinyang Normal University, 237 Chang' an Road, Xinyang, He' nan 464000 (China); Niu Dejun; Liu Xue; Wu Zhiwei; Fan Yang; Chang Yafang; Wu Yingying [College of Chemistry and Chemical Engineering, Xinyang Normal University, 237 Chang' an Road, Xinyang, He' nan 464000 (China)

    2011-02-28

    Direct electrochemistry and electrocatalysis of catalase (Cat) was studied based on a nano-composite film consisting of amine functionalized graphene and gold nanoparticles (AuNPs) modified glassy carbon electrode. Graphene was synthesized chemically by Hummers and Offeman method and then was functionalized with amino groups via chemical modification of carboxyl groups introduced on the graphene surface. The nano-composite film showed an obvious promotion of the direct electron transfer between Cat and the underlying electrode, which attributed to the synergistic effect of graphene-NH{sub 2} and AuNPs. The resultant bioelectrode retained its biocatalytic activity and offered fast and sensitive H{sub 2}O{sub 2} quantification. Under the optimized experimental conditions, hydrogen peroxide was detected in the concentration range from 0.3 to 600 {mu}M with a detection limit of 50 nM at S/N = 3. The biosensor exhibited some advantages, such as short time respond (2 s), high sensitivity (13.4 {mu}A/mM) and good reproducibility (RSD = 5.8%).

  17. The effect of seedling chilling on glutathione content, catalase and peroxidase activity in Brassica oleracea L. var. italica

    Directory of Open Access Journals (Sweden)

    Renata Wojciechowska

    2013-09-01

    Full Text Available The study was designed to determine the possible relationship between Brassica oleracea var. italica seedlings stored at 2°C in the dark for seven and fourteen days, respectively, and the level of certain antioxidant parameters in particular organs. A parallel objective of the experiment was to determine if the reaction of seedlings to low temperature might be persistent in fully developed plants until harvest time. After 14 days of chilling a significant increase in the glutathione content was observed in the seedling leaves in comparison to the non-chilled plants. During vegetation in field conditions this effect was maintained in leaves up to the stage of formation of flower buds. At harvest the highest content of glutathione was demonstrated in broccoli heads, obtained from plants, which were previously chilled in the seedling phase for two weeks. Peroxidase activity in broccoli seedlings increased each year of the three-year study due to the duration of the cooling time, whereas in the case of catalase the changes were not so distinct. At harvest time the activity of both enzymes in the leaves and flower buds fluctuated according to the particular year of study.

  18. In vitro effect of sodium fluoride on malondialdehyde concentration and on superoxide dismutase, catalase, and glutathione peroxidase in human erythrocytes.

    Science.gov (United States)

    Gutiérrez-Salinas, José; García-Ortíz, Liliana; Morales González, José A; Hernández-Rodríguez, Sergio; Ramírez-García, Sotero; Núñez-Ramos, Norma R; Madrigal-Santillán, Eduardo

    2013-01-01

    The aim of this paper was to describe the in vitro effect of sodium fluoride (NaF) on the specific activity of the major erythrocyte antioxidant enzymes, as well as on the membrane malondialdehyde concentration, as indicators of oxidative stress. For this purpose, human erythrocytes were incubated with NaF (0, 7, 28, 56, and 100 μg/mL) or NaF (100 μg/mL) + vitamin E (1, 2.5, 5 and 10 μg/mL). The malondialdehyde (MDA) concentration on the surface of the erythrocytes was determined, as were the enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GlPx). Our results demonstrated that erythrocytes incubated with increasing NaF concentrations had an increased MDA concentration, along with decreased activity of antioxidant enzymes. The presence of vitamin E partially reversed the toxic effects of NaF on erythrocytes. These findings suggest that NaF induces oxidative stress in erythrocytes in vitro, and this stress is partially reversed by the presence of vitamin E.

  19. Circadian control by the reduction/oxidation pathway: catalase represses light-dependent clock gene expression in the zebrafish.

    Science.gov (United States)

    Hirayama, Jun; Cho, Sehyung; Sassone-Corsi, Paolo

    2007-10-01

    Light is the key entraining stimulus for the circadian clock, but several features of the signaling pathways that convert the photic signal to clock entrainment remain to be deciphered. Here, we show that light induces the production of hydrogen peroxide (H(2)O(2)) that acts as the second messenger coupling photoreception to the zebrafish circadian clock. Treatment of light-responsive Z3 cells with H(2)O(2) triggers the induction of zCry1a and zPer2 genes and the subsequent circadian oscillation of zPer1. Remarkably, the induction kinetics and oscillation profile in response to H(2)O(2) are identical to those initiated by light. Catalase (Cat), an antioxidant enzyme degrading H(2)O(2), shows an oscillating pattern of expression and activity, antiphasic to zCry1a and zPer2. Interestingly, overexpression of zCAT results in a reduced light-dependent zCry1a and zPer2 gene induction. In contrast, inhibition of zCAT function enhances light-mediated inducibility of these clock genes. These findings implicate the enzymatic function of zCAT enzyme in the negative regulation of light-dependent clock gene transcriptional activation. Our findings provide an attractive link between the regulation of the cellular reduction/oxidation (redox) state and the photic signaling pathways implicated in circadian control.

  20. Increased activities of both superoxide dismutase and catalase were indicators of acute depressive episodes in patients with major depressive disorder.

    Science.gov (United States)

    Tsai, Meng-Chang; Huang, Tiao-Lai

    2016-01-30

    Oxidative stress may play an important role in the pathophysiology of major depressive disorder (MDD). The aim of this study was to investigate the serum levels of oxidative stress biomarkers and S100B in patients with MDD in an acute phase, and evaluate the changes in superoxide dismutase (SOD), protein carbonyl content (PCC), glutathione peroxidase (GPX), 8-hydroxy 2'-deoxyguanosine after treatment (8-OHdG), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and S100B. We consecutively enrolled 21 MDD inpatients in an acute phase and 40 healthy subjects. Serum oxidative stress markers were measured with assay kits. Serum SOD and CAT activities in MDD patients in an acute phase were significantly higher than those of healthy subjects, and serum PCC levels were significantly lower. The HAM-D scores had a significantly positive association with S100B levels. Eighteen depressed patients were followed up, and there was no significant difference among all of the markers after treatment. In conclusion, our results suggest that increased activities of both SOD and CAT might be indicators of acute depressive episodes in MDD patients.

  1. Tissue levels of the antioxidant enzymes superoxide dismutase and catalase in fish Astyanax bimaculatus from the Una River Basin

    Directory of Open Access Journals (Sweden)

    Maria Tereza Oliveira Batista

    2014-10-01

    Full Text Available STRACT This paper seeks to identify the biomarker response to oxidative stress in Astyanax bimaculatus, a freshwater fish, collected from the Una River and its associated water bodies. The fish were collected using fishing nets at three different points on the river basin, namely Fazenda Piloto (FP, Ipiranga (IP and Remédios (RM, during the period from December 2013 to March 2014. Physical and chemical analyses of the water at the sample locations indicate that IP and RM possibly have larger concentration of either natural or anthropic pollutants as compared to FP. FP can therefore be considered as the point less impacted by pollutants than other points. Hepatic activity of antioxidant stress enzymes, superoxide dismutase (SOD and catalase (CAT, were measured in the specimens. The levels of SOD were reduced at RM while they were elevated in fish collected at IP. The CAT levels for the fish at RM and IP were about 148.9% and 202.4% above the values at FP, respectively. These results suggest that antioxidant enzymes could be used as biomarkers to measure oxidative stress caused by pollutants in the Una River Basin.

  2. Spectroscopic investigations on the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots on catalase

    Science.gov (United States)

    Sun, Haoyu; Yang, Bingjun; Cui, Erqian; Liu, Rutao

    2014-11-01

    Quantum dots (QDs) are recognized as some of the most promising semiconductor nanocrystals in biomedical applications. However, the potential toxicity of QDs has aroused wide public concern. Catalase (CAT) is a common enzyme in animal and plant tissues. For the potential application of QDs in vivo, it is important to investigate the interaction of QDs with CAT. In this work, the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots with fluorescence emission peak at 612 nm (QDs-612) on CAT was investigated by fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible (UV-vis) absorption and circular dichroism (CD) techniques. Binding of QDs-612 to CAT caused static quenching of the fluorescence, the change of the secondary structure of CAT and the alteration of the microenvironment of tryptophan residues. The association constants K were determined to be K288K = 7.98 × 105 L mol-1 and K298K = 7.21 × 105 L mol-1. The interaction between QDs-612 and CAT was spontaneous with 1:1 stoichiometry approximately. The CAT activity was also inhibited for the bound QDs-612. This work provides direct evidence about enzyme toxicity of QDs-612 to CAT in vitro and establishes a new strategy to investigate the interaction between enzyme and QDs at a molecular level, which is helpful for clarifying the bioactivities of QDs in vivo.

  3. Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs.

    Science.gov (United States)

    Huang, Xiaolin; Zhan, Shengnan; Xu, Hengyi; Meng, Xianwei; Xiong, Yonghua; Chen, Xiaoyuan

    2016-04-28

    Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL(-1) to 10 pg mL(-1). The half maximal inhibitory concentration was 0.53 pg mL(-1) and the limit of detection was 0.05 pg mL(-1). These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring. PMID:27093176

  4. Evaluation of the serum catalase and myeloperoxidase activities in chronic arsenic-exposed individuals and concomitant cytogenetic damage

    International Nuclear Information System (INIS)

    Chronic arsenic exposure through contaminated drinking water is a major environmental health issue. Chronic arsenic exposure is known to exert its toxic effects by a variety of mechanisms, of which generation of reactive oxygen species (ROS) is one of the most important. A high level of ROS, in turn, leads to DNA damage that might ultimately culminate in cancer. In order to keep the level of ROS in balance, an array of enzymes is present, of which catalase (CAT) and myeloperoxidase (MPO) are important members. Hence, in this study, we determined the activities of these two enzymes in the sera and chromosomal aberrations (CA) in peripheral blood lymphocytes in individuals exposed and unexposed to arsenic in drinking water. Arsenic in drinking water and in urine was used as a measure of exposure. Our results show that individuals chronically exposed to arsenic have significantly higher CAT and MPO activities and higher incidence of CA. We found moderate positive correlations between CAT and MPO activities, induction of CA and arsenic in urine and water. These results indicate that chronic arsenic exposure causes higher CAT and MPO activities in serum that correlates with induction of genetic damage. We conclude that the serum levels of these enzymes might be used as biomarkers of early arsenic exposure induced disease much before the classical dermatological symptoms of arsenicosis begin to appear.

  5. Over-expression of DAAO and catalase in Kluyveromyces marxianus through media optimization, permeabilization and GA stabilization techniques.

    Science.gov (United States)

    Kostova, Donka D; Petrova, Ventsislava Y; Kujumdzieva, Anna V

    2008-01-01

    The selected thermotolerant, lactose-utilizing yeast strain Kluyveromyces marxianus NBIMCC 8362 possesses high specific d-amino acid oxidase activity (60Ug(-1)), which was increased nine-fold (545Ug(-1)) by design of the growth medium and conditions for d-amino oxidase induction. Applying an optimized simple and rapid procedure for chemical permeabilization of K. marxianus cells with the cationic detergent cetyltrimethylammonium bromide, the enzyme activities (d-amino acid oxidase and catalase) of the cells have been further increased for up to 43- and 58-fold, respectively. However, the enzyme activities of the permeabilized cells decreased rapidly due to the leakage of the enzymes. Treating the permeabilized cells with 0.1% glutaraldehyde at 4°C for 10min stabilized the enzyme in the cells and prevented their outflow. The process is stable for 10 cycles and the productivity measured was 16.6mmmoll(-1)h(-1). The d-alanine transformation efficiency of K. marxianus permeabilized and GA entrapted cells was 98%. PMID:22578860

  6. Investigation on the interaction between isorhamnetin and bovine liver catalase by spectroscopic techniques under different pH conditions.

    Science.gov (United States)

    Yang, Yumin; Li, Daojin

    2016-08-01

    The binding of isorhamnetin to bovine liver catalase (BLC) was first investigated at 302, 310 and 318 K at pH 7.4 using spectroscopic methods including fluorescence spectra, circular dichroism (CD) and UV-vis absorption. Spectrophotometric observations are rationalized mainly in terms of a static quenching process. The binding constants and binding sites were evaluated by fluorescence quenching methods. Enzymatic activity of BLC in the absence and presence of isorhamnetin was measured using a UV/vis spectrophotometer. The result revealed that the binding of isorhamnetin to BLC led to a reduction in the activity of BLC. The positive entropy change and enthalpy change indicated that the interaction of isorhamnetin with BLC was mainly driven by hydrophobic forces. The distance r between the donor (BLC) and acceptor (isorhamnetin) was estimated to be 2.99 nm according to fluorescence resonance energy transfer. Fluorescence, synchronous fluorescence, and CD spectra showed no obvious change in the conformation of BLC upon the binding of isorhamnetin. In addition, the influence of pH on the binding of isorhamnetin to BLC was investigated and the binding ability of the drug to BLC deceased under other pH conditions (pH 9.0, 6.5, 5.0, 3.5, or 2.0) as compared with that at pH 7.4. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26748824

  7. Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin

    Directory of Open Access Journals (Sweden)

    Sravani P

    2009-01-01

    Full Text Available Background: Vitiligo is an acquired disorder characterized by circumscribed depigmented macules devoid of identifiable melanocytes. Complex genetic, immunological, neural and self destructive mechanisms interplay in its pathogenesis. According to autocytotoxic hypothesis, oxidative stress has been suggested to be the initial pathogenic event in melanocyte degeneration. Aims: The aim of our investigation was to evaluate the role of oxidative stress by measuring levels of the antioxidant enzymes superoxide dismutase (SOD and catalase (CAT in lesional and normal skin of patients with vitiligo and in the skin of normal controls. Methods: We determined the activity of SOD in lesional and non-lesional skin and CAT in lesional skin only of 25 vitiligo patients and 25 controls by using the spectrophotometric assay and Aebi′s method, respectively. Results: There was statistically significant increase in the levels of SOD in vitiliginous and non vitiliginous skin of patient group compared to the control group ( P < 0.001. No significant difference was found between the levels of SOD in lesional skin and non-lesional skin of vitiligo patients. The levels of CAT in the skin of patients were found to be significantly lower than those of controls ( P < 0.001. Conclusions: There is increased oxidative stress in vitiligo as is indicated by high levels of SOD and low levels of CAT in the skin of vitiligo patients.

  8. Physiological analyses indicate superoxide dismutase, catalase, and phytochelatins play important roles in Pb tolerance in Eremochloa ophiuroides.

    Science.gov (United States)

    Li, Xi; Cen, Huameng; Chen, Youxiang; Xu, Siying; Peng, Lingli; Zhu, Hanmingyue; Li, Yiqiao

    2016-01-01

    Phytoremediation is considered to be a promising approach to restore or stabilize soil contaminated by lead (Pb). Turfgrasses, due to their high biomass yields, are considered to be suitable for use in phytoextraction of soil contaminated with heavy metal. It has been demonstrated that centipedegrass (Eremochloa ophiuroides (Munro) Hack., Poaceae) is a good turfgrass for restore of soil contaminated by Pb. However, the enhanced tolerant mechanisms in metallicolous (M) centipedegrass accessions remain unknown. In this study, we made a comparative study of growth performance, Pb accumulation, antioxidant levels, and phytochelatin concentrations in roots and shoots from M and nonmetallicolous (NM) centipedegrass accessions. Results showed that turf quality and growth rate were less repressed in M accessions than in NM accession. Pb stress caused generation of reactive oxygen species in centipedegrass with relatively lower levels in M accessions. Antioxidant activity analysis indicated that superoxide dismutase and catalase played important roles in Pb tolerance in M accessions. M accessions accumulated more Pb in roots and shoots. Greatly increased phytochelatins and less repressed sulfur contents in roots and shoots of M accessions indicated that they correlated with Pb accumulation and tolerance in centipedegrass.

  9. Response of peroxidase and catalase to acid rain stress during seed germination of rice, wheat, and rape

    Institute of Scientific and Technical Information of China (English)

    Lihong WANG; Xiaohua HUANG; Qing ZHOU

    2008-01-01

    Seed germination of plants with various acid-resistance display different responses to acid rain. To understand the reason why such differences occur, the effects of simulated acid rain (pH 2.5-5.0) on the activities of peroxidase (ROD) and catalase (CAT) during seed ger-mination of rice (O. sativa),-wheat (T. aestivum), and rape (B. chinensis var. oleifera) were investigated. Results indi-cated that the maximum change in activities of CAT and POD by acid rain treatment with different acidity and time in relation to the referent treatment without acid rain, was in the order: rice (28.8%, 31.7%)wheat (4.0)>rape (5.0). Moreover, the change in activity of POD was higher than that of CAT, which showed that POD was more sensitive to acid rain stress than CAT. The difference in the ability of POD and CAT in removing free radicals was one reason why the germina-tion indexes of these three species behaved differently.

  10. Effects of total dissolved gas supersaturated water on lethality and catalase activity of Chinese sucker (Myxocyprinus asiaticus Bleeker)*

    Science.gov (United States)

    Chen, Shi-chao; Liu, Xiao-qing; Jiang, Wen; Li, Ke-feng; Du, Jun; Shen, Dan-zhou; Gong, Quan

    2012-01-01

    Total dissolved gas (TDG) supersaturation caused by dam sluicing can result in gas bubble trauma (GBT) in fish and threaten their survival. In the present study, Chinese suckers (Myxocyprinus asiaticus Bleeker) were exposed to TDG supersaturated water at levels ranging from 120% to 145% for 48 h. The median lethal concentration (LC50) and the median lethal time (LT50) were determined to evaluate acute lethal effects on Chinese suckers. The results showed that the LC50 values of 4, 6, 8, and 10 h were 142%, 137%, 135%, and 130%, respectively. The LT50 values were 3.2, 4.7, 7.8, 9.2, and 43.4 h, respectively, when TDG supersaturated levels were 145%, 140%, 135%, 130%, and 125%. Furthermore, the biological responses in Chinese suckers were studied by assaying the catalase (CAT) activities in gills and muscles at the supersaturation level of 140% within LT50. The CAT activities in the gills and muscle tissues exhibited a regularity of a decrease after an increase. CAT activities in the muscles were increased significantly at 3/5LT50 (P0.05), but the activities were significantly lower than the normal level at 4/5LT50 and LT50 (P<0.05). PMID:23024046

  11. Effects of total dissolved gas supersaturated water on lethality and catalase activity of Chinese sucker (Myxocyprinus asiaticus Bleeker).

    Science.gov (United States)

    Chen, Shi-chao; Liu, Xiao-qing; Jiang, Wen; Li, Ke-feng; Du, Jun; Shen, Dan-zhou; Gong, Quan

    2012-10-01

    Total dissolved gas (TDG) supersaturation caused by dam sluicing can result in gas bubble trauma (GBT) in fish and threaten their survival. In the present study, Chinese suckers (Myxocyprinus asiaticus Bleeker) were exposed to TDG supersaturated water at levels ranging from 120% to 145% for 48 h. The median lethal concentration (LC(50)) and the median lethal time (LT(50)) were determined to evaluate acute lethal effects on Chinese suckers. The results showed that the LC(50) values of 4, 6, 8, and 10 h were 142%, 137%, 135%, and 130%, respectively. The LT(50) values were 3.2, 4.7, 7.8, 9.2, and 43.4 h, respectively, when TDG supersaturated levels were 145%, 140%, 135%, 130%, and 125%. Furthermore, the biological responses in Chinese suckers were studied by assaying the catalase (CAT) activities in gills and muscles at the supersaturation level of 140% within LT(50). The CAT activities in the gills and muscle tissues exhibited a regularity of a decrease after an increase. CAT activities in the muscles were increased significantly at 3/5LT(50) (P0.05), but the activities were significantly lower than the normal level at 4/5LT(50) and LT(50) (P<0.05). PMID:23024046

  12. Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses.

    Science.gov (United States)

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R; Zhang, Peng

    2013-06-01

    Recently we reported that the joint expression of cassava Cu/Zn superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) prolonged the shelf life of cassava storage-roots by the stabilization of reactive oxygen species (ROS) homeostasis after harvest. Since oxidative damage is a major feature of plants exposed to environmental stresses, transgenic cassava showing increased expression of the cytosolic MeCu/ZnSOD and the peroxisomal MeCAT1 should have improved resistance against other abiotic stresses. After cold treatment, the transgenic cassava maintained higher SOD and CAT activities and lower malendialdehyde content than those of wild type plants (WT). Detached leaves of transgenic cassava also showed slower transpirational water loss than those of WT. When plants were not watered for 30 d, transgenic lines exhibited a significant increase in water retention ability, accumulated 13% more proline and 12% less malendialdehyde than WT's, and showed enhanced activity of SOD and CAT. These results imply that manipulation of the antioxidative mechanism allows the development of staple crops with improved tolerance to abiotic stresses.

  13. Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet-Fed Mice.

    Science.gov (United States)

    Ryan, Terence E; Schmidt, Cameron A; Green, Thomas D; Spangenburg, Espen E; Neufer, P Darrell; McClung, Joseph M

    2016-09-01

    Patients with type 2 diabetes respond poorly to treatments for peripheral arterial disease (PAD) and are more likely to present with the most severe manifestation of the disease, critical limb ischemia. The underlying mechanisms linking type 2 diabetes and the severity of PAD manifestation are not well understood. We sought to test whether diet-induced mitochondrial dysfunction and oxidative stress would increase the susceptibility of the peripheral limb to hindlimb ischemia (HLI). Six weeks of high-fat diet (HFD) in C57BL/6 mice was insufficient to alter skeletal muscle mitochondrial content and respiratory function or the size of ischemic lesion after HLI, despite reducing blood flow. However, 16 weeks of HFD similarly decreased ischemic limb blood flow, but also exacerbated limb tissue necrosis, increased the myopathic lesion size, reduced muscle regeneration, attenuated muscle function, and exacerbated ischemic mitochondrial dysfunction. Mechanistically, mitochondrial-targeted overexpression of catalase prevented the HFD-induced ischemic limb necrosis, myopathy, and mitochondrial dysfunction, despite no improvement in limb blood flow. These findings demonstrate that skeletal muscle mitochondria are a critical pathological link between type 2 diabetes and PAD. Furthermore, therapeutically targeting mitochondria and oxidant burden is an effective strategy to alleviate tissue loss and ischemic myopathy during PAD. PMID:27284110

  14. Investigation on the interaction between isorhamnetin and bovine liver catalase by spectroscopic techniques under different pH conditions.

    Science.gov (United States)

    Yang, Yumin; Li, Daojin

    2016-08-01

    The binding of isorhamnetin to bovine liver catalase (BLC) was first investigated at 302, 310 and 318 K at pH 7.4 using spectroscopic methods including fluorescence spectra, circular dichroism (CD) and UV-vis absorption. Spectrophotometric observations are rationalized mainly in terms of a static quenching process. The binding constants and binding sites were evaluated by fluorescence quenching methods. Enzymatic activity of BLC in the absence and presence of isorhamnetin was measured using a UV/vis spectrophotometer. The result revealed that the binding of isorhamnetin to BLC led to a reduction in the activity of BLC. The positive entropy change and enthalpy change indicated that the interaction of isorhamnetin with BLC was mainly driven by hydrophobic forces. The distance r between the donor (BLC) and acceptor (isorhamnetin) was estimated to be 2.99 nm according to fluorescence resonance energy transfer. Fluorescence, synchronous fluorescence, and CD spectra showed no obvious change in the conformation of BLC upon the binding of isorhamnetin. In addition, the influence of pH on the binding of isorhamnetin to BLC was investigated and the binding ability of the drug to BLC deceased under other pH conditions (pH 9.0, 6.5, 5.0, 3.5, or 2.0) as compared with that at pH 7.4. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Evaluation of Both Malondialdehyde and Catalase Enzymes In Semen, Tissue And Blood In Adult Men With Grade 3 Varicocele

    Directory of Open Access Journals (Sweden)

    Ercan Malkoc

    2013-04-01

    Full Text Available This work aimed to assess malondialdehyde (MDA and catalase (CAT levels in semen, blood and tissue and to investigate their relationship with spermiogram parameters in the presence of grade 3 varicocele patients. Following the partial removal of the varicose vein during varicocelectomy, both MDA and CAT levels were assessed in the tissue and semen fluid. Additionally MDA levels were measured in blood samples collected from varicose veins during varicocelectomy. A total of 88 patients, mean age 21.8, were enrolled in the study. While progressive motility (A + B was <32% in 11 (12.5%, and #8805; 32 in 77 (87.5% patients; the total motility (A + B + C was <40 in 11 (12.5%, and and #8805; 40% in 77 (87.5% patients. Sperm count was <5 million/ml in 13 patients (14.8%, <15million/ml in 29 (32.9%, and and #8805; 15million/ml in 40 (45.5% patients. When patients were subgrouped according to the spermia, sperm count and sperm motility ratios, MDA and CAT levels did not differ significantly except for semen MDA activity which was significantly higher in patients with a sperm count lower than 15 million per ml (p=0.044. This finding suggests that MDA levels may affect the sperm counts. [Dis Mol Med 2013; 1(2.000: 26-30

  16. Growth rate, catalase and superoxide dismutase activities in rock carp (Procypris rabaudi Tchang) exposed to supersaturated total dissolved gas

    Institute of Scientific and Technical Information of China (English)

    Xiao-qing LIU; Ke-feng LI; Jun DU; Jia LI; Ran LI

    2011-01-01

    Total dissolved gas supersaturation (TDGS) appears when the pressures of gases in a solution exceed the barometric pressures.TDGS is often caused by flood discharge at dams.It may lead to gas bubble disease (GBD) for fish and biochemical responses of selected fish and other aquatic organisms.The purpose of this study was to determine the impact of long-term TDGS levels on the growth and biochemical responses of rock carp (Procypris rabaudi Tchang) dwelling in the upper reaches of the Yangtze River.Three-year-old rock carp were exposed to TDGS levels at 100%,104%,108%,112%,and 116% for 42 d.Samples were taken every 7 d after the start of the trial in order to determine catalase (CAT) and superoxide dismutase (SOD) activities in gill and muscle tissues.Samples were taken at Days 0 and 42 of exposure to determine growth rate.Little effect was found on growth rate in all treatment groups.SOD and CAT activities varied in different tissues,according to time of exposure and TDGS levels.The biochemical response of fish exposed to TDGS was more obvious in gill tissue than in muscle tissue.Surveys of SOD and CAT activities in different tissues offer important information about the effect of TDGS on the rare fish in the Yangtze River,and may help evaluate the risk to the aquatic eco-environment and aquatic ecosystem in the downstream of the Yangtze River.

  17. Perfil de susceptibilidade a antimicrobianos em amostras de cocos Gram-positivos, catalase negativos, isoladas de mastite subclínica bubalina Profile of antimicrobial susceptibility in strains of Gram positive cocos, negative catalase, isolated from buffalo subclinical mastitis

    Directory of Open Access Journals (Sweden)

    Maria C.E. Vianni

    2003-06-01

    Full Text Available Estudou-se o perfil de susceptibilidade a antimicrobianos em cocos Gram-positivos catalase negativos (21 amostras de Lactococcus garvieae e 6 de Enterococcus gallinarum, isoladas do leite de fêmeas com mastite subclínica e pertencentes a uma população composta por seis rebanhos bubalinos localizados no Estado do Rio de Janeiro. O teste utilizado foi o da difusão de discos em agar Müller Hinton, segundo recomendações do National Committee for Clinical Laboratory Standards - NCCLS, tendo sido testados discos com ampicilina (10mg, cefalotina (30mg, cefotaxima (30mg, cefoxitina (30mg, cloranfenicol (30mg, eritromicina (15mg, gentamicina (10mg, nitrofurantoína (300mg, norfloxacina (10mg, penicilina (10 UI, tetraciclina (30mg e vancomicina (30mg. Os resultados evidenciaram que em se tratando de Lactococcus garvieae, o antimicrobiano mais eficiente foi o nitrofurantoína com 85,71% de sensibilidade, seguido da cefotaxima (61,90%, vancomicina (52,38%, norfloxacina (47,62% e cefalotina (47,62%. A maior resistência foi desenvolvida frente a penicilina e ampicilina, com 95,24% de resistênciapara os dois antimicrobianos testados. O perfil de susceptibilidade desenvolvido pelas amostras de Enterococcus gallinarum, mostrou baixa sensibilidade frente aos antimicrobianos testados, onde os maiores índices foram observados frente eritromicina e gentamicina, com 33,34% de sensibilidade para ambos; quanto à resistência desenvolvida, foi possível observar 100% de resistência com relação a vancomicina e tetraciclina, seguindo-se cloranfenicol, penicilina, ampicilina, cefoxitina, cefalotina, cefotaxima, norfloxacina e nitrofurantoína, todas evidenciando uma resistência de 83,33% das amostras testadas.The susceptibility of antimicrobials was studied in Gram positive and catalase negative cocci (21 samples of Lactococcus garvieae and 6 Enterococcus gallinarum, isolated from the milk of cows with subclinical mastitis, belonging to six buffalo herds in

  18. Atividade da catalase e da lactato desidrogenase em tilápias submetidas a estresse de confinamento: efeito da cor do ambiente Catalase and lactate dehydrogenase activity in tilapia subjected to contention stress: effect of the background color

    Directory of Open Access Journals (Sweden)

    Elyara Maria Pereira-da-Silva

    2012-05-01

    Full Text Available Avaliaram-se os efeitos da cor do ambiente sobre o crescimento e a atividade da enzima antioxidante catalase (CAT e da lactato desidrogenase (LDH em tilápias do Nilo (n=24; 36,2±3,6g. Oito exemplares foram mortos para determinação da atividade basal das enzimas e os demais permaneceram isolados durante 14 dias sob espectro de luz branca ou azul (n=8 peixes/tratamento. A seguir os peixes foram submetidos a um estresse diário de confinamento de 90 minutos (15° ao 28° dia e pesados semanalmente para cálculo da taxa de crescimento específico (TCE. A TCE negativa confirmou que o confinamento provocou estresse nos peixes, independentemente da cor do ambiente. O aumento da atividade da LDH no músculo vermelho dos peixes mantidos sob luz branca ou azul indicou mudança do metabolismo aeróbio para anaeróbio. O estresse reduziu a atividade da CAT no músculo branco dos peixes mantidos sob a luz branca ou azul. Na musculatura vermelha, esta redução ocorreu apenas nos animais mantidos sob a luz branca. O confinamento aumenta os processos metabólicos anaeróbios e é adequado para estudos sobre os efeitos do estresse. O espectro de luz azul não evita a redução do crescimento e a demanda energética anaeróbia em situações de estresse, mas preserva a atividade da CAT, contribuindo para o bem-estar da tilápia.We assess the effects of the background color on the growth and antioxidant enzyme catalase (CAT and lactate dehydrogenase (LDH in Nile tilapia (n=24; 36.2±3.6g. Eight fish were killed for assessment of basal activity of the enzymes and the others remained isolated for 14 days under white or blue light spectrum (n=8 fish/treatment. Then each animal were subjected to a daily stress of confinement of 90 minutes (15th to 28th day and weighed to calculate the specific growth rate (SGR. The negative SGR confirmed that the confinement stressed in fish, regardless of the background color. The increased activity of LDH in red muscle of fish

  19. [Change in the content of salicylic acid and activities of phenylalanine ammonia-lyase and catalase in wheat seedling roots under the influence of Azospirilium lectins].

    Science.gov (United States)

    Alen'kina, S A; Trutneva, K A; Nikitina, V E

    2013-01-01

    The time course of changes in the endogenous content of salicylic acid, the ratio between the acid's free and bound forms, and changes in the activities of phenylalanine ammonia-lyase and catalase in wheat seedling roots under the effect of lectins of two strains of the associative nitrogen-fixing bacterium Azospirillum (A. brasilense Sp7 and its mutant defective in lectin activity, A. brasilense Sp7.2.3) is investigated. Differences in plant response to the action of the lectins from these two strains are established. On the basis of the obtained data, a model is proposed for lectin-assisted induction of resistance, according to which the lectin effect on the roots of seedlings results in the accumulation of free salicylic acid, which inhibits catalase activity, ultimately leading to accumulation of hydrogen peroxide and formation of induced resistance. PMID:25518563

  20. Change in the Content of Salicylic Acid and in the Activities of Phenylalanine Ammonia-Lyase and Catalase in Wheat Seedling Roots Under the Effect of Azospirillum Lectins

    Directory of Open Access Journals (Sweden)

    Alen'kina S.A.

    2012-05-01

    Full Text Available We investigated the time course of changes in the endogenous content of salicylic acid, the ratio between the acid's free and bound forms, and changes in the activities of phenylalanine ammonia-lyase and catalase in wheat seedling roots under the effect of the lectins of two strains of the associative nitrogen-fixing bacterium Azospirillum: A. brasilense Sp7 and its mutant defective in lectin activity, A. brasilense Sp7.2.3. Differences in plant response to the action of the lectins from these two strains were established. On the basis of the obtained data, a model was proposed for lectin-assisted induction of resistance, according to which the lectin effect on the roots of seedlings results in accumulation of free salicylic acid, which inhibits catalase activity, ultimately leading to accumulation of hydrogen peroxide and to formation of induced resistance.

  1. Electrospun Poly(acrylonitrile-co-acrylic acid) Nanofibrous Membranes for Catalase Immobilization:Effect of Porphyrin Filling on the Enzyme Activity

    Institute of Scientific and Technical Information of China (English)

    KE Bei-bei; WAN Ling-shu; HUANG Xiao-jun; XU Zhi-kang

    2011-01-01

    Porphyrin-filled nanofibrous membranes were facilely prepared by electrospinning of the mixtures of poly(acryionitrile-co-acrylic acid)(PANCAA) and porphyrins. 5,10,15,20-Tetraphenyiporphyrin(TPP) and its metalloderivatives(ZnTPP and CuTPP) were studied as filling mediators for the immobilization of redox enzyme. Results indicate that the introduction of TPP, ZnTPP and CuTPP improves the retention activity of the immobilized catalase.Among these three porphyrins, the ZnTPP-filled PANCAA nanofibrous membrane exhibits an activity retention of 93%, which is an exciting improvement. This improvement is attributed to both the strong catalase-porphyrin affinity and the possible facilitated electron transfer induced by the porphyrin as evidenced by quartz crystal microbalance (QCM) and fluorescence spectroscopy studies.

  2. Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs

    Science.gov (United States)

    Huang, Xiaolin; Zhan, Shengnan; Xu, Hengyi; Meng, Xianwei; Xiong, Yonghua; Chen, Xiaoyuan

    2016-04-01

    Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring.Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to

  3. Formation of chloroplast protrusions and catalase activity in alpine Ranunculus glacialis under elevated temperature and different CO2/O2 ratios

    OpenAIRE

    Buchner, Othmar; Moser, Tim; Karadar, Matthias; Roach, Thomas; Kranner, Ilse; Holzinger, Andreas

    2015-01-01

    Chloroplast protrusions (CPs) have frequently been observed in plants, but their significance to plant metabolism remains largely unknown. We investigated in the alpine plant Ranunculus glacialis L. treated under various CO2 concentrations if CP formation is related to photorespiration, specifically focusing on hydrogen peroxide (H2O2) metabolism. Immediately after exposure to different CO2 concentrations, the formation of CPs in leaf mesophyll cells was assessed and correlated to catalase (C...

  4. Isolation and characterization of a catalase gene "HuCAT3" from pitaya (Hylocereus undatus) and its expression under abiotic stress.

    Science.gov (United States)

    Nie, Qiong; Gao, Guo-Li; Fan, Qing-jie; Qiao, Guang; Wen, Xiao-Peng; Liu, Tao; Peng, Zhi-Jun; Cai, Yong-Qiang

    2015-05-25

    Abiotic stresses usually cause H2O2 accumulation, with harmful effects, in plants. Catalase may play a key protective role in plant cells by detoxifying this excess H2O2. Pitaya (Hylocereus undatus) shows broad ecological adaptation due to its high tolerance to abiotic stresses, e.g. drought, heat and poor soil. However, involvement of the pitaya catalase gene (HuCAT) in tolerance to abiotic stresses is unknown. In the present study, a full-length HuCAT3 cDNA (1870 bp) was isolated from pitaya based on our previous microarray data and RACE method. The cDNA sequence and deduced amino acid sequence shared 73-77% and 75-80% identity with other plant catalases, respectively. HuCAT3 contains conserved catalase family domain and catalytic sites. Pairwise comparison and phylogenetic analysis indicated that HuCAT3 is most similar to Eriobotrya japonica CAT, followed by Dimocarpus longan CAT and Nicotiana tabacum CAT1. Expression profile analysis demonstrated that HuCAT3 is mainly expressed in green cotyledons and mature stems, and was regulated by H2O2, drought, cold and salt stress, whereas, its expression patterns and maximum expression levels varied with stress types. HuCAT activity increased as exposure to the tested stresses, and the fluctuation of HuCAT activity was consistent with HuCAT3 mRNA abundance (except for 0.5 days upon drought stress). HuCAT3 mRNA elevations and HuCAT activities changes under cold stress were also in conformity with the cold tolerances among the four genotypes. The obtained results confirmed a major role of HuCAT3 in abiotic stress response of pitaya. This may prove useful in understanding pitaya's high tolerance to abiotic stresses at molecular level.

  5. A teleostan homolog of catalase from black rockfish (Sebastes schlegelii): insights into functional roles in host antioxidant defense and expressional responses to septic conditions.

    Science.gov (United States)

    Elvitigala, Don Anushka Sandaruwan; Priyathilaka, Thanthrige Thiunuwan; Whang, Ilson; Nam, Bo-Hye; Lee, Jehee

    2015-05-01

    Antioxidative defense renders a significant protection against environmental stress in organisms and maintains the correct redox balance in cells, thereby supporting proper immune function. Catalase is an indispensable antioxidant in organisms that detoxifies hydrogen peroxides produced in cellular environments. In this study, we sought to molecularly characterize a homolog of catalase (RfCat), identified from black rockfish (Sebastes schlegelii). RfCat consists of a 1581 bp coding region for a protein of 527 amino acids, with a predicted molecular weight of 60 kD. The protein sequence of RfCat harbored similar domain architecture to known catalases, containing a proximal active site signature and proximal heme ligand signature, and further sharing prominent homology with its teleostan counterparts. As affirmed by multiple sequence alignments, most of the functionally important residues were well conserved in RfCat. Furthermore, our phylogenetic analysis indicates its common vertebrate ancestral origin and a close evolutionary relationship with teleostan catalases. Recombinantly expressed RfCat demonstrated prominent peroxidase activity that varied with different substrate and protein concentrations, and protected against DNA damage. RfCat mRNA was ubiquitously expressed among different tissues examined, as detected by qPCR. In addition, RfCat mRNA expression was modulated in response to pathogenic stress elicited by Streptococcus iniae and poly I:C in blood and spleen tissues. Collectively, our findings indicate that RfCat may play an indispensable role in host response to oxidative stress and maintain a correct redox balance after a pathogen invasion.

  6. Modulatory effect of pineapple peel extract on lipid peroxidation,catalase activity and hepatic biomarker levels in blood plasma of alcoholinduced oxidative stressed rats

    Institute of Scientific and Technical Information of China (English)

    Okafor; OY; Erukainure; OL; Ajiboye; JA; Adejobi; RO; Owolabi; FO; Kosoko; SB

    2011-01-01

    Objective:To investigate the ability of the methanolic extract of pineapple peel to modulate alcohol-induced lipid peroxidation,changes in catalase activities and hepatic biochemical marker levels in blood plasma.Methods:Oxidative stress was induced by oral administration of ethanol(20%w/v) at a dosage of 5 niL/kg bw in rats.After 28 days of treatment,the rats were fasted overnight and sacrificed by cervical dislocation.Blood was collected with a 2 mL syringe by cardiac puncture and was centrifuged at 3000 rpm for 10 min.The plasma was analyzed to evaluate malondialdehyde(MDA),catalase activity,aspartate aminotransferase(AST),alkaline phosphatase(ALP) and alanine aminotransferase(ALT) concentrations.Results:Administration of alcohol caused a drastic increase(87.74%) in MDA level compared with the control.Pineapple peel extract significantly reduced the MDA level by 60.16%at 2.S mL/kg bw.Rats fed alcohol only had the highest catalase activity,treatment with pineapple peel extract at 2.5 mL/kg bw however, reduced the activity.Increased AST,ALP and ALT activities were observed in rats fed alcohol only respectively,treatment with pineapple peel extract drastically reduced their activities. Conclusions:The positive modulation of lipid peroxidation,catalase activities as well as hepatic biomarker levels of blood plasma by the methanolic extract of pineapple peels under alcoholinduced oxidative stress is an indication of its protective ability in the management of alcoholinduced toxicity.

  7. The Therapeutic Effects of a Medicinal Plant Mixture in Capsule Form on Catalase Levels in the Semen of Men with Oligospermia

    OpenAIRE

    Alizadeh Hasti; Khaki Arash; Farzadi Laya; Nouri Mohammad; Ahmadi-Asrbadr Yadoulah; Seyed-Ghiasi Giti; Shahnazi Vahideh

    2015-01-01

    Objective: In the present study, the therapeutic effects of mixed herbs (onion, ginger, basil, cinnamon, orange peel, yellow and red watermelon seeds, and carrot seed) on catalase levels in the semen of men with oligospermia were evaluated. About 50% of recognized infertility factors are male-related factors, and are mainly the result of oligospermia, astenospermia, and teratozoospermia. Materials and Methods: The study participants included 40 males with o...

  8. Cytoplasmic expression of recombinant interleukin-2 and interleukin-4 proteins results in hydrogen peroxide accumulation and reduction in catalase activity in Escherichia coli

    OpenAIRE

    M.S Hejazi; F Karimi; E Mehdizadeh Aghdam; Barzegari, A. (MSc); M Farshdosti Hagh; Parvizi, M.; L Mahmoodi Azar; Hejazi, M. A.

    2009-01-01

    Background and the purpose of the study: The Reactive oxygen species (ROS) is induced in the cells following various stresses but the effect of recombinant protein expression on ROS generation has not been studied yet. In this study, H2O2 concentration and catalase activity variations and their correlation with cell growth following cytoplasmic expression of human interleukin-2 (hIL-2) and mouse interleukin-4 (mIL-4) in Escherichia coli were investigated. Additionally, the effect of recombina...

  9. Influence of Foreign DNA Introduction and Periplasmic Expression of Recombinant Human Interleukin-2 on Hydrogen Peroxide Quantity and Catalase Activity in Escherichia coli

    OpenAIRE

    Lena Mahmoudi Azar; Elnaz Mehdizadeh Aghdam; Farrokh Karimi; Babak Haghshenas; Abolfazl Barzegari; Parichehr Yaghmaei; Mohammad Saeid Hejazi

    2013-01-01

    Purpose: Oxidative stress is generated through imbalance between composing and decomposing of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Effect of cytoplasmic recombinant protein expression on Hydrogen peroxide concentration and catalase activity was previously reported. In comparison with cytoplasm, periplasmic space has different oxidative environment. Therefore, in present study we describe t...

  10. Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane.

    Science.gov (United States)

    Godjevargova, Tzonka; Dayal, Rajeshwar; Turmanova, Sevdalina

    2004-10-20

    Gluconic acid was obtained in the permeate side of the bioreactor with glucose oxidase (GOD) immobilized onto anion-exchange membrane (AEM) of low-density polyethylene grafted with 4-vinylpiridine. The electric resistance of the anion-exchange membranes was increased after the enzyme immobilization on the membrane. The gluconic acid productions were relatively low with the GOD immobilized by any method on the AEM. To increase the enzyme reaction efficiency, GOD was immobilized on membrane of AN copolymer (PAN) adjacent to an anion-exchange membrane in bioreactor. Uses of anion-exchange membrane led to selective removal of the gluconic acid from the glucose solution and reduce the gluconic acid inhibition. The amount of gluconic acid obtained in the permeate side of the bioreactor with the GOD immobilized on the PAN membrane adjacent to the AEM under electrodialysis was about 30 times higher than that obtained with enzyme directly bound to the AEM. The optimal substrate concentration in the feed side was found to be about 1 g/l. Further experiments were carried out with the co-immobilized GOD plus Catalase (CAT) on the PAN membrane adjacent to the AEM to improve the efficiency of the immobilize system. The yield of this process was at least 95%. The storage stability of the co-immobilized GOD and CAT was studied (lost 20% of initial activity for 90 d). The results obtained clearly showed the higher potential of the dual membrane bioreactor with GOD plus CAT bound to ultrafiltration polymer membrane adjacent to the AEM. Storage stability of GOD activity in GOD plus CAT immobilized on PAN//AEM membranes and on AEM.

  11. Effects of total dissolved gas supersaturated water on lethality and catalase activity of Chinese sucker (Myxocyprinus asiaticus Bleeker)

    Institute of Scientific and Technical Information of China (English)

    Shi-chao CHEN; Xiao-qing LIU; Wen JIANG; Ke-feng LI; Jun DU; Dan-zhou SHEN; Quan GONG

    2012-01-01

    Total dissolved gas (TDG) supersaturation caused by dam sluicing can result in gas bubble trauma (GBT) in fish and threaten their survival.In the present study,Chinese suckers (Myxocyprinus asiaticus Bleeker) were exposed to TDG supersaturated water at levels ranging from 120% to 145% for 48 h.The median lethal concentration (LC50) and the median lethal time (LT50) were determined to evaluate acute lethal effects on Chinese suckers.The results showed that the LC50 values of 4,6,8,and 10 h were 142%,137%,135%,and 130%,respectively.The LT50 values were 3.2,4.7,7.8,9.2,and 43.4 h,respectively,when TDG supersaturated levels were 145%,140%,135%,130%,and 125%.Furthermore,the biological responses in Chinese suckers were studied by assaying the catalase (CAT) activities in gills and muscles at the supersaturation level of 140% within LT50.The CAT activities in the gills and muscle tissues exhibited a regularity of a decrease after an increase.CAT activities in the muscles were increased significantly at 3/5LT50 (P<0.05) and then came back to the normal level.However,there were no significant differences between the treatment group (TDG level of 140%) and the control group (TDG level of 100%) on CAT activities in the gills before 3/5LT50 (P>0.05),but the activities were significantly lower than the normal level at 4/5LT50 and LT50 (P<0.05).

  12. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots.

    Science.gov (United States)

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R; Zhang, Peng

    2013-03-01

    Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is the result of a rapid oxidative burst, which leads to discoloration of the vascular tissues due to the oxidation of phenolic compounds. In this study, coexpression of the reactive oxygen species (ROS)-scavenging enzymes copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in transgenic cassava was used to explore the intrinsic relationship between ROS scavenging and PPD occurrence. Transgenic cassava plants integrated with the expression cassette p54::MeCu/ZnSOD-35S::MeCAT1 were confirmed by Southern-blot analysis. The expression of MeCu/ZnSOD and MeCAT1 was verified by quantitative reverse transcription-polymerase chain reaction and enzymatic activity analysis both in the leaves and storage roots. Under exposure to the ROS-generating reagent methyl viologen or to hydrogen peroxide (H2O2), the transgenic plants showed higher enzymatic activities of SOD and CAT than the wild-type plants. Levels of malondialdehyde, chlorophyll degradation, lipid peroxidation, and H2O2 accumulation were dramatically reduced in the transgenic lines compared with the wild type. After harvest, the storage roots of transgenic cassava lines show a delay in their PPD response of at least 10 d, accompanied by less mitochondrial oxidation and H2O2 accumulation, compared with those of the wild type. We hypothesize that this is due to the combined ectopic expression of Cu/ZnSOD and CAT leading to an improved synergistic ROS-scavenging capacity of the roots. Our study not only sheds light on the mechanism of the PPD process but also develops an effective approach for delaying the occurrence of PPD in cassava.

  13. Fenton reaction-mediated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters: analytical applications of hydrogen peroxide, glucose, and catalase detection.

    Science.gov (United States)

    Deng, Hao-Hua; Wu, Gang-Wei; He, Dong; Peng, Hua-Ping; Liu, Ai-Lin; Xia, Xing-Hua; Chen, Wei

    2015-11-21

    Given the importance of hydrogen peroxide (H2O2) in many biological processes and its wide application in various industries, the demand for sensitive, accurate, and economical H2O2 sensors is high. In this study, we used Fenton reaction-stimulated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters (NAC-AuNCs) as a reporter system for the determination of H2O2. After the experimental conditions were optimized, the sensing platform enabled the analysis of H2O2 with a limit of detection (LOD) as low as 0.027 μM. As the glucose oxidase cascade leads to the generation of H2O2 and catalase catalyzes the decomposition of H2O2, these two biocatalytic procedures can be probed by the Fenton reaction-mediated quenching of NAC-AuNCs. The LOD for glucose was found to be 0.18 μM, and the linear range was 0.39-27.22 μM. The LOD for catalase was 0.002 U mL(-1), and the linear range was 0.01-0.3 U mL(-1). Moreover, the proposed sensing methods were successfully applied for human serum glucose detection and the non-invasive determination of catalase activity in human saliva, demonstrating their great potential for practical applications.

  14. CAT基因突变热点区域的PCR扩增方法%Optimization of PCR Amplification Parameters for Mutational Hotspots in the Human Catalase Gene

    Institute of Scientific and Technical Information of China (English)

    李毅; 赵华; 赵红宇; 章锦才

    2009-01-01

    Objective To study the speciality and sensitivity of PCR for mutational hotspots in the human catalase gene. Methods Blood samples were taken from volunteers for genomic DNA preparation. Polymerase chain reaction (PCR) amplification of sixteen gene segments encompassing mutational hotspots in the human catalase was carried out. Touchdown and Hot-start PCR was imple-mented to improve the efficiency of gene amplification. Results High and constant amplification effi-ciency is obtained using touchdown and hot-start PCR. Conclusion The stable and reproducible PCR amplification parameters for mutational hotspots in the human catalase gene were optimized.%目的 探讨过氧化氢酶基因突变热点区域PCR扩增方法 ,提高PCR反应的特异性和灵敏度,有助于快速检测CAT基因相关疾病.方法 从人静脉血液标本提取人血液基因组DNA,设计引物扩增特定的CAT基因片段,联合应用热启动PCR和降落PCR技术.结果 建立了重复性好,分辨率高的PCR反应体系.结论 建立了适用于CAT基因突变热点区域的PCR反应体系,有助于快速检测CAT基因相关痰病.

  15. The Therapeutic Effects of a Medicinal Plant Mixture in Capsule Form on Catalase Levels in the Semen of Men with Oligospermia

    Directory of Open Access Journals (Sweden)

    Alizadeh Hasti

    2015-01-01

    Full Text Available Objective: In the present study, the therapeutic effects of mixed herbs (onion, ginger, basil, cinnamon, orange peel, yellow and red watermelon seeds, and carrot seed on catalase levels in the semen of men with oligospermia were evaluated. About 50% of recognized infertility factors are male-related factors, and are mainly the result of oligospermia, astenospermia, and teratozoospermia. Materials and Methods: The study participants included 40 males with oligospermia and infertility. The studied medicine were 700 mg capsules containing onion, ginger, basil, cinnamon, orange peel, yellow and red watermelon seeds, and carrot seed (100 mg of each. Catalase activity was measured by Aebi method. Results: A significant increase was observed in catalase level in semen as a result of using the medicinal plant mixture (P < 0.001. Conclusion: Free radicals play an important role in male infertility. Antioxidants can prevent the damaging effects they have on sperm. Oxidative stress reduction can increase the chances of natural fertility or assisted reproductive technology (ART. Medicinal plants have low costs, complications, and easy availability, and cause an increase in semen plasma antioxidants and subsequent improvement in semen parameters. Thus, they can be the source of new hopes for the treatment of infertility.

  16. The influence of detorsion of adnexal torsion on melondialdehyde, peroxidase catalase, and catalase of ovarian tissue in rabbits%解除附件扭转对兔卵巢组织MDA、GSH-Px和CAT的影响

    Institute of Scientific and Technical Information of China (English)

    于月新; 李巨; 陈佳; 樊宝剑; 颜宇博

    2013-01-01

    Objective To observe the influence of reperfusion after adnexal torsion (AT) on malondialdehyde (MDA), glutathione peroxidase catalase (GSH-Px) and catalase (CAT) contents of ovarian tissue in rabbits. Methods Forty female Japanese long-eared white rabbits were randomly divided into study group (n=32) and control group (n=8). The left adnexa of rabbits in the study group was clockwise twisted three laps, and then fixed on the left abdominal walls. Adnexal detorsion was then done 24 hours after adnexal torsion in the study group, and then the rabbits were divided into 4 groups (8 each). Both ovaries of each group were removed 24h, 48h, 72h and 96h, respectively, after reperfusion. The rabbits in the control group received sham-operation and both ovaries were removed 96h later. The removed left ovaries were used for biochemical detection of GSH-Px, CAT and MDA. All the right ovaries were used as experimental internal-control. Results The activity of GSH-Px declined significantly 24h to 72h after adnexal detorsion (P0.05). The activity of CAT declined significantly 24h and 48h after adnexal detorsion (P0.05). Conclusions Detorsion after adnexal torsion can affect the degree of oxidative stress injury in rabbits' ovaries as shown by the changes in the activities of GSH-Px, CAT and MDA. With the elongation of detorsion time, ovarian injury will be gradually alleviated.%目的 观察附件扭转(AT)后再灌注对兔卵巢丙二醛(MDA)、谷胱甘肽-过氧化物酶(GSH-Px)、过氧化氢酶(CAT)的影响.方法 雌性成年日本大耳白兔40只,随机分为实验组(n=32)和对照组(n=8).实验组兔将左侧附件按顺时针方向扭转3周后固定于左侧腹壁,24h后解除扭转,再分成4组,每组8只,分别于24、48、72、96h后取双侧卵巢.对照组行假手术,96h后取双侧卵巢.取左侧卵巢检测GSH-Px、CAT活性及MDA含量,以切除的右侧卵巢作为内对照.结果 附件扭转解除后,GSH-Px活力于再灌注24h至72h

  17. 过氧化氢酶与糖尿病的研究进展%Catalase and diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    赵瑞娥; 刘丽梅

    2008-01-01

    Catalase(CAT)can decompose hydrogen peroxide(H2O2),a product of peroxide dismuted by superoxide dismutase,into oxygen and water,so as to reduce the generation of toxic reactive hydroxyl radicals and prevent damage and dysfunction of islet β cells.Previous studies have shown that two polymorphisms,C-262T and C1167T,of CAT gene were significantly associated with diabetes mellitus,and that their C alleles were risk factors of type 1 diabetes mellitus.Moreover,other ethnical studies demonstrated that both genetic defects and pelymorphisms of the CAT gene could reduce the activity of CAT,increase the concentration of the H2O2 and therefore aggravate the oxidative stress.These data suggested that genetic variation of CAT may be an important pathophysiological mechanism in the development of diabetes and its complications.%过氧化氢酶(CAT)能迅速将超氧化物歧化酶分解过氧化物产生的过氧化氢(H2O2)转化为氧气和水,从而减少更具氧化活性的羟自由基生成,防止氧化应激造成的胰岛β细胞损伤和功能异常.研究发现,CAT基因的两个多态位点C-262T及C1167T均与糖尿病发生显著相关,其C等位基因均为1型糖尿病发病的危险因子.此外,其他种族研究证实,CAT的遗传学缺陷及其基因多态性均可引起CAT活性下降,使机体H2O2浓度增加,加重氧化应激.提示CAT的遗传变异可能是促进糖尿病及其并发症发生和发展的重要病理生理机制之一.

  18. Clonal spread of catalase-negative ST5/SCCmec II Staphylococcus aureus carrying the staphylococcal enterotoxin A (sea), staphylococcal enterotoxin b (seb), and toxic shock toxin (tst) virulence genes.

    Science.gov (United States)

    Lee, Hae Kyung; Kim, Jung-Beom; Kim, Hyunjung; Jekarl, Dong Wook; Kim, Yang Ree; Yu, Jin Kyung; Park, Yeon-Joon

    2014-01-01

    17 catalase-negative methicillin-resistant Staphylococcus aureus (MRSA) isolates were recovered from respiratory specimens of patients at a 700-bed hospital in Korea. The goal of this study was to determine the molecular characteristics of catalase-negative MRSA strains in Korea for the first time. Characteristics that we explored included kat A gene mutation sequence, sequence type, staphylococcal cassette chromosome (SCC) mec subtype classification, and toxin gene profiles. All 17 isolates showed similar pulsed field gel electrophoresis (PFGE) pattern. Four mutations were identified in the kat A gene of a representative catalase-negative MRSA strain: A602G causing a histidine 201 to arginine change, A695T causing a glutamic acid 232 to valine change, T778A causing a tryptophan 260 to arginine change, and G1438A causing a glycine 480 to serine change. Previous studies suggest that the A695T and T778A mutations may have strong effects on the catalase activity of catalase-negative MRSA. The sequence type (ST) and SCCmec type of this isolate were ST 5 and SCCmec type II, respectively. All 17 isolates harbored toxic shock toxin (tst), staphylococcal enterotoxin A (sea), and staphylococcal enterotoxin B (seb) virulence genes. The mortality rate of the present study was 11.8%, suggesting that the clinical relevance of catalase-negative MRSA requires further study in the future.

  19. Effect on post-cryopreserved semen characteristics of Holstein bulls of adding combinations of vitamin C and either catalase or reduced glutathione to Tris extender.

    Science.gov (United States)

    Eidan, Sajeda M

    2016-04-01

    This study was undertaken to investigate the influence of adding combinations of vitamin C to Tris extender with either catalase or reduced glutathione on post-cryopreserved semen characteristics of Holstein bulls for different preservation periods (cooling at 5°C, 48 h, 1, 2 and 3 months post cryopreservation, PC). Seven Holstein bulls of 2.5-3 years of age were used in this experiment. Semen was collected via artificial vagina in one ejaculate per bull per week for the 7 week experimental period. Pooled semen was equally divided into three treatments using Tris extender. Combinations of vitamin C (2.5mM) were added with either catalase (100 IU/ml, T2) or reduced glutathione (2mM, T3) to Tris extender and comparisons in response were made with the control group (Tris extender, T1). Individual sperm motility (IM), viability (V), plasma membrane integrity (PMI), and acrosome integrity (AI) were assessed during all periods of the study along with Malondialdehyde (MDA) concentrations and freezing ability. The IM was greater (P ≤ 0.01) in the T2 as compared with the T1 group at all periods of the study. Furthermore, the IM were greater (P ≤ 0.01) in the T3 as compared with the T1 group at the 48 h time period and at 3 months PC. The V, PMI and AI were greater (P ≤ 0.01) in T2 and T3 as compared with the T1 group at all the experimental periods. The MDA was greater (P ≤ 0.01) in the T2 as compared with the T1 group at 3 months PC. In conclusion, there was improved semen quality if semen of Holstein bulls was collected and stored in combinations of vitamin C with either catalase (T2) or reduced glutathione (T3) being added to Tris extender. PMID:26861956

  20. Purification and immobilization of a thermoalkaliphilic catalase from Thermoascus aurantiacus%一种嗜热嗜碱过氧化氢酶的分离纯化和固定化

    Institute of Scientific and Technical Information of China (English)

    柯尊柱; 张朝晖; 陈小龙

    2011-01-01

    After treating with (NH4)2SO4 fractional precipitation and DEAE-Sepharose anion-exchange column, a thermoalkaliphilic catalase from Thermoascus aurantiacus was purified. The catalase identified by SDS-PAGE was composed of two identical sub-units and had a molecular weight of 1. 9×105.The catalase was highly active over a temperature range from 25℃ to 751 and a pH range from 7 to 13, having the optimum activity at 75℃ and pH 12. These results demonstrated that the catalase was thermoalkaliphilic. The Km value for the purified catalase was 40. 74 mmol ? L-1 and the k2 value was 1. 59X104 μmol ? (min ? Mg protein)"1. The catalase was immobilized onto chitosan beads by covalent binding. The immobilized catalase showed higher pH stability and thermostability than the free catalase. It retained about 55% of its initial activity after 13 repeated cycles during the total 130 min reaction time. The properties mentioned above showed that this catalase had a potential application in removing residual hydrogen peroxide from bleaching streams in industrial bleaching processes.%引言过氧化氢酶(catalase,简称CAT,EC 1.11.1.6)是一种高效催化分解过氧化氢的酶,广泛存在于好氧微生物和动植物体内.在纺织印染工业、造纸工业、废水处理、纸浆、牛奶保鲜以及临床分析等方面有着广泛的应用[1-3].其中嗜热嗜碱过氧化氢酶由于其独特的耐热耐碱性质,已有多篇文献报道该酶在处理纺织业漂白废水中残留H2O2的应用研究[4-8].

  1. Changing of Bacteria Catalase Activity Under the Influence of Electro-Magnetic Radiation on a Frequency of Nitric Oxide Absorption and Radiation Molecular Spectrum

    Directory of Open Access Journals (Sweden)

    G.M. Shub

    2009-09-01

    Full Text Available The dynamics of catalase activity degree changing in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa is described under the influence of electro-magnetic radiation on a frequency of nitric oxide absorption and radiation molecular spectrum. The panoramic spectrometric measuring complex, developed in Central Scientific Research Institute of measuring equipment Public corporation, Saratov, was used while carrying out the research. Electromagnetic vibrations of extremely high frequencies were stimulated in this complex imitating the structure of nitric oxide absorption and radiation molecular spectrum. The growth of activity of the mentioned enzyme of the strains under research was detected. The most significant changes were observed under 60-minutes exposure.

  2. Identification of Scedosporium boydii catalase A1 gene, a reactive oxygen species detoxification factor highly expressed in response to oxidative stress and phagocytic cells.

    Science.gov (United States)

    Mina, Sara; Staerck, Cindy; d'Almeida, Sènan M; Marot, Agnès; Delneste, Yves; Calenda, Alphonse; Tabiasco, Julie; Bouchara, Jean-Philippe; Fleury, Maxime J J

    2015-12-01

    Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a large variety of infections in both immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). Species of the S. apiospermum complex are able to chronically colonize the CF airways suggesting pathogenic mechanisms allowing persistence and growth of these fungi in the respiratory tract. Few putative virulence factors have been purified and characterized so far in the S. apiospermum complex including a cytosolic Cu,Zn-superoxide dismutase (SOD) and a monofunctional catalase (catalase A1). Upon microbial infection, host phagocytes release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by degradation of the hydrogen peroxide. Here, we identified the S. boydii catalase A1 gene (CATA1) and investigated its expression in response to the environmental conditions encountered in the CF airways and to the oxidative stress. Results showed that S. boydii CATA1 gene expression is not affected by hypoxia, hypercapnia or pH changes. In contrast, CATA1 gene was overexpressed in response to a chemically induced oxidative stress with a relative gene expression 37-fold higher in the presence of 250 μM H(2)O(2), 20-fold higher with 250 μM menadione and 5-fold higher with 2 mM paraquat. Moreover, S. boydii CATA1 gene expression progressively increased upon exposure to activated THP-1-derived macrophages, reaching a maximum after 12 h (26 fold). Activated HL60-derived neutrophils and activated human peripheral blood neutrophils more rapidly induced S. boydii CATA1 gene overexpression, a maximum gene expression level being reached at 75 min (17 fold) and 60 min (15 fold), respectively. In contrast expression of the gene

  3. KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves.

    Science.gov (United States)

    Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance.

  4. Identification of Scedosporium boydii catalase A1 gene, a reactive oxygen species detoxification factor highly expressed in response to oxidative stress and phagocytic cells.

    Science.gov (United States)

    Mina, Sara; Staerck, Cindy; d'Almeida, Sènan M; Marot, Agnès; Delneste, Yves; Calenda, Alphonse; Tabiasco, Julie; Bouchara, Jean-Philippe; Fleury, Maxime J J

    2015-12-01

    Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a large variety of infections in both immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). Species of the S. apiospermum complex are able to chronically colonize the CF airways suggesting pathogenic mechanisms allowing persistence and growth of these fungi in the respiratory tract. Few putative virulence factors have been purified and characterized so far in the S. apiospermum complex including a cytosolic Cu,Zn-superoxide dismutase (SOD) and a monofunctional catalase (catalase A1). Upon microbial infection, host phagocytes release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by degradation of the hydrogen peroxide. Here, we identified the S. boydii catalase A1 gene (CATA1) and investigated its expression in response to the environmental conditions encountered in the CF airways and to the oxidative stress. Results showed that S. boydii CATA1 gene expression is not affected by hypoxia, hypercapnia or pH changes. In contrast, CATA1 gene was overexpressed in response to a chemically induced oxidative stress with a relative gene expression 37-fold higher in the presence of 250 μM H(2)O(2), 20-fold higher with 250 μM menadione and 5-fold higher with 2 mM paraquat. Moreover, S. boydii CATA1 gene expression progressively increased upon exposure to activated THP-1-derived macrophages, reaching a maximum after 12 h (26 fold). Activated HL60-derived neutrophils and activated human peripheral blood neutrophils more rapidly induced S. boydii CATA1 gene overexpression, a maximum gene expression level being reached at 75 min (17 fold) and 60 min (15 fold), respectively. In contrast expression of the gene

  5. KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves.

    Directory of Open Access Journals (Sweden)

    María Laura Tondo

    Full Text Available Xanthomonas citri subsp. citri (Xcc is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG, carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance.

  6. KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves.

    Science.gov (United States)

    Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance. PMID:26990197

  7. Effect of Orange (Citrus sinensis Peel Oil on Lipid Peroxidation, Catalase activity and Hepatic Biomarker levels in Blood Plasma of Normo Rats

    Directory of Open Access Journals (Sweden)

    Ochuko L. Erukainure

    2012-07-01

    Full Text Available Dietary antioxidants are considered beneficial because of their potential protective role against oxidative stress, which is involved in the pathogenesis of multiple diseases such as cancer and coronary heart disease. The effect of feeding orange peel oil on lipid peroxidation, catalase and hepatic biomarkers in blood plasma of normo rats was investigated. Beside mouse chow, four diets were designed to contain 50% of energy as carbohydrate, 35% as fat, and 15% as protein, and one that was lipid-free diet which had distilled water substituted for fat. Groups of five rats were each fed one of these diets, while a fifth group was fed pelletized mouse chow. There was no significant difference in the amount of food consumed, though significant weight lost was observed in all groups except soybean oil. Feeding on orange peel oil led to significant (p<0.05 decrease in lipid peroxidation and catalase activities in comparison to soybean oil. Higher AST and lower ALT activities were observed in orange peel oil fed groups. These results suggest the oil from the orange peels possesses antioxidant potentials which could be protective against oxidative stress, thus useful in its treatment and management. However, the elevated levels of hepatic biomarkers pose a threat of hepatotoxicity thus suggesting that it should be consumed or used as a pharmaceutical ingredient at lower concentrations.

  8. Effects of catalase, 2% chlorhexidine gel and 1% sodium hypochlorite on the microtensile bond strength of teeth bleached with 35% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ricardo Ferreira

    2011-07-01

    Full Text Available Introduction and objective: Dental bleaching is an effective, relatively simple and noninvasive technique. The aim of this study was to evaluate the effects of catalase, 2% chlorhexidine gel, and 1% sodium hypochlorite on the microtensile bond strength to enamel of bovine teeth submitted to internal and external bleaching with 35% hydrogen peroxide. Material and methods: Sixty bovine incisors were used. They had their debris removed, washed in tap water and stored frozen. The samples were divided into five experimental groups according to the treatment applied after bleaching (n = 12: 1 − control/no bleaching (C; 2 − catalase (CA; 3 − 2% chlorhexidine gel (CG; 4 − 1% sodium hypochlorite (SH; 5 − distilled water (DW. For microtensile test, samples were prepared into blocks of enamel/resin, which were sectioned to obtain hourglass-like specimens. Bond strength was calculated in MPa and data analyzed statistically by Anova (p < 0.05. Results: Microtensile bond strength means decreased in comparison to control group, but no statistically significant difference between groups was found. Conclusion: The substances used after dental bleaching did not result in statistically significant microtensile bond strength means of the tested groups.

  9. Fluctuations in peroxidase and catalase activities of resistant and susceptible black gram (Vigna mungo (L.) Hepper) genotypes elicited by Bemisia tabaci (Gennadius) feeding.

    Science.gov (United States)

    Taggar, Gaurav Kumar; Gill, Ranjit Singh; Gupta, Anil Kumar; Sandhu, Jeet Singh

    2012-10-01

    Whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleryrodidae), is a serious pest of black gram, (Vigna mungo (L.) Hepper), an important legume pulse crop grown in north India. This research investigated the potential role of selected plant oxidative enzymes in resistance/susceptibility to whitefly in nine black gram genotypes. Oxidative enzyme activity was estimated spectrophotometrically from leaf samples collected at 30 and 50 d after sowing (DAS) from whitefly infested and uninfested plants. The enzymes showed different activity levels at different times after the infestation. The results indicated that in general, whitefly infestation increased the activities of peroxidase and decreased the catalase activity. Resistant genotypes NDU 5-7 and KU 99-20 recorded higher peroxidase and catalase activities at 30 and 50 DAS under whitefly-stress conditions as compared with non-stressed plants. The results suggest that the enhanced activities of the enzymes may contribute to bioprotection of black gram plants against B. tabaci infestation. The potential mechanisms to explain the correlation of resistance to whitefly in black gram genotypes with higher activities of oxidative enzymes are also discussed.

  10. Effect of the Ascorbic Acid, Pyridoxine and Hydrogen Peroxide Treatments on Germination, Catalase Activity, Protein and Malondialdehyde Content of Three Oil Seeds

    Directory of Open Access Journals (Sweden)

    Aria DOLATABADIAN

    2008-08-01

    Full Text Available Oil seed production has an important role in human nutrition and industry. Success in oil plant cultivation is related to seed production with high viability and rapid germination, because these seeds rapidly loose their viability by fats oxidation. Thus, in this work we studied the effects of ascorbic acid, pyridoxine and hydrogen peroxide solutions on germination quantitative traits, catalase activity, protein and malondialdehyde content of three old oil seeds (sunflower, rape seed and safflower. The results showed that ascorbic acid and pyridoxine stimulated significantly the sunflower and rape seed germination. These vitamins, however, didn't have any effect on safflower germination. Hydrogen peroxide strongly increased safflower germination. Ascorbic acid and pyridoxine decreased catalase activity in sunflower and rape seed, whereas hydrogen peroxide increased it. Ascorbic acid and pyridoxine prevented protein degradation and lipid peroxidation in germinated seeds. Consequently, we understand that ascorbic acid and pyridoxine can increase sunflower and rape seed germination and stimulate rate of growth. Also safflower germination increased due to germination inhibitor oxidation by hydrogen peroxide. In conclusion, this report shows that oil seeds treated with ascorbic acid, pyridoxine and hydrogen peroxide remarkably increase the capacity of germination. We suggest that treatments with such substances can improve the old oil seed germination during storage.

  11. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    Science.gov (United States)

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications. PMID:27151682

  12. COMPARED ANALYSIS OF CATALASE AND PEROXIDASE ACTIVITY IN CELLULOLYTIC FUNGUS TRICHODERMA REESEI GROWN ON MEDIUM WITH DIFFERENT CONCENTRATIONS OF GRINDED WHEAT AND BARLEY STRAWS

    Directory of Open Access Journals (Sweden)

    Mihaela Cristica

    2010-09-01

    Full Text Available The purpose of this study was to assess the evolution of catalase and peroxidase activity in Trichoderma reesei grown on medium containing grinded wheat and barley straws. Carbon source of cultivation medium - glucose was replaced by various concentrations of grinded wheat and barley straws, finally resulting three experimental variants as follows: V1 = 20 g/l, V2 = 30 g/l, V3 = 40 g/l. ĂŽn addition to these variants a control sample was added in which composition remainded unchanged. The catalase activity was determined by spectrophotometric Sinha method (Artenie et al., 2008 while peroxidase activity was assesed using the o-dianisidine method (Cojocaru, 2009. Enzymatic determinations were carried out at 7 and 14 days from inoculation, in both fungus mycelium and culture liquid. The enzymatic assay showed significant differences between determinations intervals and work variants. Enzyme activity is influenced by the age of fungus and by the different nature of the substrate used.

  13. 过氧化氢酶与酵母菌共固定的研究%Co-immobilizing of Catalase and Yeast

    Institute of Scientific and Technical Information of China (English)

    胡杨; 雷女孝; 王征; 谢达平

    2001-01-01

    采用聚阳离子复合物,用于过氧化氢酶与酵母细胞的共固定化,可防止使用过程中酶的渗漏,改善了供氧效果和酵母的增殖。固定化酶的最适反应pH值范围为6~8。当聚阳离子浓度达150 mmol/L时,固定化酶活力回收可达68.6%,在室温条件下,5 d时酶活力下降58%。这种酶和酵母细胞的共固定颗粒,在1 d时间内使颗粒内酵母细胞增殖至50亿/g。%Catalase and yeast were immobilized together by polycation complex.Catalase leakage was overcome in the doing so. Oxygen supply and yeast multiplication were improved. The optimum pH of the immobilizing was 6~8.The activity recovery of the immobilized enzyme reached 68% as polycation concentration was kept at 150 mmol/L.At room temperature,the activity of enzyme decreased about 58% in the 5th day.In the co-immobilizing particle yeast cell increased up to 5×109 /g in one day.

  14. Atividade da catalase no pulmão, rim e intestino delgado não isquemiado de ratos após reperfusão intestinal Catalase activity in lung, kidney and small bowel non-ischemic in rats after intestinal reperfusion

    Directory of Open Access Journals (Sweden)

    Camila de Oliveira Ferro

    2010-02-01

    Full Text Available OBJETIVO: Avaliar a atividade catalase, após lesão por isquemia e reperfusão intestinal e estudar as alterações deste antioxidante em órgãos situados à distância do insulto inicial. MÉTODOS: Utilizaram-se 18 ratos do tipo Wistar, aleatoriamente distribuídos em três grupos. 1-Controle, 2-Simulação e 3-Isquemia/Reperfusão. Neste último, realizou-se isquemia no íleo, por 60 minutos, seguida de reperfusão por 30 minutos. No grupo 2 efetuou-se apenas uma laparotomia. Foram retirados, de todos os animais, segmentos do intestino com e sem reperfusão, além do pulmão e rim direitos para exame com microscopia óptica. A atividade da catalase foi aferida em espectrofotômetro ajustado para 240 nm. Utilizaram-se os testes estatísticos Mann e Whitney e Kruskal Wallis. RESULTADOS: Observou-se aumento significante (p OBJECTIVE: This study aimed to assess the catalase activity after ischemia and reperfusion and to study the changes of this antioxidant in organs located far from the initial insult. METHODS: Eighteen Wistar rats were randomly divided into three groups. 1-Control, 2-Simulation and 3-Ischemia and Reperrfusion. In the latter it was done an ischemia of the ileum for 60 minutes followed by reperfusion for 30 minutes. In group 2 only laparotomy was performed. From all animals it was taken segments of the reperfused and non reperfused intestine, as well of the right kidney and lung to be evaluated under light microscopy. Catalase activity was measured in spectrophotometer with a wavelength set to 240 nm. It was used Mann Whitney and Kruskal Wallis statistical tests. RESULTS: There was a significant increase (p <0.05 in the catalase activity not only at small bowel ischemic and non-ischemic segments but also at lungs. However the enzymatic activity decreases in the kidney. In all organs studied at reperfusion group it was found a slight villi derangement, mild congestion and infiltration with inflammatory cells, and areas of

  15. Catalase, but not MnSOD, inhibits glucose deprivation-activated ASK1-MEK-MAPK signal transduction pathway and prevents relocalization of Daxx: hydrogen peroxide as a major second messenger of metabolic oxidative stress.

    Science.gov (United States)

    Song, Jae J; Lee, Yong J

    2003-10-01

    Overexpression of catalase, but not manganese superoxide dismutase (MnSOD), inhibited glucose deprivation-induced cytotoxicity and c-Jun N-terminal kinase 1 (JNK1) activation in human prostate adenocarcinoma DU-145 cells. Suppression of JNK1 activation by catalase overexpression resulted from inhibition of apoptosis signal-regulating kinase 1 (ASK1) activation by preventing dissociation of thioredoxin (TRX) from ASK1. Overexpression of catalase also inhibited relocalization of Daxx from the nucleus to the cytoplasm as well as association of Daxx with ASK1 during glucose deprivation. Taken together, hydrogen peroxide (H(2)O(2)) rather than superoxide anion (O(2) (*-)) acts as a second messenger of metabolic oxidative stress to activate the ASK1-MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)-mitogen-activated protein kinase (MAPK) signal transduction pathway.

  16. 紫外分光光度法测定土壤过氧化氢酶活性%Measurement of Catalase Activity in Soil by Ultraviolet Spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    杨兰芳; 曾巧; 李海波; 闫静静

    2011-01-01

    土壤过氧化氢酶是土壤中非常重要酶类,为了探索一种测定土壤过氧化氢酶活性的简单、可靠而适用的测定方法,我们进行了利用紫外分光光度法测定土壤过氧化氢酶活性的方法研究.结果表明,紫外分光光度法重现性优于高锰酸钾容量法,溶液在240 nm处的吸光度可以稳定11小时以上,对4种土壤分析表明,紫外分光光度法的测定结果与高锰酸钾容量法之间无显著差异.传统高锰酸钾容量法加酸后再过滤容易导致溶液有颜色,过滤液易浑浊,过滤时间长.本试验表明,在过滤前加入饱和铝钾矾,然后直接将溶液过滤到盛有酸的容器内,既可以使溶液无色,又能使溶液澄清透明,还能使过滤速度大为加快.总之紫外分光光度法重现性好、稳定时间长,操作简单,不需要特殊试剂,避免了容量法的滴定误差,是一种值得推广普及的测定土壤过氧化氢酶活性的好方法.%Catalase is an important enzyme in soil. In order to find a simple, reliable and applicable method to measure the activity of soil catalase, the experiment to determine the catalase activity in soil by ultraviolet spectrophotometry was conducted. The results showed that the reproducibility of ultraviolet spectrophotometry was better than potassium permanganate volumetric method. The absorbency of solution of soil extract in 240 nm had no visible changes after stored 11 h. The results from 4 soils indicated that there was no significant difference between ultraviolet spectrophotometry and potassium permanganate volumetric method. The addition of sulfate acid before filtration in traditional volumetric method led to a colored and turbid solution, and long filtration time. The color and turbidity in soil extract was disadvantage to measure the absorbency. Adding alum saturated solution before filtration and then filtrating in a utensil with 5 mi sulfate acid (1.5 mol L-1) could gain a colorless and transparent

  17. Effect of Yerbimat herbicide on lipid peroxidation, catalase activity, and histological damage in gills and liver of the freshwater fish Goodea atripinnis.

    Science.gov (United States)

    Ortiz-Ordoñez, Esperanza; Uría-Galicia, Esther; Ruiz-Picos, Ricardo Arturo; Duran, Angela Georgina Sánchez; Trejo, Yoseline Hernández; Sedeño-Díaz, Jacinto Elías; López-López, Eugenia

    2011-10-01

    The use of herbicides for agricultural and aquatic weed control has increased worldwide. These substances are potentially toxic pollutants because they induce the production of reactive oxygen species for biological systems and exert oxidative stress in nontarget organisms living in the treated aquatic systems. Recent evidence suggests differences in the toxicity of glyphosate in the form of an active ingredient compared to the toxicity of glyphosate in combination with surfactants, such as those found in commercial formulations. In Mexico, one of the most widely used glyphosate-based herbicides is Yerbimat, which has agricultural as well as aquatic weed control applications. However, there are no aquatic toxicity data, particularly regarding native fish. Therefore, we determined the acute toxicity of commercial-formulation Yerbimat in a static bioassay at 96 h (LC(50)). We also determined its toxicity at 96 h in sublethal concentrations to assess the lipid peroxidation levels (LPX), catalase activity, hepatic glycogen content, and histological damage in the liver and gills of the fish Goodea atripinnis associated with chronic exposure (75 days). The LC(50) was 38.95 ± 0.33 mg/L. The results of the short-term exposure study indicate that Yerbimat can potentially induce oxidative stress in G. atripinnis, because LPX was increased in the gills and liver. Catalase activity was reduced in the gills but increased in the liver, whereas hepatic glycogen was depleted. Chronic exposure was associated with histopathological damage in the gills and liver, some of which was irreversible. Yerbimat represents a potential risk for aquatic biota; therefore, we recommend that its application be carefully considered.

  18. Caribbean yellow band disease compromises the activity of catalase and glutathione S-transferase in the reef-building coral Orbicella faveolata exposed to anthracene.

    Science.gov (United States)

    Montilla, Luis Miguel; Ramos, Ruth; García, Elia; Cróquer, Aldo

    2016-05-01

    Healthy and diseased corals are threatened by different anthropogenic sources, such as pollution, a problem expected to become more severe in the near future. Despite the fact that coastal pollution and coral diseases might represent a serious threat to coral reef health, there is a paucity of controlled experiments showing whether the response of diseased and healthy corals to xenobiotics differs. In this study, we exposed healthy and Caribbean yellow band disease (CYBD)-affected Orbicella faveolata colonies to 3 sublethal concentrations of anthracene to test if enzymatic responses to this hydrocarbon were compromised in CYBD-affected tissues. For this, a 2-factorial fully orthogonal design was used in a controlled laboratory bioassay, using tissue condition (2 levels: apparently healthy and diseased) and pollutant concentration (4 levels: experimental control, 10, 30 and 100 ppb concentration) as fixed factors. A permutation-based ANOVA (PERMANOVA) was used to test the effects of condition and concentration on the specific activity of 3 enzymatic biomarkers: catalase, glutathione S-transferase, and glutathione peroxidase. We found a significant interaction between the concentration of anthracene and the colony condition for catalase (Pseudo-F = 3.84, df = 3, p < 0.05) and glutathione S-transferase (Pseudo-F = 3.29, df = 3, p < 0.05). Moreover, our results indicated that the enzymatic response to anthracene in CYBD-affected tissues was compromised, as the activity of these enzymes decreased 3- to 4-fold compared to healthy tissues. These results suggest that under a potential scenario of increasing hydrocarbon coastal pollution, colonies of O. faveolata affected with CYBD might become more vulnerable to the deleterious effects of chemical pollution.

  19. Cu(II)-disulfide complexes with superoxide dismutase- and catalase-like activities protect mitochondria and whole cells against oxidative stress.

    Science.gov (United States)

    Aliaga, Margarita E; Sandoval-Acuña, Cristián; López-Alarcón, Camilo; Fuentes, Jocelyn; Speisky, Hernan

    2014-10-01

    Mitochondria are a major subcellular site of superoxide (O2(-)) formation. Conditions leading to an uncontrolled production, accumulation and/or conversion of O2(-) into hydrogen peroxide result in an increment in the intramitochondrial oxidative tone which, ultimately leads to the loss of cell viability. Recently, we reported on the ability of a series of Cu(II)-disulfide complexes to act simultaneously as SOD- and catalase-like molecules. In the present study, we addressed the potential of such compounds to protect mitochondria and cells against the oxidative stress and the cytolytic damage induced by diclofenac. Exposure of Caco-2 cells to diclofenac (250µM, 20min) led to a near 80% inhibition of mitochondrial complex I activity and almost doubled the rate of mitochondrial O2(-) production (assessed by Mitosox). A comparable increment was seen in whole cells when the oxidative tone was assessed through the largely hydrogen peroxide-dependent dichlorofluorescein (DCFH) oxidation. The increment in mitochondrial O2(-) production was totally and concentration-dependently prevented by the addition of the complexes formed between Cu(II) and the disulfides of glutathione, homocysteine, or a-dehydro-lipoic acid (20µM each); comparatively, the Cu(II)-cystine complex exerted a weaker protection. A comparable protection pattern was seen at the whole cell level, as these complexes were also effective in preventing the increment in DCFH oxidation. The mitochondrial and whole cell antioxidant protection also translated into a full protection against the cytolytic effects of diclofenac (45min). Results from the present study indicate that the here-tested Cu(II)-disulfides complexes are able to effectively protect cells against the oxidative and the lytic effects of O2(-)-overproducing mitochondria, suggesting a potential for these type of compounds to act as SOD- and catalase-like molecules under oxidative-stress conditions. Supported by FONDECYT #1110018. PMID:26461399

  20. Fipronil induced oxidative stress involves alterations in SOD1 and catalase gene expression in male mice liver: Protection by vitamins E and C.

    Science.gov (United States)

    Badgujar, Prarabdh C; Chandratre, Gauri A; Pawar, Nitin N; Telang, A G; Kurade, N P

    2016-09-01

    In the present investigation, hepatic oxidative stress induced by fipronil was evaluated in male mice. We also investigated whether pretreatment with antioxidant vitamins E and C could protect mice against these effects. Several studies conducted in cell lines have shown fipronil as a potent oxidant; however, no information is available regarding its oxidative stress inducing potential in an animal model. Out of 8 mice groups, fipronil was administered to three groups at low, medium, and high dose based on its oral LD50 (2.5, 5, and 10 mg/kg). All three doses of fipronil caused a significant increase in the serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) level with concomitant increase in the absolute and relative weight of liver. High dose of fipronil caused significant down-regulation in the hepatic mRNA expression of superoxide dismutase 1 (SOD1) and catalase (0.412 ± 0.01 and 0.376 ± 0.05-fold, respectively) as well as an increase in the lipid peroxidation (LPO). Also, decrease in the activity of antioxidant enzymes; SOD, catalase, and glutathione-S-transferase (GST) and the content of nonantioxidant enzymes; glutathione and total thiol were recorded. Histopathological examination of liver revealed dose dependant changes such as severe fatty degeneration and vacuolation leading to hepatocellular necrosis. Prior administration of vitamin E or vitamin C against fipronil high dose caused decrease in lipid peroxidation and increased activity of antioxidant enzymes. Severe reduction observed in functional activities of antioxidant enzymes was aptly substantiated by down-regulation seen in their relative mRNA expression. Thus results of the present study imply that liver is an important target organ for fipronil and similar to in vitro reports, it induces oxidative stress in the mice liver, which in turn could be responsible for its hepatotoxic nature. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1147-1158, 2016. PMID

  1. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    Science.gov (United States)

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. PMID:25511255

  2. Soluble expression of Catalase/GST fusion protein of helicobacter pylori and thrombin cleavage of GST tag on column%幽门螺杆菌Catalas/GST融合蛋白的可溶性表达及凝血酶柱上切割GST标签

    Institute of Scientific and Technical Information of China (English)

    李妍; 姜茵; 奚月; 何殿殿; 宁云山

    2012-01-01

    目的 利用GST融合基因表达系统表达幽门螺杆菌Catalase/GST融合蛋白,并利用凝血酶柱上切割GST标签.方法 将重组表达质粒Catalase/pGEX-4T-1转化大肠杆菌BL21 (DE3)感受态中并用IPTG进行诱导表达,菌体经反复冻融、溶菌酶裂解及超声破菌进行裂解.采用谷胱甘肽琼脂糖树脂Glutathione Sepharose 4B对Catalase/GST融合蛋白可溶性表达上清进行纯化,并同时利用凝血酶柱上切割GST标签,用鼠抗Catalase抗体对纯化产物进行Western blot鉴定.结果 高效表达出相对分子质量约85 kDa的Catalase/GST融合蛋白,以部分可溶性的形式表达,凝血酶柱上成功地切割了GST标签,Catalase蛋白能被鼠抗Catalase单克隆抗体识别.结论 成功表达了Catalase/GST融合蛋白并柱上切割了GST标签,为深入研究Catalase的功能奠定了基础.%OBJECTIVE To express Catalase/GST fusion protein by GST gene expression system and cleave GST-tag on column using thrombin. METHODS The recombinant expression plasmid Catalase/pGEX4T-l was transformed into E. Coli BL21 (DE3) component cell and induced by IPTG. The bacterial sediment was lysed by repeating freezing and thawing, lysozyme lysis and ultrasonication. Catalase/GST fusion protein was purified by Glutathione Sepharose 4B and cleaved the GST-tag on column using thrombin. Purified Catalase was identified by anti-Catalase monoclonal antibody (mAb) using Western blot. RESULTS The fusion Catalase/GST was partly expressed in soluble form with relative molecular mass of 85kDa. Thrombin cleaved the GST tag on column and Catalase protein was recognized by mouse anti-Catalase mAb. CONCLUSION The recombinant Catalase/GST is successfully expressed and GST-tag is cleaved on column, which lays a foundation for further study on function of Catalase protein.

  3. 过氧化氢酶基因多态性与疾病相关性的研究%The research of association of catalase gene polymorphisms with diseases

    Institute of Scientific and Technical Information of China (English)

    涂茜; 单可人; 官志忠; 任锡麟

    2010-01-01

    Catalase is one of three enzymes within the important huamn antioxidant enzyme system, which also includes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). They coordinate to reduce the production of active oxygen free radicals , to prevent lipid peroxidation and its intermediate metabolites from damaging human body, and to maintain oxidative-antioxidative balance. Catalase gene polymorphisms,and its haplotypes may be related to enzyme activity and transcriptional activity, and thus affect the sensitivity to some human diseases in different individuals. The study reviewed the structure and function of catalase, and gene polymorphism and its association with human diseases.%过氧化氢酶(catalase,CAT)是人体内很重要的一种抗氧化酶,它与超氧化物歧化酶(superoxide dismutase,SOD),谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)共同构成人体重要的抗氧化酶系统,三者协同,减少了活性氧自由基的产生,防止脂质过氧化及其中间代谢产物对机体的损害,维持体内氧化-抗氧化平衡.过氧化氢酶的基因多态性可能与该酶的活性及转录活性有关,从而影响个体间对疾病的易感性不同.

  4. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Analysis of Gram-Positive, Catalase-Negative Cocci Not Belonging to the Streptococcus or Enterococcus Genus and Benefits of Database Extension

    DEFF Research Database (Denmark)

    Christensen, Jens Jørgen; Dargis, Rimtas; Hammer, Monja;

    2012-01-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry with a Bruker Daltonics microflex LT system was applied to 90 well-characterized catalase-negative, Gram-positive cocci not belonging to the streptococci or enterococci. Biotyper version 2.0.43.1 software was...

  5. Haemoprotein b-590 (Escherichia coli), a reducible catalase and peroxidase: evidence for its close relationship to hydroperoxidase I and a 'cytochrome a1b' preparation.

    Science.gov (United States)

    Poole, R K; Baines, B S; Appleby, C A

    1986-06-01

    A reducible hydroperoxidase, haemoprotein b-590, has been purified 16-fold from a soluble fraction of Escherichia coli K12, grown anaerobically with glycerol and fumarate. The Mr of the native protein, determined by gel filtration, was 331,000 although a minor, smaller species with a Mr of 188,000 was also detected; both had catalase activities. Based on the subunit Mr, determined from SDS gel electrophoresis to be 75,000, the above species are tentatively identified as tetramers and dimers, respectively. The isoelectric point of both species was 4.4. The absorption spectrum of the isolated haemoprotein is typical of ferric, high-spin haem. The A405/A280 ratio never exceeded 0.27, a value half of that obtained for E. coli hydroperoxidase I. On reduction with dithionite, the gamma, beta, and alpha bands were at 441, 559 and 590 nm respectively, the alpha-band being unusually distinct. Treatment of the reduced form with CO gave a sharp prominent gamma-band at 426 nm and caused significant shifts of the alpha and beta bands to shorter (574 and 545 nm) wavelengths. The pyridine haemochrome spectra showed the haem to be protohaem IX; the spectra were featureless between 580 and 630 nm, thus excluding the presence of haem a. However, some features of the difference spectra of the haemoprotein were reminiscent of cytochrome a1, notably the maxima in reduced minus oxidized spectra at 444 and 593 nm and the peaks and troughs in CO difference spectra at 426 and 446 nm respectively. The haemoprotein had high catalase activity: Vmax was 2.3 X 10(6) mol H2O2 (mol haem)-1 min-1 and the Km was 11 mM. At 10 mM-H2O2 the first order rate constant was 0.3 X 10(7) M-1 s-1. The haemoprotein was also a peroxidase with o-dianisidine or 2,3',6-trichloroindophenol as substrates; for the latter substrate, the Km was 0.18 mM. It is concluded that haemoprotein b-590 strongly resembles the hydroperoxidase I purified by Claiborne & Fridovich (Journal of Biological Chemistry 254, 4245-4252, 1979

  6. 以Fe(Ⅲ)改性胶原纤维为载体固定过氧化氢酶%Immobilization of catalase on Fe (Ⅲ) modified collagen fiber

    Institute of Scientific and Technical Information of China (English)

    陈爽; 宋娜; 廖学品; 石碧

    2011-01-01

    将胶原纤维用三价铁改性后作为载体,通过戊二醛的交联作用将过氧化氢酶固定在该载体上.制备的固定化过氧化氢酶蛋白固载量为16.7 mg/g,酶活收率为35%.研究了固定化酶与自由酶的最适pH、最适温度、热稳定性、贮存稳定性及操作稳定性.结果表明:过氧化氢酶经此法固定化后,最适pH及最适温度与自由酶相同,分别为pH 7.0和25℃;但固定化酶的热稳定性显著提高,在75℃保存5 h后,仍能保留30%的活力,而自由酶则完全失活;固定化酶在室温下保存12 d后,酶活力仍保持在88%以上,而自由酶在此条件下则完全失活;此外,固定化过氧化氢酶还表现出了良好的操作稳定性,在室温下连续反应26次后,相对活力为57%.该研究表明胶原纤维可作为固定化过氧化%Fe (III) modified collagen fibers were used to immobilize catalase through the cross-linking of glutaraldehyde. The loading amount of catalase on the supporting matrix was 16.7 mg/g, and 35% enzymatic activity was remained. A series of experiments were conducted on free and immobilized catalase in order to investigate their optimal pH and temperature, and the thermal, storage and operation stability. Results suggest that the free and immobilized catalase prefer similar pH and temperature condition, which were pH 7.0 and 25 ℃. It should be noted that the thermal stability of catalase was considerably improved after immobilization owing to the fact that the enzyme kept 30% of relative activity after incubation at 75 ℃ for 5 h. On the contrary, the free catalase was completely inactive. As for the storage stability, the immobilized catalase kept 88% of relative activity after stored at room temperature for 12 days while the free one was completely inactive under the same conditions. Moreover, the immobilized catalase preserved 57% of relative activity after being reused 26 times, exhibiting excellent operation stability. Consequently

  7. Plasmonic Enzyme-Linked Immunosorbent Assay Using Nanospherical Brushes as a Catalase Container for Colorimetric Detection of Ultralow Concentrations of Listeria monocytogenes.

    Science.gov (United States)

    Chen, Rui; Huang, Xiaolin; Xu, Hengyi; Xiong, Yonghua; Li, Yanbin

    2015-12-30

    Plasmonic enzyme-linked immunosorbent assay (pELISA) based on catalase (CAT)-mediated gold nanoparticle growth exhibits ultrahigh sensitivity for detecting disease-related biomarkers using sandwich formats. However, the limit of detection (LOD) of this strategy for Listeria monocytogenes is only around 10(3) CFU/mL, which considerably exceeds the amount of L. monocytogenes commonly present in food products (container" to increase enzyme loading for enhancing the detection signal. Under optimal conditions, the proposed pELISA exhibits good specificity and excellent sensitivity for L. monocytogenes with a LOD of 8 × 10(1) CFU/mL in 0.01 M phosphate-buffered saline, via a reaction that can be discriminated by the naked eye. The LOD obtained by this method was 2 and 5 orders of magnitude lower than that of conventional CAT-based pELISA and horseradish peroxidase (HRP)-based conventional ELISA, respectively. Coupled with large-volume immunomagnetic separation, the LOD for L. monocytogenes-spiked lettuce samples reached 8 × 10(1) CFU/g. The improved pELISA also exhibited a great potential in detecting a single cell of L. monocytogenes in 100 μL of solution.

  8. Specific amplification of gene encoding N-terminal region of catalase-peroxidase protein (KatG-N) for diagnosis of disseminated MAC disease in HIV patients.

    Science.gov (United States)

    Latawa, Romica; Singh, Krishna Kumar; Wanchu, Ajay; Sethi, Sunil; Sharma, Kusum; Sharma, Aman; Laal, Suman; Verma, Indu

    2014-10-01

    Disseminated Mycobacterium avium-intracellulare complex (MAC) infection is considered as severe complication of advanced HIV/AIDS disease. Currently available various laboratory investigations have not only limited ability to discriminate between MAC infection and tuberculosis but are also laborious and time consuming. The aim of this study was, therefore, to design a molecular-based strategy for specific detection of MAC and its differentiation from Mycobacterium tuberculosis (M. tb) isolated from the blood specimens of HIV patients. A simple PCR was developed based on the amplification of 120-bp katG-N gene corresponding to the first 40 amino acids of N-terminal catalase-peroxidase (KatG) protein of Mycobacterium avium that shows only ~13% sequence homology by clustal W alignment to N-terminal region of M. tb KatG protein. This assay allowed the accurate and rapid detection of MAC bacteremia, distinguishing it from M. tb in a single PCR reaction without any need for sequencing or hybridization protocol to be performed thereafter. This study produced enough evidence that a significant proportion of Indian HIV patients have disseminated MAC bacteremia, suggesting the utility of M. avium katG-N gene PCR for early detection of MAC disease in HIV patients.

  9. Sesamin Modulates Tyrosine Hydroxylase, Superoxide Dismutase, Catalase, Inducible No Synthase and Interleukin-6 Expression in Dopaminergic Cells Under Mpp+-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Vicky Lahaie-Collins

    2008-01-01

    Full Text Available Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson's disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP+ ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP+-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP+-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP+ stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP+-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.

  10. Modulation of the Activities of Catalase, Cu-Zn, Mn Superoxide Dismutase, and Glutathione Peroxidase in Adipocyte from Ovariectomised Female Rats with Metabolic Syndrome

    Science.gov (United States)

    Guerra, Rebeca Cambray; Zuñiga-Muñoz, Alejandra; Guarner Lans, Verónica; Díaz-Díaz, Eulises; Tena Betancourt, Carlos Alberto; Pérez-Torres, Israel

    2014-01-01

    The aim of this study was to evaluate the association between estrogen removal, antioxidant enzymes, and oxidative stress generated by obesity in a MS female rat model. Thirty two female Wistar rats were divided into 4 groups: Control (C), MS, MS ovariectomized (Ovx), and MS Ovx plus estradiol (E2). MS was induced by administering 30% sucrose to drinking water for 24 weeks. After sacrifice, intra-abdominal fat was dissected; adipocytes were isolated and lipid peroxidation, non-enzymatic antioxidant capacity, and the activities of Cu-Zn and Mn superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined. There were no significant differences in the activities of Cu-Zn, Mn SOD, CAT, and GPx between the C and MS groups, but in the MS Ovx group there was a statistically significant decrease in the activities of these enzymes when compared to MS and MS Ovx+E2. The increased lipid peroxidation and nonenzymatic antioxidant capacity found in MS Ovx was significantly decreased when compared to MS and MS Ovx+E2. In conclusion, the removal of E2 by ovariectomy decreases the activity of the antioxidant enzymes in the intra-abdominal tissue of MS female rats; this is reflected by increased lipid peroxidation and decreased nonenzymatic antioxidant capacity. PMID:24987414

  11. Modulation of the Activities of Catalase, Cu-Zn, Mn Superoxide Dismutase, and Glutathione Peroxidase in Adipocyte from Ovariectomised Female Rats with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Rebeca Cambray Guerra

    2014-01-01

    Full Text Available The aim of this study was to evaluate the association between estrogen removal, antioxidant enzymes, and oxidative stress generated by obesity in a MS female rat model. Thirty two female Wistar rats were divided into 4 groups: Control (C, MS, MS ovariectomized (Ovx, and MS Ovx plus estradiol (E2. MS was induced by administering 30% sucrose to drinking water for 24 weeks. After sacrifice, intra-abdominal fat was dissected; adipocytes were isolated and lipid peroxidation, non-enzymatic antioxidant capacity, and the activities of Cu-Zn and Mn superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx were determined. There were no significant differences in the activities of Cu-Zn, Mn SOD, CAT, and GPx between the C and MS groups, but in the MS Ovx group there was a statistically significant decrease in the activities of these enzymes when compared to MS and MS Ovx+E2. The increased lipid peroxidation and nonenzymatic antioxidant capacity found in MS Ovx was significantly decreased when compared to MS and MS Ovx+E2. In conclusion, the removal of E2 by ovariectomy decreases the activity of the antioxidant enzymes in the intra-abdominal tissue of MS female rats; this is reflected by increased lipid peroxidation and decreased nonenzymatic antioxidant capacity.

  12. Nucleotide diversity and gene expression of Catalase and Glutathione peroxidase in irradiated Scots pine (Pinus sylvestris L.) from the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    In the Chernobyl exclusion zone forest trees have to tolerate and to adapt to ionizing radiation, therefore the molecular basis of their adaptive responses is of the utmost interest. Based on SNP analysis and real time PCR nucleotide diversity and expression profiles of gene fragments of catalase (Cat) and glutathione peroxidase (GPx), which are known as radical scavenging genes, were analysed in the needles of irradiated pine trees of the Chernobyl exclusion zone. In acutely and chronically irradiated trees (50 years old) planted before the accident a higher nucleotide diversity of Cat and more somatic mutations were found compared to their control. Chronically irradiated trees (20 years old) planted after the accident showed a similar nucleotide diversity of Cat compared to their control and in both collectives one somatic mutation was found. The nucleotide diversity of GPx was higher in all analysed trees compared to Cat. No somatic mutation events were found in GPx. For both gene fragments, no association between the received dose in a tree and the nucleotide diversity and mutation events was detected. The expression profiles of Cat and GPx in acutely and chronically and in chronically irradiated trees were similar. Compared to their corresponding control collectives, Cat was up-regulated and GPx slightly down-regulated.

  13. Lipid peroxidation as pathway of aluminium cytotoxicity in human skin fibroblast cultures: prevention by superoxide dismutase+catalase and vitamins E and C.

    Science.gov (United States)

    Anane, R; Creppy, E E

    2001-09-01

    Lipid peroxidation is one of the main manifestations of oxidative damage and has been found to play an important role in the toxicity and carcinogenicity of many xenobiotics. In the present study, we investigated the possible induction of lipid peroxidation by aluminium in human foreskin fibroblast cultures by assaying the malondialdehyde (MDA) produced inside the cells. The MDA-thiobarbituric acid (TBA) adduct was assayed by HPLC using fluorometric quantification after extraction in n-butanol. Lactate dehydrogenase (LDH) release was used as a marker of aluminium toxicity. MDA production was significantly increased after 24 h incubation with aluminium and paralleled LDH release. Superoxide dismutase (SOD)+catalase and vitamins C and E added in the culture medium as oxygen radical and free radical scavengers were efficient in preventing MDA production by aluminium, indicating that oxidative processes are one of the main pathways whereby this metal induces cytotoxicity. The latter is also largely prevented, thus confirming the link between oxidative stress induced by aluminium and its cytotoxicity in human skin fibroblasts.

  14. Disruption of AtWNK8 Enhances Tolerance of Arabidopsis to Salt and Osmotic Stresses via Modulating Proline Content and Activities of Catalase and Peroxidase

    Directory of Open Access Journals (Sweden)

    Hong Liao

    2013-03-01

    Full Text Available With no lysine kinases (WNKs play important roles in plant growth and development. However, its role in salt and osmotic stress tolerance is unclear. Here, we report that AtWNK8 is mainly expressed in primary root, hypocotyl, stamen and pistil and is induced by NaCl and sorbitol treatment. Compared to the wild-type, the T-DNA knock-out wnk8 mutant was more tolerant to severe salinity and osmotic stresses, as indicated by 27% and 198% more fresh weight in the NaCl and sorbitol treatment, respectively. The wnk8 mutant also accumulated 1.43-fold more proline than the wild-type in the sorbitol treatment. Under NaCl and sorbitol stresses, catalase (CAT activity in wnk8 mutant was 1.92- and 3.7-times of that in Col-0, respectively. Similarly, under salt and osmotic stress conditions, peroxidase (POD activities in wnk8 mutant were 1.81- and 1.58-times of that in Col-0, respectively. Taken together, we revealed that maintaining higher CAT and POD activities might be one of the reasons that the disruption of AtWNK8 enhances the tolerance to salt stress, and accumulating more proline and higher activities of CAT and POD might result in the higher tolerance of WNK8 to osmotic stress.

  15. Molecular Cloning, Characterization, and Expression of a Catalase Gene in the Japanese Scallop Mizuhopecten yessoensis Induced in the Presence of Cadmium

    Science.gov (United States)

    Gao, Jialong; Ishizaki, Shoichiro; Nagashima, Yuji

    2016-03-01

    Cadmium (Cd) is known to influence the oxidative status of marine organisms and can induce the formation of reactive oxygen species (ROS). Catalase (CAT) is one of the important enzymes involved in scavenging high levels of ROS. In present study, we cloned CAT cDNA and investigated the response of this enzyme at the transcriptional level in the Japanese scallop Mizuhopecten yessoensis exposed to Cd. The full-length CAT cDNA (MyCAT) of 1,870 nucleotides including a 57 bp 5'-UTR, a coding sequence of 1,500 bp and a 313 bp 3'-UTR were identified from the scallop. The deduced amino acid sequence of MyCAT corresponds to 499 amino acids with predicted molecular weight of 56.48 kDa and contains highly conserved motifs of the proximal heme-binding site RLFSYSTH, proximal active signature FNRERIPERVVHAKGGG and three catalytic amino acid residues His72, Asn145, and Tyr355. Its significant homology to CATs from multiple alignments revealed that MyCAT had a high identity with CATs from other mollusks. CAT mRNA expression analysis revealed that expression level was highest in the digestive gland ( p antioxidant enzymes such as CAT play important roles in counteracting Cd stress in M. yessoensis.

  16. Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice

    Directory of Open Access Journals (Sweden)

    Corthier Gérard

    2007-07-01

    Full Text Available Abstract Background Human immune cells generate large amounts of reactive oxygen species (ROS throughout the respiratory burst that occurs during inflammation. In inflammatory bowel diseases, a sustained and abnormal activation of the immune system results in oxidative stress in the digestive tract and in a loss of intestinal homeostasis. We previously showed that the heterologous production of the Lactobacillus plantarum ATCC14431 manganese-dependant catalase (MnKat in Lb. casei BL23 successfully enhances its survival when exposed to oxidative stress. In this study, we evaluated the preventive effects of this antioxidative Lb. casei strain in a murine model of dextran sodium sulfate (DSS-induced moderate colitis. Results Either Lb. casei BL23 MnKat- or MnKat+ was administered daily to mice treated with DSS for 10 days. In contrast to control mice treated with PBS for which DSS induced bleeding diarrhea and mucosal lesions, mice treated with both Lb. casei strains presented a significant (p Conclusion No contribution of MnKat to the protective effect from epithelial damage has been observed in the tested conditions. In contrast, these results confirm the high interest of Lb. casei as an anti-inflammatory probiotic strain.

  17. Role of Burkholderia pseudomallei Sigma N2 in Amino Acids Utilization and in Regulation of Catalase E Expression at the Transcriptional Level

    Directory of Open Access Journals (Sweden)

    Duong Thi Hong Diep

    2015-01-01

    Full Text Available Burkholderia pseudomallei is the causative agent of melioidosis. The complete genome sequences of this pathogen have been revealed, which explain some pathogenic mechanisms. In various hostile conditions, for example, during nitrogen and amino acid starvation, bacteria can utilize alternative sigma factors such as RpoS and RpoN to modulate genes expression for their adaptation and survival. In this study, we demonstrate that mutagenesis of rpoN2, which lies on chromosome 2 of B. pseudomallei and encodes a homologue of the sigma factor RpoN, did not alter nitrogen and amino acid utilization of the bacterium. However, introduction of B. pseudomallei rpoN2 into E. coli strain deficient for rpoN restored the ability to utilize amino acids. Moreover, comparative partial proteomic analysis of the B. pseudomallei wild type and its rpoN2 isogenic mutant was performed to elucidate its amino acids utilization property which was comparable to its function found in the complementation assay. By contrast, the rpoN2 mutant exhibited decreased katE expression at the transcriptional and translational levels. Our finding indicates that B. pseudomallei RpoN2 is involved in a specific function in the regulation of catalase E expression.

  18. Genome-wide Screening of Regulators of Catalase Expression: ROLE OF A TRANSCRIPTION COMPLEX AND HISTONE AND tRNA MODIFICATION COMPLEXES ON ADAPTATION TO STRESS.

    Science.gov (United States)

    García, Patricia; Encinar Del Dedo, Javier; Ayté, José; Hidalgo, Elena

    2016-01-01

    In response to environmental cues, the mitogen-activated protein kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the Spt-Ada-Gcn5-acetyl transferase or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes, and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS, and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides.

  19. Manganese superoxide dismutase (SOD2/MnSOD)/catalase and SOD2/GPx1 ratios as biomarkers for tumor progression and metastasis in prostate, colon, and lung cancer.

    Science.gov (United States)

    Miar, Ana; Hevia, David; Muñoz-Cimadevilla, Henar; Astudillo, Aurora; Velasco, Julio; Sainz, Rosa M; Mayo, Juan C

    2015-08-01

    The role of manganese-dependent superoxide dismutase (SOD2/MnSOD) during tumor progression has been studied for several decades with controversial results. While SOD2 downregulation was initially associated with tumor initiation and was proposed as a tumor suppressor gene, recent studies have reported that SOD2 might favor tumor progression and dissemination. To our knowledge this is the first time that changes in SOD2 expression in three different types of tumors, i.e., prostate, lung, and colon cancer, are studied by analyzing both SOD2 mRNA and protein levels in a total of 246 patients' samples. In prostate samples, SOD2 protein levels were also increased, especially in middle stage tumors. In the case of colon and lung tumors both mRNA and protein SOD2 levels were increased in malignant tissues compared to those in nontumor samples. More importantly, all metastases analyzed showed increased levels of SOD2 when compared to those of normal primary tissue and healthy adjacent tissue. Together, these results suggest that a common redox imbalance in these three types of tumor occurs at intermediate stages which then might favor migration and invasion, leading to a more aggressive cancer type. Consequently, the ratios SOD2/catalase and SOD2/Gpx1 could be considered as potential markers during progression from tumor growth to metastasis.

  20. Effect of sperm concentration on characteristics and fertilization capacity of rooster sperm frozen in the presence of the antioxidants catalase and vitamin E.

    Science.gov (United States)

    Moghbeli, Morteza; Kohram, Hamid; Zare-Shahaneh, Ahmad; Zhandi, Mahdi; Sharideh, Hossein; Sharafi, Mohsen

    2016-10-01

    The objective of this study conducted was to determine the influence of different levels of sperm concentration, including catalase (CAT) and vitamin E (VitE) in rooster semen extender on postthawed quality and fertility of rooster semen. Semen was collected twice a week from six roosters (Arian) and diluted according to experimental treatments consisting of sperm suspensions containing different sperm concentrations (200, 400, and 600 × 106 sperm/mL) without antioxidant supplementation as control (Con) groups (Con200, Con400, and Con600, respectively), sperm suspensions containing different sperm concentrations (200, 400, and 600 × 106 sperm/mL) supplemented with 5-μg/mL VitE (VitE200, VitE400, and VitE600, respectively) and different sperm concentrations (200, 400, and 600 × 106 sperm/mL) supplementation with 100 IU/mL CAT (CAT200, CAT400, and CAT600, respectively). After thawing; sperm motility, membrane integrity, and mitochondrial function were assessed. Fertility and hatchability rates were determined by using 100 artificially inseminated hens. The percentage of total motility (TM) and activity of mitochondria decreased (P  0.05) on fertility and hatchability rates. In conclusion, although adding VitE and CAT in extender with different levels of sperm concentration improved postthawed quality of rooster semen, but adding VitE and CAT in the extender have no effect on fertility rate. PMID:27444422

  1. Nickel in Soil Modifies Sensitivity to Diazinon Measured by the Activity of Acetylcholinesterase, Catalase, and Glutathione S-Transferase in Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Agnieszka Zawisza-Raszka

    2013-01-01

    Full Text Available Nickel in typical soils is present in a very low concentration, but in the contaminated soils it occurs in locally elevated concentrations. The aim of this study was to examine the effect of nickel in the concentrations of 300 (very high, close to LOEC for reproduction and 900 (extremely high, close to LOEC for mortality mg/kg dry soil on the life history and acetylcholinesterase, catalase, and glutathione S-transferase activities in earthworm Eisenia fetida and to establish how nickel modifies the sensitivity to organophosphorous pesticide—diazinon. Cocoons production and juveniles’ number were significantly lower only in groups exposed to Ni in the concentration of 900 mg/kg dry soil for two months. Diazinon administration diminished the AChE activity in the GI tract and in the body wall. The interaction between diazinon and nickel was observed, and, in consequence, the AChE activity after the pesticide treatment was similar to controls in worms preexposed to nickel. Both pesticide administration and exposure to nickel caused an increase in the GST activity in examined organs and CAT activity in body wall. Both biometric and development data and simple enzymatic analysis, especially the AChE and GST, show a Ni pretreatment effect on the subsequent susceptibility to pesticide.

  2. Effect of Allium flavum L. and Allium melanantherum Panč. Extracts on Oxidative DNA Damage and Antioxidative Enzymes Superoxide Dismutase and Catalase.

    Science.gov (United States)

    Mitić-Ćulafić, Dragana; Nikolić, Biljana; Simin, Nataša; Jasnić, Nebojša; Četojević-Simin, Dragana; Krstić, Maja; Knežević-Vukčević, Jelena

    2016-03-01

    Allium flavum L. and Allium melanantherum Panč. are wild growing plants used in traditional diet in Balkan region. While chemical composition and some biological activities of A. flavum have been reported, A. melanantherum, as an endemic in the Balkan Peninsula, has never been comprehensively examined. After chemical characterization of A. melanantherum, we examined the protective effect of methanol extracts of both species against t-butyl hydro-peroxide (t-BOOH)-induced DNA damage and mutagenesis. The bacterial reverse mutation assay was performed on Escherichia coli WP2 oxyR strain. DNA damage was monitored in human fetal lung fibroblasts (MRC-5) with alkaline comet assay. Obtained results indicated that extracts reduced t-BOOH-induced DNA damage up to 70 and 72% for A. flavum and A. melanantherum extract, respectively, and showed no effect on t-BOOH-induced mutagenesis. Since the results indicated modulatory effect on cell-mediated antioxidative defense, the effect of extracts on total protein content, and superoxide dismutase (SOD) and catalase (CAT) amounts and activities were monitored. Both extracts increased total protein content, while the increase of enzyme amount and activity was obtained only with A. melanantherum extract and restricted to CAT. The activity of CuZnSOD family was not affected, while SOD1 and SOD2 amounts were significantly decreased, indicating potential involvement of extracellular CuZnSOD. Obtained results strongly support the traditional use of A. flavum and A. melanantherum in nutrition and recommend them for further study. PMID:26590605

  3. Catalase and superoxide dismutase activities and the total protein content of protocorm-like bodies of Dendrobium sonia-28 subjected to vitrification.

    Science.gov (United States)

    Poobathy, Ranjetta; Sinniah, Uma Rani; Xavier, Rathinam; Subramaniam, Sreeramanan

    2013-07-01

    Dendrobium sonia-28 is an important ornamental orchid in the Malaysian flower industry. However, the genus faces both low germination rates and the risk of producing heterozygous progenies. Cryopreservation is currently the favoured long-term storage method for orchids with propagation problems. Vitrification, a frequently used cryopreservation technique, involves the application of pretreatments and cryoprotectants to protect and recover explants during and after storage in liquid nitrogen. However, cryopreservation may cause osmotic injuries and toxicity to cryopreserved explants from the use of highly concentrated additives, and cellular injuries from thawing, devitrification and ice formation. Reactive oxygen species (ROS), occurring during dehydration and cryopreservation, may also cause membrane damage. Plants possess efficient antioxidant systems such as the superoxide dismutase (SOD) and catalase (CAT) enzymes to scavenge ROS during low temperature stress. In this study, protocorm-like bodies (PLBs) of Dendrobium sonia-28 were assayed for the total protein content, and both SOD and CAT activities, at each stage of a vitrification exercise to observe for deleterious stages in the protocol. The results indicated that cryopreserved PLBs of Dendrobium sonia-28 underwent excessive post-thawing oxidative stress due to decreased levels of the CAT enzyme at the post-thawing recovery stage, which contributed to the poor survival rates of the cryopreserved PLBs.

  4. Assessment of tick antioxidant responses to exogenous oxidative stressors and insight into the role of catalase in the reproductive fitness of the Gulf Coast tick, Amblyomma maculatum.

    Science.gov (United States)

    Kumar, D; Budachetri, K; Meyers, V C; Karim, S

    2016-06-01

    As obligate blood-sucking ectoparasites, to avoid tissue damage, ticks must neutralize the reactive oxygen species (ROS) generated from uptake and digestion of a bloodmeal. Consequently, ticks utilize a battery of antioxidant molecules, including catalase (CAT), an enzyme that converts hydrogen peroxide (H2 O2 ) into water and oxygen. Here, we investigated the tick antioxidant machinery by exogenous injection of sublethal doses of H2 O2 or paraquat. The relative transcript levels of selected Amblyomma maculatum antioxidant targets in tissues were determined by quantitative reverse transcriptase PCR following treatment. The results showed 2-16-fold increases in target antioxidant gene transcripts, signifying the ability of Am. maculatum to regulate its antioxidant machinery when exposed to increased ROS levels. Next, RNA interference was used to determine the functional role of CAT in haematophagy, redox homeostasis and reproductive fitness. CAT gene silencing was confirmed by transcript depletion within tick tissues; however, CAT knockdown alone did not interfere with tick haematophagy or phenotype, as confirmed by the resulting differential expression of antioxidant genes, thereby indicating an alternative mechanism for ROS control. Interestingly, double stranded RNA of CAT gene (dsCAT) and the CAT inhibitor, 3-aminotriazole, together reduced tick reproductive fitness via a marked reduction in egg mass and larval eclosion rates, highlighting a role for CAT in tick redox-homeostasis, making it a potential target for tick control. PMID:26919203

  5. Genome-wide Screening of Regulators of Catalase Expression: ROLE OF A TRANSCRIPTION COMPLEX AND HISTONE AND tRNA MODIFICATION COMPLEXES ON ADAPTATION TO STRESS.

    Science.gov (United States)

    García, Patricia; Encinar Del Dedo, Javier; Ayté, José; Hidalgo, Elena

    2016-01-01

    In response to environmental cues, the mitogen-activated protein kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the Spt-Ada-Gcn5-acetyl transferase or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes, and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS, and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides. PMID:26567340

  6. Sperm characteristics and heterologous in vitro fertilisation capacity of Iberian ibex (Capra pyrenaica) epididymal sperm, frozen in the presence of the enzymatic antioxidant catalase.

    Science.gov (United States)

    López-Saucedo, J; Paramio, M T; Fierro, R; Izquierdo, D; Catalá, M G; Coloma, M A; Toledano-Díaz, A; López-Sebastián, A; Santiago-Moreno, J

    2014-06-01

    The aim of this work was to evaluate the protective effect of catalase (CAT) on frozen/thawed ibex epididymal sperm recovered post mortem, and to detect any harmful effect this might have on sperm fertilisation capacity. Epididymal spermatozoa were diluted using a Tris-citric acid-glucose medium (TCG) composed of 3.8% Tris (w/v), 2.2% citric acid (w/v), 0.6% glucose (w/v), 5% glycerol (v/v), and 6% egg yolk (v/v). Sperm masses from the right epididymis were diluted with TCG medium, while those from the left were diluted with TCG medium supplemented with 200IU/mL CAT. Heterologous in vitro fertilisation (IVF) was used to assess the fertilisation capacity of this sperm. The addition of CAT to the extender did not improve frozen/thawed sperm variables. Moreover, a reduced fertilisation capacity was detected: sperm diluted with TCG provided 25.5% 2PN zygotes, while just 13.2% was recorded for that diluted with TCG-CAT (PTCG sperm than with the TCG-CAT sperm (16.7% vs. 7.6%). The use of 200IU/mL CAT as an additive cannot, therefore, be recommended for the preservation of ibex epididymal sperm. Other antioxidants should, however, be tested in both this and related wild mountain ungulates. PMID:24699464

  7. 电泳鉴定脱墨浆生产系统过氧化氢酶的研究%A PRELIMINARY STUDY ON APPLYING ELECTOPHORESIS TO IDENTIFY CATALASE IN DIP PRODUCTION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    刘蓓; 王海毅

    2008-01-01

    This paper discussed the experimental conditions of polyacrylamide gel electrophoresis (PAGE) to identify catalase in deinked pulp (DIP) production systems and analyzed the isozymes of catalase. The results indicated that the sample size of repulping stage was 3 μL; the sample size of the first concentration stage was 5 μL; the sample size of the second concentration stage was 10 μL; the isolation gel concentration was 9% and the concentration gel concentration was 4%. According to results of identification, there were 6 enzyme bands in production systems and each section had different enzyme bands. Repulping stage had the largest number of catalase isozymes species and there were 4 bands in the gel. The first concentration stage had three bands, two of which were unique ones. The second concentration only contained one catalase band what each stages had with the weakest enzyme activity. By analyzing this phenomenon, the main reason for this was that microorganism affects the kinds of catalase. According to the electrophoresis mobility, catalase molecular size ranking was C1>C2>C3>C4>C5>C6>C7. All of them were less than the liver catalse's molecular weight in DIP system.%研究了聚丙烯酰胺凝胶电泳(polyacrylamide gel electrophoresis,简称PAGE)鉴定脱墨浆(DIP)生产系统中过氧化氢酶的实验条件,并对各工段过氧化氢酶同工酶进行了分析.实验结果表明,在碎浆工段点样量3 μL,一段浓缩点样量5 μL,二段浓缩点样量10 μL,浓缩胶质量分数4%,分离胶质量分数9%条件下才能得到较高质量的电泳结果.生产系统中共检测出6条酶带,各工段出现的酶带的数量不同,种类也不同,仅一条酶带在3个工段均出现,进一步探讨了此现象产生的原因,并对6种同工酶的相对分子质量进行了排序.

  8. Atividade da catalase no pulmão, rim e intestino delgado não isquemiado de ratos após reperfusão intestinal Catalase activity in lung, kidney and small bowel non-ischemic in rats after intestinal reperfusion

    OpenAIRE

    Camila de Oliveira Ferro; Vera Lucia Antunes Chagas; Marcus Fernandes de Oliveira; Pedro Lagerblad de Oliveira; Alberto Schanaider

    2010-01-01

    OBJETIVO: Avaliar a atividade catalase, após lesão por isquemia e reperfusão intestinal e estudar as alterações deste antioxidante em órgãos situados à distância do insulto inicial. MÉTODOS: Utilizaram-se 18 ratos do tipo Wistar, aleatoriamente distribuídos em três grupos. 1-Controle, 2-Simulação e 3-Isquemia/Reperfusão. Neste último, realizou-se isquemia no íleo, por 60 minutos, seguida de reperfusão por 30 minutos. No grupo 2 efetuou-se apenas uma laparotomia. Foram retirados, de todos os a...

  9. 小鼠组织中过氧化氢酶的活性与年龄的关系%Age-related changes in catalase activity in different tissues of mice

    Institute of Scientific and Technical Information of China (English)

    孔德胜; 王晓然; 李文君; 陈永春; 姚敏; 高媛

    2012-01-01

    The age-related changes in catalase activity were observed in mice liver, kidney, lung, heart, spleen, stomach and brain. The catalase activity in these tissues in mice aged of 1-month, 4-month and 18-month was determined by Permanganate Titration. The results showed that the activity of catalase varied in different tissues, in descending order as follows: liver > kidney > lung > heart, spleen, stomach > brain. The catalase in mice lung, heart, spleen, stomach and brain showed an age-related increase in the activity from 1-month to 4-month,and an age-related decrease from 4-month to 18-month. In liver and kidney, there was no significant age-associated change in the catalase activity from 1-month to 4-month, while the activity of catalase declined with increasing age from 4-month to 18-month. The age-related change of catalase activity in mice liver, kidney, lung, heart, spleen, stomach and brain suggested that the decrease of catalase activity was closely correlated with the aging process.%为观察小鼠组织中过氧化氢酶的活性与年龄的关系,采用高锰酸钾滴定法测定不同年龄(1、4、18月龄)小鼠肝、肾、肺、心、脾、胃、脑组织中过氧化氢酶的活性.结果显示:小鼠过氧化氢酶在不同组织中活性不同,活性高低顺序基本表现为:肝>肾>肺>心、脾、胃>脑;小鼠肺、心、脾、胃、脑各组织中过氧化氢酶的活性在1~4月龄间随年龄增加而增加,在4~18月龄间随年龄增加而降低;小鼠肝、肾组织中过氧化氢酶的活性在1~4月龄间与年龄相关性不显著,在4~18月龄间随年龄增加而降低.结果表明,小鼠肝、肾、肺、心、脾、胃、脑等组织中过氧化氢酶的活性随年龄变化而变化,机体过氧化氢酶活性的降低与机体衰老密切相关.

  10. Effect of Lead (Pb Exposure on the Activity of Superoxide Dismutase and Catalase in Battery Manufacturing Workers (BMW of Western Maharashtra (India with Reference to Heme biosynthesis

    Directory of Open Access Journals (Sweden)

    Kusal K. Das

    2006-12-01

    Full Text Available The aim of this study was to estimate the activity of superoxide dismutase (SOD and catalase in erythrocytes and malondialdehyde (MDA in plasma of battery manufacturing workers (BMW of Western Maharashtra (India who were occupationally exposed to lead (Pb over a long period of time (about 15 years. This study was also aimed to determine the Pb intoxication resulted in a disturbance of heme biosynthesis in BMW group. The blood Pb level of BMW group (n = 28 was found to be in the range of 25.8 – 78.0 μg/dL (mean + SD, 53.63 + 16.98 whereas in Pb unexposed control group (n = 35 the range was 2.8 – 22.0 μg/dL (mean + SD, 12.52 + 4.08. The blood level (Pb-B and urinary lead level (Pb-U were significantly increased in BMW group as compared to unexposed control. Though activated d- aminolevulinic acid dehydratase (ALAD activities in BMW group did not show any significant change when compared to control group but activated / non activated erythrocyte – ALAD activities in BMW group showed a significant increase. Erythrocyte- zinc protoporphyrin (ZPP, urinary daminolevulinic acid (ALA-U and porphobilinogen (PBG-U of BMW groups elevated significantly as compared to control. A positive correlation (r = 0.66, p 1.0 were observed in control group. Hematological study revealed a significant decrease of hemoglobin concentration, packed cell volume (% and other blood indices and a significant increase of total leucocytes count in BMW group in comparison to control group. The serum MDA content was significantly increased (p< 0.001 and the activities of antioxidant enzymes such as erythrocyte- SOD (p< 0.001 and erythrocytecatalase (p< 0.001 were significantly reduced in BMW group as compared to control group. A positive correlation (r = 0.45, p<0.02 between Pb-B and serum MDA level was observed in BMW group (Pb-B range 25.8 – 78.0 μg / dL but such significant correlation did not notice in

  11. The Green Tea Component (--Epigallocatechin-3-Gallate Sensitizes Primary Endothelial Cells to Arsenite-Induced Apoptosis by Decreasing c-Jun N-Terminal Kinase-Mediated Catalase Activity.

    Directory of Open Access Journals (Sweden)

    Jee-Youn Kim

    Full Text Available The green tea component (--epigallocatechin-3-gallate (EGCG has been shown to sensitize many different types of cancer cells to anticancer drug-induced apoptosis, although it protects against non-cancerous primary cells against toxicity from certain conditions such as exposure to arsenic (As or ultraviolet irradiation. Here, we found that EGCG promotes As-induced toxicity of primary-cultured bovine aortic endothelial cells (BAEC at doses in which treatment with each chemical alone had no such effect. Increased cell toxicity was accompanied by an increased condensed chromatin pattern and fragmented nuclei, cleaved poly(ADP-ribose polymerase (PARP, activity of the pro-apoptotic enzymes caspases 3, 8 and 9, and Bax translocation into mitochondria, suggesting the involvement of an apoptotic signaling pathway. Fluorescence activated cell sorting analysis revealed that compared with EGCG or As alone, combined EGCG and As (EGCG/As treatment significantly induced production of reactive oxygen species (ROS, which was accompanied by decreased catalase activity and increased lipid peroxidation. Pretreatment with N-acetyl-L-cysteine or catalase reversed EGCG/As-induced caspase activation and EC toxicity. EGCG/As also increased the phosphorylation of c-Jun N-terminal kinase (JNK, which was not reversed by catalase. However, pretreatment with the JNK inhibitor SP600125 reversed all of the observed effects of EGCG/As, suggesting that JNK may be the most upstream protein examined in this study. Finally, we also found that all the observed effects by EGCG/As are true for other types of EC tested. In conclusion, this is firstly to show that EGCG sensitizes non-cancerous EC to As-induced toxicity through ROS-mediated apoptosis, which was attributed at least in part to a JNK-activated decrease in catalase activity.

  12. Development of a simple bioelectrode for the electrochemical detection of hydrogen peroxide using Pichia pastoris catalase immobilized on gold nanoparticle nanotubes and polythiophene hybrid.

    Science.gov (United States)

    Nandini, Seetharamaiah; Nalini, Seetharamaiah; Sanetuntikul, Jakkid; Shanmugam, Sangaraju; Niranjana, Pathappa; Melo, Jose Savio; Suresh, Gurukar Shivappa

    2014-11-21

    In this paper, a simple and innovative electrochemical hydrogen peroxide biosensor has been proposed using catalase (CATpp) derived from Pichia pastoris as bioelectrocatalyst. The model biocomponent was immobilized on gold nanoparticle nanotubes (AuNPNTs) and polythiophene composite using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-hydroxysuccinimide (EDC-NHS) coupling reagent. In this present work, we have successfully synthesized gold nanoparticles (AuNPs) by ultrasonic irradiation. The tubular gold nanostructures containing coalesced AuNPs were obtained by sacrificial template synthesis. The assembly of AuNPNTs onto the graphite (Gr) electrode was achieved via S-Au chemisorption. The latter was pre-coated with electropolymerized thiophene (PTh) to enable S groups to bind AuNPNTs. The combination of AuNPNTs-PTh, i.e., an inorganic-organic hybrid, provides a stable enzyme immobilization platform. The physical morphology of the fabricated biosensor Gr/PTh/AuNPNTs/EDC-NHS/CATpp was investigated using scanning electron microscopy and energy-dispersive microscopy. The analytical performance of the bioelectrode was examined using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. Operational parameters such as working potential, pH, and thermal stability of the modified electrode were examined. The beneficial analytical characteristics of the proposed electrode were demonstrated. Our results indicate that the Gr/PTh/AuNPNTs/EDC-NHS/CATpp bioelectrode exhibits a wide linear range from 0.05 mM to 18.5 mM of H2O2, fast response time of 7 s, excellent sensitivity of 26.2 mA mM(-1) cm(-2), good detection limit of 0.12 μM and good Michaelis-Menten constant of 1.4 mM. In addition, the bioelectrode displayed good repeatability, high stability and acceptable reproducibility, which can be attributed to the AuNPNTs-PTh composite that provides a biocompatible micro-environment. PMID:25208248

  13. Roles of catalase (CAT) and ascorbate peroxidase (APX) genes in stress response of eggplant (Solanum melongena L.) against Cu(+2) and Zn(+2) heavy metal stresses.

    Science.gov (United States)

    Soydam-Aydın, Semra; Büyük, İlker; Cansaran-Duman, Demet; Aras, Sümer

    2015-12-01

    Eggplant (Solanum melongena L.) is a good source of minerals and vitamins and this feature makes its value comparable with tomato which is economically the most important vegetable worldwide. Due to its common usage as food and in medicines, eggplant cultivation has a growing reputation worldwide. But genetic yield potential of an eggplant variety is not always attained, and it is limited by some factors such as heavy metal contaminated soils in today's world. Today, one of the main objectives of plant stress biology and agricultural biotechnology areas is to find the genes involved in antioxidant stress response and engineering the key genes to improve the plant resistance mechanisms. In this regard, the current study was conducted to gain an idea on the roles of catalase (CAT) and ascorbate peroxidase (APX) genes in defense mechanism of eggplant (S. melongena L., Pala-49 (Turkish cultivar)) treated with different concentrations of Cu(+2) and Zn(+2). For this aim, the steady-state messenger RNA (mRNA) levels of CAT and APX genes were determined by quantitative real-time PCR (qRT-PCR) in stressed eggplants. The results of the current study showed that different concentrations of Cu(+2) and Zn(+2) stresses altered the mRNA levels of CAT and APX genes in eggplants compared to the untreated control samples. When the mRNA levels of both genes were compared, it was observed that CAT gene was more active than APX gene in eggplant samples subjected to Cu(+2) contamination. The current study highlights the importance of CAT and APX genes in response to Cu(+2) and Zn(+2) heavy metal stresses in eggplant and gives an important knowledge about this complex interaction.

  14. Host genetic variations in glutathione-S-transferases, superoxide dismutases and catalase genes influence susceptibility to malaria infection in an Indian population.

    Science.gov (United States)

    Fernandes, Rayzel C; Hasan, Marriyah; Gupta, Himanshu; Geetha, K; Rai, Padmalatha S; Hande, Manjunath H; D'Souza, Sydney C; Adhikari, Prabha; Brand, Angela; Satyamoorthy, Kapaettu

    2015-06-01

    Antioxidant enzymes can contribute to disease susceptibility or determine response to therapy in individuals with malaria. Genetic variations due to polymorphisms in host genes encoding antioxidant enzymes such as glutathione S-transferases-theta, mu, pi (GSTT, GSTM, GSTP), superoxide dismutases (SOD) and catalase (CAT), may therefore, influence inter-individual response to malaria pathology and propensity of infection caused by Plasmodium vivax (Pv) and Plasmodium falciparum (Pf). Therefore, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing, we investigated the association of deletions of GSTT1 and GSTM1, single nucleotide polymorphisms (SNPs) of GSTP1 (rs1695), SOD1 (rs2234694), SOD2 (rs4880, rs1141718), SOD3 (rs2536512) and CAT (rs1001179) in individuals infected with Pf (n = 100) and Pv (n = 100) against healthy controls (n = 150). Our data suggest a significant role for GSTM1 deletions in complicated Pv (p = 0.0007) malaria with ODDs ratio 3.8 [with 95 % confidence interval (CI) 1.9-7.4]. The results also indicated that polymorphisms present in GSTP1, SOD1 and CAT genes may be associated with malaria susceptibility (p < 0.05), whereas SOD3 polymorphism may play a role in malarial resistance (p < 0.05). In addition, we observed significant SNP-SNP interactions with synergistic genetic effects in SOD2, SOD3 and CAT genes for Pv and in SOD2 and SOD3 genes for Pf. In conclusion, our results provide convincing evidence for a relationship between polymorphisms in host antioxidant enzymes and susceptibility to malaria infection.

  15. Enhanced Reactive Oxygen Species Scavenging by Overproduction of Superoxide Dismutase and Catalase Delays Postharvest Physiological Deterioration of Cassava Storage Roots1[C][W][OA

    Science.gov (United States)

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R.; Zhang, Peng

    2013-01-01

    Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is the result of a rapid oxidative burst, which leads to discoloration of the vascular tissues due to the oxidation of phenolic compounds. In this study, coexpression of the reactive oxygen species (ROS)-scavenging enzymes copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in transgenic cassava was used to explore the intrinsic relationship between ROS scavenging and PPD occurrence. Transgenic cassava plants integrated with the expression cassette p54::MeCu/ZnSOD-35S::MeCAT1 were confirmed by Southern-blot analysis. The expression of MeCu/ZnSOD and MeCAT1 was verified by quantitative reverse transcription-polymerase chain reaction and enzymatic activity analysis both in the leaves and storage roots. Under exposure to the ROS-generating reagent methyl viologen or to hydrogen peroxide (H2O2), the transgenic plants showed higher enzymatic activities of SOD and CAT than the wild-type plants. Levels of malondialdehyde, chlorophyll degradation, lipid peroxidation, and H2O2 accumulation were dramatically reduced in the transgenic lines compared with the wild type. After harvest, the storage roots of transgenic cassava lines show a delay in their PPD response of at least 10 d, accompanied by less mitochondrial oxidation and H2O2 accumulation, compared with those of the wild type. We hypothesize that this is due to the combined ectopic expression of Cu/ZnSOD and CAT leading to an improved synergistic ROS-scavenging capacity of the roots. Our study not only sheds light on the mechanism of the PPD process but also develops an effective approach for delaying the occurrence of PPD in cassava. PMID:23344905

  16. Roles of catalase (CAT) and ascorbate peroxidase (APX) genes in stress response of eggplant (Solanum melongena L.) against Cu(+2) and Zn(+2) heavy metal stresses.

    Science.gov (United States)

    Soydam-Aydın, Semra; Büyük, İlker; Cansaran-Duman, Demet; Aras, Sümer

    2015-12-01

    Eggplant (Solanum melongena L.) is a good source of minerals and vitamins and this feature makes its value comparable with tomato which is economically the most important vegetable worldwide. Due to its common usage as food and in medicines, eggplant cultivation has a growing reputation worldwide. But genetic yield potential of an eggplant variety is not always attained, and it is limited by some factors such as heavy metal contaminated soils in today's world. Today, one of the main objectives of plant stress biology and agricultural biotechnology areas is to find the genes involved in antioxidant stress response and engineering the key genes to improve the plant resistance mechanisms. In this regard, the current study was conducted to gain an idea on the roles of catalase (CAT) and ascorbate peroxidase (APX) genes in defense mechanism of eggplant (S. melongena L., Pala-49 (Turkish cultivar)) treated with different concentrations of Cu(+2) and Zn(+2). For this aim, the steady-state messenger RNA (mRNA) levels of CAT and APX genes were determined by quantitative real-time PCR (qRT-PCR) in stressed eggplants. The results of the current study showed that different concentrations of Cu(+2) and Zn(+2) stresses altered the mRNA levels of CAT and APX genes in eggplants compared to the untreated control samples. When the mRNA levels of both genes were compared, it was observed that CAT gene was more active than APX gene in eggplant samples subjected to Cu(+2) contamination. The current study highlights the importance of CAT and APX genes in response to Cu(+2) and Zn(+2) heavy metal stresses in eggplant and gives an important knowledge about this complex interaction. PMID:26530238

  17. Disruption of the H-bond network in the main access channel of catalase-peroxidase modulates enthalpy and entropy of Fe(III) reduction.

    Science.gov (United States)

    Vlasits, Jutta; Bellei, Marzia; Jakopitsch, Christa; De Rienzo, Francesca; Furtmüller, Paul G; Zamocky, Marcel; Sola, Marco; Battistuzzi, Gianantonio; Obinger, Christian

    2010-06-01

    Catalase-peroxidases are the only heme peroxidases with substantial hydrogen peroxide dismutation activity. In order to understand the role of the redox chemistry in their bifunctional activity, catalatically-active and inactive mutant proteins have been probed in spectroelectrochemical experiments. In detail, wild-type KatG from Synechocystis has been compared with variants with (i) disrupted KatG-typical adduct (Trp122-Tyr249-Met275), (ii) mutation of the catalytic distal His123-Arg119 pair, and (iii) altered accessibility to the heme cavity (Asp152, Ser335) and modified charge at the substrate channel entrance (Glu253). A valuable insight into the mechanism of reduction potential (E degrees ') modulation in KatG has been obtained from the parameterization of the corresponding enthalpic and entropic components, determined from the analysis of the temperature dependence of E degrees '. Moreover, model structures of ferric and ferrous Synechocystis KatG have been computed and used as reference to analyze and discuss the experimental data. The results, discussed by reference to published resonance Raman data on the strength of the proximal iron-imidazole bond and catalytic properties, demonstrate that E degrees ' of the Fe(III)/Fe(II) couple is not strongly correlated with the bifunctional activity. Besides the importance of an intact Trp-Tyr-Met adduct, it is the architecture of the long and constricted main channel that distinguishes KatGs from monofunctional peroxidases. An ordered matrix of oriented water dipoles is important for H(2)O(2) oxidation. Its disruption results in modification of enthalpic and entropic contributions to E degrees ' that reflect reduction-induced changes in polarity, electrostatics, continuity and accessibility of solvent to the metal center as well as alterations in solvent reorganization.

  18. Enhancement of Superoxide Dismutase and Catalase Activities and Salt Tolerance of Euhalophyte Suaeda salsa L.by Mycorrhizal Fungus Glomus mosseae

    Institute of Scientific and Technical Information of China (English)

    LI Tao1; LIU Run-Jin; HE Xin-Hua; WANG Bao-Shan

    2012-01-01

    Arbuscular mycorrhizal (AM)-mediated plant physiological activities could contribute to plant salt tolerance.However,the biochemical mechanism by which AM fungi enhance salt tolerance of halophytic plants is unclear.A pot experiment was conducted to determine whether salt tolerance of the C3 halophyte Suaeda salsa was enhanced by the AM fungus Glomus mosseae.When 60-day-old S.salsa seedlings were subjected to 400 mmol L-1 NaC1 stress for 35 days,plant height,number of leaves and branches,shoot and root biomass,and root length of G.mosseae-colonized seedlings were significantly greater than those of the nonmycorrizal seedlings.Leaf superoxide dismutase (SOD) activity at all sampling times (weekly for 35 days after salt stress was initiated) and leaf catalase (CAT) activity at 2 and 3 weeks after salt stress was initiated were also significantly enhanced in G.mosseae-colonized S.salsa seedlings,while the content of leaf malondialdehyde (MDA),a product of membrane lipid peroxidation,was significantly reduced,indicating an alleviation of oxidative damage.The corresponding leaf isoenzymes of SOD (Fe-SOD,Cu/Zn-SOD1,and Cu/Zn-SOD2) and CAT (CAT1 and CAT2) were also significantly increased in the mycorrhizal seedlings after 14 days of 400 mmol L-1 NaC1 stress.Our results suggested that G.mosseae increased salt tolerance by increasing SOD and CAT activities and forming SOD and CAT isoforms in S.salsa seedlings.

  19. Polysaccharide-Rich Fraction of Noni Fruit (Morinda citrifolia L.) as Doxorubicin Co-Chemotherapy: Evaluation of Catalase, Macrophages, and TCD8+ Lymphocytes.

    Science.gov (United States)

    Sasmito, Ediati; Hertiani, Triana; Novlita Renggani, Tiya; Jaya Laksana, Brata

    2015-01-01

    Noni fruit (Morinda citrifolia L.) has been acknowledged for its cytotoxic and immunostimulatory activity. Our previous results on the immunomodulatory effect of a noni juice polysaccharide-rich fraction encouraged this research to evaluate the potency of the polysaccharide-rich fraction as co-chemotherapy with doxorubicin (DOX) administration. Macrophage activity (MA) was evaluated with the latex bead method. The phagocytic index (PI) was measured as the number of latex beads ingested by 100 macrophages, while the phagocytosis ratio (PR) was indicated by the percentage of macrophages that ingested three or more latex beads. The CEC was evaluated by using a commercial assay kit, while CD8+ T lymphocyte proliferation was evaluated using a flowcytometry method following in vivo administration. Thirty male Wistar rats were divided into five groups (n = 6 each). The control group received DOX via i.p. at a concentration of 4.67 mg/kg BW on days 1 and 4; four treatment groups received PF p.o. at a concentration of 25; 50; 100; 200 mg/kg BW daily, respectively, and additionally DOX i.p. 4.67 mg/kg BW (days 1 and 4) for 7 days. The phagocytic activity was not affected significantly by PF administration compared to the Dox control, but PF administration at a dose of 25 and 50 mg/kg BW has been proven to increase TCD8+ cell proliferation in combination with DOX. The catalase concentration, on the other hand, significantly decreased following PF administration at a dose of 100 mg/kg BW. The results suggest that the polysaccharide-rich fraction of noni juice might induce immunomodulatory effects via TCD8+ activation, have antioxidant activity, and thus might be a potential candidate to be used as an adjuvant to DOX chemotherapy.

  20. CATALASA, PEROXIDASA Y POLIFENOLOXIDASA EN PITAYA AMARILLA (Acanthocereus pitajaya: MADURACIÓN Y SENESCENCIA Catalase, Peroxidase and Polyphenoloxidase from Pitaya Amarilla (Acanthocereus pitajaya Fruits: Ripening and Senescense

    Directory of Open Access Journals (Sweden)

    CARLOS EDUARDO NARVÁEZ CUENCA

    Full Text Available Se evaluó la relación entre algunos síntomas de deterioro y la actividad de enzimas vinculadas tanto con el pardeamiento como con el sistema antioxidante en frutos de pitaya amarilla (Acanthocereus pitajaya cosechados en su madurez fisiológica y almacenados durante 15 días a 24 °C y 85% de humedad relativa. En los frutos enteros se evaluaron la intensidad respiratoria y el color externo; en la corteza se determinaron la actividad de catalasa (CAT, peroxidasa (POD y polifenoloxidasa (PFO. Los frutos exhibieron un comportamiento climatérico luego de seis días de la cosecha. El pardeamiento de la corteza tuvo una relación directa con la actividad de POD y PFO. La máxima actividad de CAT observada en el climaterio responde al balance adecuado con la alta producción de H2O2 esperada en ese momento.We evaluate the relation between some symptoms of deterioration and the activity of enzymes entailed with both the browning and the antioxiding system in fruits of yellow pitaya (Acanthocereus pitajaya, harvested in its physiological maturity and stored for 15 days at 24°C and 85% of relative humidity. In the whole fruits, the respiratory intensity and the external colors were evaluated; further, the activity of catalase (CAT, peroxidase (POD and polyphenoloxidase (PPO was studied in the peel of the fruit. The fruit exhibited a climacteric behavior six days after the date of the harvest. The browning of the peel had a direct relation with the activity of POD and PPO. The maximum observed activity of CAT in the climacterium, responds to the proper balance with the high production of H2O2 expected at that moment.

  1. 过氧化氢酶去除漂白残留过氧化氢工艺的研究%Study on Removal of Residual Hydrogen Peroxide from Bleaching Process with Catalase

    Institute of Scientific and Technical Information of China (English)

    王岚; 吴建国

    2015-01-01

    In this paper, the residual hydrogen peroxide from bleaching process of cotton knitted fabric were removed with catalase. Based on the research of single factor experiments, the optimum conditions for the removal of hydrogen peroxide with catalase were as follows: pH value 7~ 8, dosage of catalase 0.1 g/L, temperature 20℃, enzyme processing time 15 min, bath ratio 1∶15.%本文采用过氧化氢酶去除过氧化氢漂白棉针织物时残留的过氧化氢,通过单因素实验分析,确定影响过氧化氢酶去除残留过氧化氢工艺的最适条件为:pH值7~8,过氧化氢酶用量0.1 g/L,温度20℃,处理15 min,浴比1∶15。

  2. 茶树中过氧化氢酶活力变化规律%Regulation of catalase activity variation of tea tree (Camellia sinensis)

    Institute of Scientific and Technical Information of China (English)

    杨节; 龚淑英; 唐德松

    2014-01-01

    用紫外分光光度法测定茶树鲜叶的过氧化氢酶( catalase ,CAT )活力,研究茶树 CAT 活力变化规律。结果表明:相同地点种植的不同茶树品种在生长旺盛的春季,其新梢的酶活力虽然会有一定的差异,但总体上差异不明显,到了夏季各品种间的差异较大,秋季酶活力普遍较高,但差异减小;不同季节、同一品种的茶树 CAT 活力变化明显,总体表现为秋季>夏季>春季;生长在主干的鲜叶 CAT 活力高于新生枝条上的鲜叶,而在同一枝条上,位于枝条中间的鲜叶 CAT 活力高于位于枝条两端的鲜叶;刚采下来的茶树鲜叶在摊放2 h 后酶活力上升30%,而随着摊放时间的进一步延长,CAT 活力持续下降,到12 h 后酶活力基本稳定在100 U /g 左右。可见,茶树 CAT活力变化对茶树正常生长发育起着极为重要的作用,是茶树逆境生理的关键酶。%Summary Catalase (CAT) is a protective enzyme responsible for the degradation of hydrogen peroxide before it damages the cellular components . All aerobic organisms and many anaerobic organisms possess it in virtually . The catalatic reaction takes place in two steps : The first hydrogen peroxide molecule oxidizes the heme to an oxyferryl species in which one oxidation equivalent is removed from the iron and one from the porphyrin ring to generate a porphyrin cation radical ; the second hydrogen peroxide is then used as a reductant of compound 1 to regenerate the resting state enzyme , water , and oxygen . But so far the reports about the CAT in tea tree ( Camellia sinensis ) are not seen so often . In this research , the regulation of CAT activity variation of tea tree was studied . The CAT was extracted from fresh tea leaves with 0 .2 mol/L phosphate buffer ( pH 7 .4) and 15% polyvinylpolypyrrolidone ( PVPP) . The CAT activity was measured spectrophotometrically at 240 nm . One unit of CAT activity was defined as the activity required to destroy 1

  3. Identification of a Marine Bacterium Producing High-Level Catalase and Optimization of Its Fermentation Conditions%一株海洋过氧化氢酶高产菌的鉴定及产酶条件优化

    Institute of Scientific and Technical Information of China (English)

    陈世建; 王伟; 孙谧

    2014-01-01

    对来自青岛近海海域底泥的一株产过氧化氢酶菌株YS0810进行形态学观察、16S rDNA序列同源性分析及生理生化特性的鉴定,在250 ml摇瓶中进行发酵产酶条件优化。初步确定该菌属于不动杆菌属Acinetobacter。发酵培养的最佳碳、氮源分别为蔗糖20 g/L和蛋白胨15 g/L,无机盐MgSO4·7H2O、NaCl、KH2PO4最佳浓度分别为0.9、5.0和1.0 g/L;菌株在培养基起始pH=7.0、4%接种量、50 ml装液量和25℃的条件下发酵24 h获得较高的酶产量。在最佳培养条件下酶产量为2469 U/ml,是优化前的5倍。%Catalases are a type of enzymes that can effectively decompose hydrogen peroxide into water and oxygen. Because of their ubiquitous distribution in all aerobic microorganisms, plants and animals, they are widely used in food, pharmaceutical, chemical industries and environmental protection. In this study we examined the bacterial strain YS0810 collected from the sediment in Yellow Sea that produces catalase at a high level. We determined the growth conditions of this strain which is optimal for the catalase production. Phylogenetic analysis of the 16S rDNA of this strain was applied to determine its taxonomic rank. The conventional morphological, physiological and biochemical methods of taxonomy were also applied to differentiate the YS0810 from its phylogenetic relatives. We used 250 ml shake flasks to carry out the single factor experiments to identify the important growth factors for the strain YS0810. The phylogenetic tree indicated that strain YS0810 belonged to the genusAcinetobacter, with the highest sequence similarity toAcinetobacter haemolyticus DSM 6962T (98.7%). However, YS0810 was not a strain ofA. haemolyticus. This was consistent with the results of the comparison between YS0810 and otherAcinetobacterspecies in terms of their morphological, physiological and biochemical characteristics. Peptone and sucrose were determined as the optimal nitrogen and

  4. 镧对红壤转化酶、过氧化氢酶和脱氢酶活性的影响%Effects of rare earth element lanthanum on the activities of invertase, catalase and dehydrogenase in red soil.

    Institute of Scientific and Technical Information of China (English)

    褚海燕; 朱建国; 谢祖彬; 李振高; 曹志洪

    2001-01-01

    The effects of rare earth element lanthanum (La) on the activities of soil invertase, catalase and dehydrogenase in red soil were studied by room culture and pot culture experiments. La had stimulative effect on soil invertase activity in varying degrees; slightly inhibitory effect on the activity of soil catalase; strongly inhibitory effect on soil dehydrogenase activity and the inhibit ion became significant when the concentration of La was over 30 mg/kg. Its inhibition to the activities of soil catalase and dehydrogenase was strengthened continuously with increasing concentration. When incubation time was prolonged, its inhibition to soil dehydrogenase tended to decrease. Soil dehydrogenase activity is a sensitive index on assessing the environmental effects of rare earth element in soils.%通过室内培养和盆栽试验研究了稀土元素镧对红壤转化酶、过氧化氢酶和脱氢酶活性的影响.镧对土壤转化酶活性有不同程度的刺激作用;对土壤过氧化氢活性有轻微的抑制作用;对土壤脱氢酶活性有强烈的抑制作用,当镧浓度为30mg/kg时,抑制作用达到显著水平.随着浓度的升高,镧对土壤脱氢酶和过氧化氢酶活性的抑制作用不断增强.随着培养时间的延长,镧对土壤脱氢酶的抑制作用有降低的趋势.土壤脱氢酶活性是评价稀土元素污染土壤环境的敏感指标.

  5. 交变电场对过氧化氢酶活性影响的研究%Study on the Effects of Alternate Electric Field on the Activity of Catalase

    Institute of Scientific and Technical Information of China (English)

    马海宽; 魏勇

    2011-01-01

    过氧化氢酶能够催化植物光呼吸、线粒体电子传递及脂肪酸β-氧化等过程中产生的过氧化氢,生成氧气,从而消除其对植物细胞产生的危害.本研究采用钼酸铵法,以绿豆真叶过氧化氢酶粗提液为研究对象,用交变电场处理,研究过氧化氢酶在不同电场下的活性.实验过程中分别选用不同电场频率、不同峰值电压以及不同的电场处理时间。研究其对过氧化氢酶活性的影响.结果表明,电场处理过氧化氢酶能构不同程度的提高过氧化氢酶的活性,且在频率为5MHz,电压为600mV,处理时间为5min条件下酶活性达到理想值,酶活为1.99mmol/(min·g).%The hydrogen peroxide plant enzyme could catalyze photorespiration, mitochondrial electron transport and fatty acid β--oxidation process of hydrogen peroxide produced, generating oxygen, thereby eliminating the hazards of plant cells. In this study, ammonium molybdate method, in order to mung bean Leaf catalase in crude extracts was studied using alternating electric field treatment, research catalase activity in different electric field. The experiment, respectively, the alternative electric field frequency, peak voltage and the electric field of different processing time to study the activity of hydrogen peroxide effects. The results show that electric field treatment on catalase structure can be improved to varying degrees of catalase activity,and in the frequency of 5 MHz,voltage of 600 mV,proeessing time is 5 min activity under the conditions to achieve the desired value,the activity of 1.99 mmol / (min . g).

  6. Full-length cDNA Cloning and Expression Analysis of catalase Gene from Sea Cucumber (Apostichopus japonicus)%仿刺参过氧化氢酶基因全长cDNA的克隆及表达分析

    Institute of Scientific and Technical Information of China (English)

    高杉; 周遵春; 董颖; 杨爱馥; 陈仲; 王摆; 关晓燕; 蒋经伟; 姜北

    2014-01-01

    研究仿刺参(Apostichopus japonicus)免疫相关基因的功能和作用机制可为仿刺参养殖病害的防控提供科学依据.克隆了仿刺参过氧化氢酶(catalase)基因的全长cDNA序列,全长1 885 bp,其中5'-非翻译区(5'-untranslated region,UTR)长76 bp,3'-UTR长306 bp,开放阅读框(open reading frame,ORF)1 503 bp,编码500个氨基酸,预测蛋白分子量为56.56 kDa.氨基酸序列比对结果显示,仿刺参Catalase与三角帆蚌(Hyriopsis cumingii)和紫海胆(Strongylocentrotus purpuratus)的相似度最高,为75%.仿刺参catalase cDNA推导的氨基酸序列具有过氧化物酶定位信号PTS2、与还原型辅酶Ⅱ(NADPH)结合的氨基酸残基及与其它物种高度保守的Catalase近端血红素配体签名序列(351RLFSYSDTH359).系统进化分析显示仿刺参处于无脊椎动物分支中,和紫海胆位于同一小支上.实时定量PCR结果显示,catalase mRNA在仿刺参肠、体壁、肌肉、呼吸树、体腔细胞和管足中均有表达,在肠中表达量最高.在细菌脂多糖LPS刺激后4h,体腔细胞中catalase mRNA表达量显著升高,表明仿刺参的catalase基因在应对外来病原菌刺激的免疫应答中发挥了重要作用.

  7. L’INFLUENCE DES NITRATES ET DES NITRITES SUR LES ACTIVITÉS DE LA CATALASE ET DE LA PEROXYDASE AU COURS DE LA GERMINATIONS DES GRAINS DE TRITICUM AESTIVUM

    Directory of Open Access Journals (Sweden)

    Anca Huma

    2006-08-01

    Full Text Available Nous avons procédé au traitement des grains de blé germinés (Triticum aestivum par des solutions de nitrates et nitrites de différentes concentrations et nous avons suivi l’activité de deux enzymes, la catalase (E.C. 1.11.1.6 et la peroxydase (E.C. 1.11.1.7, suite a ce traitement. Les résultats expérimentaux montrent que les nitrates et les nitrites présentent une influence modificatrice sur l’activité enzymatique dans les grains en cours de germination.

  8. L’INFLUENCE DES NITRATES ET DES NITRITES SUR LES ACTIVITÉS DE LA CATALASE ET DE LA PEROXYDASE AU COURS DE LA GERMINATIONS DES GRAINS DE TRITICUM AESTIVUM

    OpenAIRE

    Anca Huma; Ovidiu Toma; Eugen Ungureanu; Lucian Negura

    2006-01-01

    Nous avons procédé au traitement des grains de blé germinés (Triticum aestivum) par des solutions de nitrates et nitrites de différentes concentrations et nous avons suivi l’activité de deux enzymes, la catalase (E.C. 1.11.1.6) et la peroxydase (E.C. 1.11.1.7), suite a ce traitement. Les résultats expérimentaux montrent que les nitrates et les nitrites présentent une influence modificatrice sur l’activité enzymatique dans les grains en cours de germination.

  9. 葡萄糖氧化酶-过氧化氢酶共固定研究%Study of the co-immobilization of glucose oxidase and catalase

    Institute of Scientific and Technical Information of China (English)

    崔凤霞; 谭天伟

    2012-01-01

    Glucose oxidase (GOD) and catalase (CAT) have been sequentially co-immobilized with D301T resin as the carrier. The effects of varying the immobilization sequence and the initial amounts of GOD and CAT on the GOD activity were determined. The results showed that the highest activity was observed when CAT was first immobilized on the carrier followed by immobilization of GOD, with initial amounts of 0. 5 mL and 0. 25 mL, respectively. The maximum protein loading of CAT was 1. 07 mg/g and that of GOD was 1. 58 mg/g. The co-immobilization degree of CAT was 46. 71% and that of GOD was 43. 62% . The apparent enzyme activity of the product was 47. 98 U/mL liquid enzyme and 12. 0 U/g carrier. The highest apparent enzyme activity was 14. 66 U/g carrier when glut-araldehyde was used to cross-link the enzyme and carrier. The concentration of glutaraldehyde used in this paper was 0. 5% and the reaction time was 15 min. After reusing 10 times, the residual activity was about 85. 3% of the initial activity, which showed the excellent operational stability of immobilized GOD-CAT.%以弱碱性阴离子交换树脂D301T为载体,对过氧化氢酶(CAT)和葡萄糖氧化酶(GOD)两种酶进行分次固定,并对固定化条件进行了优化.所得最佳工艺条件为:共固定化酶采用先固定CAT,再固定GOD的顺序进行,其中CAT 0.5 mL,GOD 0.25 mL.所得CAT蛋白结合量为1.07 mg/g,固定化效率为46.71%;GOD蛋白结合量为1.58mg/g,固定化效率为43.62%;每mL GOD酶液的表观酶活为47.98 U/mL,每g载体中GOD的酶活为12.0 U/g.以戊二醛作为交联剂,体积分数取0.5%,交联时间取15 min时,所得固定化酶表观酶活达到最大值,为14.66 U/g,固定化酶连续反应10批后,其酶活为初始值的85.3%,显示出固定化酶具有良好的操作稳定性.

  10. Mimotope analysis of helicobacter pylori catalase based on mimox tool%基于Mimox工具分析幽门螺杆菌Catalase模拟表位

    Institute of Scientific and Technical Information of China (English)

    李妍; 曾爽; 宁云山

    2012-01-01

    Objective To analyze the characteristics of mimotopes from Helicobacter pylori Catalase using Mimox software and compare with manually alignment.Methods Five mimotopes derived from phage display library were input Mimox web (http://immunet.cn/mimox/) and aligned with all parameters as defaults.Results The interlace ClustalW aligned the set of mimotopes and the appearance frequency of amino acids P,T,S,L,A was higher.The statistical method deduced the consensus sequence-[ HST] X [DST] FRPXA [ TNQ ] [ LV ] [ FW ] T-,in which the appearance frequency of amino acids P ( 80% ) and A (60%) was higher.The interface JalView deduced the consensus sequence-H-DFRP-AT-T-,in which the conservation of amino acid T( value 8),P( value 6),D( value 5 ) was higher,the quality of amino acid T( value 2.4595077),P( value 2.235784),R(value 2.1615076) was higher,the consensus of amino acid P( 80% ),A(60% ),T(60% )was higher.The results were consistent with manul alignment although there exited discrepancy.Conclusion The combination of phage display library and Mimox may analyze characteristics of minotopes and obtain comprehensive epitope information.%目的 利用Mimox软件分析幽门螺杆菌Catalase蛋白模拟表位的性质,并与手工比对结果进行比较.方法 将源于噬菌体随机肽库筛选技术获得的5个Catalase模拟表位输入Mimox网站,参数设定为默认值,进行模拟表位的比对,寻找共同序列并分析其性质.结果 从ClustalW界面比对结果看,氨基酸P、T、S、L、A出现频率较高,通过统计学的方法推导出的共同序列为-[ HST] X[ DST] FRPXA [ TNQ][ LV][FW]T-,其中氨基酸P(80%)和A(60%)的出现频率较高.通过JalView界面推导出的共同序列为-H-DFRP-AT-T-,保守性上氨基酸T(分值8)、P(分值6)、D(分值5)比较高;特性上氨基酸T(分值2.4595077)、P(分值2.235784)、R(分值2.1615076)比较高;共同性(consensus)上氨基酸P(80%)、A(60%)、T(60%)比较高,与先前手

  11. Recombination and Expression of Micrococcus luteus Catalase in E.coli%藤黄微球菌过氧化氢酶基因在大肠杆菌中的重组与表达

    Institute of Scientific and Technical Information of China (English)

    尚柯; 郑宪友; 陈婷; 疏翠; 曹张军; 张兴群

    2012-01-01

    目的 应用基因重组技术在大肠杆菌中高效表达藤黄微球菌过氧化氢酶(catalase,CAT).方法 从藤黄微球菌DNA中获得CAT编码基因,并应用pProEx-HTa质粒构建融合表达载体并表达和检测活性.结果 通过融合表达获得可溶性带6×His标签重组蛋白,该蛋白经过Ni-NTA纯化后可获得活性物质.结论 从大肠杆菌表达体系中表达了具有生物活性的CAT.%Objective To produce Micrococcus luteus catalase (CAT) on a large scale in E. Coli by recombinant DNA technology. Methods CAT gene was obtained by PCR from Micrococcus luteus DNA , and the expression vectors were constructed by using pProEx-Hta plasmids and transformed into E. Coli. Results The fusion expressed recombination proteins were soluble and labeled with 6X His. By Ni-NTA affinity chromatography, the active CAT was obtained from the recombination proteins. Conclusion The recombinant Micrococcus luteus CAT with biological activity can be obtained from E. Coli expression system.

  12. Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk.

    Science.gov (United States)

    Rochat, Tatiana; Gratadoux, Jean-Jacques; Gruss, Alexandra; Corthier, Gérard; Maguin, Emmanuelle; Langella, Philippe; van de Guchte, Maarten

    2006-08-01

    Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects.

  13. Horseradish peroxidase/catalase-mediated cell-laden alginate-based hydrogel tube production in two-phase coaxial flow of aqueous solutions for filament-like tissues fabrication

    International Nuclear Information System (INIS)

    We report a method for preparing cell-laden hydrogel tubes. This method uses a coaxial double-orifice spinneret, simpler than triple-orifice spinnerets which have been used for preparing similar constructs. The intended application was to create a template for preparing filament-like structures composed of two heterogeneous living cell layers. An aqueous solution containing an alginate derivative possessing phenolic hydroxyl moieties (Alg-Ph), catalase and horseradish peroxidase (HRP) was extruded into an ambient flow of H2O2 aqueous solution. This operation enabled the Alg-Ph solution to be gellable through a HRP-catalyzed reaction, cross-linking the Ph moieties together. By altering flow rates of the Alg-Ph and H2O2 solutions along with the concentrations of catalase and H2O2, the diameter and membrane thickness of the hydrogel tubes were controllable between 250–550 µm and 70–140 µm, respectively. The viability of the HeLa cells enclosed in the hydrogel tubes with a diameter of 300 µm and a membrane thickness of 80 µm was 95.4%. Subsequently, the enclosed HeLa cells grew and filled the hollow core. A filament-like structure of HeLa cells covered with a layer of fibroblast 10T1/2 cells was obtained when confluency of fibroblast 10T1/2 cells was reached and the hydrogel matrix was degraded with alginate lyase. (paper)

  14. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress.

    Science.gov (United States)

    Zou, Jun-Jie; Li, Xi-Dong; Ratnasekera, Disna; Wang, Cun; Liu, Wen-Xin; Song, Lian-Fen; Zhang, Wen-Zheng; Wu, Wei-Hua

    2015-05-01

    Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca(2+)-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca(2+)-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca(2+) inhibition of inward K(+) currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity. PMID:25966761

  15. Fish histopathology and catalase activity as biomarkers of the environmental quality of the industrial district on the Amazon estuary, Brazil - doi: 10.4025/actascibiolsci.v35i3.18032

    Directory of Open Access Journals (Sweden)

    Rossineide Martins Rocha

    2013-08-01

    Full Text Available The environment quality of an industrial district on the river Pará, Amazon estuary, Brazil, based on the assessment of histological alterations and on the determination of catalase activity of the hepatic tissue of two fish species, Plagioscion squamossissimus and Lithodoras dorsalis, is provided. Histopathological changes were evaluated semi-quantitatively and qualitatively. Mean Assessment Values (MAV and Histological Alteration Index (HAI of organ lesions were calculated for each zone under analysis, with different impact levels: Zone 1 (industrial district, with high contamination risk; Zone 2 (medium risk and Zone 3 (minimum risk. Strong positive catalase activity and histopathological changes were reported in Zone 1. None of the specimens of either species captured in Zones 1 and 2 was healthy, whereas more than 60% of the specimens from Zone 3 presented healthy hepatic tissue. The principal alterations observed in the tissue of the two species included an increase in the number of Melanomacrophagous centers, fatty degeneration, inflammation, congestion, hepatitis and focal necrosis. The carnivorous P. squamosissimus presented higher levels of alteration than the herbivorous L. dorsalis. Results showed that local anthropogenic impacts were affecting the health of the two fish species under analysis.   

  16. Recombinant Expression and Characterization of a Catalase from Enterobacter cloacae%阴沟肠杆菌过氧化氢酶基因的重组表达及酶学性质研究

    Institute of Scientific and Technical Information of China (English)

    周利伟; 张艳丽; 左冬阳; 张伟; 张宇宏

    2013-01-01

      Hydrogen peroxidase, commonly named catalase, has been widely used in food, textile and paper industries. A catalase gene cat1 was cloned from Enterobacter cloacae by using touch-down PCR and TAIL-PCR. Length of cat1 is 2 250 bp, which encode 749 amino acids and a termination codon. This gene was cloned into an expression vector pPIC9, and overexpressed in Pichia pastoris GS115 with the maximum catalase activity of 300 U/ mL at shaker level. The recombinant CAT1 exhibited optimal activity at pH 6. 5 and 37℃ . Specific activity of CAT1 was 1667 U/ mg, towards hydrogen peroxide as substrate. CAT1 remains above 80% enzyme activity after treated at 50 C for 2 h or stay at pH 5 ~ 8 for 1 h. The effects of CAT1 on glucose oxidase (GOD) activity was investigated. When the activity ratio of CAT1 to GOD was 1∶30, the GOD activity was no longer inhibited by hydrogen peroxide. This study also introduced a rapid screening method for P. pastoris with recombinant catalase.%  过氧化氢酶又称触酶,在食品、纺织和造纸等领域应用广泛。本研究从阴沟肠杆菌 Enterobacter cloacae XTL13中克隆得到一个过氧化氢酶基因 cat1,该基因全长2250 bp,编码749个氨基酸和一个终止密码子。将 cat1基因连接pPIC9载体并转化毕赤酵母 GS115,得到高效表达 CAT1的重组酵母菌株。在摇床水平过氧化氢酶活性可达300 U/ mL。重组 CAT1最适温度为37℃,最适 pH 为6.5,比活力为1667 U/ mg;50℃处理2 h 或 pH 5~8处理1 h 后,仍然能保留80%以上的酶活力。当 CAT1与葡萄糖氧化酶(GOD)联合使用(酶活力比例为1∶30)时,能够解除过氧化氢对 GOD 活力的抑制,使得 GOD 能够更好地发挥其作用。另外,本研究还建立了一种快速筛选过氧化氢酶重组菌株的方法。

  17. Exogenous Melatonin Suppresses Dark-Induced Leaf Senescence by Activating the Superoxide Dismutase-Catalase Antioxidant Pathway and Down-Regulating Chlorophyll Degradation in Excised Leaves of Perennial Ryegrass (Lolium perenne L.)

    Science.gov (United States)

    Zhang, Jing; Li, Huibin; Xu, Bin; Li, Jing; Huang, Bingru

    2016-01-01

    Leaf senescence is a typical symptom in plants exposed to dark and may be regulated by plant growth regulators. The objective of this study was to determine whether exogenous application of melatonin (N-acetyl-5-methoxytryptamine) suppresses dark-induced leaf senescence and the effects of melatonin on reactive oxygen species (ROS) scavenging system and chlorophyll degradation pathway in perennial grass species. Mature perennial ryegrass (Lolium perenne L. cv. ‘Pinnacle’) leaves were excised and incubated in 3 mM 2-(N-morpholino) ethanesulfonic buffer (pH 5.8) supplemented with melatonin or water (control) and exposed to dark treatment for 8 days. Leaves treated with melatonin maintained significantly higher endogenous melatonin level, chlorophyll content, photochemical efficiency, and cell membrane stability expressed by lower electrolyte leakage and malondialdehyde (MDA) content compared to the control. Exogenous melatonin treatment also reduced the transcript level of chlorophyll degradation-associated genes and senescence marker genes (LpSAG12.1, Lph36, and Lpl69) during the dark treatment. The endogenous O2- production rate and H2O2 content were significantly lower in these excised leaves treated with melatonin compared to the water control. Exogenous melatonin treatment caused increases in enzymatic activity and transcript levels of superoxide dismutase and catalase but had no significant effects on ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase. The content of non-enzymatic antioxidants, such as ascorbate and dehydroascorbate, were decreased by melatonin treatment, while the content of glutathione and oxidized glutathione was not affected by melatonin. These results suggest that the suppression of dark-induced leaf senescence by exogenous melatonin may be associated with its roles in regulating ROS scavenging through activating the superoxide dismutase-catalase enzymatic antioxidant pathway and

  18. Cloning, expression and fermentation optimization of a catalase gene in E.Coli%过氧化氢酶基因在大肠杆菌中的克隆表达及发酵优化

    Institute of Scientific and Technical Information of China (English)

    周丽萍; 张东旭; 李江华; 堵国成; 陈坚

    2011-01-01

    利用PCR扩增技术得到枯草芽孢杆菌(Bacillus subtilis)过氧化氢酶基因katA,将该基因与表达载体pET-20b(+)连接构建重组质粒,经测序验证后,在大肠杆菌JM109中进行表达得到重组大肠杆菌基因工程菌E.coli BL21(DE3)(pET-20b(+)-katA).SDS-PAGE电泳结果显示出明显的特异性表达条带,大小与过氧化氢酶吻合.摇瓶实验获得重组菌的最佳碳、氮源成分:5 g/L甘油,40 g/L安琪酵母粉,产酶水平最高达到20 000 U/mL.%The catalase gene katA from Bacillus subtilis WSHDZ-0l was am plified by PCR . It was then inserted into the expmssion vector pET-20b(+ ) to create the recom binant plasmid pET-20b (+ )-katA and them odified vector was transformed into E . coli JM 109 for expression . The size of the expressed specific band by SDS-PAGE electrophoresis corresponded well to that of the catalase gene ka tA . For batch ferm entation in flasks , them edium compositon rpgarding the caroon and nitrogen was optimized and the results indicated that the maxinal enzyme activity of 20000 U /m L was obtained with 5 g/L glycerol and 40 g/L yeast extract, respectwely .

  19. 嗜碱芽孢杆菌Bacillus sp.F26过氧化氢酶的分离纯化及性质研究%Purification and Characterization of a Monofunctional Catalase from an Alkaliphilic Bacillus sp. F26

    Institute of Scientific and Technical Information of China (English)

    张心齐; 薛燕芬; 赵爱民; 堵国成; 许正宏; 陈坚; 马延和

    2005-01-01

    从一株低度嗜盐、兼性嗜碱芽孢杆菌Bacillus sp.F26中纯化得到一种碱性过氧化氢酶,并对该酶进行了性质研究.纯化过程经硫酸铵沉淀、阴离子交换层析、凝胶过滤层析及疏水层析四步最终获得电泳纯的目标酶(纯化58.5倍).该过氧化氢酶的分子量为140kD,由两个大小相同的亚基组成.天然酶分子在408 nm处显示特征吸收峰(Soret band).吡啶血色素光谱显示了酶分子以原卟啉Ⅸ(protohemeⅨ)作为辅基.计算获得酶的表观米氏常数为32.5 mmol/L.该过氧化氢酶不受连二亚硫酸钠的还原作用影响,但被氰化物、叠氮化物和3-氨基-1,2,4-三唑(单功能过氧化氢酶的专一抑制剂)强烈抑制.以邻联茴香胺、邻苯二胺和二氨基联苯胺作为电子供体测定酶活时,该酶不显示过氧化物酶活性.同时,酶的N-端序列比对结果说明,该过氧化氢酶与单功能过氧化氢酶亚群有一定的相似性,而与双功能过氧化氢酶亚群及猛过氧化氢酶亚群均没有同源性.因此,本文将纯化的碱性过氧化氢酶定性为单功能过氧化氢酶.此外,该酶具有热敏感的特点,且酶活在pH 5~9的范围内不受pH影响,此后,活性随着pH的升高而升高,并在pH 11处有明显的酶活高峰.20℃、pH 11条件下的酶活半衰期达49h.在pH 11的高碱条件下表现出最高活力和一定的稳定性,这在已报道的过氧化氢酶中还未见描述.同时,该酶也显示了良好的盐碱稳定性,0.5 mol/L NaCl、pH 10.5条件下的酶活半衰期达90 h.另一方面,本文所研究的过氧化氢酶是第一个来源于嗜碱微生物的同源二聚体单功能过氧化氢酶,也是第一个来源于天然碱湖的单功能过氧化氢酶,它能部分地反映出细胞抗氧化体系对相应环境的适应情况.%An alkaline catalase has been purified and characterized from a slightly halophilic and alkaliphilic bacterium Bacillus sp. F26. The purification was performed

  20. Cloning a novd catalase gene of Sporothrix schenckii with degenerate PCR and RACE%简并PCR结合RACE技术克隆申克孢子丝菌未知过氧化氢酶基因

    Institute of Scientific and Technical Information of China (English)

    王晓慧; 刘伟; 李若瑜

    2011-01-01

    Objective To isolate a novel catalase homologous gene from yeast-form Sporothrix schenckii and to make a designation. Methods Oligonucleotide primers were designed according to the conserved areas of the other 7 fungal catalase genes. Partial Sscat cDNA was amplified by PCR, and special primers were designed by RACE method to amplify the 3'cDNA and 5'cDNA. ResultsThe full-length Sscat cDNA sequence was 1 746 bp with an open reading frame of1 500 bp encoding 499 amino acids. The predicted molecular mass of Sscat was 56.07 kDa. The deduced amino acid sequence of Sscat showed 66.3% and 56.6% identity with those of Aspergillus oryzae and A. clavatus . An intron was identified within the 933-1 063 bp Sscat genomic DNA sequence ofS. schenckii. Conclusions Degenerate PCR combined with RACE is effective in searching and isolating novel genes of 5. schenckii.%目的 克隆孢子丝菌未知过氧化氢酶基因,命名为Sscat基因.方法 根据生物信息库中7种已知真菌过氧化氢酶氨基酸序列的高度保守区域设计简并引物,PCR扩增获得部分Sscat基因cDNA片段,随后应用RACE技术分别扩增其3’端和5’端未知序列.结果 Sscat基因cDNA序列全长1746 bp,其中包括5’端121 bp的非编码区、1500 bp的编码区和109 bp的3’端非编码区.该基因编码499个氨基酸,分子量为56.07 kDa,其氨基酸序列与其他真菌过氧化氢酶氨基酸高度同源,其中与米曲霉、黑曲霉同源性分别为66.3%和56.6%,Sscat基因为申克孢子丝菌过氧化氢酶cDNA.结论 简并PCR结合RACE技术成功克隆了孢子丝菌未知过氧化氢酶基因.

  1. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    Science.gov (United States)

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity.

  2. 苯并(a)芘对大弹涂鱼肝脏过氧化氢酶活性的影响*%Effects of Catalase Activities in the Liver of Boleophthalmus Pectinirostris with Benzo(a) Pyrene Exposure

    Institute of Scientific and Technical Information of China (English)

    冯涛; 郑微云; 郭祥群; 陈荣

    2001-01-01

    Changes of catalase(CAT) activities in the liver of Boleophthalmus pectinirostris with benzo(a)pyrene(BaP) exposure are detected in experimental condition. The results show that there is no significant changes for CAT activities in control group and 0.05mg*L-1 BaP group with prolonged exposure (P>0.05), whereas they are depressed significantly at concentration of 0.5mg*L-1(P≤0.05). In 3 days exposure, CAT activities decrease significantly with the increase of BaP concentration (P≤0.05). This might indicate that exposure to higher BaP concentrations might have toxic effect to fishes. The activities of CAT increase significantly to control level after BaP was removed. It turned out that the physiological modulatary mechanism still existed in the liver of Boleophthalmus pectinirostris. All the results show that CAT activity might be suitable to be the bioindicator of BaP exposure.

  3. 公路旁树木根际土壤过氧化氢酶活性的调查%Investigating of the amounts of animalcules and the activity of catalase of trees' radicle soil in Chang Chun Normal Colleg grove

    Institute of Scientific and Technical Information of China (English)

    王媛; 杨雪; 安平平

    2012-01-01

    该文对净月区公路旁树林内不同地点不同树木的根际土壤,应用滴定法测定其过氧化氢酶活性。结果表明树林里不同地点不同植物根际土壤中过氧化氢酶活性存在较大差异。%In this paper, I titration catalase activity to rhizosphere soil under different trees in different locations in Chang Chun Normal College.And detect the amount of soil bacteria, fungi, actinomycetes in different media.The results show that there is a big difference in the amount of the three soil microorganisms and the activity of catalase in the plant rhizosphere in the different woods in different locations soil in our campus.

  4. Effect of ultrasound on the catalytic activity of catalase from yeasts%超声波对酵母过氧化氢酶活性的影响机理研究

    Institute of Scientific and Technical Information of China (English)

    黄卓烈; 梁欣欣; 陈小丽; 巫光宏; 初志战

    2009-01-01

    Objective To study the effect of ultrasound on the activity of catalase(CAT) and its action mechanism.Methods Ultrasound with different parameters was used to treat yeast CAT.Changes of enzyme activity,kinetics,and spectra were detected before and after treatment.Results It indicated that the activity of catalase from yeast (Saccharomyces cerevisiae) could be increased by 126.35% via treatment with ultrasound of 16 kHz and 50 W at 30℃ for 2 min.CAT treated by ultrasound presented higher fluorescence emission intensity.The ultra violet(UV) absorption spectrum had no obvious change after ultrasound treatment.This indicated that the ultrasound treatment did not change the molecular configuration of CAT.But after the treatment,UV differential spectrum showed positive and negative peaks.This indicated that the molecular conformation changed obviously.The results of enzyme kinetics analysis indicated that both Km and Vmax increased after ultrasound treatment.Conclusion Ultrasound with appropriate parameters cna increase the activity of CAT.This misht be caused by the change of conformation of the enzyme molecules caused by ultrasound.%目的 探索超声辐射影响过氧化氢酶(CAT)的催化效果及其作用机理.方法 本试验用不同参数的超声波处理酵母CAT,测定处理前后酶活性变化、催化动力学的变化以及光谱学的变化.结果 试验结果表明,在30℃的条件下,用16 kHz、50 W的超声波处理酵母CAT 2 min,酶活力可提高126.35%.经超声波处理后的CAT分子荧光强度有所增加.超声波处理后,CAT的紫外吸收光谱基本不改变,说明超声作用并没有改变CAT的分子构型.而超声波处理后,CAT的紫外差示光谱分别出现正峰和负峰,说明超声波使CAT的分子构象发生了改变.对超声波处理前后的CAT分别进行动力学分析,结果表明超声波处理使酶的米氏常数(Km)和最大反应速度(Vmax)都增大.结论 从试验结果得出结论,适宜参数超声

  5. Enhancement of superoxide dismutase and catalase activity in juvenile brown shrimp, Farfantepenaeus californiensis (Holmes, 1900, fed β-1.3 glucan vitamin E, and β-carotene and infected with white spot syndrome virus

    Directory of Open Access Journals (Sweden)

    Rosario Pacheco

    2011-11-01

    Full Text Available The effect of dietary β-Ο-glucan, vitamin E, and β-carotene supplements in juvenile brown shrimp, Farfantepenaeus californiensis, inoculated with white spot syndrome virus (WSSV was evaluated. Groups of 30 organisms (weighing 1 ± 0.5 g were cultured in 60 L fiberglass tanks and fed daily with β-1.3-glucan (0.1%, vitamin E (0.01%, and β-carotene (0.01% for 23 days; the specimens were then inoculated with WSSV. The antioxidant activity of the enzymes superoxide dismutase (SOD and catalase (CAT were determined in the hepatopancreas and muscle at 0, 1, 6, 12, 24, and 48 h after inoculation. Shrimp fed with β-1.3-glucan, vitamin E, and β-carotene significantly increased SOD activity in the hepatopancreas and muscle at 12 and 24 h post-infection, respectively. Shrimp fed with vitamin E and β-1.3-glucan registered an increment in SOD activity from 12 to 48 h post-infection. Shrimp fed with β-carotene increased SOD activity before infection with WSSV, and shrimp fed with β-1.3-glucan and vitamin E increased CAT activity, also before infection. The CAT activity response in shrimp muscle increased with respect to the control group for all treatments tested from 1 to 6 h after inoculation with WSSV. The highest antioxidant response was registered in shrimp fed with vitamin E. Juvenile shrimp fed with vitamin E and later inoculated with WSSV registered 100% mortality at 72 h, but shrimp fed with β-Ο-glucan and β-carotene showed greater resistance to WSSV, with mortality at 144 h post-infection. This study demonstrated the capacity of juvenile Farfantepenaeus californiensis fed β-Ο-glucan, vitamin E, or β-carotene to increase the antioxidant response before and after viral infection.

  6. Catalase, glutathione peroxidase, metabolic syndrome, superoxide dismutase

    OpenAIRE

    Tarsikah; Herman Susanto; Herri S. Sastramihardja

    2012-01-01

    Labor pain is part of a normal process, which often causes physiological and psychological stress to mother. These stress have impact to both mother and fetus. Largely (90%) labor comes with pain and in some cases severe pain. Non-pharmacological approach is one of alternatives to reduce labor pain. This research aims to analyse the analgesic effect of lavender aromatherapy inhalation on labor pain in primigravida in the active phase. The study was pra-experimental by observing one group befo...

  7. Catalase, glutathione peroxidase, metabolic syndrome, superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Tarsikah

    2012-03-01

    Full Text Available Labor pain is part of a normal process, which often causes physiological and psychological stress to mother. These stress have impact to both mother and fetus. Largely (90% labor comes with pain and in some cases severe pain. Non-pharmacological approach is one of alternatives to reduce labor pain. This research aims to analyse the analgesic effect of lavender aromatherapy inhalation on labor pain in primigravida in the active phase. The study was pra-experimental by observing one group before and after treatment. The group involved 30 parturients in RB Kasih Ibu Jatirogo district of Tuban, East Java. The sampling method was based on consecutive admission. The variables were measured by using numerical rating scales (NRS. Univariable quantitative analysis was applied to describe the pain before and after treatment. Wilcoxon signed ranks test bivariable quantitative analysis was used to investigate pain relief with significance level of p<0.05. The univariable analysis result revealed that mean pain score before treatment was 7.3 (SD 1.1 and after treatment 5.9 (SD 1.4. Wilcoxon signed ranks test result showed significant pain relief after lavender aromatherapy inhalation (Z=-4.338, p=0.000. The research shows that there is a reduction of labor pain after lavender aromatherapy inhalation.

  8. Study on removal of residual hydrogen peroxide from bleaching process with catalase by response surface methodology%响应面法优化过氧化氢酶去除漂白残留过氧化氢工艺的研究

    Institute of Scientific and Technical Information of China (English)

    王岚; 吴建国

    2015-01-01

    采用过氧化氢酶去除棉针织物煮漂后残留的过氧化氢残液,用响应面分析法确定最适过氧化氢酶去除棉针织物上残留过氧化氢工艺为:过氧化氢酶用量0.144 g/L、处理时间16 min、处理温度27℃、pH=7、浴比1∶15.在此条件下,过氧化氢去除率提高到97.69%.%The residual hydrogen peroxide solution was removed from bleaching process of cotton knitted fabric by catalase. The optimum conditions for removal the residual hydrogen peroxide of cotton knitted fabric with catalase by response surface methodology were as fol ows: amount of catalase 0.144 g/L, enzyme pro⁃cessing time 16 min, temperature 27 ℃, pH=7, bath ratio 1∶15. Under the optimum conditions, the removal rate of residual hydrogen peroxide was increased to 97.69%.

  9. Spatial variability and influencing factors of soil catalase activity in grapevine fields in Huailai-Zhuolu Basin%怀涿葡萄产区土壤过氧化氢酶活性空间分布规律及影响因素分析

    Institute of Scientific and Technical Information of China (English)

    马堃; 李橙; 肖凡; 冯圣东; 杨志新

    2013-01-01

    This study assessed the physicochemical factors influencing the spatial variability of soil catalase activity in grapevine fields.83 samples of 0~20 cm soil layer was collected from grapevine fields in the Huailai-Zhuolu basin (HZB) of Hebei,China.Geostatistics and GIS environments were used to analyze the spatial variability of soil catalase activity for different combinations of grape variety and soil property.Also the contributing factors to enzyme activity were analyzed.The results showed strongly spatial correlation of catalase activity in 0~20 cm soil layer of grapevine field in HZB.The variations of catalase activity in the study area tracked a zonal distribution,gradually decreasing from west to east along river courses.Based on semi-variance analysis,the best-fitted model for soil catalase activity distribution in the study area was an exponential model.With the exception of potassium,all macro-elements,micro-elements,quantitative elements,heavy metals and other beneficial elements had a significant positive activation effect on soil catalase activity in grapevine fields.In traditional soil-grape cropping systems,catalase activity was closely correlated with the distribution characteristics of most elements at different locations in grapevine fields.Also a significant positive correlation was noted between catalase activity and fine sand content.A highly significant positive correlation was noted between catalase activity and clay.The physical properties,especially clay and fine sand content,were other critical factors that influenced the spatial variability of soil catalase activity.Ggrape varieties and soil pH were not correlated with spatial variability of soil catalase activity.%为了探明影响土壤过氧化氢酶活性空间变异规律的葡萄品种、土壤物理、化学因素及其内在关系,本文利用GIS和地统计学分析方法研究了怀涿葡萄产区(河北省怀来、涿鹿两县)的83个表层土壤样品.结果表明:怀

  10. 离子交换树脂共固定葡萄糖氧化酶-过氧化氢酶%Co-immobilization of glucose oxidase and catalase on ion exchange resin

    Institute of Scientific and Technical Information of China (English)

    毕春元; 任婷月; 张金玲; 杜祎; 李敬龙

    2015-01-01

    Glucose oxidase (GOD) and catalase (CAT) were co-immobilized on five kinds of macroporous anion exchange resins,wherein resin D201 showed the excellent immobilization.Using glutaraldehyde as cross-linking agent,the enzyme was immobilized through absorption and cross-linking.The preparation conditions and enzymatic properties of the immobilized enzyme were studied.The optimum conditions for the immobilization were as follows:GOD/CAT =1/1 (U/U);the adsorption pH,temperature and time were 7.5,30℃ and 6 h respectively.The crosslinking temperature and time were 4℃ and 12 h respectively,and the concentration of the crossinking agent (glutaraldehyde) was 1% (V/V).The highest enzyme activity retained 30.8%.Compared with free enzyme,the thermal stability and pH stability of co-immobilized GOD-CAT resin were increased.Enzyme activity retained more than 90% of the initial activity after 10 batches of intermittent operation.%从5种大孔阴离子交换树脂中,筛选出固定化效果较好的大孔强碱性苯乙烯系阴离子交换树脂D 201为载体,以戊二醛为交联剂,通过先吸附后交联的方法共固定化葡萄糖氧化酶(GOD)和过氧化氢酶(CAT),研究了固定化酶的制备条件和酶学性质.结果表明,共固定化的最佳条件是:GOD:CAT=1∶1(酶活力之比),吸附pH值为7.5,吸附温度30℃,吸附时间为8h;交联剂戊二醛质量分数为1%,交联温度4 ℃,交联时间8h.在此条件下固定化,以GOD计,最高酶活回收率为30.8%.与游离酶相比,共固定化GOD-CAT树脂的热稳定性、pH稳定性均增强,间歇操作10批次后酶活力仍然保持在初始活力的90%以上.

  11. Co-immobilization of glucose oxidase-catalase via polyvinyl alcohol and sodium alginate%聚乙烯醇-海藻酸钠共固定化葡萄糖氧化酶和过氧化氢酶

    Institute of Scientific and Technical Information of China (English)

    王卫军; 李世文; 朱必玉; 魏胜华; 陶玉贵; 朱龙宝

    2015-01-01

    酶的固定化是提高酶的稳定及降低使用成本的重要途径.通过制备聚乙烯醇(PVA)-海藻酸钠(SA)复合载体,对共固定化葡萄糖氧化酶(GOD)和过氧化氢酶(CAT)的条件进行了研究,优化了固定化酶制备工艺,研究了固定化酶性质.得出制备固定化酶最佳条件为:载体比例 PVA∶SA=9.0∶1.5,加酶量10 mg/mL,酶活之比CAT∶GOD=10∶1.固定化酶的最适反应温度为45℃,比游离酶提高了5℃,最适反应pH 没有发生变化,连续使用6次酶活保留60%.研究结果有一定的应用潜力.%The immobilization is an effective way to improve the stability and reduce the cost of the en-zymes.The co-immobilization of glucose oxidase and catalase was studied through the preparation of composite support of the polyvinyl alcohol-sodium alginate with optimized the preparation of immobi-lized enzyme,the characters of immobilized enzyme were investigated.The preparation conditions of im-mobilized enzyme were as follows:the ration of PVA∶SA=9 .0∶1 .5 ,the amount of enzyme was 10 mg/mL,and the ratio enzyme activity of CAT∶GOD=10∶1.The optimum reaction temperature was 45 ℃,5 ℃ higher than the free enzyme,the optimal reaction pH remained unchanged,and the activity re-tained 60% after being used six times.The research results are promising in applications.

  12. 过氧化氢酶抑制剂氨基三唑减轻急性酒精性肝损伤%The catalase inhibitor aminotriazole alleviates acute alcoholic liver injury

    Institute of Scientific and Technical Information of China (English)

    艾青; 葛璞; 代洁; 梁天才; 杨青; 林玲; 张力

    2015-01-01

    本文旨在通过观察过氧化氢酶(catalase,CAT)抑制剂氨基三唑(aminotriazole,ATZ)对酒精诱导的急性肝损伤的影响,初步探讨CAT在酒精性肝损伤中的可能作用.以雄性Spmgue Dawley (SD)大鼠为实验对象,采用酒精腹腔注射诱导急性肝损伤,在造模前30 min腹腔注射 不同剂量ATZ (100~400 mg/kg)或相同体积溶剂(对照).造模24 h后,检测大鼠血浆天冬氨酸转氨酶(aspartate tmnsaminase,AST)、丙氨酸转氨酶(alanine tmnsaminase,ALT)及乳酸脱氢酶(lactate dehydrogenase,LDH)水平,用HE染色法观察肝组织病理改变程度,用试剂盒检测肝组织内CAT活性、过氧化氢(hydrogen peroxide,H2O2)水平及丙二醛(malondialdehyde,MDA)含量,ELISA法检测血浆中肿瘤坏死因子a(tumor necrosis factor-α,TNF-α)及白介素-6(interleukin-6,IL-6)水平.结果显示,ATZ处理可剂量依赖性降低酒精暴露大鼠血浆中ALT、AST及LDH水平,并减轻酒精诱导的肝组织病理损伤;ATZ可抑制酒精暴露大鼠肝组织内CAT活性、降低H2O2水平及MDA含量;ATZ也可下调酒精暴露大鼠血浆中TNF-α和IL-6水平.以上结果表明,ATZ可减轻酒精诱导的大鼠急性肝损伤,提示CAT可能在酒精性肝损伤中发挥了重要的致病作用.

  13. 具有肿瘤荧光成像性能的核壳纳米过氧化氢酶模拟物%Tumor-Imaging Core-Shell Nano-Models for Catalase

    Institute of Scientific and Technical Information of China (English)

    杨霞; 陈秋云; 宋京宝

    2012-01-01

    Microwave synthesis approach has been developed for preparing Mn-silica core-shell nano-complexes with fluorescent imaging by assembling the Mn(Ⅱ) complexes of bis(2-pyridylmethyl)amino-2-propionic acid (Adpa) on the surface of silica core-shell nanoparticles.IR,UV,TEM were used to characterize the structure of nanocomplexes.The results of H2O2 disproportionation show that Mn-silica core-shell nano-complexes have good analog characteristics of catalase as a new kind of nano-models for eatalase.Cell fluorescence image in vitro indicates that these Adpa modified nanoparticles locate outside of tumor cells,in contrast,Mn-silica core-shell nano-complexes could enter tumor cells which enables simultaneous tumor-targeting and good fluorescent imaging as a new tumor imaging agent.%运用微波法在硅核壳荧光材料的表面修饰了2-(二吡啶甲胺基)丙酸的锰配合物,获得具有荧光性能的锰-硅核壳纳米结构复合物,运用IR,UV,TEM等方法表征了纳米复合物的结构.H2O2岐化实验显示锰-硅核壳纳米复合物具有较好的过氧化氢酶模拟特性,是一种新的纳米过氧化氢酶模拟物.体外细胞荧光成像研究表明2-(二吡啶甲胺基)丙酸修饰的纳米球不能进入肿瘤细胞内,而锰-硅核壳纳米复合物能进入肿瘤细胞内,具备良好的肿瘤靶向性,显著提高肿瘤荧光成像效果,可作为新型的肿瘤成像剂.

  14. Combined Extraction of Superoxide Dismutase and Catalase from Earthworm Eisenia fetida%从蚯蚓中联合提取抗氧化酶SOD、CAT的方法研究

    Institute of Scientific and Technical Information of China (English)

    廖怡; 荣永海; 荣龙

    2012-01-01

    本研究采用闪式提取技术,固液比为1∶4 (m/V)的2.5 mmol/L pH 7.0磷酸缓冲液,提取转速5500 rpm,提取时间2 min,从蚯蚓体内提取出SOD、CAT,并通过羧甲基纤维素CM-22离子交换层析实现SOD和CAT的联合提取分离,SOD、CAT的活性回收率分别达到88.23%和69.5%.在纯化工艺中经过丙酮沉淀和柱层析技术得到蚯蚓SOD纯品,比活达到9352 U/mg,产物在SDS-PAGE上为单一条带,其亚基分子量约为17 kD;通过柱层析纯化了蚯蚓CAT,比活达到22606 U/mg.%Flash extraction had been used to extract superoxide dismutase (SOD) and catalase (CAT) from earthworm Eisenia fetida. The extraction was carried out using the following conditions: 1:4 of solid to liquid ratio ,2.5 mmol/L pH 7.0 PBS ,5500 rpm for 2 min. SOD and CAT were separated by column chromatography on CM-22 with yield of 88.23% and 69.5% Respectively. Subsequently,SOD was purified by acetone precipitation,fractionated by column chromatography on DEAE-Cellulose,Sephadex G-75. The purified SOD had a specific activity of 9352 U/mg with a yield of 18.44% and the SDS-PAGE showed a single band around 17 kD. At the same time,the purified SOD was found to remain stable in the temperature range 35 ~55 ℃ ,with the optimal temperature of 45 ℃. Its activity could be well maintained at pH values ranging from 4 to 11. CAT was purified by column chromatography. The purified CAT had a specific activity of 22606 U/mg with a yield of 14.98%. The purified CAT was found to remain stable in the temperature range 25 ~45 ℃, with the optimal temperature of 35 ℃. Its activity could be well maintained at pH values ranging from 4 to 10 while its optimal pH was found to be 6.

  15. Reseach on relationship between soil invertase, catalase and soil nutrient in the area of Shangluo%商洛地区土壤蔗糖酶及过氧化氢酶与土壤养分的关系研究

    Institute of Scientific and Technical Information of China (English)

    刘瑞丰; 李新平; 李素俭; 张小虎; 何军

    2011-01-01

    运用通径分析的方法研究了商洛地区土壤蔗糖酶和过氧化氢酶与土壤养分因子的关系.结果表明:商洛地区土壤全氮和碱解氮对蔗糖酶活性有较强的直接和间接作用,与蔗糖酶活性显著相关,是影响蔗糖酶活性的主要因素;土壤全氮和速效钾对过氧化氢酶活性有较强的直接和间接作用,并且它们之间的相互作用对过氧化氢酶活性的影响也较大,是影响过氧化氢酶活性的主要因素.土壤酶与土壤养分因子的相关性表明:土壤酶活性可以作为评价土壤肥力状况的生物指标.%The relationship between soil nutrients and enzymes in the area of Shangluo were studied through path analysis for data processing. The results show that the soil total nitrogen and alkali-hydro nitrogen in the area of Shangluo have significant effects on the activity of invertase, and they are the main factors on the activity of invertase. Soil total N and available K have strong direct and indirect effects on the activity of catalase, and the interactions of them also have great effects on the activity of catalase, and they are the main factors on the activity of catalase. From the correlations of these factors, we can fingure out that the activity of soil enzymes can be used to assess soil fertility condition.

  16. A relationship between activities of phenylalaine ammonia-lyase and catalase and disease resistance of cowpea against rust%苯丙氨酸解氨酶和过氧化氢酶活性与豇豆抗锈病性的关系

    Institute of Scientific and Technical Information of China (English)

    曾永三; 王振中

    2003-01-01

    在豇豆(Vigna sesqupdalis Wight)不同梯度抗性品种与锈菌(Uromyces Vignae Barcl)互作的早期(于接种后12 h内),苯丙氨酸解氨酶(Phenylalanine ammonia lyase,PAL)的比活性与品种抗性梯度一致;过氧化氢酶(Catalase,CAT)的比活性变化率与品种抗性有较密切的关系,在免疫和抗病品种中降低,在感病品种中则上升.

  17. Construction of Co-expressed MntH and Mn-catalase Gene in Escherichia coli and Optimization of Fermentation Conditions%MntH与含锰过氧化氢酶共表达基因工程菌的构建与发酵优化

    Institute of Scientific and Technical Information of China (English)

    王慧; 崔云风; 刘岩; 史吉平; 赵志军; 王绍明

    2015-01-01

    Mn-catalase from Thermus thermophilus HB27 and Mn2+transport protein MntH from Escherichia coli were co-expressed in E. coli BL21(DE3). The optimization of fermentation medium and environment for the production of Mn-catalase was carried out at the shake flask level. The optimal carbon and nitrogen source were 7.0 g/L glycerine, 3.75 g/L yeast extract and 11.25 g/L peptone respectively. The optimum induced concentration of IPTG was 0.05 mmol/L while the Mn2+in media was 1 mmol/L. In addition, the optimal initial pH of the medium and culture temperature were pH 8.0 and 37℃respectively. Under the optimal conditions, the maximal activity of catalase reached 476 U/mL, which was 3-fold of the control. Finally, in a 5 L fermentor the activity of catalase increased to 1 094 U/mL.%构建Mn2+转运蛋白MntH与来源于Thermus thermophilus HB27的含锰过氧化氢酶的共表达基因工程菌,并进行了发酵培养基及培养环境条件的优化,确定培养基中最佳的碳氮源种类及其浓度分别为:甘油7.0 g/L,酵母粉3.75 g/L和蛋白胨11.25 g/L;当培养基中的Mn2+浓度为1 mmol/L时,最佳的IPTG诱导浓度为0.05 mmol/L。此外,最佳的培养基初始pH值及培养温度分别为:pH 8.0和37℃,在最优发酵条件下工程菌摇瓶发酵培养24 h,过氧化氢酶活最高可达476 U/mL是未优化前3倍。在5 L发酵罐的验证实验中,过氧化氢酶的酶活进一步提高至1094 U/mL。

  18. EFFECTS OF ELECTRON BEAM IRRADIATION ON ACTIVITIES OF PEROXIDASE CATALASE AND SUPEROXIDE DISMUTASE OF TRIBOLIUM CASTANEURN (HERBST)%电子束辐照对赤拟谷盗保护酶系的影响

    Institute of Scientific and Technical Information of China (English)

    王殿轩; 王晶磊; 李淑荣; 高美须; 徐威; 林敏; 崔莹

    2011-01-01

    By electron beam irradiation, enzyme activity changes of peroxidase (PCD), catalase (CAT), superoxide dis-mutase (SOD) of Triboliian castaneurn (Herbst) in different insects states (3~4th instar larvae, pupae age 1 day to 2 days and adult for 1 day eclosion) have been investigated. The results showed that POD activity of Tribolium castaneum in different states was in order: adult > pupa> larvae; CAT activity: adult > pupa> larvae; SOD activity: larvae > pupa > adult. After irradiation, the protection enzyme activity rose first, then fell with radiation dose increasing. PCX!) of Tribolivan castaneum in three states reached the highest vitality at 500 Gy, CAT of Tribolium castaneum 3-4th instar larvae, pupae age 1 day to 2 days and adult for 1 day eclosion reached the maximum at 420 Gy and 300Gy respectively, SCO of larvae and pupa up to the maximum at 420 Gy, and adult to the highest at 500 Gy. This test would contribute to illuminate the physiological and biochemical effect of electron beam irradiation on stored grain insects.%研究了赤拟谷盗Tribolium castaneurn( Herbst)不同虫态(3~4龄幼虫、1~2龄蛹和羽化1天成虫)体内过氧化物酶( POD)、过氧化氢酶(CAT)、超氧歧化酶(SOD)活力在电子束辐照条件下的变化.结果表明,赤拟谷盗不同虫态的POD活力:羽化1d成虫>1~2龄蛹>3~4龄幼虫;CAT活力:羽化1d成虫>1~2龄蛹>3~4龄幼虫;SOD活力:3~4龄幼虫>1~2龄蛹>羽化1d成虫.辐照处理后,保护酶活力随辐照剂量的增加呈先上升后下降的趋势,赤拟谷盗3种虫态POD活力均在500 Gy辐照剂量最高;3~4龄幼虫和1~2龄蛹CAT活力在420 Gy辐照剂量最高,羽化1d成虫300 Gy最高;3~4龄幼虫和1~2龄蛹SOD活力在420 Gy辐照剂量最高,羽化1d成虫500 Gy最高.本试验结果有助于阐明电子束辐照对储粮害虫的生理生化效应.

  19. Biological effects from a static magnetic field generated by a 0.5 T Magnetic Resonance system on the enzyme activity of catalase and creatin kinase in rodents; Effetti biologici del campo magnetico statico di un tomografo a Risonanza Magnetica da 0,5 T sull'attivita' enzimatica della catalasi e della creatinchinasi nel ratto

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, S. [Ist. di Radiologia P. Cignolini, Palermo (Italy); Ciaccio, M.; Bono, A. [Palermo Univ. (Italy). Ist. di Chimica Biologica; Lo Casto, A. [Consiglio Nazionale delle Ricerche, Palermo (Italy). Ist. per lo Studio di Metodologie Diagnostiche Avanzate; De Maria, M.; Lagalla, R.; Cardinale, A.E.

    1999-03-01

    The authors investigated possible alterations in the enzyme activity of catalase and isozyme MB-creatin kinase induced by prolonged exposure of laboratory rodents to a static magnetic field generated by a 0.5 T Magnetic Resonance unit. The results seems to exclude any alterations in the activity of catalase and MB-CK after exposure. However some homeostatic mechanism peculiar to multi cellular organisms might act 'in vivo' to adapt to the effects of the static magnetic field during exposure. [Italian] Scopo del presente lavoro e' indagere l'eventuale verificarsi di alterazioni dell'attivita' enzimatica della catalasi e dell'isoenzima MB della creatinchinasi, indotte dalla prolungata esposizione di animali da laboratorio al campo magnetico statico generato da un Tomografo a Risonanza Magnetica (RM) da 0,5 T. I risultati del lavoro porterebbero a escludere alterazioni dell'attivita' della catalasi e della MB-creatinchinasi conseguenti all'esposizione. Occorre tuttavia rilevare che 'in vivo' possono agire alcuni meccanismo omeospatici, peculiari degli organismi pluricellulari, di adattamento agli effetti dei campi magnetici, che potrebbero essere intervenuti durante l'esposizione.

  20. Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc Evaluación de la actividad de la catalasa, peroxidación lipídica, clorofila-a y tasa de crecimiento en la alga verde de agua dulce Pseudokirchneriella subcapitata expuesta a cobre y zinc

    Directory of Open Access Journals (Sweden)

    Paulina Soto

    2011-07-01

    Full Text Available In this work, the effect of copper and zinc on green alga Pseudokirchneriella subcapitata was evaluated through catalase activity, lipid peroxidation by TBARS essay, growth rate, and the chlorophyll-a concentration. Catalase activity increased significantly (P En este trabajo, se evaluó el efecto del cobre y zinc en la alga verde Pseudokirchneriella subcapitata a través de la actividad catalasa, peroxidación lipídica por el ensayo TBARS, tasa de crecimiento y concentración de clorofila-a. La actividad catalasa aumentó significativamente (P < 0,05 en comparación al control en 0,1 mg L-1 y 0,075 mg L-1 de cobre y zinc respectivamente, mientras que el daño en la membrana celular expresado en nanomols/10(6 células de malondialdehído aumentó significativamente en 0,025 mg L-1 y 0,1 mg L-1 de cobre y zinc respectivamente. Por otra parte, hubo una disminución significativa (P < 0,05 en la concentración de clorofila-a en ambos metales a 0,075 mgL-1. Los resultados mostrados en actividad catalasa, peroxidación lipídica y concentración de clorofila-a son parámetros más sensibles que la tasa de crecimiento a los metales.

  1. The Detection of Hydrogen Peroxide, Catalase and Glutathione Peroxide in Serum of Vitiligo%白癜风患者血清过氧化氢、过氧化氢酶和谷胱甘肽过氧化物酶的检测

    Institute of Scientific and Technical Information of China (English)

    赵进; 李伟; 李世远; 黄培勇; 林瑞彬; 陆健群; 黄耿

    2011-01-01

    Objective To explore the relations between oxidants and antioxidants in vivo and the pathogenesis of vitiligo. Methods The hydrogen peroxide,catalase and glutathione peroxide in serum of 40 vitiligo patients and 10 healthy controls were measured. Results The catalase activities of patients,which was(9.31 ±6.52)U/mL, was obviously lower than that in the controls, (33.05 ± 9.47 ) U/mL, and the catalase activities of active vitiligo group(7.3 ±6.01) U/mL was significantly lower than those of the stable vitiligo group( 13.05 ±6. 11) U/mL. The differences had statistical significance difference (all P 0.05). Conclusion The levels of oxidant-antioxidant in serum of patients might be associated with the pathogenesis of vitiligo.%目的 探讨体内氧化物和抗氧化物与白癜风发病的关系.方法 分别检测40例白癜风患者和10例健康对照者的血清过氧化氢( H2O2)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX).结果 白癜风患者CAT浓度(9.31±6.52) U/mL明显低于对照组(33.05±9.47) U/mL,其进展期CAT浓度(7.3±6.01) U/mL明显低于稳定期(13.05±6.11)U/mL,差异均有统计学意义(P均<0.01);而白癜风患者H2O2和GSH-PX水平与对照组比较,差异无统计学意义(P>0.05).结论 白癜风的发生可能与血清氧化物-抗氧化物水平的变化有一定的相关性.

  2. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers.

    Science.gov (United States)

    Cembrowska-Lech, Danuta; Koprowski, Marek; Kępczyński, Jan

    2015-03-15

    Avena fatua L. caryopses did not germinate at 20 °C in darkness because they were dormant. However, they were able to germinate in the presence of karrikinolide (KAR1), a key bioactive compound present in smoke, and also in the presence of gibberellin A3 (GA3), a commonly known stimulator of seed germination. The aim of this study was to collect information on a possible relationship between the above regulators and abscisic acid (ABA), reactive oxygen species (ROS) and ROS scavenging antioxidants in the regulation of dormant caryopses germination. KAR1 and GA3 caused complete germination of dormant A. fatua caryopses. Hydrogen peroxide (H2O2), compounds generating the superoxide (O2(·-)), i.e. menadione (MN), methylviologen (MV) and an inhibitor of catalase activity, aminotriazole (AT), induced germination of dormant caryopses. KAR1, GA3, H2O2 and AT decreased ABA content in embryos. Furthermore, KAR1, GA3, H2O2, MN, MV and AT increased α-amylase activity in caryopses. The effect of KAR1 and GA3 on ROS (H2O2, O2(·-)) and activities of the superoxide dismutase (SOD) and catalase (CAT) were determined in caryopses, embryos and aleurone layers. SOD was represented by four isoforms and catalase by one. In situ localization of ROS showed that the effect of KAR1 and GA3 was associated with the localization of hydrogen peroxide mainly on the coleorhiza. However, the superoxide was mainly localized on the surface of the scutellum. Superoxide was also detected in the protruding radicle. Germination induction of dormant caryopses by KAR1 and GA3 was related to an increasing content of H2O2, O2(·-)and activities of SOD and CAT in embryos, thus ROS homeostasis was probably required for the germination of dormant caryopses. The above regulators increased the content of ROS in aleurone layers and decreased the activities of SOD and CAT, probably leading to the programmed cell death. The presented data provide new insights into the germination induction of A. fatua dormant

  3. 菌株Serratia marcescens SYBC08产过氧化氢酶液态发酵工艺的优化及酶性质研究%Optimization of Fermentation Conditions for Catalase by Serratia marcescens SYBC08 and Characterization of Its Crude Enzyme

    Institute of Scientific and Technical Information of China (English)

    曾化伟; 张峰; 蔡宇杰; 廖祥儒; 李娇阳; 邢玉鹏; 张大兵

    2011-01-01

    The nutrient and environmental conditions for catalase production by Serratia marcescens SYBC08 were optimized with single factor experiment and orthogonal design in this study. The optimum conditions were listed as follows: 25 g/L citric acid,36 g/L corn steep liquor powder, initial pH 6.75, liquid volume 50 mL/250 mL flask, 4% inoculation, 35 ℃, 250 rpm, for 36 hours. With the optimum conditions, the catalase titer achieved at 9553 U/mL, which was 5.49-fold than that of the control. Properties of the catalase after purification by ammonium sulfate precipitation were studied. At 60 ℃ and pH 9.0, the enzyme was stable for 150 min; at 65 ℃ and pH 9, the half-life of the enzyme was approximately 150 min; its thermo stability was higher than that of commercial catalase from bovine. It was also active at 20 ℃ and had 78% of its activity at 0 ℃. These results suggest that the enzyme displays a property with cold adaption and thermo stability, and it has potential applications in high-temperature, alkaline and lowtemperature conditions.%利用单因素筛选和正交试验对菌株Serratia marcescens SYBC08液态发酵产酶的培养基和条件进行了优化,其最优工艺为:柠檬酸25 g/L,玉米浆粉36 g/L,初始pH值为6.75,接种量为体积分数4%,装液量50 mL,转速250 r/min,35℃培养36 h产酶活力可达9 553 U/mL,是优化前的5.49倍.通过对硫酸铵沉淀得到的过氧化氢酶进行酶学性质研究,该酶在碱性条件(pH值为9.0)条件下,60℃下保温150 min酶活力几乎不变,65℃半衰期为150 min,其比商品化的牛肝过氧化氢酶具有更高的热稳定性.该酶最佳催化温度是20℃,在0℃依然展示了78%的活力.这些结果表明该酶具有良好的冷适应和热稳定性,在高温、碱性条件或极低温条件有应用潜力.

  4. Studies on construction of human catalase-producing recombinant yeast strain G13 and its genetic stability%一株新的重组人源过氧化氢酶基因工程菌的构建和遗传稳定性研究

    Institute of Scientific and Technical Information of China (English)

    史训龙; 施志慧; 周伟; 叶丽; 朱海燕; 冯美卿; 周珮

    2011-01-01

    Using pPICZαA as the new yeast expressing vector , the genetic engineering strain GS115-pPICZαA - CA T producing human catalase was successfully constructed , and the genetic stability of the strain G13 was studied . R estriction endonuclease digestion and PCR analysis showed that the recom binant plasmid was properly constructed , and the SD S-PA G E convinced that the strain could express the target protein . The recom binant strain G 13 was continuously incubated for 24 generations. The results showed the plasmid had structural stability and the recom binant strain could maintain human catalase activity .%利用pPICZαA作为新的表达载体和表达宿主酵母GS115,成功地构建了新的人源过氧化氢酶表达工程菌G13,并考察了新的工程菌G13的遗传稳定性.通过对新的重组菌整合质粒的酶切,PCR鉴定,及SDS-PAGE电泳、单抗dot-blot证实了该重组菌质粒构建正确,可以有效表达重组的人源过氧化氢酶.新的重组酵母菌G13在连续传代24次后,没有发生质粒的丢失现象,表达的过氧化氢酶活力稳定.

  5. 草鱼过氧化氢酶全长cDNA的克隆、序列同源分析与组织表达%Full-length cDNA Cloning, Sequence Homology Analysis and Tissue Expre-ssion of a Catalase Gene from Grass Carp (Ctenopharyngodon idellus)

    Institute of Scientific and Technical Information of China (English)

    郑清梅; 韩春艳; 温茹淑; 钟艳梅; 姚琼凤; 侯雨文

    2011-01-01

    过氧化氢酶(catalase,CAT)是生物体内抗氧化防御系统的关键酶之一,在清除过氧化氢而避免机体产生氧化应激的过程中起重要作用.本研究从草鱼(Ctenopharyngodon idellus)肝胰脏中克隆了CAT完整编码序列(complete coding sequence,CDS).该CAT序列(GenBank登陆号:FJ560431)全长2 263 bp,包括完全开放阅读框(ORF) 1 575 bp、5'非编码区(UTR) 118 bp和3' UTR 570 bp.其ORF编码525个氨基酸残基,理论分子量为59.59 kD,等电点为7.02.在草鱼CAT cDNA的终止密码子附近,其3' UTR具有长且完整的AC重复序列,与斑马鱼、鲢鱼及啮齿类动物CAT的3' UTR AC重复序列相似.序列比较表明,草鱼CAT的核苷酸及推测氨基酸序列与其它多种物种的一致性均较高,其一致性分别为93.4%~43.0%和98.1%~63.3%.同时,草鱼CAT cDNA的推测氨基酸序列具有与其它动物高度保守的特征性基序,包括亚铁血红素结合信号序列"RLFSYPDTH"、酶活性中心序列"FDRERIPERVVHAKGA"及3个催化位点残基His74、Asn147和Tyr357.此外,草鱼CAT还具有保守的亚铁血红素结合口袋与NADPH 结合位点.根据草鱼CAT基因的上述特征,推测其属于CAT基因家族中的单功能或典型CAT基因亚群.采用实时荧光定量PCR (Q-PCR)检测草鱼CAT的组织表达特征.结果显示,草鱼CAT mRNA在所检测的11种组织器官中均有表达,其中在肝中表达水平量较高,在红肌、白肌和脂肪中表达量较低.本研究结果将有助于进一步探讨鱼类CAT基因的结构与功能,并为研究其抗氧化分子机理奠定基础.%Catalase is a key enzyme in the antioxidant systems of living organisms that plays an important role in the against oxidative stress by eliminating hydrogen peroxide. The full-length catalase cDNA was cloned from hepatopancreas of grass carp {Ctenopharyngodon idellus). The gene CA T (GenBank Accession No. FJ560431) was 2 263 base-pairs (bp), including a complete protein coding region (ORF) of 1

  6. 草鱼过氧化氢酶全长cDNA的克隆、序列同源分析与组织表达%Full-length cDNA Cloning,Sequence Homology Analysis and Tissue Expression of a Catalase Gene from Grass Carp(Ctenopharyngodon idellus)

    Institute of Scientific and Technical Information of China (English)

    郑清梅; 韩春艳; 温茹淑; 钟艳梅; 姚琼凤; 侯雨文

    2011-01-01

    过氧化氢酶(catalase,CAT)是生物体内抗氧化防御系统的关键酶之一,在清除过氧化氢而避免机体产生氧化应激的过程中起重要作用。本研究从草鱼(Ctenopharyngodon idellus)肝胰脏中克隆了CAT完整编码序列(complete coding sequence,CDS)。该CAT序列(GenBank登陆号:FJ560431)全长2263bp,包括完全开放阅读框(ORF)1575bp、5'非编码区(UTR)118bp和3'UTR570bp。其ORF编码525个氨基酸残基,理论分子量为59.59kD,等电点为7.02。在草鱼CAT cDNA的终止密码子附近,其3'UTR具有长且完整的AC重复序列,与斑马鱼、鲢鱼及啮齿类动物CAT的3'UTR AC重复序列相似。序列比较表明,草鱼CAT的核苷酸及推测氨基酸序列与其它多种物种的一致性均较高,其一致性分别为93.4%~43.0%和98.1%~63.3%。同时,草鱼CAT cDNA的推测氨基酸序列具有与其它动物高度保守的特征性基序,包括亚铁血红素结合信号序列"RLFSYPDTH"、酶活性中心序列"FDRERIPERVVHAKGA"及3个催化位点残基His74、Asn147和Tyr357。此外,草鱼CAT还具有保守的亚铁血红素结合口袋与NADPH结合位点。根据草鱼CAT基因的上述特征,推测其属于CAT基因家族中的单功能或典型CAT基因亚群。采用实时荧光定量PCR(Q-PCR)检测草鱼CAT的组织表达特征。结果显示,草鱼CATmRNA在所检测的11种组织器官中均有表达,其中在肝中表达水平量较高,在红肌、白肌和脂肪中表达量较低。本研究结果将有助于进一步探讨鱼类CAT基因的结构与功能,并为研究其抗氧化分子机理奠定基础。%Catalase is a key enzyme in the antioxidant systems of living organisms that plays an important role in the against oxidative stress by eliminating hydrogen peroxide.The full-length catalase cDNA was cloned from hepatopancreas of grass carp(Ctenopharyngodon idellus).The gene CAT(GenBank Accession No.FJ560431) was 2 263 base

  7. H_2O_2对水稻白叶枯病菌过氧化氢酶相关基因crg表达的诱导作用%Induction of bacterial catalase-related gene expression by H_2O_2 produced during interaction of rice suspension-cultured cells with Xanthomonas oryzae pv. oryzae or applied exogenously

    Institute of Scientific and Technical Information of China (English)

    周建波; 吴茂森; 胡俊; 何晨阳

    2009-01-01

    为了阐明H_2O_2对水稻白叶枯病菌(Xanthomonas oryzae pv.oryzae,Xoo)过氧化氢酶(CAT)相关基因(crg)表达的诱导作用,本研究定量分析了在水稻细胞-Xoo互作体系及其加入H_2O_2清除剂CAT后H_2O_2产量和crg表达;外源添加H_2O_2后的病菌生长和crg表达.结果表明:在互作条件下,H_2O_2含量稳定增加,10 h可达到峰值;在互作6 h时crg显著地被诱导表达;加入 CAT显著地降低了H_2O_2含量和crg表达;在外源H_2O_2胁迫条件下,H_2O_2以浓度效应的方式影响病菌增殖,显著地诱导了catB和srpA表达.因此,Xoo-水稻互作导致了H_2O_2的发生.无论是互作产生的还是外源的H_2O_2均显著地诱导了Xoo crg表达,从而活化了H_2O_2降解途径.%To elucidate the role of hydrogen peroxide (H_2O_2) produced during the interaction of rice suspension-cultured cells with Xanthomonas oryzae pv. oryzae (Xoo) or applied exogenously in inducing expression of bacterial catalase-related gene (crg), H_2O_2 production and crg expression during the rice-Xoo interaction, in which catalase (CAT) was exogenously added or not, were quantitatively analyzed. In vitro growth and crg expression of Xoo exposed to exogenously-applied H_2O_2 were quantitatively examined as well. Significant increase in H_2O_2 content and crg expression was observed during the interaction, while reduction in H_2O_2 concentration and crg expression was obviously found when CAT was exogenously added to the rice-Xoo interacting system. Growth in vitro was inhibited by exogenously-applied H_2O_2 in a dosage manner, which strongly induced the expression of catB and srpA. Therefore, H_2O_2 production was resulted from the rice-Xoo interaction, and crg expression was significantly induced by H_2O_2 either produced during the interaction or added exogenously.

  8. 甜菜夜蛾过氧化氢酶cDNA序列克隆、序列分析和表达特征%Cloning, sequence analysis and expression profiling of cDNA coding for catalase from the beet armyworm, Spodoptera exigua (Lepidoptera:Noctuidae )

    Institute of Scientific and Technical Information of China (English)

    胡振; 左洪亮; 李亚楠; 黄劲飞; 胡美英

    2011-01-01

    过氧化氧酶( catalase,CAT)作为生物体内的重要物质,其主要功能是参与活性氧代谢过程,在清除H2O2、超氧自由基和过氧化物以及阻止羟基自由基形成等方面发挥着重要作用.本研究利用RT-PCR技术和RACE方法首次克隆和分析了甜菜夜蛾Spodoptera exigua (Hübner) CAT基因,命名为SexiCAT,GenBank登录号为JN051294,其cNI)A序列全长为1 755 bp,开放阅渎框长1 524 bp,推测编码507个氨基酸.经氨基酸序列比对,此多肽序列具有高度保守性,与其他昆虫CAT的序列一致性分别为:家蚕Bombyx mori( 87%)、黑腹果蝇Drosophila melanogaster (73%)、埃及伊蚊Aedes aegypti (71%)和赤拟谷盗Tribolium castaneum (70%).对该基因在甜菜夜蛾各个发育时期以及不同组织表达量的荧光定量PCR分析表明,SexiCA7基因在甜菜夜蛾各个发育阶段的表达水平存在显著差异,其中成虫期的表达量最高,是卵期表达量的7倍,幼虫期次之,卵期最低;SexiCAT基因在5龄幼虫体壁、中肠、脂肪体和马氏管组织中都有表达,但在脂肪体中表达量最高.甜菜夜蛾SexiCAT基因的成功克隆及同源建模将为今后对其功能研究以及作为靶标没计新型氧化酶抑制剂提供了基础.%Catalase (CAT) , one of most important enzymes in organism, plays an essential role in active oxygen metabolism and preventing the formation of free hydroxyl radicals by clearing hydrogen peroxide, superoxide radical and peroxides. In this study, the full-length cDNA of CAT gene from the beet armyworm, Spodoptera exigua, was cloned and characterized by RT-PCR and RACE technique, which is 1 755 bp in length and named as SexiCAT ( GenBank accession no. JN051294). The open reading frame (ORF) of SexiCAT is 1 524 bp encoding 507 amino acid residues. The amino acid sequence of SexiCAT shares a significant identity with catelases of Bombyx mori (87% ), Drosophila melanogaster (73% ), Aedes aegypti (71%), and Tribolium

  9. 不同供锗水平对巨大革耳子实体可溶性蛋白和细胞保护酶活性的影响%Soluble Protein,Superoxide Dismutase, Peroxidase,Polyphenol Oxidase and Catalase Levels in Panus giganteus Fruit Bodies Grown on Substrates Supplemented with Different Concentrations of Germanium

    Institute of Scientific and Technical Information of China (English)

    颜振兰

    2014-01-01

    研究培养料中锗(Ge)不同添加水平对巨大革耳(Panus giganteus)子实体内可溶性蛋白含量和超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)等细胞保护酶活性的影响。结果表明,Ge 添加浓度为18 mg/kg时,巨大革耳子实体内可溶性蛋白含量、SOD和 POD活性平均分别比对照提高8.80%、193.9%和43.3%,与对照间差异极显著(P<0.01);CAT活性也平均比对照提高8.9%,与对照差异显著(P<0.05)。%Superoxide dismutase (SOD),peroxidase (POD),polyphenol oxidase (PPO),catalase (CAT)and soluble protein levels were determined in Panus giganteus fruit bodies grown on substrates supplemented with different GeO2 concentrations.Soluble protein,SOD,POD and CAT levels in P.giganteus fruit bodies cultivated on a substrate supplemented with 18 mg/kg GeO2 were 8.8% (P<0.01),193.9% (P<0.01), 43.3% (P<0.01)and 8.9% (P<0.05)higher,respectively compared to controls grown without added germanium.

  10. Some Aspects of Catalase Induction in Baker's Yeast (Saccharomyces cerevisiae)

    Science.gov (United States)

    Freeland, P. W.

    1974-01-01

    Described are experiments for demonstrating essential features of substrate-induced enzyme synthesis based on the Jacob-Monod model, and for showing that the activity of certain genes can be modified by environmental temperature. (RH)

  11. 土壤加砷对大豆叶绿素、脯氨酸和过氧化氢酶活性的影响%Effects of soil arsenic additions on chlorophyll, proline and the catalase activity in soybean (Glycine max .L .)

    Institute of Scientific and Technical Information of China (English)

    牛昌美; 杨兰芳; 彭小兰; 裴艳艳

    2013-01-01

    为了认识土壤砷污染对大豆生理指标的影响,设置土壤加砷0、5、10、30、50和100 mg kg -1共6个水平的盆栽大豆试验,测定大豆生长期间叶片的叶绿素、脯氨酸含量和过氧化氢酶活性等生理指标.结果表明,土壤砷污染影响大豆的叶绿素、脯氨酸、过氧化氢酶等生理指标.土壤加砷对大豆叶绿素的影响随生长期而不同,在结荚期,土壤加砷对叶绿素含量的影响不显著,但是高砷水平降低了叶绿素a与b的比值;在鼓粒期,高砷水平增加了大豆的叶绿素含量,叶绿素a、叶绿素b、类胡萝卜素和叶绿素总量的最大增加率分别达119.8%、111.0%、105.6%和117.2%.在大豆结荚期,土壤加砷30~100 mg kg -1使大豆脯氨酸的含量降低了23.4%~31.4%,而所有加砷处理的过氧化氢酶活性都显著低于对照,土壤加砷使大豆过氧化氢酶活性降低了10.7%~46.6%.总之,土壤砷污染会通过影响叶绿素的构成和含量改变大豆光合作用、降低大豆抗逆性和破坏大豆抗氧化系统来妨碍大豆的生长.%In order to understand the effects of soil arsenic pollution on soybean (Glycine max . L .) physiological indexes ,a soil pot experiment cultivating soybean by soil arsenic additions of 0 ,5 , 10 ,30 ,50 and 100 mg kg -1 was conducted and the content of chlorophyll and proline and the activity of catalase was determined during the soybean growing .The results showed that soil arsenic additions had significant effects on chlorophyll ,proline and catalase in soybean leaves .The effects of arsenic on chlorophyll in soybean leaves varied with the growing stages . At the pod stage , the content of chlorophyll in soybean leaves was not significantly influenced by soil arsenic additions ,but the ratios of chlorophyll a to b in 50 and 100 mg kg -1 arsenic additions were significant lower than that in control .While at grain filling

  12. “自我剪切”2A肽介导的Δ-12和ω-3脂肪酸脱氢酶以及过氧化氢酶在转基因小鼠肌肉表达研究%Muscle-specific Expression of Δ-12 and ω-3 Fatty Acid Desaturases and Human Catalase Using "Self-cleaving" 2A Peptides in Transgenic Mice

    Institute of Scientific and Technical Information of China (English)

    方锐; 彭云乾; 郑敏; 孟庆勇

    2012-01-01

    哺乳动物因为缺乏Δ-12和ω-3脂肪酸脱氢酶,不能自身合成必需的多不饱和脂肪酸.目前,通过转基因技术在哺乳动物体内表达ω-3脂肪酸脱氢酶,能将长链的n-6多不饱和脂肪酸转化成n-3多不饱和脂肪酸,造成体内长链的n-6多不饱和脂肪酸含量显著减低.本研究通过自我剪切2A肽介导Δ-12和ω-3脂肪酸脱氢酶(FAT-2和FAT-1)以及人过氧化氢酶(human catalase,hCAT)在小鼠的肌肉同时表达.结果表明,转基因小鼠肌肉中长链n-3多不饱和脂肪酸含量提高2.6倍,长链n-6多不饱和脂肪酸含量没有显著变化,而n-6/n-3比例显著降低(P<0.01).同时蛋白质印迹检测到人过氧化氢酶hCAT在小鼠的肌肉组织中表达,且过氧化氢酶活性比野生型小鼠显著提高(P<0.01).%Essential polyunsaturated fatty acids can not be synthesized in mammals due to the lack of A-12 and ω-3 fatty acid desaturases. Expressing ω-3 fatty acid desaturases in transgenic mammals could convert long chain n-6 polyunsaturated fatty acids to n-3 polyunsaturated fatty acids, significantly reducing the level of long chain n-6 polyunsaturated fatty acids. In this study, the muscle-specific transgenic mice expressed Caenorhabditis elegans FA T-1 and FA T-2 genes, which encode w-3 and Δ-12 fatty acid desaturases respectively and human catalase hCA T gene, based on "self-cleaving" 2A peptides, and they were generated by microinjection. Fatty acids in skeletal muscle were analyzed by gas chromatography. The level of total n-3 polyunsaturated fatty acids in transgenic mice was 2.6-fold higher than that in wild type mice, while there was no significantly difference in the level of total n-6 polyunsaturated fatty acids between transgenic and wild type mice. But the skeletal muscle tissue of transgenic mice had a dramatically reduced ratio of n-6/n-3 fatty acids (P<0.01). In addition, the expression level of human catalase was identified by Western blot, and the catalase

  13. Temperature stability of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] in the form of a solution or in the lyophilized form during storage at -80 °C, 4 °C, 25 °C and 37 °C or pasteurization at 70 °C.

    Science.gov (United States)

    Bian, Y Z; Guo, C; Chang, T M S

    2016-01-01

    Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase (Poly-[Hb-SOD-CAT-CA]) contains all three major functions of red blood cells (RBCs) at an enhanced level. It transports oxygen, removes oxygen radicals and transports carbon dioxide. Our previous studies in a 90-min 30 mm Hg Mean Arterial Pressure (MAP) sustained hemorrhagic shock rat model shows that it is more effective than blood in the lowering of elevated intracellular pCO2, recovery of ST-elevation and histology of the heart and intestine. This paper is to analyze the storage and temperature stability. Allowable storage time for RBC is about 1 d at room temperature and 42 d at 4 °C. Also, RBC cannot be pasteurized to remove infective agents like HIV and Ebola. PolyHb can be heat sterilized and can be stored for 1 year even at room temperature. However, Poly-[Hb-SOD-CAT-CA] contains both Hb and enzymes and enzymes are particularly sensitive to storage and heat. We thus carried out studies to analyze its storage stability at different temperatures and heat pasteurization stability. Results of storage stability show that lyophilization extends the storage time to 1 year at 4 °C and 40 d at room temperature (compared to respectively, 42 d and 1 d for RBC). After the freeze-dry process, the enzyme activities of Poly-[SFHb-SOD-CAT-CA] was 100 ± 2% for CA, 100 ± 2% for SOD and 93 ± 3.5% for CAT. After heat pasteurization at 70 °C for 2 h, lyophilized Poly-[Hb-SOD-CAT-CA] retained good enzyme activities of CA 97 ± 4%, SOD 100 ± 2.5% and CAT 63.8 ± 4%. More CAT can be added during the crosslinking process to maintain the same enzyme ratio after heat pasteurization. Heat pasteurization is possible only for the lyophilized form of Poly-[Hb-SOD-CAT-CA] and not for the solution. It can be easily reconstituted by dissolving in suitable solutions that continues to have good storage stability though less than that for the lyophilized form. According to the P50 value, Poly-[SFHb-SOD-CAT-CA] retains its

  14. Effects of imidacloprid and omethoate on the activity of peroxidase,glutathione reductase and catalase in wheat seedlings%氧乐果和吡虫啉对小麦过氧化物酶、谷胱甘肽还原酶及过氧化氢酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    仲丽; 吕超; 杨文玲; 梁沛; 史雪岩; 高希武

    2011-01-01

    In order to examine the effects of insecticides on the antioxidizability of wheat, the activity of peroxidase ( POD ), glutathione reductase ( GR ) and catalase ( CAT ) in wheat seedlings were investigated during 144 h after treatment with imidacloprid and omethoate. The results showed that,comparing with that of the control, the activity of POD in wheat seedlings decreased significantly after being treated with 400,800 and 1 600 mg/L omethoate for 24 h respectively, and the activity of CAT decreased 32.9% after being treated with 1 600 mg/L omethoate for 6 h. After being treated by 400,800 and 1600 mg/L omethoate for 144 h, the activity of GR in wheat seedlings decreased significantly.When wheat seedlings were treated with 25,50 and 100 mg/L imidacloprid respectively, only the activity of POD of wheat seedlings increased 65.0% after being treated with 50 mg/L imidacloprid for 12 h comparing with that of the control. The results showed that activity of POD, GR and CAT in wheat seedlings were influenced by the types of insecticides, as well as the concentration of insecticides and treatment time of insecticides.%为明确常用杀虫剂对小麦抗氧化性的影响,研究了小麦幼苗期用不同浓度氧乐果和吡虫啉的营养液处理后144 h内对其过氧化物酶(POD)、谷胱甘肽还原酶(GR)及过氧化氢酶(CAT)活性的影响.结果表明:用400、800和1 600 mg/L的氧乐果处理小麦幼苗后24 h,POD活性均显著降低;1 600 mg/L的氧乐果处理后6 h,其CAT活性比对照降低了32.9%;各浓度氧乐果处理后144 h,GR活性均显著降低.而用25、50和100 mg/L的吡虫啉处理小麦幼苗后144 h内,只有50mg/L处理组在12 h时的POD活性比对照升高了65.0%.杀虫剂对小麦幼苗中3种抗氧化酶活性的影响不仅与药剂种类有关,还具有一定的剂量效应与时间效应.

  15. 12C6+离子辐照对苜蓿M1代低温胁迫存活率、过氧化氢酶及过氧化物酶活性的影响%Effects of Carb on Ion Irradiation on Survival Rate, Catalase and Peroxidase Activity of Alfalfa M1 under Low Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    王曙阳; 刘敬; 胡伟; 李景华; 姜伯玲; 哈荣华; 李腾腾; 余成群; 刘青芳; 李文建; 陈积红

    2014-01-01

    In this study, three kinds of alfalfa including Zhonglan 1, BC-04-477 and Ta Cheng were treated with different doses of 12C6+(75 keV) heavy ion radiation, and then the influence of survival rate, catalase(CAT) and peroxidase(POD) activity of M1 with low temperature stress were tested. The results showed that under the condition of 400 Gy radiation dose , the survival rate and CAT activity of Zhonglan 1 under low temperature stress have increased by 33.3%, 56.3%respectively compared with those of the control group, while there was no difference in POD activity between those two groups. The survival rate, CAT and POD activity of BC-04-477 treated with low temperature have been improved by 33.3%, 69.2%, 5.1%respectively compared with those of the control group when the radiation dose was 400 Gy. Compared with those of the control group, the survival rate, CAT and POD activity of Ta Cheng under low temperature stress have been improved by 25%, 26%, 22.8% respectively when the radiation dose was 800 Gy. These results indicate that the viability and the cold resistance ability of Zhong Lan 1, BC-04-477 and Ta Cheng can be improved by 12C6+ radiation.%研究了不同剂量12 C6+离子辐照对中兰1号、BC-04-477、塔城3种苜蓿M1代个体在低温胁迫下存活率、过氧化氢酶(CAT)及过氧化物酶(POD)活性的影响。在辐照剂量为400 Gy时,中兰1号低温胁迫组存活率、CAT活性比未辐照的对照分别提高了33.3%,56.3%,POD活性与未辐照的对照无差异;在辐照剂量为400 Gy时,BC-04-477低温胁迫组存活率、CAT及POD活性比未辐照的对照组分别提高了33.3%,69.2%,5.1%;塔城在辐照剂量为800 Gy时,低温胁迫组的存活率、CAT及POD活性比未辐照的对照组分别提高了25%,26%,22.8%。以上结果表明,12C6+离子辐照可以提高中兰1号、BC-04-477、塔城的低温环境的存活能力,提高苜蓿抗寒性能。

  16. 血管紧张素Ⅱ通过下调血管外膜过氧化氢酶表达促进成纤维细胞表型转化%AngiotensinⅡpromotes fibroblasts phenotypic transformation through down-regulating adventitial catalase expression

    Institute of Scientific and Technical Information of China (English)

    沈凯; 林卓明; 陈士良; 袁国裕; 刘晓光

    2014-01-01

    Objective To investigate the relationship between angiotensin Ⅱ ( AngⅡ) and transformation of vascular fibroblasts phenotype .Methods Eighteen rats were randomly assigned into the untreated group , mini-pump infusion of saline group and mini-pump infusion of AngⅡgroup which was used as the hypertension model .Their systolic pressure and vascular morphology were examined .The expression of catalase ( CAT ) and 4HNE was examined by immunohistochemistry .Western blotting was used to examine the expression of CAT of adventitial fibroblasts which were cultured by different incubation times and concentrations of Ang Ⅱ.Results Compared with untreated and mini-pump infusion of saline groups , the systolic pressure and carotid media thickness stained by HE of mini-pump infusion of AngⅡgroup were significantly higher (P<0.01).The results of immunohistochemistry showed that the expression of CAT ofAngⅡgroup was significantly lower than that of untreated group , however the expression of 4HNE of AngⅡgroupwas higher than that of untreated group (P<0.05).Furthermore, the results of Western blotting indicated that the effect of Ang Ⅱ on down-regulation of CAT function was in a dose and incubation time dependent manner .Conclusion AngⅡdown-regulates adventitial CAT expression and promotes fibroblasts phenotypic transformation which leads to pathological arterial vascular remodeling .%目的:探讨血管紧张素Ⅱ( AngⅡ)与血管成纤维细胞( VAF)表型转化的关系。方法利用AngⅡ微泵灌注制备高血压大鼠模型,共18只随机分为未处理组﹑生理盐水对照组﹑AngⅡ灌注组,每组6只。分别检测各组大鼠尾动脉收缩压及血管形态学改变,免疫组织化学检测各组大鼠颈动脉血管过氧化氢酶( CAT)及氧化应激产物4-羟烯酸(4HNE)蛋白的表达,采用Western blotting技术检测外膜成纤维CAT蛋白在不同AngⅡ孵育时间和浓度下的表达。结果与未处理组

  17. 髓过氧化物酶和过氧化氢酶基因多态性及其酶活力与燃煤污染型地方性砷中毒关系的探讨%Relationship between myeloperoxidase and catalase genetic polymorphism and their activities with arsenic poisoning caused by coal-burning

    Institute of Scientific and Technical Information of China (English)

    梁冰; 张爱华; 奚绪光; 张碧霞; 黄晓欣

    2009-01-01

    Objective To detect genetic polymorphism of myeloperoxidase (MPO) gene and catalase (CAT) gene and their activities, and to analyze their relationship with arsenic poisoning caused by coal-burning. Methods One hundred and thirty arsenic poisoning patients were chosen as case group in Jiaole Village, Xingren County, Guizhou Province(an endemic area). One hundred and forty healthy residents living in 13 km away were chosen as control group. Their blood was collected. Polymerase chain reaction-restriction fragment length polymorphism technique(PCR-RFLP) was used to detect polymorphism of MPO-463G/A and CAT-262C/T. Ultraviolet spectmphotometer method was used to detect myeloperoxidase activity. Chromatometry method was used to detect catalase activity. Results The genotype frequency of MPO-463G/A at GG, GA, AA site was 47.24%(60/127), 44.09%(56/127),8.67% (11/127) in case group and 42.34% (58/137),48.17% (66/137)1,9.49% (13/137) in control group, respectively. The difference between the two groups was not significant(χ2 = 0.642, P > 0.05). The genotype frequency of CAT-262C/T, at CC, CT, TT site was 65.60%(82/125),28.80%(36/125),5.60%(7/125) in case group and 76.51%(101/132), 18.94% (25/132) ,4.55% (6/132) in control group, respectively, without significant difference (χ2 =3.845, P>0.05). The relationship between polymorphism of MPO-463G/A and CAT-262C/T and the risk of arsenic poisoning was not found in this study(ORadj= 1.36, 95%CI: 0.74-2.50 for MPO; ORadj=1.35, 95%CI: 0.69-2.63 for CAT). The activities of MPO and CAT were (25.30±8.70)U/L and (2.80± 1.09)×103 U/L in case group, while (22.76±7.59)U/L and (3.90±1.01)×103U/L in control group with a significant difference(F=0.760 for MPO, F=0.855 for CAT, all P 0.05). Conclusions Genetic polymorphism of MPO-463G/A and CAT-262C/T is not found to have relationship with arsenic poisoning. Arsenic can lead to the change of MPO and CAT activity, which, however, may not be affected by MPO-46