WorldWideScience

Sample records for catabolism

  1. Metabolic control analysis of xylose catabolism in Aspergillus

    NARCIS (Netherlands)

    Prathumpai, W.; Gabelgaard, J.B.; Wanchanthuek, P.; Vondervoort, van de P.J.I.; Groot, de M.J.L.; McIntyre, M.; Nielsen, J.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out,

  2. Effects of lipopolysaccharide on the catabolic activity of macrophages

    International Nuclear Information System (INIS)

    Cluff, C.; Ziegler, H.K.

    1986-01-01

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of 125 -I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses

  3. Glutamine alimentation in catabolic state.

    Science.gov (United States)

    Boelens, P G; Nijveldt, R J; Houdijk, A P; Meijer, S; van Leeuwen, P A

    2001-09-01

    Glutamine should be reclassified as a conditionally essential amino acid in the catabolic state because the body's glutamine expenditures exceed synthesis and low glutamine levels in plasma are associated with poor clinical outcome. After severe stress, several amino acids are mobilized from muscle tissue to supply energy and substrate to the host. Glutamine is one of the most important amino acids that provide this function. Glutamine acts as the preferred respiratory fuel for lymphocytes, hepatocytes and intestinal mucosal cells and is metabolized in the gut to citrulline, ammonium and other amino acids. Low concentrations of glutamine in plasma reflect reduced stores in muscle and this reduced availability of glutamine in the catabolic state seems to correlate with increased morbidity and mortality. Adding glutamine to the nutrition of clinical patients, enterally or parenterally, may reduce morbidity. Several excellent clinical trials have been performed to prove efficacy and feasibility of the use of glutamine supplementation in parenteral and enteral nutrition. The increased intake of glutamine has resulted in lower septic morbidity in certain critically ill patient populations. This review will focus on the efficacy and the importance of glutamine supplementation in diverse catabolic states.

  4. Body Weight Independently Affects Articular Cartilage Catabolism

    Directory of Open Access Journals (Sweden)

    W. Matt Denning, Jason G. Winward, Michael Becker Pardo, J. Ty Hopkins, Matthew K. Seeley

    2015-06-01

    Full Text Available Although obesity is associated with osteoarthritis, it is unclear whether body weight (BW independently affects articular cartilage catabolism (i.e., independent from physiological factors that also accompany obesity. The primary purpose of this study was to evaluate the independent effect of BW on articular cartilage catabolism associated with walking. A secondary purpose was to determine how decreased BW influenced cardiovascular response due to walking. Twelve able-bodied subjects walked for 30 minutes on a lower-body positive pressure treadmill during three sessions: control (unadjusted BW, +40%BW, and -40%BW. Serum cartilage oligomeric matrix protein (COMP was measured immediately before (baseline and after, and 15 and 30 minutes after the walk. Heart rate (HR and rate of perceived exertion (RPE were measured every three minutes during the walk. Relative to baseline, average serum COMP concentration was 13% and 5% greater immediately after and 15 minutes after the walk. Immediately after the walk, serum COMP concentration was 14% greater for the +40%BW session than for the -40%BW session. HR and RPE were greater for the +40%BW session than for the other two sessions, but did not differ between the control and -40%BW sessions. BW independently influences acute articular cartilage catabolism and cardiovascular response due to walking: as BW increases, so does acute articular cartilage catabolism and cardiovascular response. These results indicate that lower-body positive pressure walking may benefit certain individuals by reducing acute articular cartilage catabolism, due to walking, while maintaining cardiovascular response.

  5. Shared strategies for β-lactam catabolism in the soil microbiome

    DEFF Research Database (Denmark)

    Crofts, Terence S.; Wang, Bin; Spivak, Aaron

    2018-01-01

    The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. Genomic......, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility....

  6. Pentose phosphates in nucleoside interconversion and catabolism.

    Science.gov (United States)

    Tozzi, Maria G; Camici, Marcella; Mascia, Laura; Sgarrella, Francesco; Ipata, Piero L

    2006-03-01

    Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway, or are supplied by nucleoside phosphorylases. The two main pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, are readily interconverted by the action of phosphopentomutase. Ribose-5-phosphate is the direct precursor of 5-phosphoribosyl-1-pyrophosphate, for both de novo and 'salvage' synthesis of nucleotides. Phosphorolysis of deoxyribonucleosides is the main source of deoxyribose phosphates, which are interconvertible, through the action of phosphopentomutase. The pentose moiety of all nucleosides can serve as a carbon and energy source. During the past decade, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. We review herein the experimental knowledge on the molecular mechanisms by which (a) ribose-1-phosphate, produced by purine nucleoside phosphorylase acting catabolically, is either anabolized for pyrimidine salvage and 5-fluorouracil activation, with uridine phosphorylase acting anabolically, or recycled for nucleoside and base interconversion; (b) the nucleosides can be regarded, both in bacteria and in eukaryotic cells, as carriers of sugars, that are made available though the action of nucleoside phosphorylases. In bacteria, catabolism of nucleosides, when suitable carbon and energy sources are not available, is accomplished by a battery of nucleoside transporters and of inducible catabolic enzymes for purine and pyrimidine nucleosides and for pentose phosphates. In eukaryotic cells, the modulation of pentose phosphate production by nucleoside catabolism seems to be affected by developmental and physiological factors on enzyme levels.

  7. Amino Acid Catabolism in Multiple Sclerosis Affects Immune Homeostasis.

    Science.gov (United States)

    Negrotto, Laura; Correale, Jorge

    2017-03-01

    Amino acid catabolism has been implicated in immunoregulatory mechanisms present in several diseases, including autoimmune disorders. Our aims were to assess expression and activity of enzymes involved in Trp and Arg catabolism, as well as to investigate amino acid catabolism effects on the immune system of multiple sclerosis (MS) patients. To this end, 40 MS patients, 30 healthy control subjects, and 30 patients with other inflammatory neurological diseases were studied. Expression and activity of enzymes involved in Trp and Arg catabolism (IDO1, IDO2, Trp 2,3-dioxygenase [TDO], arginase [ARG] 1, ARG2, inducible NO synthetase) were evaluated in PBMCs. Expression of general control nonrepressed 2 serine/threonine kinase and mammalian target of rapamycin (both molecules involved in sensing amino acid levels) was assessed in response to different stimuli modulating amino acid catabolism, as were cytokine secretion levels and regulatory T cell numbers. The results demonstrate that expression and activity of IDO1 and ARG1 were significantly reduced in MS patients compared with healthy control subjects and other inflammatory neurological diseases. PBMCs from MS patients stimulated with a TLR-9 agonist showed reduced expression of general control nonrepressed 2 serine/threonine kinase and increased expression of mammalian target of rapamycin, suggesting reduced amino acid catabolism in MS patients. Functionally, this reduction resulted in a decrease in regulatory T cells, with an increase in myelin basic protein-specific T cell proliferation and secretion of proinflammatory cytokines. In contrast, induction of IDO1 using CTLA-4 or a TLR-3 ligand dampened proinflammatory responses. Overall, these results highlight the importance of amino acid catabolism in the modulation of the immunological responses in MS patients. Molecules involved in these pathways warrant further exploration as potential new therapeutic targets in MS. Copyright © 2017 by The American Association of

  8. Biochemistry of Catabolic Reductive Dehalogenation.

    Science.gov (United States)

    Fincker, Maeva; Spormann, Alfred M

    2017-06-20

    A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe-S cluster-containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe-S cluster cofactors and discuss physiological implications.

  9. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos.

    Science.gov (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim

    2015-11-15

    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome. © 2015. Published by The Company of Biologists Ltd.

  10. Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Posen, Paulette [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom)]. E-mail: p.posen@uea.ac.uk; Lovett, Andrew [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom); Hiscock, Kevin [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom); Evers, Sarah [Environment Agency, Olton Court, 10 Warwick Road, Olton, Solihull, B92 7HX (United Kingdom); Ward, Rob [Environment Agency, Olton Court, 10 Warwick Road, Olton, Solihull, B92 7HX (United Kingdom); Reid, Brian [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom)

    2006-08-31

    The catabolic activity of incumbent microorganisms in soil samples of eleven dissimilar soil series was investigated, with respect to the herbicide isoproturon. Soils were collected from a 30 x 37 km area of river catchment to the north-west of London, England. Catabolic activity in each soil type during a 500 h assay was determined by {sup 14}C-radiorespirometry. Results showed four soils that exhibited high levels of catabolic activity (33-44% mineralisation) while the remaining seven soils showed lower levels of catabolic activity (12-16% mineralisation). There was evidence to suggest that soils exhibiting high catabolic activity had low (< 22%) clay content and tended towards lower organic carbon content (< 2.7%), but that these higher levels of catabolic activity were also related to pre-exposure to isoproturon. The {sup 14}C-radiorespirometric results were used to produce a GIS layer representing levels of catabolic activity for the dissimilar soils across the study area. This layer was combined with other GIS layers relating to pesticide attenuation, including soil organic carbon content, depth to groundwater and hydrogeology, to produce a map showing risk of groundwater contamination by isoproturon. The output from this approach was compared with output from an attenuation-only approach and differences appraised. Inclusion of the catabolism layer resulted in a lowering of risk in the model in 15% of the study area. Although there appears to be limited benefit in including pesticide catabolic activity in this regional-scale groundwater risk model, this type of addition could be useful in a site-specific risk assessment.

  11. Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment

    International Nuclear Information System (INIS)

    Posen, Paulette; Lovett, Andrew; Hiscock, Kevin; Evers, Sarah; Ward, Rob; Reid, Brian

    2006-01-01

    The catabolic activity of incumbent microorganisms in soil samples of eleven dissimilar soil series was investigated, with respect to the herbicide isoproturon. Soils were collected from a 30 x 37 km area of river catchment to the north-west of London, England. Catabolic activity in each soil type during a 500 h assay was determined by 14 C-radiorespirometry. Results showed four soils that exhibited high levels of catabolic activity (33-44% mineralisation) while the remaining seven soils showed lower levels of catabolic activity (12-16% mineralisation). There was evidence to suggest that soils exhibiting high catabolic activity had low ( 14 C-radiorespirometric results were used to produce a GIS layer representing levels of catabolic activity for the dissimilar soils across the study area. This layer was combined with other GIS layers relating to pesticide attenuation, including soil organic carbon content, depth to groundwater and hydrogeology, to produce a map showing risk of groundwater contamination by isoproturon. The output from this approach was compared with output from an attenuation-only approach and differences appraised. Inclusion of the catabolism layer resulted in a lowering of risk in the model in 15% of the study area. Although there appears to be limited benefit in including pesticide catabolic activity in this regional-scale groundwater risk model, this type of addition could be useful in a site-specific risk assessment

  12. Immunosuppressive Tryptophan Catabolism and Gut Mucosal Dysfunction Following Early HIV Infection

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; El-Far, Mohamed; Vyboh, Kishanda; Kema, Ido; Costiniuk, Cecilia T.; Thomas, Rejean; Baril, Jean-Guy; LeBlanc, Roger; Kanagaratham, Cynthia; Radzioch, Danuta; Allam, Ossama; Ahmad, Ali; Lebouche, Bertrand; Tremblay, Cecile; Ancuta, Petronela; Routy, Jean-Pierre

    2015-01-01

    Background. Tryptophan (Trp) catabolism into kynurenine (Kyn) contributes to immune dysfunction in chronic human immunodeficiency virus (HIV) infection. To better define the relationship between Trp catabolism, inflammation, gut mucosal dysfunction, and the role of early antiretroviral therapy

  13. Variable carbon catabolism among Salmonella enterica serovar Typhi isolates.

    Directory of Open Access Journals (Sweden)

    Lay Ching Chai

    Full Text Available BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. METHODOLOGY/PRINCIPAL FINDINGS: To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas of typhoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. CONCLUSION: The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen.

  14. Identification of the First Riboflavin Catabolic Gene Cluster Isolated from Microbacterium maritypicum G10*

    Science.gov (United States)

    Xu, Hui; Chakrabarty, Yindrila; Philmus, Benjamin; Mehta, Angad P.; Bhandari, Dhananjay; Hohmann, Hans-Peter; Begley, Tadhg P.

    2016-01-01

    Riboflavin is a common cofactor, and its biosynthetic pathway is well characterized. However, its catabolic pathway, despite intriguing hints in a few distinct organisms, has never been established. This article describes the isolation of a Microbacterium maritypicum riboflavin catabolic strain, and the cloning of the riboflavin catabolic genes. RcaA, RcaB, RcaD, and RcaE were overexpressed and biochemically characterized as riboflavin kinase, riboflavin reductase, ribokinase, and riboflavin hydrolase, respectively. Based on these activities, a pathway for riboflavin catabolism is proposed. PMID:27590337

  15. Identification of the First Riboflavin Catabolic Gene Cluster Isolated from Microbacterium maritypicum G10.

    Science.gov (United States)

    Xu, Hui; Chakrabarty, Yindrila; Philmus, Benjamin; Mehta, Angad P; Bhandari, Dhananjay; Hohmann, Hans-Peter; Begley, Tadhg P

    2016-11-04

    Riboflavin is a common cofactor, and its biosynthetic pathway is well characterized. However, its catabolic pathway, despite intriguing hints in a few distinct organisms, has never been established. This article describes the isolation of a Microbacterium maritypicum riboflavin catabolic strain, and the cloning of the riboflavin catabolic genes. RcaA, RcaB, RcaD, and RcaE were overexpressed and biochemically characterized as riboflavin kinase, riboflavin reductase, ribokinase, and riboflavin hydrolase, respectively. Based on these activities, a pathway for riboflavin catabolism is proposed. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes.

    Science.gov (United States)

    Rom, Oren; Kaisari, Sharon; Aizenbud, Dror; Reznick, Abraham Z

    2013-12-01

    The toxic aldehydes acetaldehyde and acrolein were previously suggested to damage skeletal muscle. Several conditions in which exposure to acetaldehyde and acrolein is increased were associated with muscle wasting and dysfunction. These include alcoholic myopathy, renal failure, oxidative stress, and inflammation. A main exogenous source of both acetaldehyde and acrolein is cigarette smoking, which was previously associated with increased muscle catabolism. Recently, we have shown that exposure of skeletal myotubes to cigarette smoke stimulated muscle catabolism via increased oxidative stress, activation of p38 MAPK, and upregulation of muscle-specific E3 ubiquitin ligases. In this study, we aimed to investigate the effects of acetaldehyde and acrolein on catabolism of skeletal muscle. Skeletal myotubes differentiated from the C2 myoblast cell line were exposed to acetaldehyde or acrolein and their effects on signaling pathways related to muscle catabolism were studied. Exposure of myotubes to acetaldehyde did not promote muscle catabolism. However, exposure to acrolein caused increased generation of free radicals, activation of p38 MAPK, upregulation of the muscle-specific E3 ligases atrogin-1 and MuRF1, degradation of myosin heavy chain, and atrophy of myotubes. Inhibition of p38 MAPK by SB203580 abolished acrolein-induced muscle catabolism. Our findings demonstrate that acrolein but not acetaldehyde activates a signaling cascade resulting in muscle catabolism in skeletal myotubes. Although within the limitations of an in vitro study, these findings indicate that acrolein may promote muscle wasting in conditions of increased exposure to this aldehyde. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use

    International Nuclear Information System (INIS)

    Reid, Brian J.; Papanikolaou, Niki D.; Wilcox, Ronah K.

    2005-01-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by 14 C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 μg kg -1 ) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant. - Dissimilar levels of isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use influence inferred risk

  18. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Brian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)]. E-mail: b.reid@uea.ac.uk; Papanikolaou, Niki D. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Wilcox, Ronah K. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by {sup 14}C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 {mu}g kg{sup -1}) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant. - Dissimilar levels of isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use influence inferred risk.

  19. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.

    2005-01-01

    A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography...... aiming at either flux or metabolite level optimization of the L-arabinose catabolic pathway of A. niger. Faster L-arabinose utilization may enhance utilization of readily available organic waste containing hemicelluloses to be converted into industrially interesting metabolites or valuable enzymes...

  20. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use.

    Science.gov (United States)

    Reid, Brian J; Papanikolaou, Niki D; Wilcox, Ronah K

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by (14)C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 microg kg(-1)) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant.

  1. Identification of the First Riboflavin Catabolic Gene Cluster Isolated from Microbacterium maritypicum G10*

    OpenAIRE

    Xu, Hui; Chakrabarty, Yindrila; Philmus, Benjamin; Mehta, Angad P.; Bhandari, Dhananjay; Hohmann, Hans-Peter; Begley, Tadhg P.

    2016-01-01

    Riboflavin is a common cofactor, and its biosynthetic pathway is well characterized. However, its catabolic pathway, despite intriguing hints in a few distinct organisms, has never been established. This article describes the isolation of a Microbacterium maritypicum riboflavin catabolic strain, and the cloning of the riboflavin catabolic genes. RcaA, RcaB, RcaD, and RcaE were overexpressed and biochemically characterized as riboflavin kinase, riboflavin reductase, ribokinase, and riboflavin ...

  2. Catabolic Processes in Cardiosurgical Patients

    Directory of Open Access Journals (Sweden)

    V. V. Lomivorotov

    2007-01-01

    Full Text Available Objective: to evaluate catabolic and anabolic processes in cardiosurgical patients during heart operations under extracorporeal circulation.Subjects and methods. Seventy-one patients with coronary heart disease (CHD and acquired cardiac defects (ACD, who had been operated on under extracorporeal circulation, were examined. The plasma levels of cortisol, adrenaline, insulin, growth hormone, and albumin were measured. For determination of daily nitrogen excretion, blood and diurnal urine were sampled at the following stages: 1 before surgery; 2 postoperative (PO day 1; 3 PO day 3; 4 PO day 7; 5 PO day 14; 6 PO day 21.Results. The preoperative daily nitrogen excretion in CHD patients was 10.4±1.0 g/day. By PO day 3, there was a significant increase in nitrogen excretion by 66%, up to 17.3±1.6 g/day (p<0.01. In ACD patients, the baseline daily urinary nitrogen excretion was 11.9±1.7 g/day. By PO day 3, there was a 1.4-fold increase in this index — up to 16.3±2.0 g/day. Daily nitrogen excretion significantly increased up to 17.1±1.2 g/day by the end of the first PO week (p<0.05, by exceeding the baseline values by 44%. Nitrogen excretion peaked by the end of PO days 14 (17.2±1.6 g/day (p<0.05. By hospital discharge, nitrogen excretion was 23% greater than its baseline preoperative level (p>0.05. In cardiosurgical patients, an increase in daily nitrogen excretion occurred with the elevated concentrations of the stress hormones cortisol and adrenaline.Conclusion. The magnitude of catabolic reactions after cardiosurgical interventions depends on the type of cardiac disease. In patients with CHD, the maximum catabolic reactions were recorded on PO day 3 whereas in those with ACD, they continued within three weeks postoperatively.  

  3. The anti-catabolic role of bovine lactoferricin in cartilage.

    Science.gov (United States)

    Ahmadinia, Kasra; Yan, Dongyao; Ellman, Michael; Im, Hee-Jeong

    2013-10-01

    Bovine lactoferricin (LfcinB) is a multifunctional peptide derived from bovine lactoferrin that demonstrates antibacterial, antifungal, antiviral, antitumor, and immunomodulatory activities. Recently, studies have focused on the anti-catabolic and anti-inflammatory potential of LfcinB. LfcinB is able to modulate the effects cytokines such as IL-1 and fibroblast growth factor 2 as well as promote specific cartilage anabolic factors. These properties are particularly important in maintaining cartilage homeostasis and preventing a catabolic state, which leads to clinical pathology. This review focuses on the recent literature elucidating the role of LfcinB in preventing cartilage degradation.

  4. Poly (ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents

    International Nuclear Information System (INIS)

    Alvarez-Gonzalez, R.; Althaus, F.R.

    1989-01-01

    DNA damage inflicted by the alkylating agens N-methyl-N-nitro-N-nitrosoquanidine, or by UV stimulated the catabolism of protein-bound poly (ADP-ribose) in the chromatin of cultured hepatocytes. The stimulation was highest at the largest doses of DNA-damaging treatment. As a consequence, the half-life of ADP-ribosyl polymers may drop to less than 41 s. This rapid turnover contrasts with the slow catabolism of a constitutive fraction of polymers exhibiting a half-life of 7.7 h. These data suggest that post-incisional stimulation of poly (ADP-ribose) biosynthesis in DNA-excision repair is coupled with an adaptation of poly (ADP-ribose) catabolism in mammalian cells. (Author). 37 refs.; 3 figs

  5. Comparative genomic analysis of isoproturon-mineralizing sphingomonads reveals the isoproturon catabolic mechanism.

    Science.gov (United States)

    Yan, Xin; Gu, Tao; Yi, Zhongquan; Huang, Junwei; Liu, Xiaowei; Zhang, Ji; Xu, Xihui; Xin, Zhihong; Hong, Qing; He, Jian; Spain, Jim C; Li, Shunpeng; Jiang, Jiandong

    2016-12-01

    The worldwide use of the phenylurea herbicide, isoproturon (IPU), has resulted in considerable concern about its environmental fate. Although many microbial metabolites of IPU are known and IPU-mineralizing bacteria have been isolated, the molecular mechanism of IPU catabolism has not been elucidated yet. In this study, complete genes that encode the conserved IPU catabolic pathway were revealed, based on comparative analysis of the genomes of three IPU-mineralizing sphingomonads and subsequent experimental validation. The complete genes included a novel hydrolase gene ddhA, which is responsible for the cleavage of the urea side chain of the IPU demethylated products; a distinct aniline dioxygenase gene cluster adoQTA1A2BR, which has a broad substrate range; and an inducible catechol meta-cleavage pathway gene cluster adoXEGKLIJC. Furthermore, the initial mono-N-demethylation genes pdmAB were further confirmed to be involved in the successive N-demethylation of the IPU mono-N-demethylated product. These IPU-catabolic genes were organized into four transcription units and distributed on three plasmids. They were flanked by multiple mobile genetic elements and highly conserved among IPU-mineralizing sphingomonads. The elucidation of the molecular mechanism of IPU catabolism will enhance our understanding of the microbial mineralization of IPU and provide insights into the evolutionary scenario of the conserved IPU-catabolic pathway. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Detection and Isolation of Novel Rhizopine-Catabolizing Bacteria from the Environment

    OpenAIRE

    Gardener, Brian B. McSpadden; de Bruijn, Frans J.

    1998-01-01

    Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 106 and 107 catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the know...

  7. A metabolic pathway for catabolizing levulinic acid in bacteria

    International Nuclear Information System (INIS)

    Rand, Jacqueline M.; Pisithkul, Tippapha; Clark, Ryan L.; Thiede, Joshua M.; Mehrer, Christopher R.

    2017-01-01

    Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. Here, this discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.

  8. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary starter...... culture or as an adjunct culture. It has shown high proteolytic activities in conversion of caseins to peptides and further to amino acids and flavour compounds. Better understanding of the enzyme activity properties and the influence of different properties on final cheese flavour is favourable...... for developing new cheese products with enhanced flavour. The aim of this Ph.D. study was to investigate the importance of strain variation of Lb. helveticus in relation flavour formation in cheese related to amino acid catabolism. Aspects of using Lb. helveticus as starter as well as adjunct culture in cheese...

  9. Imbalanced Protein Expression Patterns of Anabolic, Catabolic, Anti-Catabolic and Inflammatory Cytokines in Degenerative Cervical Disc Cells: New Indications for Gene Therapeutic Treatments of Cervical Disc Diseases

    Science.gov (United States)

    Mern, Demissew S.; Beierfuß, Anja; Fontana, Johann; Thomé, Claudius; Hegewald, Aldemar A.

    2014-01-01

    Degenerative disc disease (DDD) of the cervical spine is common after middle age and can cause loss of disc height with painful nerve impingement, bone and joint inflammation. Despite the clinical importance of these problems, in current publications the pathology of cervical disc degeneration has been studied merely from a morphologic view point using magnetic resonance imaging (MRI), without addressing the issue of biological treatment approaches. So far a wide range of endogenously expressed bioactive factors in degenerative cervical disc cells has not yet been investigated, despite its importance for gene therapeutic approaches. Although degenerative lumbar disc cells have been targeted by different biological treatment approaches, the quantities of disc cells and the concentrations of gene therapeutic factors used in animal models differ extremely. These indicate lack of experimentally acquired data regarding disc cell proliferation and levels of target proteins. Therefore, we analysed proliferation and endogenous expression levels of anabolic, catabolic, ant-catabolic, inflammatory cytokines and matrix proteins of degenerative cervical disc cells in three-dimensional cultures. Preoperative MRI grading of cervical discs was used, then grade III and IV nucleus pulposus (NP) tissues were isolated from 15 patients, operated due to cervical disc herniation. NP cells were cultured for four weeks with low-glucose in collagen I scaffold. Their proliferation rates were analysed using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide. Their protein expression levels of 28 therapeutic targets were analysed using enzyme-linked immunosorbent assay. During progressive grades of degeneration NP cell proliferation rates were similar. Significantly decreased aggrecan and collagen II expressions (P<0.0001) were accompanied by accumulations of selective catabolic and inflammatory cytokines (disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix

  10. Lactoferricin mediates anabolic and anti-catabolic effects in the intervertebral disc.

    Science.gov (United States)

    Kim, Jae-Sung; Ellman, Michael B; An, Howard S; Yan, Dongyao; van Wijnen, Andre J; Murphy, Gillian; Hoskin, David W; Im, Hee-Jeong

    2012-04-01

    Lactoferricin (LfcinB) antagonizes biological effects mediated by angiogenic and catabolic growth factors, in addition to pro-inflammatory cytokines and chemokines in human endothelial cells and tumor cells. However, the effect of LfcinB on intervertebral disc (IVD) cell metabolism has not yet been investigated. Using bovine nucleus pulposus (NP) cells, we analyzed the effect of LfcinB on proteoglycan (PG) accumulation, PG synthesis, and anabolic gene expression. We assessed expression of genes for matrix-degrading enzymes such as matrix metalloproteases (MMPs) and a disintegrin-like and metalloprotease with thrombospondin motifs (ADAMTS family), as well as their endogenous inhibitors, tissue inhibitor of metalloproteases (TIMPs). In order to understand the specific molecular mechanisms by which LfcinB exerts its biological effects, we investigated intracellular signaling pathways in NP cells. LfcinB increased PG accumulation mainly via PG synthesis in a dose-dependent manner. Simultaneously, LfcinB dose-dependently downregulated catabolic enzymes. LfcinB's anti-catabolic effects were further demonstrated by a dose-dependent increase in multiple TIMP family members. Our results demonstrate that ERK and/or p38 mitogen-activated protein kinase pathways are the key signaling cascades that exert the biological effects of LfcinB in NP cells, regulating transcription of aggrecan, SOX-9, TIMP-1, TIMP-2, TIMP-3, and iNOS. Our results suggest that LfcinB has anabolic and potent anti-catabolic biological effects on bovine IVD cells that may have considerable promise in the treatment of disc degeneration in the future. Copyright © 2011 Wiley Periodicals, Inc.

  11. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides.

    Science.gov (United States)

    Pan, Xuefang; De Aragão, Camila De Britto Pará; Velasco-Martin, Juan P; Priestman, David A; Wu, Harry Y; Takahashi, Kohta; Yamaguchi, Kazunori; Sturiale, Luisella; Garozzo, Domenico; Platt, Frances M; Lamarche-Vane, Nathalie; Morales, Carlos R; Miyagi, Taeko; Pshezhetsky, Alexey V

    2017-08-01

    Gangliosides (sialylated glycolipids) play an essential role in the CNS by regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in the development of severe neurologic disorders, including gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that 2 mammalian enzymes, neuraminidases 3 and 4, play important roles in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains. In neuraminidase 3 and 4 double-knockout mice, G M3 ganglioside is stored in microglia, vascular pericytes, and neurons, causing micro- and astrogliosis, neuroinflammation, accumulation of lipofuscin bodies, and memory loss, whereas their cortical and hippocampal neurons have lower rate of neuritogenesis in vitro Double-knockout mice also have reduced levels of G M1 ganglioside and myelin in neuronal axons. Furthermore, neuraminidase 3 deficiency drastically increased storage of G M2 in the brain tissues of an asymptomatic mouse model of Tay-Sachs disease, a severe human gangliosidosis, indicating that this enzyme is responsible for the metabolic bypass of β-hexosaminidase A deficiency. Together, our results provide the first in vivo evidence that neuraminidases 3 and 4 have important roles in CNS function by catabolizing gangliosides and preventing their storage in lipofuscin bodies.-Pan, X., De Britto Pará De Aragão, C., Velasco-Martin, J. P., Priestman, D. A., Wu, H. Y., Takahashi, K., Yamaguchi, K., Sturiale, L., Garozzo, D., Platt, F. M., Lamarche-Vane, N., Morales, C. R., Miyagi, T., Pshezhetsky, A. V. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides. © FASEB.

  12. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  13. Inhibition of AMPK catabolic action by GSK3

    Science.gov (United States)

    Suzuki, Tsukasa; Bridges, Dave; Nakada, Daisuke; Skiniotis, Georgios; Morrison, Sean J.; Lin, Jiandie; Saltiel, Alan R.; Inoki, Ken

    2013-01-01

    SUMMARY AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by inhibiting anabolic and activating catabolic processes. While AMPK activation has been extensively studied, mechanisms that inhibit AMPK remain elusive. Here we report that glycogen synthase kinase 3 (GSK3) inhibits AMPK function. GSK3 forms a stable complex with AMPK through interactions with the AMPK β regulatory subunit and phosphorylates the AMPK α catalytic subunit. This phosphorylation enhances the accessibility of the activation loop of the α subunit to phosphatases, thereby inhibiting AMPK kinase activity. Surprisingly, PI3K-Akt signaling, which is a major anabolic signaling and normally inhibits GSK3 activity, promotes GSK3 phosphorylation and inhibition of AMPK, thus revealing how AMPK senses anabolic environments in addition to cellular energy levels. Consistently, disrupting GSK3 function within the AMPK complex sustains higher AMPK activity and cellular catabolic processes even under anabolic conditions, indicating that GSK3 acts as a critical sensor for anabolic signaling to regulate AMPK. PMID:23623684

  14. Reprogramming amino acid catabolism in CHO cells with CRISPR-Cas9 genome editing improves cell growth and reduces by-product secretion

    DEFF Research Database (Denmark)

    Ley, Daniel; Pereira, Sara; Pedersen, Lasse Ebdrup

    2017-01-01

    CHO cells primarily utilize amino acids for three processes: biomass synthesis, recombinant protein production and catabolism. In this work, we disrupted 9 amino acid catabolic genes participating in 7 dierent catabolic pathways, to increase synthesis of biomass and recombinant protein, while red...... reducing production of growth-inhibiting metabolic by-products from amino acid catabolism....

  15. Taxon- and Site-Specific Melatonin Catabolism

    Directory of Open Access Journals (Sweden)

    Rüdiger Hardeland

    2017-11-01

    Full Text Available Melatonin is catabolized both enzymatically and nonenzymatically. Nonenzymatic processes mediated by free radicals, singlet oxygen, other reactive intermediates such as HOCl and peroxynitrite, or pseudoenzymatic mechanisms are not species- or tissue-specific, but vary considerably in their extent. Higher rates of nonenzymatic melatonin metabolism can be expected upon UV exposure, e.g., in plants and in the human skin. Additionally, melatonin is more strongly nonenzymatically degraded at sites of inflammation. Typical products are several hydroxylated derivatives of melatonin and N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK. Most of these products are also formed by enzymatic catalysis. Considerable taxon- and site-specific differences are observed in the main enzymatic routes of catabolism. Formation of 6-hydroxymelatonin by cytochrome P450 subforms are prevailing in vertebrates, predominantly in the liver, but also in the brain. In pineal gland and non-mammalian retina, deacetylation to 5-methoxytryptamine (5-MT plays a certain role. This pathway is quantitatively prevalent in dinoflagellates, in which 5-MT induces cyst formation and is further converted to 5-methoxyindole-3-acetic acid, an end product released to the water. In plants, the major route is catalyzed by melatonin 2-hydroxylase, whose product is tautomerized to 3-acetamidoethyl-3-hydroxy-5-methoxyindolin-2-one (AMIO, which exceeds the levels of melatonin. Formation and properties of various secondary products are discussed.

  16. A role for TNFα in intervertebral disc degeneration: A non-recoverable catabolic shift

    International Nuclear Information System (INIS)

    Purmessur, D.; Walter, B.A.; Roughley, P.J.; Laudier, D.M.; Hecht, A.C.; Iatridis, James

    2013-01-01

    Highlights: ► TNFα induced catabolic changes similar to human intervertebral disc degeneration. ► The metabolic shift induced by TNFα was sustained following removal. ► TNFα induced changes suggestive of cell senescence without affecting cell viability. ► Interventions are required to stimulate anabolism and increase cell proliferation. -- Abstract: This study examines the effect of TNFα on whole bovine intervertebral discs in organ culture and its association with changes characteristic of intervertebral disc degeneration (IDD) in order to inform future treatments to mitigate the chronic inflammatory state commonly found with painful IDD. Pro-inflammatory cytokines such as TNFα contribute to disc pathology and are implicated in the catabolic phenotype associated with painful IDD. Whole bovine discs were cultured to examine cellular (anabolic/catabolic gene expression, cell viability and senescence using β-galactosidase) and structural (histology and aggrecan degradation) changes in response to TNFα treatment. Control or TNFα cultures were assessed at 7 and 21 days; the 21 day group also included a recovery group with 7 days TNFα followed by 14 days in basal media. TNFα induced catabolic and anti-anabolic shifts in the nucleus pulposus (NP) and annulus fibrosus (AF) at 7 days and this persisted until 21 days however cell viability was not affected. Data indicates that TNFα increased aggrecan degradation products and suggests increased β-galactosidase staining at 21 days without any recovery. TNFα treatment of whole bovine discs for 7 days induced changes similar to the degeneration processes that occur in human IDD: aggrecan degradation, increased catabolism, pro-inflammatory cytokines and nerve growth factor expression. TNFα significantly reduced anabolism in cultured IVDs and a possible mechanism may be associated with cell senescence. Results therefore suggest that successful treatments must promote anabolism and cell proliferation in

  17. BCKDK of BCAA Catabolism Cross-talking With the MAPK Pathway Promotes Tumorigenesis of Colorectal Cancer.

    Science.gov (United States)

    Xue, Peipei; Zeng, Fanfan; Duan, Qiuhong; Xiao, Juanjuan; Liu, Lin; Yuan, Ping; Fan, Linni; Sun, Huimin; Malyarenko, Olesya S; Lu, Hui; Xiu, Ruijuan; Liu, Shaoqing; Shao, Chen; Zhang, Jianmin; Yan, Wei; Wang, Zhe; Zheng, Jianyong; Zhu, Feng

    2017-06-01

    Branched-chain amino acids catabolism plays an important role in human cancers. Colorectal cancer is the third most commonly diagnosed cancer in males and the second in females, and the new global incidence is over 1.2 million cases. The branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a rate-limiting enzyme in branched-chain amino acids catabolism, which plays an important role in many serious human diseases. Here we investigated that abnormal branched-chain amino acids catabolism in colorectal cancer is a result of the disease process, with no role in disease initiation; BCKDK is widely expressed in colorectal cancer patients, and those patients that express higher levels of BCKDK have shorter survival times than those with lower levels; BCKDK promotes cell transformation or colorectal cancer ex vivo or in vivo. Mechanistically, BCKDK promotes colorectal cancer by enhancing the MAPK signaling pathway through direct MEK phosphorylation, rather than by branched-chain amino acids catabolism. And the process above could be inhibited by a BCKDK inhibitor, phenyl butyrate. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. BCKDK of BCAA Catabolism Cross-talking With the MAPK Pathway Promotes Tumorigenesis of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Peipei Xue

    2017-06-01

    Full Text Available Branched-chain amino acids catabolism plays an important role in human cancers. Colorectal cancer is the third most commonly diagnosed cancer in males and the second in females, and the new global incidence is over 1.2 million cases. The branched-chain α-keto acid dehydrogenase kinase (BCKDK is a rate-limiting enzyme in branched-chain amino acids catabolism, which plays an important role in many serious human diseases. Here we investigated that abnormal branched-chain amino acids catabolism in colorectal cancer is a result of the disease process, with no role in disease initiation; BCKDK is widely expressed in colorectal cancer patients, and those patients that express higher levels of BCKDK have shorter survival times than those with lower levels; BCKDK promotes cell transformation or colorectal cancer ex vivo or in vivo. Mechanistically, BCKDK promotes colorectal cancer by enhancing the MAPK signaling pathway through direct MEK phosphorylation, rather than by branched-chain amino acids catabolism. And the process above could be inhibited by a BCKDK inhibitor, phenyl butyrate.

  19. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: An insight into model-driven systems engineering

    Directory of Open Access Journals (Sweden)

    C Sangavai

    2017-12-01

    Full Text Available Model-driven systems engineering has been more fascinating process for the microbial production of biofuel and bio-refineries in chemical and pharmaceutical industries. Genome-scale modeling and simulations have been guided for metabolic engineering of Clostridium species for the production of organic solvents and organic acids. Among them, Clostridium sticklandii is one of the potential organisms to be exploited as a microbial cell factory for biofuel production. It is a hyper-ammonia producing bacterium and is able to catabolize amino acids as important carbon and energy sources via Stickland reactions and the development of the specific pathways. Current genomic and metabolic aspects of this bacterium are comprehensively reviewed herein, which provided information for learning about protein catabolism-directed biofuel production. It has a metabolic potential to drive energy and direct solventogenesis as well as acidogenesis from protein catabolism. It produces by-products such as ethanol, acetate, n-butanol, n-butyrate and hydrogen from amino acid catabolism. Model-driven systems engineering of this organism would improve the performance of the industrial sectors and enhance the industrial economy by using protein-based waste in environment-friendly ways. Keywords: Biofuel, Amino acid catabolism, Genome-scale model, Metabolic engineering, Systems biology, ABE fermentation, Clostridium sticklandii

  20. Metabolic signature of sun exposed skin suggests catabolic pathway overweighs anabolic pathway.

    Directory of Open Access Journals (Sweden)

    Manpreet Randhawa

    Full Text Available Skin chronically exposed to sun results in phenotypic changes referred as photoaging. This aspect of aging has been studied extensively through genomic and proteomic tools. Metabolites, the end product are generated as a result of biochemical reactions are often studied as a culmination of complex interplay of gene and protein expression. In this study, we focused exclusively on the metabolome to study effects from sun-exposed and sun-protected skin sites from 25 human subjects. We generated a highly accurate metabolomic signature for the skin that is exposed to sun. Biochemical pathway analysis from this data set showed that sun-exposed skin resides under high oxidative stress and the chains of reactions to produce these metabolites are inclined toward catabolism rather than anabolism. These catabolic activities persuade the skin cells to generate metabolites through the salvage pathway instead of de novo synthesis pathways. Metabolomic profile suggests catabolic pathways and reactive oxygen species operate in a feed forward fashion to alter the biology of sun exposed skin.

  1. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    NARCIS (Netherlands)

    Groot, de M.J.L.; Prathumpai, W.; Visser, J.; Ruijter, G.J.G.

    2005-01-01

    A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography, and their

  2. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil

    International Nuclear Information System (INIS)

    Milcic-Terzic, J.; Saval, S.; Lopez-Vidal, Y.; Vrvic, M.M.

    2001-01-01

    Bioremediation is often used for in situ remediation of petroleum-contaminated sites. The primary focus of this study was on understanding the indigenous microbial community which can survive in contaminated environment and is responsible for the degradation. Diesel, toluene and naphthalene-degrading microbial consortia were isolated from diesel-contaminated soil by growing on selective hydrocarbon substrates. The presence and frequency of the catabolic genes responsible for aromatic hydrocarbon biodegradation (xylE, ndoB) within the isolated consortia were screened using polymerase chain reaction PCR and DNA-DNA colony hybridization. The diesel DNA-extract possessed both the xylE catabolic gene for toluene, and the nah catabolic gene for polynuclear aromatic hydrocarbon degradation. The toluene DNA-extract possessed only the xylE catabolic gene, while the naphthalene DNA-extract only the ndoB gene. Restriction enzyme analysis with HaeIII indicated similar restriction patterns for the xylE gene fragment between toluene DNA-extract and a type strain, Pseudomonas putida ATCC 23973. A substantial proportion (74%) of the colonies from the diesel-consortium possessed the xylE gene, and the ndoB gene (78%), while a minority (29%) of the toluene-consortium harbored the xylE gene. 59% of the colonies from the naphthalene-consortium had the ndoB gene, and did not have the xylE gene. These results indicate that the microbial population has been naturally enriched in organisms carrying genes for aromatic hydrocarbon degradation and that significant aromatic biodegradative potential exists at the site. Characterization of the population genotype constitutes a molecular diagnosis which permits the determination of the catabolic potential of the site to degrade the contaminant present. (author)

  3. Catabolism of (+/-)-abscisic acid by excised leaves of Hordeum vulgare L. cv Dyan and its modification by chemical and environmental factors

    International Nuclear Information System (INIS)

    Cowan, A.K.; Railton, I.D.

    1987-01-01

    Excised light-grown leaves and etiolated leaves of Hordeum vulgare L. cv Dyan catabolized applied (+/-)-[2- 14 C]abscisic acid ([+/-]-[2- 14 C]ABA) to phaseic acid (PA), dihydrophaseic acid (DPA), and 2'-hydroxymethyl ABA (2'-HMABA). Identification of these catabolites was made by microchemical methods and by combined capillary gas chromatography-mass spectrometry (GC-MS) following high dose feeds of nonlabeled substrate to leaves. Circular dichroism analysis revealed that 2'-HMABA was derived from the (-) enantiomer of ABA. Refeeding studies were used to confirm the catabolic route. The methyl ester of (+/-)-[2 14 C]-ABA was hydrolyzed efficiently by light-grown leaves of H. vulgare. Leaf age played a significant role in (+/-)-ABA catabolism, with younger leaves being less able than their older counterparts to catabolize this compound. The catabolism of (+/-)-ABA was inhibited markedly in water-stressed Hordeum leaves which was characterized by a decreased incorporation of label into 2'-HMABA, DPA, and conjugates. The specific, mixed function oxidase inhibitor, ancymidol, did not inhibit, dramatically (+/-)-ABA catabolism in light-grown leaves of Hordeum whereas the 80s ribosome, translational inhibitor, cycloheximide, inhibited this process markedly. The 70s ribosome translational inhibitors, lincomycin and chloramphenicol, were less effective than cycloheximide in inhibiting (+/-)-ABA catabolism, implying that cytoplasmic protein synthesis is necessary for the catabolism of (+/-)-ABA in Hordeum leaves whereas chloroplast protein synthesis plays only a minor role. This further suggests that the enzymes involved in (+/-)-ABA catabolism in this plant are cytoplasmically synthesized and are turned-over rapidly, although the enzyme responsible for glycosylating (+/-)-ABA itself appeared to be stable

  4. A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway.

    Science.gov (United States)

    Bahar, M; de Majnik, J; Wexler, M; Fry, J; Poole, P S; Murphy, P J

    1998-11-01

    Rhizopines are nodule-specific compounds that confer an intraspecies competitive nodulation advantage to strains that can catabolize them. The rhizopine (3-O-methyl-scyllo-inosamine, 3-O-MSI) catabolic moc gene cluster mocCABRDE(F) in Rhizobium leguminosarum bv. viciae strain 1a is located on the Sym plasmid. MocCABR are homologous to the mocCABR gene products from Sinorhizobium meliloti. MocD and MocE contain motifs corresponding to a TOL-like oxygenase and a [2Fe-2S] Rieske-like ferredoxin, respectively. The mocF gene encodes a ferredoxin reductase that would complete the oxygenase system, but is not essential for rhizopine catabolism. We propose a rhizopine catabolic model whereby MocB transports rhizopine into the cell and MocDE and MocF (or a similar protein elsewhere in the genome), under the regulation of MocR, act in concert to form a ferredoxin oxygenase system that demethylates 3-O-MSI to form scyllo-inosamine (SI). MocA, an NAD(H)-dependent dehydrogenase, and MocC continue the catabolic process. Compounds formed then enter the inositol catabolic pathway.

  5. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM.

    Directory of Open Access Journals (Sweden)

    Joakim Mark Andersen

    Full Text Available The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β-linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS, galactoside pentose hexuronide (GPH permease, and ATP-binding cassette (ABC transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS. The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota.

  6. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.

    Science.gov (United States)

    Clarkson, Sonya M; Giannone, Richard J; Kridelbaugh, Donna M; Elkins, James G; Guss, Adam M; Michener, Joshua K

    2017-09-15

    The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. While Escherichia coli has been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineered E. coli to catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway from Pseudomonas putida KT2440. We next used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics. IMPORTANCE Lignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. Constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. We constructed and optimized one such pathway in E. coli to enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related

  7. Detection and isolation of novel rhizopine-catabolizing bacteria from the environment

    Science.gov (United States)

    Gardener; de Bruijn FJ

    1998-12-01

    Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 10(6) and 10(7) catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the known mocA, mocB, and mocC genes of Sinorhizobium meliloti L5-30. Twenty-one of the isolates could utilize an SI preparation as the sole carbon and nitrogen source for growth. Partial sequencing of 16S ribosomal DNAs (rDNAs) amplified from these strains indicated that five distinct bacterial genera (Arthrobacter, Sinorhizobium, Pseudomonas, Aeromonas, and Alcaligenes) were represented in this set. Only 6 of these 21 isolates could catabolize 3-O-methyl-scyllo-inosamine under standard assay conditions. Two of these, strains D1 and R3, were found to have 16S rDNA sequences very similar to those of Sinorhizobium meliloti. However, these strains are not symbiotically effective on Medicago sativa, and DNA sequences homologous to the nodB and nodC genes were not detected in strains D1 and R3 by Southern hybridization analysis.

  8. Increased fat catabolism sustains water balance during fasting in zebra finches.

    Science.gov (United States)

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. © 2016. Published by The Company of Biologists Ltd.

  9. Draft Genome Sequences of Three β-Lactam-Catabolizing Soil Proteobacteria

    DEFF Research Database (Denmark)

    Crofts, Terence S.; Wang, Bin; Spivak, Aaron

    2017-01-01

    Most antibiotics are derived from the soil, but their catabolism there, which is necessary to close the antibiotic carbon cycle, remains uncharacterized. We report the first draft genome sequences of soil Proteobacteria identified for subsisting solely on β-lactams as their carbon sources...

  10. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    Science.gov (United States)

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF. Copyright © 2016 the American Physiological Society.

  11. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    Science.gov (United States)

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  12. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-01-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. 14 CO 2 production from the catabolism of 14 C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. 14 CO 2 formation from [1- 14 C]- and [2- 14 C]glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate

  13. Development of phenanthrene catabolism in natural and artificial soils

    International Nuclear Information System (INIS)

    Rhodes, Angela H.; Hofman, Jakub; Semple, Kirk T.

    2008-01-01

    The characteristics of natural soils often vary from those of artificial soil (e.g. OECD), which may lead to substantial differences in the bioavailability of test substances. The aim of this investigation was to characterise the development of phenanthrene catabolism in both natural and artificial soils with varying total organic carbon (TOC) content after 1, 14, 42 and 84 d soil-phenanthrene contact time. Indigenous catabolic activity was measured via the addition of 14 C-phenanthrene using the respirometric soil slurry assay. Notably, the lag phases, fastest rates and total extents of 14 C-phenanthrene degradation were relatively comparable in soils with similar TOC content after 1 d contact time. However, natural soils generally exhibited significantly shorter lag phases, faster rates and higher extents of mineralisation, than their artificial counterparts after 42 and 84 d contact time. Such findings suggest that the extrapolation of results from artificial soils to real/natural soils may not be straightforward. - Natural and artificial soils display different phenanthrene mineralisation profiles suggesting that the extrapolation of results from artificial soils to real/natural soils may not be straightforward

  14. Neuronal sphingolipidoses: Membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism.

    Science.gov (United States)

    Sandhoff, Konrad

    2016-11-01

    Glycosphingolipids and sphingolipids of cellular plasma membranes (PMs) reach luminal intra-lysosomal vesicles (LVs) for degradation mainly by pathways of endocytosis. After a sorting and maturation process (e.g. degradation of sphingomyelin (SM) and secretion of cholesterol), sphingolipids of the LVs are digested by soluble enzymes with the help of activator (lipid binding and transfer) proteins. Inherited defects of lipid-cleaving enzymes and lipid binding and transfer proteins cause manifold and fatal, often neurodegenerative diseases. The review summarizes recent findings on the regulation of sphingolipid catabolism and cholesterol secretion from the endosomal compartment by lipid modifiers, an essential stimulation by anionic membrane lipids and an inhibition of crucial steps by cholesterol and SM. Reconstitution experiments in the presence of all proteins needed, hydrolase and activator proteins, reveal an up to 10-fold increase of ganglioside catabolism just by the incorporation of anionic lipids into the ganglioside carrying membranes, whereas an additional incorporation of cholesterol inhibits GM2 catabolism substantially. It is suggested that lipid and other low molecular modifiers affect the genotype-phenotype relationship observed in patients with lysosomal diseases. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Intracellular Growth Is Dependent on Tyrosine Catabolism in the Dimorphic Fungal Pathogen Penicillium marneffei

    Science.gov (United States)

    Boyce, Kylie J.; McLauchlan, Alisha; Schreider, Lena; Andrianopoulos, Alex

    2015-01-01

    During infection, pathogens must utilise the available nutrient sources in order to grow while simultaneously evading or tolerating the host’s defence systems. Amino acids are an important nutritional source for pathogenic fungi and can be assimilated from host proteins to provide both carbon and nitrogen. The hpdA gene of the dimorphic fungus Penicillium marneffei, which encodes an enzyme which catalyses the second step of tyrosine catabolism, was identified as up-regulated in pathogenic yeast cells. As well as enabling the fungus to acquire carbon and nitrogen, tyrosine is also a precursor in the formation of two types of protective melanin; DOPA melanin and pyomelanin. Chemical inhibition of HpdA in P. marneffei inhibits ex vivo yeast cell production suggesting that tyrosine is a key nutrient source during infectious growth. The genes required for tyrosine catabolism, including hpdA, are located in a gene cluster and the expression of these genes is induced in the presence of tyrosine. A gene (hmgR) encoding a Zn(II)2-Cys6 binuclear cluster transcription factor is present within the cluster and is required for tyrosine induced expression and repression in the presence of a preferred nitrogen source. AreA, the GATA-type transcription factor which regulates the global response to limiting nitrogen conditions negatively regulates expression of cluster genes in the absence of tyrosine and is required for nitrogen metabolite repression. Deletion of the tyrosine catabolic genes in the cluster affects growth on tyrosine as either a nitrogen or carbon source and affects pyomelanin, but not DOPA melanin, production. In contrast to other genes of the tyrosine catabolic cluster, deletion of hpdA results in no growth within macrophages. This suggests that the ability to catabolise tyrosine is not required for macrophage infection and that HpdA has an additional novel role to that of tyrosine catabolism and pyomelanin production during growth in host cells. PMID:25812137

  16. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  17. Loci of catabolism of beta-very low density lipoprotein in vivo delineated with a residualizing label, 125I-dilactitol tyramine

    International Nuclear Information System (INIS)

    Daugherty, A.; Thorpe, S.R.; Lange, L.G.; Sobel, B.E.; Schonfeld, G.

    1985-01-01

    beta-Very low density lipoprotein (beta-VLDL) may be a major atherogenic lipoprotein, and knowledge of the sites of its catabolism should facilitate elucidation of mechanisms important in the regulation of its plasma concentrations. In this study, catabolic sites of beta-VLDL have been delineated in normolipidemic rabbits with a novel, radioiodinated, residualizing label, 125 I-dilactitol tyramine ( 125 I-DLT). Comparative studies of beta-VLDL and low density lipoprotein catabolism were performed with 125 I-DLT conjugated to each lipoprotein and with lipoproteins iodine-labeled conventionally. Conjugation did not alter size distributions or charge characteristics of lipoprotein particles. The overall processing (binding and degradation) of lipoproteins by cultured rabbit skin fibroblasts was not influenced by 125 I-DLT derivatization, suggesting that attachment of the label did not influence cell receptor-lipoprotein interactions. Furthermore, although degradation products of 125 I-lipoproteins leaked out of the cells and into the medium, the degradation products of 125 I-DLT lipoproteins were retained by the cells. The principal catabolic site of beta-VLDL in normolipidemic rabbits was found to be the liver with 54 +/- 4% of injected 125 I retained in this organ 24 h after injection of 125 I-DLT-beta-VLDL. When catabolism was normalized to tissue weight, the liver and adrenals were found to be approximately equally active in the metabolism of beta-VLDL. In agreement with results of other studies with residualizing labels, the principal organ of catabolism of 125 I-DLT-LDL in vivo was the liver. The adrenals were the most highly catabolizing organ when results were normalized for tissue weight

  18. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Sonya M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Giannone, Richard J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Kridelbaugh, Donna M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Elkins, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Guss, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Michener, Joshua K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Vieille, Claire [Michigan State Univ., East Lansing, MI (United States)

    2017-07-21

    The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. WhileEscherichia colihas been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineeredE. colito catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway fromPseudomonas putidaKT2440. Then, we used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics.

    IMPORTANCELignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. By constructing defined pathways for aromatic compound degradation in a model host would allow rapid

  19. Formation of Flavor Compounds by Amino Acid Catabolism in Cheese (Turkish with English Abstract

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Biochemical reactions which contribute flavor formation occur in result of proteolysis during cheese ripening. Casein as the main protein of cheese has a significant effect on the flavor and textural properties of cheeses via its degradation to small peptides and free amino acids by various factors like coagulant enzymes. Specific flavors of cheeses occur as a result of amino acid catabolism by starter and non-starter bacteria. Some flavor compounds are formed by enzymatic transformations as well as by non-enzymatic, chemical changes in cheese. In this paper, formation of flavor compounds by amino acid catabolism during cheese ripening reviewed.

  20. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    Science.gov (United States)

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis.

    Science.gov (United States)

    Raj, Dominic S C; Adeniyi, Oladipo; Dominic, Elizabeth A; Boivin, Michel A; McClelland, Sandra; Tzamaloukas, Antonios H; Morgan, Nancy; Gonzales, Lawrence; Wolfe, Robert; Ferrando, Arny

    2007-06-01

    Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown.

  2. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.

    Science.gov (United States)

    Peck, Spencer C; van der Donk, Wilfred A

    2013-08-01

    Natural product biosynthesis has proven a fertile ground for the discovery of novel chemistry. Herein we review the progress made in elucidating the biosynthetic pathways of phosphonate and phosphinate natural products such as the antibacterial compounds dehydrophos and fosfomycin, the herbicidal phosphinothricin-containing peptides, and the antimalarial compound FR-900098. In each case, investigation of the pathway has yielded unusual, and often unprecedented, biochemistry. Likewise, recent investigations have uncovered novel ways to cleave the CP bond to yield phosphate under phosphorus starvation conditions. These include the discovery of novel oxidative cleavage of the CP bond catalyzed by PhnY and PhnZ as well as phosphonohydrolases that liberate phosphate from phosphonoacetate. Perhaps the crown jewel of phosphonate catabolism has been the recent resolution of the longstanding problem of the C-P lyase responsible for reductively cleaving the CP bond of a number of different phosphonates to release phosphate. Taken together, the strides made on both metabolic and catabolic fronts illustrate an array of fascinating biochemistry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators.

    Science.gov (United States)

    Nock, Adam M; Wargo, Matthew J

    2016-09-15

    Burkholderia thailandensis is a soil-dwelling bacterium that shares many metabolic pathways with the ecologically similar, but evolutionarily distant, Pseudomonas aeruginosa Among the diverse nutrients it can utilize is choline, metabolizable to the osmoprotectant glycine betaine and subsequently catabolized as a source of carbon and nitrogen, similar to P. aeruginosa Orthologs of genes in the choline catabolic pathway in these two bacteria showed distinct differences in gene arrangement as well as an additional orthologous transcriptional regulator in B. thailandensis In this study, we showed that multiple glutamine amidotransferase 1 (GATase 1)-containing AraC family transcription regulators (GATRs) are involved in regulation of the B. thailandensis choline catabolic pathway (gbdR1, gbdR2, and souR). Using genetic analyses and sequencing the transcriptome in the presence and absence of choline, we identified the likely regulons of gbdR1 (BTH_II1869) and gbdR2 (BTH_II0968). We also identified a functional ortholog for P. aeruginosa souR, a GATR that regulates the metabolism of sarcosine to glycine. GbdR1 is absolutely required for expression of the choline catabolic locus, similar to P. aeruginosa GbdR, while GbdR2 is important to increase expression of the catabolic locus. Additionally, the B. thailandensis SouR ortholog (BTH_II0994) is required for catabolism of choline and its metabolites as carbon sources, whereas in P. aeruginosa, SouR function can by bypassed by GbdR. The strategy employed by B. thailandensis represents a distinct regulatory solution to control choline catabolism and thus provides both an evolutionary counterpoint and an experimental system to analyze the acquisition and regulation of this pathway during environmental growth and infection. Many proteobacteria that occupy similar environmental niches have horizontally acquired orthologous genes for metabolism of compounds useful in their shared environment. The arrangement and differential

  4. Prostaglandin synthesis and catabolism in the gastric mucosa: studies in normal rabbits and rabbits immunized with prostaglandin E2

    International Nuclear Information System (INIS)

    Redfern, J.S.

    1988-01-01

    Antral and fundic mucosal homogenates obtained from prostaglandin E2-immunized rabbits converted 14C-arachidonic acid to prostaglandin E2, 6-keto prostaglandin F1 alpha, prostaglandin F2 alpha, and prostaglandin D2. Percentage conversion of 14C-arachidonic acid to these prostaglandin products was not significantly different in prostaglandin E2-immunized rabbits compared with control rabbits (thyroglobulin-immunized and unimmunized rabbits combined). Synthesis of 6-keto prostaglandin F1 alpha, prostaglandin E2 and 13,14-dihydro 15-keto prostaglandin E2 from endogenous arachidonic acid after vortex mixing fundic mucosal homogenates was similar in prostaglandin E2 immunized rabbits and control rabbits. Both in prostaglandin E2-immunized rabbits and controls, 3H-prostaglandin E2 was catabolized extensively by the fundic mucosa, whereas 3H-6-keto prostaglandin F1 alpha, 3H-prostaglandin F2 alpha, and 3H-prostaglandin D2 were not catabolized to any appreciable extent. The rate of catabolism of PGs was not significantly different in prostaglandin E2-immunized rabbits and control rabbits, with the exception of prostaglandin F2 alpha which was catabolized slightly more rapidly in prostaglandin E2-immunized rabbits. These results indicate that development of gastric ulcers in prostaglandin E2-immunized rabbits is not associated with an alteration in the capacity of the gastric mucosa to synthesize or catabolize prostaglandins

  5. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida.

    Science.gov (United States)

    Arias-Barrau, Elsa; Olivera, Elías R; Luengo, José M; Fernández, Cristina; Galán, Beatriz; García, José L; Díaz, Eduardo; Miñambres, Baltasar

    2004-08-01

    Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Whereas the phh, tyr, and hpd genes are not linked in the P. putida genome, the hmgABC genes appear to form a single transcriptional unit. Gel retardation assays and lacZ translational fusion experiments have shown that hmgR encodes a specific repressor that controls the inducible expression of the divergently transcribed hmgABC catabolic genes, and homogentisate is the inducer molecule. Footprinting analysis revealed that HmgR protects a region in the Phmg promoter that spans a 17-bp palindromic motif and an external direct repetition from position -16 to position 29 with respect to the transcription start site. The HmgR protein is thus the first IclR-type regulator that acts as a repressor of an aromatic catabolic pathway. We engineered a broad-host-range mobilizable catabolic cassette harboring the hmgABC, hpd, and tyrB genes that allows heterologous bacteria to use Tyr as a unique carbon and energy source. Remarkably, we show here that the catabolism of 3-hydroxyphenylacetate in P. putida U funnels also into the homogentisate central pathway, revealing that the hmg cluster is a key catabolic trait for biodegradation of a small number of aromatic compounds.

  6. Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes.

    Science.gov (United States)

    Shak, S; Goldstein, I M

    1984-08-25

    Leukotriene B4 (LTB4), formed by the 5-lipoxygenase pathway in human polymorphonuclear leukocytes (PMN), may be an important mediator of inflammation. Recent studies suggest that human leukocytes can convert LTB4 to products that are less biologically active. To examine the catabolism of LTB4, we developed (using high performance liquid chromatography) a sensitive, reproducible assay for this mediator and its omega-oxidation products (20-OH- and 20-COOH-LTB4). With this assay, we have found that human PMN (but not human monocytes, lymphocytes, or platelets) convert exogenous LTB4 almost exclusively to 20-OH- and 20-COOH-LTB4 (identified by gas chromatography-mass spectrometry). Catabolism of exogenous LTB4 by omega-oxidation is rapid (t1/2 approximately 4 min at 37 degrees C in reaction mixtures containing 1.0 microM LTB4 and 20 X 10(6) PMN/ml), temperature-dependent (negligible at 0 degrees C), and varies with cell number as well as with initial substrate concentration. The pathway for omega-oxidation in PMN is specific for LTB4 and 5(S),12(S)-dihydroxy-6,8,10,14-eicosatetraenoic acid (only small amounts of other dihydroxylated-derivatives of arachidonic acid are converted to omega-oxidation products). Even PMN that are stimulated by phorbol myristate acetate to produce large amounts of superoxide anion radicals catabolize exogenous leukotriene B4 primarily by omega-oxidation. Finally, LTB4 that is generated when PMN are stimulated with the calcium ionophore, A23187, is rapidly catabolized by omega-oxidation. Thus, human PMN not only generate and respond to LTB4, but also rapidly and specifically catabolize this mediator by omega-oxidation.

  7. The role of polyamine catabolism in anti-tumour drug response.

    Science.gov (United States)

    Casero, R A; Wang, Y; Stewart, T M; Devereux, W; Hacker, A; Wang, Y; Smith, R; Woster, P M

    2003-04-01

    Interest in polyamine catabolism has increased since it has been directly associated with the cytotoxic response of multiple tumour types to exposure to specific anti-tumour polyamine analogues. Human polyamine catabolism was considered to be a two-step pathway regulated by the rate-limiting enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) that provides substrate for an acetylpolyamine oxidase (APAO). Further, the super-induction of SSAT by several anti-tumour polyamine analogues has been implicated in the cytotoxic response of specific solid-tumour phenotypes to these agents. This high induction of SSAT has been correlated with cellular response to the anti-tumour polyamine analogues in several systems and considerable progress has been made in understanding the molecular mechanisms that regulate the analogue-induced expression of SSAT. A polyamine response element has been identified and the transacting transcription factors that bind and stimulate transcription of SSAT have been cloned and characterized. The link between SSAT activity and cellular toxicity is thought to be based on the production of H(2)O(2) by the activity of the constitutive APAO that uses the SSAT-produced acetylated polyamines. The high induction of SSAT and the subsequent activity of APAO are linked to the cytotoxic response of some tumour cell types to specific polyamine analogues. However, we have recently cloned a variably spliced human polyamine oxidase (PAOh1) that is inducible by specific polyamine analogues, efficiently uses unacetylated spermine as a substrate, and also produces toxic H(2)O(2) as a product. The results of studies with PAOh1 suggest that it is an additional enzyme in polyamine catabolism that has the potential to significantly contribute to polyamine homoeostasis and drug response. Most importantly, PAOh1 is induced by specific polyamine analogues in a tumour-phenotype-specific manner in cell lines representative of the major forms of solid tumours, including

  8. Natural Variation in Synthesis and Catabolism Genes Influences Dhurrin Content in Sorghum

    Directory of Open Access Journals (Sweden)

    Chad M. Hayes

    2015-07-01

    Full Text Available Cyanogenic glucosides are natural compounds found in more than 1000 species of angiosperms that produce HCN and are deemed undesirable for agricultural use. However, these compounds are important components of the primary defensive mechanisms of many plant species. One of the best-studied cyanogenic glucosides is dhurrin [(--hydroxymandelonitrile-β--glucopyranoside], which is produced primarily in sorghum [ (L. Moench]. The biochemical basis for dhurrin metabolism is well established; however, little information is available on its genetic control. Here, we dissect the genetic control of leaf dhurrin content through a genome-wide association study (GWAS using a panel of 700 diverse converted sorghum lines (conversion panel previously subjected to pre-breeding and selected for short stature (∼1 m in height and photoperiod insensitivity. The conversion panel was grown for 2 yr in three environments. Wide variation for leaf dhurrin content was found in the sorghum conversion panel, with the Caudatum group exhibiting the highest dhurrin content and the Guinea group showing the lowest dhurrin content. A GWAS using a mixed linear model revealed significant associations (a false discovery rate [FDR] < 0.05 close to both UGT 185B1 in the canonical biosynthetic gene cluster on chromosome 1 and close to the catabolic dhurrinase loci on chromosome 8. Dhurrin content was associated consistently with biosynthetic genes in the two N-fertilized environments, while dhurrin content was associated with catabolic loci in the environment without supplemental N. These results suggest that genes for both biosynthesis and catabolism are important in determining natural variation for leaf dhurrin in sorghum in different environments.

  9. Activation of endoplasmic reticulum stress response by enhanced polyamine catabolism is important in the mediation of cisplatin-induced acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Kamyar Zahedi

    Full Text Available Cisplatin-induced nephrotoxicity limits its use in many cancer patients. The expression of enzymes involved in polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT and spermine oxidase (SMOX increase in the kidneys of mice treated with cisplatin. We hypothesized that enhanced polyamine catabolism contributes to tissue damage in cisplatin acute kidney injury (AKI. Using gene knockout and chemical inhibitors, the role of polyamine catabolism in cisplatin AKI was examined. Deficiency of SSAT, SMOX or neutralization of the toxic products of polyamine degradation, H2O2 and aminopropanal, significantly diminished the severity of cisplatin AKI. In vitro studies demonstrated that the induction of SSAT and elevated polyamine catabolism in cells increases the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α and enhances the expression of binding immunoglobulin protein BiP/GRP78 and CCAAT-enhancer-binding protein homologous protein (CHOP/GADD153. The increased expression of these endoplasmic reticulum stress response (ERSR markers was accompanied by the activation of caspase-3. These results suggest that enhanced polyamine degradation in cisplatin AKI may lead to tubular damage through the induction of ERSR and the consequent onset of apoptosis. In support of the above, we show that the ablation of the SSAT or SMOX gene, as well as the neutralization of polyamine catabolism products modulate the onset of ERSR (e.g. lower BiP and CHOP and apoptosis (e.g. reduced activated caspase-3. These studies indicate that enhanced polyamine catabolism and its toxic products are important mediators of ERSR and critical to the pathogenesis of cisplatin AKI.

  10. Biochanin-A antagonizes the interleukin-1β-induced catabolic inflammation through the modulation of NFκB cellular signaling in primary rat chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Ji-Su [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Cho, In-A; Kang, Kyeong-Rok [Department of Dental Bioengineering, Chosun University, Gwangju, 61452 (Korea, Republic of); You, Jae-Seek [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Yu, Sang-Joun [Department of Periodontology, Chosun University, Gwangju, 61452 (Korea, Republic of); Lee, Gyeong-Je [Department of Prosthodontics, Chosun University, Gwangju, 61452 (Korea, Republic of); Seo, Yo-Seob [Department of Oral and Maxillofacial Radiology, Chosun University, Gwangju, 61452 (Korea, Republic of); Kim, Chun Sung; Kim, Do Kyung [Pre-Dentistry, School of Dentistry, Chosun University, Gwangju, 61452 (Korea, Republic of); Kim, Su-Gwan [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Seo, Young-Woo [Korea Basic Science Institute, Gwangju Center, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Im, Hee-Jeong [Department of Biochemistry, Rush University Medical Center, Chicago, IL, 60612 (United States); Kim, Jae-Sung, E-mail: js_kim@chosun.ac.kr [Pre-Dentistry, School of Dentistry, Chosun University, Gwangju, 61452 (Korea, Republic of)

    2016-09-02

    Biochanin-A, a phytoestrogen derived from herbal plants, protected from the IL-1β-induced loss of proteoglycans through the suppression of matrix degrading enzymes such as matrix metalloproteinase (MMP)-13, MMP-3, MMP-1, and ADAMTS-5 in primary rat chondrocytes and the knee articular cartilage. It also suppressed the expression of IL-1β-induced catabolic factors such as nitric oxide synthase 2, cyclooxygenase-2, prostaglandin E{sub 2}, and inflammatory cytokines. Furthermore, biochanin-A suppressed the IL-1β-induced phosphorylation of NFκB, and inhibited its nuclear translocation in primary rat chondrocytes. These results indicate that biochanin-A antagonizes the IL-1β-induced catabolic effects through its anti-inflammatory activity that involves the modulation of NFκB signaling. - Highlights: • Biochanin-A is a phytoestrogen derived from medicinal plants. • It suppressed the IL-1β-induced matrix degrading enzymes and catabolic factors. • It inhibited IL-1β-induced proteoglycan loss in chondrocytes and cartilage tissues. • Its anti-catabolic effects were mediated by modulation of NFκB signaling. • It may be used as a potential anti-catabolic biomaterial for osteoarthritis.

  11. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise.

    Science.gov (United States)

    Shimomura, Yoshiharu; Murakami, Taro; Nakai, Naoya; Nagasaki, Masaru; Harris, Robert A

    2004-06-01

    Branched-chain amino acids (BCAAs) are essential amino acids that can be oxidized in skeletal muscle. It is known that BCAA oxidation is promoted by exercise. The mechanism responsible for this phenomenon is attributed to activation of the branched-chain alpha-keto acid dehydrogenase (BCKDH) complex, which catalyzes the second-step reaction of the BCAA catabolic pathway and is the rate-limiting enzyme in the pathway. This enzyme complex is regulated by a phosphorylation-dephosphorylation cycle. The BCKDH kinase is responsible for inactivation of the complex by phosphorylation, and the activity of the kinase is inversely correlated with the activity state of the BCKDH complex, which suggests that the kinase is the primary regulator of the complex. We found recently that administration of ligands for peroxisome proliferator-activated receptor-alpha (PPARalpha) in rats caused activation of the hepatic BCKDH complex in association with a decrease in the kinase activity, which suggests that promotion of fatty acid oxidation upregulates the BCAA catabolism. Long-chain fatty acids are ligands for PPARalpha, and the fatty acid oxidation is promoted by several physiological conditions including exercise. These findings suggest that fatty acids may be one of the regulators of BCAA catabolism and that the BCAA requirement is increased by exercise. Furthermore, BCAA supplementation before and after exercise has beneficial effects for decreasing exercise-induced muscle damage and promoting muscle-protein synthesis; this suggests the possibility that BCAAs are a useful supplement in relation to exercise and sports.

  12. Re-Factoring Glycolytic Genes for Targeted Engineering of Catabolism in Gram-Negative Bacteria

    DEFF Research Database (Denmark)

    Sánchez-Pascuala, Alberto; Nikel, Pablo I.; de Lorenzo, Víctor

    2018-01-01

    the potential applications of such a portable tool for targeted pathway engineering, in the present protocol we describe how the genes encoding all the enzymes of the linear EMP route have been individually recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals......The Embden-Meyerhof-Parnas (EMP) pathway is widely accepted to be the biochemical standard of glucose catabolism. The well-characterized glycolytic route of Escherichia coli, based on the EMP catabolism, is an example of an intricate pathway in terms of genomic organization of the genes involved...... and patterns of gene expression and regulation. This intrinsic genetic and metabolic complexity renders it difficult to engineer glycolytic activities and transfer them onto other microbial cell factories, thus limiting the biotechnological potential of bacterial hosts that lack the route. Taking into account...

  13. D-Allose catabolism of Escherichia coli

    DEFF Research Database (Denmark)

    Poulsen, Tim S.; Chang, Ying-Ying; Hove-Jensen, Bjarne

    1999-01-01

    Genes involved in allose utilization of Escherichia coli K-12 are organized in at least two operons, alsRBACE and alsI, located next to each other on the chromosome but divergently transcribed. Mutants defective in alsI (allose 6-phosphate isomerase gene) and alsE (allulose 6-phosphate epimerase...... gene) were Als-. Transcription of the two allose operons, measured as β-galactosidase activity specified by alsI-lacZ+ or alsE-lacZ+ operon fusions, was induced by allose. Ribose also caused derepression of expression of the regulon under conditions in which ribose phosphate catabolism was impaired....

  14. Quorum-Dependent Mannopine-Inducible Conjugative Transfer of an Agrobacterium Opine-Catabolic Plasmid

    Science.gov (United States)

    Wetzel, Margaret E.; Kim, Kun-Soo; Miller, Marilyn; Olsen, Gary J.

    2014-01-01

    The Ti plasmid in Agrobacterium tumefaciens strain 15955 carries two alleles of traR that regulate conjugative transfer. The first is a functional allele, called traR, that is transcriptionally induced by the opine octopine. The second, trlR, is a nonfunctional, dominant-negative mutant located in an operon that is inducible by the opine mannopine (MOP). Based on these findings, we predicted that there exist wild-type agrobacterial strains harboring plasmids in which MOP induces a functional traR and, hence, conjugation. We analyzed 11 MOP-utilizing field isolates and found five where MOP induced transfer of the MOP-catabolic element and increased production of the acyl-homoserine lactone (acyl-HSL) quormone. The transmissible elements in these five strains represent a set of highly related plasmids. Sequence analysis of one such plasmid, pAoF64/95, revealed that the 176-kb element is not a Ti plasmid but carries genes for catabolism of MOP, mannopinic acid (MOA), agropinic acid (AGA), and the agrocinopines. The plasmid additionally carries all of the genes required for conjugative transfer, including the regulatory genes traR, traI, and traM. The traR gene, however, is not located in the MOP catabolism region. The gene, instead, is monocistronic and located within the tra-trb-rep gene cluster. A traR mutant failed to transfer the plasmid and produced little to no quormone even when grown with MOP, indicating that TraRpAoF64/95 is the activator of the tra regulon. A traM mutant was constitutive for transfer and acyl-HSL production, indicating that the anti-activator function of TraM is conserved. PMID:24363349

  15. Simple generic model for dynamic experiments with Saccharomyces cerevisiae in continuous culture. Decoupling between anabolism and catabolism

    DEFF Research Database (Denmark)

    Duboc, Philippe Jean; von Stockar, U.; Villadsen, John

    1998-01-01

    The dynamic behavior of a continuous culture of Saccharomyces cerevisiae subjected to a sudden increase in the dilution rate has been successfully modelled for anaerobic growth on glucose, and for aerobic growth on acetate, on ethanol, and on glucose. The catabolism responded by an immediate jump...... identified in steady state continuous cultures or during batch experiments. Only the time constant of biosynthesis regeneration, tau(x), and the time constant of catabolic capacity regeneration, tau(cat), had to be identified during transient experiments. In most experiments 7, was around 3 h, and tau(cat...

  16. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Ishikawa, Takuya; Kadota, Yoshihiro; Terai, Chihaya; Shindo, Daichi; Morioka, Takashi; Ota, Miki; Morishita, Yukako; Ishihara, Kengo; Shimomura, Yoshiharu

    2017-01-01

    It is known that the catabolism of branched-chain amino acids (BCAAs) in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA) dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK). In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice) to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  17. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Minjun Xu

    Full Text Available It is known that the catabolism of branched-chain amino acids (BCAAs in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK. In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  18. Catabolism of pyrimidines in yeast: A tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, Gorm; Merico, A.; Bjornberg, O.

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides/antib...

  19. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.

    Science.gov (United States)

    Wargo, Matthew J; Szwergold, Benjamin S; Hogan, Deborah A

    2008-04-01

    Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-(13)C-labeled choline indicated that these genes are necessary for conversion of GB to DMG. Similar experiments showed that strains with mutations in the dgcAB (PA5398-PA5399) genes, which exhibit homology to genes that encode other enzymes with demethylase activity, are required for the conversion of DMG to sarcosine. Mutant analyses and (13)C NMR studies also confirmed that the soxBDAG genes, predicted to encode a sarcosine oxidase, are required for sarcosine catabolism. Our screen also identified a predicted AraC family transcriptional regulator, encoded by gbdR (PA5380), that is required for growth on GB and DMG and for the induction of gbcA, gbcB, and dgcAB in response to GB or DMG. Mutants defective in the previously described gbt gene (PA3082) grew on GB with kinetics similar to those of the wild type in both the PAO1 and PA14 strain backgrounds. These studies provided important insight into both the mechanism and the regulation of the catabolism of GB in P. aeruginosa.

  20. Catabolic factors and osteoarthritis-conditioned medium inhibit chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Heldens, Genoveva T H; Blaney Davidson, Esmeralda N; Vitters, Elly L; Schreurs, B Willem; Piek, Ester; van den Berg, Wim B; van der Kraan, Peter M

    2012-01-01

    Articular cartilage has a very limited intrinsic repair capacity leading to progressive joint damage. Therapies involving tissue engineering depend on chondrogenic differentiation of progenitor cells. This chondrogenic differentiation will have to survive in a diseased joint. We postulate that catabolic factors in this environment inhibit chondrogenesis of progenitor cells. We investigated the effect of a catabolic environment on chondrogenesis in pellet cultures of human mesenchymal stem cells (hMSCs). We exposed chondrogenically differentiated hMSC pellets, to interleukin (IL)-1α, tumor necrosis factor (TNF)-α or conditioned medium derived from osteoarthritic synovium (CM-OAS). IL-1α and TNF-α in CM-OAS were blocked with IL-1Ra or Enbrel, respectively. Chondrogenesis was determined by chondrogenic markers collagen type II, aggrecan, and the hypertrophy marker collagen type X on mRNA. Proteoglycan deposition was analyzed by safranin o staining on histology. IL-1α and TNF-α dose-dependently inhibited chondrogenesis when added at onset or during progression of differentiation, IL-1α being more potent than TNF-α. CM-OAS inhibited chondrogenesis on mRNA and protein level but varied in extent between patients. Inhibition of IL-1α partially overcame the inhibitory effect of the CM-OAS on chondrogenesis whereas the TNF-α contribution was negligible. We show that hMSC chondrogenesis is blocked by either IL-1α or TNF-α alone, but that there are additional factors present in CM-OAS that contribute to inhibition of chondrogenesis, demonstrating that catabolic factors present in OA joints inhibit chondrogenesis, thereby impairing successful tissue engineering.

  1. Insights into the evolution of sialic acid catabolism among bacteria

    Directory of Open Access Journals (Sweden)

    Almagro-Moreno Salvador

    2009-05-01

    Full Text Available Abstract Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA, epimerase (NanE, and kinase (NanK, necessary for the catabolism of sialic acid (the Nan cluster, are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body

  2. Lactoferricin mediates Anti-Inflammatory and Anti-Catabolic Effects via Inhibition of IL-1 and LPS Activity in the Intervertebral Disc†

    Science.gov (United States)

    Kim, Jae-Sung; Ellman, Michael B.; Yan, Dongyao; An, Howard S.; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Zabo, Gabriella; Hoskin, David W.; Buechter, D.D.; Van Wijnen, Andre J.; Im, Hee-Jeong

    2013-01-01

    The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. PMID:23460134

  3. Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc.

    Science.gov (United States)

    Kim, Jae-Sung; Ellman, Michael B; Yan, Dongyao; An, Howard S; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Szabo, Gabriella; Hoskin, David W; Buechter, Doug D; Van Wijnen, Andre J; Im, Hee-Jeong

    2013-09-01

    The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production, and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. Copyright © 2013 Wiley Periodicals, Inc.

  4. Amino acid catabolism and generation of volatiles by lactic acid bacteria

    OpenAIRE

    Tavaria, F. K.; Dahl, S.; Carballo, F. J.; Malcata, F. X.

    2002-01-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180- d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts...

  5. Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions.

    Directory of Open Access Journals (Sweden)

    Rodrigo W A Souza

    Full Text Available Heart failure (HF is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting.We employed ascending aortic stenosis (AS inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET or to an untrained group (AS-UN. At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65, MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels.Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.

  6. A Murine Model of Persistent Inflammation, Immune Suppression, and Catabolism Syndrome

    Directory of Open Access Journals (Sweden)

    Amanda M. Pugh

    2017-08-01

    Full Text Available Critically ill patients that survive sepsis can develop a Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS, which often leads to extended recovery periods and multiple complications. Here, we utilized a cecal ligation and puncture (CLP method in mice with the goal of creating a model that concurrently displays all the characteristics of PICS. We observed that, after eight days, mice that survive the CLP develop persistent inflammation with significant myelopoiesis in the bone marrow and spleen. These mice also demonstrate ongoing immune suppression, as evidenced by the decreased total and naïve splenic CD4 and CD8 T cells with a concomitant increase in immature myeloid cells. The mice further display significant weight loss and decreased muscle mass, indicating a state of ongoing catabolism. When PICS mice are challenged with intranasal Pseudomonas aeruginosa, mortality is significantly elevated compared to sham mice. This mortality difference is associated with increased bacterial loads in the lung, as well as impaired neutrophil migration and neutrophil dysfunction in the PICS mice. Altogether, we have created a sepsis model that concurrently exhibits PICS characteristics. We postulate that this will help determine the mechanisms underlying PICS and identify potential therapeutic targets to improve outcomes for this patient population.

  7. Farnesoid X Receptor Activation Promotes Hepatic Amino Acid Catabolism and Ammonium Clearance in Mice

    NARCIS (Netherlands)

    Massafra, Vittoria; Milona, Alexandra; Vos, Harmjan R; Ramos, Rúben J J; Gerrits, Johan; Willemsen, Ellen C L; Ramos Pittol, José M; Ijssennagger, Noortje; Houweling, Martin; Prinsen, Hubertus C M T; Verhoeven-Duif, Nanda M; Burgering, Boudewijn M T; van Mil, Saskia W C

    2017-01-01

    BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4 or farnesoid X receptor [FXR]) regulates bile acid synthesis, transport, and catabolism. FXR also regulates postprandial lipid and glucose metabolism. We performed quantitative proteomic analyses of liver tissues from mice

  8. Metabolism and catabolism in hip fracture patients: nutritional and anabolic intervention--a review.

    Science.gov (United States)

    Hedström, Margareta; Ljungqvist, Olle; Cederholm, Tommy

    2006-10-01

    Patients suffering from hip fracture are known to be at risk of catabolism and protein-energy malnutrition. In this review we discuss the pathogenesis of hip fracture-related catabolism per- and postoperatively. We also describe the consequences of malnutrition after a hip fracture and summarize studies that have evaluated the effect of nutritional or anabolic treatment of these patients. There has been relatively little published on the effects of nutritional and anabolic pharmacological interventions for improvement of nutritional status and on the role of nutritional status in clinical outcomes. Even so, there have been 19 randomized studies in this field. 12 studies evaluated nutritional supplementation or protein supplementation. 6 found improved clinical outcome with fewer complications, faster recovery and shorter length of hospital stay, whereas the others reported no difference in clinical outcome. For pharmacological interventions, the outcomes have been even less clear. Supplementation studies in general appear to be underpowered or suffer logistic problems. Studies of higher scientific quality are needed, and enteral feeding, anabolic treatment and multimodal approaches need to be evaluated in greater depth.

  9. Effects of Zinc Magnesium Aspartate (ZMA Supplementation on Training Adaptations and Markers of Anabolism and Catabolism

    Directory of Open Access Journals (Sweden)

    Almada Anthony

    2004-12-01

    Full Text Available Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P or ZMA 30–60 minutes prior to going to sleep during 8-weeks of standardized resistance-training. Subjects completed testing sessions at 0, 4, and 8 weeks that included body composition assessment as determined by dual energy X-ray absorptiometry, 1-RM and muscular endurance tests on the bench and leg press, a Wingate anaerobic power test, and blood analysis to assess anabolic/catabolic status as well as markers of health. Data were analyzed using repeated measures ANOVA. Results indicated that ZMA supplementation non-significantly increased serum zinc levels by 11 – 17% (p = 0.12. However, no significant differences were observed between groups in anabolic or catabolic hormone status, body composition, 1-RM bench press and leg press, upper or lower body muscular endurance, or cycling anaerobic capacity. Results indicate that ZMA supplementation during training does not appear to enhance training adaptations in resistance trained populations.

  10. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eLeprince

    2015-01-01

    Full Text Available Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signalling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K, VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1, a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  11. DETERMINATION OF PROTEIN CATABOLIC RATE IN PATIENTS ON CHRONIC INTERMITTENT HEMODIALYSIS - UREA OUTPUT MEASUREMENTS COMPARED WITH DIETARY-PROTEIN INTAKE AND WITH CALCULATION OF UREA GENERATION RATE

    NARCIS (Netherlands)

    STEGEMAN, CA; HUISMAN, RM; DEROUW, B; JOOSTEMA, A; DEJONG, PE

    We assessed the agreement between different methods of determining protein catabolic rate (PCR) in hemodialysis patients and the possible influence of postdialysis urea rebound and the length of the interdialytic interval on the PCR determination. Protein catabolic rate derived from measured total

  12. Protein catabolism in pregnant snakes (Epicrates cenchria maurus Boidae) compromises musculature and performance after reproduction.

    Science.gov (United States)

    Lourdais, O; Brischoux, F; DeNardo, D; Shine, R

    2004-07-01

    In many species the high energetic demands of reproduction induce a negative energy balance, and thus females must rely on tissue catabolism to complete the reproductive process. Previous works have shown that both fat and protein are energy resources during prolonged fasting in vertebrates. While many ecological studies on energy costs of reproduction have focused on variations in fat stores, the impact of protein investment on the female has not been thoroughly investigated. Notably, as there is no specialized storage form for proteins, intense catabolism is likely to entail structural (musculature) loss that may compromise maternal physical performance after reproduction. Measurements on captive rainbow boas ( Epicrates cenchria maurus) confirm that reproducing females undergo significant protein catabolism (as indicated by elevated plasma uric acid levels) and show considerable musculature loss during gestation (as detected by reduced width of the epaxial muscles). Protein mobilization entailed a significant functional loss that was illustrated by decrements in tests of strength and constriction after parturition. In wild situations, such effects are likely to decrease the snakes' ability to forage and apprehend prey. Hence, the time period needed to recover from reproduction can be extended not only because the female must compensate losses of both fat stores and functional muscle, but also because the ability to do so may be compromised. Performance alteration is likely to be of equal or greater importance than reduced energy stores in the physiological mediation of elevated post-reproduction mortality rates and infrequent reproductive bouts (e.g. biannual or triannual), two common ecological traits of female snakes.

  13. The mechanisms of haem catabolism

    International Nuclear Information System (INIS)

    Brown, S.B.; King, R.F.G.J.

    1978-01-01

    The pathway of haem breakdown in living rats was studied by using 18 0 in the oxygen that the animals consumed. By cannulation of the common bile duct and collection of bile, labelled bilirubin was isolated and its mass spectrum determined. One set of results was obtained for a rat to which haemoglobin had been intravenously administered and another set obtained for a rat that was not given exogenous haem. Isomerization of bilirubin IXα to the XIIIα and IIIα isomers did not occur to any significant extent. The 18 O-labelling pattern obtained in the bilirubin was consistent with a Two-Molecule Mechanism, whereby the terminal lactam oxygen atoms of bilirubin are derived from different oxygen molecules. The consequences of this mechanism are discussed in terms of the possible intermediates of the catabolic pathway. 18 0-labelled bilirubin appeared in the bile in less than 10 min after exposure of the animals to labelled oxygen. This result suggests that all of the chemical transformations involving production of biliverdin, reduction to bilirubin and conjugation of the bilirubin are fast processes. The quantitative recovery of label obtained in the experiments suggests that there is little or no exchange of newly synthesized bilirubin with existing bilirubin pools in the animal. (author)

  14. Mutations Enhancing Amino Acid Catabolism Confer a Growth Advantage in Stationary Phase

    Science.gov (United States)

    Zinser, Erik R.; Kolter, Roberto

    1999-01-01

    Starved cultures of Escherichia coli undergo successive rounds of population takeovers by mutants of increasing fitness. These mutants express the growth advantage in stationary phase (GASP) phenotype. Previous work identified the rpoS819 allele as a GASP mutation allowing cells to take over stationary-phase cultures after growth in rich media (M. M. Zambrano, D. A. Siegele, M. A. Almirón, A. Tormo, and R. Kolter, Science 259:1757–1760, 1993). Here we have identified three new GASP loci from an aged rpoS819 strain: sgaA, sgaB, and sgaC. Each locus is capable of conferring GASP on the rpoS819 parent, and they can provide successively higher fitnesses for the bacteria in the starved cultures. All four GASP mutations isolated thus far allow for faster growth on both individual and mixtures of amino acids. Each mutation confers a growth advantage on a different subset of amino acids, and these mutations act in concert to increase the overall catabolic capacity of the cell. We present a model whereby this enhanced ability to catabolize amino acids is responsible for the fitness gain during carbon starvation, as it may allow GASP mutants to outcompete the parental cells when growing on the amino acids released by dying cells. PMID:10482523

  15. Shifting patterns of nitrogen excretion and amino acid catabolism capacity during the life cycle of the sea lamprey (Petromyzon marinus).

    Science.gov (United States)

    Wilkie, Michael P; Claude, Jaime F; Cockshutt, Amanda; Holmes, John A; Wang, Yuxiang S; Youson, John H; Walsh, Patrick J

    2006-01-01

    The jawless fish, the sea lamprey (Petromyzon marinus), spends part of its life as a burrow-dwelling, suspension-feeding larva (ammocoete) before undergoing a metamorphosis into a free swimming, parasitic juvenile that feeds on the blood of fishes. We predicted that animals in this juvenile, parasitic stage have a great capacity for catabolizing amino acids when large quantities of protein-rich blood are ingested. The sixfold to 20-fold greater ammonia excretion rates (J(Amm)) in postmetamorphic (nonfeeding) and parasitic lampreys compared with ammocoetes suggested that basal rates of amino acid catabolism increased following metamorphosis. This was likely due to a greater basal amino acid catabolizing capacity in which there was a sixfold higher hepatic glutamate dehydrogenase (GDH) activity in parasitic lampreys compared with ammocoetes. Immunoblotting also revealed that GDH quantity was 10-fold and threefold greater in parasitic lampreys than in ammocoetes and upstream migrant lampreys, respectively. Higher hepatic alanine and aspartate aminotransferase activities in the parasitic lampreys also suggested an enhanced amino acid catabolizing capacity in this life stage. In contrast to parasitic lampreys, the twofold larger free amino acid pool in the muscle of upstream migrant lampreys confirmed that this period of natural starvation is accompanied by a prominent proteolysis. Carbamoyl phosphate synthetase III was detected at low levels in the liver of parasitic and upstream migrant lampreys, but there was no evidence of extrahepatic (muscle, intestine) urea production via the ornithine urea cycle. However, detection of arginase activity and high concentrations of arginine in the liver at all life stages examined infers that arginine hydrolysis is an important source of urea. We conclude that metamorphosis is accompanied by a metabolic reorganization that increases the capacity of parasitic sea lampreys to catabolize intermittently large amino acid loads arising

  16. The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development.

    Directory of Open Access Journals (Sweden)

    R van der Geize

    2011-08-01

    Full Text Available Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551, ipdB (rv3552, fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD and 3aα-H-4α(3'-propionic acid-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP. Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections.

  17. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  18. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Mcintyre, Mhairi; Nielsen, Jens

    2004-01-01

    The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars. In the cultivat......The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars...... on the sugar mixture, glucose repression of xylose utilisation was observed; with xylose utilisation occurring only after glucose was depleted. This phenomenon was not seen in the creA deleted strain, where glucose and xylose were catabolised simultaneously. Measurement of key metabolites and the activities...... of key enzymes in the xylose utilisation pathway revealed that xylose metabolism was occurring in the creA deleted strain, even at high glucose concentrations. Conversely, in the wild type strain, activities of the key enzymes for xylose metabolism increased only when the effects of glucose repression...

  19. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.

    Science.gov (United States)

    Iverson, Andrew; Garza, Erin; Manow, Ryan; Wang, Jinhua; Gao, Yuanyuan; Grayburn, Scott; Zhou, Shengde

    2016-04-16

    Anaerobic rather than aerobic fermentation is preferred for conversion of biomass derived sugars to high value redox-neutral and reduced commodities. This will likely result in a higher yield of substrate to product conversion and decrease production cost since substrate often accounts for a significant portion of the overall cost. To this goal, metabolic pathway engineering has been used to optimize substrate carbon flow to target products. This approach works well for the production of redox neutral products such as lactic acid from redox neutral sugars using the reducing power NADH (nicotinamide adenine dinucleotide, reduced) generated from glycolysis (2 NADH per glucose equivalent). Nevertheless, greater than two NADH per glucose catabolized is needed for the production of reduced products (such as xylitol) from redox neutral sugars by anaerobic fermentation. The Escherichia coli strain AI05 (ΔfrdBC ΔldhA ΔackA Δ(focA-pflB) ΔadhE ΔptsG ΔpdhR::pflBp 6-(aceEF-lpd)), previously engineered for reduction of xylose to xylitol using reducing power (NADH equivalent) of glucose catabolism, was further engineered by 1) deleting xylAB operon (encoding for xylose isomerase and xylulokinase) to prevent xylose from entering the pentose phosphate pathway; 2) anaerobically expressing the sdhCDAB-sucABCD operon (encoding for succinate dehydrogenase, α-ketoglutarate dehydrogenase and succinyl-CoA synthetase) to enable an anaerobically functional tricarboxcylic acid cycle with a theoretical 10 NAD(P)H equivalent per glucose catabolized. These reducing equivalents can be oxidized by synthetic respiration via xylose reduction, producing xylitol. The resulting strain, AI21 (pAI02), achieved a 96 % xylose to xylitol conversion, with a yield of 6 xylitol per glucose catabolized (molar yield of xylitol per glucose consumed (YRPG) = 6). This represents a 33 % improvement in xylose to xylitol conversion, and a 63 % increase in xylitol yield per glucose catabolized over

  20. Overexpression, purification, crystallization and preliminary structural studies of catabolic ornithine transcarbamylase from Lactobacillus hilgardii

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, Blanca de las; Rodríguez, Héctor [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Angulo, Iván [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Muñoz, Rosario [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Mancheño, José M., E-mail: xjosemi@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)

    2007-07-01

    The catabolic ornithine transcarbamylase (cOTC) from L. hilgardii has been overexpressed in E. coli, purified and crystallized under two different experimental conditions. The structure has been solved by the molecular-replacement method using the atomic coordinates of catabolic ornithine transcarbamylase from P. aeruginosa as the search model. The catabolic ornithine transcarbamylase (cOTC; EC 2.1.3.3) from the lactic acid bacteria Lactobacillus hilgardii is a key protein involved in the degradation of arginine during malolactic fermentation. cOTC containing an N-terminal His{sub 6} tag has been overexpressed in Escherichia coli, purified and crystallized under two different experimental conditions using the hanging-drop vapour-diffusion method. Crystals obtained from a solution containing 8%(w/v) PEG 4000, 75 mM sodium acetate pH 4.6 belong to the trigonal space group P321 and have unit-cell parameters a = b = 157.04, c = 79.28 Å. Conversely, crystals grown in 20%(v/v) 2-methyl-2,4-pentanediol, 7.5%(w/v) PEG 4000, 100 mM HEPES pH 7.8 belong to the monoclinic space group C2 and have unit-cell parameters a = 80.06, b = 148.90, c = 91.67 Å, β = 100.25°. Diffraction data were collected in-house to 3.00 and 2.91 Å resolution for trigonal and monoclinic crystals, respectively. The estimated Matthews coefficient for the crystal forms were 2.36 and 2.24 Å{sup 3} Da{sup −1}, respectively, corresponding to 48% and 45% solvent content. In both cases, the results are consistent with the presence of three protein subunits in the asymmetric unit. The structure of cOTC has been determined by the molecular-replacement method using the atomic coordinates of cOTC from Pseudomonas aeruginosa (PDB code) as the search model.

  1. Overexpression, purification, crystallization and preliminary structural studies of catabolic ornithine transcarbamylase from Lactobacillus hilgardii

    International Nuclear Information System (INIS)

    Rivas, Blanca de las; Rodríguez, Héctor; Angulo, Iván; Muñoz, Rosario; Mancheño, José M.

    2007-01-01

    The catabolic ornithine transcarbamylase (cOTC) from L. hilgardii has been overexpressed in E. coli, purified and crystallized under two different experimental conditions. The structure has been solved by the molecular-replacement method using the atomic coordinates of catabolic ornithine transcarbamylase from P. aeruginosa as the search model. The catabolic ornithine transcarbamylase (cOTC; EC 2.1.3.3) from the lactic acid bacteria Lactobacillus hilgardii is a key protein involved in the degradation of arginine during malolactic fermentation. cOTC containing an N-terminal His 6 tag has been overexpressed in Escherichia coli, purified and crystallized under two different experimental conditions using the hanging-drop vapour-diffusion method. Crystals obtained from a solution containing 8%(w/v) PEG 4000, 75 mM sodium acetate pH 4.6 belong to the trigonal space group P321 and have unit-cell parameters a = b = 157.04, c = 79.28 Å. Conversely, crystals grown in 20%(v/v) 2-methyl-2,4-pentanediol, 7.5%(w/v) PEG 4000, 100 mM HEPES pH 7.8 belong to the monoclinic space group C2 and have unit-cell parameters a = 80.06, b = 148.90, c = 91.67 Å, β = 100.25°. Diffraction data were collected in-house to 3.00 and 2.91 Å resolution for trigonal and monoclinic crystals, respectively. The estimated Matthews coefficient for the crystal forms were 2.36 and 2.24 Å 3 Da −1 , respectively, corresponding to 48% and 45% solvent content. In both cases, the results are consistent with the presence of three protein subunits in the asymmetric unit. The structure of cOTC has been determined by the molecular-replacement method using the atomic coordinates of cOTC from Pseudomonas aeruginosa (PDB code) as the search model

  2. ARA1 regulates not only l-arabinose but also d-galactose catabolism in Trichoderma reesei

    NARCIS (Netherlands)

    Benocci, Tiziano; Aguilar-Pontes, Maria Victoria; Kun, Roland Sándor; Seiboth, Bernhard; de Vries, Ronald P; Daly, Paul

    2017-01-01

    Trichoderma reesei is used to produce saccharifying enzyme cocktails for biofuels. There is limited understanding of the transcription factors (TFs) that regulate genes involved in release and catabolism of l-arabinose and d-galactose, as the main TF XYR1 is only partially involved. Here, the T.

  3. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Todd, Jonathan D.; Thrash, J. Cameron; Qian, Yanping; Qian, Michael C.; Temperton, Ben; Guo, Jiazhen; Fowler, Emily K.; Aldrich, Joshua T.; Nicora, Carrie D.; Lipton, Mary S.; Smith, Richard D.; De Leenheer, Patrick; Payne, Samuel H.; Johnston, Andrew W. B.; Davie-Martin, Cleo L.; Halsey, Kimberly H.; Giovannoni, Stephen J.

    2016-05-16

    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a DMSP lyase, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis. These findings suggest that DMSP supply and demand relationships in Pelagibacter metabolism are important to determining rates of oceanic DMS production.

  4. Catabolism of lysine by mixed rumen bacteria

    International Nuclear Information System (INIS)

    Onodera, Ryoji; Kandatsu, Makoto.

    1975-01-01

    Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ml of lysine was decomposed to give ether-soluble substances and CO 2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. delta-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did. (auth.)

  5. l-Glucitol Catabolism in Stenotrophomonas maltophilia Ac

    Science.gov (United States)

    Brechtel, Elke; Huwig, Alexander; Giffhorn, Friedrich

    2002-01-01

    The carbohydrate catabolism of the bacterium Stenotrophomonas maltophilia Ac (previously named Pseudomonas sp. strain Ac), which is known to convert the unnatural polyol l-glucitol to d-sorbose during growth on the former as the sole source of carbon and energy, was studied in detail. All enzymes operating in a pathway that channels l-glucitol via d-sorbose into compounds of the intermediary metabolism were demonstrated, and for some prominent reactions the products of conversion were identified. d-Sorbose was converted by C-3 epimerization to d-tagatose, which, in turn, was isomerized to d-galactose. d-Galactose was the initial substrate of the De Ley-Doudoroff pathway, involving reactions of NAD-dependent oxidation of d-galactose to d-galactonate, its dehydration to 2-keto-3-deoxy-d-galactonate, and its phosphorylation to 2-keto-3-deoxy-d-galactonate 6-phosphate. Finally, aldol cleavage yielded pyruvate and d-glycerate 3-phosphate as the central metabolic intermediates. PMID:11823194

  6. A mass spectrometric method to determine activities of enzymes involved in polyamine catabolism

    International Nuclear Information System (INIS)

    Moriya, Shunsuke; Iwasaki, Kaori; Samejima, Keijiro; Takao, Koichi; Kohda, Kohfuku; Hiramatsu, Kyoko; Kawakita, Masao

    2012-01-01

    Highlights: ► Compounds in polyamine catabolic pathway were determined by a column-free ESI-TOF MS. ► N 1 - and N 8 -acetylspermidine were determined by a column-free ESI-MS/MS. ► The method was applied to determine activities of APAO, SMO, and SSAT in the pathway. ► The assay method contained stable isotope-labeled natural substrates. ► It is applicable to biological samples containing natural substrate and product. - Abstract: An analytical method for the determination of three polyamines (putrescine, spermidine, and spermine) and five acetylpolyamines [N 1 -acetylspermidine (N 1 AcSpd), N 8 -acetylspermidine (N 8 AcSpd), N 1 -acetylspermine, N 1 ,N 8 -diacetylspermidine, and N 1 ,N 12 -diacetylspermine] involved in the polyamine catabolic pathway has been developed using a hybrid tandem mass spectrometer. Heptafluorobutyryl (HFB) derivatives of these compounds and respective internal standards labeled with stable isotopes were analyzed simultaneously by TOF MS, based on peak areas appearing at appropriate m/z values. The isomers, N 1 AcSpd and N 8 AcSpd were determined from their fragment ions, the acetylamidopropyl and acetylamidobutyl groups, respectively, using MS/MS with 13 C 2 -N 1 AcSpd and 13 C 2 -N 8 AcSpd which have the 13 C 2 -acetyl group as an internal standard. The TOF MS method was successfully applied to measure the activity of enzymes involved in polyamine catabolic pathways, namely N 1 -acetylpolyamine oxidase (APAO), spermine oxidase (SMO), and spermidine/spermine N 1 -acetyltransferase (SSAT). The following natural substrates and products labeled with stable isotopes considering the application to biological samples were identified; for APAO, [4,9,12- 15 N 3 ]-N 1 -acetylspermine and [1,4,8- 15 N 3 ]spermidine ( 15 N 3 -Spd), respectively; for SMO, [1,4,8,12- 15 N 4 ]spermine and 15 N 3 -Spd, respectively; and for SSAT, 15 N 3 -Spd and [1,4,8- 15 N 3 ]-N 1 -acetylspermidine, respectively.

  7. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Subtil Thorsten

    2012-03-01

    Full Text Available Abstract Background In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism. Results To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose. Conclusion Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization

  8. Convergent evolution of Amadori opine catabolic systems in plasmids of Agrobacterium tumefaciens.

    Science.gov (United States)

    Baek, Chang-Ho; Farrand, Stephen K; Lee, Ko-Eun; Park, Dae-Kyun; Lee, Jeong Kug; Kim, Kun-Soo

    2003-01-01

    Deoxyfructosyl glutamine (DFG, referred to elsewhere as dfg) is a naturally occurring Amadori compound found in rotting fruits and vegetables. DFG also is an opine and is found in tumors induced by chrysopine-type strains of Agrobacterium tumefaciens. Such strains catabolize this opine via a pathway coded for by their plasmids. NT1, a derivative of the nopaline-type A. tumefaciens strain C58 lacking pTiC58, can utilize DFG as the sole carbon source. Genes for utilization of DFG were mapped to the 543-kb accessory plasmid pAtC58. Two cosmid clones of pAtC58 allowed UIA5, a plasmid-free derivative of C58, harboring pSa-C that expresses MocC (mannopine [MOP] oxidoreductase that oxidizes MOP to DFG), to grow by using MOP as the sole carbon source. Genetic analysis of subclones indicated that the genes for utilization of DFG are located in a 6.2-kb BglII (Bg2) region adjacent to repABC-type genes probably responsible for the replication of pAtC58. This region contains five open reading frames organized into at least two transcriptional soc (santhopine catabolism) groups: socR and socABCD. Nucleotide sequence analysis and analyses of transposon-insertion mutations in the region showed that SocR negatively regulates the expression of socR itself and socABCD. SocA and SocB are responsible for transport of DFG and MOP. SocA is a homolog of known periplasmic amino acid binding proteins. The N-terminal half of SocB is a homolog of the transmembrane transporter proteins for several amino acids, and the C-terminal half is a homolog of the transporter-associated ATP-binding proteins. SocC and SocD could be responsible for the enzymatic degradation of DFG, being homologs of sugar oxidoreductases and an amadoriase from Corynebacterium sp., respectively. The protein products of socABCD are not related at the amino acid sequence level to those of the moc and mot genes of Ti plasmids responsible for utilization of DFG and MOP, indicating that these two sets of genes and their

  9. Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira.

    Science.gov (United States)

    Agudelo-Romero, Patricia; Ali, Kashif; Choi, Young H; Sousa, Lisete; Verpoorte, Rob; Tiburcio, Antonio F; Fortes, Ana M

    2014-01-01

    Grapes are economically the most important fruit worldwide. However, the complexity of biological events that lead to ripening of nonclimacteric fruits is not fully understood, particularly the role of polyamines' catabolism. The transcriptional and metabolic profilings complemented with biochemical data were studied during ripening of Trincadeira grapes submitted to guazatine treatment, a potent inhibitor of polyamine oxidase activity. The mRNA expression profiles of one time point (EL 38) corresponding to harvest stage was compared between mock and guazatine treatments using Affymetrix GrapeGen(®) genome array. A total of 2113 probesets (1880 unigenes) were differentially expressed between these samples. Quantitative RT-PCR validated microarrays results being carried out for EL 35 (véraison berries), EL 36 (ripe berries) and EL 38 (harvest stage berries). Metabolic profiling using HPLC and (1)H NMR spectroscopy showed increase of putrescine, proline, threonine and 1-O-ethyl-β-glucoside in guazatine treated samples. Genes involved in amino acid, carbohydrate and water transport were down-regulated in guazatine treated samples suggesting that the strong dehydrated phenotype obtained in guazatine treated samples may be due to impaired transport mechanisms. Genes involved in terpenes' metabolism were differentially expressed between guazatine and mock treated samples. Altogether, results support an important role of polyamine catabolism in grape ripening namely in cell expansion and aroma development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. CLONING AND CHARACTERIZATION OF THE PHTHALATE CATABOLISM REGION OF PRE1 OF ARTHROBACTER KEYSERI 12B

    Science.gov (United States)

    o-Phthalate (benzene-1,2-dicarboxylate) is a central intermediate in the bacterial degradation of phthalate ester plasticizers as well as of a number of fused-ring polycyclic aromatic hydrocarbons found in fossil fuels. In Arthrobacter keyseri 12B, the genes encoding catabolism o...

  11. Ethylene-enhanced catabolism of [14C]indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues

    International Nuclear Information System (INIS)

    Sagee, O.; Riov, J.; Goren, J.

    1990-01-01

    Exogenous [ 14 C]indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of [ 14 C]IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels

  12. Effect of immunomodulators and cytostatics in 125I-deoxyuridine and tumor catabolism (a rapid method of antitumour immunomodulators screening)

    International Nuclear Information System (INIS)

    Obernikhin, S.S.; Fuks, B.B.

    1992-01-01

    E1-4 and P-815 murine tumor cells labelled by 125 I-deoxyuridine or 51 Cr were administered in 7-day subcutaneous syngeneic tumors or subcutaneosly. At the same time different groups of mice were treated by immunomodulators and cytostatics. It was shown that cytostatics and immunomodulators significantly delayed catabolism and withdrawing of 125 I-deoxyuridine (that has not been incorporated in DNA) from tumor cells. This delay was correlated with the inhibition of tumor nodes growth rate. It is concluded that influence of cytostatics and immunomodulators on catabolism and withdrawing rate of 125 I-deoxyuridine from tumor cells relates to their cytostatic effect and may be used at the earliest screening step of immunomodulator analysis

  13. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is increased in osteoarthritis and regulates chondrocyte catabolic and anabolic activities

    Science.gov (United States)

    Long, D.L.; Ulici, V.; Chubinskaya, S.; Loeser, R.F.

    2015-01-01

    Objective We determined if the epidermal growth factor receptor ligand HB-EGF is produced in cartilage and if it regulates chondrocyte anabolic or catabolic activity. Methods HB-EGF expression was measured by quantitative PCR using RNA isolated from mouse knee joint tissues and from normal and OA human chondrocytes. Immunohistochemistry was performed on normal and OA human cartilage and meniscus sections. Cultured chondrocytes were treated with fibronectin fragments (FN-f) as a catabolic stimulus and osteogenic protein 1 (OP-1) as an anabolic stimulus. Effects of HB-EGF on cell signaling were analyzed by immunoblotting of selected signaling proteins. MMP-13 was measured in conditioned media, proteoglycan synthesis was measured by sulfate incorporation, and matrix gene expression by quantitative PCR. Results HB-EGF expression was increased in 12-month old mice at 8 weeks after surgery to induce OA and increased amounts of HB-EGF were noted in human articular cartilage from OA knees. FN-f stimulated chondrocyte HB-EGF expression and HB-EGF stimulated chondrocyte MMP-13 production. However, HB-EGF was not required for FN-f stimulation of MMP-13 production. HB-EGF activated the ERK and p38 MAP kinases and stimulated phosphorylation of Smad1 at an inhibitory serine site which was associated with inhibition of OP-1 mediated proteoglycan synthesis and reduced aggrecan (ACAN) but not COL2A1 expression. Conclusion HB-EGF is a new factor identified in OA cartilage that promotes chondrocyte catabolic activity while inhibiting anabolic activity suggesting it could contribute to the catabolic-anabolic imbalance seen in OA cartilage. PMID:25937027

  14. Increased VLDL in nephrotic patients results from a decreased catabolism while increased LDL results from increased synthesis

    NARCIS (Netherlands)

    de Sain-van der Velden, M; Kaysen, GA; Barrett, HA; Stellaard, F; Gadellaa, MM; Voorbij, HA; Reijngoud, DJ; Rabelink, TJ

    Increased very low density lipoprotein (VLDL) in nephrotic patients results from a decreased catabolism while increased low density lipoprotein (LDL) results from increased synthesis. Hyperlipidemias a hallmark of nephrotic syndrome that has been associated with increased risk for ischemic heart

  15. Age-related changes in the proteoglycans of human skin. Specific cleavage of decorin to yield a major catabolic fragment in adult skin.

    Science.gov (United States)

    Carrino, David A; Onnerfjord, Patrik; Sandy, John D; Cs-Szabo, Gabriella; Scott, Paul G; Sorrell, J Michael; Heinegård, Dick; Caplan, Arnold I

    2003-05-09

    Dramatic changes occur in skin as a function of age, including changes in morphology, physiology, and mechanical properties. Changes in extracellular matrix molecules also occur, and these changes likely contribute to the overall age-related changes in the physical properties of skin. The major proteoglycans detected in extracts of human skin are decorin and versican. In addition, adult human skin contains a truncated form of decorin, whereas fetal skin contains virtually undetectable levels of this truncated decorin. Analysis of this molecule, herein referred to as decorunt, indicates that it is a catabolic fragment of decorin rather than a splice variant. With antibody probes to the core protein, decorunt is found to lack the carboxyl-terminal portion of decorin. Further analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry shows that the carboxyl terminus of decorunt is at Phe(170) of decorin. This result indicates that decorunt represents the amino-terminal 43% of the mature decorin molecule. Such a structure is inconsistent with alternative splicing of decorin and suggests that decorunt is a catabolic fragment of decorin. A neoepitope antiserum, anti-VRKVTF, was generated against the carboxyl terminus of decorunt. This antiserum does not recognize intact decorin in any skin proteoglycan sample tested on immunoblots but recognizes every sample of decorunt tested. The results with anti-VRKVTF confirm the identification of the carboxyl terminus of decorunt. Analysis of collagen binding by surface plasmon resonance indicates that the affinity of decorunt for type I collagen is 100-fold less than that of decorin. This observation correlates with the structural analysis of decorunt, in that it lacks regions of decorin previously shown to be important for interaction with type I collagen. The detection of a catabolic fragment of decorin suggests the existence of a specific catabolic pathway for this proteoglycan. Because of the

  16. Expression of eicosanoid biosynthetic and catabolic enzymes in peritoneal endometriosis.

    Science.gov (United States)

    Lousse, J-C; Defrère, S; Colette, S; Van Langendonckt, A; Donnez, J

    2010-03-01

    Increased peritoneal eicosanoid concentrations have been reported in endometriosis patients and might be important in disease-associated pain and inflammation. Here, we evaluated the expression of key biosynthetic and catabolic enzymes involved in this abnormal eicosanoid production in peritoneal macrophages and endometriotic lesions. Peritoneal macrophages, endometriotic lesions and matched eutopic endometrium were collected from endometriosis patients (n = 40). Peritoneal macrophages and eutopic endometrium samples were also collected from disease-free women (n = 25). Expression of type IIA secretory phospholipase A(2) (sPLA(2)-IIA), cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and 5-lipoxygenase (5-LO) was quantified by real-time PCR, and these five key enzymes were localized by immunohistochemistry. sPLA(2)-IIA, COX-2 and mPGES-1 mRNA was significantly increased in peritoneal macrophages of endometriosis patients compared with controls (P = 0.006, P = 0.016 and P = 0.025, respectively). In endometriosis patients, sPLA(2)-IIA, mPGES-1 and 15-PGDH mRNA was significantly enhanced in peritoneal lesions compared with matched eutopic endometrium (P endometriosis group compared with controls (P = 0.023). Finally, sPLA(2)-IIA, COX-2, mPGES-1 and 15-PGDH immunostaining was found mainly in endometrial glands, whereas 5-LO was distributed throughout the glands and stroma. Our study highlights an imbalance between eicosanoid biosynthesis and degradation in endometriosis patients. Both peritoneal macrophages and endometriotic lesions may be involved. Research into new molecules inhibiting biosynthetic enzymes (such as sPLA(2)-IIA and mPGES-1) and/or activating catabolic enzymes (such as 15-PGDH) may prove to be a major field of investigation in the development of targeted medical therapies.

  17. Lipid catabolism of invertebrate predator indicates widespread wetland ecosystem degradation

    Science.gov (United States)

    Anteau, Michael J.; Afton, Alan D.

    2011-01-01

    Animals frequently undergo periods when they accumulate lipid reserves for subsequent energetically expensive activities, such as migration or breeding. During such periods, daily lipid-reserve dynamics (DLD) of sentinel species can quantify how landscape modifications affect function, health, and resilience of ecosystems. Aythya affinis (Eyton 1838; lesser scaup; diving duck) are macroinvertebrate predators; they migrate through an agriculturally dominated landscape in spring where they select wetlands with the greatest food density to refuel and accumulate lipid reserves for subsequent reproduction. We index DLD by measuring plasma-lipid metabolites of female scaup (n = 459) that were refueling at 75 spring migration stopover areas distributed across the upper Midwest, USA. We also indexed DLD for females (n = 44) refueling on a riverine site (Pool 19) south of our upper Midwest study area. We found that mean DLD estimates were significantly (P<0.05) less than zero in all ecophysiographic regions of the upper Midwest, and the greatest negative value was in the Iowa Prairie Pothole region (-31.6). Mean DLD was 16.8 at Pool 19 and was markedly greater than in any region of the upper Midwest. Our results indicate that females catabolized rather than stored lipid reserves throughout the upper Midwest. Moreover, levels of lipid catabolism are alarming, because scaup use the best quality wetlands available within a given stopover area. Accordingly, these results provide evidence of wetland ecosystem degradation across this large agricultural landscape and document affects that are carried-up through several trophic levels. Interestingly, storing of lipids by scaup at Pool 19 likely reflects similar ecosystem perturbations as observed in the upper Midwest because wetland drainage and agricultural runoff nutrifies the riverine habitat that scaup use at Pool 19. Finally, our results underscore how using this novel technique to monitor DLD, of a carefully selected sentinel

  18. Lipid catabolism of invertebrate predator indicates widespread wetland ecosystem degradation.

    Directory of Open Access Journals (Sweden)

    Michael J Anteau

    Full Text Available Animals frequently undergo periods when they accumulate lipid reserves for subsequent energetically expensive activities, such as migration or breeding. During such periods, daily lipid-reserve dynamics (DLD of sentinel species can quantify how landscape modifications affect function, health, and resilience of ecosystems. Aythya affinis (Eyton 1838; lesser scaup; diving duck are macroinvertebrate predators; they migrate through an agriculturally dominated landscape in spring where they select wetlands with the greatest food density to refuel and accumulate lipid reserves for subsequent reproduction. We index DLD by measuring plasma-lipid metabolites of female scaup (n = 459 that were refueling at 75 spring migration stopover areas distributed across the upper Midwest, USA. We also indexed DLD for females (n = 44 refueling on a riverine site (Pool 19 south of our upper Midwest study area. We found that mean DLD estimates were significantly (P<0.05 less than zero in all ecophysiographic regions of the upper Midwest, and the greatest negative value was in the Iowa Prairie Pothole region (-31.6. Mean DLD was 16.8 at Pool 19 and was markedly greater than in any region of the upper Midwest. Our results indicate that females catabolized rather than stored lipid reserves throughout the upper Midwest. Moreover, levels of lipid catabolism are alarming, because scaup use the best quality wetlands available within a given stopover area. Accordingly, these results provide evidence of wetland ecosystem degradation across this large agricultural landscape and document affects that are carried-up through several trophic levels. Interestingly, storing of lipids by scaup at Pool 19 likely reflects similar ecosystem perturbations as observed in the upper Midwest because wetland drainage and agricultural runoff nutrifies the riverine habitat that scaup use at Pool 19. Finally, our results underscore how using this novel technique to monitor DLD, of a carefully

  19. Tyrosine biosynthesis, metabolism, and catabolism in plants.

    Science.gov (United States)

    Schenck, Craig A; Maeda, Hiroshi A

    2018-05-01

    L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Endocannabinoid Catabolic Enzymes Play Differential Roles in Thermal Homeostasis in Response to Environmental or Immune Challenge.

    Science.gov (United States)

    Nass, Sara R; Long, Jonathan Z; Schlosburg, Joel E; Cravatt, Benjamin F; Lichtman, Aron H; Kinsey, Steven G

    2015-06-01

    Cannabinoid receptor agonists, such as Δ(9)-THC, the primary active constituent of Cannabis sativa, have anti-pyrogenic effects in a variety of assays. Recently, attention has turned to the endogenous cannabinoid system and how endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide, regulate multiple homeostatic processes, including thermoregulation. Inhibiting endocannabinoid catabolic enzymes, monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH), elevates levels of 2-AG or anandamide in vivo, respectively. The purpose of this experiment was to test the hypothesis that endocannabinoid catabolic enzymes function to maintain thermal homeostasis in response to hypothermic challenge. In separate experiments, male C57BL/6J mice were administered a MAGL or FAAH inhibitor, and then challenged with the bacterial endotoxin lipopolysaccharide (LPS; 2 mg/kg ip) or a cold (4 °C) ambient environment. Systemic LPS administration caused a significant decrease in core body temperature after 6 h, and this hypothermia persisted for at least 12 h. Similarly, cold environment induced mild hypothermia that resolved within 30 min. JZL184 exacerbated hypothermia induced by either LPS or cold challenge, both of which effects were blocked by rimonabant, but not SR144528, indicating a CB1 cannabinoid receptor mechanism of action. In contrast, the FAAH inhibitor, PF-3845, had no effect on either LPS-induced or cold-induced hypothermia. These data indicate that unlike direct acting cannabinoid receptor agonists, which elicit profound hypothermic responses on their own, neither MAGL nor FAAH inhibitors affect normal body temperature. However, these endocannabinoid catabolic enzymes play distinct roles in thermoregulation following hypothermic challenges.

  1. CO₂ and O₂ respiration kinetics in hydrocarbon contaminated soils amended with organic carbon sources used to determine catabolic diversity.

    Science.gov (United States)

    Pietravalle, Stéphane; Aspray, Thomas J

    2013-05-01

    Multiple substrate induced respiration (MSIR) assays which assess the response of soils to carbon source amendment are effective approaches to determine catabolic diversity of soils. Many assays are based on a single short term (hydrocarbon contaminated soils using continuous CO2 and O2 respiration measurements. Based on cumulative CO2 and O2 measurements at 4, 24 and 120 h, the soils were found to be distinct in terms of their catabolic diversity. Most noteworthy, however, was the response to the addition of maleic acid which provided strong evidence of abiotic CO2 efflux to be the overriding process, raising questions about the interpretation of CO2 only responses from organic acid addition in MSIR assays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Seasonal changes in the abundance of bacterial genes related to dimethylsulfoniopropionate catabolism in seawater from Ofunato Bay revealed by metagenomic analysis

    KAUST Repository

    Kudo, Toshiaki; Kobiyama, Atsushi; Rashid, Jonaira; Reza, Shaheed; Yamada, Yuichiro; Ikeda, Yuri; Ikeda, Daisuke; Mizusawa, Nanami; Ikeo, Kazuho; Sato, Shigeru; Ogata, Takehiko; Jimbo, Mitsuru; Kaga, Shinnosuke; Watanabe, Shiho; Naiki, Kimiaki; Kaga, Yoshimasa; Segawa, Satoshi; Mineta, Katsuhiko; Bajic, Vladimir B.; Gojobori, Takashi; Watabe, Shugo

    2018-01-01

    Ofunato Bay is located in the northeastern Pacific Ocean area of Japan, and it has the highest biodiversity of marine organisms in the world, primarily due to tidal influences from the cold Oyashio and warm Kuroshio currents. Our previous results from performing shotgun metagenomics indicated that Candidatus Pelagibacter ubique and Planktomarina temperata were the dominant bacteria (Reza et al., 2018a, 2018b). These bacteria are reportedly able to catabolize dimethylsulfoniopropionate (DMSP) produced from phytoplankton into dimethyl sulfide (DMS) or methanethiol (MeSH). This study was focused on seasonal changes in the abundances of bacterial genes (dddP, dmdA) related to DMSP catabolism in the seawater of Ofunato Bay by BLAST+ analysis using shotgun metagenomic datasets. We found seasonal changes among the Candidatus Pelagibacter ubique strains, including those of the HTCC1062 type and the Red Sea type. A good correlation was observed between the chlorophyll a concentrations and the abundances of the catabolic genes, suggesting that the bacteria directly interact with phytoplankton in the marine material cycle system and play important roles in producing DMS and MeSH from DMSP as signaling molecules for the possible formation of the scent of the tidewater or as fish attractants.

  3. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway.

    Directory of Open Access Journals (Sweden)

    Corinne Barbey

    Full Text Available The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. erythropolis disrupts Pectobacterium communication and prevents plant soft-rot. We report the first characterization and demonstration of N-acyl homoserine lactone quenching in planta. In particular, we describe the transcription of the R. erythropolis lactonase gene, encoding the key enzyme of this pathway, and the subsequent lactone breakdown. The role of this catabolic pathway in biocontrol activity was confirmed by deletion of the lactonase gene from R. erythropolis and also its heterologous expression in Escherichia coli. The γ-lactone catabolic pathway is induced by pathogen communication rather than by pathogen invasion. This is thus a novel and unusual biocontrol pathway, differing from those previously described as protecting plants from phytopathogens. These findings also suggest the existence of an additional pathway contributing to plant protection.

  4. Seasonal changes in the abundance of bacterial genes related to dimethylsulfoniopropionate catabolism in seawater from Ofunato Bay revealed by metagenomic analysis

    KAUST Repository

    Kudo, Toshiaki

    2018-04-26

    Ofunato Bay is located in the northeastern Pacific Ocean area of Japan, and it has the highest biodiversity of marine organisms in the world, primarily due to tidal influences from the cold Oyashio and warm Kuroshio currents. Our previous results from performing shotgun metagenomics indicated that Candidatus Pelagibacter ubique and Planktomarina temperata were the dominant bacteria (Reza et al., 2018a, 2018b). These bacteria are reportedly able to catabolize dimethylsulfoniopropionate (DMSP) produced from phytoplankton into dimethyl sulfide (DMS) or methanethiol (MeSH). This study was focused on seasonal changes in the abundances of bacterial genes (dddP, dmdA) related to DMSP catabolism in the seawater of Ofunato Bay by BLAST+ analysis using shotgun metagenomic datasets. We found seasonal changes among the Candidatus Pelagibacter ubique strains, including those of the HTCC1062 type and the Red Sea type. A good correlation was observed between the chlorophyll a concentrations and the abundances of the catabolic genes, suggesting that the bacteria directly interact with phytoplankton in the marine material cycle system and play important roles in producing DMS and MeSH from DMSP as signaling molecules for the possible formation of the scent of the tidewater or as fish attractants.

  5. In Vivo Determination of Site and Rate of Insulin Catabolism Using the Double Tracer Technique with {sup 51}Cr And {sup 131}I

    Energy Technology Data Exchange (ETDEWEB)

    Ritzl, F.; Feinendegen, L. E. [Institute of Medicine, Kernforschungsanlage Juelich Gmbh, Juelich, Federal Republic of Germany (Germany)

    1971-02-15

    Double labelling of a peptide with {sup 51}Cr and {sup 125}({sup 131})I results in an isotopic ratio that changes when and where the molecule in vivo is catabolized. Intracellular hydrolysis of the peptide liberates the iodine into the iodine pool, whereas the chromium by virtue of being a multivalent ion enters a new linkage at the site of breakdown. The isotopic ratio at the site of breakdown alters concomitantly with the hydrolysis rate. Experiments with {sup 51}Cr- and {sup 125}I-labelled insulin in mice in vivo and in vitro showed the liver (not muscle), bone (including marrow) and thyroid gland to be the major site of insulin catabolism with a half-life of approximately 10 min. In eight normal persons and diabetic patients insulin catabolism was analysed by the whole body counter following an iv injection of 0.77-0.95 {mu}g insulin labelled with {sup 51}Cr and {sup 131}I. Counts were taken simultaneously from the area of the liver, thyroid, thigh and posterior pelvis. Again, the.data indicated the liver as the site of insulin catabolism, the normal half-life being approximately 20 min. Iodine- labelled insulin was commercially supplied. {sup 51}Cr-labelled insulin, prepared according to the methods of Kavai and Kesztyues, was analysed by immune precipitation and Sephadex G200 chromatography. In the countercurrent distribution the {sup 51}Cr insulin showed enhanced water solubility. (author)

  6. Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells.

    Science.gov (United States)

    Insausti, T C; Casas, J

    2009-12-01

    Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.

  7. Re-Factoring Glycolytic Genes for Targeted Engineering of Catabolism in Gram-Negative Bacteria.

    Science.gov (United States)

    Sánchez-Pascuala, Alberto; Nikel, Pablo I; de Lorenzo, Víctor

    2018-01-01

    The Embden-Meyerhof-Parnas (EMP) pathway is widely accepted to be the biochemical standard of glucose catabolism. The well-characterized glycolytic route of Escherichia coli, based on the EMP catabolism, is an example of an intricate pathway in terms of genomic organization of the genes involved and patterns of gene expression and regulation. This intrinsic genetic and metabolic complexity renders it difficult to engineer glycolytic activities and transfer them onto other microbial cell factories, thus limiting the biotechnological potential of bacterial hosts that lack the route. Taking into account the potential applications of such a portable tool for targeted pathway engineering, in the present protocol we describe how the genes encoding all the enzymes of the linear EMP route have been individually recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals, and synthesized de novo following a standard (i.e., GlucoBrick) that facilitates their grouping in the form of functional modules that can be combined at the user's will. This novel genetic tool allows for the à la carte implementation or boosting of EMP pathway activities into different Gram-negative bacteria. The potential of the GlucoBrick platform is further illustrated by engineering novel glycolytic activities in the most representative members of the Pseudomonas genus (Pseudomonas putida and Pseudomonas aeruginosa).

  8. Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism

    Science.gov (United States)

    Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray

    1999-01-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only α-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  9. The ygeW encoded protein from Escherichia coli is a knotted ancestral catabolic transcarbamylase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongdong; Jin, Zhongmin; Yu, Xiaolin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang (Maryland); (GWU); (Georgia)

    2012-06-28

    Purine degradation plays an essential role in nitrogen metabolism in most organisms. Uric acid is the final product of purine catabolism in humans, anthropoid apes, birds, uricotelic reptiles, and almost all insects. Elevated levels of uric acid in blood (hyperuricemia) cause human diseases such as gout, kidney stones, and renal failure. Although no enzyme has been identified that further degrades uric acid in humans, it can be oxidized to produce allantoin by free-radical attack. Indeed, elevated levels of allantoin are found in patients with rheumatoid arthritis, chronic lung disease, bacterial meningitis, and noninsulin-dependent diabetes mellitus. In other mammals, some insects and gastropods, uric acid is enzymatically degraded to the more soluble allantoin through the sequential action of three enzymes: urate oxidase, 5-hydroxyisourate (HIU) hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase. Therefore, an elective treatment for acute hyperuricemia is the administration of urate oxidase. Many organisms, including plants, some fungi and several bacteria, are able to catabolize allantoin to release nitrogen, carbon, and energy. In Arabidopsis thaliana and Eschrichia coli, S-allantoin has recently been shown to be degraded to glycolate and urea by four enzymes: allantoinase, allantoate amidohydrolase, ureidoglycine aminohydrolase, and ureidoglycolate amidohydrolase.

  10. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatogr...

  11. Sorbitol-modified hyaluronic acid reduces oxidative stress, apoptosis and mediators of inflammation and catabolism in human osteoarthritic chondrocytes.

    Science.gov (United States)

    Mongkhon, John-Max; Thach, Maryane; Shi, Qin; Fernandes, Julio C; Fahmi, Hassan; Benderdour, Mohamed

    2014-08-01

    Our study was designed to elucidate the precise molecular mechanisms by which sorbitol-modified hyaluronic acid (HA/sorbitol) exerts beneficial effects in osteoarthritis (OA). Human OA chondrocytes were treated with increasing doses of HA/sorbitol ± anti-CD44 antibody or with sorbitol alone and thereafter with or without interleukin-1beta (IL-1β) or hydrogen peroxide (H2O2). Signal transduction pathways and parameters related to oxidative stress, apoptosis, inflammation, and catabolism were investigated. HA/sorbitol prevented IL-1β-induced oxidative stress, as measured by reactive oxygen species, p47-NADPH oxidase phosphorylation, 4-hydroxynonenal (HNE) production and HNE-metabolizing glutathione-S-transferase A4-4 expression. Moreover, HA/sorbitol stifled IL-1β-induced metalloproteinase-13, nitric oxide (NO) and prostaglandin E2 release as well as inducible NO synthase expression. Study of the apoptosis process revealed that this gel significantly attenuated cell death, caspase-3 activation and DNA fragmentation elicited by exposure to a cytotoxic H2O2 dose. Examination of signaling pathway components disclosed that HA/sorbitol prevented IL-1β-induced p38 mitogen-activated protein kinase and nuclear factor-kappa B activation, but not that of extracellular signal-regulated kinases 1 and 2. Interestingly, the antioxidant as well as the anti-inflammatory and anti-catabolic effects of HA/sorbitol were attributed to sorbitol and HA, respectively. Altogether, our findings support a beneficial effect of HA/sorbitol in OA through the restoration of redox status and reduction of apoptosis, inflammation and catabolism involved in cartilage damage.

  12. Catabolism of biomass-derived sugars in fungi and metabolic engineering as a tool for organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Koivistoinen, O.

    2013-11-01

    The use of metabolic engineering as a tool for production of biochemicals and biofuels requires profound understanding of cell metabolism. The pathways for the most abundant and most important hexoses have already been studied quite extensively but it is also important to get a more complete picture of sugar catabolism. In this thesis, catabolic pathways of L-rhamnose and D-galactose were studied in fungi. Both of these hexoses are present in plant biomass, such as in hemicellulose and pectin. Galactoglucomannan, a type of hemicellulose that is especially rich in softwood, is an abundant source of D-galactose. As biotechnology is moving from the usage of edible and easily metabolisable carbon sources towards the increased use of lignocellulosic biomass, it is important to understand how the different sugars can be efficiently turned into valuable biobased products. Identification of the first fungal L-rhamnose 1-dehydrogenase gene, which codes for the first enzyme of the fungal catabolic L-rhamnose pathway, showed that the protein belongs to a protein family of short-chain alcohol dehydrogenases. Sugar dehydrogenases oxidising a sugar to a sugar acid are not very common in fungi and thus the identification of the L-rhamnose dehydrogenase gene provides more understanding of oxidative sugar catabolism in eukaryotic microbes. Further studies characterising the L-rhamnose cluster in the yeast Scheffersomyces stipitis including the expression of the L-rhamnonate dehydratase in Saccharomyces cerevisiae finalised the biochemical characterisation of the enzymes acting on the pathway. In addition, more understanding of the regulation and evolution of the pathway was gained. D-Galactose catabolism was studied in the filamentous fungus Aspergillus niger. Two genes coding for the enzymes of the oxido-reductive pathway were identified. Galactitol dehydrogenase is the second enzyme of the pathway converting galactitol to L-xylo-3-hexulose. The galactitol dehydrogenase encoding

  13. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy

    Directory of Open Access Journals (Sweden)

    Ximena Escalera-Fanjul

    2017-06-01

    Full Text Available Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s. Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64

  14. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.

    Science.gov (United States)

    Hirooka, Kazutake; Kodoi, Yusuke; Satomura, Takenori; Fujita, Yasutaro

    2015-12-28

    The Bacillus subtilis rhaEWRBMA (formerly yuxG-yulBCDE) operon consists of four genes encoding enzymes for l-rhamnose catabolism and the rhaR gene encoding a DeoR-type transcriptional regulator. DNase I footprinting analysis showed that the RhaR protein specifically binds to the regulatory region upstream of the rhaEW gene, in which two imperfect direct repeats are included. Gel retardation analysis revealed that the direct repeat farther upstream is essential for the high-affinity binding of RhaR and that the DNA binding of RhaR was effectively inhibited by L-rhamnulose-1-phosphate, an intermediate of L-rhamnose catabolism. Moreover, it was demonstrated that the CcpA/P-Ser-HPr complex, primarily governing the carbon catabolite control in B. subtilis, binds to the catabolite-responsive element, which overlaps the RhaR binding site. In vivo analysis of the rhaEW promoter-lacZ fusion in the background of ccpA deletion showed that the L-rhamnose-responsive induction of the rhaEW promoter was negated by the disruption of rhaA or rhaB but not rhaEW or rhaM, whereas rhaR disruption resulted in constitutive rhaEW promoter activity. These in vitro and in vivo results clearly indicate that RhaR represses the operon by binding to the operator site, which is detached by L-rhamnulose-1-phosphate formed from L-rhamnose through a sequence of isomerization by RhaA and phosphorylation by RhaB, leading to the derepression of the operon. In addition, the lacZ reporter analysis using the strains with or without the ccpA deletion under the background of rhaR disruption supported the involvement of CcpA in the carbon catabolite repression of the operon. Since L-rhamnose is a component of various plant-derived compounds, it is a potential carbon source for plant-associating bacteria. Moreover, it is suggested that L-rhamnose catabolism plays a significant role in some bacteria-plant interactions, e.g., invasion of plant pathogens and nodulation of rhizobia. Despite the physiological

  15. Influence of Hepatitis C Virus Sustained Virological Response on Immunosuppressive Tryptophan Catabolism in ART-Treated HIV/HCV Coinfected Patients

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; Mehraj, Vikram; Costiniuk, Cecilia T.; Vyboh, Kishanda; Kema, Ido; Rollet, Kathleen; Ramirez, Robert Paulino; Klein, Marina B.; Routy, Jean-Pierre

    2016-01-01

    Background: We previously reported an association between tryptophan (Trp) catabolism and immune dysfunction in HIV monoinfection. Coinfection with HIV is associated with more rapid evolution of hepatitis C virus (HCV)-associated liver disease despite antiretroviral therapy (ART), possibly due to

  16. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants

    Czech Academy of Sciences Publication Activity Database

    Nešvera, Jan; Rucká, Lenka; Pátek, Miroslav

    2015-01-01

    Roč. 93, č. 2015 (2015), s. 107-160 ISSN 0065-2164 R&D Projects: GA TA ČR TA04021212 Institutional support: RVO:61388971 Keywords : Biodegradation * Bioremediation * Phenol catabolism Subject RIV: EE - Microbiology, Virology Impact factor: 4.128, year: 2015

  17. Bovine lactoferricin is anti-inflammatory and anti-catabolic in human articular cartilage and synovium.

    Science.gov (United States)

    Yan, Dongyao; Chen, Di; Shen, Jie; Xiao, Guozhi; van Wijnen, Andre J; Im, Hee-Jeong

    2013-02-01

    Bovine lactoferricin (LfcinB) is a multi-functional peptide derived from proteolytic cleavage of bovine lactoferrin. LfcinB was found to antagonize the biological effects mediated by angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) in endothelial cells. However, the effect of LfcinB on human articular cartilage remained unknown. Here, our findings demonstrate that LfcinB restored the proteoglycan loss promoted by catabolic factors (interleukin-1β) IL-1β and FGF-2 in vitro and ex vivo. Mechanistically, LfcinB attenuated the effects of IL-1β and FGF-2 on the expression of cartilage-degrading enzymes (MMP-1, MMP-3, and MMP-13), destructive cytokines (IL-1β and IL-6), and inflammatory mediators (iNOS and TLR2). LfcinB induced protective cytokine expression (IL-4 and IL-10), and downregulated aggrecanase basal expression. LfcinB specifically activated ERK MAPK and Akt signaling pathways, which may account for its anti-inflammatory activity. We also revealed that LfcinB exerted similar protective effects on human synovial fibroblasts challenged by IL-1β, with minimal cytotoxicity. Collectively, our results suggest that LfcinB possesses potent anti-catabolic and anti-inflammatory bioactivities in human articular tissues, and may be utilized for the prevention and/or treatment of OA in the future. Copyright © 2012 Wiley Periodicals, Inc.

  18. Metabolic reconstructions identify plant 3-methylglutaconyl-CoA hydratase that is crucial for branched-chain amino acid catabolism in mitochondria

    Science.gov (United States)

    The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are essential nutrients for mammals. In plants, they double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates...

  19. Results from the European Prospective Investigation into Cancer and Nutrition Link Vitamin B6 Catabolism and Lung Cancer Risk.

    NARCIS (Netherlands)

    Zuo, Hui; Ueland, Per M; Midttun, Øivind; Vollset, Stein E; Tell, Grethe S; Theofylaktopoulou, Despoina; Travis, Ruth C; Boutron-Ruault, Marie-Christine; Fournier, Agnès; Severi, Gianluca; Kvaskoff, Marina; Boeing, Heiner; Bergmann, Manuela M; Fortner, Renée T; Kaaks, Rudolf; Trichopoulou, Antonia; Kotanidou, Anastasia; Lagiou, Pagona; Palli, Domenico; Sieri, Sabina; Panico, Salvatore; Bueno-de-Mesquita, H Bas; Peeters, Petra H; Grankvist, Kjell; Johansson, Mikael; Agudo, Antonio; Garcia, Jose Ramon Quiros; Larranaga, Nerea; Sanchez, Maria-Jose; Chirlaque, Maria Dolores; Ardanaz, Eva; Chuang, Shu-Chun; Gallo, Valentina; Brennan, Paul; Johansson, Mattias; Ulvik, Arve

    2018-01-01

    Circulating pyridoxal-5'-phosphate (PLP) has been linked to lung cancer risk. The PAr index, defined as the ratio 4-pyridoxic acid/(pyridoxal + PLP), reflects increased vitamin B6 catabolism during inflammation. PAr has been defined as a marker of lung cancer risk in a prospective cohort study, but

  20. Skeletal muscle myosin heavy chain isoform content in relation to gonadal hormones and anabolic-catabolic balance in trained and untrained men.

    Science.gov (United States)

    Grandys, Marcin; Majerczak, Joanna; Karasinski, Janusz; Kulpa, Jan; Zoladz, Jerzy A

    2012-12-01

    Gonadal hormones and anabolic-catabolic hormone balance have potent influence on skeletal muscle tissue, but little is known about their action with regard to myosin heavy chain (MHC) transformation in humans. We investigated the relationship between skeletal muscle MHC isoform content in the vastus lateralis muscle and basal testosterone (T) concentration in 3 groups of subjects: endurance trained (E), sprint/strength trained (S), and untrained (U) young men. We have also determined basal sex hormone-binding globulin and cortisol (C) concentrations in untrained subjects to examine the relationship between MHC composition and the anabolic-catabolic hormone balance. Moreover, basal free testosterone (fT) and bioavailable testosterone (bio-T) concentrations were calculated for this subgroup. Despite significant differences in MHC isoform content (69.4 ± 2.39%, 61.4 ± 8.04%, and 37.5 ± 13.80% of MHC-2 for groups S, U, and E, respectively, Kruskal-Wallis: H = 18.58, p 0.5). We have also found that in the U group, type 2 MHC in the vastus lateralis muscle is positively correlated with basal fT:C ratio (r = 0.63, p = 0.01). It is concluded that the differences in the training history and training specificity can be distinguished with regard to the MHC composition but not with regard to the basal T concentration. Simultaneously, it has been shown that MHC isoform content in human vastus lateralis muscle may be related to basal anabolic-catabolic hormone balance, and this hypothesis needs further investigation.

  1. Results from the European prospective investigation into cancer and nutrition link vitamin B6 catabolism and lung cancer risk

    NARCIS (Netherlands)

    Zuo, Hui; Ueland, Per Magne; Midttun, Øivind; Vollset, Stein Emil; Tell, Grethe S.; Theofylaktopoulou, Despoina; Travis, Ruth C.; Boutron-Ruault, Marie Christine; Fournier, Agnès; Severi, Gianluca; Kvaskoff, Marina; Boeing, Heiner; Bergmann, Manuela M.; Turzanski-Fortner, Renée; Kaaks, Rudolf; Trichopoulou, Antonia; Kotanidou, Anastasia; Lagiou, Pagona; Palli, Domenico; Sieri, Sabina; Panico, Salvatore; Bueno-De-Mesquita, H. Bas; Peeters, Petra H.; Grankvist, Kjell; Johansson, Mikael; Agudo, Antonio; Garcia, Jose Ramon Quiros; Larranaga, Nerea; Sanchez, Maria-Jose; Chirlaque, Maria-Dolores; Ardanaz, Eva; Chuang, Shu Chun; Gallo, Valentina; Brennan, Paul; Johansson, Mattias; Ulvik, Arve

    2018-01-01

    Circulating pyridoxal-5′-phosphate (PLP) has been linked to lung cancer risk. The PAr index, defined as the ratio 4-pyridoxic acid/(pyridoxal + PLP), reflects increased vitamin B6 catabolism during inflammation. PAr has been defined as a marker of lung cancer risk in a prospective cohort study, but

  2. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  3. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  4. Nucleotide sequence, organization and characterization of the (halo)aromatic acid catabolic plasmid pA81 from Achromobacter xylosoxidans A8

    Czech Academy of Sciences Publication Activity Database

    Jenčová, V.; Strnad, Hynek; Chodora, Zdeněk; Ulbrich, Pavel; Vlček, Čestmír; Hickey, W. J.; Pačes, Václav

    2008-01-01

    Roč. 159, č. 2 (2008), s. 118-127 ISSN 0923-2508 R&D Projects: GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : megaplasmid * haloaromatic acid * catabolism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.055, year: 2008

  5. Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2016-06-01

    Full Text Available The liver is critical for maintaining systemic energy balance during starvation. To understand the role of hepatic fatty acid β-oxidation on this process, we generated mice with a liver-specific knockout of carnitine palmitoyltransferase 2 (Cpt2L−/−, an obligate step in mitochondrial long-chain fatty acid β-oxidation. Fasting induced hepatic steatosis and serum dyslipidemia with an absence of circulating ketones, while blood glucose remained normal. Systemic energy homeostasis was largely maintained in fasting Cpt2L−/− mice by adaptations in hepatic and systemic oxidative gene expression mediated in part by Pparα target genes including procatabolic hepatokines Fgf21, Gdf15, and Igfbp1. Feeding a ketogenic diet to Cpt2L−/− mice resulted in severe hepatomegaly, liver damage, and death with a complete absence of adipose triglyceride stores. These data show that hepatic fatty acid oxidation is not required for survival during acute food deprivation but essential for constraining adipocyte lipolysis and regulating systemic catabolism when glucose is limiting.

  6. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Catabolism of 6-ketoprostaglandin F1alpha by the rat kidney cortex.

    Science.gov (United States)

    Pace-Asciak, C R; Domazet, Z; Carrara, M

    1977-05-25

    Homogenates of the rat kidney cortex converted 5,8,9,11,12,14,15-hepta-tritiated 6-ketoprostaglandin F 1alpha into one major product identified by gas chromatography-mass spectrometry of the methoxime-methyl ester trimethylsilyl ether derivative as 6,15-diketo-9,11-dihydroxyprost-13-enoic acid. The sequence of derivatisation i.e. methoximation prior to methylation, was crucial as methylation of 15-keto catabolites of the E, F and 6-keto-F series affords degradation products. The corresponding 15-keto-13,14-dihydro catabolite was formed in much smaller quantities. Time course studies indicated that 6-keto-prostaglandin F1alpha was catabolised at a slower rate (about 2-5 fold) than prostaglandin F1alpha. The catabolic activity was blocked by NADH.

  8. Stabilization of neurotensin analogues: effect on peptide catabolism, biodistribution and tumor binding

    Energy Technology Data Exchange (ETDEWEB)

    Bruehlmeier, Matthias E-mail: peter.blaeuenstein@psi.ch; Garayoa, Elisa Garcia; Blanc, Alain; Holzer, Barbara; Gergely, Suzanne; Tourwe, Dirk; Schubiger, Pius August; Blaeuenstein, Peter

    2002-04-01

    Neurotensin (NT) receptors in pancreatic and other neuroendocrine tumors are promising targets for imaging and therapeutic purposes. Here, we report on the effect of distinct changes in the peptide chain on catabolism in vitro for five radiolabeled [{sup 99m}Tc] neurotensin analogues having high affinity for neurotensin receptors. Substitution of NT(1-7) by (N{alpha}His)Ac--the Tc-binding moiety--combined with a reduced bond 8-9 (CH{sub 2}NH), N-methylation of peptide bonds or replacement of Ile(12) by tertiary leucin (Tle) led to peptide stabilization of various degrees. Biodistribution studies in nude mice bearing HT29 xenografts showed higher tumor uptake with more stable peptides, yielding high tumor to blood ratios of up to 70.

  9. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions.

    Science.gov (United States)

    Sugimori, Daisuke; Watanabe, Mika; Utsue, Tomohiro

    2013-01-01

    The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20-35 °C, pH 3-9, and 1,000-5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5 ± 10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3 ± 8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH(3). The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.

  10. Catabolic fate of Streptomyces viridosporus T7A-Produced, acid precipitable polymeric lignin upon incubation with ligninolytic Streptomyces species and Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Pometto, A.L. III; Crawford, D.L.

    1986-01-01

    Degradation of ground and hot-water-extracted corn stover (Zea mays) lignocellulose by Streptomyces viridosporus T7A generates a water-soluble lignin degradation intermediate termed acid-precipitable polymeric lignin (APPL). The further catabolism of T7A-APPL by S. viridosporus T7A, S. badius 252, and S. setonii75Vi2 was followed for 3 weeks. APPL catabolism by Phanerochaete chrysosporium was followed in stationary cultures in a low-nitrogen medium containing 1% (wt/vol) glucose and 0.05% (wt/vol) T7A-APPL. Metabolism of the APPL was followed by turbidometric assay (600 nm) and by direct measurement of APPL recoverable from the medium. Accumulation and disappearance of soluble low-molecular-weight products of APPL catabolism were followed by gas-liquid chromatography and by high-pressure liquid chromatography, utilizing a diode array detector. Mineralization of a [ 14 C-lignin]APPL was also followed. The percent 14 C recovered as 14 CO 2 , 14 C-APPL, 14 C-labeled water-soluble products, and cell mass-associated radioactivity, were determined for each microorganism after 1 and 3 weeks of incubation in bubbler tube cultures at 37 0 C. P. chrysosporium evolved the most 14 CO 2 , and S. viridosporus gave the greatest decrease in recoverable 14 C-APPL. The results show that S. badius was not able to significantly degrade the APPL, while the other microorganisms demonstrated various APPL-degrading abilities

  11. Acid Evolution of Escherichia coli K-12 Eliminates Amino Acid Decarboxylases and Reregulates Catabolism.

    Science.gov (United States)

    He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L

    2017-06-15

    Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of

  12. Two gene clusters co-ordinate for a functional N-acetylglucosamine catabolic pathway in Vibrio cholerae.

    Science.gov (United States)

    Ghosh, Swagata; Rao, K Hanumantha; Sengupta, Manjistha; Bhattacharya, Sujit K; Datta, Asis

    2011-06-01

    Pathogenic microorganisms like Vibrio cholerae are capable of adapting to diverse living conditions, especially when they transit from their environmental reservoirs to human host. V. cholerae attaches to N-acetylglucosamine (GlcNAc) residues in glycoproteins and lipids present in the intestinal epithelium and chitinous surface of zoo-phytoplanktons in the aquatic environment for its survival and colonization. GlcNAc utilization thus appears to be important for the pathogen to reach sufficient titres in the intestine for producing clinical symptoms of cholera. We report here the involvement of a second cluster of genes working in combination with the classical genes of GlcNAc catabolism, suggesting the occurrence of a novel variant of the process of biochemical conversion of GlcNAc to Fructose-6-phosphate as has been described in other organisms. Colonization was severely attenuated in mutants that were incapable of utilizing GlcNAc. It was also shown that N-acetylglucosamine specific repressor (NagC) performs a dual role - while the classical GlcNAc catabolic genes are under its negative control, the genes belonging to the second cluster are positively regulated by it. Further application of tandem affinity purification to NagC revealed its interaction with a novel partner. Our results provide a genetic program that probably enables V. cholerae to successfully utilize amino - sugars and also highlights a new mode of transcriptional regulation, not described in this organism. © 2011 Blackwell Publishing Ltd.

  13. At same leucine intake, a whey/plant protein blend is not as effective as whey to initiate a transient post prandial muscle anabolic response during a catabolic state in mini pigs.

    Directory of Open Access Journals (Sweden)

    Aurélia Revel

    Full Text Available Muscle atrophy has been explained by an anabolic resistance following food intake and an increase of dietary protein intake is recommended. To be optimal, a dietary protein has to be effective not only to initiate but also to prolong a muscle anabolic response in a catabolic state. To our knowledge, whether or not a dairy or a dairy/plant protein blend fulfills these criterions is unknown in a muscle wasting situation.Our aim was, in a control and a catabolic state, to measure continuously muscle anabolism in term of intensity and duration in response to a meal containing casein (CAS, whey (WHEY or a whey/ plant protein blend (BLEND and to evaluate the best protein source to elicit the best post prandial anabolism according to the physio-pathological state.Adult male Yucatan mini pigs were infused with U-13C-Phenylalanine and fed either CAS, WHEY or BLEND. A catabolic state was induced by a glucocorticoid treatment for 8 days (DEX. Muscle protein synthesis, proteolysis and balance were measured with the hind limb arterio-venous differences technique. Repeated time variance analysis were used to assess significant differences.In a catabolic situation, whey proteins were able to initiate muscle anabolism which remained transient in contrast to the stimulated muscle protein accretion with WHEY, CAS or BLEND in healthy conditions. Despite the same leucine intake compared to WHEY, BLEND did not restore a positive protein balance in DEX animals.Even with WHEY, the duration of the anabolic response was not optimal and has to be improved in a catabolic state. The use of BLEND remained of lower efficiency even at same leucine intake than whey.

  14. The metabolism of Tay-Sachs ganglioside: catabolic studies with lysosomal enzymes from normal and Tay-Sachs brain tissue

    Science.gov (United States)

    Tallman, John F.; Johnson, William G.; Brady, Roscoe O.

    1972-01-01

    The catabolism of Tay-Sachs ganglioside, N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galactosylglucosylceramide, has been studied in lysosomal preparations from normal human brain and brain obtained at biopsy from Tay-Sachs patients. Utilizing Tay-Sachs ganglioside labeled with 14C in the N-acetylgalactosaminyl portion or 3H in the N-acetylneuraminosyl portion, the catabolism of Tay-Sachs ganglioside may be initiated by either the removal of the molecule of N-acetylgalactosamine or N-acetylneuraminic acid. The activity of the N-acetylgalactosamine-cleaving enzyme (hexosaminidase) is drastically diminished in such preparations from Tay-Sachs brain whereas the activity of the N-acetylneuraminic acid-cleaving enzyme (neuraminidase) is at a normal level. Total hexosaminidase activity as measured with an artificial fluorogenic substrate is increased in tissues obtained from patients with the B variant form of Tay-Sachs disease and it is virtually absent in the O-variant patients. The addition of purified neuraminidase and various purified hexosaminidases exerted only a minimal synergistic effect on the hydrolysis of Tay-Sachs ganglioside in the lysosomal preparations from the control or patient with the O variant of Tay-Sachs disease. Images PMID:4639018

  15. Reprogramming One-Carbon Metabolic Pathways To Decouple l-Serine Catabolism from Cell Growth in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhang, Yun; Shang, Xiuling; Lai, Shujuan; Zhang, Yu; Hu, Qitiao; Chai, Xin; Wang, Bo; Liu, Shuwen; Wen, Tingyi

    2018-02-16

    l-Serine, the principal one-carbon source for DNA biosynthesis, is difficult for microorganisms to accumulate due to the coupling of l-serine catabolism and microbial growth. Here, we reprogrammed the one-carbon unit metabolic pathways in Corynebacterium glutamicum to decouple l-serine catabolism from cell growth. In silico model-based simulation showed a negative influence on glyA-encoding serine hydroxymethyltransferase flux with l-serine productivity. Attenuation of glyA transcription resulted in increased l-serine accumulation, and a decrease in purine pools, poor growth and longer cell shapes. The gcvTHP-encoded glycine cleavage (Gcv) system from Escherichia coli was introduced into C. glutamicum, allowing glycine-derived 13 CH 2 to be assimilated into intracellular purine synthesis, which resulted in an increased amount of one-carbon units. Gcv introduction not only restored cell viability and morphology but also increased l-serine accumulation. Moreover, comparative proteomic analysis indicated that abundance changes of the enzymes involved in one-carbon unit cycles might be responsible for maintaining one-carbon unit homeostasis. Reprogramming of the one-carbon metabolic pathways allowed cells to reach a comparable growth rate to accumulate 13.21 g/L l-serine by fed-batch fermentation in minimal medium. This novel strategy provides new insights into the regulation of cellular properties and essential metabolite accumulation by introducing an extrinsic pathway.

  16. Estradiol stimulates glycogen synthesis whereas progesterone promotes glycogen catabolism in the uterus of the American mink (Neovison vison).

    Science.gov (United States)

    Bowman, Kole; Rose, Jack

    2017-01-01

    Glycogen synthesis by mink uterine glandular and luminal epithelia (GE and LE) is stimulated by estradiol (E 2 ) during estrus. Subsequently, the glycogen deposits are mobilized to near completion to meet the energy requirements of pre-embryonic development and implantation by as yet undetermined mechanisms. We hypothesized that progesterone (P 4 ) was responsible for catabolism of uterine glycogen reserves as one of its actions to ensure reproductive success. Mink were treated with E 2 , P 4 or vehicle (controls) for 3 days and uteri collected 24 h (E 2 , P 4 and vehicle) and 96 h (E 2 ) later. To evaluate E 2 priming, mink were treated with E 2 for 3 days, then P 4 for an additional 3 days (E 2 →P 4 ) and uteri collected 24 h later. Percent glycogen content of uterine epithelia was greater at E 2 + 96 h (GE = 5.71 ± 0.55; LE = 11.54 ± 2.32) than E 2 +24 h (GE = 3.63 ± 0.71; LE = 2.82 ± 1.03), and both were higher than controls (GE = 0.27 ± 0.15; LE = 0.54 ± 0.30; P glycogen content (GE = 0.61 ± 0.16; LE = 0.51 ± 0.13), to levels not different from controls, while concomitantly increasing catabolic enzyme (glycogen phosphorylase m and glucose-6-phosphatase) gene expression and amount of phospho-glycogen synthase protein (inactive) in uterine homogenates. Interestingly, E 2 →P 4 increased glycogen synthase 1 messenger RNA (mRNA) and hexokinase 1mRNA and protein. Our findings suggest to us that while E 2 promotes glycogen accumulation by the mink uterus during estrus and pregnancy, it is P 4 that induces uterine glycogen catabolism, releasing the glucose that is essential to support pre-embryonic survival and implantation. © 2016 Japanese Society of Animal Science.

  17. Training reduces catabolic and inflammatory response to a single practice in female volleyball players.

    Science.gov (United States)

    Eliakim, Alon; Portal, Shawn; Zadik, Zvi; Meckel, Yoav; Nemet, Dan

    2013-11-01

    We examined the effect of training on hormonal and inflammatory response to a single volleyball practice in elite adolescent players. Thirteen female, national team level, Israeli volleyball players (age 16.0 ± 1.4 years, Tanner stage 4-5) participated in the study. Blood samples were collected before and immediately after a typical 60 minutes of volleyball practice, before and after 7 weeks of training during the initial phase of the season. Training involved tactic and technical drills (20% of time), power and speed drills (25% of time), interval sessions (25% of time), endurance-type training (15% of time), and resistance training (15% of time). To achieve greater training responses, the study was performed during the early phase (first 7 weeks) of the volleyball season. Hormonal measurements included the anabolic hormones growth hormone (GH), insulin-like growth factor-I (IGF-I) and IGF-binding protein-3, the catabolic hormone cortisol, the proinflammatory marker interleukin-6 (IL-6), and the anti-inflammatory marker IL-1 receptor antagonist. Training led to a significant improvement of vertical jump, anaerobic properties (peak and mean power by the Wingate Anaerobic Test), and predicted VO2max (by the 20-m shuttle run). Volleyball practice, both before and after the training intervention, was associated with a significant increase of serum lactate, GH, and IL-6. Training resulted in a significantly reduced cortisol response ([INCREMENT]cortisol: 4.2 ± 13.7 vs. -4.4 ± 12.3 ng · ml, before and after training, respectively; p volleyball practice. The results suggest that along with the improvement of power and anaerobic and aerobic characteristics, training reduces the catabolic and inflammatory response to exercise.

  18. Metabolic reconstructions identify plant 3-methylglutaconyl-CoA hydratase that is crucial for branched-chain amino acid catabolism in mitochondria.

    Science.gov (United States)

    Latimer, Scott; Li, Yubing; Nguyen, Thuong T H; Soubeyrand, Eric; Fatihi, Abdelhak; Elowsky, Christian G; Block, Anna; Pichersky, Eran; Basset, Gilles J

    2018-05-09

    The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant-prokaryote comparative genomics detected candidates for 3-methylglutaconyl-CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non-homologous N-terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein-fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3-hydroxymethylglutaryl-CoA into 3-methylglutaconyl-CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark-induced carbon starvation, their rosette leaves displayed accelerated senescence as compared to control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3-methylglutaconyl-CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights

  19. Role of Myofibrillar Protein Catabolism in Development of Glucocorticoid Myopathy: Aging and Functional Activity Aspects

    Directory of Open Access Journals (Sweden)

    Teet Seene

    2016-05-01

    Full Text Available Muscle weakness in corticosteroid myopathy is mainly the result of the destruction and atrophy of the myofibrillar compartment of fast-twitch muscle fibers. Decrease of titin and myosin, and the ratio of nebulin and MyHC in myopathic muscle, shows that these changes of contractile and elastic proteins are the result of increased catabolism of the abovementioned proteins in skeletal muscle. Slow regeneration of skeletal muscle is in good correlation with a decreased number of satellite cells under the basal lamina of muscle fibers. Aging causes a reduction of AMP-activated protein kinase (AMPK activity as the result of the reduced function of the mitochondrial compartment. AMPK activity increases as a result of increased functional activity. Resistance exercise causes anabolic and anticatabolic effects in skeletal muscle: muscle fibers experience hypertrophy while higher myofibrillar proteins turn over. These changes are leading to the qualitative remodeling of muscle fibers. As a result of these changes, possible maximal muscle strength is increasing. Endurance exercise improves capillary blood supply, increases mitochondrial biogenesis and muscle oxidative capacity, and causes a faster turnover rate of sarcoplasmic proteins as well as qualitative remodeling of type I and IIA muscle fibers. The combination of resistance and endurance exercise may be the fastest way to prevent or decelerate muscle atrophy due to the anabolic and anticatabolic effects of exercise combined with an increase in oxidative capacity. The aim of the present short review is to assess the role of myofibrillar protein catabolism in the development of glucocorticoid-caused myopathy from aging and physical activity aspects.

  20. Relationship of long-term macronutrients intake on anabolic-catabolic hormones in female elite volleyball players.

    Science.gov (United States)

    Mielgo Ayuso, Juan; Zourdos, Michael C; Urdampilleta, Aritz; Calleja González, Julio; Seco, Jesús; Córdova, Alfredo

    2017-10-24

    Specific macronutrient distribution and training can alter acute and chronic hormone behavior and, subsequently, sport performance. The main aim was to examine relationships between dietary intake and anabolic/catabolic hormone response in elite female volleyball players during a 29-week season. Twenty-two elite female volleyballers (26.4 ± 5.6 years; 178 ± 9 cm; 67.1 ± 7.5 kg) had dietary intake (seven-day dietary recall and food frequency questionnaire), blood concentration of anabolic/catabolic hormones concentration, physical performance, and body composition assessed at four time points: a) T1: baseline/pre-testing; b) T2: eleven weeks after T1; c) T3: ten weeks after T2; and d) T4: eight weeks after T3. Hormones evaluated were: total testosterone (TT), free testosterone (FT) adrenocorticotropic hormone (ACTH), and cortisol (C), along with hormone ratios. Positive correlations were observed between carbohydrate/protein ratio with ΔFT (r = 0.955; p 0.05) in body mass or body mass index at any time point, and the sum of six skinfolds improved (p < 0.05) from T1 (86.5 ± 6.9 mm) to T4 (75.2 ± 5.6 mm) as did muscle mass (T1: 28.9 ± 0.7 kg vsT4: 30.1 ± 0.8 kg). Vertical jump, spike-jump and speed improved (p < 0.05) from T1 to T4. A high carbohydrate/protein ratio was associated with positive changes in anabolism, while high protein and low carbohydrates (CHO) were associated with an attenuated anabolic response.

  1. Regulatory role of XynR (YagI) in catabolism of xylonate in Escherichia coli K-12.

    Science.gov (United States)

    Shimada, Tomohiro; Momiyama, Eri; Yamanaka, Yuki; Watanabe, Hiroki; Yamamoto, Kaneyoshi; Ishihama, Akira

    2017-12-01

    The genome of Escherichia coli K-12 contains ten cryptic phages, altogether constituting about 3.6% of the genome in sequence. Among more than 200 predicted genes in these cryptic phages, 14 putative transcription factor (TF) genes exist, but their regulatory functions remain unidentified. As an initial attempt to make a breakthrough for understanding the regulatory roles of cryptic phage-encoded TFs, we tried to identify the regulatory function of CP4-6 cryptic prophage-encoded YagI with unknown function. After SELEX screening, YagI was found to bind mainly at a single site within the spacer of bidirectional transcription units, yagA (encoding another uncharacterized TF) and yagEF (encoding 2-keto-3-deoxy gluconate aldolase, and dehydratase, respectively) within this prophage region. YagEF enzymes are involved in the catabolism of xylose downstream from xylonate. We then designated YagI as XynR (regulator of xylonate catabolism), one of the rare single-target TFs. In agreement with this predicted regulatory function, the activity of XynR was suggested to be controlled by xylonate. Even though low-affinity binding sites of XynR were identified in the E. coli K-12 genome, they all were inside open reading frames, implying that the regulation network of XynR is still fixed within the CR4-6 prophage without significant influence over the host E. coli K-12. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Atsushi eKouzuma

    2015-06-01

    Full Text Available Shewanella oneidensis MR-1 is a facultative anaerobe that respires using a variety of inorganic and organic compounds. MR-1 is also capable of utilizing extracellular solid materials, including anodes in microbial fuel cells (MFCs, as electron acceptors, thereby enabling electricity generation. As MFCs have the potential to generate electricity from biomass waste and wastewater, MR-1 has been extensively studied to identify the molecular systems that are involved in electricity generation in MFCs. These studies have demonstrated the importance of extracellular electron-transfer pathways that electrically connect the quinone pool in the cytoplasmic membrane to extracellular electron acceptors. Electricity generation is also dependent on intracellular catabolic pathways that oxidize electron donors, such as lactate, and regulatory systems that control the expression of genes encoding the components of catabolic and electron-transfer pathways. In addition, recent findings suggest that cell-surface polymers, e.g., exopolysaccharides, and secreted chemicals, which function as electron shuttles, are also involved in electricity generation. Despite these advances in our knowledge on the extracellular electron-transfer processes in MR-1, further efforts are necessary to fully understand the underlying intra- and extra-cellular molecular systems for electricity generation in MFCs. We suggest that investigating how MR-1 coordinates these systems to efficiently transfer electrons to electrodes and conserve electrochemical energy for cell proliferation is important for establishing the biological bases for MFCs.

  3. Bovine lactoferricin, an antimicrobial peptide, is anti-inflammatory and anti-catabolic in human articular cartilage and synovium

    Science.gov (United States)

    Yan, Dongyao; Chen, Di; Shen, Jie; Xiao, Guozhi; van Wijnen, Andre J; Im, Hee-Jeong

    2012-01-01

    Bovine lactoferricin (LfcinB) is a multi-functional peptide derived from proteolytic cleavage of bovine lactoferrin. LfcinB was found to antagonize the biological effects mediated by angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) in endothelial cells. However, the effect of LfcinB on human articular cartilage remained unknown. Here, our findings demonstrate that LfcinB restored the proteoglycan loss promoted by catabolic factors (interleukin-1 β) IL-1β and FGF-2 in vitro and ex vivo. Mechanistically, LfcinB attenuated the effects of IL-1β and FGF-2 on the expression of cartilage-degrading enzymes (MMP-1, MMP-3, and MMP-13), destructive cytokines (IL-1β and IL-6), and inflammatory mediators (iNOS and TLR2). LfcinB induced protective cytokine expression (IL-4 and IL-10), and downregulated aggrecanase basal expression. LfcinB specifically activated ERK MAPK and Akt signaling pathways, which may account for its anti-inflammatory activity. We also revealed that LfcinB exerted similar protective effects on human synovial fibroblasts challenged by IL-1β, with minimal cytotoxicity. Collectively, our results suggest that LfcinB possesses potent anti-catabolic and anti-inflammatory bioactivities in human articular tissues, and may be utilized for the prevention and/or treatment of OA in the future. PMID:22740381

  4. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Radmacher Michael D

    2006-10-01

    Full Text Available Abstract Background In Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated. Results The pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2. Acid also up-regulated fimbriae (fimAC, periplasmic chaperones (hdeAB, cyclopropane fatty acid synthase (cfa, and the "constitutive" Na+/H+ antiporter (nhaB. Base up-regulated core genes for maltodextrin transport (lamB, mal, ATP synthase (atp, and DNA repair (recA, mutL. Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh and hydrogenases (hya, hyb, hyc, hyf, hyp. A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps. Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl, and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL, but down-regulated penicillin-binding proteins (dacACD, mreBC. Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC. Conclusion pH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nha

  5. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a D-mannitol dehydrogenase and is not involved in L-arabinose catabolism

    NARCIS (Netherlands)

    Metz, Benjamin; de Vries, Ronald P; Polak, Stefan; Seidl, Verena; Seiboth, Bernhard

    2009-01-01

    The Hypocrea jecorina LXR1 was described as the first fungal L-xylulose reductase responsible for NADPH dependent reduction of L-xylulose to xylitol in L-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal D-mannitol 2-dehydrogenases. Lxr1 and the orthologous

  6. Autophagy attenuates the catabolic effect during inflammatory conditions in nucleus pulposus cells, as sustained by NF-κB and JNK inhibition

    Science.gov (United States)

    XU, KANG; CHEN, WEIJIAN; WANG, XIAOFEI; PENG, YAN; LIANG, ANJING; HUANG, DONGSHENG; LI, CHUNHAI; YE, WEI

    2015-01-01

    Proteoglycan degradation contributing to the pathogenesis of intervertebral disc (IVD) degeneration is induced by inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Cell autophagy exists in degenerative diseases, including osteoarthritis and inter-vertebral disc degeneration. However, the autophagy induced by TNF-α and IL-1β and the corresponding molecular mechanism appear to be cell-type dependent. The effect and mechanism of autophagy regulated by TNF-α and IL-1β in IVDs remains unclear. Additionally, the impact of autophagy on the catabolic effect in inflammatory conditions also remains elusive. In the present study, autophagy activator and inhibitor were used to demonstrate the impact of autophagy on the catabolic effect induced by TNF-α. A critical role of autophagy was identified in rat nucleus pulposus (NP) cells: Inhibition of autophagy suppresses, while activation of autophagy enhances, the catabolic effect of cytokines. Subsequently, the autophagy-related gene expression in rat NP cells following TNF-α and IL-1β treatment was observed using immunofluorescence, quantitative polymerase chain reaction and western blot analysis; however, no association was present. In addition, nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases and p38 mitogen-activated protein kinase inhibitors and TNF-α were used to determine the molecular mechanism of autophagy during the inflammatory conditions, and only the NF-κB and JNK inhibitor were found to enhance the autophagy of rat NP cells. Finally, IKKβ knockdown was used to further confirm the effect of the NF-κB signal on human NP cells autophagy, and the data showed that IKKβ knockdown upregulated the autophagy of NP cells during inflammatory conditions. PMID:26165348

  7. Participation of the arcRACME protein in self-activation of the arc operon located in the arginine catabolism mobile element in pandemic clone USA300.

    Science.gov (United States)

    Rozo, Zayda Lorena Corredor; Márquez-Ortiz, Ricaurte Alejandro; Castro, Betsy Esperanza; Gómez, Natasha Vanegas; Escobar-Pérez, Javier

    2017-07-01

    Staphylococcus aureus pandemic clone USA300 has, in addition to its constitutive arginine catabolism (arc) gene cluster, an arginine catabolism mobile element (ACME) carrying another such cluster, which gives this clone advantages in colonisation and infection. Gene arcR, which encodes an oxygen-sensitive transcriptional regulator, is inside ACME and downstream of the constitutive arc gene cluster, and this situation may have an impact on its activation. Different relative expression behaviours are proven here for arcRACME and the arcACME operon compared to the constitutive ones. We also show that the artificially expressed recombinant ArcRACME protein binds to the promoter region of the arcACME operon; this mechanism can be related to a positive feedback model, which may be responsible for increased anaerobic survival of the USA300 clone during infection-related processes.

  8. Sialic Acid Catabolism Confers a Competitive Advantage to Pathogenic Vibrio cholerae in the Mouse Intestine▿

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E. Fidelma

    2009-01-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae ΔnanA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment. PMID:19564383

  9. Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine.

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E Fidelma

    2009-09-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.

  10. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pistorius Elfriede K

    2007-11-01

    Full Text Available Abstract Background So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis. Results We have evaluated 24 cyanobacterial genomes of freshwater or marine strains for the presence of putative L-arginine-degrading enzymes. We identified an L-arginine decarboxylase pathway in all 24 strains. In addition, cyanobacteria have one or two further pathways representing either an arginase pathway or L-arginine deiminase pathway or an L-arginine oxidase/dehydrogenase pathway. An L-arginine amidinotransferase pathway as a major L-arginine-degrading pathway is not likely but can not be entirely excluded. A rather unusual finding was that the cyanobacterial L-arginine deiminases are substantially larger than the enzymes in non-photosynthetic bacteria and that they are membrane-bound. A more detailed bioinformatic analysis of Synechocystis sp. PCC 6803 revealed that three different L-arginine-degrading pathways may in principle be functional in this cyanobacterium. These are (i an L-arginine decarboxylase pathway, (ii an L-arginine deiminase pathway, and (iii an L-arginine oxidase/dehydrogenase pathway. A transcript analysis of cells grown either with nitrate or L-arginine as sole N-source and with an illumination of 50 μmol photons m-2 s-1 showed that the transcripts for the first enzyme(s of all three pathways were present, but that the transcript levels for the L-arginine deiminase and the L-arginine oxidase/dehydrogenase were substantially higher than that of the three isoenzymes of L-arginine decarboxylase. Conclusion The evaluation of 24

  11. Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit.

    Science.gov (United States)

    Zhang, Xinhua; Shen, Lin; Li, Fujun; Meng, Demei; Sheng, Jiping

    2011-09-14

    The effects of methyl salicylate (MeSA) on chilling injury (CI) and gene expression levels, enzyme activities, and metabolites related to arginine catabolism in cherry tomato fruit were investigated. Freshly harvested fruits were treated with 0.05 mM MeSA vapor at 20 °C for 12 h and then stored at 2 °C for up to 28 days. MeSA reduced CI and enhanced the accumulation of putrescine, spermidine, and spermine, which was associated with increased gene expression levels and activities of arginase, arginine decarboxylase, and ornithine decarboxylase at most sampling times. MeSA also increased nitric oxide synthase activity, which at least partly contributed to the increased nitric oxide content. The results indicate that MeSA activates the different pathways of arginine catabolism in cold-stored fruit and that the reduction in CI by MeSA may be due to the coordinated metabolism of arginine and the increase in polyamines and nitric oxide levels.

  12. ATP catabolism by tissue nonspecific alkaline phosphatase contributes to development of ARDS in influenza-infected mice.

    Science.gov (United States)

    Woods, Parker S; Doolittle, Lauren M; Hickman-Davis, Judy M; Davis, Ian C

    2018-01-01

    Influenza A viruses are highly contagious respiratory pathogens that are responsible for significant morbidity and mortality worldwide on an annual basis. We have shown previously that influenza infection of mice leads to increased ATP and adenosine accumulation in the airway lumen. Moreover, we demonstrated that A 1 -adenosine receptor activation contributes significantly to influenza-induced acute respiratory distress syndrome (ARDS). However, we found that development of ARDS in influenza-infected mice does not require catabolism of ATP to adenosine by ecto-5'-nucleotidase (CD73). Hence, we hypothesized that increased adenosine generation in response to infection is mediated by tissue nonspecific alkaline phosphatase (TNAP), which is a low-affinity, high-capacity enzyme that catabolizes nucleotides in a nonspecific manner. In the current study, we found that whole lung and BALF TNAP expression and alkaline phosphatase enzymatic activity increased as early as 2 days postinfection (dpi) of C57BL/6 mice with 10,000 pfu/mouse of influenza A/WSN/33 (H1N1). Treatment at 2 and 4 dpi with a highly specific quinolinyl-benzenesulfonamide TNAP inhibitor (TNAPi) significantly reduced whole lung alkaline phosphatase activity at 6 dpi but did not alter TNAP gene or protein expression. TNAPi treatment attenuated hypoxemia, lung dysfunction, histopathology, and pulmonary edema at 6 dpi without impacting viral replication or BALF adenosine. Treatment also improved epithelial barrier function and attenuated cellular and humoral immune responses to influenza infection. These data indicate that TNAP inhibition can attenuate influenza-induced ARDS by reducing inflammation and fluid accumulation within the lung. They also further emphasize the importance of adenosine generation for development of ARDS in influenza-infected mice.

  13. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle.

    Science.gov (United States)

    Gameiro, Paulo A; Laviolette, Laura A; Kelleher, Joanne K; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-05-03

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)(+) cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)(+) ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle.

  14. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB

    Directory of Open Access Journals (Sweden)

    Pratick Khara

    2014-01-01

    Full Text Available Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.

  15. Improved sugar-free succinate production by Synechocystis sp. PCC 6803 following identification of the limiting steps in glycogen catabolism

    Directory of Open Access Journals (Sweden)

    Tomohisa Hasunuma

    2016-12-01

    Full Text Available Succinate produced by microorganisms can replace currently used petroleum-based succinate but typically requires mono- or poly-saccharides as a feedstock. The cyanobacterium Synechocystis sp. PCC6803 can produce organic acids such as succinate from CO2 not supplemented with sugars under dark anoxic conditions using an unknown metabolic pathway. The TCA cycle in cyanobacteria branches into oxidative and reductive routes. Time-course analyses of the metabolome, transcriptome and metabolic turnover described here revealed dynamic changes in the metabolism of Synechocystis sp. PCC6803 cultivated under dark anoxic conditions, allowing identification of the carbon flow and rate-limiting steps in glycogen catabolism. Glycogen biosynthesized from CO2 assimilated during periods of light exposure is catabolized to succinate via glycolysis, the anaplerotic pathway, and the reductive TCA cycle under dark anoxic conditions. Expression of the phosphoenolpyruvate (PEP carboxylase gene (ppc was identified as a rate-limiting step in succinate biosynthesis and this rate limitation was alleviated by ppc overexpression, resulting in improved succinate excretion. The sugar-free succinate production was further enhanced by the addition of bicarbonate. In vivo labeling with NaH13CO3 clearly showed carbon incorporation into succinate via the anaplerotic pathway. Bicarbonate is in equilibrium with CO2. Succinate production by Synechocystis sp. PCC6803 therefore holds significant promise for CO2 capture and utilization. Keywords: Autofermentation, Cyanobacteria, Dynamic metabolic profiling, Metabolomics, Succinate, Synechocystis

  16. Biodegradation Ability and Catabolic Genes of Petroleum-Degrading Sphingomonas koreensis Strain ASU-06 Isolated from Egyptian Oily Soil

    Directory of Open Access Journals (Sweden)

    Abd El-Latif Hesham

    2014-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are serious pollutants and health hazards. In this study, 15 PAHs-degrading bacteria were isolated from Egyptian oily soil. Among them, one Gram-negative strain (ASU-06 was selected and biodegradation ability and initial catabolic genes of petroleum compounds were investigated. Comparison of 16S rRNA gene sequence of strain ASU-06 to published sequences in GenBank database as well as phylogenetic analysis identified ASU-06 as Sphingomonas koreensis. Strain ASU-06 degraded 100, 99, 98, and 92.7% of 100 mg/L naphthalene, phenanthrene, anthracene, and pyrene within 15 days, respectively. When these PAHs present in a mixed form, the enhancement phenomenon appeared, particularly in the degradation of pyrene, whereas the degradation rate was 98.6% within the period. This is the first report showing the degradation of different PAHs by this species. PCR experiments with specific primers for catabolic genes alkB, alkB1, nahAc, C12O, and C23O suggested that ASU-06 might possess genes for aliphatic and PAHs degradation, while PAH-RHDαGP gene was not detected. Production of biosurfactants and increasing cell-surface hydrophobicity were investigated. GC/MS analysis of intermediate metabolites of studied PAHs concluded that this strain utilized these compounds via two main pathways, and phthalate was the major constant product that appeared in each day of the degradation period.

  17. Common catabolic enzyme patterns in a microplankton community of the Humboldt Current System off northern and central-south Chile: Malate dehydrogenase activity as an index of water-column metabolism in an oxygen minimum zone

    Science.gov (United States)

    González, R. R.; Quiñones, R. A.

    2009-07-01

    An extensive subsurface oxygen minimum zone off northern and central-south Chile, associated with the Peru-Chile undercurrent, has important effects on the metabolism of the organisms inhabiting therein. Planktonic species deal with the hypoxic and anoxic environments by relying on biochemical as well as physiological processes related to their anaerobic metabolisms. Here we characterize, for the first time, the potential enzymatic activities involved in the aerobic and anaerobic energy production pathways of microplanktonic organisms (oxygen concentration and microplanktonic biomass in the oxygen minimum zone and adjacent areas of the Humboldt Current System water column. Our results demonstrate significant potential enzymatic activity of catabolic pathways in the oxygen minimum zone. Malate dehydrogenase had the highest oxidizing activity of nicotinamide adenine dinucleotide (reduced form) in the batch of catabolic enzymatic activities assayed, including potential pyruvate oxidoreductases activity, the electron transport system, and dissimilatory nitrate reductase. Malate dehydrogenase correlated significantly with almost all the enzymes analyzed within and above the oxygen minimum zone, and also with the oxygen concentration and microplankton biomass in the water column of the Humboldt Current System, especially in the oxygen minimum zone off Iquique. These results suggest a possible specific pattern for the catabolic activity of the microplanktonic realm associated with the oxygen minimum zone spread along the Humboldt Current System off Chile. We hypothesize that malate dehydrogenase activity could be an appropriate indicator of microplankton catabolism in the oxygen minimum zone and adjacent areas.

  18. Comparative proteomics of Rhizopus delemar ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation

    Directory of Open Access Journals (Sweden)

    Dorett I. Odoni

    2017-03-01

    Full Text Available The filamentous fungus Rhizopus delemar naturally accumulates relatively high amounts of fumarate. Although the culture conditions that increase fumarate yields are well established, the network underlying the accumulation of fumarate is not yet fully understood. We set out to increase the knowledge about fumarate accumulation in R. delemar. To this end, we combined a transcriptomics and proteomics approach to identify key metabolic pathways involved in fumarate production in R. delemar, and propose that a substantial part of the fumarate accumulated in R. delemar during nitrogen starvation results from the urea cycle due to amino acid catabolism.

  19. Anabolic effects of leucine-rich whey protein, carbohydrate, and soy protein with and without β-hydroxy-β-methylbutyrate (HMB) during fasting-induced catabolism: A human randomized crossover trial.

    Science.gov (United States)

    Rittig, Nikolaj; Bach, Ermina; Thomsen, Henrik H; Møller, Andreas B; Hansen, Jakob; Johannsen, Mogens; Jensen, Erik; Serena, Anja; Jørgensen, Jens O; Richelsen, Bjørn; Jessen, Niels; Møller, Niels

    2017-06-01

    Protein-rich beverages are widely used clinically to preserve muscle protein and improve physical performance. Beverages with high contents of leucine or its keto-metabolite β-hydroxy-β-methylbutyrate (HMB) are especially anabolic in muscle, but it is uncertain whether this also applies to catabolic conditions such as fasting and whether common or separate intracellular signaling cascades are involved. To compare a specific leucine-rich whey protein beverage (LWH) with isocaloric carbohydrate- (CHO), soy protein (SOY), and soy protein +3 g HMB (HMB) during fasting-induced catabolic conditions. Eight healthy lean male subjects underwent four interventions (LWH, CHO, SOY, and HMB) using a randomized crossover design. Each trial included a 36 h fast and consisted of a 3 h basal fasting period and a 4 h 'sipping' period. Forearm net balances of phenylalanine (NB phe , measure of net protein loss) improved for all groups (p HMB compared with SOY (p HMB have superior anabolic effects on muscle protein kinetics after 36 h of fasting, and LWH distinctly activates the mTOR pathway. These novel findings suggest that leucine-rich whey protein and/or HMB are specifically beneficial during fasting-induced catabolic conditions. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Complete nucleotide sequence of the self-transmissible TOL plasmid pD2RT provides new insight into arrangement of toluene catabolic plasmids

    DEFF Research Database (Denmark)

    Jutkina, Jekaterina; Hansen, Lars Hestbjerg; Li, Lili

    2013-01-01

    In the present study we report the complete nucleotide sequence of the toluene catabolic plasmid pD2RT of Pseudomonas migulae strain D2RT isolated from Baltic Sea water. The pD2RT is 129,894 base pairs in size with an average G+ C content of 53.75%. A total of 135 open reading frames (ORFs) were ...

  1. Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Bradley Smith

    2016-10-01

    Full Text Available Metabolic reprogramming is critical to oncogenesis, but the emergence and function of this profound reorganization remain poorly understood. Here we find that cooperating oncogenic mutations drive large-scale metabolic reprogramming, which is both intrinsic to cancer cells and obligatory for the transition to malignancy. This involves synergistic regulation of several genes encoding metabolic enzymes, including the lactate dehydrogenases LDHA and LDHB and mitochondrial glutamic pyruvate transaminase 2 (GPT2. Notably, GPT2 engages activated glycolysis to drive the utilization of glutamine as a carbon source for TCA cycle anaplerosis in colon cancer cells. Our data indicate that the Warburg effect supports oncogenesis via GPT2-mediated coupling of pyruvate production to glutamine catabolism. Although critical to the cancer phenotype, GPT2 activity is dispensable in cells that are not fully transformed, thus pinpointing a metabolic vulnerability specifically associated with cancer cell progression to malignancy.

  2. A product of heme catabolism modulates bacterial function and survival.

    Directory of Open Access Journals (Sweden)

    Christopher L Nobles

    Full Text Available Bilirubin is the terminal metabolite in heme catabolism in mammals. After deposition into bile, bilirubin is released in large quantities into the mammalian gastrointestinal (GI tract. We hypothesized that intestinal bilirubin may modulate the function of enteric bacteria. To test this hypothesis, we investigated the effect of bilirubin on two enteric pathogens; enterohemorrhagic E. coli (EHEC, a Gram-negative that causes life-threatening intestinal infections, and E. faecalis, a Gram-positive human commensal bacterium known to be an opportunistic pathogen with broad-spectrum antibiotic resistance. We demonstrate that bilirubin can protect EHEC from exogenous and host-generated reactive oxygen species (ROS through the absorption of free radicals. In contrast, E. faecalis was highly susceptible to bilirubin, which causes significant membrane disruption and uncoupling of respiratory metabolism in this bacterium. Interestingly, similar results were observed for other Gram-positive bacteria, including B. cereus and S. aureus. A model is proposed whereby bilirubin places distinct selective pressure on enteric bacteria, with Gram-negative bacteria being protected from ROS (positive outcome and Gram-positive bacteria being susceptible to membrane disruption (negative outcome. This work suggests bilirubin has differential but biologically relevant effects on bacteria and justifies additional efforts to determine the role of this neglected waste catabolite in disease processes, including animal models.

  3. [Isolation and characterization of petroleum catabolic broad-host-range plasmids from Shen-Fu wastewater irrigation zone].

    Science.gov (United States)

    Wang, Ya-Fei; Wang, Ya-Fei; Li, Hui; Li, Xiao-Bin

    2013-11-01

    Based on triparental mating, we isolated a total of eight broad host range (BHR) petroleum hydrocarbon catabolic plasmids from the soils, sediments, and wastewater samples in the Shen-Fu irrigation zone. The antibiotic resistance of the plasmids was tested, and then, the plasmids were transferred to Escherichia coli EC100. The plasmids carrying no antibiotic resistance were tagged by miniTn5 transposon consisting of antibiotic resistant genes. The PCR-based incompatibility test revealed that the pS3-2C and pS4-6G belonged to Inc P group, the pS3-2G, pW22-3G, and pA15-7G belonged to Inc N group, the pS7-2G was identified as Inc W plasmid, and the pA23-1G and pA10-1C were placed into Inc Q group. By adopting the reported PCR amplification methods of petroleum hydrocarbon-degrading catabolic genes, the petroleum-degrading capability of these BHR plasmids were preliminarily analyzed. The plasmids pS3-2G, pS7-2G, pA23-1G, pW22-3G, and pA10-1C carried aromatic ring- hydroxylating dioxygenase gene phdA and toluene monooxygenase gene touA; the plasmid pA15-7G carried touA and toluene dioxygenase gene tod; the plasmid pS3-2C carried ben, phdA, and tod; whereas the pS4-6G only carried ben. The host range test showed that all the isolated plasmids except pS3-2C could be transferred and maintained stably in the representative strains Agrobacterium tumefaciens C58, Cupriavidus necator JMP228, and E. coli EC100 of the alpha-, beta-, and gamma-Proteobacteria, respectively.

  4. Angiotensin II induced catabolic effect and muscle atrophy are redox dependent

    Science.gov (United States)

    Semprun-Prieto, Laura C.; Sukhanov, Sergiy; Yoshida, Tadashi; Rezk, Bashir M.; Gonzalez-Villalobos, Romer A.; Vaughn, Charlotte; Tabony, A. Michael; Delafontaine, Patrice

    2011-01-01

    Angiotensin II (Ang II) causes skeletal muscle wasting via an increase in muscle catabolism. To determine whether the wasting effects of Ang II were related to its ability to increase NADPH oxidase-derived reactive oxygen species (ROS) we infused wild-type C57BL/6J or p47phox−/− mice with vehicle or Ang II for 7 days. Superoxide production was increased 2.4 fold in the skeletal muscle of Ang II infused mice, and this increase was prevented in p47phox−/− mice. Apocynin treatment prevented Ang II-induced superoxide production in skeletal muscle, consistent with Ang II increasing NADPH oxidase derived ROS. Ang II induced loss of body and skeletal muscle weight in C57BL/6J mice, whereas the reduction was significantly attenuated in p47phox−/− animals. The reduction of skeletal muscle weight caused by Ang II was associated with an increase of proteasome activity, and this increase was completely prevented in the skeletal muscle of p47phox−/− mice. In conclusion, Ang II-induced skeletal muscle wasting is in part dependent on NADPH oxidase derived ROS. PMID:21570954

  5. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees.

    Directory of Open Access Journals (Sweden)

    Christine Zawaski

    Full Text Available Survival and productivity of perennial plants in temperate zones are dependent on robust responses to prolonged and seasonal cycles of unfavorable conditions. Here we report whole-genome microarray, expression, physiological, and transgenic evidence in hybrid poplar (Populus tremula × Populus alba showing that gibberellin (GA catabolism and repressive signaling mediates shoot growth inhibition and physiological adaptation in response to drought and short-day (SD induced bud dormancy. Both water deprivation and SDs elicited activation of a suite of poplar GA2ox and DELLA encoding genes. Poplar transgenics with up-regulated GA 2-oxidase (GA2ox and DELLA domain proteins showed hypersensitive growth inhibition in response to both drought and SDs. In addition, the transgenic plants displayed greater drought resistance as evidenced by increased pigment concentrations (chlorophyll and carotenoid and reductions in electrolyte leakage (EL. Comparative transcriptome analysis using whole-genome microarray showed that the GA-deficiency and GA-insensitivity, SD-induced dormancy, and drought response in poplar share a common regulon of 684 differentially-expressed genes, which suggest GA metabolism and signaling plays a role in plant physiological adaptations in response to alterations in environmental factors. Our results demonstrate that GA catabolism and repressive signaling represents a major route for control of growth and physiological adaptation in response to immediate or imminent adverse conditions.

  6. Cofactor Balance by Nicotinamide Nucleotide Transhydrogenase (NNT) Coordinates Reductive Carboxylation and Glucose Catabolism in the Tricarboxylic Acid (TCA) Cycle*♦

    Science.gov (United States)

    Gameiro, Paulo A.; Laviolette, Laura A.; Kelleher, Joanne K.; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-01-01

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)+ cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)+ ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle. PMID:23504317

  7. Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism.

    Science.gov (United States)

    Parsons, Harriet T; Yasmin, Tayyaba; Fry, Stephen C

    2011-12-15

    L-Ascorbate catabolism involves reversible oxidation to DHA (dehydroascorbic acid), then irreversible oxidation or hydrolysis. The precursor-product relationships and the identity of several major DHA breakdown products remained unclear. In the presence of added H2O2, DHA underwent little hydrolysis to DKG (2,3-dioxo-L-gulonate). Instead, it yielded OxT (oxalyl L-threonate), cOxT (cyclic oxalyl L-threonate) and free oxalate (~6:1:1), essentially simultaneously, suggesting that all three product classes independently arose from one reactive intermediate, proposed to be cyclic-2,3-O-oxalyl-L-threonolactone. Only with plant apoplastic esterases present were the esters significant precursors of free oxalate. Without added H2O2, DHA was slowly hydrolysed to DKG. Downstream of DKG was a singly ionized dicarboxy compound (suggested to be 2-carboxy-L-xylonolactone plus 2-carboxy-L-lyxonolactone), which reversibly de-lactonized to a dianionic carboxypentonate. Formation of these lactones and acid was minimized by the presence of residual unreacted ascorbate. In vivo, the putative 2-carboxy-L-pentonolactones were relatively stable. We propose that DHA is a branch-point in ascorbate catabolism, being either oxidized to oxalate and its esters or hydrolysed to DKG and downstream carboxypentonates. The oxidation/hydrolysis ratio is governed by reactive oxygen species status. In vivo, oxalyl esters are enzymatically hydrolysed, but the carboxypentonates are stable. The biological roles of these ascorbate metabolites invite future exploration.

  8. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol

    DEFF Research Database (Denmark)

    Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.

    2016-01-01

    conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis....... Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls......We report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic...

  9. Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a ne, secreted metabolite serving as a temporary redox sink.

    NARCIS (Netherlands)

    Ward, D.E.; van der Weijden, C.C.; van der Merwe, M.J.; Westerhoff, H.V.; Claiborne, A.; Snoep, J.L.

    2000-01-01

    Recently the bkd gene cluster from Enterococcus faecalis was sequenced, and it was shown that the gene products constitute a pathway for the catabolism of branched-chain α-keto acids. We have now investigated the regulation and physiological role of this pathway. Primer extension analysis identified

  10. Inulin-125I-tyramine, an improved residualizing label for studies on sites of catabolism of circulating proteins

    International Nuclear Information System (INIS)

    Maxwell, J.L.; Baynes, J.W.; Thorpe, S.R.

    1988-01-01

    Residualizing labels for protein, such as dilactitol-125I-tyramine (125I-DLT) and cellobiitol-125I-tyramine, have been used to identify the tissue and cellular sites of catabolism of long-lived plasma proteins, such as albumin, immunoglobulins, and lipoproteins. The radioactive degradation products formed from labeled proteins are relatively large, hydrophilic, resistant to lysosomal hydrolases, and accumulate in lysosomes in the cells involved in degradation of the carrier protein. However, the gradual loss of the catabolites from cells (t1/2 approximately 2 days) has limited the usefulness of residualizing labels in studies on longer lived proteins. We describe here a higher molecular weight (Mr approximately 5000), more efficient residualizing glycoconjugate label, inulin-125I-tyramine (125I-InTn). Attachment of 125I-InTn had no effect on the plasma half-life or tissue sites of catabolism of asialofetuin, fetuin, or rat serum albumin in the rat. The half-life for hepatic retention of degradation products from 125I-InTn-labeled asialofetuin was 5 days, compared to 2.3 days for 125I-DLT-labeled asialofetuin. The whole body half-lives for radioactivity from 125I-InTn-, 125I-DLT-, and 125I-labeled rat serum albumin were 7.5, 4.3, and 2.2 days, respectively. The tissue distribution of degradation products from 125I-InTn-labeled proteins agreed with results of previous studies using 125I-DLT, except that a greater fraction of total degradation products was recovered in tissues. Kinetic analyses indicated that the average half-life for retention of 125I-InTn degradation products in tissues is approximately 5 days and suggested that in vivo there are both slow and rapid routes for release of degradation products from cells

  11. Determinants of urea nitrogen production in sepsis. Muscle catabolism, total parenteral nutrition, and hepatic clearance of amino acids.

    Science.gov (United States)

    Pittiruti, M; Siegel, J H; Sganga, G; Coleman, B; Wiles, C E; Placko, R

    1989-03-01

    The major determinants of urea production were investigated in 26 patients with multiple trauma (300 studies). The body clearances (CLRs) of ten amino acids (AAs) were estimated as a ratio of muscle-released AAs plus total parenteral nutrition-infused AAs to their extracellular pool. While clinically septic trauma (ST) patients without multiple-organ failure syndrome (MOFS) had a higher level of urea nitrogen production (25.6 +/- 13.4 g of N per day) compared with nonseptic trauma (NST) patients (14 +/- 7.5 g of N per day) and with ST patients with MOFS (4.28 +/- 1.5 g of N per day), in all groups urea N production was found to be a function of muscle protein degradation (catabolism), total parenteral nutrition-administered AAs, and the ratio between leucine CLR and tyrosine CLR (L/T) (r2 = .82, P less than .0001). Since tyrosine is cleared almost exclusively by the liver, the L/T ratio may be regarded as an index of hepatic function. The significant differences between urea N production in ST and NST patients lay in an increased positive dependence on muscle catabolism and increased negative correlation with L/T in the ST group. At any L/T ratio, urea N production was increased in ST patients over NST patients, but in ST patients with MOFS, it fell to or below levels of NST patients. These data show that the ST process is associated with enhancement of ureagenesis, due to increased hepatic CLR of both exogenous and endogenous AAs. In sepsis with MOFS, a marked inhibition of urea synthesis occurs, partially explained by a decreased hepatic CLR of non-branched-chain AAs.

  12. Effects of polyhalogenated aromatic hydrocarbons on vitamin A catabolism and the regulation of vitamin A homeostasis in rats

    International Nuclear Information System (INIS)

    Bank, P.A.

    1989-01-01

    Polyhalogenated aromatic hydrocarbons (PHAH) are known to adversely affect vitamin A status resulting in the hepatic depletion and enhanced excretion of vitamin A. Increased renal and serum vitamin A content occurs subsequent to these PHAH-related alterations. Vitamin A, a highly regulated system, appears to undergo rapid compensatory changes to maintain homeostasis in response to nutritional, metabolic, or toxicologic conditions. The present study was undertaken in order to elucidate the mechanism(s) responsible for these PHAH-related effects on vitamin A homeostasis. To this end, the toxin prototype of the PHAH class 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the 3,4,5,3',4',5'-hexabromo- or hexachloro-biphenyls were used in this study. Results presented in this study indirectly showed that PHAH caused enhanced hepatic and extrahepatic catabolism of intravenously administered 3 H-retinol-retinol binding protein-transthyretin as evidenced by increased inactive polar retinoids in liver, kidney, bile, and excreta. These polar retinoids were isolated from tissues and bile and are thought to represent oxidized and/or glucuronidated, elimination metabolites of vitamin A. PHAH increased the microsomal activity of cytochrome P-450 MFO and UDP-glucuronosyl transferase toward retinoic acid (RA), enzyme systems that are also known to be coordinately induced by PHAH. Increased serum and kidney vitamin A is likely a homeostatic response to PHAH-related increased target tissue catabolism. For serum, this was shown directly by the finding that PHAH caused decreased liver esterification of retinol recycled from the extrahepatic tissues and indirectly by the administration of the active target tissue metabolite, RA. After RA, both control and PHAH-treated rats lowered their serum vitamin A

  13. In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater

    International Nuclear Information System (INIS)

    Wilson, M.S.; Bakermans, C.; Madsen, E.L.

    1999-01-01

    The authors developed procedures for isolating and characterizing in situ-transcribed mRNA from groundwater microorganisms catabolizing naphthalene at a coal tar waste-contaminated site. Groundwater was pumped through 0.22-microm-pore-size filters, which were then frozen to dry ice-ethanol. RNA was extracted from the frozen filters by boiling sodium dodecyl sulfate lysis and acidic phenol-chloroform extraction. Transcript characterization was performed with a series of PCR primers designed to amplify nahAc homologs. Several primer pairs were found to amplify nahAc homologs representing the entire diversity of the naphthalene-degrading genes. The environmental RNA extract was reverse transcribed, and the resultant mixture of cDNAs was amplified by PCR. A digoxigenin-labeled probe mixture was produced by PCR amplification of groundwater cDNA. This probe mixture hybridized under stringent conditions with the corresponding PCR products from naphthalene-degrading bacteria carrying a variety of nahAc homologs, indicating that diverse dioxygenase transcripts had been retrieved from groundwater. Diluted and undiluted cDNA preparations were independently amplified, and 28 of the resulting PCR products were cloned and sequenced. Sequence comparisons revealed two major groups related to the dioxygenase genes ndoB and dntAc, previously cloned from Pseudomonas putida NCIB 9816-4 and Burkholderia sp. strain DNT, respectively. A distinctive subgroup of sequences was found only in experiments performed with the undiluted cDNA preparation. To the authors' knowledge, these results are the first to directly document in situ transcription of genes encoding naphthalene catabolism at a contaminated site by indigenous microorganisms. The retrieved sequences represent greater diversity than has been detected at the study site by culture-based approaches

  14. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    Science.gov (United States)

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  15. Acetaldehyde binding increases the catabolism of rat serum low-density lipoproteins

    International Nuclear Information System (INIS)

    Savolainen, M.J.; Baraona, E.; Lieber, C.S.

    1987-01-01

    Acetaldehyde was found to form adducts with rat serum lipoproteins. The binding of [ 14 C]acetaldehyde to lipoproteins was studied at low concentrations which are known to exist during ethanol oxidation. The amount of lipoprotein adducts was a linear function of acetaldehyde concentration up to 250 μM. Incubation of rat plasma low-density lipoproteins (LDL) with 200 μM acetaldehyde increased the disappearance rate of the 3 H-label from the cholesterol ester moiety of LDL injected into normal rats. The data show that even low concentrations of acetaldehyde are capable of affecting LDL metabolism. These findings may provide an explanation for the low concentrations of serum LDL in alcoholics. The alcohol-induced hyperlipidemia includes either a lack of increase or a decrease in the low-density lipoprotein (LDL) concentration, but the underlying mechanism is not known. It has been shown previously, that the acetylation of lysine residues of LDL apoprotein (apoB) by acetanhydride leads to rapid uptake of LDL particles by macrophages through a non-LDL receptor pathway. Since acetaldehyde, the first toxic metabolite of ethanol, is a chemically reactive compound capable of binding to proteins, they tested whether acetaldehyde forms adducts with serum lipoproteins and subsequently alters the catabolism of LDL. 19 references, 2 figures, 1 table

  16. Amino Acid Catabolism in Alzheimer’s Disease Brain: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Jeddidiah W. D. Griffin

    2017-01-01

    Full Text Available There is a dire need to discover new targets for Alzheimer’s disease (AD drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease.

  17. Biodistribution and catabolism of 18F-labelled isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine.

    Science.gov (United States)

    Hultsch, C; Bergmann, R; Pawelke, B; Pietzsch, J; Wuest, F; Johannsen, B; Henle, T

    2005-12-01

    Isopeptide bonds between the epsilon-amino group of lysine and the gamma-carboxamide group of glutamine are formed during strong heating of pure proteins or, more important, by enzymatic reaction mediated by transglutaminases. Despite the wide use of a microbial transglutaminase in food biotechnology, up to now little is known about the metabolic fate of the isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine. In the present study, N-succinimidyl-4-[(18)F]fluorobenzoate was used to modify N(epsilon)-(gamma-glutamyl)-L-lysine at each of its two alpha-amino groups, resulting in the 4-[(18)F]fluorobenzoylated derivatives, for which biodistribution, catabolism, and elimination were investigated in male Wistar rats. A significant different biochemical behavior of the two labelled isopeptides was observed in terms of in vitro stability, in vivo metabolism as well as biodistribution. The results suggest that the metabolic fate of isopeptides is likely to be dependent on how they are reabsorbed - free or peptide bound.

  18. A Role of a Newly Identified Isomerase From Yarrowia lipolytica in Erythritol Catabolism

    Directory of Open Access Journals (Sweden)

    Aleksandra M. Mirończuk

    2018-05-01

    Full Text Available Erythritol is a natural sweetener produced by microorganisms as an osmoprotectant. It belongs to the group of polyols and it can be utilized by the oleaginous yeast Yarrowia lipolytica. Despite the recent identification of the transcription factor of erythritol utilization (EUF1, the metabolic pathway of erythritol catabolism remains unknown. In this study we identified a new gene, YALI0F01628g, involved in erythritol assimilation. In silico analysis showed that YALI0F01628g is a putative isomerase and it is localized in the same region as EUF1. qRT-PCR analysis of Y. lipolytica showed a significant increase in YALI0F01628g expression during growth on erythritol and after overexpression of EUF1. Moreover, the deletion strain ΔF01628 showed significantly impaired erythritol assimilation, whereas synthesis of erythritol remained unchanged. The results showed that YALI0F1628g is involved in erythritol assimilation; thus we named the gene EYI1. Moreover, we suggest the metabolic pathway of erythritol assimilation in yeast Y. lipolytica.

  19. Parenteral structured triglyceride emulsion improves nitrogen balance and is cleared faster from the blood in moderately catabolic patients.

    Science.gov (United States)

    Kruimel, J W; Naber, T H; van der Vliet, J A; Carneheim, C; Katan, M B; Jansen, J B

    2001-01-01

    Most postoperative patients lose net protein mass, which reflects loss of muscle tissue and organ function. Perioperative parenteral nutrition may reduce the loss of protein, but in general, with conventional lipid emulsions a waste of protein still remains. We compared the effects on nitrogen balance of an emulsion containing structured triglycerides, a new type of synthesized triglycerides, with an emulsion of a physical mixture of medium- and long-chain triglycerides as part of parenteral feeding in moderately catabolic patients. The first 5 days after placement of an aortic prosthesis patients received total parenteral nutrition (TPN) providing 0.2 g of nitrogen per kg body weight per day; energy requirement was calculated using Harris and Benedict's equation, adding 300 kcal per day for activity. Twelve patients were treated with the structured triglyceride emulsion and 13 patients with the emulsion of the physical mixture of medium- and long-chain triglycerides. The design was a randomized, double-blind parallel study. In the patients who completed the study, the mean cumulative nitrogen balance over the first 5 postoperative days was -8+/-2 g in 10 patients on the structured triglyceride emulsion and -21+/-4 g in 9 patients on the emulsion of the physical mixture of medium- and long-chain triglycerides; the mean difference was 13 g of nitrogen (95% confidence interval 4 to 22, p = .015) in favor of the structured triglyceride emulsion. On the first postoperative day serum triglyceride and plasma medium-chain free fatty acid levels increased less during infusion of the structured triglyceride emulsion than with the physical mixture emulsion. The parenteral structured triglyceride emulsion improves the nitrogen balance and is cleared faster from the blood, compared with the emulsion of the physical mixture of medium- and long-chain triglycerides, in moderately catabolic patients.

  20. Branched-chain amino acid (BCAA) supplementation enhances adaptability to exercise training of mice with a muscle-specific defect in the control of BCAA catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Shindo, Daichi; Shimomura, Yoshiharu

    2018-03-01

    Branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BDK) suppresses the branched-chain amino acid (BCAA) catabolism by inactivation of the BCKDH complex. The muscle-specific BDK-deficient (BDK-mKO) mice showed accelerated BCAA oxidation in muscle and decreased endurance capacity after training (Xu et al. PLoS One. 12 (2017) e0180989). We here report that BCAA supplementation overcompensated endurance capacity in BDK-mKO mice after training.

  1. Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity

    Science.gov (United States)

    2012-01-01

    Background As proinflammatory cytokines seem to play a role in discogenic back pain, substances exhibiting anti-inflammatory effects on intervertebral disc cells may be used as minimal-invasive therapeutics for intradiscal/epidural injection. The purpose of this study was to investigate the anti-inflammatory and anti-catabolic potential of curcuma, which has been used in the Indian Ayurvedic medicine to treat multiple ailments for a long time. Methods Human disc cells were treated with IL-1β to induce an inflammatory/catabolic cascade. Different extracts of curcuma as well as curcumin (= a component selected based on results with curcuma extracts and HPLC/MS analysis) were tested for their ability to reduce mRNA expression of proinflammatory cytokines and matrix degrading enzymes after 6 hours (real-time RT-PCR), followed by analysis of typical inflammatory signaling mechanisms such as NF-κB (Western Blot, Transcription Factor Assay), MAP kinases (Western Blot) and Toll-like receptors (real-time RT-PCR). Quantitative data was statistically analyzed using a Mann Whitney U test with a significance level of p curcuma DMSO extract significantly reduced levels of IL-6, MMP1, MMP3 and MMP13. The DMSO-soluble component curcumin, whose occurrence within the DMSO extract was verified by HPLC/MS, reduced levels of IL-1β, IL-6, IL-8, MMP1, MMP3 and MMP13 and both caused an up-regulation of TNF-α. Pathway analysis indicated that curcumin did not show involvement of NF-κB, but down-regulated TLR2 expression and inhibited the MAP kinase JNK while activating p38 and ERK. Conclusions Based on its anti-inflammatory and anti-catabolic effects, intradiscal injection of curcumin may be an attractive treatment alternative. However, whether the anti-inflammatory properties in vitro lead to analgesia in vivo will need to be confirmed in an appropriate animal model. PMID:22909087

  2. Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Khan, Sumia; Afzal, Muhammad; Iqbal, Samina; Mirza, Muhammad Sajjad; Khan, Qaiser M

    2013-04-01

    Plant-bacteria partnership is a promising approach for remediating soil contaminated with organic pollutants. The colonization and metabolic activity of an inoculated microorganism depend not only on environmental conditions but also on the physiological condition of the applied microorganisms. This study assessed the influence of different inoculum pretreatments on survival, gene abundance and catabolic gene expression of an applied strain (Pantoea sp. strain BTRH79) in the rhizosphere of ryegrass vegetated in diesel contaminated soil. Maximum bacterium survival, gene abundance and expression were observed in the soil inoculated with bacterial cells that had been pregrown on complex medium, and hydrocarbon degradation and genotoxicity reduction were also high in this soil. These findings propose that use of complex media for growing plant inocula may enhance bacterial survival and colonization and subsequently the efficiency of pollutant degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Haloacetate analogs of pheromones: effects on catabolism and electrophysiology in Plutella xylostella

    International Nuclear Information System (INIS)

    Prestwich, G.D.; Streinz, L.

    1988-01-01

    A series of mono, di-, and trihalogenated acetate analogs of Z11-16:Ac were prepared and examined for electrophysiological activity in antennae of males of the diamondback moth, Plutella xylostella. In addition, two potential affinity labels, a diazoacetate (Dza) and a trifluoromethyl ketone (Tfp), were evaluated for EAG activity. The Z11-16:Ac showed the highest activity in EAG assays, followed by the fluorinated acetates, but other haloacetates were essentially inactive. The effects of these analogs on the hydrolysis of [ 3 H]Z11-16:Ac to [ 3 H]Z11-16:OH by antennal esterases was also examined. The three fluorinated acetates showed the greatest activity as inhibitors in competition assays, with rank order F 2 Ac > F 3 Ac > FAc > AC > Cl 2 Ac > ClAc > Dza > Br 2 Ac > BrAc > Tfp > I > Cl 3 Ac > Br 3 Ac > OH. The relative polarities of the haloacetates, as determined by TLC mobility, are in the order mono- > di- > trihalo, but F, Cl, Br, and I all confer similar polarities within a substitution group. Thus, the steric size appears to be the predominant parameter affecting the interactions of the haloacetate analogs with both receptor and catabolic proteins in P. xylostella males

  4. Metabolite profile analysis reveals functional effects of 28-day vitamin B-6 restriction on one-carbon metabolism and tryptophan catabolic pathways in healthy men and women.

    Science.gov (United States)

    da Silva, Vanessa R; Rios-Avila, Luisa; Lamers, Yvonne; Ralat, Maria A; Midttun, Øivind; Quinlivan, Eoin P; Garrett, Timothy J; Coats, Bonnie; Shankar, Meena N; Percival, Susan S; Chi, Yueh-Yun; Muller, Keith E; Ueland, Per Magne; Stacpoole, Peter W; Gregory, Jesse F

    2013-11-01

    Suboptimal vitamin B-6 status, as reflected by low plasma pyridoxal 5'-phosphate (PLP) concentration, is associated with increased risk of vascular disease. PLP plays many roles, including in one-carbon metabolism for the acquisition and transfer of carbon units and in the transsulfuration pathway. PLP also serves as a coenzyme in the catabolism of tryptophan. We hypothesize that the pattern of these metabolites can provide information reflecting the functional impact of marginal vitamin B-6 deficiency. We report here the concentration of major constituents of one-carbon metabolic processes and the tryptophan catabolic pathway in plasma from 23 healthy men and women before and after a 28-d controlled dietary vitamin B-6 restriction (restriction yielded increased cystathionine (53% pre- and 76% postprandial; P restriction yielded lower kynurenic acid (22% pre- and 20% postprandial; P restriction and multilevel partial least squares-discriminant analysis supported this conclusion. Thus, plasma concentrations of creatine, cystathionine, kynurenic acid, and 3-hydroxykynurenine jointly reveal effects of vitamin B-6 restriction on the profiles of one-carbon and tryptophan metabolites and serve as biomarkers of functional effects of marginal vitamin B-6 deficiency.

  5. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Science.gov (United States)

    Lackey, Denise E.; Lynch, Christopher J.; Olson, Kristine C.; Mostaedi, Rouzbeh; Ali, Mohamed; Smith, William H.; Karpe, Fredrik; Humphreys, Sandy; Bedinger, Daniel H.; Dunn, Tamara N.; Thomas, Anthony P.; Oort, Pieter J.; Kieffer, Dorothy A.; Amin, Rajesh; Bettaieb, Ahmed; Haj, Fawaz G.; Permana, Paska; Anthony, Tracy G.

    2013-01-01

    Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35–50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals. PMID:23512805

  6. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Hye-Rim Lee

    2016-01-01

    Full Text Available Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP, containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW rabbits were incubated for 3, 10, 14 and 21 days with PRP(−, 10% PRP (PRP(+, IL(+ or IL(+PRP(+. The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR. Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+ and in IL(+PRP(+. In PRP(+, the aggrecan expression levels were lower than in the PRP(− until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+ and IL(+PRP(+, at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage.

  7. Characterization of the Second LysR-Type Regulator in the Biphenyl-Catabolic Gene Cluster of Pseudomonas pseudoalcaligenes KF707

    OpenAIRE

    Watanabe, Takahito; Fujihara, Hidehiko; Furukawa, Kensuke

    2003-01-01

    Pseudomonas pseudoalcaligenes KF707 possesses a biphenyl-catabolic (bph) gene cluster consisting of bphR1A1A2-(orf3)-bphA3A4BCX0X1X2X3D. The bphR1 (formerly orf0) gene product, which belongs to the GntR family, is a positive regulator for itself and bphX0X1X2X3D. Further analysis in this study revealed that a second regulator belonging to the LysR family (designated bphR2) is involved in the regulation of the bph genes in KF707. The bphR2 gene was not located near the bph gene cluster, and it...

  8. Metabolite Profile Analysis Reveals Functional Effects of 28-Day Vitamin B-6 Restriction on One-Carbon Metabolism and Tryptophan Catabolic Pathways in Healthy Men and Women123

    Science.gov (United States)

    da Silva, Vanessa R.; Rios-Avila, Luisa; Lamers, Yvonne; Ralat, Maria A.; Midttun, Øivind; Quinlivan, Eoin P.; Garrett, Timothy J.; Coats, Bonnie; Shankar, Meena N.; Percival, Susan S.; Chi, Yueh-Yun; Muller, Keith E.; Ueland, Per Magne; Stacpoole, Peter W.; Gregory, Jesse F.

    2013-01-01

    Suboptimal vitamin B-6 status, as reflected by low plasma pyridoxal 5′-phosphate (PLP) concentration, is associated with increased risk of vascular disease. PLP plays many roles, including in one-carbon metabolism for the acquisition and transfer of carbon units and in the transsulfuration pathway. PLP also serves as a coenzyme in the catabolism of tryptophan. We hypothesize that the pattern of these metabolites can provide information reflecting the functional impact of marginal vitamin B-6 deficiency. We report here the concentration of major constituents of one-carbon metabolic processes and the tryptophan catabolic pathway in plasma from 23 healthy men and women before and after a 28-d controlled dietary vitamin B-6 restriction (restriction yielded increased cystathionine (53% pre- and 76% postprandial; P restriction yielded lower kynurenic acid (22% pre- and 20% postprandial; P restriction and multilevel partial least squares-discriminant analysis supported this conclusion. Thus, plasma concentrations of creatine, cystathionine, kynurenic acid, and 3-hydroxykynurenine jointly reveal effects of vitamin B-6 restriction on the profiles of one-carbon and tryptophan metabolites and serve as biomarkers of functional effects of marginal vitamin B-6 deficiency. PMID:23966327

  9. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism

    Science.gov (United States)

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced

  10. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism.

    Directory of Open Access Journals (Sweden)

    Heba Khairy

    Full Text Available Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB. Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB. 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640, which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500 was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710, which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600 and an

  11. Haloacetate analogs of pheromones: Effects on catabolism and electrophysiology inPlutella xylostella.

    Science.gov (United States)

    Prestwich, G D; Streinz, L

    1988-03-01

    A series of mono-, di-, and trihalogenated acetate analogs of Zl 1-16: Ac were prepared and examined for electrophysiological activity in antennae of males of the diamondback moth,Plutella xylostella. In addition, two potential affinity labels, a diazoacetate (Dza) and a trifluoromethyl ketone (Tfp), were evaluated for EAG activity. The Z11-16∶Ac showed the highest activity in EAG assays, followed by the fluorinated acetates, but other halo-acetates were essentially inactive. The polar diazoacetate and the trifluoromethyl ketone were also very weak EAG stimulants. The effects of these analogs on the hydrolysis of [(3)H]Z11-16∶Ac to [(3)H]Z11-16∶OH by antennal esterases was also examined. The three fluorinated acetates showed the greatest activity as inhibitors in competition assays, with rank order F2Ac > F(3)Ac > FAc > Ac > Cl2Ac > ClAc > Dza > Br2Ac > BrAc > Tfp > I > Cl3Ac > Br3Ac > OH. The relative polarities of the haloacetates, as determined by TLC mobility, are in the order mono- > di- > trihalo, but F, Cl, Br, and I all confer similar polarities within a substitution group. Thus, the steric size appears to be the predominant parameter affecting the interactions of the haloacetate analogs with both receptor and catabolic proteins inP. xylostella males.

  12. Molecular Characterization of the Genes pcaG and pcaH, Encoding Protocatechuate 3,4-Dioxygenase, Which Are Essential for Vanillin Catabolism in Pseudomonas sp. Strain HR199

    Science.gov (United States)

    Overhage, Jörg; Kresse, Andreas U.; Priefert, Horst; Sommer, Horst; Krammer, Gerhard; Rabenhorst, Jürgen; Steinbüchel, Alexander

    1999-01-01

    Pseudomonas sp. strain HR199 is able to utilize eugenol (4-allyl-2-methoxyphenol), vanillin (4-hydroxy-3-methoxybenzaldehyde), or protocatechuate as the sole carbon source for growth. Mutants of this strain which were impaired in the catabolism of vanillin but retained the ability to utilize eugenol or protocatechuate were obtained after nitrosoguanidine mutagenesis. One mutant (SK6169) was used as recipient of a Pseudomonas sp. strain HR199 genomic library in cosmid pVK100, and phenotypic complementation was achieved with a 5.8-kbp EcoRI fragment (E58). The amino acid sequences deduced from two corresponding open reading frames (ORF) identified on E58 revealed high degrees of homology to pcaG and pcaH, encoding the two subunits of protocatechuate 3,4-dioxygenase. Three additional ORF most probably encoded a 4-hydroxybenzoate 3-hydroxylase (PobA) and two putative regulatory proteins, which exhibited homology to PcaQ of Agrobacterium tumefaciens and PobR of Pseudomonas aeruginosa, respectively. Since mutant SK6169 was also complemented by a subfragment of E58 that harbored only pcaH, this mutant was most probably lacking a functional β subunit of the protocatechuate 3,4-dioxygenase. Since this mutant was still able to grow on protocatechuate and lacked protocatechuate 4,5-dioxygenase and protocatechuate 2,3-dioxygenase, the degradation had to be catalyzed by different enzymes. Two other mutants (SK6184 and SK6190), which were also impaired in the catabolism of vanillin, were not complemented by fragment E58. Since these mutants accumulated 3-carboxy muconolactone during cultivation on eugenol, they most probably exhibited a defect in a step of the catabolic pathway following the ortho cleavage. Moreover, in these mutants cyclization of 3-carboxymuconic acid seems to occur by a syn absolute stereochemical course, which is normally only observed for cis,cis-muconate lactonization in pseudomonads. In conclusion, vanillin is degraded through the ortho-cleavage pathway

  13. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements

    Directory of Open Access Journals (Sweden)

    Levitt DG

    2016-07-01

    Full Text Available David G Levitt,1,* Michael D Levitt2,* 1Department of Integrative Biology and Physiology, University of Minnesota, 2Research Service, Veterans Affairs Medical Center, Minneapolis, MN, USA *These authors contributed equally to this work Abstract: Serum albumin concentration (CP is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%, gastrointestinal (≈10%, and catabolic (≈84% clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon or enhanced loss of albumin into the urine (nephrosis or intestine (protein-losing enteropathy. The latter may occur

  14. Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass

    Directory of Open Access Journals (Sweden)

    Mark J. Solloway

    2015-07-01

    Full Text Available Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into β-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.

  15. Molecular characteristics of clinical methicillin-resistant Staphylococcus pseudintermedius harboring arginine catabolic mobile element (ACME) from dogs and cats.

    Science.gov (United States)

    Yang, Ching; Wan, Min-Tao; Lauderdale, Tsai-Ling; Yeh, Kuang-Sheng; Chen, Charles; Hsiao, Yun-Hsia; Chou, Chin-Cheng

    2017-06-01

    This study aimed to investigate the presence of arginine catabolic mobile element (ACME) and its associated molecular characteristics in methicillin-resistant Staphylococcus pseudintermedius (MRSP). Among the 72 S. pseudintermedius recovered from various infection sites of dogs and cats, 52 (72.2%) were MRSP. ACME-arcA was detected commonly (69.2%) in these MRSP isolates, and was more frequently detected in those from the skin than from other body sites (P=0.047). There was a wide genetic diversity among the ACME-arcA-positive MRSP isolates, which comprised three SCCmec types (II-III, III and V) and 15 dru types with two predominant clusters (9a and 11a). Most MRSP isolates were multidrug-resistant. Since S. pseudintermedius could serve as a reservoir of ACME, further research on this putative virulence factor is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Interleukin-6 blockade raises LDL via reduced catabolism rather than via increased synthesis: a cytokine-specific mechanism for cholesterol changes in rheumatoid arthritis.

    Science.gov (United States)

    Robertson, Jamie; Porter, Duncan; Sattar, Naveed; Packard, Chris J; Caslake, Muriel; McInnes, Iain; McCarey, David

    2017-11-01

    Patients with rheumatoid arthritis (RA) have reduced serum low-density lipoprotein cholesterol (LDL-c), which increases following therapeutic IL-6 blockade. We aimed to define the metabolic pathways underlying these lipid changes. In the KALIBRA study, lipoprotein kinetic studies were performed on 11 patients with severe active RA at baseline and following three intravenous infusions of the IL-6R blocker tocilizumab. The primary outcome measure was the fractional catabolic rate (FCR) of LDL. Serum total cholesterol (4.8 vs 5.7 mmol/L, p=0.003), LDL-c (2.9 vs 3.4 mmol/L, p=0.014) and high-density lipoprotein cholesterol (1.23 vs 1.52 mmol/L, p=0.006) increased following tocilizumab therapy. The LDL FCR fell from a state of hypercatabolism to a value approximating that of the normal population (0.53 vs 0.27 pools/day, p=0.006). Changes in FCR correlated tightly with changes in serum LDL-c and C-reactive protein but not Clinical Disease Activity Index. Patients with RA have low serum LDL-c due to hypercatabolism of LDL particles. IL-6 blockade normalises this catabolism in a manner associating with the acute phase response (and thus hepatic IL-6 signalling) but not with RA disease activity as measured clinically. We demonstrate that IL-6 is one of the key drivers of inflammation-driven dyslipidaemia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Scheuner, Carmen; Goker, Markus; Mavromatis, Kostas; Hooper, Sean D.; Porat, Iris; Klenk, Hans-Peter; Ivanova, Natalia; Kyrpides, Nikos

    2011-05-03

    The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.

  18. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    Science.gov (United States)

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-02-11

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  19. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  20. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin.

    Science.gov (United States)

    Gonai, Takeru; Kawahara, Shusuke; Tougou, Makoto; Satoh, Shigeru; Hashiba, Teruyoshi; Hirai, Nobuhiro; Kawaide, Hiroshi; Kamiya, Yuji; Yoshioka, Toshihito

    2004-01-01

    Germination of lettuce (Lactuca sativa L. cv. 'Grand Rapids') seeds was inhibited at high temperatures (thermoinhibition). Thermoinhibition at 28 degrees C was prevented by the application of fluridone, an inhibitor of abscisic acid (ABA) biosynthesis. At 33 degrees C, the sensitivity of the seeds to ABA increased, and fluridone on its own was no longer effective. However, a combined application of fluridone and gibberellic acid (GA3) was able to restore the germination. Exogenous GA3 lowered endogenous ABA content in the seeds, enhancing catabolism of ABA and export of the catabolites from the intact seeds. The fluridone application also decreased the ABA content. Consequently, the combined application of fluridone and GA3 decreased the ABA content to a sufficiently low level to allow germination at 33 degrees C. There was no significant temperature-dependent change in endogenous GA1 contents. It is concluded that ABA is an important factor in the regulation of thermoinhibition of lettuce seed germination, and that GA affects the temperature responsiveness of the seeds through ABA metabolism.

  1. Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe

    Energy Technology Data Exchange (ETDEWEB)

    Mohn, W.W.; Tiedje, J.M. (Michigan State Univ., East Lansing (USA))

    1990-04-01

    Strain DCB-1 is a strict anaerobe capable of reductive dehalogenation. We elucidated metabolic processes in DCB-1 which may be related to dehalogenation and which further characterize the organism physiologically. Sulfoxy anions and CO2 were used by DCB-1 as catabolic electron acceptors. With suitable electron donors, sulfate and thiosulfate were reduced to sulfide. Sulfate and thiosulfate supported growth with formate or hydrogen as the electron donor and thus are probably respiratory electron acceptors. Other electron donors supporting growth with sulfate were CO, lactate, pyruvate, butyrate, and 3-methoxybenzoate. Thiosulfate also supported growth without an additional electron donor, being disproportionated to sulfide and sulfate. In the absence of other electron acceptors, CO2 reduction to acetate plus cell material was coupled to pyruvate oxidation to acetate plus CO2. Pyruvate could not be fermented without an electron acceptor. Carbon monoxide dehydrogenase activity was found in whole cells, indicating that CO2 reduction probably occurred via the acetyl coenzyme A pathway. Autotrophic growth occurred on H2 plus thiosulfate or sulfate. Diazotrophic growth occurred, and whole cells had nitrogenase activity. On the basis of these physiological characteristics, DCB-1 is a thiosulfate-disproportionating bacterium unlike those previously described.

  2. Overproduction of a kinetic subclass of VLDL-apoB, and direct catabolism of VLDL-apoB in human endogenous hypertriglyceridemia: an analytical model solution of tracer data

    International Nuclear Information System (INIS)

    Eaton, R.P.; Allen, R.C.; Schade, D.S.

    1983-01-01

    To investigate the participation of the major apoprotein involved in triglyceride transport in the pathogenesis of endogenous hypertriglyceridemia, five kinetic studies of apoprotein B were conducted in volunteer normolipidemic subjects and six studies in four patients with endogenous hypertriglyceridemia. The transport of apoprotein B within four kinetic subclasses of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) was studied by injection of [ 75 Se]selenomethionine. A 24-fold increase in the entry of newly synthesized apoprotein B at the initial kinetic subclass of the four-compartment VLDL delipidation sequence characterized the hypertriglyceridemic studies relative to normal subjects. Moreover, approximately 75 mg/kg per day of VLDL-B turnover reflected direct catabolism independent of conversion to IDL and/or to LDL, in contrast to the 8 mg/kg per day observed in controls. IDL-B was derived from VLDL-B in both normal and hypertriglyceridemic subjects, and was responsible for greater than 70% of all LDL-B synthesis. LDL-B pool size and turnover were indistinguishable in hypertriglyceridemic subjects from that observed in normal subjects. These studies suggest that two kinetic phenomena may characterize the pathophysiology of endogenous hypertriglyceridemia: a) over-production of apoB within a kinetic subclass of VLDL and b) preferential catabolism of hypertriglyceridemic VLDL without prior conversion to IDL/LDL

  3. A New Catabolic Plasmid in Xanthobacter and Starkeya spp. from a 1,2-Dichloroethane-Contaminated Site

    Science.gov (United States)

    Munro, Jacob E.; Liew, Elissa F.; Ly, Mai-Anh

    2016-01-01

    ABSTRACT 1,2-Dichloroethane (DCA) is a problematic xenobiotic groundwater pollutant. Bacteria are capable of biodegrading DCA, but the evolution of such bacteria is not well understood. In particular, the mechanisms by which bacteria acquire the key dehalogenase genes dhlA and dhlB have not been well defined. In this study, the genomic context of dhlA and dhlB was determined in three aerobic DCA-degrading bacteria (Starkeya novella strain EL1, Xanthobacter autotrophicus strain EL4, and Xanthobacter flavus strain EL8) isolated from a groundwater treatment plant (GTP). A haloalkane dehalogenase gene (dhlA) identical to the canonical dhlA gene from Xanthobacter sp. strain GJ10 was present in all three isolates, and, in each case, the dhlA gene was carried on a variant of a 37-kb circular plasmid, which was named pDCA. Sequence analysis of the repA replication initiator gene indicated that pDCA was a member of the pTAR plasmid family, related to catabolic plasmids from the Alphaproteobacteria, which enable growth on aromatics, dimethylformamide, and tartrate. Genes for plasmid replication, mobilization, and stabilization were identified, along with two insertion sequences (ISXa1 and ISPme1) which were likely to have mobilized dhlA and dhlB and played a role in the evolution of aerobic DCA-degrading bacteria. Two haloacid dehalogenase genes (dhlB1 and dhlB2) were detected in the GTP isolates; dhlB1 was most likely chromosomal and was similar to the canonical dhlB gene from strain GJ10, while dhlB2 was carried on pDCA and was not closely related to dhlB1. Heterologous expression of the DhlB2 protein confirmed that this plasmid-borne dehalogenase was capable of chloroacetate dechlorination. IMPORTANCE Earlier studies on the DCA-degrading Xanthobacter sp. strain GJ10 indicated that the key dehalogenases dhlA and dhlB were carried on a 225-kb linear plasmid and on the chromosome, respectively. The present study has found a dramatically different gene organization in more

  4. Clofibric acid stimulates branched-chain amino acid catabolism by three mechanisms.

    Science.gov (United States)

    Kobayashi, Rumi; Murakami, Taro; Obayashi, Mariko; Nakai, Naoya; Jaskiewicz, Jerzy; Fujiwara, Yoko; Shimomura, Yoshiharu; Harris, Robert A

    2002-11-15

    Clofibrate promotes catabolism of branched-chain amino acids by increasing the activity of the branched-chain alpha-keto acid dehydrogenase [BCKDH] complex. Depending upon the sex of the rats, nutritional state, and tissue being studied, clofibrate can affect BCKDH complex activity by three different mechanisms. First, by directly inhibiting BCKDH kinase activity, clofibrate can increase the proportion of the BCKDH complex in the active, dephosphorylated state. This occurs in situations in which the BCKDH complex is largely inactive due to phosphorylation, e.g., in the skeletal muscle of chow-fed rats or in the liver of female rats late in the light cycle. Second, by increasing the levels at which the enzyme components of the BCKDH complex are expressed, clofibrate can increase the total enzymatic activity of the BCKDH complex. This is readily demonstrated in livers of rats fed a low-protein diet, a nutritional condition that induces a decrease in the level of expression of the BCKDH complex. Third, by decreasing the amount of BCKDH kinase expressed and therefore its activity, clofibrate induces an increase in the percentage of the BCKDH complex in the active, dephosphorylated state. This occurs in the livers of rats fed a low-protein diet, a nutritional condition that causes inactivation of the BCKDH complex due to upregulation of the amount of BCKDH kinase. WY-14,643, which, like clofibric acid, is a ligand for the peroxisome-proliferator-activated receptor alpha [PPARalpha], does not directly inhibit BCKDH kinase but produces the same long-term effects as clofibrate on expression of the BCKDH complex and its kinase. Thus, clofibrate is unique in its capacity to stimulate BCAA oxidation through inhibition of BCKDH kinase activity, whereas PPARalpha activators in general promote BCAA oxidation by increasing expression of components of the BCKDH complex and decreasing expression of the BCKDH kinase.

  5. Effects of laparotomy vs pneumoperitoneum on the hepatic catabolic stress response in ambulatory and stationary settings in pigs.

    Science.gov (United States)

    Lausten, S B; Grøfte, T; Andreasen, F; Vilstrup, H; Jensen, S L

    1999-04-01

    We recently demonstrated that laparoscopic cholecystectomy is followed by a much smaller hepatic catabolic stress response than conventional cholecystectomy. It is not known what is responsible for this difference. Thirty pigs were randomly allocated to the following five treatment groups: (1) laparotomy, (2) pneumoperitoneum, (3) pneumoperitoneum with insertion of four trocars, (4) laparotomy, (5) pneumoperitoneum. Groups 1-3 were operated on in an ambulatory setting, whereas groups 4 and 5 were operated on in a stationary setting. Urea synthesis, as quantified by functional hepatic nitrogen clearance, and the response of stress hormones and cytokines were assessed. Laparotomy increased the functional hepatic nitrogen clearance by 195% (p hepatic nitrogen clearance was reduced to 87% (p hepatic stress response after laparotomy compared to pneumoperitoneum with and without insertion of trocars seems to be caused by the greater trauma to the abdominal wall. Furthermore, an ambulatory setting seems to be an important postoperative stress factor in itself.

  6. Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria.

    Science.gov (United States)

    Plugge, C M; van Leeuwen, J M; Hummelen, T; Balk, M; Stams, A J

    2001-07-01

    The glutamate catabolism of three thermophilic syntrophic anaerobes was compared based on the combined use of [(13)C] glutamate NMR measurements and enzyme activity determinations. In some cases the uptake of intermediates from different pathways was studied. The three organisms, Caloramator coolhaasii, Thermanaerovibrio acidaminovorans and strain TGO, had a different stoichiometry of glutamate conversion and were dependent on the presence of a hydrogen scavenger (Methanobacterium thermoautotrophicum Z245) to a different degree for their growth. C. coolhaasii formed acetate, CO(2), NH(4)(+) and H(2) from glutamate. Acetate was found to be formed through the beta-methylaspartate pathway in pure culture as well as in coculture. T. acidaminovorans converted glutamate to acetate, propionate, CO(2), NH(4)(+) and H(2). Most likely, this organism uses the beta-methylaspartate pathway for acetate formation. Propionate formation occurred through a direct oxidation of glutamate via succinyl-CoA and methylmalonyl-CoA. The metabolism of T. acidaminovorans shifted in favour of propionate formation when grown in coculture with the methanogen, but this did not lead to the use of a different glutamate degradation pathway. Strain TGO, an obligate syntrophic glutamate-degrading organism, formed propionate, traces of succinate, CO(2), NH(4)(+) and H(2). Glutamate was converted to propionate oxidatively via the intermediates succinyl-CoA and methylmalonyl-CoA. A minor part of the succinyl-CoA was converted to succinate and excreted.

  7. Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide

    Science.gov (United States)

    Ueki, Iori; Roman, Heather B.; Valli, Alessandro; Fieselmann, Krista; Lam, Jimmy; Peters, Rachel; Hirschberger, Lawrence L.

    2011-01-01

    Cysteine homeostasis is dependent on the regulation of cysteine dioxygenase (CDO) in response to changes in sulfur amino acid intake. CDO oxidizes cysteine to cysteinesulfinate, which is further metabolized to either taurine or to pyruvate plus sulfate. To gain insight into the physiological function of CDO and the consequence of a loss of CDO activity, mice carrying a null CDO allele (CDO+/− mice) were crossed to generate CDO−/−, CDO+/−, and CDO+/+ mice. CDO−/− mice exhibited postnatal mortality, growth deficit, and connective tissue pathology. CDO−/− mice had extremely low taurine levels and somewhat elevated cysteine levels, consistent with the lack of flux through CDO-dependent catabolic pathways. However, plasma sulfate levels were slightly higher in CDO−/− mice than in CDO+/− or CDO+/+ mice, and tissue levels of acid-labile sulfide were elevated, indicating an increase in cysteine catabolism by cysteine desulfhydration pathways. Null mice had lower hepatic cytochrome c oxidase levels, suggesting impaired electron transport capacity. Supplementation of mice with taurine improved survival of male pups but otherwise had little effect on the phenotype of the CDO−/− mice. H2S has been identified as an important gaseous signaling molecule as well as a toxicant, and pathology may be due to dysregulation of H2S production. Control of cysteine levels by regulation of CDO may be necessary to maintain low H2S/sulfane sulfur levels and facilitate the use of H2S as a signaling molecule. PMID:21693692

  8. An Unexpected Location of the Arginine Catabolic Mobile Element (ACME) in a USA300-Related MRSA Strain

    DEFF Research Database (Denmark)

    Damkjær Bartels, Mette; Hansen, Lars H.; Boye, Kit

    2011-01-01

    In methicillin resistant Staphylococcus aureus (MRSA), the arginine catabolic mobile element (ACME) was initially described in USA300 (t008-ST8) where it is located downstream of the staphylococcal cassette chromosome mec (SCCmec). A common health-care associated MRSA in Copenhagen, Denmark (t024......-ST8) is clonally related to USA300 and is frequently PCR positive for the ACME specific arcA-gene. This study is the first to describe an ACME element upstream of the SCCmec in MRSA. By traditional SCCmec typing schemes, the SCCmec of t024-ST8 strain M1 carries SCCmec IVa, but full sequencing...... of SCCmec, M1 had two new DR between the orfX gene and the J3 region of the SCCmec. The region between the orfX DR (DR1) and DR2 contained the ccrAB4 genes. An ACME II-like element was located between DR2 and DR3. The entire 26,468 bp sequence between DR1 and DR3 was highly similar to parts of the ACME...

  9. Kynurenine 3-monooxygenase mediates inhibition of Th17 differentiation via catabolism of endogenous aryl hydrocarbon receptor ligands.

    Science.gov (United States)

    Stephens, Geoffrey L; Wang, Qun; Swerdlow, Bonnie; Bhat, Geetha; Kolbeck, Roland; Fung, Michael

    2013-07-01

    The aryl hydrocarbon receptor (AhR) is a key transcriptional regulator of Th17-cell differentiation. Although endogenous ligands have yet to be identified, evidence suggests that tryptophan metabolites can act as agonists for the AhR. Tryptophan metabolites are abundant in circulation, so we hypothesized that cell intrinsic factors might exist to regulate the exposure of Th17 cells to AhR-dependent activities. Here, we find that Th17 cells preferentially express kynurenine 3-monooxygenase (KMO), which is an enzyme involved in catabolism of the tryptophan metabolite kynurenine. KMO inhibition, either with a specific inhibitor or via siRNA-mediated silencing, markedly increased IL-17 production in vitro, whereas IFN-γ production by Th1 cells was unaffected. Inhibition of KMO significantly exacerbated disease in a Th17-driven model of autoimmune gastritis, suggesting that expression of KMO by Th17 cells serves to limit their continuous exposure to physiological levels of endogenous AhR ligands in vivo. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sterylglucoside catabolism in Cryptococcus neoformans with endoglycoceramidase-related protein 2 (EGCrP2), the first steryl-β-glucosidase identified in fungi.

    Science.gov (United States)

    Watanabe, Takashi; Ito, Tomoharu; Goda, Hatsumi M; Ishibashi, Yohei; Miyamoto, Tomofumi; Ikeda, Kazutaka; Taguchi, Ryo; Okino, Nozomu; Ito, Makoto

    2015-01-09

    Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368-381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various β-glucosides, including GlcCer, cholesteryl-β-glucoside, ergosteryl-β-glucoside, sitosteryl-β-glucoside, and para-nitrophenyl-β-glucoside, but not α-glucosides or β-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3β-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-β-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl

  11. Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples

    International Nuclear Information System (INIS)

    Sayler, G.S.; Shields, M.S.; Tedford, E.T.; Breen, A.; Hooper, S.W.; Sirotkin, K.M.; Davis, J.W.

    1985-01-01

    The application of preexisting DNA hybridization techniques was investigated for potential in determining populations of specific gene sequences in environmental samples. Cross-hybridizations among two degradative plasmids, TOL and NAH, and two cloning vehicles, pLAFR1 and RSF1010, were determined. The detection limits for the TOL plasmid against a nonhomologous plasmid-bearing bacterial background was ascertained. The colony hybridization technique allowed detection of one colony containing TOL plasmid among 10(6) Escherichia coli colonies of nonhomologous DNA. Comparisons between population estimates derived from growth on selective substrates and from hybridizations were examined. Findings indicated that standard sole carbon source enumeration procedures for degradative populations lead to overestimations due to nonspecific growth of other bacteria on the microcontaminant carbon sources present in the media. Population estimates based on the selective growth of a microcosm population on two aromatic substrates (toluene and naphthalene) and estimates derived from DNA-DNA colony hybridizations, using the TOL or NAH plasmid as a probe, corresponded with estimates of substrate mineralization rates and past exposure to environmental contaminants. The applications of such techniques are hoped to eventually allow enumeration of any specific gene sequences in the environment, including both anabolic and catabolic genes. In addition, this procedure should prove useful in monitoring recombinant DNA clones released into environmental situations

  12. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus.

    Science.gov (United States)

    Pereira-Caro, Gema; Fernández-Quirós, Begoña; Ludwig, Iziar A; Pradas, Inmaculada; Crozier, Alan; Moreno-Rojas, José Manuel

    2018-02-01

    Orange juice (OJ) flavanones undergo limited absorption in the upper gastrointestinal tract and reach the colon where they are transformed by the microbiota prior to absorption. This study investigated the ability of two probiotic bacteria, Bifidobacterium longum R0175 and Lactobacillus rhamnosus subsp. Rhamnosus NCTC 10302 to catabolise OJ flavanones. The bacteria were incubated with hesperetin-7-O-rutinoside, naringenin-7-O-rutinoside, hesperetin and naringenin, and the culture medium and intracellular cell extracts were collected at intervals over a 48 h of incubation period. The flavanones and their phenolic acid catabolites were identified and quantified by HPLC-HR-MS. Both probiotics were able to subject hesperetin to ring fission yielding 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid which was subsequently demethylated producing 3-(3',4'-dihydroxyphenyl)propionic acid and then via successive dehydroxylations converted to 3-(3'-hydroxyphenyl)propionic acid and 3-(phenyl)propionic acid. Incubation of both bacteria with naringenin resulted in its conversion to 3-(4'-hydroxyphenyl)propionic acid which underwent dehydroxylation yielding 3-(phenyl)propionic acid. In addition, only L. rhamnosus exhibited rhamnosidase and glucosidase activity and unlike B. longum, which was able to convert hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside to their respective aglycones. The aglycones were then subjected to ring fission and further catabolised in a similar manner to that described above. The flavanones and their catabolites were found in the culture medium but not accumulated in the bacterial cells. These findings demonstrate the enzymatic potential of single strains of bifidobacterium and lactobacillus which may be involved in the colonic catabolism of OJ flavanones in vivo.

  13. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments.

    Science.gov (United States)

    Colasuonno, Pasqualina; Lozito, Maria Luisa; Marcotuli, Ilaria; Nigro, Domenica; Giancaspro, Angelica; Mangini, Giacomo; De Vita, Pasquale; Mastrangelo, Anna Maria; Pecchioni, Nicola; Houston, Kelly; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2017-01-31

    In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding. Twenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait. The availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.

  14. Closed nutrient recycling via microbial catabolism in an eco-engineered self regenerating mixed anaerobic microbiome for hydrogenotrophic methanogenesis.

    Science.gov (United States)

    Savvas, Savvas; Donnelly, Joanne; Patterson, Tim P; Dinsdale, Richard; Esteves, Sandra R

    2017-03-01

    A novel eco-engineered mixed anaerobic culture was successfully demonstrated for the first time to be capable of continuous regeneration in nutrient limiting conditions. Microbial catabolism has been found to support a closed system of nutrients able to enrich a culture of lithotrophic methanogens and provide microbial cell recycling. After enrichment, the hydrogenotrophic species was the dominating methanogens while a bacterial substratum was responsible for the redistribution of nutrients. q-PCR results indicated that 7% of the total population was responsible for the direct conversion of the gases. The efficiency of H 2 /CO 2 conversion to CH 4 reached 100% at a gassing rate of above 60v/v/d. The pH of the culture media was effectively sustained at optimal levels (pH 7-8) through a buffering system created by the dissolved CO 2 . The novel approach can reduce the process nutrient/metal requirement and enhance the environmental and financial performance of hydrogenotrophic methanogenesis for renewable energy storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Serum and urinary lipoproteins in the human nephrotic syndrome: evidence for renal catabolism of lipoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Shore, V.G.; Forte, T.; Licht, H.; Lewis, S.B.

    1982-03-01

    The urinary excretion of lipoproteins and the possibility of catabolic alterations on glomerular filtration were investigated in four nephrotic subjects difering in etiology, serum lipoprotein profile, and 24 hr urinary output of protein and lipids. The apolipoproteins and lipoproteins of urine were compared with those of serum with respect to distribution profile, physical properties, and composition. As expected from molecular sieving effects during glomerular filtration, the urinary HDL were more abundant than the lower density lipoproteins even when the plasma LDL was elevated markedly. Intact apolipoproteins were not found in the concentrated urinary fraction isolated by ultrafiltration between the limits of 10/sup 4/ and 5 x 10/sup 4/ daltons. On the basis of immunoreactivity, gel electrophoresis, and amino acid composition, apolipoproteins B and AI are the major and minor proteins, respectively, of urinary LDL, and apo B is the major protein of the urinary IDL and VLDL. Apolipoproteins AI, AII, CI, CIII, and possibly AIV were isolated from the urinary HDL. As much as 20% of the protein moiety of the urinary HDL appeared to be large apolipoprotien fragments with molecular weights and isoelectric points similar to those of apo CII and apo CIII. The lower density classes of urinary lipoproteins also appeared to have lost apo E and apo C's and to have undergone partial proteolysis.

  16. Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis

    Directory of Open Access Journals (Sweden)

    Igor Zeman

    2016-12-01

    Full Text Available The pathogenic yeast Candida parapsilosis metabolizes hydroxyderivatives of benzene and benzoic acid to compounds channeled into central metabolism, including the mitochondrially localized tricarboxylic acid cycle, via the 3-oxoadipate and gentisate pathways. The orchestration of both catabolic pathways with mitochondrial metabolism as well as their evolutionary origin is not fully understood. Our results show that the enzymes involved in these two pathways operate in the cytoplasm with the exception of the mitochondrially targeted 3-oxoadipate CoA-transferase (Osc1p and 3-oxoadipyl-CoA thiolase (Oct1p catalyzing the last two reactions of the 3-oxoadipate pathway. The cellular localization of the enzymes indicates that degradation of hydroxyaromatic compounds requires a shuttling of intermediates, cofactors, and products of the corresponding biochemical reactions between cytosol and mitochondria. Indeed, we found that yeast cells assimilating hydroxybenzoates increase the expression of genes SFC1, LEU5, YHM2, and MPC1 coding for succinate/fumarate carrier, coenzyme A carrier, oxoglutarate/citrate carrier, and the subunit of pyruvate carrier, respectively. A phylogenetic analysis uncovered distinct evolutionary trajectories for sparsely distributed gene clusters coding for enzymes of both pathways. Whereas the 3-oxoadipate pathway appears to have evolved by vertical descent combined with multiple losses, the gentisate pathway shows a striking pattern suggestive of horizontal gene transfer to the evolutionarily distant Mucorales.

  17. [Comparative study of aromatic ring meta-cleavage enzymes in Pseudomonas strains with plasmid and chromosomal genetic control of the catabolism of biphenyl and m-toluate].

    Science.gov (United States)

    Selifonov, S A; Starozoĭtov, I I

    1990-12-01

    It was shown that two different enzymes of aromatic ring oxidative meta-cleavage (2,3-dihydroxybiphenyl-1,2-dioxygenase), DBO and catechol-2,3-dioxygenase, C230) function in Pseudomonas strains with a plasmid and chromosomal genetic control of biphenyl and toluate catabolism. A comparative analysis of DBO's and C230's expressed by the pBS241 biphenyl degradative plasmid in P. putida BS893, pBS311 in P. putida U83, chromosomal genes in P. putida BF and C230 from P. putida PaW160 (pWWO) was carried out. It was found that the DBO's of all strains under study are highly specialized enzymes in respect of 2,3-dihydroxybiphenyl cleavage and are also able to cleave 3-methyl-catechol and catechol (but not 4-methylcatechol) at low rates. In contrast with DBO's, in Pseudomonas strains the substrate specificities of all C230's are variable. The C230's expressed by the D-plasmids pBS241 and pBC311 have a moderate affinity for catechol, 3-methyl- and 4-methylcatechol, but are unable to cleave 2,3-dihydroxybiphenyl. The C230 which is encoded by the chromosomal structure gene from P. putida BF is very similar to C230 which codes for the TOL-plasmid pWWO. These plasmid differ from C230's expressed by biphenyl D-plasmids due to their capability to cleave 2,3-dihydroxybiphenyl in addition to catechol cleavage. All DBO's and C230's under study possess a number of properties that are typical for the enzymes having an oxidative meta-cleaving effect. The different roles of these enzymes in biphenyl and toluate catabolism in Pseudomonas strains are discussed.

  18. The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans.

    Science.gov (United States)

    Martins, Tiago M; Hartmann, Diego O; Planchon, Sébastien; Martins, Isabel; Renaut, Jenny; Silva Pereira, Cristina

    2015-01-01

    Aspergilli play major roles in the natural turnover of elements, especially through the decomposition of plant litter, but the end catabolism of lignin aromatic hydrocarbons remains largely unresolved. The 3-oxoadipate pathway of their degradation combines the catechol and the protocatechuate branches, each using a set of specific genes. However, annotation for most of these genes is lacking or attributed to poorly- or un-characterised families. Aspergillus nidulans can utilise as sole carbon/energy source either benzoate or salicylate (upstream aromatic metabolites of the protocatechuate and the catechol branches, respectively). Using this cultivation strategy and combined analyses of comparative proteomics, gene mining, gene expression and characterisation of particular gene-replacement mutants, we precisely assigned most of the steps of the 3-oxoadipate pathway to specific genes in this fungus. Our findings disclose the genetically encoded potential of saprophytic Ascomycota fungi to utilise this pathway and provide means to untie associated regulatory networks, which are vital to heightening their ecological significance. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Catabolism of exogenously supplied thymidine to thymine and dihydrothymine by platelets in human peripheral blood

    International Nuclear Information System (INIS)

    Pero, R.W.; Johnson, D.; Olsson, A.

    1984-01-01

    The interference of platelets with the estimation of unscheduled DNA synthesis in human peripheral mononuclear leukocytes following genotoxic exposure was studied. A 96% reduction in the unscheduled DNA synthesis value was achieved by incubating [ 3 H]thymidine with platelet-rich plasma for 5 hr at 37 degrees. Using radioactive thymine-containing compounds, together with quantitative analyses based on thin-layer and ion-exchange chromatographies, we have shown that thymidine was converted to thymine which, in turn, was converted to dihydrothymine in platelet-rich plasma. The enzymes responsible were separated from platelet lysates by gel filtration and were identified as thymidine phosphorylase and dihydrothymine dehydrogenase. The phosphorylase reversibly catalyzed the formation of thymine from thymidine and converted bromodeoxyuridine to bromouracil. The dehydrogenase reversibly catalyzed the interconversion of thymine and dihydrothymine in a reaction dependent on NADP(H), and it was inhibited by diazouracil and by thymine. Nearly all the thymidine-catabolizing activity found in whole blood samples supplied exogenously with thymidine was accounted for by the platelets. Since most genetic toxicological tests that use blood samples do not involve removing platelets from the blood cell cultures, then it is concluded that precautions should be taken in the future to determine the influence of platelets on these test systems. This is particularly true for methods dependent on thymidine pulses such as unscheduled DNA synthesis, or those dependent on bromodeoxyuridine, such as sister chromatid exchanges, since this nucleoside is also a substrate for thymidine phosphorylase

  20. Adipokines induce catabolism of newly synthesized matrix in cartilage and meniscus tissues.

    Science.gov (United States)

    Nishimuta, James F; Levenston, Marc E

    Altered synovial levels of various adipokines (factors secreted by fat as well as other tissues) have been associated with osteoarthritis (OA) onset and progression. However, the metabolic effects of adipokines on joint tissues, in particular the fibrocartilaginous menisci, are not well understood. This study investigated effects of several adipokines on release of recently synthesized extracellular matrix in bovine cartilage and meniscus tissue explants. After labeling newly synthesized proteins and sulfated glycosaminoglycans (sGAGs) with 3 H-proline and 35 S-sulfate, respectively; bovine cartilage and meniscus tissue explants were cultured for 6 days in basal medium (control) or media supplemented with adipokines (1 µg/ml of leptin, visfatin, adiponectin, or resistin) or 20 ng/ml interleukin-1 (IL-1). Release of radiolabel and sGAG to the media during culture and the final explant water, DNA, sGAG, and retained radiolabel were measured. Matrix metalloproteinase (MMP-2) and MMP-3 activities were assessed using gelatin and casein zymography, respectively. Water and DNA contents were not significantly altered by any treatment. Visfatin, adiponectin, resistin, and IL-1 stimulated sGAG release from meniscus, whereas only IL-1 stimulated sGAG release from cartilage. Release of 3 H and 35 S was stimulated not only by resistin and IL-1 in meniscus but also by IL-1 in cartilage. Retained 3 H was unaltered by any treatment, while retained 35 S was reduced by visfatin, resistin, and IL-1 in meniscus and by only IL-1 in cartilage. Resistin and IL-1 elevated active MMP-2 and total MMP-3 in meniscus, whereas cartilage MMP-3 activity was elevated by only IL-1. Resistin stimulated rapid and extensive catabolism of meniscus tissue, similar to IL-1, whereas adipokines minimally affected cartilage. Release of newly synthesized matrix was similar to overall release in both tissues. These observations provide further indications that meniscal tissue is more sensitive to pro

  1. Carnosol Inhibits Pro-Inflammatory and Catabolic Mediators of Cartilage Breakdown in Human Osteoarthritic Chondrocytes and Mediates Cross-Talk between Subchondral Bone Osteoblasts and Chondrocytes.

    Directory of Open Access Journals (Sweden)

    Christelle Sanchez

    Full Text Available The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk.Osteoarthritic (OA human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM. The production of aggrecan, matrix metalloproteinase (MMP-3, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-6 and nitric oxide (NO and the expression of type II collagen and ADAMTS-4 and -5 were analyzed. Human osteoblasts from sclerotic (SC or non-sclerotic (NSC subchondral bone were cultured for 3 days in presence or absence of carnosol before co-culture with chondrocytes. Chondrocyte gene expression was analyzed after 4 days of co-culture.In chondrocytes, type II collagen expression was significantly enhanced in the presence of 3 μM carnosol (p = 0.008. MMP-3, IL-6, NO production and ADAMTS-4 expression were down-regulated in a concentration-dependent manner by carnosol (p<0.01. TIMP-1 production was slightly increased at 3 μM (p = 0.02 and ADAMTS-5 expression was decreased from 0.2 to 9 μM carnosol (p<0.05. IL-6 and PGE2 production was reduced in the presence of carnosol in both SC and NSC osteoblasts while alkaline phosphatase activity was not changed. In co-culture experiments preincubation of NSC and SC osteoblasts wih carnosol resulted in similar effects to incubation with anti-IL-6 antibody, namely a significant increase in aggrecan and decrease in MMP-3, ADAMTS-4 and -5 gene expression by chondrocytes.Carnosol showed potent inhibition of pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes. Inhibition of matrix degradation and enhancement of formation was observed in chondrocytes cocultured with subchondral osteoblasts preincubated with carnosol indicating a cross-talk between these two cellular compartments, potentially mediated via inhibition of IL-6 in

  2. Combination of recreational soccer and caloric restricted diet reduces markers of protein catabolism and cardiovascular risk in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    de Sousa, M Vieira; Fukui, R; Krustrup, Peter

    2017-01-01

    Background: Moderate calorie-restricted diets and exercise training prevent loss of lean mass and cardiovascular risk. Because adherence to routine exercise recommendation is generally poor, we utilized recreational soccer training as a novel therapeutic exercise intervention in type 2 diabetes (T2......D) patients. Objective: We compared the effects of acute and chronic soccer training plus calorie-restricted diet on protein catabolism and cardiovascular risk markers in T2D. Design, setting and subjects: Fifty-one T2D patients (61.1±6.4 years, 29 females: 22 males) were randomly allocated...... to the soccer+diet-group (SDG) or to the dietgroup (DG). The 40-min soccer sessions were held 3 times per week for 12 weeks. Results: Nineteen participants attended 100% of scheduled soccer sessions, and none suffered any injuries. The SDG group showed higher levels of growth hormone (GH), free fatty acids...

  3. Carbon monoxide inhibits omega-oxidation of leukotriene B4 by human polymorphonuclear leukocytes: evidence that catabolism of leukotriene B4 is mediated by a cytochrome P-450 enzyme.

    Science.gov (United States)

    Shak, S; Goldstein, I M

    1984-09-17

    Carbon monoxide significantly inhibits omega-oxidation of exogenous leukotriene B4 to 20-OH-leukotriene B4 and 20-COOH-leukotriene B4 by unstimulated polymorphonuclear leukocytes as well as omega-oxidation of leukotriene B4 that is generated when cells are stimulated with the calcium ionophore, A23187. Inhibition of omega-oxidation by carbon monoxide is concentration-dependent, completely reversible, and specific. Carbon monoxide does not affect synthesis of leukotriene B4 by stimulated polymorphonuclear leukocytes or other cell functions (i.e., degranulation, superoxide anion generation). These findings suggest that a cytochrome P-450 enzyme in human polymorphonuclear leukocytes is responsible for catabolizing leukotriene B4 by omega-oxidation.

  4. Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy

    Directory of Open Access Journals (Sweden)

    Hiroyuki Horiguchi

    2018-04-01

    Full Text Available Clinical and technological advances promoting early hemorrhage control and physiologic resuscitation as well as early diagnosis and optimal treatment of sepsis have significantly decreased in-hospital mortality for many critically ill patient populations. However, a substantial proportion of severe trauma and sepsis survivors will develop protracted organ dysfunction termed chronic critical illness (CCI, defined as ≥14 days requiring intensive care unit (ICU resources with ongoing organ dysfunction. A subset of CCI patients will develop the persistent inflammation, immunosuppression, and catabolism syndrome (PICS, and these individuals are predisposed to a poor quality of life and indolent death. We propose that CCI and PICS after trauma or sepsis are the result of an inappropriate bone marrow response characterized by the generation of dysfunctional myeloid populations at the expense of lympho- and erythropoiesis. This review describes similarities among CCI/PICS phenotypes in sepsis, cancer, and aging and reviews the role of aberrant myelopoiesis in the pathophysiology of CCI and PICS. In addition, we characterize pathogen recognition, the interface between innate and adaptive immune systems, and therapeutic approaches including immune modulators, gut microbiota support, and nutritional and exercise therapy. Finally, we discuss the future of diagnostic and prognostic approaches guided by machine and deep-learning models trained and validated on big data to identify patients for whom these approaches will yield the greatest benefits. A deeper understanding of the pathophysiology of CCI and PICS and continued investigation into novel therapies harbor the potential to improve the current dismal long-term outcomes for critically ill post-injury and post-infection patients.

  5. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    Directory of Open Access Journals (Sweden)

    Scott B Crown

    Full Text Available The branched chain amino acids (BCAA valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0 and odd chain length (C15:0 and C17:0 fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  6. Sorbitol dehydrogenase of Aspergillus niger, SdhA, is part of the oxido-reductive D-galactose pathway and essential for D-sorbitol catabolism.

    Science.gov (United States)

    Koivistoinen, Outi M; Richard, Peter; Penttilä, Merja; Ruohonen, Laura; Mojzita, Dominik

    2012-02-17

    In filamentous fungi D-galactose can be catabolised through the oxido-reductive and/or the Leloir pathway. In the oxido-reductive pathway D-galactose is converted to d-fructose in a series of steps where the last step is the oxidation of d-sorbitol by an NAD-dependent dehydrogenase. We identified a sorbitol dehydrogenase gene, sdhA (JGI53356), in Aspergillus niger encoding a medium chain dehydrogenase which is involved in D-galactose and D-sorbitol catabolism. The gene is upregulated in the presence of D-galactose, galactitol and D-sorbitol. An sdhA deletion strain showed reduced growth on galactitol and growth on D-sorbitol was completely abolished. The purified enzyme converted D-sorbitol to D-fructose with K(m) of 50±5 mM and v(max) of 80±10 U/mg. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Rhodococcus erythropolis and Its γ-Lactone Catabolic Pathway: An Unusual Biocontrol System That Disrupts Pathogen Quorum Sensing Communication

    Directory of Open Access Journals (Sweden)

    Xavier Latour

    2013-12-01

    Full Text Available Rhodococcus erythropolis is an environmental Gram-positive Actinobacterium with a versatile metabolism involved in various bioconversions and degradations. Rhodococci are best known for their great potential in numerous decontamination and industrial processes. However, they can also prevent plant disease by disrupting quorum sensing-based communication of Gram-negative soft-rot bacteria, by degrading N-acyl-homoserine lactone signaling molecules. Such biocontrol activity results partly from the action of the γ-lactone catabolic pathway. This pathway is responsible for cleaving the lactone bond of a wide range of compounds comprising a γ-butyrolactone ring coupled to an alkyl or acyl chain. The aliphatic products of this hydrolysis are then activated and enter fatty acid metabolism. This short pathway is controlled by the presence of the γ-lactone, presumably sensed by a TetR-like transcriptional regulator, rather than the presence of the pathogen or the plant-host in the environment of the Rhodococci. Both the density and biocontrol activity of R. erythropolis may be boosted in crop systems. Treatment with a cheap γ-lactone stimulator, for example, the food flavoring γ-caprolactone, induces the activity in the biocontrol agent, R. erythropolis, of the pathway degrading signaling molecules; such treatments thus promote plant protection.

  8. The 14C-monomethylamino-antipyrine breath test as in vivo parameter for characterizing the induction of the drug catabolizing enzyme system in the guinea pig

    International Nuclear Information System (INIS)

    Gramatzki, S.

    1981-01-01

    The aim of these investigations was to help clarify the following questions: 1) Does MAAP, following 14 C labelling of the exocyclic aminomethyl group, offer a suitable substrate for a breath test in guinea pigs. 2) Which procedures for evaluating the 14 C exhalation curves of the breath test are especially valid. 3) Can an induction of the drug catabolizing enzyme system following pre-treatment with various inducing substances be detected by the 14 C-MAAP breath test. 4) Do inducer-specific differences arise in response to the 14 C-MAAP breath test by which the inducers can be characterized. 5) Is monomethylamino-antipyrine similar to amidopyrine in that it is a suitable independent in vivo parameter for the drug metasbolizing enzyme system in the liver of guinea pigs. (orig./MG) [de

  9. Molecular and genetic characterization of the rhizopine catabolism (mocABRC) genes of Rhizobium meliloti L5-30.

    Science.gov (United States)

    Rossbach, S; Kulpa, D A; Rossbach, U; de Bruijn, F J

    1994-10-17

    Rhizopine (L-3-O-methyl-scyllo-inosamine, 3-O-MSI) is a symbiosis-specific compound, which is synthesized in nitrogen-fixing nodules of Medicago sativa induced by Rhizobium meliloti strain L5-30. 3-O-MSI is thought to function as an unusual growth substrate for R. meliloti L5-30, which carries a locus (mos) responsible for its synthesis closely linked to a locus (moc) responsible for its degradation. Here, the essential moc genes were delimited by Tn5 mutagenesis and shown to be organized into two regions, separated by 3 kb of DNA. The DNA sequence of a 9-kb fragment spanning the two moc regions was determined, and four genes were identified that play an essential role in rhizopine catabolism (mocABC and mocR). The analysis of the DNA sequence and the amino acid sequence of the deduced protein products revealed that MocA resembles NADH-dependent dehydrogenases. MocB exhibits characteristic features of periplasmic-binding proteins that are components of high-affinity transport systems. MocC does not share significant homology with any protein in the database. MocR shows homology with the GntR class of bacterial regulator proteins. These results suggest that the mocABC genes are involved in the uptake and subsequent degradation of rhizopine, whereas mocR is likely to play a regulatory role.

  10. ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Gao, Shan; Gao, Jiong; Zhu, Xiaoyu; Song, Yi; Li, Zhongpeng; Ren, Guodong; Zhou, Xin; Kuai, Benke

    2016-09-06

    Chlorophyll (Chl) degradation is an integral process of leaf senescence, and NYE1/SGR1 has been demonstrated as a key regulator of Chl catabolism in diverse plant species. In this study, using yeast one-hybrid screening, we identified three abscisic acid (ABA)-responsive element (ABRE)-binding transcription factors, ABF2 (AREB1), ABF3, and ABF4 (AREB2), as the putative binding proteins of the NYE1 promoter. Through the transactivation analysis, electrophoretic mobility shift assay, and chromatin immunoprecipitation, we demonstrated that ABF2, ABF3, and ABF4 directly bound to and activated the NYE1 promoter in vitro and in vivo. ABA is a positive regulator of leaf senescence, and exogenously applied ABA can accelerate Chl degradation. The triple mutant of the ABFs, abf2abf3abf4, as well as two ABA-insensitive mutants, abi1-1 and snrk2.2/2.3/2.6, exhibited stay-green phenotypes after ABA treatment, along with decreased induction of NYE1 and NYE2 expression. In contrast, overexpression of ABF4 accelerated Chl degradation upon ABA treatment. Interestingly, ABF2/3/4 could also activate the expression of two Chl catabolic enzyme genes, PAO and NYC1, by directly binding to their promoters. In addition, abf2abf3abf4 exhibited a functional stay-green phenotype, and senescence-associated genes (SAGs), such as SAG29 (SWEET15), might be directly regulated by the ABFs. Taken together, our results suggest that ABF2, ABF3, and ABF4 likely act as key regulators in mediating ABA-triggered Chl degradation and leaf senescence in general in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  11. Shell extracts of the edible mussel and oyster induce an enhancement of the catabolic pathway of human skin fibroblasts, in vitro.

    Science.gov (United States)

    Latire, Thomas; Legendre, Florence; Bouyoucef, Mouloud; Marin, Frédéric; Carreiras, Franck; Rigot-Jolivet, Muriel; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine

    2017-10-01

    Mollusc shells are composed of more than 95% calcium carbonate and less than 5% organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. In this study, we investigated the effects of matrix macromolecular components extracted from the shells of two edible molluscs of economic interest, i.e., the blue mussel Mytilus edulis and the Pacific oyster Crassostrea gigas. The potential biological activities of these organic molecules were analysed on human dermal fibroblasts in primary culture. Our results demonstrate that shell extracts of the two studied molluscs modulate the metabolic activities of the cells. In addition, the extracts caused a decrease of type I collagen and a concomitant increase of active MMP-1, both at the mRNA and the protein levels. Therefore, our results suggest that shell extracts from M. edulis and C. gigas contain molecules that promote the catabolic pathway of human dermal fibroblasts. This work emphasises the potential use of these shell matrices in the context of anti-fibrotic strategies, particularly against scleroderma. More generally, it stresses the usefulness to valorise bivalve shells that are coproducts of shellfish farming activity.

  12. Increased ophthalmic acid production is supported by amino acid catabolism under fasting conditions in mice.

    Science.gov (United States)

    Kobayashi, Sho; Lee, Jaeyong; Takao, Toshifumi; Fujii, Junichi

    2017-09-23

    Glutathione (GSH) plays pivotal roles in antioxidation and detoxification. The transsulfuration pathway, in conjunction with methionine metabolism, produces equimolar amounts of cysteine (Cys) and 2-oxobutyric acid (2OB). The resulting 2OB is then converted into 2-aminobutyric acid (2AB) by a transaminase and is utilized as a substitute for Cys by the GSH-synthesizing machinery to produce ophthalmic acid (OPT). By establishing a method for simultaneously measuring Cys, GSH, and OPT by liquid chromatography-mass spectrometry, we found that fasting causes an elevation in OPT levels in the liver and blood plasma, even though the levels of Cys and GSH are decreased. Autophagy was activated, but the levels of GSH/OPT-synthesizing enzymes remained unchanged. After 6 h of fasting, the mice were given 1% 2AB and/or 5% glucose in the drinking water for an additional 24 h and the above metabolites analyzed. 2AB administration caused an increase in OPT levels, and, when glucose was co-administered with 2AB, the levels of OPT were elevated further but GSH levels were decreased somewhat. These results suggest that, while Cys is utilized for glyconeogenesis under fasting conditions, reaching levels that were insufficient for the synthesis of GSH, 2OB was preferentially converted to 2AB via amino acid catabolism and was utilized as a building block for OPT. Thus the consumption of Cys and the parallel elevation of 2AB under fasting conditions appeared to force γ-glutamylcysteine synthetase to form γ-glutamyl-2AB, despite the fact that the enzyme has a higher Km value for 2AB than Cys. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Geochemically induced shifts in catabolic energy yields explain past ecological changes of diffuse vents in the East Pacific Rise 9°50'N area

    Directory of Open Access Journals (Sweden)

    Hentscher Michael

    2012-01-01

    Full Text Available Abstract The East Pacific Rise (EPR at 9°50'N hosts a hydrothermal vent field (Bio9 where the change in fluid chemistry is believed to have caused the demise of a tubeworm colony. We test this hypothesis and expand on it by providing a thermodynamic perspective in calculating free energies for a range of catabolic reactions from published compositional data. The energy calculations show that there was excess H2S in the fluids and that oxygen was the limiting reactant from 1991 to 1997. Energy levels are generally high, although they declined in that time span. In 1997, sulfide availability decreased substantially and H2S was the limiting reactant. Energy availability dropped by a factor of 10 to 20 from what it had been between 1991 and 1995. The perishing of the tubeworm colonies began in 1995 and coincided with the timing of energy decrease for sulfide oxidizers. In the same time interval, energy availability for iron oxidizers increased by a factor of 6 to 8, and, in 1997, there was 25 times more energy per transferred electron in iron oxidation than in sulfide oxidation. This change coincides with a massive spread of red staining (putative colonization by Fe-oxidizing bacteria between 1995 and 1997. For a different cluster of vents from the EPR 9°50'N area (Tube Worm Pillar, thermodynamic modeling is used to examine changes in subseafloor catabolic metabolism between 1992 and 2000. These reactions are deduced from deviations in diffuse fluid compositions from conservative behavior of redox-sensitive species. We show that hydrogen is significantly reduced relative to values expected from conservative mixing. While H2 concentrations of the hydrothermal endmember fluids were constant between 1992 and 1995, the affinities for hydrogenotrophic reactions in the diffuse fluids decreased by a factor of 15 and then remained constant between 1995 and 2000. Previously, these fluids have been shown to support subseafloor methanogenesis. Our

  14. Limnobacter spp. as newly detected phenol-degraders among Baltic Sea surface water bacteria characterised by comparative analysis of catabolic genes.

    Science.gov (United States)

    Vedler, Eve; Heinaru, Eeva; Jutkina, Jekaterina; Viggor, Signe; Koressaar, Triinu; Remm, Maido; Heinaru, Ain

    2013-12-01

    A set of phenol-degrading strains of a collection of bacteria isolated from Baltic Sea surface water was screened for the presence of two key catabolic genes coding for phenol hydroxylases and catechol 2,3-dioxygenases. The multicomponent phenol hydroxylase (LmPH) gene was detected in 70 out of 92 strains studied, and 41 strains among these LmPH(+) phenol-degraders were found to exhibit catechol 2,3-dioxygenase (C23O) activity. Comparative phylogenetic analyses of LmPH and C23O sequences from 56 representative strains were performed. The studied strains were mostly affiliated to the genera Pseudomonas and Acinetobacter. However, the study also widened the range of phenol-degraders by including the genus Limnobacter. Furthermore, using a next generation sequencing approach, the LmPH genes of Limnobacter strains were found to be the most prevalent ones in the microbial community of the Baltic Sea surface water. Four different Limnobacter strains having almost identical 16S rRNA gene sequences (99%) and similar physiological properties formed separate phylogenetic clusters of LmPH and C23O genes in the respective phylogenetic trees. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    Science.gov (United States)

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  16. Biodistribution and catabolism of 18F-labeled N-ε-fructoselysine as a model of Amadori products

    International Nuclear Information System (INIS)

    Hultsch, Christina; Hellwig, Michael; Pawelke, Beate; Bergmann, Ralf; Rode, Katrin; Pietzsch, Jens; Krause, Rene; Henle, Thomas

    2006-01-01

    Amadori products are formed in the early stage of the so-called Maillard reaction between reducing sugars and amino acids or proteins. Such nonenzymatic glycosylation may occur during the heating or storage of foods, but also under physiological conditions. N-ε-fructoselysine is formed via this reaction between the ε-amino group of peptide-bound lysine and glucose. Despite the fact that, in certain heated foods, up to 50% of lysyl moieties may be modified to such lysine derivatives, up to now, very little is known about the metabolic fate of alimentary administered Amadori compounds. In the present study, N-succinimidyl-4-[ 18 F]fluorobenzoate was used to modify N-ε-fructoselysine at the α-amino group of the lysyl moiety. The in vitro stability of the resulting 4-[ 18 F]fluorobenzoylated derivative was tested in different tissue homogenates. Furthermore, the 4-[ 18 F]fluorobenzoylated N-ε-fructoselysine was used in positron emission tomography studies, as well as in studies concerning biodistribution and catabolism. The results show that the 4-[ 18 F]fluorobenzoylated N-ε-fructoselysine is phosphorylated in vitro, as well as in vivo. This phosphorylation is caused by fructosamine 3-kinases and occurs in vivo, particularly in the kidneys. Despite the action of these enzymes, it was shown that a large part of the intravenously applied radiolabeled N-ε-fructoselysine was excreted nearly unchanged in the urine. Therefore, it was concluded that the predominant part of peptide-bound lysine that was fructosylated during food processing is not available for nutrition

  17. Biodistribution and catabolism of 18F-labeled N-epsilon-fructoselysine as a model of Amadori products.

    Science.gov (United States)

    Hultsch, Christina; Hellwig, Michael; Pawelke, Beate; Bergmann, Ralf; Rode, Katrin; Pietzsch, Jens; Krause, René; Henle, Thomas

    2006-10-01

    Amadori products are formed in the early stage of the so-called Maillard reaction between reducing sugars and amino acids or proteins. Such nonenzymatic glycosylation may occur during the heating or storage of foods, but also under physiological conditions. N-epsilon-fructoselysine is formed via this reaction between the epsilon-amino group of peptide-bound lysine and glucose. Despite the fact that, in certain heated foods, up to 50% of lysyl moieties may be modified to such lysine derivatives, up to now, very little is known about the metabolic fate of alimentary administered Amadori compounds. In the present study, N-succinimidyl-4-[18F]fluorobenzoate was used to modify N-epsilon-fructoselysine at the alpha-amino group of the lysyl moiety. The in vitro stability of the resulting 4-[18F]fluorobenzoylated derivative was tested in different tissue homogenates. Furthermore, the 4-[18F]fluorobenzoylated N-epsilon-fructoselysine was used in positron emission tomography studies, as well as in studies concerning biodistribution and catabolism. The results show that the 4-[18F]fluorobenzoylated N-epsilon-fructoselysine is phosphorylated in vitro, as well as in vivo. This phosphorylation is caused by fructosamine 3-kinases and occurs in vivo, particularly in the kidneys. Despite the action of these enzymes, it was shown that a large part of the intravenously applied radiolabeled N-epsilon-fructoselysine was excreted nearly unchanged in the urine. Therefore, it was concluded that the predominant part of peptide-bound lysine that was fructosylated during food processing is not available for nutrition.

  18. Characterization of the mycobacterial acyl-CoA carboxylase holo complexes reveals their functional expansion into amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Matthias T Ehebauer

    2015-02-01

    Full Text Available Biotin-mediated carboxylation of short-chain fatty acid coenzyme A esters is a key step in lipid biosynthesis that is carried out by multienzyme complexes to extend fatty acids by one methylene group. Pathogenic mycobacteria have an unusually high redundancy of carboxyltransferase genes and biotin carboxylase genes, creating multiple combinations of protein/protein complexes of unknown overall composition and functional readout. By combining pull-down assays with mass spectrometry, we identified nine binary protein/protein interactions and four validated holo acyl-coenzyme A carboxylase complexes. We investigated one of these--the AccD1-AccA1 complex from Mycobacterium tuberculosis with hitherto unknown physiological function. Using genetics, metabolomics and biochemistry we found that this complex is involved in branched amino-acid catabolism with methylcrotonyl coenzyme A as the substrate. We then determined its overall architecture by electron microscopy and found it to be a four-layered dodecameric arrangement that matches the overall dimensions of a distantly related methylcrotonyl coenzyme A holo complex. Our data argue in favor of distinct structural requirements for biotin-mediated γ-carboxylation of α-β unsaturated acid esters and will advance the categorization of acyl-coenzyme A carboxylase complexes. Knowledge about the underlying structural/functional relationships will be crucial to make the target category amenable for future biomedical applications.

  19. Characterization of Agronomy, Grain Physicochemical Quality, and Nutritional Property of High-Lysine 35R Transgenic Rice with Simultaneous Modification of Lysine Biosynthesis and Catabolism.

    Science.gov (United States)

    Yang, Qingqing; Wu, Hongyu; Li, Qianfeng; Duan, Ruxu; Zhang, Changquan; Sun, Samuel Saiming; Liu, Qiaoquan

    2017-05-31

    Lysine is the first limiting essential amino acid in rice. We previously constructed a series of transgenic rice lines to enhance lysine biosynthesis (35S), down-regulate its catabolism (Ri), or simultaneously achieve both metabolic effects (35R). In this study, nine transgenic lines, three from each group, were selected for both field and animal feeding trials. The results showed that the transgene(s) caused no obvious effects on field performance and main agronomic traits. Mature seeds of transgenic line 35R-17 contained 48-60-fold more free lysine than in wild type and had slightly lower apparent amylose content and softer gel consistency. Moreover, a 35-day feeding experiment showed that the body weight gain, food efficiency, and protein efficiency ratio of rats fed the 35R-17 transgenic rice diet were improved when compared with those fed wild-type rice diet. These data will be useful for further evaluation and potential commercialization of 35R high-lysine transgenic rice.

  20. Biodistribution and catabolism of {sup 18}F-labeled N-{epsilon}-fructoselysine as a model of Amadori products

    Energy Technology Data Exchange (ETDEWEB)

    Hultsch, Christina [Institute of Radiopharmacy, Research Center Rossendorf, P.O. Box 51 01 19, D-01314 Dresden (Germany); Hellwig, Michael [Institute of Food Chemistry, Technische Universitaet Dresden, D-01062 Dresden (Germany); Pawelke, Beate [Institute of Radiopharmacy, Research Center Rossendorf, P.O. Box 51 01 19, D-01314 Dresden (Germany); Bergmann, Ralf [Institute of Radiopharmacy, Research Center Rossendorf, P.O. Box 51 01 19, D-01314 Dresden (Germany); Rode, Katrin [Institute of Radiopharmacy, Research Center Rossendorf, P.O. Box 51 01 19, D-01314 Dresden (Germany); Pietzsch, Jens [Institute of Radiopharmacy, Research Center Rossendorf, P.O. Box 51 01 19, D-01314 Dresden (Germany); Krause, Rene [Institute of Food Chemistry, Technische Universitaet Dresden, D-01062 Dresden (Germany); Henle, Thomas [Institute of Food Chemistry, Technische Universitaet Dresden, D-01062 Dresden (Germany)

    2006-10-15

    Amadori products are formed in the early stage of the so-called Maillard reaction between reducing sugars and amino acids or proteins. Such nonenzymatic glycosylation may occur during the heating or storage of foods, but also under physiological conditions. N-{epsilon}-fructoselysine is formed via this reaction between the {epsilon}-amino group of peptide-bound lysine and glucose. Despite the fact that, in certain heated foods, up to 50% of lysyl moieties may be modified to such lysine derivatives, up to now, very little is known about the metabolic fate of alimentary administered Amadori compounds. In the present study, N-succinimidyl-4-[{sup 18}F]fluorobenzoate was used to modify N-{epsilon}-fructoselysine at the {alpha}-amino group of the lysyl moiety. The in vitro stability of the resulting 4-[{sup 18}F]fluorobenzoylated derivative was tested in different tissue homogenates. Furthermore, the 4-[{sup 18}F]fluorobenzoylated N-{epsilon}-fructoselysine was used in positron emission tomography studies, as well as in studies concerning biodistribution and catabolism. The results show that the 4-[{sup 18}F]fluorobenzoylated N-{epsilon}-fructoselysine is phosphorylated in vitro, as well as in vivo. This phosphorylation is caused by fructosamine 3-kinases and occurs in vivo, particularly in the kidneys. Despite the action of these enzymes, it was shown that a large part of the intravenously applied radiolabeled N-{epsilon}-fructoselysine was excreted nearly unchanged in the urine. Therefore, it was concluded that the predominant part of peptide-bound lysine that was fructosylated during food processing is not available for nutrition.

  1. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells.

    Science.gov (United States)

    Lu, Gang; Sun, Haipeng; She, Pengxiang; Youn, Ji-Youn; Warburton, Sarah; Ping, Peipei; Vondriska, Thomas M; Cai, Hua; Lynch, Christopher J; Wang, Yibin

    2009-06-01

    The branched-chain amino acids (BCAA) are essential amino acids required for protein homeostasis, energy balance, and nutrient signaling. In individuals with deficiencies in BCAA, these amino acids can be preserved through inhibition of the branched-chain-alpha-ketoacid dehydrogenase (BCKD) complex, the rate-limiting step in their metabolism. BCKD is inhibited by phosphorylation of its E1alpha subunit at Ser293, which is catalyzed by BCKD kinase. During BCAA excess, phosphorylated Ser293 (pSer293) becomes dephosphorylated through the concerted inhibition of BCKD kinase and the activity of an unknown intramitochondrial phosphatase. Using unbiased, proteomic approaches, we have found that a mitochondrial-targeted phosphatase, PP2Cm, specifically binds the BCKD complex and induces dephosphorylation of Ser293 in the presence of BCKD substrates. Loss of PP2Cm completely abolished substrate-induced E1alpha dephosphorylation both in vitro and in vivo. PP2Cm-deficient mice exhibited BCAA catabolic defects and a metabolic phenotype similar to the intermittent or intermediate types of human maple syrup urine disease (MSUD), a hereditary disorder caused by defects in BCKD activity. These results indicate that PP2Cm is the endogenous BCKD phosphatase required for nutrient-mediated regulation of BCKD activity and suggest that defects in PP2Cm may be responsible for a subset of human MSUD.

  2. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes.

    Science.gov (United States)

    Hehemann, Jan-Hendrik; Kelly, Amelia G; Pudlo, Nicholas A; Martens, Eric C; Boraston, Alisdair B

    2012-11-27

    Humans host an intestinal population of microbes--collectively referred to as the gut microbiome--which encode the carbohydrate active enzymes, or CAZymes, that are absent from the human genome. These CAZymes help to extract energy from recalcitrant polysaccharides. The question then arises as to if and how the microbiome adapts to new carbohydrate sources when modern humans change eating habits. Recent metagenome analysis of microbiomes from healthy American, Japanese, and Spanish populations identified putative CAZymes obtained by horizontal gene transfer from marine bacteria, which suggested that human gut bacteria evolved to degrade algal carbohydrates-for example, consumed in form of sushi. We approached this hypothesis by studying such a polysaccharide utilization locus (PUL) obtained by horizontal gene transfer by the gut bacterium Bacteroides plebeius. Transcriptomic and growth experiments revealed that the PUL responds to the polysaccharide porphyran from red algae, enabling growth on this carbohydrate but not related substrates like agarose and carrageenan. The X-ray crystallographic and biochemical analysis of two proteins encoded by this PUL, BACPLE_01689 and BACPLE_01693, showed that they are β-porphyranases belonging to glycoside hydrolase families 16 and 86, respectively. The product complex of the GH86 at 1.3 Å resolution highlights the molecular details of porphyran hydrolysis by this new porphyranase. Combined, these data establish experimental support for the argument that CAZymes and associated genes obtained from extrinsic microbes add new catabolic functions to the human gut microbiome.

  3. Mechanism of internal browning of pineapple: The role of gibberellins catabolism gene (AcGA2ox) and GAs

    Science.gov (United States)

    Zhang, Qin; Rao, Xiuwen; Zhang, Lubin; He, Congcong; Yang, Fang; Zhu, Shijiang

    2016-01-01

    Internal browning (IB), a physiological disorder (PD) that causes severe losses in harvested pineapple, can be induced by exogenous gibberellins (GAs). Over the years, studies have focused on roles of Gibberellin 2-oxidase (GA2oxs), the major GAs catabolic enzyme in plants, in the regulation of changes in morphology or biomass. However, whether GA2oxs could regulate PD has not been reported. Here, a full-length AcGA2ox cDNA was isolated from pineapple, with the putative protein sharing 23.59% to 72.92% identity with GA2oxs from five other plants. Pineapples stored at 5 °C stayed intact, while those stored at 20 °C showed severe IB. Storage at 5 °C enhanced AcGA2ox expression and decreased levels of a GAs (GA4) ‘compared with storage at 20 °C. However, at 20 °C, exogenous application of abscisic acid (ABA) significantly suppressed IB. ABA simultaneously upregulated AcGA2ox and reduced GA4. Ectopic expression of AcGA2ox in Arabidopsis resulted in reduced GA4, lower seed germination, and shorter hypocotyls and roots, all of which were restored by exogenous GA4/7. Moreover, in pineapple, GA4/7 upregulated polyphenol oxidase, while storage at 5 °C and ABA downregulated it. These results strongly suggest the involvement of AcGA2ox in regulation of GAs levels and a role of AcGA2ox in regulating IB. PMID:27982026

  4. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH.

    Science.gov (United States)

    Nielsen, Tue Kjærgaard; Rasmussen, Morten; Demanèche, Sandrine; Cecillon, Sébastien; Vogel, Timothy M; Hansen, Lars Hestbjerg

    2017-09-01

    Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. O-(4-diazo-3,5-di[125I]iodobenzoyl)sucrose, a novel radioactive label for determining organ sites of catabolism of plasma proteins

    International Nuclear Information System (INIS)

    Jong, A.S.H. de; Bouma, J.M.W.; Gruber, M.

    1981-01-01

    A method is described for radiolabelling proteins with O-(4-diazo-3,5-di[ 125 I]iodobenzoyl)sucrose (DD 125 IBS). When proteins so labelled were degraded within lysosomes, the radioactive fragments were largely retained within the organelle. High specific radioactivities were obtained without changing the properties of the protein. The validity of the method was demonstrated in vivo in rats using the short-lived protein lactate dehydrogenase, isoenzyme M 4 , and the long-lived protein bovine serum albumin. Derivatization with DD 125 IBS did not alter the clearance of either protein. Uptake of DD 125 IBS-labelled lactate dehydrogenase, isoenzyme M 4 , by liver and spleen of rats was determined. Radioactivity in these tissues increased up to about 2 h after injection (at this time the protein has been almost completely cleared from the blood) and subsequently declined with a half-life of approx. 20h. After differential fractionation of liver, radioactivity was largely found in the mitochondrial and lysosomal fraction. The results of these studies establish that DD 125 IBS covalently coupled to plasma proteins should be a useful radioactive tracer for identifying the tissue and cellular sites of catabolism of relatively long-lived circulating proteins. (author)

  6. The genes and enzymes for the catabolism of galactitol, D-tagatose, and related carbohydrates in Klebsiella oxytoca M5a1 and other enteric bacteria display convergent evolution.

    Science.gov (United States)

    Shakeri-Garakani, A; Brinkkötter, A; Schmid, K; Turgut, S; Lengeler, J W

    2004-07-01

    Enteric bacteria (Enteriobacteriaceae) carry on their single chromosome about 4000 genes that all strains have in common (referred to here as "obligatory genes"), and up to 1300 "facultative" genes that vary from strain to strain and from species to species. In closely related species, obligatory and facultative genes are orthologous genes that are found at similar loci. We have analyzed a set of facultative genes involved in the degradation of the carbohydrates galactitol, D-tagatose, D-galactosamine and N-acetyl-galactosamine in various pathogenic and non-pathogenic strains of these bacteria. The four carbohydrates are transported into the cell by phosphotransferase (PTS) uptake systems, and are metabolized by closely related or even identical catabolic enzymes via pathways that share several intermediates. In about 60% of Escherichia coli strains the genes for galactitol degradation map to a gat operon at 46.8 min. In strains of Salmonella enterica, Klebsiella pneumoniae and K. oxytoca, the corresponding gat genes, although orthologous to their E. coli counterparts, are found at 70.7 min, clustered in a regulon together with three tag genes for the degradation of D-tagatose, an isomer of D-fructose. In contrast, in all the E. coli strains tested, this chromosomal site was found to be occupied by an aga/kba gene cluster for the degradation of D-galactosamine and N-acetyl-galactosamine. The aga/kba and the tag genes were paralogous either to the gat cluster or to the fru genes for degradation of D-fructose. Finally, in more then 90% of strains of both Klebsiella species, and in about 5% of the E. coli strains, two operons were found at 46.8 min that comprise paralogous genes for catabolism of the isomers D-arabinitol (genes atl or dal) and ribitol (genes rtl or rbt). In these strains gat genes were invariably absent from this location, and they were totally absent in S. enterica. These results strongly indicate that these various gene clusters and metabolic

  7. STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis[C][W

    Science.gov (United States)

    Sakuraba, Yasuhito; Schelbert, Silvia; Park, So-Yon; Han, Su-Hyun; Lee, Byoung-Doo; Andrès, Céline Besagni; Kessler, Felix; Hörtensteiner, Stefan; Paek, Nam-Chon

    2012-01-01

    During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel’s green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC. PMID:22366162

  8. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli.

    Science.gov (United States)

    Perrenoud, Annik; Sauer, Uwe

    2005-05-01

    Even though transcriptional regulation plays a key role in establishing the metabolic network, the extent to which it actually controls the in vivo distribution of metabolic fluxes through different pathways is essentially unknown. Based on metabolism-wide quantification of intracellular fluxes, we systematically elucidated the relevance of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc for aerobic glucose catabolism in batch cultures of Escherichia coli. Knockouts of ArcB, Cra, Fnr, and Mlc were phenotypically silent, while deletion of the catabolite repression regulators Crp and Cya resulted in a pronounced slow-growth phenotype but had only a nonspecific effect on the actual flux distribution. Knockout of ArcA-dependent redox regulation, however, increased the aerobic tricarboxylic acid (TCA) cycle activity by over 60%. Like aerobic conditions, anaerobic derepression of TCA cycle enzymes in an ArcA mutant significantly increased the in vivo TCA flux when nitrate was present as an electron acceptor. The in vivo and in vitro data demonstrate that ArcA-dependent transcriptional regulation directly or indirectly controls TCA cycle flux in both aerobic and anaerobic glucose batch cultures of E. coli. This control goes well beyond the previously known ArcA-dependent regulation of the TCA cycle during microaerobiosis.

  9. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes.

    Science.gov (United States)

    Dowd, Carola D; Chronis, Demosthenis; Radakovic, Zoran S; Siddique, Shahid; Schmülling, Thomas; Werner, Tomáš; Kakimoto, Tatsuo; Grundler, Florian M W; Mitchum, Melissa G

    2017-10-01

    Cyst and root-knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root-knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Evolved osmotolerant Escherichia coli mutants frequently exhibit defective N-acetylglucosamine catabolism and point mutations in cell shape-regulating protein MreB.

    Science.gov (United States)

    Winkler, James D; Garcia, Carlos; Olson, Michelle; Callaway, Emily; Kao, Katy C

    2014-06-01

    Biocatalyst robustness toward stresses imposed during fermentation is important for efficient bio-based production. Osmotic stress, imposed by high osmolyte concentrations or dense populations, can significantly impact growth and productivity. In order to better understand the osmotic stress tolerance phenotype, we evolved sexual (capable of in situ DNA exchange) and asexual Escherichia coli strains under sodium chloride (NaCl) stress. All isolates had significantly improved growth under selection and could grow in up to 0.80 M (47 g/liter) NaCl, a concentration that completely inhibits the growth of the unevolved parental strains. Whole genome resequencing revealed frequent mutations in genes controlling N-acetylglucosamine catabolism (nagC, nagA), cell shape (mrdA, mreB), osmoprotectant uptake (proV), and motility (fimA). Possible epistatic interactions between nagC, nagA, fimA, and proV deletions were also detected when reconstructed as defined mutations. Biofilm formation under osmotic stress was found to be decreased in most mutant isolates, coupled with perturbations in indole secretion. Transcriptional analysis also revealed significant changes in ompACGL porin expression and increased transcription of sulfonate uptake systems in the evolved mutants. These findings expand our current knowledge of the osmotic stress phenotype and will be useful for the rational engineering of osmotic tolerance into industrial strains in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Influence of the glutamic acid content of the diet on the catabolic rate of labelled glutamic acid in rats. 2

    International Nuclear Information System (INIS)

    Wilke, A.; Simon, O.; Bergner, H.

    1984-01-01

    40 rats with a body weight of 100 g received 7 semisynthetic diets with different contents of glutamic acid and one diet contained whole-egg. A L-amino acid mixture corresponding to the pattern of egg protein was the protein source of the semisynthetic diets. Glutamic acid was supplemented succesively from 0 to 58 mol-% of the total amino acid content. On the 8th day of the experimental feeding the animals were labelled by subcutaneous injection of 14 C-glutamic acid. Subsequently the CO 2 and the 14 CO 2 excretion were measured for 24 hours. In this period 64 to 68 % of the injected radioactivity were recovered as 14 CO 2 . The curve pattern of 14 CO 2 excretion indicates two different processes of 14 CO 2 formation. One characterizing the direct degradation of glutamic acid to CO 2 with a high rate constant and a second one with a lower rate constant characterizing the 14 CO 2 formation via metabolites of glutamic acid. 77 % of the total 14 CO 2 excretion in 24 hours resulted from the direct oxidation of glutamic acid and 23 % from the oxidation of intermediates. When 14 CO 2 formation was measured 10 to 24 hours after injection of 14 C-glutamic acid a positive correlation to the content of glutamic acid in the diet was observed. The intestinal tissue contributes considerably to the catabolization of glutamic acid, however, there seems to exist an upper limit for this capacity. (author)

  12. Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in Micrococcus luteus.

    Science.gov (United States)

    Surger, Maximilian J; Angelov, Angel; Stier, Philipp; Übelacker, Maria; Liebl, Wolfgang

    2018-01-01

    Micrococcus luteus naturally produces alkenes, unsaturated aliphatic hydrocarbons, and represents a promising host to produce hydrocarbons as constituents of biofuels and lubricants. In this work, we identify the genes for key enzymes of the branched-chain amino acid catabolism in M. luteus , whose first metabolic steps lead also to the formation of primer molecules for branched-chain fatty acid and olefin biosynthesis, and demonstrate how these genes can be used to manipulate the production of specific olefins in this organism. We constructed mutants of several gene candidates involved in the branched-chain amino acid metabolism or its regulation and investigated the resulting changes in the cellular fatty acid and olefin profiles by GC/MS. The gene cluster encoding the components of the branched-chain α-keto acid dehydrogenase (BCKD) complex was identified by deletion and promoter exchange mutagenesis. Overexpression of the BCKD gene cluster resulted in about threefold increased olefin production whereas deletion of the cluster led to a drastic reduction in branched-chain fatty acid content and a complete loss of olefin production. The specificities of the acyl-CoA dehydrogenases of the branched amino acid degradation pathways were deduced from the fatty acid and olefin profiles of the respective deletion mutant strains. In addition, growth experiments with branched amino acids as the only nitrogen source were carried out with the mutants in order to confirm our annotations. Both the deletion mutant of the BCKD complex, responsible for the further degradation of all three branched-chain amino acids, as well as the deletion mutant of the proposed isovaleryl-CoA dehydrogenase (specific for leucine degradation) were not able to grow on leucine in contrast to the parental strain. In conclusion, our experiments allow the unambigous assignment of specific functions to the genes for key enzymes of the branched-chain amino acid metabolism of M. luteus . We also show how

  13. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming.

    Science.gov (United States)

    Feng, Wenting; Liang, Junyi; Hale, Lauren E; Jung, Chang Gyo; Chen, Ji; Zhou, Jizhong; Xu, Minggang; Yuan, Mengting; Wu, Liyou; Bracho, Rosvel; Pegoraro, Elaine; Schuur, Edward A G; Luo, Yiqi

    2017-11-01

    Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon-climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the

  14. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism.

    Science.gov (United States)

    Kashyap, Des R; Kuzma, Marcin; Kowalczyk, Dominik A; Gupta, Dipika; Dziarski, Roman

    2017-09-01

    Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn 2+ through influx of extracellular Zn 2+ ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy. © 2017 John Wiley & Sons Ltd.

  15. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.

    Science.gov (United States)

    Hernández-Arranz, Sofía; Moreno, Renata; Rojo, Fernando

    2013-01-01

    Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Pro-inflammatory stimulation of meniscus cells increases production of matrix metalloproteinases and additional catabolic factors involved in osteoarthritis pathogenesis

    Science.gov (United States)

    Stone, Austin V.; Loeser, Richard F.; Vanderman, Kadie S.; Long, David L.; Clark, Stephanie C.; Ferguson, Cristin M.

    2014-01-01

    Objective Meniscus injury increases the risk of osteoarthritis; however, the biologic mechanism remains unknown. We hypothesized that pro-inflammatory stimulation of meniscus would increase production of matrix-degrading enzymes, cytokines and chemokines which cause joint tissue destruction and could contribute to osteoarthritis development. Design Meniscus and cartilage tissue from healthy tissue donors and total knee arthroplasties was cultured. Primary cell cultures were stimulated with pro-inflammatory factors [IL-1β, IL-6, or fibronectin fragments (FnF)] and cellular responses were analyzed by real-time PCR, protein arrays and immunoblots. To determine if NF-κB was required for MMP production, meniscus cultures were treated with inflammatory factors with and without the NF-κB inhibitor, hypoestoxide. Results Normal and osteoarthritic meniscus cells increased their MMP secretion in response to stimulation, but specific patterns emerged that were unique to each stimulus with the greatest number of MMPs expressed in response to FnF. Meniscus collagen and connective tissue growth factor gene expression was reduced. Expression of cytokines (IL-1α, IL-1β, IL-6), chemokines (IL-8, CXCL1, CXCL2, CSF1) and components of the NF-κB and tumor necrosis factor (TNF) family were significantly increased. Cytokine and chemokine protein production was also increased by stimulation. When primary cell cultures were treated with hypoestoxide in conjunction with pro-inflammatory stimulation, p65 activation was reduced as were MMP-1 and MMP-3 production. Conclusions Pro-inflammatory stimulation of meniscus cells increased matrix metalloproteinase production and catabolic gene expression. The meniscus could have an active biologic role in osteoarthritis development following joint injury through increased production of cytokines, chemokines, and matrix-degrading enzymes. PMID:24315792

  17. Comparison of human myofibrillar protein catabolic rate derived from 3-methylhistidine excretion with synthetic rate from muscle biopsies during L-(. cap alpha. -/sup 15/N)lysine infusion

    Energy Technology Data Exchange (ETDEWEB)

    McKeran, R O; Halliday, D; Purkiss, P [Clinical Research Centre, Harrow (UK). Div. of Inherited Metabolic Diseases and Clinical Investigation

    1978-05-01

    Urine was collected in five healthy men over 10 to 14 days, with fasting blood samples on days 1, 5 and 10, whilst they consumed a standard creatine-free diet, which was quantitatively related to their body surface area. The urinary excretion of 3-methylhistidine fell to a plateau by day 5 in all subjects. Myofibrillar protein catabolic rate calculated from the mean value of 3-methylhistidine excretion from day 5 to day 10 averaged 1.21 g day/sup -1/ kg/sup -1/ body weight. The average turnover of muscle myofibrillar protein was calculated to be 2.16%/day. From a previous study using continuous intravenous infusion of L-(a-/sup 15/N)lysine with serial muscle biopsies on the same subjects, the mean myofibrillar protein synthetic rate was calculated to be 0.82 g day/sup -1/ kg/sup -1/ body weight, and the mean turnover rate was 1.47%/day of total muscle myofibrillar protein. The estimations of myofibrillar protein turnover rate derived from the two methods are compared and the differences discussed.

  18. Sequential alterations in catabolic and anabolic gene expression parallel pathological changes during progression of monoiodoacetate-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jin Nam

    Full Text Available Chronic inflammation is one of the major causes of cartilage destruction in osteoarthritis. Here, we systematically analyzed the changes in gene expression associated with the progression of cartilage destruction in monoiodoacetate-induced arthritis (MIA of the rat knee. Sprague Dawley female rats were given intra-articular injection of monoiodoacetate in the knee. The progression of MIA was monitored macroscopically, microscopically and by micro-computed tomography. Grade 1 damage was observed by day 5 post-monoiodoacetate injection, progressively increasing to Grade 2 by day 9, and to Grade 3-3.5 by day 21. Affymetrix GeneChip was utilized to analyze the transcriptome-wide changes in gene expression, and the expression of salient genes was confirmed by real-time-PCR. Functional networks generated by Ingenuity Pathways Analysis (IPA from the microarray data correlated the macroscopic/histologic findings with molecular interactions of genes/gene products. Temporal changes in gene expression during the progression of MIA were categorized into five major gene clusters. IPA revealed that Grade 1 damage was associated with upregulation of acute/innate inflammatory responsive genes (Cluster I and suppression of genes associated with musculoskeletal development and function (Cluster IV. Grade 2 damage was associated with upregulation of chronic inflammatory and immune trafficking genes (Cluster II and downregulation of genes associated with musculoskeletal disorders (Cluster IV. The Grade 3 to 3.5 cartilage damage was associated with chronic inflammatory and immune adaptation genes (Cluster III. These findings suggest that temporal regulation of discrete gene clusters involving inflammatory mediators, receptors, and proteases may control the progression of cartilage destruction. In this process, IL-1β, TNF-α, IL-15, IL-12, chemokines, and NF-κB act as central nodes of the inflammatory networks, regulating catabolic processes. Simultaneously

  19. Involvement of the Cra global regulatory protein in the expression of the iscRSUA operon, revealed during studies of tricarballylate catabolism in Salmonella enterica.

    Science.gov (United States)

    Lewis, Jeffrey A; Boyd, Jeffrey M; Downs, Diana M; Escalante-Semerena, Jorge C

    2009-04-01

    In Salmonella enterica, tricarballylate (Tcb) catabolism requires function of TcuB, a membrane-bound protein that contains [4Fe-4S] clusters and heme. TcuB transfers electrons from reduced flavin adenine dinucleotide in the Tcb dehydrogenase (TcuA) to electron acceptors in the membrane. We recently showed that functions needed to assemble [Fe-S] clusters (i.e., the iscRSUA-hscBA-fdx operon) compensate for the lack of ApbC during growth of an apbC strain on Tcb. ApbC had been linked to [Fe-S] cluster metabolism, and we showed that an apbC strain had decreased TcuB activity. Here we report findings that expand our understanding of the regulation of expression of the iscRSUA genes in Salmonella enterica. We investigated why low levels of glucose or other saccharides restored growth of an apbC strain on Tcb. Here we report the following findings. (i) A Cra. (iv) Putative Cra binding sites are present in the regulatory region of the iscRSUA operon. (v) Cra protein binds to all three sites in the iscRSUA promoter region in a concentration-dependent fashion. To our knowledge, this is the first report of the involvement of Cra in [Fe-S] cluster assembly.

  20. Longitudinal Associations among Renal Urea Clearance-Corrected Normalized Protein Catabolic Rate, Serum Albumin, and Mortality in Patients on Hemodialysis.

    Science.gov (United States)

    Eriguchi, Rieko; Obi, Yoshitsugu; Streja, Elani; Tortorici, Amanda R; Rhee, Connie M; Soohoo, Melissa; Kim, Taehee; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2017-07-07

    There are inconsistent reports on the association of dietary protein intake with serum albumin and outcomes among patients on hemodialysis. Using a new normalized protein catabolic rate (nPCR) variable accounting for residual renal urea clearance, we hypothesized that higher baseline nPCR and rise in nPCR would be associated with higher serum albumin and better survival among incident hemodialysis patients. Among 36,757 incident hemodialysis patients in a large United States dialysis organization, we examined baseline and change in renal urea clearance-corrected nPCR as a protein intake surrogate and modeled their associations with serum albumin and mortality over 5 years (1/2007-12/2011). Median nPCRs with and without accounting for renal urea clearance at baseline were 0.94 and 0.78 g/kg per day, respectively (median within-patient difference, 0.14 [interquartile range, 0.07-0.23] g/kg per day). During a median follow-up period of 1.4 years, 8481 deaths were observed. Baseline renal urea clearance-corrected nPCR was associated with higher serum albumin and lower mortality in the fully adjusted model ( P trend urea clearance-corrected nPCR during the first 6 months was also associated with attaining high serum albumin (≥3.8 g/dl) and lower mortality ( P trend urea clearance, higher levels of renal urea clearance-corrected nPCR consistently showed lower mortality risk. Among incident hemodialysis patients, higher dietary protein intake represented by nPCR and its changes over time appear to be associated with increased serum albumin levels and greater survival. nPCR may be underestimated when not accounting for renal urea clearance. Compared with the conventional nPCR, renal urea clearance-corrected nPCR may be a better marker of mortality. Copyright © 2017 by the American Society of Nephrology.

  1. Administration of structured lipid composed of MCT and fish oil reduces net protein catabolism in enterally fed burned rats.

    Science.gov (United States)

    Teo, T C; DeMichele, S J; Selleck, K M; Babayan, V K; Blackburn, G L; Bistrian, B R

    1989-01-01

    The effects of enteral feeding with safflower oil or a structured lipid (SL) derived from 60% medium-chain triglyceride (MCT) and 40% fish oil (MCT/fish oil) on protein and energy metabolism were compared in gastrostomy-fed burned rats (30% body surface area) by measuring oxygen consumption, carbon dioxide production, nitrogen balance, total liver protein, whole-body leucine kinetics, and rectus muscle and liver protein fractional synthetic rates (FSR, %/day). Male Sprague-Dawley rats (195 +/- 5g) received 50 ml/day of an enteral regimen containing 50 kcal, 2 g amino acids, and 40% nonprotein calories as lipid for three days. Protein kinetics were estimated by using a continuous L-[1-14C] leucine infusion technique on day 2. Thermally injured rats enterally fed MCT/fish oil yielded significantly higher daily and cumulative nitrogen balances (p less than or equal to 0.025) and rectus muscle (39%) FSR (p less than or equal to 0.05) when compared with safflower oil. MCT/fish oil showed a 22% decrease (p less than or equal to 0.005) in per cent flux oxidized and a 7% (p less than or equal to 0.05) decrease in total energy expenditure (TEE) versus safflower oil. A 15% increase in liver FSR was accompanied by a significant elevation (p less than or equal to 0.025) in total liver protein with MCT/fish oil. This novel SL shares the properties of other structured lipids in that it reduces the net protein catabolic effects of burn injury, in part, by influencing tissue protein synthetic rates. The reduction in TEE is unique to MCT/fish oil and may relate to the ability of fish oil to diminish the injury response. PMID:2500898

  2. Effects of 1,2-cyclohexanedione modification on the metabolism of very low density lipoprotein apolipoprotein B: potential role of receptors in intermediate density lipoprotein catabolism

    International Nuclear Information System (INIS)

    Packard, C.J.; Boag, D.E.; Clegg, R.; Bedford, D.; Shepherd, J.

    1985-01-01

    The conversion of very low density (VLDL) to low density lipoproteins (LDL) is a two-step process. The first step is mediated by lipoprotein lipase, but the mechanism responsible for the second is obscure. In this study we examined the possible involvement of receptors at this stage. Apolipoprotein B (apoB)-containing lipoproteins were separated into three fractions, VLDL (Sf 100-400), an intermediate fraction IDL (Sf 12-100), and LDL (Sf 0-12). Autologous 125I-labeled VLDL and 131I-labeled 1,2-cyclohexanedione-modified VLDL were injected into the plasma of four normal subjects and the rate of transfer of apoB radioactivity was followed through IDL to LDL. Modification did not affect VLDL to IDL conversion. Thereafter, however, the catabolism of modified apoB in IDL was retarded and its appearance in LDL was delayed. Hence, functional arginine residues (and by implication, receptors) are required in this process. Confirmation of this was obtained by injecting 125I-labeled IDL and 131I-labeled cyclohexanedione-treated IDL into two additional subjects. Again, IDL metabolism was delayed by approximately 50% as a result of the modification. These data are consistent with the view that receptors are involved in the metabolism of intermediate density lipoprotein

  3. Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses.

    Directory of Open Access Journals (Sweden)

    Laurence Le Moyec

    Full Text Available During long distance endurance races, horses undergo high physiological and metabolic stresses. The adaptation processes involve the modulation of the energetic pathways in order to meet the energy demand. The aims were to evaluate the effects of long endurance exercise on the plasma metabolomic profiles and to investigate the relationships with the individual horse performances. The metabolomic profiles of the horses were analyzed using the non-dedicated methodology, NMR spectroscopy and statistical multivariate analysis. The advantage of this method is to investigate several metabolomic pathways at the same time in a single sample. The plasmas were obtained before exercise (BE and post exercise (PE from 69 horses competing in three endurance races at national level (130-160 km. Biochemical assays were also performed on the samples taken at PE. The proton NMR spectra were compared using the supervised orthogonal projection on latent structure method according to several factors. Among these factors, the race location was not significant whereas the effect of the race exercise (sample BE vs PE of same horse was highly discriminating. This result was confirmed by the projection of unpaired samples (only BE or PE sample of different horses. The metabolomic profiles proved that protein, energetic and lipid metabolisms as well as glycoproteins content are highly affected by the long endurance exercise. The BE samples from finisher horses could be discriminated according to the racing speed based on their metabolomic lipid content. The PE samples could be discriminated according to the horse ranking position at the end of the race with lactate as unique correlated metabolite. As a conclusion, the metabolomic profiles of plasmas taken before and after the race provided a better understanding of the high energy demand and protein catabolism pathway that could expose the horses to metabolic disorders.

  4. Jelly-type carbohydrate supplement in healthy subjects suppresses the catabolism of adipose tissue and muscle protein and improves their satisfactions

    Directory of Open Access Journals (Sweden)

    Takuro Oyama

    2018-06-01

    Full Text Available Summary: Background & aims: Many studies have reported the effects of preoperative clear fluid carbohydrate supplements; however, few studies have reported the effects of preoperative jelly-type carbohydrate supplements. This study aimed to assess the effect of a jelly-type oral nutritional supplement (ONS on metabolism, redox balance by using various surrogate markers and to evaluate its excretion from the stomach. Methods: This study was conducted according to a crossover design. Participants underwent a control experiment whereby they fasted after dinner and only ingested water until the experiment. The remaining participants underwent an ONS experiment whereby they ingested 400 g of ONS before bed and another 400 g at 7:00 am. Blood samples were collected at 9:00 am. After a break of at least 24 h, participants underwent the alternate experiment. Results: Thirty minutes after intake of jelly, the gastric antrum appeared flat (the same result as that at baseline on ultrasonography. The ONS group showed significantly lower serum free fatty acid levels (100 μEq/L, p = 0.027, vs. 327 μEq/L, n = 6, total ketone bodies levels, 3-MH/creatinine levels, and oxidative stress surrogate markers. Serum insulin levels were significantly higher and participant's satisfaction was improved in the ONS group. Conclusions: We have the limitations of our methodologies as surrogate markers, compared with direct measurement of lipolysis, proteolysis and redox balance regulation. But Jelly-type ONS suppresses the catabolism of adipose tissue and muscle protein, decreases oxidative stress and improves patient satisfaction in healthy participants, without any increased risk of aspiration. Keywords: Crossover design, Jelly-type oral nutritional supplement, Metabolism, Antioxidation, ERAS

  5. Increased intra-abdominal fat may lower HDL levels by increasing the fractional catabolic rate of Lp A-I in postmenopausal women.

    Science.gov (United States)

    Vajo, Zoltan; Terry, James G; Brinton, Eliot A

    2002-02-01

    High-density lipoprotein (HDL) particles without apolipoprotein A-II (Lp A-I) may be more anti-atherogenic than HDL with apo A-II (Lp A-I/AII) and Lp A-I is reported selectively to be reduced in cases of intra-abdominal obesity. We explored the mechanisms of this reduction by studying the turnover of Lp A-I and Lp A-I/A-II in postmenopausal women well characterized for total body, regional and sub-regional adiposity by body mass index (BMI), truncal girth ratio, and abdominal magnetic resonance imaging (MRI), respectively. We tested for possible cause-effect relationships by measuring inter-correlations among these variables. Intra-abdominal fat area correlated strongly and positively with the fractional catabolic rate (FCR) of Lp A-I (r=0.98, P=0.003). Intra-abdominal fat only showed a non-significant trend toward correlation with the FCR of Lp A-I/A-II (r=0.84, P=0.07), and had no correlation with the production or transport rate (TR) of either Lp A-I or Lp A-I/A-II (r=0.48 and 0.02, respectively, P>0.1). Subjects were studied both with and without estrogen replacement, allowing exploration of a possible interaction of adiposity with estrogen effects on HDL turnover. Response of HDL turnover to estrogen did not correlate with adiposity, except for a parameter of waist to hip ratio (WHR), which predicted the increase in LP A-I TR with estrogen (r=0.84, P=0.04). We conclude that intra-abdominal fat may lower HDL levels by increasing the FCR of Lp A-I, suggesting a mechanism by which central adiposity may be proatherogenic.

  6. IL-1ß and BMPs - Interactive players of cartilage matrix degradation and regeneration

    Directory of Open Access Journals (Sweden)

    T Aigner

    2006-10-01

    Full Text Available Intact human adult articular cartilage is central for the functioning of the articulating joints. This largely depends on the integrity of its extracellular matrix, given the high loading forces during movements in particular in the weight-bearing joints. Unlike the first impression of a more or less static tissue, articular cartilage shows - albeit in the adult organism a slow - tissue turnover. Thus, one of the most important questions in osteoarthritis research is to understand the balance of catabolic and anabolic factors in articular cartilage as this is the key to understand the biology of cartilage maintenance and degeneration. Anabolic and catabolic pathways are very much intermingled in articular cartilage. The balance between anabolism and catabolism is titrated on numerous levels, starting from the mediator-synthesizing cells which express either catabolic or anabolic factors. Also, on the level of the effector cells (i.e. chondrocytes anabolic and catabolic gene expression compete for a balance of matrix homeostasis, namely the synthesis of matrix components and the expression and activation of matrix-degrading proteases. Also, there are multiple layers of intracellular cross-talks in between the anabolic and catabolic signalling pathways. Maybe the most important lesson from this overview is the notion that the anabolic-catabolic balance as such counts and not so much sufficient net anabolism or limited catabolism alone. Thus, it might be neither the aim of osteoarthritis therapy to foster anabolism nor to knock down catabolism, but the balance of anabolic-catabolic activities as a total might need proper titration and balancing.

  7. PA-1, a Versatile Anaerobe Obtained in Pure Culture, Catabolizes Benzenoids and Other Compounds in Syntrophy with Hydrogenotrophs, and P-2 plus Wolinella sp. Degrades Benzenoids

    Science.gov (United States)

    Barik, Sudhakar; Brulla, W. J.; Bryant, M. P.

    1985-01-01

    Methanogenic enrichments catabolizing 13 mM phenylacetate or 4 mM phenol were established at 37°C, using a 10% inoculum from a municipal anaerobic digester. By using agar roll tubes of the basal medium plus 0.1% yeast extract-25 mM fumarate, a hydrogenotrophic lawn of Wolinella succinogenes and phenol or phenylacetate, strains P-2 and PA-1, respectively, were isolated in coculture with W. succinogenes. With the lawn deleted, PA-1 was isolated in pure culture. Strain P-2 is apparently a new species of anaerobic, motile, gram-negative, spindle-shaped, small rod that as yet has been grown only in coculture with W. succinogenes. It used phenol, hydrocinnamate, benzoate, and phenylacetate as energy sources. Product recovery by the coculture, per mole of phenol and 4.4 mol of fumarate used, included 2.03, 0.12, 0.08, and 3.23 mol, respectively, of acetate, propionate, butyrate, and succinate. Carbon recovery was 75% and H recovery was 80%, although CO2 and a few other possible products were not determined. That P-2 is an obligate proton-reducing acetogen and possible pathways for its degradation of phenol are discussed. Strain PA-1 is apparently a new species of anaerobic, motile, relatively small, gram-negative rod. It utilized compounds such as phenylacetate, hydrocinnamate, benzoate, phenol, resorcinol, gallate, 4-aminophenol, 2-aminobenzoate, pyruvate, Casamino Acids, and aspartate as energy sources in coculture with W. succinogenes. Per mole of phenylacetate and 1.44 mol of fumarate used, 1.04, 0.53, and 0.78 mol of acetate, propionate, and succinate, respectively, were recovered from the coculture. Only about 50% of the carbon and H were recovered. In coculture with Methanospirillum hungatei, 0.96 mol of acetate and 0.25 mol of methane were recovered per mol of pyruvate used; 0.90 mol of acetate and 0.33 mol of methane, per mol of fumarate used; 0.93 mol of acetate and 0.54 mol of methane, per mol of aspartate used; and 1.71 mol of acetate and 0.57 mol of methane

  8. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58*

    Science.gov (United States)

    Wichelecki, Daniel J.; Vetting, Matthew W.; Chou, Liyushang; Al-Obaidi, Nawar; Bouvier, Jason T.; Almo, Steven C.; Gerlt, John A.

    2015-01-01

    Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool. PMID:26472925

  9. Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7

    Directory of Open Access Journals (Sweden)

    Zhang Shuangyu

    2012-03-01

    Full Text Available Abstract Background para-Nitrophenol (PNP, a priority environmental pollutant, is hazardous to humans and animals. However, the information relating to the PNP degradation pathways and their enzymes remain limited. Results Pseudomonas sp.1-7 was isolated from methyl parathion (MP-polluted activated sludge and was shown to degrade PNP. Two different intermediates, hydroquinone (HQ and 4-nitrocatechol (4-NC were detected in the catabolism of PNP. This indicated that Pseudomonas sp.1-7 degraded PNP by two different pathways, namely the HQ pathway, and the hydroxyquinol (BT pathway (also referred to as the 4-NC pathway. A gene cluster (pdcEDGFCBA was identified in a 10.6 kb DNA fragment of a fosmid library, which cluster encoded the following enzymes involved in PNP degradation: PNP 4-monooxygenase (PdcA, p-benzoquinone (BQ reductase (PdcB, hydroxyquinol (BT 1,2-dioxygenase (PdcC, maleylacetate (MA reductase (PdcF, 4-hydroxymuconic semialdehyde (4-HS dehydrogenase (PdcG, and hydroquinone (HQ 1,2-dioxygenase (PdcDE. Four genes (pdcDEFG were expressed in E. coli and the purified pdcDE, pdcG and pdcF gene products were shown to convert HQ to 4-HS, 4-HS to MA and MA to β-ketoadipate respectively by in vitro activity assays. Conclusions The cloning, sequencing, and characterization of these genes along with the functional PNP degradation studies identified 4-NC, HQ, 4-HS, and MA as intermediates in the degradation pathway of PNP by Pseudomonas sp.1-7. This is the first conclusive report for both 4-NC and HQ- mediated degradation of PNP by one microorganism.

  10. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria.

    Science.gov (United States)

    Araújo, Wagner L; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A; Leaver, Christopher J; Fernie, Alisdair R

    2010-05-01

    The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route.

  11. Magnolol Affects Cellular Proliferation, Polyamine Biosynthesis and Catabolism-Linked Protein Expression and Associated Cellular Signaling Pathways in Human Prostate Cancer Cells in vitro

    Directory of Open Access Journals (Sweden)

    Brendan T. McKeown

    2015-01-01

    Full Text Available Background: Prostate cancer is the most commonly diagnosed form of cancer in men in Canada and the United States. Both genetic and environmental factors contribute to the development and progression of many cancers, including prostate cancer. Context and purpose of this study: This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on cellular proliferation and proliferation-linked activities of PC3 human prostate cancer cells in vitro. Results: PC3 cells exposed to magnolol at a concentration of 80 μM for 6 hours exhibited decreased protein expression of ornithine decarboxylase, a key regulator in polyamine biosynthesis, as well as affecting the expression of other proteins involved in polyamine biosynthesis and catabolism. Furthermore, protein expression of the R2 subunit of ribonucleotide reductase, a key regulatory protein associated with DNA synthesis, was significantly decreased. Finally, the MAPK (mitogen-activated protein kinase, PI3K (phosphatidylinositol 3-kinase, NFκB (nuclear factor of kappa-light-chain-enhancer of activated B cells and AP-1 (activator protein 1 cellular signaling pathways were assayed to determine which, if any, of these pathways magnolol exposure would alter. Protein expressions of p-JNK-1 and c-jun were significantly increased while p-p38, JNK-1/2, PI3Kp85, p-PI3Kp85, p-Akt, NFκBp65, p-IκBα and IκBα protein expressions were significantly decreased. Conclusions: These alterations further support the anti-proliferative effects of magnolol on PC3 human prostate cancer cells in vitro and suggest that magnolol may have potential as a novel anti-prostate cancer agent.

  12. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk.

    Science.gov (United States)

    Do Carmo, A P; De Oliveira, M N V; Da Silva, D F; Castro, S B; Borges, A C; De Carvalho, A F; De Moraes, C A

    2012-03-01

    There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh - lactate dehydrogenase, adhE - Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 - catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property

  13. Metabolic variations of fatty acid in isolated rat heart reperfused after a transient global ischemia

    International Nuclear Information System (INIS)

    Huang Gang; Michel Comet; Zhao Huiyang; Zhu Cuiying; Yuan Jimin

    1998-01-01

    Purpose: The fatty acid metabolism and the effect of glucose on it were studied in isolated and reperfused rat heat. Methods: 32 isolated working rat hearts were perfused in Langengdorff device with modified Krebs and were divided into normal and ischemia-reperfused group. Each group was also classified into two subgroups, modified krebs with or without glucose subgroup. 131 I-HA was injected into aorta of isolated working rat heart and then the radio-residue curves were acquired. Results: When the isolated rat hearts were perfused with krebs plus glucose, the catabolism of fatty acid was significantly decreased in normal group, but a remarkable increase of fatty acid catabolism was found in ischemia-reperfused group. While the isolated rat hearts were perfused with krebs without glucose, the catabolism of fatty acid in ischemia-reperfused isolated rat hearts were perfused with krebs without glucose, the catabolism of fatty acid in ischemia-reperfused isolated rat heart was less than that in normal group. Conclusions: Transient ischemia damages the catabolism of myocardial fatty acid in mitochondria in some degree. In normal isolated working rat heart, the principal energy source is glucose. However, the major energy source is switched to catabolism of fatty acid in ischemia-reperfused isolated rat heart. This phenomenon may be related to compensative increase of fatty acid catabolism for replenishing the loss of energy during ischemia

  14. Identification of the 2-Hydroxyglutarate and Isovaleryl-CoA Dehydrogenases as Alternative Electron Donors Linking Lysine Catabolism to the Electron Transport Chain of Arabidopsis Mitochondria[W][OA

    Science.gov (United States)

    Araújo, Wagner L.; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R.; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A.; Leaver, Christopher J.; Fernie, Alisdair R.

    2010-01-01

    The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route. PMID:20501910

  15. Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha.

    Science.gov (United States)

    Szymocha, R; Akaoka, H; Dutuit, M; Malcus, C; Didier-Bazes, M; Belin, M F; Giraudon, P

    2000-07-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of a chronic progressive myelopathy called tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In this disease, lesions of the central nervous system (CNS) are associated with perivascular infiltration by lymphocytes. We and others have hypothesized that these T lymphocytes infiltrating the CNS may play a prominent role in TSP/HAM. Here, we show that transient contact of human or rat astrocytes with T lymphocytes chronically infected by HTLV-1 impairs some of the major functions of brain astrocytes. Uptake of extracellular glutamate by astrocytes was significantly decreased after transient contact with infected T cells, while the expression of the glial transporters GLAST and GLT-1 was decreased. In two-compartment cultures avoiding direct cell-to-cell contact, similar results were obtained, suggesting possible involvement of soluble factors, such as cytokines and the viral protein Tax-1. Recombinant Tax-1 and tumor necrosis factor alpha (TNF-alpha) decreased glutamate uptake by astrocytes. Tax-1 probably acts by inducing TNF-alpha, as the effect of Tax-1 was abolished by anti-TNF-alpha antibody. The expression of glutamate-catabolizing enzymes in astrocytes was increased for glutamine synthetase and decreased for glutamate dehydrogenase, the magnitudes of these effects being correlated with the level of Tax-1 transcripts. In conclusion, Tax-1 and cytokines produced by HTLV-1-infected T cells impair the ability of astrocytes to manage the steady-state level of glutamate, which in turn may affect neuronal and oligodendrocytic functions and survival.

  16. Synthesis and Physicochemical Characterization of D-Tagatose-1-Phosphate: The Substrate of the Tagatose-1-Phosphate Kinase in the Phosphotransferase System-Mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis.

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I; Thompson, John; Joris, Bernard; Battistel, Marcos D

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multicomponent phosphoenolpyruvate:sugar phosphotransferase system (PEP-PTS) present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by (31)P and (1)H nuclear magnetic resonance spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-tagatose catabolic pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TF(His6)) of Escherichia coli. The active fusion enzyme was named TagK-TF(His6). Tag-1P and D-fructose-1-phosphate are substrates for the TagK-TF(His6) enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate and D-fructose-6-phosphate are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as the substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific Enzyme II in E. coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and Enzyme I to restore the phosphate transfer is demonstrated. © 2015 S. Karger AG, Basel.

  17. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides

    Science.gov (United States)

    Yin, Fugui; Yu, Hai; Lepp, Dion; Shi, Xuejiang; Yang, Xiaojian; Hu, Jielun; Leeson, Steve; Yang, Chengbo; Nie, Shaoping; Hou, Yongqing; Gong, Joshua

    2016-01-01

    indicated that dietary BG intervention induced 79 and 205 characterized DEGs in the jejunum and liver, respectively. In addition, 255 and 165 TSEGs were detected in the liver and jejunum of BG-fed group, while 162 and 211 TSEGs genes were observed in the liver and jejunum of BD-fed birds, respectively. Bioinformatic analysis with both IPA and DAVID-BR further revealed a significant enrichment of DEGs and TSEGs in the biological processes for reducing the synthesis, storage, transportation and secretion of lipids in the jejunum, while those in the liver were for enhancing the oxidation of ingested lipids and fatty acids. In particular, transcriptional regulators of THRSP and EGR-1 as well as several DEGs involved in the PPAR-α signaling pathway were significantly induced by dietary BG intervention for lipid catabolism. Conclusions Our results demonstrate that BG reduces body fat deposition via regulation of gene expression, which is involved in the biological events relating to the reduction of synthesis, storage, transportation and secretion, and improvement of oxidation of lipids and fatty acids. PMID:27508934

  18. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2016-03-01

    Bioprospecting is an effective way to find novel enzymes from strains with desirable phenotypes. Such bioprospecting has enabled organisms such as Saccharomyces cerevisiae to utilize nonnative pentose sugars. Yet, the efficiency of this pentose catabolism (especially for the case of arabinose) remains suboptimal. Thus, further pathway optimization or identification of novel, optimal pathways is needed. Previously, we identified a novel set of xylan catabolic pathway enzymes from a superior pentose-utilizing strain of Ustilago bevomyces. These enzymes were used to successfully engineer a xylan-utilizing S. cerevisiae through a blended approach of bioprospecting and evolutionary engineering. Here, we expanded this approach to xylose and arabinose catabolic pathway engineering and demonstrated that bioprospected xylose and arabinose catabolic pathways from U. bevomyces offer alternative choices for enabling efficient pentose catabolism in S. cerevisiae. By introducing a novel set of xylose catabolic genes from U. bevomyces, growth rates were improved up to 85 % over a set of traditional Scheffersomyces stipitis pathway genes. In addition, we suggested an alternative arabinose catabolic pathway which, after directed evolution and pathway engineering, enabled S. cerevisiae to grow on arabinose as a sole carbon source in minimal medium with growth rates upwards of 0.05 h(-1). This pathway represents the most efficient growth of yeast on pure arabinose minimal medium. These pathways provide great starting points for further strain development and demonstrate the utility of bioprospecting from U. bevomyces.

  19. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs.

    Science.gov (United States)

    Zheng, Liufeng; Zuo, Fangrui; Zhao, Shengjun; He, Pingli; Wei, Hongkui; Xiang, Quanhang; Pang, Jiaman; Peng, Jian

    2017-04-01

    Branched-chain amino acids (BCAA) have been clearly demonstrated to have anabolic effects on muscle protein synthesis. However, little is known about their roles in the regulation of net AA fluxes across skeletal muscle in vivo. This study was aimed to investigate the effect and related mechanisms of dietary supplementation of BCAA on muscle net amino acid (AA) fluxes using the hindlimb flux model. In all fourteen 4-week-old barrows were fed reduced-protein diets with or without supplemental BCAA for 28 d. Pigs were implanted with carotid arterial, femoral arterial and venous catheters, and fed once hourly with intraarterial infusion of p-amino hippurate. Arterial and venous plasma and muscle samples were obtained for the measurement of AA, branched-chain α-keto acids (BCKA) and 3-methylhistidine (3-MH). Metabolomes of venous plasma were determined by HPLC-quadrupole time-of-flight-MS. BCAA-supplemented group showed elevated muscle net fluxes of total essential AA, non-essential AA and AA. As for individual AA, muscle net fluxes of each BCAA and their metabolites (alanine, glutamate and glutamine), along with those of histidine, methionine and several functional non-essential AA (glycine, proline and serine), were increased by BCAA supplementation. The elevated muscle net AA fluxes were associated with the increase in arterial and intramuscular concentrations of BCAA and venous metabolites including BCKA and free fatty acids, and were also related to the decrease in the intramuscular concentration of 3-MH. Correlation analysis indicated that muscle net AA fluxes are highly and positively correlated with arterial BCAA concentrations and muscle net BCKA production. In conclusion, supplementing BCAA to reduced-protein diet increases the arterial concentrations and intramuscular catabolism of BCAA, both of which would contribute to an increase of muscle net AA fluxes in young pigs.

  20. Synthesis and Physicochemical Characterization of D-Tagatose-1-phosphate: The Substrate of the Tagatose-1-Phosphate Kinase TagK in the PTS-mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I.; Thompson, John; Joris, Bernard; Battistel, Marcos D.

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multi-component PEP-dependent:tag-PTS present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by 31P and 1H NMR spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-Tagatose catabolic Pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TFHis6) of Escherichia coli. The active fusion enzyme was named TagK-TFHis6. Tag-1P and D-fructose-1-phosphate (Fru-1P) are substrates for the TagK-TFHis6 enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate (Tag-6P) and D-fructose-6-phosphate (Fru-6P) are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific enzyme II (EIITag) in E.coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and EI, to restore the phosphate transfer is demonstrated. PMID:26159072

  1. Errors in Computing the Normalized Protein Catabolic Rate due to Use of Single-pool Urea Kinetic Modeling or to Omission of the Residual Kidney Urea Clearance.

    Science.gov (United States)

    Daugirdas, John T

    2017-07-01

    The protein catabolic rate normalized to body size (PCRn) often is computed in dialysis units to obtain information about protein ingestion. However, errors can manifest when inappropriate modeling methods are used. We used a variable volume 2-pool urea kinetic model to examine the percent errors in PCRn due to use of a 1-pool urea kinetic model or after omission of residual urea clearance (Kru). When a single-pool model was used, 2 sources of errors were identified. The first, dependent on the ratio of dialyzer urea clearance to urea distribution volume (K/V), resulted in a 7% inflation of the PCRn when K/V was in the range of 6 mL/min per L. A second, larger error appeared when Kt/V values were below 1.0 and was related to underestimation of urea distribution volume (due to overestimation of effective clearance) by the single-pool model. A previously reported prediction equation for PCRn was valid, but data suggest that it should be modified using 2-pool eKt/V and V coefficients instead of single-pool values. A third source of error, this one unrelated to use of a single-pool model, namely omission of Kru, was shown to result in an underestimation of PCRn, such that each ml/minute Kru per 35 L of V caused a 5.6% underestimate in PCRn. Marked overestimation of PCRn can result due to inappropriate use of a single-pool urea kinetic model, particularly when Kt/V <1.0 (as in short daily dialysis), or after omission of residual native kidney clearance. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Neuraminidase-1 contributes significantly to the degradation of neuronal B-series gangliosides but not to the bypass of the catabolic block in Tay–Sachs mouse models

    Directory of Open Access Journals (Sweden)

    Z.K. Timur

    2015-09-01

    Full Text Available Tay–Sachs disease is a severe lysosomal storage disorder caused by mutations in the HEXA gene coding for α subunit of lysosomal β-Hexosaminidase A enzyme, which converts GM2 to GM3 ganglioside. HexA−/− mice, depleted of the β-Hexosaminidase A iso-enzyme, remain asymptomatic up to 1 year of age because of a metabolic bypass by neuraminidase(s. These enzymes remove a sialic acid residue converting GM2 to GA2, which is further degraded by the still intact β-Hexosaminidase B iso-enzyme into lactosylceramide. A previously identified ganglioside metabolizing neuraminidase, Neu4, is abundantly expressed in the mouse brain and has activity against gangliosides like GM2 in vitro. Neu4−/− mice showed increased GD1a and decreased GM1 ganglioside in the brain suggesting the importance of the Neu4 in ganglioside catabolism. Mice with targeted disruption of both HexA and Neu4 genes showed accumulating GM2 ganglioside and epileptic seizures with 40% penetrance, indicating that the neuraminidase Neu4 is a modulatory gene, but may not be the only neuraminidase contributing to the metabolic bypass in HexA−/− mice. Therefore, we elucidated the biological role of neuraminidase-1 in ganglioside degradation in mouse. Analysis of HexA−/−Neu1−/− and HexA−/−Neu4−/−Neu1−/− mice models showed significant contribution of neuraminidase-1 on B-series ganglioside degradation in the brain. Therefore, we speculate that other neuraminidase/neuraminidases such as Neu2 and/or Neu3 might be also involved in the ganglioside degradation pathway in HexA−/− mice.

  3. Krill protein hydrolysate reduces plasma triacylglycerol level with concurrent increase in plasma bile acid level and hepatic fatty acid catabolism in high-fat fed mice

    Directory of Open Access Journals (Sweden)

    Marie S. Ramsvik

    2013-11-01

    Full Text Available Background: Krill powder, consisting of both lipids and proteins, has been reported to modulate hepatic lipid catabolism in animals. Fish protein hydrolysate diets have also been reported to affect lipid metabolism and to elevate bile acid (BA level in plasma. BA interacts with a number of nuclear receptors and thus affects a variety of signaling pathways, including very low density lipoprotein (VLDL secretion. The aim of the present study was to investigate whether a krill protein hydrolysate (KPH could affect lipid and BA metabolism in mice. Method: C57BL/6 mice were fed a high-fat (21%, w/w diet containing 20% crude protein (w/w as casein (control group or KPH for 6 weeks. Lipids and fatty acid composition were measured from plasma, enzyme activity and gene expression were analyzed from liver samples, and BA was measured from plasma. Results: The effect of dietary treatment with KPH resulted in reduced levels of plasma triacylglycerols (TAG and non-esterified fatty acids (NEFAs. The KPH treated mice had also a marked increased plasma BA concentration. The increased plasma BA level was associated with induction of genes related to membrane canalicular exporter proteins (Abcc2, Abcb4 and to BA exporters to blood (Abcc3 and Abcc4. Of note, we observed a 2-fold increased nuclear farnesoid X receptor (Fxr mRNA levels in the liver of mice fed KPH. We also observed increased activity of the nuclear peroxiosme proliferator-activated receptor alpha (PPARα target gene carnitine plamitoyltransferase 2 (CPT-2. Conclusion: The KPH diet showed to influence lipid and BA metabolism in high-fat fed mice. Moreover, increased mitochondrial fatty acid oxidation and elevation of BA concentration may regulate the plasma level of TAGs and NEFAs.

  4. Increased Erythrocytes By-Products of Arginine Catabolism Are Associated with Hyperglycemia and Could Be Involved in the Pathogenesis of Type 2 Diabetes Mellitus

    Science.gov (United States)

    Ramírez-Zamora, Serafín; Méndez-Rodríguez, Miguel L.; Olguín-Martínez, Marisela; Sánchez-Sevilla, Lourdes; Quintana-Quintana, Miguel; García-García, Norberto; Hernández-Muñoz, Rolando

    2013-01-01

    Diabetes mellitus (DM) is a worldwide disease characterized by metabolic disturbances, frequently associated with high risk of atherosclerosis and renal and nervous system damage. Here, we assessed whether metabolites reflecting oxidative redox state, arginine and nitric oxide metabolism, are differentially distributed between serum and red blood cells (RBC), and whether significant metabolism of arginine exists in RBC. In 90 patients with type 2 DM without regular treatment for diabetes and 90 healthy controls, paired by age and gender, we measured serum and RBC levels of malondialdehyde (MDA), nitrites, ornithine, citrulline, and urea. In isolated RBC, metabolism of L-[14C]-arginine was also determined. In both groups, nitrites were equally distributed in serum and RBC; citrulline predominated in serum, whereas urea, arginine, and ornithine were found mainly in RBC. DM patients showed hyperglycemia and increased blood HbA1C, and increased levels of these metabolites, except for arginine, significantly correlating with blood glucose levels. RBC were observed to be capable of catabolizing arginine to ornithine, citrulline and urea, which was increased in RBC from DM patients, and correlated with an increased affinity for arginine in the activities of putative RBC arginase (Km = 0.23±0.06 vs. 0.50±0.13 mM, in controls) and nitric oxide synthase (Km = 0.28±0.06 vs. 0.43±0.09 mM, in controls). In conclusion, our results suggest that DM alters metabolite distribution between serum and RBC, demonstrating that RBC regulate serum levels of metabolites which affect nitrogen metabolism, not only by transporting them but also by metabolizing amino acids such as arginine. Moreover, we confirmed that urea can be produced also by human RBC besides hepatocytes, being much more evident in RBC from patients with type 2 DM. These events are probably involved in the specific physiopathology of this disease, i.e., endothelial damage and dysfunction. PMID:23826148

  5. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil

    International Nuclear Information System (INIS)

    Triggiani, M.; D'Souza, D.M.; Chilton, F.H.

    1991-01-01

    The biosynthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-2-acetyl-GPC) together with that of 1-alkyl-2-acetyl-GPC (platelet-activating factor) has been demonstrated in a variety of inflammatory cells and tissues. It has been hypothesized that the relative proportion of these phospholipids produced upon cell activation may be influenced by their rates of catabolism. We studied the catabolism of 1-acyl-2-acetyl-GPC in resting and activated human neutrophils and compared it to that of 1-alkyl-2-acetyl-GPC. Neutrophils rapidly catabolize both 1-alkyl-2-acetyl-GPC and 1-acyl-2-acetyl-GPC; however, the rate of catabolism of 1-acyl-2-acetyl-GPC is approximately 2-fold higher than that of 1-alkyl-2-acetyl-GPC. In addition, most of 1-acyl-2-acetyl-GPC is catabolized through a pathway different from that of 1-alkyl-2-acetyl-GPC. The main step in the catabolism of 1-acyl-2-acetyl-GPC is the removal of the long chain at the sn-1 position; the long chain residue is subsequently incorporated either into triglycerides or into phosphatidylcholine. The 1-lyso-2-acetyl-GPC formed in this reaction is then further degraded to glycerophosphocholine, choline, or phosphocholine. 1-Acyl-2-acetyl-GPC is also catabolized, to a lesser extent, through deacetylation at the sn-2 position and reacylation with a long chain fatty acid. Stimulation of neutrophils by A23187 results in a higher rate of catabolism of 1-acyl-2-acetyl-GPC by increasing both the removal of the long chain at the sn-1 position and the deacetylation-reacylation at the sn-2 position. In a broken cell preparation, the cytosolic fraction of the neutrophil was shown to contain an enzyme activity which cleaved the sn-1 position of 1-acyl-2-acetyl-GPC and 1-acyl-2-lyso-GPC but not of 1,2-diacyl-GPC

  6. Influence of Environmental Stressors on the Physiology of Pollutant Degrading Bacteria

    DEFF Research Database (Denmark)

    Svenningsen, Nanna Bygvraa

    of model degrader bacteria to nutrient- and oxidative stress, two highly relevant stress scenarios in natural environments, and at evaluating the impact of these environmental stress conditions on catabolic gene expression. The results suggest that environmental bacteria, here represented by the toluene...... biodegradative or catabolic performance. To date, details concerning the physiology of degrader microorganisms and their ability to express the relevant catabolic genes in the context of a complex and stressful environment have yet to be elucidated. In order to fully exploit the catabolic potential of degrader......- and xylene degrading bacterium Pseudomonas putida mt-2 and the phenoxy acid herbicide degrading bacterium Cupriavidus pinatubonensis JMP134, have a high defense capacity towards archetypical environmental stressors. However, the results also showed that induction of a stress defense may have a cost in regard...

  7. Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes.

    Science.gov (United States)

    Gurav, Ranjit; Lyu, Honghong; Ma, Jianli; Tang, Jingchun; Liu, Qinglong; Zhang, Hairong

    2017-04-01

    In the present study, salt-tolerant strains, Dietzia sp. HRJ2, Corynebacterium variabile HRJ4, Dietzia cinnamea HRJ5 and Bacillus tequilensis HRJ6 were isolated from the Dagang oil field, China. These strains degraded n-alkanes and polycyclic aromatic hydrocarbons (PAHs) aerobically from heavy crude oil (HCO) in an experiment at 37 °C and 140 rpm. The GC/MS investigation for degradation of different chain lengths of n-alkanes (C8-C40) by individual strains showed the highest degradation of C8-C19 (HRJ5), C20-C30 (HRJ4) and C31-C40 (HRJ5), respectively. Moreover, degradation of 16 PAHs with individual strains demonstrated that the bicyclic and pentacyclic aromatic hydrocarbons (AHs) were mostly degraded by HRJ5, tricyclic and tetracyclic AHs by HRJ6 and hexacyclic AHs by HRJ2. However, the highest degradation of total petroleum hydrocarbons (TPHs), total saturated hydrocarbons (TSH), total aromatic hydrocarbons (TAH), n-alkanes (C8-C40) and 16 PAHs was achieved by a four-membered consortium (HRJ2 + 4 + 5 + 6) within 12 days, with the predominance of HRJ4 and HRJ6 strains which was confirmed by denaturing gradient gel electrophoresis. The abundance of alkB and nah genes responsible for catabolism of n-alkanes and PAHs was quantified using the qPCR. Maximum copy numbers of genes were observed in HRJ2 + 4 + 5 + 6 consortium (gene copies l -1 ) 2.53 × 10 4 (alkB) and 3.47 × 10 3 (nah) at 12 days, which corresponded to higher degradation rates of petroleum hydrocarbons. The superoxide dismutase (SOD) (total SOD (T-SOD), Cu 2+ Zn 2+ -SOD), catalase (CAT) and ascorbate peroxidase (APX) activities in Allium sativum and Triticum aestivum were lower in the HRJ2 + 4 + 5 + 6-treated HCO as compared to the plantlets exposed directly to HCO. The present results revealed the effective degradation of HCO-contaminated saline medium using the microbial consortium having greater metabolic diversity.

  8. Effects of ingesting protein with various forms of carbohydrate following resistance-exercise on substrate availability and markers of anabolism, catabolism, and immunity

    Directory of Open Access Journals (Sweden)

    Greenwood Michael

    2007-11-01

    Full Text Available Abstract Background Ingestion of carbohydrate (CHO and protein (PRO following intense exercise has been reported to increase insulin levels, optimize glycogen resynthesis, enhance PRO synthesis, and lessen the immuno-suppressive effects of intense exercise. Since different forms of CHO have varying glycemic effects, the purpose of this study was to determine whether the type of CHO ingested with PRO following resistance-exercise affects blood glucose availability and insulin levels, markers of anabolism and catabolism, and/or general immune markers. Methods 40 resistance-trained subjects performed a standardized resistance training workout and then ingested in a double blind and randomized manner 40 g of whey PRO with 120 g of sucrose (S, honey powder (H, or maltodextrin (M. A non-supplemented control group (C was also evaluated. Blood samples were collected prior to and following exercise as well as 30, 60, 90, and 120 min after ingestion of the supplements. Data were analyzed by repeated measures ANOVA or ANCOVA using baseline values as a covariate if necessary. Results Glucose concentration 30 min following ingestion showed the H group (7.12 ± 0.2 mmol/L to be greater than S (5.53 ± 0.6 mmol/L; p uIU/mL, H (150.1 ± 25.39 uIU/mL, and M (154.8 ± 18.9 uIU/mL were greater than C (8.7 ± 2.9 uIU/mL as was AUC with no significant differences observed among types of CHO. No significant group × time effects were observed among groups in testosterone, cortisol, the ratio of testosterone to cortisol, muscle and liver enzymes, or general markers of immunity. Conclusion CHO and PRO ingestion following exercise significantly influences glucose and insulin concentrations. Although some trends were observed suggesting that H maintained blood glucose levels to a better degree, no significant differences were observed among types of CHO ingested on insulin levels. These findings suggest that each of these forms of CHO can serve as effective sources of

  9. Effects of phenobarbital on thyroid hormone contabolism in rat hepatocytes

    Science.gov (United States)

    Hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations in rodents. PB induction of hepatic xenobiotic metabolizing enzymes increases thyroid hormones catabolism and biliary elimination. This study examines the catabolism and cl...

  10. Resistance training & beta-hydroxy-beta-methylbutyrate supplementation on hormones

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    2015-10-01

    Full Text Available RESUMOIntroduction:In recent years, there was an increased interest on the effects of beta-hydroxy-beta-methylbutyrate (HMB supplementation on skeletal muscle due to its anti-catabolic effects.Objectives:To investigate the effect of HMB supplementation on body composition, muscular strength and anabolic-catabolic hormones after resistance training.Methods:Twenty amateur male athletes were randomly assigned to supplement and control groups in a double-blind crossover design and participated in four weeks resistance training. Before and after the test period fasting blood samples were obtained to determine anabolic (the growth hormone and testosterone and catabolic (cortisol hormones, and fat mass, lean body mass (LBM and muscular strength were measured. Dependent and independent t-tests were used to analyze data.Results:After the training period, there were no significant differen-ces between the groups with respect to fat mass, LBM and anabolic-catabolic hormones. HMB supplementation resulted in a significantly greater strength gain (p≤0.05.Conclusion:Greater increase in strength for HMB group was not accompanied by body composition and basal circulating anabolic-catabolic hormonal changes. It seems that HMB supplementation may have beneficial effects on neurological adaptations of strength gain.

  11. Effects of anabolic and catabolic nutrients on woody plant encroachment after long-term experimental fertilization in a South African savanna.

    Directory of Open Access Journals (Sweden)

    Anthony J Mills

    Full Text Available The causes of the worldwide problem of encroachment of woody plants into grassy vegetation are elusive. The effects of soil nutrients on competition between herbaceous and woody plants in various landscapes are particularly poorly understood. A long-term experiment of 60 plots in a South African savanna, comprising annual applications of ammonium sulphate (146-1166 kg ha-1 yr-1 and superphosphate (233-466 kg ha-1 yr-1 over three decades, and subsequent passive protection over another three decades, during which indigenous trees encroached on different plots to extremely variable degrees, provided an opportunity to investigate relationships between soil properties and woody encroachment. All topsoils were analysed for pH, acidity, EC, water-dispersible clay, Na, Mg, K, Ca, P, S, C, N, NH4, NO3, B, Mn, Cu and Zn. Applications of ammonium sulphate (AS, but not superphosphate (SP, greatly constrained tree abundance relative to control plots. Differences between control plots and plots that had received maximal AS application were particularly marked (16.3 ± 5.7 versus 1.2 ± 0.8 trees per plot. Soil properties most affected by AS applications included pH (H2O (control to maximal AS application: 6.4 ± 0.1 to 5.1 ± 0.2, pH (KCl (5.5 ± 0.2 to 4.0 ± 0.1, acidity (0.7 ± 0.1 to 2.6 ± 0.3 cmol kg-1, acid saturation (8 ± 2 to 40 ± 5%, Mg (386 ± 25 to 143 ± 15 mg kg-1, Ca (1022 ± 180 to 322 ± 14 mg kg-1, Mn (314 ± 11 to 118 ± 9 mg kg-1, Cu (3.6 ± 0.3 to 2.3 ± 0.2 mg kg-1 and Zn (6.6 ± 0.4 to 3.7 ± 0.4 mg kg-1. Magnesium, B, Mn and Cu were identified using principal component analysis, boundary line analysis and Kruskal-Wallis rank sum tests as the nutrients most likely to be affecting tree abundance. The ratio Mn/Cu was most related to tree abundance across the experiment, supporting the hypothesis that competition between herbaceous and woody plants depends on the availability of anabolic relative to catabolic nutrients. These findings

  12. Glyphosate catabolism by Pseudomonas sp

    International Nuclear Information System (INIS)

    Shinabarger, D.L.

    1986-01-01

    The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3- 14 C] glyphosate revealed that approximately 50-59% of the C3 carbon was oxidized to CO 2 . Fractionation of stationary phase cells labeled with [3- 14 C]glyphosate revealed that from 45-47% of the assimilated C3 carbon is distributed to proteins and that amino acids methionine and serine are highly labeled. The nucleic acid bases adenine and guanine received 90% of the C3 label that was incorporated into nucleic acids, and the only pyrimidine base labeled was thymine. Pulse labeling of PG2982 cells with [3- 14 C]glyphosate revealed that [3- 14 C]sarcosine is an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of an enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. Phosphonate utilization by Pseudomonas sp. PG2982 was investigated. Each of the ten phosphonates tested were utilized as a sole source of phosphorus by PG2982. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. PG2982 cultures degraded phenylphosphonate to benzene and produced methane from methylphosphonate. The data indicate that PG2982 is capable of cleaving the carbon-phosphorus bond of several structurally different phosphonates

  13. Changes in lipoprotein kinetics associated with type 2 diabetes affect the distribution of lipopolysaccharides among lipoproteins.

    Science.gov (United States)

    Vergès, Bruno; Duvillard, Laurence; Lagrost, Laurent; Vachoux, Christelle; Garret, Céline; Bouyer, Karine; Courtney, Michael; Pomié, Céline; Burcelin, Rémy

    2014-07-01

    Lipopolysaccharides (LPSs) are inflammatory components of the outer membrane of Gram-negative bacteria and, in plasma, are mostly associated with lipoproteins. This association is thought to promote their catabolism while reducing their proinflammatory effects. Our aim was to determine the impact of lipoprotein kinetics on plasma LPS distribution and how it may affect patients with type 2 diabetes mellitus (T2DM). We performed a kinetic study in 30 individuals (16 T2DM patients, 14 controls) and analyzed the impact of changes in lipoprotein kinetics on LPS distribution among lipoproteins. Plasma LPS levels in T2DM patients were not different from those in controls, but LPS distribution in the two groups was different. Patients with T2DM had higher LPS-very low-density lipoprotein (VLDL; 31% ± 7% vs 22% ± 11%, P = .002), LPS-high-density lipoprotein (HDL; 29% ± 9% vs 19% ± 10%, P = .015), free (nonlipoprotein bound) LPS (10% ± 4% vs 7% ± 4%, P = .043) and lower LPS-low-density lipoprotein (LDL; 30% ± 13% vs 52% ± 16%, P = .001). In multivariable analysis, VLDL-LPS was associated with HDL-LPS (P < .0001); LDL-LPS was associated with VLDL-LPS (P = .004), and VLDL apolipoprotein (apo) B100 catabolism (P = .002); HDL-LPS was associated with free LPS (P < .0001) and VLDL-LPS (P = .033); free LPS was associated with HDL-LPS (P < .0001). In a patient featuring a dramatic decrease in VLDL catabolism due to apoA-V mutation, LDL-LPS was severely decreased (0.044 EU/mL vs 0.788 EU/mL in controls). The difference between T2DM patients and controls for LDL-LPS fraction was no longer significant after controlling for VLDL apoB100 total fractional catabolic rate. Our data suggest that in humans, free LPS transfers first to HDL and then to VLDL, whereas the LPS-bound LDL fraction is mainly derived from VLDL catabolism; the latter may hence represent a LPS catabolic pathway. T2DM patients show lower LDL-LPS secondary to reduced VLDL catabolism, which may represent an

  14. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial

    Science.gov (United States)

    Background: It has been suggested that perturbations in branched-chain amino acid (BCAA) catabolism are associated with insulin resistance and contribute to elevated systemic BCAAs. Evidence in rodents suggests dietary protein rich in BCAAs can increase BCAA catabolism, but there is limited evidence...

  15. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats.

    Science.gov (United States)

    Hirota, Yoshihisa; Tsugawa, Naoko; Nakagawa, Kimie; Suhara, Yoshitomo; Tanaka, Kiyoshi; Uchino, Yuri; Takeuchi, Atsuko; Sawada, Natsumi; Kamao, Maya; Wada, Akimori; Okitsu, Takashi; Okano, Toshio

    2013-11-15

    Mice have the ability to convert dietary phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) and store the latter in tissues. A prenyltransferase enzyme, UbiA prenyltransferase domain-containing 1 (UBIAD1), is involved in this conversion. There is evidence that UBIAD1 has a weak side chain cleavage activity for phylloquinone but a strong prenylation activity for menadione (vitamin K3), which has long been postulated as an intermediate in this conversion. Further evidence indicates that when intravenously administered in mice phylloquinone can enter into tissues but is not converted further to menaquinone-4. These findings raise the question whether phylloquinone is absorbed and delivered to tissues in its original form and converted to menaquinone-4 or whether it is converted to menadione in the intestine followed by delivery of menadione to tissues and subsequent conversion to menaquinone-4. To answer this question, we conducted cannulation experiments using stable isotope tracer technology in rats. We confirmed that the second pathway is correct on the basis of structural assignments and measurements of phylloquinone-derived menadione using high resolution MS analysis and a bioassay using recombinant UBIAD1 protein. Furthermore, high resolution MS and (1)H NMR analyses of the product generated from the incubation of menadione with recombinant UBIAD1 revealed that the hydroquinone, but not the quinone form of menadione, was an intermediate of the conversion. Taken together, these results provide unequivocal evidence that menadione is a catabolic product of oral phylloquinone and a major source of tissue menaquinone-4.

  16. Menadione (Vitamin K3) Is a Catabolic Product of Oral Phylloquinone (Vitamin K1) in the Intestine and a Circulating Precursor of Tissue Menaquinone-4 (Vitamin K2) in Rats*

    Science.gov (United States)

    Hirota, Yoshihisa; Tsugawa, Naoko; Nakagawa, Kimie; Suhara, Yoshitomo; Tanaka, Kiyoshi; Uchino, Yuri; Takeuchi, Atsuko; Sawada, Natsumi; Kamao, Maya; Wada, Akimori; Okitsu, Takashi; Okano, Toshio

    2013-01-01

    Mice have the ability to convert dietary phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) and store the latter in tissues. A prenyltransferase enzyme, UbiA prenyltransferase domain-containing 1 (UBIAD1), is involved in this conversion. There is evidence that UBIAD1 has a weak side chain cleavage activity for phylloquinone but a strong prenylation activity for menadione (vitamin K3), which has long been postulated as an intermediate in this conversion. Further evidence indicates that when intravenously administered in mice phylloquinone can enter into tissues but is not converted further to menaquinone-4. These findings raise the question whether phylloquinone is absorbed and delivered to tissues in its original form and converted to menaquinone-4 or whether it is converted to menadione in the intestine followed by delivery of menadione to tissues and subsequent conversion to menaquinone-4. To answer this question, we conducted cannulation experiments using stable isotope tracer technology in rats. We confirmed that the second pathway is correct on the basis of structural assignments and measurements of phylloquinone-derived menadione using high resolution MS analysis and a bioassay using recombinant UBIAD1 protein. Furthermore, high resolution MS and 1H NMR analyses of the product generated from the incubation of menadione with recombinant UBIAD1 revealed that the hydroquinone, but not the quinone form of menadione, was an intermediate of the conversion. Taken together, these results provide unequivocal evidence that menadione is a catabolic product of oral phylloquinone and a major source of tissue menaquinone-4. PMID:24085302

  17. Gamarada debralockiae gen. nov. sp. nov.-the genome of the most widespread Australian ericoid mycorrhizal fungus.

    Science.gov (United States)

    Midgley, David J; Sutcliffe, Brodie; Greenfield, Paul; Tran-Dinh, Nai

    2018-05-01

    This study describes a novel ericoid mycorrhizal fungus (ErMF), Gamarada debralockiae Midgley and Tran-Dinh gen. nov. sp. nov. Additionally, catabolism was explored from a genomic perspective. The nuclear and mitochondrial genomes of G. debralockiae were sequenced. Morphological characteristics were assessed on various media. Catabolic genes of G. debralockiae were explored using SignalP and dbCAN. Phylogenetic comparisons were undertaken using Phylogeny.fr. The 58.5-Mbp draft genome of G. debralockiae contained 17,075 putative genes. The complete mitochondrial genome was 28,168 bp in length. In culture, G. debralockiae produces slow-growing non-sporulating colonies. Gamarada debralockiae has many putative secreted catabolic enzymes. Phylogeny indicated G. debralockiae was distinct from known ascomycetous ErMF: Pezoloma ericae, Meliniomyces spp., Oidiodendron spp., and Cairneyella variabilis. It is closely related to many undescribed plant root-associated fungi and its nearest described relative is Hyphodiscus brevicollaris. Gamarada debralockiae has been recovered from virtually all Australian ericoid mycorrhizal studies and biogeographic data suggests the taxon is widespread in Australia. Gamarada debralockiae has similar catabolic potential to C. variabilis and co-occurs with C. variabilis at Australian sites. Plants that host multiple ErMF may benefit from subtle differences in catabolism that improve access to nitrogen and phosphorus from within recalcitrant organic matter.

  18. Changes to the structure of Sphingomonas spp. communities associated with biodegradation of the herbicide isoproturon in soil.

    Science.gov (United States)

    Shi, Shengjing; Bending, Gary D

    2007-04-01

    The phenyl-urea herbicide isoproturon is a major contaminant of surface and ground-water in agricultural catchments. Earlier work suggested that within-field spatial variation of isoproturon degradation rate resulted from interactions between catabolizing Sphingomonas spp. and pH. In the current study, changes to the structure of Sphingomonas communities during isoproturon catabolism were investigated using Sphingomonas-specific 16S rRNA gene primers. Growth-linked catabolism at high-pH (>7.5) sites was associated with the appearance of multiple new denaturing gradient gel electrophoresis (DGGE) bands. At low-pH sites, there was no change in DGGE banding at sites in which there was cometabolism, but at sites in which there was growth-linked catabolism, degradation was associated with the appearance of a new band not present at high pH sites. Sequencing of DGGE bands indicated that a strain related to Sphingomonas mali proliferated at low pH sites, while strain Sphingomonas sp. SRS2, a catabolic strain identified in earlier work, together with several further Sphingomonas spp., proliferated at high-pH sites. The data indicate that degradation was associated with complex changes to the structure of Sphingomonas spp. communities, the precise nature of which was spatially variable.

  19. Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity.

    NARCIS (Netherlands)

    Blaney Davidson, E.N.; Scharstuhl, A.; Vitters, E.L.; Kraan, P.M. van der; Berg, W.B. van den

    2005-01-01

    Osteoarthritis (OA) is a common joint disease, mainly effecting the elderly population. The cause of OA seems to be an imbalance in catabolic and anabolic factors that develops with age. IL-1 is a catabolic factor known to induce cartilage damage, and transforming growth factor (TGF)-beta is an

  20. [Regulation of terpene metabolism.] Progress report

    International Nuclear Information System (INIS)

    Croteau, R.

    1984-01-01

    This research program represents a very broad-based approach to understanding the biochemistry of the monoterpene and sesquiterpene constituents of the essential oils. This program includes basic research on the pathways, enzymes and mechanisms of terpene biosynthesis and catabolism, on the physiology of essential oil production, and on the morphology and development of oil glands, as well as practical approaches to manipulating essential oil composition and yield. As a natural extension of research on monoterpene biosynthesis and catabolism in sage and peppermint we have explored some aspects of possible regulatory mechanisms. Tentative evidence has been obtained for developmental regulation of the levels of biosynthetic and catabolic enzymes. 10 refs., 8 figs

  1. GalX regulates the d-galactose oxido-reductive pathway in Aspergillus niger

    NARCIS (Netherlands)

    Gruben, B.S.; Zhou, M.; de Vries, R.P.

    2012-01-01

    Galactose catabolism in Aspergillus nidulans is regulated by at least two regulators, GalR and GalX. In Aspergillus niger only GalX is present, and its role in d-galactose catabolism in this fungus was investigated. Phenotypic and gene expression analysis of a wild type and a galX disruptant

  2. The interplay of StyR and IHF regulates substrate-dependent induction and carbon catabolite repression of styrene catabolism genes in Pseudomonas fluorescens ST

    Directory of Open Access Journals (Sweden)

    Leoni Livia

    2008-06-01

    Full Text Available Abstract Background In Pseudomonas fluorescens ST, the promoter of the styrene catabolic operon, PstyA, is induced by styrene and is subject to catabolite repression. PstyA regulation relies on the StyS/StyR two-component system and on the IHF global regulator. The phosphorylated response regulator StyR (StyR-P activates PstyA in inducing conditions when it binds to the high-affinity site STY2, located about -40 bp from the transcription start point. A cis-acting element upstream of STY2, named URE, contains a low-affinity StyR-P binding site (STY1, overlapping the IHF binding site. Deletion of the URE led to a decrease of promoter activity in inducing conditions and to a partial release of catabolite repression. This study was undertaken to assess the relative role played by IHF and StyR-P on the URE, and to clarify if PstyA catabolite repression could rely on the interplay of these regulators. Results StyR-P and IHF compete for binding to the URE region. PstyA full activity in inducing conditions is achieved when StyR-P and IHF bind to site STY2 and to the URE, respectively. Under catabolite repression conditions, StyR-P binds the STY1 site, replacing IHF at the URE region. StyR-P bound to both STY1 and STY2 sites oligomerizes, likely promoting the formation of a DNA loop that closes the promoter in a repressed conformation. We found that StyR and IHF protein levels did not change in catabolite repression conditions, implying that PstyA repression is achieved through an increase in the StyR-P/StyR ratio. Conclusion We propose a model according to which the activity of the PstyA promoter is determined by conformational changes. An open conformation is operative in inducing conditions when StyR-P is bound to STY2 site and IHF to the URE. Under catabolite repression conditions StyR-P cellular levels would increase, displacing IHF from the URE and closing the promoter in a repressed conformation. The balance between the open and the closed

  3. Hypothalamic digoxin, hemispheric chemical dominance, and sleep.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-04-01

    The isoprenoid path way produces endogenous digoxin, a substance that can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in individuals with chronic insomnia. The patterns were compared in those with right hemispheric and left hemispheric dominance. The activity of HMG GoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in individuals with chronic insomnia and in individuals with differing hemispheric dominance. Digoxin synthesis was increased with upregulated tryptophan catabolism (increased levels of serotonin, strychnine, and nicotine), and downregulated tyrosine catabolism (decreased levels of dopamine, noradrenaline, and morphine) in those with chronic insomnia and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism (decreased levels of serotonin, strychnine, and nicotine) and upregulated tyrosine catabolism (increased levels of dopamine, noradrenaline, and morphine) in those with normal sleep patterns and left hemispheric chemical dominance. Hypothalamic digoxin plays a central role in the regulation of sleep behavior. Hemispheric chemical dominance in relation to digoxin status is also crucial.

  4. Mechanistic insights into the role of river sediment in the attenuation of the herbicide isoproturon

    International Nuclear Information System (INIS)

    Trinh, Son B.; Hiscock, Kevin M.; Reid, Brian J.

    2012-01-01

    Mechanistic insights into the relative contribution of sorption and biodegradation on the removal of the herbicide isoproturon (IPU) are reported. 14 C-radiorespirometry indicated very low levels of catabolic activity in IPU-undosed and IPU-dosed (0.1, 1, 100 μg L −1 ) river water (RW) and groundwater (GW) (mineralisation: 2 = 0.768) with IPU concentration present. A threshold IPU concentration of between 0.1 μg L −1 and 1 μg L −1 was required to significantly (p −1 this result suggests that riverbed sediment infiltration is potentially an appropriate ‘natural’ means of improving water quality in terms of pesticide levels at concentrations that are in keeping with regulatory limits. - Highlights: ► Very low levels of catabolic activity in river water and groundwater ( 0.1 μg L −1 ) was required to increase catabolic activity. - Catabolic activity with respect to IPU had a positive log-linear relationship with IPU concentration above a threshold concentration of between 0.1 μg L −1 and 1 μg L −1 .

  5. Studying Catabolism of Protein ADP-Ribosylation.

    Science.gov (United States)

    Palazzo, Luca; James, Dominic I; Waddell, Ian D; Ahel, Ivan

    2017-01-01

    Protein ADP-ribosylation is a conserved posttranslational modification that regulates many major cellular functions, such as DNA repair, transcription, translation, signal transduction, stress response, cell division, aging, and cell death. Protein ADP-ribosyl transferases catalyze the transfer of an ADP-ribose (ADPr) group from the β-nicotinamide adenine dinucleotide (β-NAD + ) cofactor onto a specific target protein with the subsequent release of nicotinamide. ADP-ribosylation leads to changes in protein structure, function, stability, and localization, thus defining the appropriate cellular response. Signaling processes that are mediated by modifications need to be finely tuned and eventually silenced and one of the ways to achieve this is through the action of enzymes that remove (reverse) protein ADP-ribosylation in a timely fashion such as PARG, TARG1, MACROD1, and MACROD2. Here, we describe several basic methods used to study the enzymatic activity of de-ADP-ribosylating enzymes.

  6. Chemical Carcinogen-Induced Changes in tRNA Metabolism in Human Cells.

    Science.gov (United States)

    1981-11-01

    the resolution and quantitation of modified ucleosides in the urine of cancer patients would not be particularly useful for the cell culture studies...Comparison of nucleic acid catabolism by normal human fibroblasts and fibroblasts transformed with methylazoxymethyl alcohol ( MAMA ),an activated...catabolite in long-term, pulse-chase experiments. However, the kinetics of catabolism differed, in that only the MAMA -transformed cells had generated

  7. A Hidden Transhydrogen Activity of a FMN-Bound Diaphorase under Anaerobic Conditions

    Science.gov (United States)

    2016-05-04

    linking catabolism and anabolism, regulating the ratio of NADH/NADPH in cells. The cytoplasmic transhydrogenases could be useful to engineer synthetic...and sugars,[2,3] as well as the reduction of glutathione.[4] Transhydrogenase plays an important role in linking catabolism and anabo- lism, regulating...Rogers EI. Modification and implications of changes in electrochemical responses encountered when undertaking deoxygenation in ionic liquids. Anal

  8. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  9. Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Outpatients in Northern Japan: Increasing Tendency of ST5/ST764 MRSA-IIa with Arginine Catabolic Mobile Element.

    Science.gov (United States)

    Aung, Meiji Soe; Kawaguchiya, Mitsuyo; Urushibara, Noriko; Sumi, Ayako; Ito, Masahiko; Kudo, Kenji; Morimoto, Shigeo; Hosoya, Shino; Kobayashi, Nobumichi

    2017-07-01

    Arginine catabolic mobile element (ACME) is a genomic island of staphylococcus and is considered to confer enhanced ability to survive and growth on host bacterial cells. ACME has been typically identified in Panton-Valentine Leukocidin (PVL)-positive ST8 methicillin-resistant Staphylococcus aureus (MRSA) with SCCmec type IVa (USA300 clone), and it is also found in other lineages at low frequency. Prevalence and molecular characteristics of PVL + and/or ACME + MRSA were investigated for 624 clinical isolates collected from outpatients in northern Japan from 2013 to 2014. Both PVL genes and ACME type I were detected in nine isolates (1.4%), which were ST8-MRSA-SCCmec IVa/spa type t008/agr-I; whereas solely PVL genes were positive in two isolates, ST30-MRSA-SCCmec IV and ST59-MRSA-SCCmec V. ACME type II' (previously referred to as ACME ΔII) was detected in 36 isolates (5.8%) with SCCmec II and V (32 and 4 isolates, respectively), exhibiting an increased rate within SCCmec II-MRSA (7.1%) compared with our previous studies (0.86-4.5%, 2008-2011). ACME II'-positive MRSA strains were classified into ST5-SCCmec IIa/V or ST764-SCCmec IIa belonging to five different spa types, with t002 being dominant. They harbored mostly enterotoxin gene clusters (seg-sei-sem-sen-seo-seu) and some more enterotoxin genes (seb1, seb2, sec3, sel, sep), showing resistance to more antimicrobials than ST8-MRSA-SCCmec IVa. ACME-SCCmec composite island (CI) of the 36 ACME II'-positive MRSA was classified into five types (ii)-(vi), among which type (ii) (orfX-ΨSCC ΔJ1 SCCmec I -ACME II'-SCCmec II) was dominant and subdivided into the A3 variant and the less common A2 variant. CI types (v) and (vi) were considered novel genetic organizations having speG (acetyltransferase genes for polyamines) in inserted SCC4610/SCC266-like genetic elements. The present study revealed increased prevalence and genetic diversity of the ST5/ST764-MRSA-SCCmec II with ACME II' in northern Japan.

  10. Mechanistic insights into the role of river sediment in the attenuation of the herbicide isoproturon.

    Science.gov (United States)

    Trinh, Son B; Hiscock, Kevin M; Reid, Brian J

    2012-11-01

    Mechanistic insights into the relative contribution of sorption and biodegradation on the removal of the herbicide isoproturon (IPU) are reported. (14)C-radiorespirometry indicated very low levels of catabolic activity in IPU-undosed and IPU-dosed (0.1, 1, 100 μg L(-1)) river water (RW) and groundwater (GW) (mineralisation: <2%). In contrast, levels of catabolic activity in IPU-undosed and IPU-dosed river sediment (RS) were significantly higher (mineralisation: 14.5-36.9%). Levels of IPU catabolic competence showed a positive log-linear relationship (r(2) = 0.768) with IPU concentration present. A threshold IPU concentration of between 0.1 μg L(-1) and 1 μg L(-1) was required to significantly (p < 0.05) increase levels of catabolic activity. Given the EU Drinking Water Directive limit for a single pesticide in drinking water of <0.1 μg L(-1) this result suggests that riverbed sediment infiltration is potentially an appropriate 'natural' means of improving water quality in terms of pesticide levels at concentrations that are in keeping with regulatory limits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida.

    Science.gov (United States)

    Leddy, M B; Phipps, D W; Ridgway, H F

    1995-01-01

    Pseudomonas putida 54g grew on mineral salts with toluene and exhibited catechol-2,3-dioxygenase (C23O) activity, indicating a meta pathway. After 10 to 15 days on toluene, nondegrading (Tol-) variants approached nearly 10% of total CFU. Auxotrophs were not detected among variants, suggesting selective loss of catabolic function(s). Variant formation was substrate dependent, since Tol- cells were observed on neither ethylbenzene, glucose, nor peptone-based media nor when toluene catabolism was suppressed by glucose. Unlike wild-type cells, variants did not grow on gasoline, toluene, benzene, ethylbenzene, benzoate, or catechol, suggesting loss of meta pathway function. Catabolic and C23O activities were restored to variants via transfer of a 78-mDa TOL-like plasmid from a wild-type Tol+ donor. Tests for reversion of variants to Tol+ were uniformly negative, suggesting possible delection or excision of catabolic genes. Deletions were confirmed in some variants by failure to hybridize with a DNA probe specific for the xylE gene encoding C23O. Cells grown on benzoate remained Tol+ but were C23O- and contained a plasmid of reduced size or were plasmid free, suggesting an alternate chromosomal catabolic pathway, also defective in variants. Cells exposed to benzyl alcohol, the initial oxidation product of toluene, accumulated > 13% variants in 5 days, even when cell division was repressed by nitrogen deprivation to abrogate selection processes. No variants formed in identical ethylbenzene-exposed controls. The results suggest that benzyl alcohol mediates irreversible defects in both a plasmid-associated meta pathway and an alternate chromosomal pathway. PMID:7642499

  12. Regulation of crp gene expression by the catabolite repressor/activator, Cra, in Escherichia coli.

    Science.gov (United States)

    Zhang, Zhongge; Aboulwafa, Mohammad; Saier, Milton H

    2014-01-01

    Growth of E. coli on several carbon sources is dependent on the catabolite repressor/activator (Cra) protein although a Cra consensus DNA-binding site is not present in the control regions of the relevant catabolic operons. We show that Cra regulates growth by activating expression of the crp gene. It thereby mediates catabolite repression of catabolic operons by an indirect mechanism. © 2014 S. Karger AG, Basel.

  13. The pentose moiety of adenosine and inosine is an important energy source for the fermented-meat starter culture Lactobacillus sakei CTC 494.

    Science.gov (United States)

    Rimaux, T; Vrancken, G; Vuylsteke, B; De Vuyst, L; Leroy, F

    2011-09-01

    The genome sequence of Lactobacillus sakei 23K has revealed that the species L. sakei harbors several genes involved in the catabolism of energy sources other than glucose in meat, such as glycerol, arginine, and nucleosides. In this study, a screening of 15 L. sakei strains revealed that arginine, inosine, and adenosine could be used as energy sources by all strains. However, no glycerol catabolism occurred in any of the L. sakei strains tested. A detailed kinetic analysis of inosine and adenosine catabolism in the presence of arginine by L. sakei CTC 494, a fermented-meat starter culture, was performed. It showed that nucleoside catabolism occurred as a mixed-acid fermentation in a pH range (pH 5.0 to 6.5) relevant for sausage fermentation. This resulted in the production of a mixture of acetic acid, formic acid, and ethanol from ribose, while the nucleobase (hypoxanthine and adenine in the case of fermentations with inosine and adenosine, respectively) was excreted into the medium stoichiometrically. This indicates that adenosine deaminase activity did not take place. The ratios of the different fermentation end products did not vary with environmental pH, except for the fermentation with inosine at pH 5.0, where lactic acid was produced too. In all cases, no other carbon-containing metabolites were found; carbon dioxide was derived only from arginine catabolism. Arginine was cometabolized in all cases and resulted in the production of both citrulline and ornithine. Based on these results, a pathway for inosine and adenosine catabolism in L. sakei CTC 494 was presented, whereby both nucleosides are directly converted into their nucleobase and ribose, the latter entering the heterolactate pathway. The present study revealed that the pentose moiety (ribose) of the nucleosides inosine and adenosine is an effective fermentable substrate for L. sakei. Thus, the ability to use these energy sources offers a competitive advantage for this species in a meat environment.

  14. Increased formate overflow is a hallmark of oxidative cancer.

    Science.gov (United States)

    Meiser, Johannes; Schuster, Anne; Pietzke, Matthias; Vande Voorde, Johan; Athineos, Dimitris; Oizel, Kristell; Burgos-Barragan, Guillermo; Wit, Niek; Dhayade, Sandeep; Morton, Jennifer P; Dornier, Emmanuel; Sumpton, David; Mackay, Gillian M; Blyth, Karen; Patel, Ketan J; Niclou, Simone P; Vazquez, Alexei

    2018-04-10

    Formate overflow coupled to mitochondrial oxidative metabolism\\ has been observed in cancer cell lines, but whether that takes place in the tumor microenvironment is not known. Here we report the observation of serine catabolism to formate in normal murine tissues, with a relative rate correlating with serine levels and the tissue oxidative state. Yet, serine catabolism to formate is increased in the transformed tissue of in vivo models of intestinal adenomas and mammary carcinomas. The increased serine catabolism to formate is associated with increased serum formate levels. Finally, we show that inhibition of formate production by genetic interference reduces cancer cell invasion and this phenotype can be rescued by exogenous formate. We conclude that increased formate overflow is a hallmark of oxidative cancers and that high formate levels promote invasion via a yet unknown mechanism.

  15. Experimental hypothyroidism modulates the expression of the low density lipoprotein receptor by the liver

    International Nuclear Information System (INIS)

    Scarabottolo, Lia; Trezzi, Ermanno; Roma, Paola; Catapano, A.L.

    1986-01-01

    The effect of exprimental hypothyroidism of the catabolism of plasma lipoproteins and on the expression of low density lipoprotein receptors by the liver was investigated in rats made hypothyroid by surgery. The animals developed mild hypercholesterolemia, mainly due to an increase of plasma low density lipoprotein, while other lipoprotein classes were only marginally affected. Kinetic studies using ( 125 I)LDL indicated that a decreased fractional catabolic rate of the lipoprotein was responsible for this finding in agreement with the in vitro observation of a reduced binding of lipoproteins to liver membranes from hyperthyroid rats and with the demonstrations, by ligand blotting analysis, of a decreasd expression of lipoprotein receptors in liver membranes. These data suggest that hypothyroidism affects lipoprotein distribution also by decreasing the catabolism of low density lipoproteins by the liver (author)

  16. The effect of ketoconazole on post-burn inflammation, hypermetabolism and clinical outcomes.

    Directory of Open Access Journals (Sweden)

    Marc G Jeschke

    Full Text Available BACKGROUND: Hypercortisolemia has been suggested as a primary hormonal mediator of whole-body catabolism following severe burn injury. Ketoconazole, an anti-fungal agent, inhibits cortisol synthesis. We, therefore, studied the effect of ketoconazole on post-burn cortisol levels and the hyper-catabolic response in a prospective randomized trial (block randomization 2:1. METHODOLOGY/PRINCIPAL FINDINGS: Fifty-five severely burned pediatric patients with >30% total body surface area (TBSA burns were enrolled in this trial. Patients were randomized to receive standard care plus either placebo (controls, n = 38 or ketoconazole (n = 23. Demographics, clinical data, serum hormone levels, serum cytokine expression profiles, organ function, hypermetabolism measures, muscle protein synthesis, incidence of wound infection sepsis, and body composition were obtained throughout the acute hospital course. Statistical analysis was performed using Fisher's exact test, Student's t-test, and parametric and non-parametric two-way repeated measures analysis of variance where applicable. Patients were similar in demographics, age, and TBSA burned. Ketoconazole effectively blocked cortisol production, as indicated by normalization of the 8-fold elevation in urine cortisol levels [F(1, 376 = 85.34, p<.001] with the initiation of treatment. However, there were no significant differences in the inflammatory response, acute-phase proteins, body composition, muscle protein breakdown or synthesis, or organ function between groups. CONCLUSIONS: Both groups were markedly hypermetabolic and catabolic throughout the acute hospital stay. Normalization of hypercortisolemia with ketoconazole therapy had no effect on whole-body catabolism or the post-burn inflammatory or hypermetabolic response, suggesting that hypercortisolemia does not play a central role in the post-burn hypermetabolic catabolic response. TRIAL REGISTRATION: ClinicalTrials.gov NCT00675714; and NCT

  17. Hypothalamic digoxin, hemispheric chemical dominance, and eating behavior.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-08-01

    The isoprenoid pathway produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in eating disorders. The patterns were compared in those with right hemispheric and left hemispheric dominance. The serum HMG CoA reductase activity, RBC membrane Na+-K+ ATPase activity, serum digoxin, magnesium, tryptophan catabolites (serotonin, quinolinic acid, strychnine, and nicotine), and tyrosine catabolites (morphine, dopamine, and noradrenaline) were measured in anorexia nervosa, bulimia nervosa, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals. Digoxin synthesis was increased with upregulated tryptophan catabolism and downregulated tyrosine catabolism in those with anorexia nervosa and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism and upregulated tyrosine catabolism in those with bulimia nervosa and left hemispheric chemical dominance. The membrane Na+-K+ ATPase activity and serum magnesium were decreased in anorexia nervosa and right hemispheric chemical dominance while they were increased in bulimia nervosa and left hemispheric chemical dominance. Hypothalamic digoxin and hemispheric chemical dominance play a central role in the regulation of eating behavior. Anorexia nervosa represents the right hemispheric chemically dominant/hyperdigoxinemic state and bulimia nervosa the left hemispheric chemically dominant/hypodigoxinemic state.

  18. The Effect of Carbohydrates and Arginine on Arginine Metabolism by Excised Bean Leaves in the Dark

    Science.gov (United States)

    Stewart, Cecil R.

    1975-01-01

    The effect of carbohydrate on arginine utilization by excised bean (Phaseolus vulgaris L. var. Tendergreen) leaves in the dark was studied by adding arginine to leaves differing in carbohydrate levels, and measuring the arginine content of the leaves at intervals. In nonstarved leaves, the arginine content decreased steadily after vacuum infiltration of 10 mm arginine and was essentially completely utilized by 36 hours after infiltration. In starved leaves, the arginine content did not decrease except for a brief period of about 4 hours after infiltration. The distribution of 14C after adding 14C-arginine to starved and nonstarved leaves indicated that the presence of carbohydrates in the leaves stimulates the utilization of arginine for protein synthesis and conversion to other amino acids, organic acids, and CO2 (catabolism). Adding sucrose along with arginine to starved leaves stimulated this utilization of arginine for both protein synthesis and catabolism. This effect of sugar on catabolism is different than results of similar studies done previously with proline. Increasing the concentration of added arginine greatly increased arginine catabolism but had a relatively small effect on utilization of arginine for protein synthesis. This result is the same as similar results from adding different concentrations of proline to excised leaves. PMID:16659159

  19. Carbohydrate metabolism in Bacillus subtilis

    International Nuclear Information System (INIS)

    Riedel, K.

    1980-01-01

    The glucose metabolism via the glycolytic pathway as well as via the oxidative and inoxidative hexose monophosphate pathways in Bacillus subtilis was studied applying 1- 14 C- and 6- 14 C-glucose, respectively, and determining labelled CO 2 and RNA. A method for calculating the catabolic pathways was developed. In nonproliferating cultures glucose is catabolized to 62% via the glycolytic pathway, to 20% via the oxidative, and to 18% via the inoxidative pathway

  20. Molecular Mechanism and Genetic Determinants of Buprofezin Degradation

    OpenAIRE

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-01-01

    Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon...

  1. HMB supplementation: clinical and athletic performance-related effects and mechanisms of action.

    Science.gov (United States)

    Zanchi, Nelo Eidy; Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; de Siqueira Filho, Mário Alves; Felitti, Vitor; Lira, Fabio Santos; Seelaender, Marília; Lancha, Antonio Herbert

    2011-04-01

    Amino acids such as leucine and its metabolite α-ketoisocaproate (KIC), are returning to be the focus of studies, mainly because of their anti-catabolic properties, through inhibition of muscle proteolysis and enhancement of protein synthesis. It is clear that these effects may counteract catabolic conditions, as well as enhance skeletal muscle mass and strength in athletes. Moreover, beta-hydroxy-beta-methylbutyrate (HMB) has been shown to produce an important effect in reducing muscle damage induced by mechanical stimuli of skeletal muscle. This review aims to describe the general scientific evidence of KIC and HMB supplementation clinical relevance, as well as their effects (e.g., increases in skeletal muscle mass and/or strength), associated with resistance training or other sports. Moreover, the possible mechanisms of cell signaling regulation leading to increases and/or sparing (during catabolic conditions) of skeletal muscle mass are discussed in detail based on the recent literature.

  2. Degradation network reconstruction in uric acid and ammonium amendments in oil-degrading marine microcosms guided by metagenomic data

    Directory of Open Access Journals (Sweden)

    Rafael eBargiela

    2015-11-01

    Full Text Available Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyse the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy amended with natural fertilizer, uric acid (UA, or ammonium (AMM. We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180 to identify potential catabolic differences. A total of 45 (for UA and 65 (AMM gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM, were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered

  3. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization

    Science.gov (United States)

    Varman, Arul M.; He, Lian; Follenfant, Rhiannon; Wu, Weihua; Wemmer, Sarah; Wrobel, Steven A.; Tang, Yinjie J.; Singh, Seema

    2016-01-01

    Sphingobium sp. SYK-6 is a soil bacterium boasting a well-studied ligninolytic pathway and the potential for development into a microbial chassis for lignin valorization. An improved understanding of its metabolism will help researchers in the engineering of SYK-6 for the production of value-added chemicals through lignin valorization. We used 13C-fingerprinting, 13C metabolic flux analysis (13C-MFA), and RNA-sequencing differential expression analysis to uncover the following metabolic traits: (i) SYK-6 prefers alkaline conditions, making it an efficient host for the consolidated bioprocessing of lignin, and it also lacks the ability to metabolize sugars or organic acids; (ii) the CO2 release (i.e., carbon loss) from the ligninolysis-based metabolism of SYK-6 is significantly greater than the CO2 release from the sugar-based metabolism of Escherichia coli; (iii) the vanillin catabolic pathway (which is the converging point of majority of the lignin catabolic pathways) is coupled with the tetrahydrofolate-dependent C1 pathway that is essential for the biosynthesis of serine, histidine, and methionine; (iv) catabolic end products of lignin (pyruvate and oxaloacetate) must enter the tricarboxylic acid (TCA) cycle first and then use phosphoenolpyruvate carboxykinase to initiate gluconeogenesis; and (v) 13C-MFA together with RNA-sequencing differential expression analysis establishes the vanillin catabolic pathway as the major contributor of NAD(P)H synthesis. Therefore, the vanillin catabolic pathway is essential for SYK-6 to obtain sufficient reducing equivalents for its healthy growth; cosubstrate experiments support this finding. This unique energy feature of SYK-6 is particularly interesting because most heterotrophs rely on the transhydrogenase, the TCA cycle, and the oxidative pentose phosphate pathway to obtain NADPH. PMID:27634497

  4. Metabolic regulation in Streptomyces parvulus during actinomycin D synthesis, studied with 13C- and 15N-labeled precursors by 13C and 15N nuclear magnetic resonance spectroscopy and by gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Inbar, L.; Lapidot, A.

    1988-01-01

    Recent studies have suggested that the onset of synthesis of actinomycin D in Streptomyces is due to a release from L-glutamate catabolic repression. In the present investigation we showed that S. parvulus has the capacity to maintain high levels of intracellular glutamate during the synthesis of actinomycin D. The results seem contradictory, since actinomycin D synthesis cannot start before a release from L-glutamate catabolic repression, but a relatively high intracellular pool of glutamate is needed for the synthesis of actinomycin D. Utilizing different labeled precursors, D-[U- 13 C]fructose and 13 C- and 15 N-labeled L-glutamate, and nuclear magnetic resonance techniques, we showed that carbon atoms of an intracellular glutamate pool of S. parvulus were not derived biosynthetically from the culture medium glutamte source but rather from D-fructose catabolism. A new intracellular pyrimidine derivative whose nitrogen and carbon skeletons were derived from exogenous L-glutamate was obtained as the main glutamate metabolite. Another new pyrimidine derivative that had a significantly reduced intracellular mobility and that was derived from D-fructose catabolism was identified in the cell extracts of S. parvulus during actinomycin D synthesis. These pyrimidine derivatives may serve as a nitrogen store for actinomycin D synthesis. In the present study, the N-trimethyl group of a choline derivative was observed by 13 C nuclear magnetic resonance spectroscopy in growing S. parvulus cells. The choline group, as well as the N-methyl groups of sarcosine, N-methyl-valine, and the methyl groups of an actinomycin D chromophore, arose from D-fructose catabolism. The 13 C enrichments found in the peptide moieties of actinomycin D were in accordance with a mechanism of actinomycin D synthesis from L-glutamate and D-fructose

  5. Cloning and expression analysis of cDNAs for ABA 8'-hydroxylase during sweet cherry fruit maturation and under stress conditions.

    Science.gov (United States)

    Ren, Jie; Sun, Liang; Wu, Jiefang; Zhao, Shengli; Wang, Canlei; Wang, Yanping; Ji, Kai; Leng, Ping

    2010-11-15

    Abscisic acid (ABA) plays a key role in various aspects of plant growth and development, including adaptation to environmental stress and fruit maturation in sweet cherry fruit. In higher plants, the level of ABA is determined by synthesis and catabolism. In order to gain insight into ABA synthesis and catabolism in sweet cherry fruit during maturation and under stress conditions, four cDNAs of PacCYP707A1 -PacCYP707A4 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, and one cDNA of PacNCED1 for 9-cis-epoxycarotenoid dioxygenase, a key enzyme in the ABA biosynthetic pathway, were isolated from sweet cherry fruit (Prunus avium L.). The timing and pattern of PacNCED1 expression was coincident with that of ABA accumulation, which was correlated to maturation of sweet cherry fruit. All four PacCYP707As were expressed at varying intensities throughout fruit development and appeared to play overlapping roles in ABA catabolism throughout sweet cherry fruit development. The application of ABA enhanced the expression of PacCYP707A1 -PacCYP707A3 as well as PacNCED1, but downregulated the PacCYP707A4 transcript level. Expressions of PacCYP707A1, PacCYP707A3 and PacNCED1 were strongly increased by water stress. No significant differences in PacCYP707A2 and PacCYP707A4 expression were observed between dehydrated and control fruits. The results suggest that endogenous ABA content is modulated by a dynamic balance between biosynthesis and catabolism, which are regulated by PacNCED1 and PacCYP707As transcripts, respectively, during fruit maturation and under stress conditions. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Degradation Network Reconstruction in Uric Acid and Ammonium Amendments in Oil-Degrading Marine Microcosms Guided by Metagenomic Data

    KAUST Repository

    Bargiela, Rafael

    2015-11-24

    Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyze the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy) amended with natural fertilizer, uric acid (UA), or ammonium (AMM). We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180) to identify potential catabolic differences. A total of 45 (for UA) and 65 (AMM) gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA) and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM), were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered for designing

  7. Evolution of amino acid metabolism inferred through cladistic analysis.

    Science.gov (United States)

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.

  8. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-01-01

    During the last grant period, we have completed studies on the key pathways of monoterpene biosynthesis and catabolism in sage and peppermint, and have, by several lines of evidence, deciphered the rate-limiting step of each pathway. We have at least partially purified and characterized the relevant enzymes of each pathway. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation depends upon the balance between biosynthesis and catabolism, and provided supporting evidence that these processes are developmentally-regulated and very closely associated with senescence of the oil glands. Oil gland ontogeny has been characterized at the ultrastructural level. We have exploited foliar-applied bioregulators to delay gland senescence, and have developed tissue explant and cell culture systems to study several elusive aspects of catabolism. We have isolated pure gland cell clusters and localized monoterpene biosynthesis and catabolism within these structures, and have used these preparations as starting materials for the purification to homogeneity of target regulatory'' enzymes. We have thus developed the necessary background knowledge, based on a firm understanding of enzymology, as well as the necessary experimental tools for studying the regulation of monoterpene metabolism at the molecular level. Furthermore, we are now in a position to extend our systematic approach to other terpenoid classes (C[sub 15]-C[sub 30]) produced by oil glands.

  9. [Regulation of terpene metabolism]. Annual progress report, March 15, 1990--March 14, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-12-31

    During the last grant period, we have completed studies on the key pathways of monoterpene biosynthesis and catabolism in sage and peppermint, and have, by several lines of evidence, deciphered the rate-limiting step of each pathway. We have at least partially purified and characterized the relevant enzymes of each pathway. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation depends upon the balance between biosynthesis and catabolism, and provided supporting evidence that these processes are developmentally-regulated and very closely associated with senescence of the oil glands. Oil gland ontogeny has been characterized at the ultrastructural level. We have exploited foliar-applied bioregulators to delay gland senescence, and have developed tissue explant and cell culture systems to study several elusive aspects of catabolism. We have isolated pure gland cell clusters and localized monoterpene biosynthesis and catabolism within these structures, and have used these preparations as starting materials for the purification to homogeneity of target ``regulatory`` enzymes. We have thus developed the necessary background knowledge, based on a firm understanding of enzymology, as well as the necessary experimental tools for studying the regulation of monoterpene metabolism at the molecular level. Furthermore, we are now in a position to extend our systematic approach to other terpenoid classes (C{sub 15}-C{sub 30}) produced by oil glands.

  10. Vanillin Catabolism in Rhodococcus jostii RHA1

    Science.gov (United States)

    Chen, Hao-Ping; Chow, Mindy; Liu, Chi-Chun; Lau, Alice; Liu, Jie

    2012-01-01

    Genes encoding vanillin dehydrogenase (vdh) and vanillate O-demethylase (vanAB) were identified in Rhodococcus jostii RHA1 using gene disruption and enzyme activities. During growth on vanillin or vanillate, vanA was highly upregulated while vdh was not. This study contributes to our understanding of lignin degradation by RHA1 and other actinomycetes. PMID:22057861

  11. Hyperglucagonemia during insulin deficiency accelerates protein catabolism

    International Nuclear Information System (INIS)

    Nair, K.S.; Halliday, D.; Matthews, D.E.; Welle, S.L.

    1987-01-01

    Hyperglucagonemia coexists with insulin deficiency or insulin resistance in many conditions where urinary nitrogen excretion is increased, but the precise role of glucagon in these conditions is controversial. The purpose of this study was to evaluate the effect of hyperglucagonemia on protein metabolism in insulin-deficient subjects. The authors used the stable isotope of an essential amino acid (L-[1- 13 C]leucine) as a tracer of in vivo protein metabolism. A combined deficiency of insulin and glucagon was induced by intravenous infusion of somatostatin. Hyperglucagonemia and hypoinsulinemia were induced by infusions of somatostatin and glucagon. When somatostatin alone was infused leucine flux increased, indicating a 6-17% increase in proteolysis. When somatostatin and glucagon were infused, leucine flux increased, indicating a 12-32% increase in proteolysis. The increase in leucine flux during the infusion of somatostatin and glucagon was higher than the increase during infusion of somatostatin alone. Somatostatin alone did not change leucine oxidation, whereas the somatostatin plus glucagon increased leucine oxidation 100%. They conclude that hyperglucagonemia accelerated proteolysis and leucine oxidation in insulin-deficient humans

  12. Arginine does not exacerbate markers of inflammation in cocultures of human enterocytes and leukocytes

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Negrier, I.; Neveux, N.

    2007-01-01

    with arginine did not affect epithelial integrity, production of any of the cytokines investigated, or the amount of nitric oxide. The amino acid used primarily by nonstimulated intestinal epithelial cells cocultured with leukocytes was glutamine. Activation of IEC with bacteria significantly enhanced...... the catabolism of serine, asparagine, and lysine, and reduced glutamine catabolism. Addition of arginine increased ornithine formation and moderately reduced transepithelial transport of methionine and other amino acids. Hence, arginine supplementation does not interfere with inflammation-associated cross...

  13. Regulation of endocrine and paracrine sources of insulin-like growth factors and growth hormone receptor during compensatory growth in hybrid striped bass (Morone chrysops x Morone saxatilis)

    DEFF Research Database (Denmark)

    Picha, Matthew E; Turano, Marc J; Tipsmark, Christian K

    2008-01-01

    relieved, renders a subsequent phase of CG. The catabolic state was characterized by depressed levels of hepatic Type I and II GH receptor (Ghr1, Ghr2) and insulin-like growth factor-I (Igf-I) mRNA, along with considerable decreases in plasma IGF-I. The state of catabolism also resulted in significant...... liver production, rather than as a fraction of total RNA, may be a more biologically appropriate method of quantifying hepatic gene expression when using real-time PCR....

  14. Multiplicity of 3-Ketosteroid-9 alpha-Hydroxylase Enzymes in Rhodococcus rhodochrous DSM43269 for Specific Degradation of Different Classes of Steroids

    OpenAIRE

    Petrusma, Mirjan; Hessels, Gerda; Dijkhuizen, Lubbert; van der Geize, Robert

    2011-01-01

    The well-known large catabolic potential of rhodococci is greatly facilitated by an impressive gene multiplicity. This study reports on the multiplicity of kshA, encoding the oxygenase component of 3-ketosteroid 9 alpha-hydroxylase, a key enzyme in steroid catabolism. Five kshA homologues (kshA1 to kshA5) were previously identified in Rhodococcus rhodochrous DSM43269. These KshA(DSM43269) homologues are distributed over several phylogenetic groups. The involvement of these KshA homologues in ...

  15. Molecular Mechanisms Underlying γ-Aminobutyric Acid (GABA) Accumulation in Giant Embryo Rice Seeds.

    Science.gov (United States)

    Zhao, Guo-Chao; Xie, Mi-Xue; Wang, Ying-Cun; Li, Jian-Yue

    2017-06-21

    To uncover the molecular mechanisms underlying GABA accumulation in giant embryo rice seeds, we analyzed the expression levels of GABA metabolism genes and contents of GABA and GABA metabolic intermediates in developing grains and germinated brown rice of giant embryo rice 'Shangshida No. 5' and normal embryo rice 'Chao2-10' respectively. In developing grains, the higher GABA contents in 'Shangshida No. 5' were accompanied with upregulation of gene transcripts and intermediate contents in the polyamine pathway and downregulation of GABA catabolic gene transcripts, as compared with those in 'Chao2-10'. In germinated brown rice, the higher GABA contents in 'Shangshida No. 5' were parallel with upregulation of OsGAD and polyamine pathway gene transcripts and Glu and polyamine pathway intermediate contents and downregulation of GABA catabolic gene transcripts. These results are the first to indicate that polyamine pathway and GABA catabolic genes play a crucial role in GABA accumulation in giant embryo rice seeds.

  16. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2017-10-01

    Full Text Available Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.

  17. Blood clearance of 3H-thymidine and 3H-uridine ingrowing rats

    International Nuclear Information System (INIS)

    Carlsson, J.; Johansson, K.J.; Saefwenberg, J.O.

    1976-01-01

    The clearance of 3 H-thymidine and 3 H-uridine from the blood was studied in rats of ages 5, 15 and 30 days. The clearance curves were integrated to get measure of the total availability of the precursors. Age-dependent differences were found, especially for uridine, which showed a lower availability when the animals became older. In the case of thymidine lesser differences were found. The catabolic rate, as measured by the appearance of 3 H-water, was much increased, both in case of 3 H-thymidine and 3 H -uridine as the rats became older. It was observed that the amount of catabolic products (except 3 H-water) in the blood was much larger for uridine than for thymidine. Rats were given 160 rad on the first day after birth. Only in the case of 3 H-thymidine, in 5-days-old rats, an effect of irradiation could be seen, i.e. a somewhat lowered efficiency to catabolize thymidine. (author)

  18. Characterization of a Novel Arginine Catabolic Mobile Element (ACME) and Staphylococcal Chromosomal Cassette mec Composite Island with Significant Homology to Staphylococcus epidermidis ACME type II in Methicillin-Resistant Staphylococcus aureus Genotype ST22-MRSA-IV.

    LENUS (Irish Health Repository)

    Shore, Anna C

    2011-02-22

    The arginine catabolic mobile element (ACME) is prevalent among ST8-MRSA-IVa (USA300) isolates and evidence suggests that ACME enhances the ability of ST8-MRSA-IVa to grow and survive on its host. ACME has been identified in a small number of isolates belonging to other MRSA clones but is widespread among coagulase-negative staphylococci (CoNS). This study reports the first description of ACME in two distinct strains of the pandemic ST22-MRSA-IV clone. A total of 238 MRSA isolates recovered in Ireland between 1971 and 2008 were investigated for ACME using a DNA microarray. Twenty-three isolates (9.7%) were ACME-positive, all were either MRSA genotype ST8-MRSA-IVa (7\\/23, 30%) or ST22-MRSA-IV (16\\/23, 70%). Whole-genome sequencing and comprehensive molecular characterization revealed the presence of a novel 46-kb ACME and SCCmec composite island (ACME\\/SCCmec-CI) in ST22-MRSA-IVh isolates (n = 15). This ACME\\/SCCmec-CI consists of a 12-kb DNA region previously identified in ACME type II in S. epidermidis ATCC 12228, a truncated copy of the J1 region of SCCmec I and a complete SCCmec IVh element. The composite island has a novel genetic organization with ACME located within orfX and SCCmec located downstream of ACME. One pvl-positive ST22-MRSA-IVa isolate carried ACME located downstream of SCCmec IVa as previously described in ST8-MRSA-IVa. These results suggest that ACME has been acquired by ST22-MRSA-IV on two independent occasions. At least one of these instances may have involved horizontal transfer and recombination events between MRSA and CoNS. The presence of ACME may enhance dissemination of ST22-MRSA-IV, an already successful MRSA clone.

  19. Mutant E. coli strain with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  20. Mutant E. coli strain with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  1. Comparative metabolism of branched-chain amino acids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects

    Energy Technology Data Exchange (ETDEWEB)

    Brindle, P.A.; Schooley, D.A.; Tsai, L.W.; Baker, F.C.

    1988-08-05

    Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly /sup 14/C-labeled BCAA, together with (methyl-/sup 3/H)methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of /sup 14/C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans.

  2. Development of a Spring-Loaded Impact Device to Deliver Injurious Mechanical Impacts to the Articular Cartilage Surface

    Science.gov (United States)

    Alexander, Peter G.; Song, Yingjie; Taboas, Juan M.; Chen, Faye H.; Melvin, Gary M.; Manner, Paul A.

    2013-01-01

    Objective: Traumatic impacts on the articular joint surface in vitro are known to lead to degeneration of the cartilage. The main objective of this study was to develop a spring-loaded impact device that can be used to deliver traumatic impacts of consistent magnitude and rate and to find whether impacts cause catabolic activities in articular cartilage consistent with other previously reported impact models and correlated with the development of osteoarthritic lesions. In developing the spring-loaded impactor, the operating hypothesis is that a single supraphysiologic impact to articular cartilage in vitro can affect cartilage integrity, cell viability, sulfated glycosaminoglycan and inflammatory mediator release in a dose-dependent manner. Design: Impacts of increasing force are delivered to adult bovine articular cartilage explants in confined compression. Impact parameters are correlated with tissue damage, cell viability, matrix and inflammatory mediator release, and gene expression 24 hours postimpact. Results: Nitric oxide release is first detected after 7.7 MPa impacts, whereas cell death, glycosaminoglycan release, and prostaglandin E2 release are first detected at 17 MPa. Catabolic markers increase linearly to maximal levels after ≥36 MPa impacts. Conclusions: A single supraphysiologic impact negatively affects cartilage integrity, cell viability, and GAG release in a dose-dependent manner. Our findings showed that 7 to 17 MPa impacts can induce cell death and catabolism without compromising the articular surface, whereas a 17 MPa impact is sufficient to induce increases in most common catabolic markers of osteoarthritic degeneration. PMID:26069650

  3. Comparative metabolism of branched-chain amino acids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects

    International Nuclear Information System (INIS)

    Brindle, P.A.; Schooley, D.A.; Tsai, L.W.; Baker, F.C.

    1988-01-01

    Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly 14 C-labeled BCAA, together with [methyl- 3 H]methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of 14 C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans

  4. Structure and Mechanism of PhnP, a Phosphodiesterase of the Carbon-Phosphorus Lyase Pathway

    DEFF Research Database (Denmark)

    He, Shu-Mei; Wathier, Matthew; Podzelinska, Kateryna

    2011-01-01

    PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo-β-lactamase s......PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo...

  5. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.

    Science.gov (United States)

    Kim, K S; Farrand, S K

    1996-06-01

    Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes.

  6. Growth hormone-insulin-like growth factor-1 and inflammatory response to a single exercise bout in children and adolescents.

    Science.gov (United States)

    Nemet, Dan; Eliakim, Alon

    2010-01-01

    Physical activity plays an important role in tissue anabolism, growth and development, but the mechanisms that link patterns of exercise with tissue anabolism are not completely understood. The effectiveness of physical training depends on the training load and on the individual ability to tolerate it, and an imbalance between the two may lead to under or over-training. Therefore, many efforts have been made to find objective parameters to quantify the balance between training load and the athlete's tolerance. One of the unique features of exercise is that it leads to a simultaneous increase of antagonistic mediators. On the one hand, exercise stimulates anabolic components of the growth hormone (GH) → IGF-1 (insulin-like growth factor-1) axis. On the other hand, exercise elevates catabolic pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-1 and tumor necrosis factor-α (TNF-α). This emphasizes probably the importance of optimal adaptation to exercise in particularly during adolescence. The very fine balance between the anabolic and inflammatory/catabolic response to exercise will determine the effectiveness of exercise training and the health consequences of exercise. If the anabolic response is stronger, exercise will probably lead ultimately to increased muscle mass and improved fitness. A greater catabolic response, in particularly if persists for long duration, may lead to overtraining. Therefore, changes in the anabolic-catabolic hormonal balance and in circulating inflammatory cytokines can be used by adolescent athletes and/or their coaches to gauge the training intensity in individual and team sports. Copyright © 2010 S. Karger AG, Basel.

  7. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus

    Directory of Open Access Journals (Sweden)

    Yan Jun

    2011-03-01

    Full Text Available Abstract Background Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. Results We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3, which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. Conclusions Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments.

  8. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus).

    Science.gov (United States)

    Fedorov, Vadim B; Goropashnaya, Anna V; Tøien, Øivind; Stewart, Nathan C; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C; Showe, Michael K; Barnes, Brian M

    2011-03-31

    Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments.

  9. Metabolism of cysteine by cyteinesulfinate-independent pathway(s) in rat hepatocytes

    International Nuclear Information System (INIS)

    Stipanuk, M.H.; De La Rosa, J.; Drake, M.R.

    1986-01-01

    The metabolism of cysteine (CYS) and that of cysteinesulfinate (CSA) were studied in freshly isolated hepatocytes from fed rats. In incubations of rat hepatocytes with either 1 or 25 mM CSA, over 90% of the 14 CO 2 formed from [1- 14 C]CSA could be accounted for by production of hypotaurine plus taurine. In similar incubations with 1 or 25 mM CYS, only 4% of 14 CO 2 evolution from [1- 14 C]CYS could be accounted for by production of hypotaurine plus taurine. Addition of unlabeled CSA inhibited recovery of label from [1- 14 C]CYS as 14 CO 2 by 33%. Metabolism of CYS and of CSA were affected differently by addition of α-ketoglutarate, a cosubstrate for transamination, or of propargylglycine, an inhibitor of cystathionase activity. These data suggest that a substantial proportion of CYS is catabolized by CSA-independent pathways in the rat hepatocyte. Although addition of α-ketoglutarate to incubations of hepatocytes with CSA resulted in a marked increase in CSA catabolism via the transamination pathway, addition of keto acids to incubation systems had little or no effect on production of any metabolite from CYS. Thus, CYS transamination does not appear to be a major pathway of CYS metabolism in the hepatocyte. Inhibition of cystathionase with propargylglycine reduced both 14 CO 2 production from [1- 14 C]CYS and ammonia plus urea nitrogen production from CYS by about 50%; CSA catabolism was not affected. Thus, cleavage of cyst(e)ine by cystathionase may be an important physiological pathway for CYS catabolism in the liver

  10. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato.

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).

  11. Suppression of 9-cis-Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato1[W][OA

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp). PMID:22108525

  12. Arginine as an adjuvant to chemotherapy improves clinical outcome in active tuberculosis

    DEFF Research Database (Denmark)

    Schön, T; Elias, D; Moges, F

    2003-01-01

    Nitric oxide (NO) is involved in the host defence against tuberculosis (TB). Patients with TB exhibit increased catabolism and reduced energy intake. Thus the hypothesis for this study was that restoring a relative deficiency in the amino acid arginine, the substrate for mycobactericidal NO produ......Nitric oxide (NO) is involved in the host defence against tuberculosis (TB). Patients with TB exhibit increased catabolism and reduced energy intake. Thus the hypothesis for this study was that restoring a relative deficiency in the amino acid arginine, the substrate for mycobactericidal...... virus-negative patients with active tuberculosis, most likely mediated by increased production of nitric oxide....

  13. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.

    2003-01-01

    , and flux control was shown to be dependent on the metabolite levels. Due to thermodynamic constraints, flux control may reside at the first step in the pathway, i.e., at the xylose reductase, even when the intracellular xylitol concentration is high. On the basis of the kinetic analysis, the general dogma...

  14. Catabolism and biotechnological applications of cholesterol degrading bacteria.

    Science.gov (United States)

    García, J L; Uhía, I; Galán, B

    2012-11-01

    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials. © 2012 The Authors; Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Characterization of a novel arginine catabolic mobile element (ACME) and staphylococcal chromosomal cassette mec composite island with significant homology to Staphylococcus epidermidis ACME type II in methicillin-resistant Staphylococcus aureus genotype ST22-MRSA-IV.

    LENUS (Irish Health Repository)

    Shore, Anna C

    2011-05-01

    The arginine catabolic mobile element (ACME) is prevalent among methicillin-resistant Staphylococcus aureus (MRSA) isolates of sequence type 8 (ST8) and staphylococcal chromosomal cassette mec (SCCmec) type IVa (USA300) (ST8-MRSA-IVa isolates), and evidence suggests that ACME enhances the ability of ST8-MRSA-IVa to grow and survive on its host. ACME has been identified in a small number of isolates belonging to other MRSA clones but is widespread among coagulase-negative staphylococci (CoNS). This study reports the first description of ACME in two distinct strains of the pandemic ST22-MRSA-IV clone. A total of 238 MRSA isolates recovered in Ireland between 1971 and 2008 were investigated for ACME using a DNA microarray. Twenty-three isolates (9.7%) were ACME positive, and all were either MRSA genotype ST8-MRSA-IVa (7\\/23, 30%) or MRSA genotype ST22-MRSA-IV (16\\/23, 70%). Whole-genome sequencing and comprehensive molecular characterization revealed the presence of a novel 46-kb ACME and staphylococcal chromosomal cassette mec (SCCmec) composite island (ACME\\/SCCmec-CI) in ST22-MRSA-IVh isolates (n=15). This ACME\\/SCCmec-CI consists of a 12-kb DNA region previously identified in ACME type II in S. epidermidis ATCC 12228, a truncated copy of the J1 region of SCCmec type I, and a complete SCCmec type IVh element. The composite island has a novel genetic organization, with ACME located within orfX and SCCmec located downstream of ACME. One PVL locus-positive ST22-MRSA-IVa isolate carried ACME located downstream of SCCmec type IVa, as previously described in ST8-MRSA-IVa. These results suggest that ACME has been acquired by ST22-MRSA-IV on two independent occasions. At least one of these instances may have involved horizontal transfer and recombination events between MRSA and CoNS. The presence of ACME may enhance dissemination of ST22-MRSA-IV, an already successful MRSA clone.

  16. [Regulation of terpene metabolism]. Annual progress report, March 15, 1989--March 14, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-11-09

    Terpenoid oils, resins, and waxes from plants are important renewable resources. The objective of this project is to understand the regulation of terpenoid metabolism using the monoterpenes (C{sub 10}) as a model. The pathways of monoterpene biosynthesis and catabolism have been established, and the relevant enzymes characterized. Developmental studies relating enzyme levels to terpene accumulation within the oil gland sites of synthesis, and work with bioregulators, indicate that monoterpene production is controlled by terpene cyclases, the enzymes catalyzing the first step of the monoterpene pathway. As the leaf oil glands mature, cyclase levels decline and monoterpene biosynthesis ceases. Yield then decreases as the monoterpenes undergo catabolism by a process involving conversion to a glycoside and transport from the leaf glands to the root. At this site, the terpenoid is oxidatively degraded to acetate that is recycled into other lipid metabolites. During the transition from terpene biosynthesis to catabolism, the oil glands undergo dramatic ultrastructural modification. Degradation of the producing cells results in mixing of previously compartmentized monoterpenes with the catabolic enzymes, ultimately leading to yield decline. This regulatory model is being applied to the formation of other terpenoid classes (C{sub 15} C{sub 20}, C{sub 30}, C{sub 40}) within the oil glands. Preliminary investigations on the formation of sesquiterpenes (C{sub 15}) suggest that the corresponding cyclases may play a lesser role in determining yield of these products, but that compartmentation effects are important. From these studies, a comprehensive scheme for the regulation of terpene metabolism is being constructed. Results from this project wail have important consequences for the yield and composition of terpenoid natural products that can be made available for industrial exploitation.

  17. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-11-09

    Terpenoid oils, resins, and waxes from plants are important renewable resources. The objective of this project is to understand the regulation of terpenoid metabolism using the monoterpenes (C[sub 10]) as a model. The pathways of monoterpene biosynthesis and catabolism have been established, and the relevant enzymes characterized. Developmental studies relating enzyme levels to terpene accumulation within the oil gland sites of synthesis, and work with bioregulators, indicate that monoterpene production is controlled by terpene cyclases, the enzymes catalyzing the first step of the monoterpene pathway. As the leaf oil glands mature, cyclase levels decline and monoterpene biosynthesis ceases. Yield then decreases as the monoterpenes undergo catabolism by a process involving conversion to a glycoside and transport from the leaf glands to the root. At this site, the terpenoid is oxidatively degraded to acetate that is recycled into other lipid metabolites. During the transition from terpene biosynthesis to catabolism, the oil glands undergo dramatic ultrastructural modification. Degradation of the producing cells results in mixing of previously compartmentized monoterpenes with the catabolic enzymes, ultimately leading to yield decline. This regulatory model is being applied to the formation of other terpenoid classes (C[sub 15] C[sub 20], C[sub 30], C[sub 40]) within the oil glands. Preliminary investigations on the formation of sesquiterpenes (C[sub 15]) suggest that the corresponding cyclases may play a lesser role in determining yield of these products, but that compartmentation effects are important. From these studies, a comprehensive scheme for the regulation of terpene metabolism is being constructed. Results from this project wail have important consequences for the yield and composition of terpenoid natural products that can be made available for industrial exploitation.

  18. Extracellular polysaccharides purified from Aureobasidium pullulans SM-2001 (Polycan) inhibit dexamethasone-induced muscle atrophy in mice

    Science.gov (United States)

    Cho, Hyung-Rae; Park, Dong-Chan; Jung, Go-Woon

    2018-01-01

    The present study assessed the beneficial skeletal muscle-preserving effects of extracellular polysaccharides from Aureobasidium pullulans SM-2001 (Polycan) (EAP) on dexamethasone (DEXA)-induced catabolic muscle atrophy in mice. To investigate whether EAP prevented catabolic DEXA-induced muscle atrophy, and to examine its mechanisms of action, EAP (100, 200 and 400 mg/kg) was administered orally, once a day for 24 days. EAP treatment was initiated 2 weeks prior to DEXA treatment (1 mg/kg, once a day for 10 days) in mice. Body weight alterations, serum biochemistry, calf thickness, calf muscle strength, gastrocnemius muscle thickness and weight, gastrocnemius muscle antioxidant defense parameters, gastrocnemius muscle mRNA expression, histology and histomorphometry were subsequently assessed. After 24 days, DEXA control mice exhibited muscle atrophy according to all criteria indices. However, these muscle atrophy symptoms were significantly inhibited by oral treatment with all three doses of EAP. Regarding possible mechanisms of action, EAP exhibited favorable ameliorating effects on DEXA-induced catabolic muscle atrophy via antioxidant and anti-inflammatory effects; these effects were mediated by modulation of the expression of genes involved in muscle protein synthesis (AKT serine/threonine kinase 1, phosphatidylinositol 3-kinase, adenosine A1 receptor and transient receptor potential cation channel subfamily V member 4) and degradation (atrogin-1, muscle RING-finger protein-1, myostatin and sirtuin 1). Therefore, these results indicated that EAP may be helpful in improving muscle atrophies of various etiologies. EAP at 400 mg/kg exhibited favorable muscle protective effects against DEXA-induced catabolic muscle atrophy, comparable with the effects of oxymetholone (50 mg/kg), which has been used to treat various muscle disorders. PMID:29138805

  19. Microbial interspecies electron transfer via electric currents through conductive minerals

    Science.gov (United States)

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2012-01-01

    In anaerobic biota, reducing equivalents (electrons) are transferred between different species of microbes [interspecies electron transfer (IET)], establishing the basis of cooperative behaviors and community functions. IET mechanisms described so far are based on diffusion of redox chemical species and/or direct contact in cell aggregates. Here, we show another possibility that IET also occurs via electric currents through natural conductive minerals. Our investigation revealed that electrically conductive magnetite nanoparticles facilitated IET from Geobacter sulfurreducens to Thiobacillus denitrificans, accomplishing acetate oxidation coupled to nitrate reduction. This two-species cooperative catabolism also occurred, albeit one order of magnitude slower, in the presence of Fe ions that worked as diffusive redox species. Semiconductive and insulating iron-oxide nanoparticles did not accelerate the cooperative catabolism. Our results suggest that microbes use conductive mineral particles as conduits of electrons, resulting in efficient IET and cooperative catabolism. Furthermore, such natural mineral conduits are considered to provide ecological advantages for users, because their investments in IET can be reduced. Given that conductive minerals are ubiquitously and abundantly present in nature, electric interactions between microbes and conductive minerals may contribute greatly to the coupling of biogeochemical reactions. PMID:22665802

  20. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria.

    Science.gov (United States)

    Höfler, Saskia; Lorenz, Christin; Busch, Tjorven; Brinkkötter, Mascha; Tohge, Takayuki; Fernie, Alisdair R; Braun, Hans-Peter; Hildebrandt, Tatjana M

    2016-07-01

    Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part in energy production as well as nutrient remobilization. The carbon skeletons are generally converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to prevent accumulation to toxic concentrations. Here we present a mitochondrial sulfur catabolic pathway catalyzing the complete oxidation of l-cysteine to pyruvate and thiosulfate. After transamination to 3-mercaptopyruvate, the sulfhydryl group from l-cysteine is transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo development and for vegetative growth under light-limiting conditions. Characterization of a double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and sulfurtransferase 1 revealed that an intermediate of the ETHE1 dependent pathway, most likely a persulfide, interferes with amino acid catabolism and induces early senescence. © 2016 Scandinavian Plant Physiology Society.

  1. Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Rocha, F.J.; Olmos-Soto, J. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, San Diego, CA (United States). Departamento de Biotecnologia Marina; Rosano-Hernandez, M.A.; Muriel-Garcia, M. [Instituto Mexicano del Petroleo, CD Carmen Camp (Mexico). Zona Marina/Tecnologia Ambiental

    2005-01-01

    Of more than 20 bacteria isolated from a tropical soil using minimal medium supplemented with hydrocarbons, 11 grew well on diesel as sole carbon source, and another 11 grew in the presence of polynuclear aromatic hydrocarbons (PAHs). Ten isolates were identified phenotypically as Pseudomonas sp. and eight as Bacillus sp. Gene sequences representing the catabolic genes (alkM, todM, ndoM, and xylM) and 16S rRNA gene sequences characteristic for Pseudomona and Bacillus were amplified by PCR, using DNA recovered from the supernatant of hydrocarbon-contaminated soil suspensions. Based on their rapid growth characteristics in the presence of hydrocarbons and the formation of PCR products for the catabolic genes alkM and ndoM six isolates were selected for biodegradation assays. After 30 days a mixed culture of two isolates achieved close to 70% hydrocarbon removal and apparent mineralization of 16% of the hydrocarbons present in the soil. Biodegradation rates varied from 275 to 387 mg hydrocarbon kg{sup -1} day{sup -1}. Several bacterial isolates obtained in this study have catabolic capabilities for the biodegradation of alkanes and aromatic hydrocarbons including PAHs. (author)

  2. BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status?

    Science.gov (United States)

    Gannon, Nicholas P; Schnuck, Jamie K; Vaughan, Roger A

    2018-03-01

    Branched-chain amino acids (BCAAs) appear to influence several synthetic and catabolic cellular signaling cascades leading to altered phenotypes in mammals. BCAAs are most notably known to increase protein synthesis through modulating protein translation, explaining their appeal to resistance and endurance athletes for muscle hypertrophy, expedited recovery, and preservation of lean body mass. In addition to anabolic effects, BCAAs may increase mitochondrial content in skeletal muscle and adipocytes, possibly enhancing oxidative capacity. However, elevated circulating BCAA levels have been correlated with severity of insulin resistance. It is hypothesized that elevated circulating BCAAs observed in insulin resistance may result from dysregulated BCAA degradation. This review summarizes original reports that investigated the ability of BCAAs to alter glucose uptake in consequential cell types and experimental models. The review also discusses the interplay of BCAAs with other metabolic factors, and the role of excess lipid (and possibly energy excess) in the dysregulation of BCAA catabolism. Lastly, this article provides a working hypothesis of the mechanism(s) by which lipids may contribute to altered BCAA catabolism, which often accompanies metabolic disease. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of Methoxyisoflavone, Ecdysterone, and Sulfo-Polysaccharide Supplementation on Training Adaptations in Resistance-Trained Males

    Directory of Open Access Journals (Sweden)

    Greenwood Michael

    2006-12-01

    Full Text Available Abstract Purpose Methoxyisoflavone (M, 20-hydroxyecdysone (E, and sulfo-polysaccharide (CSP3 have been marketed to athletes as dietary supplements that can increase strength and muscle mass during resistance-training. However, little is known about their potential ergogenic value. The purpose of this study was to determine whether these supplements affect training adaptations and/or markers of muscle anabolism/catabolism in resistance-trained athletes. Methods Forty-five resistance-trained males (20.5 ± 3 yrs; 179 ± 7 cm, 84 ± 16 kg, 17.3 ± 9% body fat were matched according to FFM and randomly assigned to ingest in a double blind manner supplements containing either a placebo (P; 800 mg/day of M; 200 mg of E; or, 1,000 mg/day of CSP3 for 8-weeks during training. At 0, 4, and 8-weeks, subjects donated fasting blood samples and completed comprehensive muscular strength, muscular endurance, anaerobic capacity, and body composition analysis. Data were analyzed by repeated measures ANOVA. Results No significant differences (p > 0.05 were observed in training adaptations among groups in the variables FFM, percent body fat, bench press 1 RM, leg press 1 RM or sprint peak power. Anabolic/catabolic analysis revealed no significant differences among groups in active testosterone (AT, free testosterone (FT, cortisol, the AT to cortisol ratio, urea nitrogen, creatinine, the blood urea nitrogen to creatinine ratio. In addition, no significant differences were seen from pre to post supplementation and/or training in AT, FT, or cortisol. Conclusion Results indicate that M, E, and CSP3 supplementation do not affect body composition or training adaptations nor do they influence the anabolic/catabolic hormone status or general markers of catabolism in resistance-trained males.

  4. Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z.

    Science.gov (United States)

    Gunasekera, Angelo; Alvarez, Francisco J; Douglas, Lois M; Wang, Hong X; Rosebrock, Adam P; Konopka, James B

    2010-10-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism.

  5. Utilization of alimentary protein and amino acids in satisfying the nitrogen requirements of monogastric mammals

    International Nuclear Information System (INIS)

    Pion, R.; Arnal, M.

    1976-01-01

    The nitrogenous matter in the food of monogastric animals consists mainly of proteins, which are rapidly hydrolized in the intestinal tract when they have left the gastric reservoir. The digestive tube has several roles: it provides for hydrolysis of the food proteins and for a supply of endogenous nitrogen; it enables a certain digestive function to be performed by the intestinal flora and permits the transport of amino acids into the blood, selecting those which are needed for protein synthesis. The digestion products appear mainly in the form of free amino acids in the portal blood. A large proportion of these amino acids is taken up by the liver, so that intense protein synthesis takes place in the latter, coupled with a decrease in catabolism leading to a rhythmic increase in the liver content of proteins and RNA. The labile proteins retained are mainly enzymes, which catabolize the amino acids, and the liver is the site of the catabolism of most of the excess amino acids except those with chain branching. Alimentary deficiencies do not markedly reduce protein synthesis in this organ, since the rate of re-utilization of the amino acids is increased and the liver thus plays a regulatory role. The utilization of amino acids in muscle also follows a certain rhythm, partly connected with feeding, and under hormonal control. The muscle is the seat of catabolism of a large part of the branched chain amino acids, and like the liver it contributes to the energy utilization of amino acids. The rate of utilization of certain essential amino acids can be measured by metabolic criteria, including determination of blood and muscle concentrations and excretion of 14 CO 2 labels in the exhaled air or of 35 S labels in urine. (author)

  6. Triacylglycerol Storage in Lipid Droplets in Procyclic Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Stefan Allmann

    Full Text Available Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4-5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG content also increased 4-5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. β-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFEα1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFEα1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFEα1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Δtfeα1/Δtfeα1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Δtfeα1/Δtfeα1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse.

  7. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes

    Directory of Open Access Journals (Sweden)

    Joseph Schwager

    2016-04-01

    Full Text Available Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL, carnosic acid (CA, carnosic acid-12-methylether (CAME, 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT in murine macrophages (RAW264.7 cells and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO and prostaglandin E2 (PGE2 production in LPS-stimulated macrophages (i.e., acute inflammation. They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6 and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis.

  8. The chrondoprotective actions of a natural product are associated with the activation of IGF-1 production by human chondrocytes despite the presence of IL-1β

    Directory of Open Access Journals (Sweden)

    Bobrowski Paul

    2006-04-01

    Full Text Available Abstract Background Cartilage loss is a hallmark of arthritis and follows activation of catabolic processes concomitant with a disruption of anabolic pathways like insulin-like growth factor 1 (IGF-1. We hypothesized that two natural products of South American origin, would limit cartilage degradation by respectively suppressing catabolism and activating local IGF-1 anabolic pathways. One extract, derived from cat's claw (Uncaria guianensis, vincaria®, is a well-described inhibitor of NF-κB. The other extract, derived from the vegetable Lepidium meyenii (RNI 249, possessed an uncertain mechanism of action but with defined ethnomedical applications for fertility and vitality. Methods Human cartilage samples were procured from surgical specimens with consent, and were evaluated either as explants or as primary chondrocytes prepared after enzymatic digestion of cartilage matrix. Assessments included IGF-1 gene expression, IGF-1 production (ELISA, cartilage matrix degradation and nitric oxide (NO production, under basal conditions and in the presence of IL-1β. Results RNI 249 enhanced basal IGF-1 mRNA levels in human chondrocytes by 2.7 fold, an effect that was further enhanced to 3.8 fold by co-administration with vincaria. Enhanced basal IGF-1 production by RNI 249 alone and together with vincaria, was confirmed in both explants and in primary chondrocytes (P Conclusion The identification of agents that activate the autocrine production of IGF-1 in cartilage, even in the face of suppressive pro-inflammatory, catabolic cytokines like IL-1β, represents a novel therapeutic approach to cartilage biology. Chondroprotection associated with prevention of the catabolic events and the potential for sustained anabolic activity with this natural product suggests that it holds significant promise in the treatment of debilitating joint diseases.

  9. Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    I Russel Lee

    Full Text Available Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase, URO2 (HIU hydrolase, URO3 (OHCU decarboxylase, DAL1 (allantoinase, DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein, and URE1 (urease. All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed.

  10. Cloning, Characterization and Analysis of cat and ben Genes from the Phenol Degrading Halophilic Bacterium Halomonas organivorans

    Science.gov (United States)

    Moreno, Maria de Lourdes; Sánchez-Porro, Cristina; Piubeli, Francine; Frias, Luciana; García, María Teresa; Mellado, Encarnación

    2011-01-01

    Background Extensive use of phenolic compounds in industry has resulted in the generation of saline wastewaters that produce significant environmental contamination; however, little information is available on the degradation of phenolic compounds in saline conditions. Halomonas organivorans G-16.1 (CECT 5995T) is a moderately halophilic bacterium that we isolated in a previous work from saline environments of South Spain by enrichment for growth in different pollutants, including phenolic compounds. PCR amplification with degenerate primers revealed the presence of genes encoding ring-cleaving enzymes of the β-ketoadipate pathway for aromatic catabolism in H. organivorans. Findings The gene cluster catRBCA, involved in catechol degradation, was isolated from H. organivorans. The genes catA, catB, catC and the divergently transcribed catR code for catechol 1,2-dioxygenase (1,2-CTD), cis,cis-muconate cycloisomerase, muconolactone delta-isomerase and a LysR-type transcriptional regulator, respectively. The benzoate catabolic genes (benA and benB) are located flanking the cat genes. The expression of cat and ben genes by phenol and benzoic acid was shown by RT-PCR analysis. The induction of catA gene by phenol and benzoic acid was also probed by the measurement of 1,2-CTD activity in H. organivorans growth in presence of these inducers. 16S rRNA and catA gene-based phylogenies were established among different degrading bacteria showing no phylogenetic correlation between both genes. Conclusions/Significance In this work, we isolated and determined the sequence of a gene cluster from a moderately halophilic bacterium encoding ortho-pathway genes involved in the catabolic metabolism of phenol and analyzed the gene organization, constituting the first report characterizing catabolic genes involved in the degradation of phenol in moderate halophiles, providing an ideal model system to investigate the potential use of this group of extremophiles in the decontamination of

  11. Lignin depolymerization by fungal secretomes and a microbial sink

    Energy Technology Data Exchange (ETDEWEB)

    Salvachúa, Davinia; Katahira, Rui; Cleveland, Nicholas S.; Khanna, Payal; Resch, Michael G.; Black, Brenna A.; Purvine, Samuel O.; Zink, Erika M.; Prieto, Alicia; Martínez, María J.; Martínez, Angel T.; Simmons, Blake A.; Gladden, John M.; Beckham, Gregg T.

    2016-08-25

    In Nature, powerful oxidative enzymes secreted by white rot fungi and some bacteria catalyze lignin depolymerization and some microbes are able to catabolize the resulting aromatic compounds as carbon and energy sources. Taken together, these two processes offer a potential route for microbial valorization of lignin. However, many challenges remain in realizing this concept, including that oxidative enzymes responsible for lignin depolymerization also catalyze polymerization of low molecular weight (LMW) lignin. Here, multiple basidiomycete secretomes were screened for ligninolytic enzyme activities in the presence of a residual lignin solid stream from a corn stover biorefinery, dubbed DMR-EH (Deacetylation, Mechanical Refining, and Enzymatic Hydrolysis) lignin. Two selected fungal secretomes, with high levels of laccases and peroxidases, were utilized for DMR-EH lignin depolymerization assays. The secretome from Pleurotus eryngii, which exhibited the highest laccase activity, reduced the lignin average molecular weight by 63% and 75% at pH 7 compared to the Mw of the control treated at the same conditions and the initial DMR-EH lignin, respectively, and was applied in further depolymerization assays as a function of time. As repolymerization was observed after 3 days of incubation, an aromatic-catabolic microbe (Pseudomonas putida KT2440) was incubated with the fungal secretome and DMR-EH lignin. These experiments demonstrated that the presence of the bacterium enhances lignin depolymerization, likely due to bacterial catabolism of LMW lignin, which may partially prevent repolymerization. In addition, proteomics was also applied to the P. eryngii secretome to identify the enzymes present in the fungal cocktail utilized for the depolymerization assays, which highlighted a significant number of glucose/ methanol/choline (GMC) oxidoreductases and laccases. Overall, this study demonstrates that ligninolytic enzymes can be used to partially depolymerize a solid, high

  12. Activity of 3-Ketosteroid 9α-Hydroxylase (KshAB) Indicates Cholesterol Side Chain and Ring Degradation Occur Simultaneously in Mycobacterium tuberculosis*

    Science.gov (United States)

    Capyk, Jenna K.; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C.; Eltis, Lindsay D.

    2011-01-01

    Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (kcat/Km) of KshAB for the CoA thioester substrates was 20–30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent KmO2 was 90 ± 10 μm in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ1 ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism. PMID:21987574

  13. Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis.

    Science.gov (United States)

    Capyk, Jenna K; Casabon, Israël; Gruninger, Robert; Strynadka, Natalie C; Eltis, Lindsay D

    2011-11-25

    Mycobacterium tuberculosis (Mtb), a significant global pathogen, contains a cholesterol catabolic pathway. Although the precise role of cholesterol catabolism in Mtb remains unclear, the Rieske monooxygenase in this pathway, 3-ketosteroid 9α-hydroxylase (KshAB), has been identified as a virulence factor. To investigate the physiological substrate of KshAB, a rhodococcal acyl-CoA synthetase was used to produce the coenzyme A thioesters of two cholesterol derivatives: 3-oxo-23,24-bisnorchol-4-en-22-oic acid (forming 4-BNC-CoA) and 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (forming 1,4-BNC-CoA). The apparent specificity constant (k(cat)/K(m)) of KshAB for the CoA thioester substrates was 20-30 times that for the corresponding 17-keto compounds previously proposed as physiological substrates. The apparent K(m)(O(2)) was 90 ± 10 μM in the presence of 1,4-BNC-CoA, consistent with the value for two other cholesterol catabolic oxygenases. The Δ(1) ketosteroid dehydrogenase KstD acted with KshAB to cleave steroid ring B with a specific activity eight times greater for a CoA thioester than the corresponding ketone. Finally, modeling 1,4-BNC-CoA into the KshA crystal structure suggested that the CoA moiety binds in a pocket at the mouth of the active site channel and could contribute to substrate specificity. These results indicate that the physiological substrates of KshAB are CoA thioester intermediates of cholesterol side chain degradation and that side chain and ring degradation occur concurrently in Mtb. This finding has implications for steroid metabolites potentially released by the pathogen during infection and for the design of inhibitors for cholesterol-degrading enzymes. The methodologies and rhodococcal enzymes used to generate thioesters will facilitate the further study of cholesterol catabolism.

  14. Identification of Two Gene Clusters and a Transcriptional Regulator Required for Pseudomonas aeruginosa Glycine Betaine Catabolism▿ †

    Science.gov (United States)

    Wargo, Matthew J.; Szwergold, Benjamin S.; Hogan, Deborah A.

    2008-01-01

    Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-13C-labeled choline indicated that these genes are necessary for conversion of GB to DMG. Similar experiments showed that strains with mutations in the dgcAB (PA5398-PA5399) genes, which exhibit homology to genes that encode other enzymes with demethylase activity, are required for the conversion of DMG to sarcosine. Mutant analyses and 13C NMR studies also confirmed that the soxBDAG genes, predicted to encode a sarcosine oxidase, are required for sarcosine catabolism. Our screen also identified a predicted AraC family transcriptional regulator, encoded by gbdR (PA5380), that is required for growth on GB and DMG and for the induction of gbcA, gbcB, and dgcAB in response to GB or DMG. Mutants defective in the previously described gbt gene (PA3082) grew on GB with kinetics similar to those of the wild type in both the PAO1 and PA14 strain backgrounds. These studies provided important insight into both the mechanism and the regulation of the catabolism of GB in P. aeruginosa. PMID:17951379

  15. Identification of GIG1, a GlcNAc-Induced Gene in Candida albicans Needed for Normal Sensitivity to the Chitin Synthase Inhibitor Nikkomycin Z▿§

    Science.gov (United States)

    Gunasekera, Angelo; Alvarez, Francisco J.; Douglas, Lois M.; Wang, Hong X.; Rosebrock, Adam P.; Konopka, James B.

    2010-01-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism. PMID:20675577

  16. Studies of anaerobic and aerobic glycolysis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    den Hollander, J.A.; Ugurbil, K.; Brown, T.R.; Bednar, M.; Redfield, C.; Shulman, R.G.

    1986-01-01

    Glucose metabolism was followed in suspensions of Saccharomyces cerevisiae by using 13C NMR and 14C radioactive labeling techniques and by Warburg manometer experiments. These experiments were performed for cells grown with various carbon sources in the growth medium, so as to evaluate the effect of catabolite repression. The rate of glucose utilization was most conveniently determined by the 13C NMR experiments, which measured the concentration of [1-13C]glucose, whereas the distribution of end products was determined from the 13C and the 14C experiments. By combining these measurements the flows into the various pathways that contribute to glucose catabolism were estimated, and the effect of oxygen upon glucose catabolism was evaluated. From these measurements, the Pasteur quotient (PQ) for glucose catabolism was calculated to be 2.95 for acetate-grown cells and 1.89 for cells grown on glucose into saturation. The Warburg experiments provided an independent estimate of glucose catabolism. The PQ estimated from Warburg experiments was 2.9 for acetate-grown cells in excellent agreement with the labeled carbon experiments and 4.6 for cells grown into saturation, which did not agree. Possible explanations of these differences are discussed. From these data an estimate is obtained of the net flow through the Embden-Meyerhof-Parnas pathway. The backward flow through fructose-1,6-bisphosphatase (Fru-1,6-P2-ase) was calculated from the scrambling of the 13C label of [1-13C]glucose into the C1 and C6 positions of trehalose. Combining these data allowed us to calculate the net flux through phosphofructokinase (PFK). For acetate-grown cells we found that the relative flow through PFK is a factor of 1.7 faster anaerobically than aerobically

  17. The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader.

    Directory of Open Access Journals (Sweden)

    Athanasios Lykidis

    Full Text Available BACKGROUND: Cupriavidus necator JMP134 is a Gram-negative beta-proteobacterium able to grow on a variety of aromatic and chloroaromatic compounds as its sole carbon and energy source. METHODOLOGY/PRINCIPAL FINDINGS: Its genome consists of four replicons (two chromosomes and two plasmids containing a total of 6631 protein coding genes. Comparative analysis identified 1910 core genes common to the four genomes compared (C. necator JMP134, C. necator H16, C. metallidurans CH34, R. solanacearum GMI1000. Although secondary chromosomes found in the Cupriavidus, Ralstonia, and Burkholderia lineages are all derived from plasmids, analyses of the plasmid partition proteins located on those chromosomes indicate that different plasmids gave rise to the secondary chromosomes in each lineage. The C. necator JMP134 genome contains 300 genes putatively involved in the catabolism of aromatic compounds and encodes most of the central ring-cleavage pathways. This strain also shows additional metabolic capabilities towards alicyclic compounds and the potential for catabolism of almost all proteinogenic amino acids. This remarkable catabolic potential seems to be sustained by a high degree of genetic redundancy, most probably enabling this catabolically versatile bacterium with different levels of metabolic responses and alternative regulation necessary to cope with a challenging environment. From the comparison of Cupriavidus genomes, it is possible to state that a broad metabolic capability is a general trait for Cupriavidus genus, however certain specialization towards a nutritional niche (xenobiotics degradation, chemolithoautotrophy or symbiotic nitrogen fixation seems to be shaped mostly by the acquisition of "specialized" plasmids. CONCLUSIONS/SIGNIFICANCE: The availability of the complete genome sequence for C. necator JMP134 provides the groundwork for further elucidation of the mechanisms and regulation of chloroaromatic compound biodegradation.

  18. Optimisation of biological reactors using the 'biological resonance' phenomenon; Ansatz zur Optimierung biologischer Reinigungsstufen durch das Phaenomen der ''Biologischen Resonanz''

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, A.

    2003-07-01

    The microbial catabolic activity of biological reactors can be increased by up to 75% through external stimulation with intermittent stress loads at intervals of several minutes. Under these process conditions, the ''biological resonance'' phenomenon determines the system and leads to an increased synthesis of enzymes. In addition to computer simulations, experiments with activated sludge were carried out in a 10-litre bioreactor. By modulating the stress intervals, a permanent increase in catabolic activity of about 60% was achieved during these experiments. By relying on the ''biological resonance'' phenomenon, the required reaction volume of biological treatment units can probably be reduced by up to 40%. (orig.)

  19. Contribution of Neuroinflammation to the Pathogenesis of Cancer Cachexia.

    Science.gov (United States)

    Molfino, Alessio; Gioia, Gianfranco; Rossi Fanelli, Filippo; Laviano, Alessandro

    2015-01-01

    Inflammation characterizes the course of acute and chronic diseases and is largely responsible for the metabolic and behavioral changes occurring during the clinical journey of patients. Robust data indicate that, during cancer, functional modifications within brain areas regulating energy homeostasis contribute to the onset of anorexia, reduced food intake, and increased catabolism of muscle mass and adipose tissue. In particular, functional changes are associated with increased hypothalamic concentration of proinflammatory cytokines, which suggests that neuroinflammation may represent the adaptive response of the brain to peripheral challenges, including tumor growth. Within this conceptual framework, the vagus nerve appears to be involved in conveying alert signals to the hypothalamus, whereas hypothalamic serotonin appears to contribute to triggering catabolic signals.

  20. Role of Polyamines in Immune Cell Functions

    Directory of Open Access Journals (Sweden)

    Rebecca S. Hesterberg

    2018-03-01

    Full Text Available The immune system is remarkably responsive to a myriad of invading microorganisms and provides continuous surveillance against tissue damage and developing tumor cells. To achieve these diverse functions, multiple soluble and cellular components must react in an orchestrated cascade of events to control the specificity, magnitude and persistence of the immune response. Numerous catabolic and anabolic processes are involved in this process, and prominent roles for l-arginine and l-glutamine catabolism have been described, as these amino acids serve as precursors of nitric oxide, creatine, agmatine, tricarboxylic acid cycle intermediates, nucleotides and other amino acids, as well as for ornithine, which is used to synthesize putrescine and the polyamines spermidine and spermine. Polyamines have several purported roles and high levels of polyamines are manifest in tumor cells as well in autoreactive B- and T-cells in autoimmune diseases. In the tumor microenvironment, l-arginine catabolism by both tumor cells and suppressive myeloid cells is known to dampen cytotoxic T-cell functions suggesting there might be links between polyamines and T-cell suppression. Here, we review studies suggesting roles of polyamines in normal immune cell function and highlight their connections to autoimmunity and anti-tumor immune cell function.

  1. The Dynamics of Pheromone Gland Synthesis and Release: a Paradigm Shift for Understanding Sex Pheromone Quantity in Female Moths.

    Science.gov (United States)

    Foster, Stephen P; Anderson, Karin G; Casas, Jérôme

    2018-05-10

    Moths are exemplars of chemical communication, especially with regard to specificity and the minute amounts they use. Yet, little is known about how females manage synthesis and storage of pheromone to maintain release rates attractive to conspecific males and why such small amounts are used. We developed, for the first time, a quantitative model, based on an extensive empirical data set, describing the dynamical relationship among synthesis, storage (titer) and release of pheromone over time in a moth (Heliothis virescens). The model is compartmental, with one major state variable (titer), one time-varying (synthesis), and two constant (catabolism and release) rates. The model was a good fit, suggesting it accounted for the major processes. Overall, we found the relatively small amounts of pheromone stored and released were largely a function of high catabolism rather than a low rate of synthesis. A paradigm shift may be necessary to understand the low amounts released by female moths, away from the small quantities synthesized to the (relatively) large amounts catabolized. Future research on pheromone quantity should focus on structural and physicochemical processes that limit storage and release rate quantities. To our knowledge, this is the first time that pheromone gland function has been modeled for any animal.

  2. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    Science.gov (United States)

    del Rio, Beatriz; Linares, Daniel M.; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P.; Ladero, Victor; Alvarez, Miguel A.

    2015-01-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC[1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2], which is also transcriptionally regulated by carbon catabolic repression (CCR) via glucose, but not by other sugars such as lactose and galactose [1], [3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR) [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE59514. PMID:26697381

  3. Effect of methyl-β-cyclodextrin on gene expression in microbial conversion of phytosterol.

    Science.gov (United States)

    Shtratnikova, Victoria Y; Schelkunov, Mikhail I; Dovbnya, Dmitry V; Bragin, Eugeny Y; Donova, Marina V

    2017-06-01

    Modified β-cyclodextrins are widely used for the enhancement of microbial conversions of lipophilic compounds such as steroids. Multiple mechanisms of cyclodextrin-mediated enhancement of phytosterol bioconversion by mycobacteria had previously been shown to include steroid solubilization, alterations in the cell wall permeability for both steroids and nutrients, facilitation of protein leaking, and activity suppression of some steroid-transforming enzymes.In this work, we studied whether cyclodextrins might affect expression of the genes involved in the steroid catabolic pathway. Phytosterol bioconversion with 9α-hydroxy-androst-4-ene-3,17-dione accumulation by Mycobacterium sp. VKM Ac-1817D in the presence of methylated β-cyclodextrin (MCD) was investigated. RNA sequencing of the whole transcriptomes in different combinations of phytosterol and MCD showed a similar expression level of the steroid catabolism genes related to the KstR-regulon and was responsible for side chain and initial steps of steroid core oxidation; whereas, induction levels of the genes related to the KstR2-regulon were attenuated in the presence of MCD in this strain. The data were attenuated with quantitative real-time PCR.The results contribute to the understanding of cyclodextrin effects on microbial steroid conversion and provide a basis for the use of cyclodextrins as expression enhancers for studies of sterol catabolism in actinobacteria.

  4. Enhancement of 9α-Hydroxy-4-androstene-3,17-dione Production from Soybean Phytosterols by Deficiency of a Regulated Intramembrane Proteolysis Metalloprotease in Mycobacterium neoaurum.

    Science.gov (United States)

    Xiong, Liang-Bin; Sun, Wan-Ju; Liu, Yong-Jun; Wang, Feng-Qing; Wei, Dong-Zhi

    2017-12-06

    Modification of the sterol catabolism pathway in mycobacteria may result in the accumulation of some valuable steroid pharmaceutical intermediates, such as 9α-hydroxy-4-androstene-3,17-dione (9-OHAD). In previous work, sigma factor D (SigD) was identified as a negative factor of the 9-OHAD production in Mycobacterium neoaurum. Here, the deficiency of rip1 putatively coding for a regulated intramembrane proteolysis metalloprotease (Rip1), which could cleave the negative regulator of SigD (anti-SigD), enhanced the transcription of some key genes (choM1, kshA, and hsd4A) in the sterol catabolic pathway. Furthermore, the deletion of rip1 increased the consumption of phytosterols by 37.8% after 96 h of growth in M. neoaurum. The production of 9-OHAD in the engineered M. neoaurumΔkstD1ΔkstD2ΔkstD3Δrip1 (MnΔk123Δrip1) strain was ultimately increased by 27.3% compared to that in its parental strain M. neoaurumΔkstD1ΔkstD2ΔkstD3 (MnΔk123). This study further confirms the important role of SigD-related factors in the catabolism of sterols.

  5. Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583

    Directory of Open Access Journals (Sweden)

    Marta Perez

    2016-09-01

    Full Text Available The species Enterococcus faecalis is able to catabolise the amino acid tyrosine into the biogenic amine tyramine by the tyrosine decarboxilase (TDC pathway Ladero et al. (2012 [1]. The TDC cluster comprises four genes: tyrS, an aminoacyl-tRNA synthetase-like gene; tdcA, which encodes the tyrosine decarboxylase; tyrP, a tyrosine/tyramine exchanger gene and nhaC-2, which encodes an Na+/H+ antiporter and whose role in the tyramine biosynthesis remains unknown [2]. In E. faecalis V583 the last three genes are co-transcribed as a single polycistronic mRNA forming the catabolic operon, while tyrS is transcribed independently of the catabolic genes as a monocistronic mRNA [2]. The catabolic operon is transcriptionally induced by tyrosine and acidic pH. On the opposite, the tyrS expression is repressed by tyrosine concentrations [2]. In this work we report the transcriptional profiling of the TDC cluster deletion mutant (E. faecalis V583 ΔTDC [2] compared to the wild-type strain, both grown in M17 medium supplemented with tyrosine. The transcriptional profile data of TDC cluster-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE77864.

  6. Thematic review series: patient-oriented research. What we have learned about VLDL and LDL metabolism from human kinetics studies.

    Science.gov (United States)

    Parhofer, Klaus G; Barrett, P Hugh R

    2006-08-01

    Lipoprotein metabolism is the result of a complex network of many individual components. Abnormal lipoprotein concentrations can result from changes in the production, conversion, or catabolism of lipoprotein particles. Studies in hypolipoproteinemia and hyperlipoproteinemia have elucidated the processes that control VLDL secretion as well as VLDL and LDL catabolism. Here, we review the current knowledge regarding apolipoprotein B (apoB) metabolism, focusing on selected clinically relevant conditions. In hypobetalipoproteinemia attributable to truncations in apoB, the rate of secretion is closely linked to the length of apoB. On the other hand, in patients with the metabolic syndrome, it appears that substrate, in the form of free fatty acids, coupled to the state of insulin resistance can induce hypersecretion of VLDL-apoB. Studies in patients with familial hypercholesterolemia, familial defective apoB, and mutant forms of proprotein convertase subtilisin/kexin type 9 show that mutations in the LDL receptor, the ligand for the receptor, or an intracellular chaperone for the receptor are the most important determinants in regulating LDL catabolism. This review also demonstrates the variance of results within similar, or even the same, phenotypic conditions. This underscores the sensitivity of metabolic studies to methodological aspects and thus the importance of the inclusion of adequate controls in studies.

  7. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    Directory of Open Access Journals (Sweden)

    Beatriz del Rio

    2015-12-01

    Full Text Available Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14 is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine into the biogenic amine putrescine by the agmatine deiminase (AGDI pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC [1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC [2], which is also transcriptionally regulated by carbon catabolic repression (CCR via glucose, but not by other sugars such as lactose and galactose [1,3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE59514.

  8. Effects of estrogen on low density lipoprotein metabolism in males. Short-term and long-term studies during hormonal treatment of prostatic carcinoma

    International Nuclear Information System (INIS)

    Eriksson, M.; Berglund, L.; Rudling, M.; Henriksson, P.; Angelin, B.

    1989-01-01

    To characterize the effects of estrogen treatment on the metabolism of LDL we studied six males with metastatic prostatic carcinoma before and during the initiation of therapy; a repeated study was performed in five participants after 3-6 mo of treatment. The fractional catabolic rate (FCR) of autologous 125 I-LDL was calculated both from elimination curves of plasma radioactivity and from urine/plasma (U/P) radioactivity ratios. Within 1-2 d of onset of estrogen therapy a more rapid decay of plasma radioactivity occurred, and FCR measured from U/P ratios increased by 20%. Concomitantly, LDL cholesterol levels decreased by 16%. After 3-6 mo of treatment FCR determined by both techniques was almost doubled, and LDL cholesterol was reduced by 34%. This occurred despite a 29% increase in the calculated synthesis rate of LDL. Tissue culture studies demonstrated that the receptor affinity of LDL isolated from patients on long-term estrogen therapy was reduced. We conclude that a profound increase in LDL catabolism is induced through administration of pharmacological doses of estrogen in males, and hypothesize that this is the consequence of an increased expression of hepatic LDL receptors. This enhanced catabolism of LDL leaves LDL particles in plasma with lower affinity for the LDL receptor

  9. InterProScan Result: BY940643 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available ogentisate 1,2-dioxygenase Biological Process: L-phenylalanine catabolic process (GO:0006559)|Biological Pro...cess: tyrosine metabolic process (GO:0006570)|Biological Process: oxidation reduction (GO:0055114) ...

  10. Sugar catabolism during growth on plant biomass in Aspergillus

    NARCIS (Netherlands)

    Khosravi, C.

    2017-01-01

    A growing industrial sector in which plant degrading enzymes are used is the production of alternative fuels, such as bio-ethanol, and biochemicals. Plant polysaccharides can be converted to fermentable sugars by fungal enzymes. The sugars are then fermented to ethanol and other products mainly by

  11. Extraction, radioiodination, and in vivo catabolism of equine fibrinogen

    International Nuclear Information System (INIS)

    Coyne, C.P.; Hornof, W.J.; Kelly, A.B.; O'Brien, T.R.; DeNardo, S.J.

    1985-01-01

    Equine fibrinogen was isolated and aliquots were stored frozen at -70 C before radiolabeling with 125I (half-life = 60.2 days; gamma = 35 keV, using monochloroiodine reagent. Radioiodination efficiencies were 49% to 53%, resulting in a labeled product with 98% protein-bound activity and 91% clottable radioactivity. In 6 equine in vivo investigations, plasma half-lives of 125I-labeled fibrinogen were from 4.1 to 5.2 days, corresponding to a mean daily plasma elimination rate of approximately 15%

  12. Alternative lactose catabolic pathway in Lactococcus lactis IL1403

    NARCIS (Netherlands)

    Aleksandrzak-Piekarczyk, T; Kok, J; Renault, P; Bardowski, J

    2005-01-01

    In this study, we present a glimpse of the diversity of Lactococcus lactis subsp. lactis IL1403 beta-galactosidase phenotype-negative mutants isolated by negative selection on solid media containing cellobiose or lactose and X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside), and we

  13. A method for measuring sulfide toxicity in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Livshits, Leonid; Gross, Einav

    2017-01-01

    Cysteine catabolism by gut microbiota produces high levels of sulfide. Excessive sulfide can interfere with colon function, and therefore may be involved in the etiology and risk of relapse of ulcerative colitis, an inflammatory bowel disease affecting millions of people worldwide. Therefore, it is crucial to understand how cells/animals regulate the detoxification of sulfide generated by bacterial cysteine catabolism in the gut. Here we describe a simple and cost-effective way to explore the mechanism of sulfide toxicity in the nematode Caenorhabditis elegans ( C. elegans ). •A rapid cost-effective method to quantify and study sulfide tolerance in C. elegans and other free-living nematodes.•A cost effective method to measure the concentration of sulfide in the inverted plate assay.

  14. 3-Methylhistidine excretion in myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Griggs, R.C.; Moxley, R.T. III; Forbes, G.B.

    1980-12-01

    3-Methylhistidine (3-MH) excretion reflects the rate of muscle protein catabolism, since 3-MH occurs almost exclusively in muscle actin and myosin and is not reutilized or catabolized. We studied 3-MH excretion in 9 patients with myotonic dystrophy, 8 normals, and 10 disease controls with Duchenne dystrophy and other disorders. 3-MH excretion was expressed relative to muscle mass as determined by both urinary creatinine and total body potassium (/sup 40/K method). Absolute 3-MH excretion was decreased in myotonic dystrophy patients but was normal when related to muscle mass. The finding of normal 3-MH excretion in myotonic dystrophy suggests that the muscle wasting in this disorder results from impaired anabolic processes rather than accelerated muscle destruction.

  15. 123I and131I labelled p-iodophenylpentadecanoic acid (p-IPPA): simplified preparation. Biodistribution in mice, rabbits and patients

    International Nuclear Information System (INIS)

    Angelberger, P.; Wagner-Loeffler, M.; Hruby, R.; Dudczak, R.; Schmoliner, R.; Kletter, K.; Frischauf, H.

    1981-01-01

    In an attempt to avoid the second injection of radioiodide as an internal standard for catabolically released iodide, Machulla et al proposed 15-phenyl-penta-decanoic acid (PPA), labelled at the phenyl ring, for myocardial imaging and metabolic studies. PPA is catabolized via β-oxidation to benzoic acid which is known to be rapidly excreted as hippuric acid. After labelling, three sequential HPLC separations were recommended to purify the labelled p-Isomer (p-IPPA). In this process three intermediate evaporation steps have also to be performed. Thus it seems important to look for improved purification procedures which may possibly reduce the preparation time. The present report compares different purification procedures and relates them to the biodistribution of the final product in mice and rabbits. (Auth.)

  16. 3-Methylhistidine excretion in myotonic dystrophy

    International Nuclear Information System (INIS)

    Griggs, R.C.; Moxley, R.T. III; Forbes, G.B.

    1980-01-01

    3-Methylhistidine (3-MH) excretion reflects the rate of muscle protein catabolism, since 3-MH occurs almost exclusively in muscle actin and myosin and is not reutilized or catabolized. We studied 3-MH excretion in 9 patients with myotonic dystrophy, 8 normals, and 10 disease controls with Duchenne dystrophy and other disorders. 3-MH excretion was expressed relative to muscle mass as determined by both urinary creatinine and total body potassium ( 40 K method). Absolute 3-MH excretion was decreased in myotonic dystrophy patients but was normal when related to muscle mass. The finding of normal 3-MH excretion in myotonic dystrophy suggests that the muscle wasting in this disorder results from impaired anabolic processes rather than accelerated muscle destruction

  17. Contribution of Neuroinflammation to the Pathogenesis of Cancer Cachexia

    Directory of Open Access Journals (Sweden)

    Alessio Molfino

    2015-01-01

    Full Text Available Inflammation characterizes the course of acute and chronic diseases and is largely responsible for the metabolic and behavioral changes occurring during the clinical journey of patients. Robust data indicate that, during cancer, functional modifications within brain areas regulating energy homeostasis contribute to the onset of anorexia, reduced food intake, and increased catabolism of muscle mass and adipose tissue. In particular, functional changes are associated with increased hypothalamic concentration of proinflammatory cytokines, which suggests that neuroinflammation may represent the adaptive response of the brain to peripheral challenges, including tumor growth. Within this conceptual framework, the vagus nerve appears to be involved in conveying alert signals to the hypothalamus, whereas hypothalamic serotonin appears to contribute to triggering catabolic signals.

  18. Effect of plaster cast immobilization on the turnover rates of soluble proteins and lactate dehydrogenase isoenzymes of rabbit M. soleus

    Energy Technology Data Exchange (ETDEWEB)

    Edes, I.; Dosa, E.; Sohar, I.; Guba, F. (Orvostudomanyi Egyetem, Szeged (Hungary). Biokemiai Tanszek)

    1982-01-01

    In atrophized muscle the decreases of the activity of LDH isoenzymes can be explained partly by a 15 per cent decrease of the enzyme synthesis and partly by a 25 per cent increase in catabolism. The quantities of the soluble proteins and LDH were measured after intravenously administered /sup 3/H-leucin incorporation, from the musculus soleus. LDH was isolated by means of affinity chromatography. Radioactivity was determined in a Packard Tri-Carb scintillation counter. The synthesis rate of soluble proteins barely changed during immobilization. In the atrophized muscle the decrease of the amount of soluble proteins could be almost exclusively interpreted in terms of a 25 per cent enchancement of degradative process. The accelerated catabolism is most probably due to the proteolytic enzymes activated by immobilization.

  19. InterProScan Result: CK510760 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available ospholipase A2, active site Molecular Function: phospholipase A2 activity (GO:0004623)|Biological Process: p...hospholipid metabolic process (GO:0006644)|Biological Process: lipid catabolic process (GO:0016042) ...

  20. The processing and fate of antibodies and their radiolabels bound to the surface of tumor cells in vitro: A comparison of nine radiolabels

    International Nuclear Information System (INIS)

    Shih, L.B.; Thorpe, S.R.; Griffiths, G.L.; Diril, H.; Ong, G.L.; Hansen, H.J.; Goldenberg, D.M.; Mattes, M.J.

    1994-01-01

    Processing radiolabeled degradation products is the key factor affecting retention of antibodies within the cell. In this study, the authors have analyzed the processing of antibodies labeled in nine different ways. Antibodies were labeled with three different radioisotopes and seven different forms of 125 I. Eight of the radiolabels (except 188 Re) were conjugated to the same antibody, MA103, and tested on the renal carcinoma cell line SK-RC-18 and/or the ovarian carcinoma cell line SK-OV-6. Rhenium conjugation utilized the antibody RS7, the target cell line ME180 and three of the other radiolabels were also tested with this antibody-target cell combination for comparison. Iodine conjugated to antibodies by conventional methods was rapidly released from the cell after antibody catabolism. In contrast, iodinated moieties, such as dilactitol-tyramine and inulin-tyramine were retained within cells four to five times longer. The use of radiolabels that are trapped within cells after antibody catabolism can potentially increase the dose of radiation delivered to the tumor, from the same amount of radioactivity deposited by a factor of four or five. The prolonged retention of 111 In relative to 125 I is not due to deiodination of iodine conjugates, but rather to intracellular retention of catabolic products containing 111 In, perhaps within lysosomes. 45 refs., 4 figs., 1 tab

  1. Molecular cloning and expression analysis of the gene encoding proline dehydrogenase from Jatropha curcas L.

    Science.gov (United States)

    Wang, Haibo; Ao, Pingxing; Yang, Shuanglong; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2015-03-01

    Proline dehydrogenase (ProDH) (EC 1.5.99.8) is a key enzyme in the catabolism of proline. The enzyme JcProDH and its complementary DNA (cDNA) were isolated from Jatropha curcas L., an important woody oil plant used as a raw material for biodiesels. It has been classified as a member of the Pro_dh superfamily based on multiple sequence alignment, phylogenetic characterization, and its role in proline catabolism. Its cDNA is 1674 bp in length with a complete open reading frame of 1485 bp, which encodes a polypeptide chain of 494 amino acids with a predicted molecular mass of 54 kD and a pI of 8.27. Phylogenetic analysis indicated that JcProDH showed high similarity with ProDH from other plants. Reverse transcription PCR (RT-PCR) analysis revealed that JcProDH was especially abundant in the seeds and flowers but scarcely present in the stems, roots, and leaves. In addition, the expression of JcProDH increased in leaves experiencing environmental stress such as cold (5 °C), heat (42 °C), salt (300 mM), and drought (30 % PEG6000). The JcProDH protein was successfully expressed in the yeast strain INVSc1 and showed high enzyme activity in proline catabolism. This result confirmed that the JcProDH gene negatively participated in the stress response.

  2. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis.

    Science.gov (United States)

    Carroll, Bernadette; Korolchuk, Viktor I; Sarkar, Sovan

    2015-10-01

    Maintenance of amino acid homeostasis is important for healthy cellular function, metabolism and growth. Intracellular amino acid concentrations are dynamic; the high demand for protein synthesis must be met with constant dietary intake, followed by cellular influx, utilization and recycling of nutrients. Autophagy is a catabolic process via which superfluous or damaged proteins and organelles are delivered to the lysosome and degraded to release free amino acids into the cytoplasm. Furthermore, autophagy is specifically activated in response to amino acid starvation via two key signaling cascades: the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and the general control nonderepressible 2 (GCN2) pathways. These pathways are key regulators of the integration between anabolic (amino acid depleting) and catabolic (such as autophagy which is amino acid replenishing) processes to ensure intracellular amino acid homeostasis. Here, we discuss the key roles that amino acids, along with energy (ATP, glucose) and oxygen, are playing in cellular growth and proliferation. We further explore how sophisticated methods are employed by cells to sense intracellular amino acid concentrations, how amino acids can act as a switch to dictate the temporal and spatial activation of anabolic and catabolic processes and how autophagy contributes to the replenishment of free amino acids, all to ensure cell survival. Relevance of these molecular processes to cellular and organismal physiology and pathology is also discussed.

  3. Soil microbial respiration and PICT responses to an industrial and historic lead pollution: a field study.

    Science.gov (United States)

    Bérard, Annette; Capowiez, Line; Mombo, Stéphane; Schreck, Eva; Dumat, Camille; Deola, Frédéric; Capowiez, Yvan

    2016-03-01

    We performed a field investigation to study the long-term impacts of Pb soil contamination on soil microbial communities and their catabolic structure in the context of an industrial site consisting of a plot of land surrounding a secondary lead smelter. Microbial biomass, catabolic profiles, and ecotoxicological responses (PICT) were monitored on soils sampled at selected locations along 110-m transects established on the site. We confirmed the high toxicity of Pb on respirations and microbial and fungal biomasses by measuring positive correlations with distance from the wall factory and negative correlation with total Pb concentrations. Pb contamination also induced changes in microbial and fungal catabolic structure (from carbohydrates to amino acids through carboxylic malic acid). Moreover, PICT measurement allowed to establish causal linkages between lead and its effect on biological communities taking into account the contamination history of the ecosystem at community level. The positive correlation between qCO2 (based on respiration and substrate use) and PICT suggested that the Pb stress-induced acquisition of tolerance came at a greater energy cost for microbial communities in order to cope with the toxicity of the metal. In this industrial context of long-term polymetallic contamination dominated by Pb in a field experiment, we confirmed impacts of this metal on soil functioning through microbial communities, as previously observed for earthworm communities.

  4. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus.

    Science.gov (United States)

    Chen, Mei; Huang, Xuenian; Zhong, Chengwei; Li, Jianjun; Lu, Xuefeng

    2016-09-01

    Itaconic acid, one of the most promising and flexible bio-based chemicals, is mainly produced by Aspergillus terreus. Previous studies to improve itaconic acid production in A. terreus through metabolic engineering were mainly focused on its biosynthesis pathway, while the itaconic acid-degrading pathway has largely been ignored. In this study, we used transcriptomic, proteomic, bioinformatic, and in vitro enzymatic analyses to identify three key enzymes, itaconyl-CoA transferase (IctA), itaconyl-CoA hydratase (IchA), and citramalyl-CoA lyase (CclA), that are involved in the catabolic pathway of itaconic acid in A. terreus. In the itaconic acid catabolic pathway in A. terreus, itaconic acid is first converted by IctA into itaconyl-CoA with succinyl-CoA as the CoA donor, and then itaconyl-CoA is hydrated into citramalyl-CoA by IchA. Finally, citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by CclA. Moreover, IctA can also catalyze the reaction between citramalyl-CoA and succinate to generate succinyl-CoA and citramalate. These results, for the first time, identify the three key enzymes, IctA, IchA, and CclA, involved in the itaconic acid degrading pathway in itaconic acid producing A. terreus. The results will facilitate the improvement of itaconic acid production by metabolically engineering the catabolic pathway of itaconic acid in A. terreus.

  5. Gibberellin–Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato

    Science.gov (United States)

    Martín-Rodríguez, José A.; Huertas, Raúl; Ho-Plágaro, Tania; Ocampo, Juan A.; Turečková, Veronika; Tarkowská, Danuše; Ludwig-Müller, Jutta; García-Garrido, José M.

    2016-01-01

    Plant hormones have become appropriate candidates for driving functional plant mycorrhization programs, including the processes that regulate the formation of arbuscules in arbuscular mycorrhizal (AM) symbiosis. Here, we examine the role played by ABA/GA interactions regulating the formation of AM in tomato. We report differences in ABA and GA metabolism between control and mycorrhizal roots. Active synthesis and catabolism of ABA occur in AM roots. GAs level increases as a consequence of a symbiosis-induced mechanism that requires functional arbuscules which in turn is dependent on a functional ABA pathway. A negative interaction in their metabolism has been demonstrated. ABA attenuates GA-biosynthetic and increases GA-catabolic gene expression leading to a reduction in bioactive GAs. Vice versa, GA activated ABA catabolism mainly in mycorrhizal roots. The negative impact of GA3 on arbuscule abundance in wild-type plants is partially offset by treatment with ABA and the application of a GA biosynthesis inhibitor rescued the arbuscule abundance in the ABA-deficient sitiens mutant. These findings, coupled with the evidence that ABA application leads to reduce bioactive GA1, support the hypothesis that ABA could act modifying bioactive GA level to regulate AM. Taken together, our results suggest that these hormones perform essential functions and antagonize each other by oppositely regulating AM formation in tomato roots. PMID:27602046

  6. 2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments

    International Nuclear Information System (INIS)

    Montgomery, Michael T.; Coffin, Richard B.; Boyd, Thomas J.; Smith, Joseph P.; Walker, Shelby E.; Osburn, Christopher L.

    2011-01-01

    The nitrogenous energetic constituent, 2,4,6-Trinitrotoluene (TNT), is widely reported to be resistant to bacterial mineralization (conversion to CO 2 ); however, these studies primarily involve bacterial isolates from freshwater where bacterial production is typically limited by phosphorus. This study involved six surveys of coastal waters adjacent to three biome types: temperate broadleaf, northern coniferous, and tropical. Capacity to catabolize and mineralize TNT ring carbon to CO 2 was a common feature of natural sediment assemblages from these coastal environments (ranging to 270+/-38 μg C kg -1 d -1 ). More importantly, these mineralization rates comprised a significant proportion of total heterotrophic production. The finding that most natural assemblages surveyed from these ecosystems can mineralize TNT ring carbon to CO 2 is consistent with recent reports that assemblage components can incorporate TNT ring carbon into bacterial biomass. These data counter the widely held contention that TNT is recalcitrant to bacterial catabolism of the ring carbon in natural environments. - Highlights: → TNT mineralization is a common feature of natural bacterial assemblages in coastal sediments. → TNT mineralization rates comprised a significant proportion of total heterotrophic production. → These data counter the widely held contention that TNT is recalcitrant to bacterial catabolism of the ring carbon in natural environments. - The capacity to mineralize TNT ring carbon to CO 2 is a common feature of natural bacterial assemblages in coastal sediment.

  7. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism.

    Science.gov (United States)

    Xu, Li-Qin; Liu, Yong-Jun; Yao, Kang; Liu, Hao-Hao; Tao, Xin-Yi; Wang, Feng-Qing; Wei, Dong-Zhi

    2016-02-22

    The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehydrogenase activities in vitro. Using a kshAs-null strain of M. neoaurum ATCC 25795 (NwIB-XII) as a model, Hsd4A was further confirmed to exert dual-function in sterol catabolism in vivo. The deletion of hsd4A in NwIB-XII resulted in the production of 23,24-bisnorcholenic steroids (HBCs), indicating that hsd4A plays a key role in sterol side-chain degradation. Therefore, two competing pathways, the AD and HBC pathways, were proposed for the side-chain degradation. The proposed HBC pathway has great value in illustrating the production mechanism of HBCs in sterol catabolism and in developing HBCs producing strains for industrial application via metabolic engineering. Through the combined modification of hsd4A and other genes, three HBCs producing strains were constructed that resulted in promising productivities of 0.127, 0.109 and 0.074 g/l/h, respectively.

  8. Metabolomic response of a marine bacterium to 3,6-anhydro-l-galactose, the rare sugar from red macroalgae, as the sole carbon source.

    Science.gov (United States)

    Yun, Eun Ju; Yu, Sora; Kim, Sooah; Kim, Kyoung Heon

    2018-03-20

    Marine red macroalgae have received much attention as sustainable resources for producing bio-based products. Therefore, understanding the metabolic pathways of carbohydrates from red macroalgae, in fermentative microorganisms, is crucial for efficient bioconversion of the carbohydrates into bio-based products. Recently, the novel catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red macroalgae, was discovered in a marine bacterium, Vibrio sp. strain EJY3. However, the global metabolic network in response to AHG remains unclear. Here, the intracellular metabolites of EJY3 grown on AHG, glucose, or galactose were comparatively profiled using gas chromatography/time-of-flight mass spectrometry. The global metabolite profiling results revealed that the metabolic profile for AHG significantly differed from those for other common sugars. Specifically, the metabolic intermediate of the AHG pathway, 3,6-anhydrogalactonate, was detected during growth only in the presence of AHG; thus, the recently discovered key steps in AHG catabolism was found not to occur in the catabolism of other common sugars. Moreover, the levels of metabolic intermediates related to glycerolipid metabolism and valine biosynthesis were higher with AHG than those with other sugars. These comprehensive metabolomic analytical results for AHG in this marine bacterium can be used as the basis for having fermentative microbial strains to engineered to efficiently utilize AHG from macroalgal biomass. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Method for the enzymatic production of hydrogen

    Science.gov (United States)

    Woodward, J.; Mattingly, S.M.

    1999-08-24

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

  10. Evolution of Regulatory Mechanisms in Bacteria

    National Research Council Canada - National Science Library

    Ornston, L

    2003-01-01

    ... and transcriptional activators associated with catabolic pathways. We now have extended this capability to genes from other organisms, in this case Pseudomonas putida, by creating a docking site that allows PCR-amplified P...

  11. Analysis of MicroRNA Expression Profiles in Weaned Pig Skeletal Muscle after Lipopolysaccharide Challenge

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-09-01

    Full Text Available MicroRNAs (miRNAs constitute a class of non-coding RNAs that play a crucial regulatory role in skeletal muscle development and disease. Several acute inflammation conditions including sepsis and cancer are characterized by a loss of skeletal muscle due primarily to excessive muscle catabolism. As a well-known inducer of acute inflammation, a lipopolysaccharide (LPS challenge can cause serious skeletal muscle wasting. However, knowledge of the role of miRNAs in the course of inflammatory muscle catabolism is still very limited. In this study, RNA extracted from the skeletal muscle of pigs injected with LPS or saline was subjected to small RNA deep sequencing. We identified 304 conserved and 114 novel candidate miRNAs in the pig. Of these, four were significantly increased in the LPS-challenged samples and five were decreased. The expression of five miRNAs (ssc-miR-146a-5p, ssc-miR-221-5p, ssc-miR-148b-3p, ssc-miR-215 and ssc-miR-192 were selected for validation by quantitative polymerase chain reaction (qPCR, which found that ssc-miR-146a-5p and ssc-miR-221-5p were significantly upregulated in LPS-challenged pig skeletal muscle. Moreover, we treated mouse C2C12 myotubes with 1000 ng/mL LPS as an acute inflammation cell model. Expression of TNF-α, IL-6, muscle atrophy F-box (MAFbx and muscle RING finger 1 (MuRF1 mRNA was strongly induced by LPS. Importantly, miR-146a-5p and miR-221-5p also showed markedly increased expression in LPS-treated C2C12 myotubes, suggesting the two miRNAs may be involved in muscle catabolism systems in response to acute inflammation caused by a LPS challenge. To our knowledge, this study is the first to examine miRNA expression profiles in weaned pig skeletal muscle challenged with LPS, and furthers our understanding of miRNA function in the regulation of inflammatory muscle catabolism.

  12. Cloning, characterization and analysis of cat and ben genes from the phenol degrading halophilic bacterium Halomonas organivorans.

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Moreno

    Full Text Available BACKGROUND: Extensive use of phenolic compounds in industry has resulted in the generation of saline wastewaters that produce significant environmental contamination; however, little information is available on the degradation of phenolic compounds in saline conditions. Halomonas organivorans G-16.1 (CECT 5995(T is a moderately halophilic bacterium that we isolated in a previous work from saline environments of South Spain by enrichment for growth in different pollutants, including phenolic compounds. PCR amplification with degenerate primers revealed the presence of genes encoding ring-cleaving enzymes of the β-ketoadipate pathway for aromatic catabolism in H. organivorans. FINDINGS: The gene cluster catRBCA, involved in catechol degradation, was isolated from H. organivorans. The genes catA, catB, catC and the divergently transcribed catR code for catechol 1,2-dioxygenase (1,2-CTD, cis,cis-muconate cycloisomerase, muconolactone delta-isomerase and a LysR-type transcriptional regulator, respectively. The benzoate catabolic genes (benA and benB are located flanking the cat genes. The expression of cat and ben genes by phenol and benzoic acid was shown by RT-PCR analysis. The induction of catA gene by phenol and benzoic acid was also probed by the measurement of 1,2-CTD activity in H. organivorans growth in presence of these inducers. 16S rRNA and catA gene-based phylogenies were established among different degrading bacteria showing no phylogenetic correlation between both genes. CONCLUSIONS/SIGNIFICANCE: In this work, we isolated and determined the sequence of a gene cluster from a moderately halophilic bacterium encoding ortho-pathway genes involved in the catabolic metabolism of phenol and analyzed the gene organization, constituting the first report characterizing catabolic genes involved in the degradation of phenol in moderate halophiles, providing an ideal model system to investigate the potential use of this group of extremophiles in

  13. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  14. Metabolic heterogeneity of apolipoprotein B in the rat

    International Nuclear Information System (INIS)

    Sparks, C.E.; Marsh, J.B.

    1981-01-01

    Triglyceride-rich lipoprotein apoprotein catabolism was studied in rats from 5 to 60 min after intravenous injection of 125 I-labeled lipoproteins. The plasma and liver labeled apoprotein content was analyzed by gel filtration column chromatography using an elution buffer containing 1% sodium dodecyl sulfate. The method resolved two B apoproteins of lower (apo B1) and higher (apo Bh) molecular weight. Total apoprotein B disappeared from plasma faster than either apo E or apo C and the smaller sized apo B1 had the most rapid disappearance, with 90% being lost after 60 min. The larger sized apo Bh disappeared rapidly from the plasma in the first 15 min but between 15 and 60 min 40% of the apo Bh remained in the plasma, associated with low density lipoprotein. Apoprotein analysis of liver homogenates was consistent with the plasma results. There was 28% of apo B1 compared to 16% of apo Bh present in the liver 5 min after injection, expressed as percent of initial injected radioactivity in each fraction. Apo B1 and apo Bh were the predominant liver apoproteins up to 30 min but by 60 min there was little of either apo B in the liver. In contrast to apo B, there was a relatively constant amount of apo E and apo C, about 10%, associated with the liver over 60 min. Plasma apo E declined progressively to 68% and apo C to 86% of initial concentration by 60 min. These findings suggest that there is differential hepatic catabolism of a subpopulation of triglyceride-rich lipoproteins containing apo B1. A population of triglyceride-rich lipoproteins containing apo Bh preferentially enters the low density lipoprotein pool with a slower catabolism. The results are consistent with an hypothesis that apo B1 mediates binding and rapid hepatic catabolism of its associated lipoproteins. Metabolic heterogeneity of the triglyceride-rich lipoproteins may be explained by the molecular heterogeneity of apoprotein B

  15. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme.

    Directory of Open Access Journals (Sweden)

    Maritrini Colón

    Full Text Available BACKGROUND: Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. PRINCIPAL FINDINGS: Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs. This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1, while catabolic substrates are accumulated in the cytosol (Bat2. Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. CONCLUSIONS: Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the

  16. Functional characterization of 3-ketosteroid 9α-hydroxylases in Rhodococcus ruber strain chol-4.

    Science.gov (United States)

    Guevara, Govinda; Heras, Laura Fernández de Las; Perera, Julián; Llorens, Juana María Navarro

    2017-09-01

    The 3-Ketosteroid-9α-Hydroxylase, also known as KshAB [androsta-1,4-diene-3,17-dione, NADH:oxygen oxidoreductase (9α-hydroxylating); EC 1.14.13.142)], is a key enzyme in the general scheme of the bacterial steroid catabolism in combination with a 3-ketosteroid-Δ 1 -dehydrogenase activity (KstD), being both responsible of the steroid nucleus (rings A/B) breakage. KshAB initiates the opening of the steroid ring by the 9α-hydroxylation of the C9 carbon of 4-ene-3-oxosteroids (e.g. AD) or 1,4-diene-3-oxosteroids (e.g. ADD), transforming them into 9α-hydroxy-4-androsten-3,17-dione (9OHAD) or 9α-hydroxy-1,4-androstadiene-3,17-dione (9OHADD), respectively. The redundancy of these enzymes in the actinobacterial genomes results in a serious difficulty for metabolic engineering this catabolic pathway to obtain intermediates of industrial interest. In this work, we have identified three homologous kshA genes and one kshB gen in different genomic regions of R. ruber strain Chol-4. We present a set of data that helps to understand their specific roles in this strain, including: i) description of the KshAB enzymes ii) construction and characterization of ΔkshB and single, double and triple ΔkshA mutants in R. ruber iii) growth studies of the above strains on different substrates and iv) genetic complementation and biotransformation assays with those strains. Our results show that KshA2 isoform is needed for the degradation of steroid substrates with short side chain, while KshA3 works on those molecules with longer side chains. KshA1 is a more versatile enzyme related to the cholic acid catabolism, although it also collaborates with KshA2 or KshA3 activities in the catabolism of steroids. Accordingly to what it is described for other Rhodococcus strains, our results also suggest that the side chain degradation is KshAB-independent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... Department of Pharmaceutical Chemistry, North-West University, Private Bag X6001, Potchefstroom 2520, ..... on the inhibition of the catabolism of serotonin, .... Structure of human monoamine oxidase B, a drug target for.

  18. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu; Zhang, Jizhe; Liu, Xin

    2014-01-01

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids

  19. Glutamine and its use in selected oncology settings

    African Journals Online (AJOL)

    Reinette Tydeman-Edwards

    supply during catabolic stress or periods of rapid growth.1,2 GLN contributes ... anabolic hormones, including insulin, which leads to peripheral insulin resistance. ... deficit in circulatory antioxidants leads to oxidative stress when reactive ...

  20. Role of L-alanine for redox self-sufficient amination of alcohols.

    Science.gov (United States)

    Klatte, Stephanie; Wendisch, Volker F

    2015-01-23

    In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578-5585, 2014), and the role of L-alanine for efficient amine functionalization of 1,10-decanediol to 1,10-diaminodecane were analyzed. The enzymes of the cascade for amine functionalization of alcohols were characterized in vitro to find optimal conditions for an efficient process. Transaminase from Chromobacterium violaceum, TaCv, showed three-fold higher catalytic efficiency than transaminase from Vibrio fluvialis, TaVf, and improved production at 37°C. At 42°C, TaCv was more active, which matched thermostable alcohol dehydrogenase and alanine dehydrogenase and improved the 1,10-diaminodecane production rate four-fold. To study the role of L-alanine in the whole cell biotransformation, the L-alanine concentration was varied and 1,10.diaminodecane formation tested with constant 10 mM 1,10- decanediol and 100 mM NH4Cl. Only 5.6% diamine product were observed without added L-alanine. L-alanine concentrations equimolar to that of the alcohol enabled for 94% product formation but higher L-alanine concentrations allowed for 100% product formation. L-alanine was consumed by the E. coli biocatalyst, presumably due to pyruvate catabolism since up to 16 mM acetate accumulated. Biotransformation employing E. coli strain YYC202/pTrc99a-ald-adh-ta Cv, which is unable to catabolize pyruvate, resulted in conversion with a selectivity of 42 mol-%. Biotransformation with E. coli strains only lacking pyruvate oxidase PoxB showed similar reduced amination of 1,10-decanediol indicating that oxidative decarboxylation of pyruvate to acetate by PoxB is primarily

  1. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature.

    Science.gov (United States)

    Bargiela, Rafael; Mapelli, Francesca; Rojo, David; Chouaia, Bessem; Tornés, Jesús; Borin, Sara; Richter, Michael; Del Pozo, Mercedes V; Cappello, Simone; Gertler, Christoph; Genovese, María; Denaro, Renata; Martínez-Martínez, Mónica; Fodelianakis, Stilianos; Amer, Ranya A; Bigazzi, David; Han, Xifang; Chen, Jianwei; Chernikova, Tatyana N; Golyshina, Olga V; Mahjoubi, Mouna; Jaouanil, Atef; Benzha, Fatima; Magagnini, Mirko; Hussein, Emad; Al-Horani, Fuad; Cherif, Ameur; Blaghen, Mohamed; Abdel-Fattah, Yasser R; Kalogerakis, Nicolas; Barbas, Coral; Malkawi, Hanan I; Golyshin, Peter N; Yakimov, Michail M; Daffonchio, Daniele; Ferrer, Manuel

    2015-06-29

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.

  2. Primary Metabolic Pathways and Metabolic Flux Analysis

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    his chapter introduces the metabolic flux analysis (MFA) or stoichiometry-based MFA, and describes the quantitative basis for MFA. It discusses the catabolic pathways in which free energy is produced to drive the cell-building anabolic pathways. An overview of these primary pathways provides...... the reader who is primarily trained in the engineering sciences with atleast a preliminary introduction to biochemistry and also shows how carbon is drained off the catabolic pathways to provide precursors for cell mass building and sometimes for important industrial products. The primary pathways...... to be examined in the following are: glycolysis, primarily by the EMP pathway, but other glycolytic pathways is also mentioned; fermentative pathways in which the redox generated in the glycolytic reactions are consumed; reactions in the tricarboxylic acid (TCA) cycle, which produce biomass precursors and redox...

  3. Tissue astaxanthin and canthaxanthin distribution in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Page, G I; Davies, S J

    2006-01-01

    A comparative investigation of tissue carotenoid distribution between rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, was undertaken to identify the relative efficiency of utilization of astaxanthin and canthaxanthin. Higher apparent digestibility coefficients (ADCs) (96% in trout vs. 28-31% in salmon; Ptrout vs. 5.5% in salmon; Ptrout. Astaxanthin deposition was higher than canthaxanthin in rainbow trout, while the reverse was true for Atlantic salmon, suggesting species-specificity in carotenoid utilization. The white muscle (95% in trout vs. 93% in salmon) and kidneys (0.5% in trout vs. 0.2% in salmon) represented higher proportions of the total body carotenoid pool in rainbow trout than in Atlantic salmon (Ptrout; Ptrout. Liver catabolism is suspected to be a critical determinant in carotenoid clearance, with higher catabolism expected in Atlantic salmon than in rainbow trout.

  4. Perioperative nutrition: what do we know?

    African Journals Online (AJOL)

    complications should be prescribed arginine-supplemented diets along with omega-3 fatty acids, ... was no difference in reported pain or fatigue in patients treated with .... catabolic states due to the muscle stores being rapidly depleted.

  5. Clinical breath analysis: Discriminating between human endogenous compounds and exogenous (environmental) chemical confounders

    Science.gov (United States)

    Volatile organic compounds (VOCs) in exhaled breath originate from current or previous environmental exposures (exogenous compounds) and internal metabolic anabolic and catabolic) production (endogenous compounds). The origins of certain VOCs in breath presumed to be endogenous ...

  6. Transcriptional Response of Rhodococcus aetherivorans I24 to Polychlorinated Biphenyl-Contaminated Sediments

    KAUST Repository

    Puglisi, Edoardo; Cahill, Matt J.; Lessard, Philip A.; Capri, Ettore; Sinskey, Anthony John; Archer, John A.C.; Boccazzi, Paolo

    2010-01-01

    the natural environment. Our results indicate that the transcriptional response of R. aetherivorans I24 to PCBs, in both medium and sediment, is primarily directed towards reducing oxidative stress, rather than catabolism. © 2010 Springer Science

  7. Effect of a novel insulinotropic agent, succinic acid monoethyl ester ...

    Indian Academy of Sciences (India)

    Madhu

    index (AAI) (ratio of HDL-C to total cholesterol) were studied. ... ester; FFA, free falty acids; HDL-C, high density lipoprotein-cholesterol; LDL-C, low density lipoprotein-cholesterol; ..... and impaired catabolism of triglyceride-rich particles. The.

  8. Reference: 346 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available th a function in purine turnover in Arabidopsis. To our knowledge this is the fir...ock in allantoate catabolism. AtAAH transcript was detected in all tissues examined by RT-PCR, consistent wi

  9. The effect of mucA allele on biofilm architecture and the biofilm ...

    African Journals Online (AJOL)

    Jane

    2011-08-29

    Aug 29, 2011 ... metabolism, carbon catabolism and amino acid metabolism and so on. We might .... Bacterial strains, plasmids and media. The strains and ... was tested on L agar plates containing 5% sucrose. ..... Invest Ophthalmol. Vis Sci.

  10. Characterizing Adversity of Lysosomal Accumulation in Nonclinical Toxicity Studies: Results from the 5th ESTP International Expert Workshop

    Science.gov (United States)

    Lysosomes have a central role in cellular catabolism, trafficking, and processing of foreign particles. Accumulation of endogenous and exogenous materials in lysosomes represents a common finding in nonclinical toxicity studies. Histologically, these accumulations often lack dist...

  11. Use of human GH in elderly patients with accidental hip fracture

    NARCIS (Netherlands)

    A-J. van der Lely (Aart-Jan); S.W.J. Lamberts (Steven); K.W. Jauch; B.A. Swierstra (Bart); H. Hertlein; D. de Vries (Danielle); M.A. Birkett; P.C. Bates; W.F. Blum (Werner); A.F. Attanasio (Andrea)

    2000-01-01

    textabstractOBJECTIVE: To investigate whether early intervention with recombinant human growth hormone (hGH) after hip fracture improves functional recovery and long-term outcome. SUBJECTS AND METHODS: Functional recovery after hip fracture is often incomplete. The catabolic

  12. Regulation of terpene metabolism. Progress report, 1983

    International Nuclear Information System (INIS)

    Croteau, R.

    1986-01-01

    Studies on the metabolism of terpenes by peppermint (Menta piperita) are described. The studies describe the characterization of enzymes involved in the biosynthesis and catabolism of terpenes and the ultrastructure of the oil glands. 10 refs. (DT)

  13. Free amino acids in the sera of Boer goat bucks: a study under two ...

    African Journals Online (AJOL)

    .

    plasma concentrations of glycine (Gly), serine (Ser), aspartic acid (Asp), glutamic acid (Glu), .... a,b,c,d Values with different superscripts within the same row differ ... Branched-chain amino acids (derived from muscle protein catabolism) would ...

  14. octadecenoic acid in tomato

    African Journals Online (AJOL)

    User

    bly involved in plant defense responses is synthesized in tomato fruits and subjected to metabo- lism. Its catabolism or .... stored at -20°C. Enzymatic in vitro synthesis of radiolabeled ..... with nematicidal activity from Culture of basidiomycetes.

  15. InterProScan Result: FS863249 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available GENASE 1.3e-139 T IPR005708 Homogentisate 1,2-dioxygenase Biological Process: L-phenylalanine catabolic process (GO:0006559)|Biologic...al Process: tyrosine metabolic process (GO:0006570)|Biological Process: oxidation reduction (GO:0055114) ...

  16. InterProScan Result: BY940643 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available GENASE 3.4e-53 T IPR005708 Homogentisate 1,2-dioxygenase Biological Process: L-phenylalanine catabolic process (GO:0006559)|Biologica...l Process: tyrosine metabolic process (GO:0006570)|Biological Process: oxidation reduction (GO:0055114) ...

  17. The use of nucleosides and arginine as alternative energy sources by coagulase-negative staphylococci in view of meat fermentation.

    Science.gov (United States)

    Janssens, M; Van der Mijnsbrugge, A; Sánchez Mainar, M; Balzarini, T; De Vuyst, L; Leroy, F

    2014-05-01

    The ability of coagulase-negative staphylococci (CNS) to use alternative energy sources in meat may partially explain their occurrence in fermented meats. Of 61 CNS strains tested, all metabolized adenosine and inosine in a meat simulation medium (MSM). The ability to catabolize arginine via the arginine deiminase (ADI) pathway varied between strains. All tested strains of Staphylococcus carnosus and Staphylococcus epidermidis possessed an arcA gene and showed ADI activity, whereas other species, such as Staphylococcus equorum and Staphylococcus succinus, did not. Arginine catabolic mobile elements (ACME), as in the positive control S. epidermidis ATCC 12228, were uncommon and only found in Staphylococcus xylosus 3PA6 (sausage isolate) and Staphylococcus chromogenes G222 (teat apex isolate). Monoculture experiments were performed in MSM with S. carnosus 833 and SS3-4, S. xylosus G211, and S. epidermidis ATCC 12228 and 2S7-4. At all pH values tested (5.3, 5.8, and 6.5), the strains of S. carnosus catabolized arginine faster than the strains of S. xylosus and S. epidermidis. Only at pH 6.5 could a low ADI activity be found for S. xylosus G211. Increased ADI activity occurred in the case of the ACME-positive S. epidermidis ATCC 12228, when compared to the ACME-negative S. epidermidis 2S7-4. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. 2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Michael T., E-mail: michael.montgomery@nrl.navy.mil [Naval Research Laboratory, Marine Biogeochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375 (United States); Coffin, Richard B., E-mail: richard.coffin@nrl.navy.mil [Naval Research Laboratory, Marine Biogeochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375 (United States); Boyd, Thomas J., E-mail: thomas.boyd@nrl.navy.mil [Naval Research Laboratory, Marine Biogeochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375 (United States); Smith, Joseph P., E-mail: joseph.smith@nrl.navy.mil [Naval Research Laboratory, Marine Biogeochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375 (United States); Walker, Shelby E., E-mail: Shelby.Walker@noaa.gov [Naval Research Laboratory, Marine Biogeochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375 (United States); Osburn, Christopher L., E-mail: chris_osburn@ncsu.edu [Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695 (United States)

    2011-12-15

    The nitrogenous energetic constituent, 2,4,6-Trinitrotoluene (TNT), is widely reported to be resistant to bacterial mineralization (conversion to CO{sub 2}); however, these studies primarily involve bacterial isolates from freshwater where bacterial production is typically limited by phosphorus. This study involved six surveys of coastal waters adjacent to three biome types: temperate broadleaf, northern coniferous, and tropical. Capacity to catabolize and mineralize TNT ring carbon to CO{sub 2} was a common feature of natural sediment assemblages from these coastal environments (ranging to 270+/-38 {mu}g C kg{sup -1} d{sup -1}). More importantly, these mineralization rates comprised a significant proportion of total heterotrophic production. The finding that most natural assemblages surveyed from these ecosystems can mineralize TNT ring carbon to CO{sub 2} is consistent with recent reports that assemblage components can incorporate TNT ring carbon into bacterial biomass. These data counter the widely held contention that TNT is recalcitrant to bacterial catabolism of the ring carbon in natural environments. - Highlights: > TNT mineralization is a common feature of natural bacterial assemblages in coastal sediments. > TNT mineralization rates comprised a significant proportion of total heterotrophic production. > These data counter the widely held contention that TNT is recalcitrant to bacterial catabolism of the ring carbon in natural environments. - The capacity to mineralize TNT ring carbon to CO{sub 2} is a common feature of natural bacterial assemblages in coastal sediment.

  19. Transamination of branched chain amino acids (BCAA) in rat adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Frick, G.P.; Goodman, H.M.

    1986-03-05

    Like most extrahepatic tissues, adipose tissue can transaminate the BCAA faster than they are oxidized. Catabolism of the BCAA by adipose tissue appears to be limited by the activity of branched chain ..cap alpha..-keto acid dehydrogenase (BCDH). Conditions which stimulate the activity of this intramitochondrial enzyme in tissue extracts also increase the rate at which (1-/sup 14/C)leucine (L) and (1-/sup 14/C)valine (V) are oxidized by tissue segments. However, when maximum rates of oxidation were measured, 10 mM L was oxidized to /sup 14/CO/sub 2/ 5 times faster than 10 mM V (30 +/- 2 vs. 6 +/- 1 nmol min/sup -1/ g tis/sup -1/). In contrast, the ..cap alpha..-keto analogs of L and V were oxidized by tissue segments at nearly equal rates which slightly exceeded the rate of L oxidation. These results suggested that transamination might limit the catabolism of V, perhaps due to its inaccessibility to transaminase. The distribution of transaminase activity in tissue extracts was determined after centrifugation to obtain mitochondrial and cytosolic fractions. L and V were transaminated at similar rates by enzymes in both fractions. Transaminase activity in the mitochondrial fraction was greater than that of the cytosol and exceeded the capacity of the tissue to oxidize L. Catabolism of BCAA may depend upon intramitochondrial transamination and oxidation of V may be slower than that of L because uptake of V by mitochondria may be slower than that of L.

  20. Transamination of branched chain amino acids (BCAA) in rat adipose tissue

    International Nuclear Information System (INIS)

    Frick, G.P.; Goodman, H.M.

    1986-01-01

    Like most extrahepatic tissues, adipose tissue can transaminate the BCAA faster than they are oxidized. Catabolism of the BCAA by adipose tissue appears to be limited by the activity of branched chain α-keto acid dehydrogenase (BCDH). Conditions which stimulate the activity of this intramitochondrial enzyme in tissue extracts also increase the rate at which [1- 14 C]leucine (L) and [1- 14 C]valine (V) are oxidized by tissue segments. However, when maximum rates of oxidation were measured, 10 mM L was oxidized to 14 CO 2 5 times faster than 10 mM V (30 +/- 2 vs. 6 +/- 1 nmol min -1 g tis -1 ). In contrast, the α-keto analogs of L and V were oxidized by tissue segments at nearly equal rates which slightly exceeded the rate of L oxidation. These results suggested that transamination might limit the catabolism of V, perhaps due to its inaccessibility to transaminase. The distribution of transaminase activity in tissue extracts was determined after centrifugation to obtain mitochondrial and cytosolic fractions. L and V were transaminated at similar rates by enzymes in both fractions. Transaminase activity in the mitochondrial fraction was greater than that of the cytosol and exceeded the capacity of the tissue to oxidize L. Catabolism of BCAA may depend upon intramitochondrial transamination and oxidation of V may be slower than that of L because uptake of V by mitochondria may be slower than that of L

  1. Identification and characterization of D-xylulokinase from the D-xylose-fermenting fungus, Mucor circinelloides.

    Science.gov (United States)

    Komeda, Hidenobu; Yamasaki-Yashiki, Shino; Hoshino, Kazuhiro; Asano, Yasuhisa

    2014-11-01

    D-Xylulokinase catalyzes the phosphorylation of D-xylulose in the final step of the pentose catabolic pathway to form d-xylulose-5-phosphate. The D-xylulokinase activity was found to be induced by both D-xylose and L-arabinose, as well as some of the other enzymes involved in the pentose catabolism, in the D-xylose-fermenting zygomycetous fungus, Mucor circinelloides NBRC 4572. The putative gene, xyl3, which may encode D-xylulokinase, was detected in the genome sequence of this strain. The amino acid sequence deduced from the gene was more similar to D-xylulokinases from an animal origin than from other fungi. The recombinant enzyme was purified from the E. coli transformant expressing xyl3 and then characterized. The ATP-dependent phosphorylative activity of the enzyme was the highest toward D-xylulose. Its kinetic parameters were determined as Km (D-xylulose) = 0.29 mM and Km (ATP) = 0.51 mM, indicating that the xyl3 gene encoded D-xylulokinase (McXK). Western blot analysis revealed that McXK was induced by L-arabinose as well as D-xylose and the induction was repressed in the presence of D-glucose, suggesting that the enzyme may be involved in the catabolism of D-xylose and L-arabinose and is subject to carbon catabolite repression in this fungus. This is the first study on D-xylulokinase from zygomycetous fungi. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Adipose Tissue Dysfunction and Altered Systemic Amino Acid Metabolism Are Associated with Non-Alcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Sulin Cheng

    Full Text Available Fatty liver is a major cause of obesity-related morbidity and mortality. The aim of this study was to identify early metabolic alterations associated with liver fat accumulation in 50- to 55-year-old men (n = 49 and women (n = 52 with and without NAFLD.Hepatic fat content was measured using proton magnetic resonance spectroscopy (1H MRS. Serum samples were analyzed using a nuclear magnetic resonance (NMR metabolomics platform. Global gene expression profiles of adipose tissues and skeletal muscle were analyzed using Affymetrix microarrays and quantitative PCR. Muscle protein expression was analyzed by Western blot.Increased branched-chain amino acid (BCAA, aromatic amino acid (AAA and orosomucoid were associated with liver fat accumulation already in its early stage, independent of sex, obesity or insulin resistance (p<0.05 for all. Significant down-regulation of BCAA catabolism and fatty acid and energy metabolism was observed in the adipose tissue of the NAFLD group (p<0.001for all, whereas no aberrant gene expression in the skeletal muscle was found. Reduced BCAA catabolic activity was inversely associated with serum BCAA and liver fat content (p<0.05 for all.Liver fat accumulation, already in its early stage, is associated with increased serum branched-chain and aromatic amino acids. The observed associations of decreased BCAA catabolism activity, mitochondrial energy metabolism and serum BCAA concentration with liver fat content suggest that adipose tissue dysfunction may have a key role in the systemic nature of NAFLD pathogenesis.

  3. Is old organic matter simple organic matter?

    Science.gov (United States)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  4. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis.

    Science.gov (United States)

    Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo

    2015-09-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.

  5. Glucose metabolism of isolated perfused rat hemidiaphragms stimulated via the phrenic nerve

    International Nuclear Information System (INIS)

    Bassett, D.J.P.; Bowen-Kelly, E.; Bierkamper, G.

    1986-01-01

    Few investigations using indirect electrical stimulation of diaphragm muscles have measured metabolic pathways involved in energy production. In this study, hemidiaphragm (HD) glucose catabolism was determined while resting and during stimulation with trains of either five (T5) or fifteen (T15) 50 Hz bursts per second. Tissues were perfused and bathed in HEPES buffer pH 7.4 equilibrated with 100% O 2 , and containing 11mM [U- 14 C][5- 3 H] D-glucose. Resting glucose catabolism via the Emden-Meyerhof pathway was indicated by a 3 H 2 O production rate of 1.45 +/- 0.07 μmol/h/HD (+/- S.E.M., n = 3), of which 47% was recovered as 14 C lactate. Following an initial decline in peak isometric tension from 100 g within the first 30 min, T5 and T15 stimulation gave constant tensions of 48 and 22 g during the next 60 min, respectively. These tensions were associated with linear rates of 3 H 2 O production of 2.93 +/- 0.41 and 2.84 +/- 0.25 μmol/h/HD (+/- S.E.M., n = 3). Since T5 and T15 stimulation had no significant effect on lactate formation from either exogenous or endogenous sources, the observed increased glycolytic rate was assumed to be associated with enhanced mitochondrial oxidation of glucose carbons to CO 2 . Increased oxidative catabolism of glucose could therefore be correlated with the increased energy demands of a stimulated diaphragm

  6. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    Science.gov (United States)

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  7. Phenolic compounds and related enzymes as determinants of sorghum for food use

    NARCIS (Netherlands)

    Dicko, M.H.; Gruppen, H.; Traore, A.S.; Voragen, A.G.J.; Berkel, van W.J.H.

    2006-01-01

    Phenolic compounds and related enzymes such as phenol biosynthesizing enzymes (phenylalanine ammonia lyase) and phenol catabolizing enzymes (polyphenol oxidase and peroxidase) are determinants for sorghum utilization as human food because they influence product properties during and after sorghum

  8. Urea Recycling Contributes to Nitrogen Retention in Calves Fed Milk Replacer and Low-Protein Solid Feed

    NARCIS (Netherlands)

    Berends, H.; Borne, van den J.J.G.C.; Røjen, B.A.; Baal, van J.; Gerrits, W.J.J.

    2014-01-01

    Urea recycling, with urea originating from catabolism of amino acids and hepatic detoxification of ammonia, is particularly relevant for ruminant animals, in which microbial protein contributes substantially to the metabolizable protein supply. However, the quantitative contribution of urea

  9. Pyridoxine-Dependent Epilepsy: An Expanding Clinical Spectrum

    NARCIS (Netherlands)

    van Karnebeek, Clara D. M.; Tiebout, Sylvia A.; Niermeijer, Jikkemien; Poll-The, Bwee Tien; Ghani, Aisha; Coughlin, Curtis R.; van Hove, Johan L. K.; Richter, Jost Wigand; Christen, Hans Juergen; Gallagher, Renata; Hartmann, Hans; Stockler-Ipsiroglu, Sylvia

    2016-01-01

    Pyridoxine-dependent epilepsy is a rare autosomal recessive epileptic encephalopathy caused by antiquitin (ALDH7A1) deficiency. In spite of adequate seizure control, 75% of patients suffer intellectual developmental disability. Antiquitin deficiency affects lysine catabolism resulting in

  10. Effects of growth hormone (GH) treatment on body fluid distribution in patients undergoing elective abdominal surgery

    DEFF Research Database (Denmark)

    Møller, Jacob; Jensen, Martin Bach; Frandsen, E.

    1998-01-01

    OBJECTIVE: To investigate the possible beneficial effects of growth hormone (GH) in catabolic patients we examined the impact of GH on body fluid distribution in patients with ulcerative colitis undergoing elective abdominal surgery. DESIGN AND MEASUREMENTS: Twenty-four patients (14 female, 10 male...... at day -2 and at day 7, and body composition was estimated by dual X-ray absorptiometry and bioimpedance. Changes in body weight and fluid balance were recorded and hence intracellular volume was assessed. RESULTS: During placebo treatment body weight decreased 4.3 +/- 0.6 kg; during GH treatment body.......05). Plasma renin and aldosterone remained unchanged in both study groups. CONCLUSION: Body weight, plasma volume and intracellular volume is preserved during GH treatment in catabolic patients and ECV is increased. From a therapeutic point of view these effects may be desirable under conditions of surgical...

  11. Growth hormone treatment improves body fluid distribution in patients undergoing elective abdominal surgery

    DEFF Research Database (Denmark)

    Møller, J; Jensen, M B; Frandsen, E

    1998-01-01

    OBJECTIVE: To investigate the possible beneficial effects of growth hormone (GH) in catabolic patients we examined the impact of GH on body fluid distribution in patients with ulcerative colitis undergoing elective abdominal surgery. DESIGN AND MEASUREMENTS: Twenty-four patients (14 female, 10 male...... at day -2 and at day 7, and body composition was estimated by dual X-ray absorptiometry and bioimpedance. Changes in body weight and fluid balance were recorded and hence intracellular volume was assessed. RESULTS: During placebo treatment body weight decreased 4.3 +/- 0.6 kg; during GH treatment body.......05). Plasma renin and aldosterone remained unchanged in both study groups. CONCLUSION: Body weight, plasma volume and intracellular volume is preserved during GH treatment in catabolic patients and ECV is increased. From a therapeutic point of view these effects may be desirable under conditions of surgical...

  12. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial......beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N...

  13. Regulatory switches for hierarchical use of carbon sources in E. coli

    Directory of Open Access Journals (Sweden)

    Ruth S. Perez-Alfaro

    2014-09-01

    Full Text Available In this work we study the preferential use of carbon sources in the bacterium Escherichia coli. To that end we engineered transcriptional fusions of the reporter gene gfpmut2, downstream of transcription-factor promoters, and analyzed their activity under several conditions. The chosen transcription factors are known to regulate catabolic operons associated to the consumption of alternative sugars. The obtained results indicate the following hierarchical order of sugar preference in this bacterium: glucose > arabinose > sorbitol > galactose. Further dynamical results allowed us to conjecture that this hierarchical behavior might be operated by at least the following three regulatory strategies: 1 the coordinated activation of the corresponding operons by the global regulator catabolic repressor protein (CRP, 2 their asymmetrical responses to specific and unspecific sugars and, 3 the architecture of the associated gene regulatory networks.

  14. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology

    DEFF Research Database (Denmark)

    Dvořák, Pavel; Nikel, Pablo Ivan; Damborskýc, Jiří

    2017-01-01

    pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack...... of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow....... In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering...

  15. Excessive by-product formation : A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains

    NARCIS (Netherlands)

    Milne, N.S.W.; Wahl, S.A.; Van Maris, A.J.A.; Pronk, J.T.; Daran, J.M.

    2016-01-01

    It is theoretically possible to engineer Saccharomyces cerevisiae strains in which isobutanol is the predominant catabolic product and high-yielding isobutanol-producing strains are already reported by industry. Conversely, isobutanol yields of engineered S. cerevisiae strains reported in the

  16. Indoleamine 2,3-dioxygenase-dependent tryptophan metabolites contribute to tolerance induction during allergen immunotherapy in a mouse model

    NARCIS (Netherlands)

    Taher, Yousef A.; Piavaux, Benoit J. A.; Gras, Renee; van Esch, Betty C. A. M.; Hofman, Gerard A.; Bloksma, Nanne; Henricks, Paul A. J.; van Oosterhout, Antoon J. M.

    Background: The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) has been implicated in immune suppression and tolerance induction. Objective: We examined (1) whether IDO activity is required during tolerance induction by allergen immunotherapy or for the subsequent suppressive

  17. TrypanoCyc: A community-led biochemical pathways database for Trypanosoma brucei

    NARCIS (Netherlands)

    S. Shameer (Sanu); F.J. Logan-Klumpler (Flora J.); F. Vinson (Florence); L. Cottret (Ludovic); B. Merlet (Benjamin); F. Achcar (Fiona); M. Boshart (Michael); M. Berriman (Matthew); R. Breitling (Rainer); F. Bringaud (Frédéric); P. Bütikofer (Peter); A.M. Cattanach (Amy M.); B. Bannerman-Chukualim (Bridget); D.J. Creek (Darren J.); K. Crouch (Kathryn); H.P. De Koning (Harry P.); H. Denise (Hubert); C. Ebikeme (Charles); A.H. Fairlamb (Alan H.); M.A.J. Ferguson (Michael A. J.); M.L. Ginger (Michael L.); C. Hertz-Fowler (Christiane); E.J. Kerkhoven (Eduard); P. Mäser (Pascal); P.A.M. Michels (Paul); A. Nayak (Archana); D. Nes (DavidW.); D.P. Nolan (Derek P.); C. Olsen (Christian); F. Silva-Franco (Fatima); T.K. Smith (Terry K.); M.C. Taylor (Martin C.); A.G.M. Tielens (Aloysius); M.D. Urbaniak (Michael D.); J.J. van Hellemond (Jaap); I.M. Vincent (Isabel M.); S.R. Wilkinson (Shane R.); S. Wyllie (Susan); F.R. Opperdoes (Fred); M.P. Barrett (Michael P.); F. Jourdan (Fabien)

    2015-01-01

    textabstractThe metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individualmetabolic networks is increasing as we learn

  18. Regulation of terpene metabolism. Final technical report, March 15, 1988--March 14, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1996-12-31

    This research focuses on the following topics: the biosynthesis and catabolism of monoterpenes; the organization of monoterpene metabolism; the developmental regulation of monoterpene metabolism; the flux control of precursor supply; and the integration of monoterpene and higher terpenoid metabolism.

  19. Evaluating Environmental Effects of Dredged Material Management Alternatives: A Technical Framework

    Science.gov (United States)

    1992-11-01

    fluctuating flows and tamperatures would be difficult. Biological processes such as nitrification, nutrient catabolism, and photosynthesis are important...communities as tidal flats, seagrass meadows, oyster beds, clam flats, fishing reefs, and freshwater aquatic plant establishment. The bottom of many

  20. Catabolism and protein binding of /sup 99m/Tc pyridoxylideneglutamate

    International Nuclear Information System (INIS)

    Jansholt, A.L.; Krohn, K.A.; Stadalnik, R.C.; Matolo, N.M.; DeNardo, G.L.

    1978-01-01

    Various Tc-99m-labeled compounds have been suggested as replacements for [I-131] rose bengal for imaging of the hepatobiliary system. Among such compounds are Schiff's bases, which are tin-free Tc-chelates easily prepared by 30-min autoclaving of an equimolar mixture of pyridoxal and an amino acid at pH 8.5. We have compared the properties of several Schiff's bases, including Tc-99m pyridoxylideneglutamate (Tc-PyG) with [I-131] rose bengal. Under conditions described, Tc-PyG can be prepared free of Tc-pyridoxal and with 4 - radiochemical impurity. Blood clearance and biliary excretion were studied in three animal models and in normal human volunteers. In all animal models, Tc-PyG initially cleared from the blood more rapidly than rose bengal, but a significant amount of Tc-PyG was excreted in the urine, this in contrast to [I-131] rose bengal which was almost completely excreted through the biliary system. Species differences were observed in the degree of urinary versus biliary clearance of Tc-PyG, with significantly greater urinary excretion in dogs than in monkeys and rabbits. Replacing glutamate with other amino acids did not significantly increase the blood clearance rate or decrease urinary excretion, so that Tc-PyG appears to be at least as good as any of the others studied. Tc-PyG was only 20% bound to plasma proteins, and electrophoretic and chromatographic studies did not reveal any in vivo changes of Tc-PyG before excretion in urine or bile

  1. Dataset reporting BCKDK interference in a BCAA-catabolism restricted environment.

    Science.gov (United States)

    Bravo-Alonso, I; Oyarzabal, A; Sánchez-Aragó, M; Rejas, M T; Merinero, B; García-Cazorla, A; Artuch, R; Ugarte, M; Rodríguez-Pombo, P

    2016-06-01

    This data article contains complementary figures to the research article "Mitochondrial response to the BCKDK-deficiency: some clues to understand the positive dietary response in this form of autism" [1]. Herein we present data relative to the effect of knocking down BCKDK gene on the real time oxygen consumption rate of fibroblasts obtained from a Maple Syrup Urine Disease (MSUD) patient. Interference of BCKDK expression on such cells showing a reduced branched-chain α-ketoacid dehydrogenase (BCKDHc) activity; let us generate a scenario to study the direct effect of BCKDK absence in an environment of high branched-chain amino acids (BCAAs) concentrations. Data relative to the effectiveness of the knockdown together with the potentiality of the BCKDK-knockdown to increase the deficient branched-chain α-ketoacid dehydrogenase activity detected in MSUD patients are also shown.

  2. Understanding tumor anabolism and patient catabolism in cancer-associated cachexia

    Science.gov (United States)

    Schcolnik-Cabrera, Alejandro; Chávez-Blanco, Alma; Domínguez-Gómez, Guadalupe; Dueñas-González, Alfonso

    2017-01-01

    Cachexia is a multifactorial paraneoplastic syndrome commonly associated with advanced stages of cancer. Cachexia is responsible for poor responses to antitumoral treatment and death in close to one-third of affected patients. There is still an incomplete understanding of the metabolic dysregulation induced by a tumor that leads to the appearance and persistence of cachexia. Furthermore, cachexia is irreversible, and there are currently no guidelines for its diagnosis or treatments for it. In this review, we aim to discuss the current knowledge about cancer-associated cachexia, starting with generalities about cancer as the generator of this syndrome, then analyzing the characteristics of cachexia at the biochemical and metabolic levels in both the tumor and the patient, and finally discussing current therapeutic approaches to treating cancer-associated cachexia. PMID:28560061

  3. Dataset reporting BCKDK interference in a BCAA-catabolism restricted environment

    Directory of Open Access Journals (Sweden)

    I. Bravo-Alonso

    2016-06-01

    Full Text Available This data article contains complementary figures to the research article “Mitochondrial response to the BCKDK-deficiency: some clues to understand the positive dietary response in this form of autism” [1]. Herein we present data relative to the effect of knocking down BCKDK gene on the real time oxygen consumption rate of fibroblasts obtained from a Maple Syrup Urine Disease (MSUD patient. Interference of BCKDK expression on such cells showing a reduced branched-chain α-ketoacid dehydrogenase (BCKDHc activity; let us generate a scenario to study the direct effect of BCKDK absence in an environment of high branched-chain amino acids (BCAAs concentrations. Data relative to the effectiveness of the knockdown together with the potentiality of the BCKDK-knockdown to increase the deficient branched-chain α-ketoacid dehydrogenase activity detected in MSUD patients are also shown.

  4. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency

    NARCIS (Netherlands)

    Morris, A.A.; Kozich, V.; Santra, S.; Andria, G.; Ben-Omran, T.I.; Chakrapani, A.B.; Crushell, E.; Henderson, M.J.; Hochuli, M.; Huemer, M.; Janssen, M.C.H.; Maillot, F.; Mayne, P.D.; McNulty, J.; Morrison, T.M.; Ogier, H.; O'Sullivan, S.; Pavlikova, M.; Almeida, I.T. de; Terry, A.; Yap, S.; Blom, H.J.; Chapman, K.A.

    2017-01-01

    Cystathionine beta-synthase (CBS) deficiency is a rare inherited disorder in the methionine catabolic pathway, in which the impaired synthesis of cystathionine leads to accumulation of homocysteine. Patients can present to many different specialists and diagnosis is often delayed. Severely affected

  5. The coffee diterpene cafestol increases plasma triacylglycerol by increasing the production rate of large VLDL apolipoprotein B in healthy normolipidemic subjects

    NARCIS (Netherlands)

    Roos, de B.; Caslake, M.J.; Stalenhoef, A.F.H.; Bedford, D.; Demacker, P.N.; Katan, M.B.; Packard, C.J.

    2001-01-01

    Background: Cafestol is a diterpene in unfiltered coffee that raises plasma triacylglycerol in humans. Objective: We studied whether cafestol increases plasma triacylglycerol by increasing the production rate or by decreasing the fractional catabolic rate of VLDL1 [Svedberg flotation unit (Sf)

  6. Supplementary feeding in the care of the wasted HIV infected patient

    African Journals Online (AJOL)

    from anorexia or food insecurity associated with poverty, a catabolic state induced by ... common in sub-Saharan Africa,3,4,5 and an adequate diet is believed to be ... supplementary feeding of malnourished children with and without HIV14,15.

  7. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Delta(4)-(5 alpha)-dehydrogenase from Rhodococcus jostii RHA1

    NARCIS (Netherlands)

    van Oosterwijk, Niels; Knol, Jan; Dijkhuizen, Lubbert; van der Geize, Robert; Dijkstra, Bauke

    2011-01-01

    3-Ketosteroid dehydrogenases are flavoproteins which play key roles in steroid ring degradation. The enzymes are abundantly present in actinobacteria, including the catabolic powerhouse Rhodococcus jostii and the pathogenic species R. equi and Mycobacterium tuberculosis. The gene for 3-ketosteroid

  8. Assessment of Potential Abatement provided by Annona Muricata ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    glyceride, total bilirubin, total cholesterol and glucose levels (P<0.05). However, significant ... homeostasis at the level of iron regulatory proteins. Annona muricata Linn .... enhanced protein catabolism and accelerated amino acid deamination ..... (2005).”Diabetic nephropathy: diagnosis, prevention, and treatment”. Diabetes.

  9. Homocysteine and coronary heart disease : the role of polymorphic genes and hemostasis

    NARCIS (Netherlands)

    Klerk, M.

    2002-01-01

    Background Homocysteine is a sulfur-containing amino acid formed during catabolism of the essential amino acid methionine. Defects in genes encoding enzymes or sub-optimal intake of B-vitamins (e.g. folate) involved in homocysteine

  10. Patterns in current perioperative practice: survey of colorectal surgeons in five northern European countries

    DEFF Research Database (Denmark)

    Lassen, K; Hannemann, P; Ljungqvist, O

    2005-01-01

    Evidence for optimal perioperative care in colorectal surgery is abundant. By avoiding fasting, intravenous fluid overload, and activation of the neuroendocrine stress response, postoperative catabolism is reduced and recovery enhanced. The specific measures that can be used routinely include no ...

  11. A Genome Sequence-directed Investigation of D-Tagatose Utilization by Kosmotoga Olearia

    Science.gov (United States)

    Butzin, N. C.; Bradnan, D. M.; Noll, K. M.

    2010-04-01

    The research goals are to determine the pathway that Kosmotoga olearia uses tagatose, the roles of Kole_0686, Kole_0737 and Kole_1652 in this process, and the evolutionary history of the genes that encode the proteins involved in tagatose catabolism.

  12. Stress og belastning eller effekt

    DEFF Research Database (Denmark)

    Netterstrøm, Bo

    2012-01-01

    Stress is in medical terms a condition characterized by physiological reactions and symptoms initiated by stressors. The physiological reactions increase the tone in the sympathetic nervous system, change metabolism in a catabolic direction and stimulate immunological reactions. The effect on hea...

  13. Xylose reductase from the thermophilic fungus Talaromyces emersonii

    Indian Academy of Sciences (India)

    Prakash

    Xylose reductase is involved in the first step of the fungal pentose catabolic pathway. The gene .... proteins with reversed coenzyme preference from NADPH to NADH ..... 399–404. Hasper A A, Visser J and de Graaff L H 2000 The Aspergillus.

  14. TrypanoCyc : a community-led biochemical pathways database for Trypanosoma brucei

    NARCIS (Netherlands)

    Shameer, Sanu; Logan-Klumpler, Flora J; Vinson, Florence; Cottret, Ludovic; Merlet, Benjamin; Achcar, Fiona; Boshart, Michael; Berriman, Matthew; Breitling, Rainer; Bringaud, Frédéric; Bütikofer, Peter; Cattanach, Amy M; Bannerman-Chukualim, Bridget; Creek, Darren J; Crouch, Kathryn; de Koning, Harry P; Denise, Hubert; Ebikeme, Charles; Fairlamb, Alan H; Ferguson, Michael A J; Ginger, Michael L; Hertz-Fowler, Christiane; Kerkhoven, Eduard J; Mäser, Pascal; Michels, Paul A M; Nayak, Archana; Nes, David W; Nolan, Derek P; Olsen, Christian; Silva-Franco, Fatima; Smith, Terry K; Taylor, Martin C; Tielens, Aloysius G M|info:eu-repo/dai/nl/069043035; Urbaniak, Michael D; van Hellemond, Jaap J; Vincent, Isabel M; Wilkinson, Shane R; Wyllie, Susan; Opperdoes, Fred R; Barrett, Michael P; Jourdan, Fabien

    2015-01-01

    The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about

  15. Purification and properties of Rhizobial DehL expressed in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... 1Industrial Biotechnology Department, University Technology Malaysia, 81310 Skudai, Johor, Malaysia. 2Chemistry Department, University ... mental pollution and health problems to the human population. Microbial catabolism ..... Sequence diversity among related genes for recognition of specific targets ...

  16. Proteomic Discovery and Development of a Multiplexed Targeted MRM-LC-MS/MS Assay for Urine Biomarkers of Extracellular Matrix Disruption in Mucopolysaccharidoses I, II, and VI

    NARCIS (Netherlands)

    Heywood, Wendy E.; Camuzeaux, Stephane; Doykov, Ivan; Patel, Nina; Preece, Rhian-Lauren; Footitt, Emma; Cleary, Maureen; Clayton, Peter; Grunewald, Stephanie; Abulhoul, Lara; Chakrapani, Anupam; Sebire, Neil J.; Hindmarsh, Peter; de Koning, Tom J.; Heales, Simon; Burke, Derek; Gissen, Paul; Mills, Kevin

    2015-01-01

    The mucopolysaccharidoses (MPS) are lysosomal storage disorders that result from defects in the catabolism of glycosaminoglycans. Impaired muscle, bone, and connective tissue are typical clinical features of MPS due to disruption of the extracellular matrix Markers of MPS disease pathology are

  17. Emerging roles of molecular chaperones and co-chaperones in selective autophagy : focus on BAG proteins

    NARCIS (Netherlands)

    Gamerdinger, Martin; Carra, Serena; Behl, Christian

    2011-01-01

    Macroautophagy is a catabolic process by which the cell degrades cytoplasmic components through the lysosomal machinery. While initially acknowledged as a rather unspecific bulk degradation process, growing lines of evidence indicate the selectivity of macroautophagy pathways in the removal of

  18. Dendritic cells and veiled accessory macrophages : hormonal influences and autoimmune thyroid disease

    NARCIS (Netherlands)

    M.O. Canning (Martha)

    2005-01-01

    textabstractImmune responses to thyroid specific autoantigens form the basis of autoimmune thyroid disease pathogenesis. Two polar forms of autoimmune reactivity of the thyroid gland exist in this disease spectrum: a catabolic form characterized by gradual inflammatory destruction of thyroid

  19. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E.

    NARCIS (Netherlands)

    Boxma, B.; Voncken, F.L.M.; Jannink, S.A.; Alen, T.A. van; Akhmanova, A.S.; Weelden, S.W. van; Hellemond, J.J. van; Ricard, G.N.S.; Huynen, M.A.; Tielens, A.G.; Hackstein, J.H.P.

    2004-01-01

    Anaerobic chytridiomycete fungi possess hydrogenosomes, which generate hydrogen and ATP, but also acetate and formate as end-products of a prokaryotic-type mixed-acid fermentation. Notably, the anaerobic chytrids Piromyces and Neocallimastix use pyruvate:formate lyase (PFL) for the catabolism of

  20. A Novel 3-Sulfinopropionyl Coenzyme A (3SP-CoA) Desulfinase from Advenella mimigardefordensis Strain DPN7T Acting as a Key Enzyme during Catabolism of 3,3′-Dithiodipropionic Acid Is a Member of the Acyl-CoA Dehydrogenase Superfamily

    Science.gov (United States)

    Schürmann, Marc; Deters, Anika; Wübbeler, Jan Hendrik

    2013-01-01

    the final desulfination step during catabolism of 3,3′-dithiodipropionate (DTDP), a sulfur-containing precursor substrate for biosynthesis of polythioesters. PMID:23354747