WorldWideScience

Sample records for catabolism tfdicdef gene

  1. Identification of a gene cluster associated with triclosan catabolism.

    Science.gov (United States)

    Kagle, Jeanne M; Paxson, Clayton; Johnstone, Precious; Hay, Anthony G

    2015-06-01

    Aerobic degradation of bis-aryl ethers like the antimicrobial triclosan typically proceeds through oxygenase-dependent catabolic pathways. Although several studies have reported on bacteria capable of degrading triclosan aerobically, there are no reports describing the genes responsible for this process. In this study, a gene encoding the large subunit of a putative triclosan oxygenase, designated tcsA was identified in a triclosan-degrading fosmid clone from a DNA library of Sphingomonas sp. RD1. Consistent with tcsA's similarity to two-part dioxygenases, a putative FMN-dependent ferredoxin reductase, designated tcsB was found immediately downstream of tcsA. Both tcsAB were found in the midst of a putative chlorocatechol degradation operon. We show that RD1 produces hydroxytriclosan and chlorocatechols during triclosan degradation and that tcsA is induced by triclosan. This is the first study to report on the genetics of triclosan degradation.

  2. Characterization of genes for chitin catabolism in Haloferax mediterranei.

    Science.gov (United States)

    Hou, Jing; Han, Jing; Cai, Lei; Zhou, Jian; Lü, Yang; Jin, Cheng; Liu, Jingfang; Xiang, Hua

    2014-02-01

    Chitin is the second most abundant natural polysaccharide after cellulose. But degradation of chitin has never been reported in haloarchaea. In this study, we revealed that Haloferax mediterranei, a metabolically versatile haloarchaeon, could utilize colloidal or powdered chitin for growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) accumulation, and the gene cluster (HFX_5025-5039) for the chitin catabolism pathway was experimentally identified. First, reverse transcription polymerase chain reaction results showed that the expression of the genes encoding the four putative chitinases (ChiAHme, ChiBHme, ChiCHme, and ChiDHme, HFX_5036-5039), the LmbE-like deacetylase (DacHme, HFX_5027), and the glycosidase (GlyAHme, HFX_5029) was induced by colloidal or powdered chitin, and chiA Hme, chiB Hme, and chiC Hme were cotranscribed. Knockout of chiABC Hme or chiD Hme had a significant effect on cell growth and PHBV production when chitin was used as the sole carbon source, and the chiABCD Hme knockout mutant lost the capability to utilize chitin. Knockout of dac Hme or glyA Hme also decreased PHBV accumulation on chitin. These results suggested that ChiABCDHme, DacHme, and GlyAHme were indeed involved in chitin degradation in H. mediterranei. Additionally, the chitinase assay showed that each chitinase possessed hydrolytic activity toward colloidal or powdered chitin, and the major product of colloidal chitin hydrolysis by ChiABCDHme was diacetylchitobiose, which was likely further degraded to monosaccharides by DacHme, GlyAHme, and other related enzymes for both cell growth and PHBV biosynthesis. Taken together, this study revealed the genes and enzymes involved in chitin catabolism in haloarchaea for the first time and indicated the potential of H. mediterranei as a whole-cell biocatalyst in chitin bioconversion.

  3. Identification of the First Riboflavin Catabolic Gene Cluster Isolated from Microbacterium maritypicum G10.

    Science.gov (United States)

    Xu, Hui; Chakrabarty, Yindrila; Philmus, Benjamin; Mehta, Angad P; Bhandari, Dhananjay; Hohmann, Hans-Peter; Begley, Tadhg P

    2016-11-04

    Riboflavin is a common cofactor, and its biosynthetic pathway is well characterized. However, its catabolic pathway, despite intriguing hints in a few distinct organisms, has never been established. This article describes the isolation of a Microbacterium maritypicum riboflavin catabolic strain, and the cloning of the riboflavin catabolic genes. RcaA, RcaB, RcaD, and RcaE were overexpressed and biochemically characterized as riboflavin kinase, riboflavin reductase, ribokinase, and riboflavin hydrolase, respectively. Based on these activities, a pathway for riboflavin catabolism is proposed.

  4. Characterization of purine catabolic pathway genes in coelacanths.

    Science.gov (United States)

    Forconi, Mariko; Biscotti, Maria Assunta; Barucca, Marco; Buonocore, Francesco; De Moro, Gianluca; Fausto, Anna Maria; Gerdol, Marco; Pallavicini, Alberto; Scapigliati, Giuseppe; Schartl, Manfred; Olmo, Ettore; Canapa, Adriana

    2014-09-01

    Coelacanths are a critically valuable species to explore the gene changes that took place in the transition from aquatic to terrestrial life. One interesting and biologically relevant feature of the genus Latimeria is ureotelism. However not all urea is excreted from the body; in fact high concentrations are retained in plasma and seem to be involved in osmoregulation. The purine catabolic pathway, which leads to urea production in Latimeria, has progressively lost some steps, reflecting an enzyme loss during diversification of terrestrial species. We report the results of analyses of the liver and testis transcriptomes of the Indonesian coelacanth Latimeria menadoensis and of the genome of Latimeria chalumnae, which has recently been fully sequenced in the framework of the coelacanth genome project. We describe five genes, uricase, 5-hydroxyisourate hydrolase, parahox neighbor B, allantoinase, and allantoicase, each coding for one of the five enzymes involved in urate degradation to urea, and report the identification of a putative second form of 5-hydroxyisourate hydrolase that is characteristic of the genus Latimeria. The present data also highlight the activity of the complete purine pathway in the coelacanth liver and suggest its involvement in the maintenance of high plasma urea concentrations.

  5. Methanesulfonate (MSA) Catabolic Genes from Marine and Estuarine Bacteria.

    Science.gov (United States)

    Henriques, Ana C; De Marco, Paolo

    2015-01-01

    Quantitatively, methanesulfonate (MSA) is a very relevant compound in the global biogeochemical sulfur cycle. Its utilization by bacteria as a source of carbon and energy has been described and a specific enzyme, methanesulfonate monooxygenase (MSAMO), has been found to perform the first catabolic step of its oxidation. Other proteins seemingly involved in the import of MSA into bacterial cells have been reported. In this study, we obtained novel sequences of genes msmA and msmE from marine, estuary and soil MSA-degraders (encoding the large subunit of the MSAMO enzyme and the periplasmic component of the import system, respectively). We also obtained whole-genome sequences of two novel marine Filomicrobium strains, Y and W, and annotated two full msm operons in these genomes. Furthermore, msmA and msmE sequences were amplified from North Atlantic seawater and analyzed. Good conservation of the MsmA deduced protein sequence was observed in both cultured strains and metagenomic clones. A long spacer sequence in the Rieske-type [2Fe-2S] cluster-binding motif within MsmA was found to be conserved in all instances, supporting the hypothesis that this feature is specific to the large (α) subunit of the MSAMO enzyme. The msmE gene was more difficult to amplify, from both cultivated isolates and marine metagenomic DNA. However, 3 novel msmE sequences were obtained from isolated strains and one directly from seawater. With both genes, our results combined with previous metagenomic analyses seem to imply that moderate to high-GC strains are somehow favored during enrichment and isolation of MSA-utilizing bacteria, while the majority of msm genes obtained by cultivation-independent methods have low levels of GC%, which is a clear example of the misrepresentation of natural populations that culturing, more often than not, entails. Nevertheless, the data obtained in this work show that MSA-degrading bacteria are abundant in surface seawater, which suggests ecological

  6. The phn Genes of Burkholderia sp. Strain RP007 Constitute a Divergent Gene Cluster for Polycyclic Aromatic Hydrocarbon Catabolism

    OpenAIRE

    1999-01-01

    Cloning and molecular ecological studies have underestimated the diversity of polycyclic aromatic hydrocarbon (PAH) catabolic genes by emphasizing classical nah-like (nah, ndo, pah, and dox) sequences. Here we report the description of a divergent set of PAH catabolic genes, the phn genes, which although isofunctional to the classical nah-like genes, show very low homology. This phn locus, which contains nine open reading frames (ORFs), was isolated on an 11.5-kb HindIII fragment from phenant...

  7. Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp.

    NARCIS (Netherlands)

    Mohn, William W.; Wilbrink, Maarten H.; Casabon, Israel; Stewart, Gordon R.; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D.

    2012-01-01

    Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as

  8. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Milcic-Terzic, J.; Saval, S. [National University of Mexico, Coyocan (Mexico). Institute of Engineering; Lopez-Vidal, Y. [National University of Mexico (Mexico). FAculty of Medicine; Vrvic, M.M. [University of Belgrade (Yugoslavia). Faculty of Chemistry

    2001-05-01

    Bioremediation is often used for in situ remediation of petroleum-contaminated sites. The primary focus of this study was on understanding the indigenous microbial community which can survive in contaminated environment and is responsible for the degradation. Diesel, toluene and naphthalene-degrading microbial consortia were isolated from diesel-contaminated soil by growing on selective hydrocarbon substrates. The presence and frequency of the catabolic genes responsible for aromatic hydrocarbon biodegradation (xylE, ndoB) within the isolated consortia were screened using polymerase chain reaction PCR and DNA-DNA colony hybridization. The diesel DNA-extract possessed both the xylE catabolic gene for toluene, and the nah catabolic gene for polynuclear aromatic hydrocarbon degradation. The toluene DNA-extract possessed only the xylE catabolic gene, while the naphthalene DNA-extract only the ndoB gene. Restriction enzyme analysis with HaeIII indicated similar restriction patterns for the xylE gene fragment between toluene DNA-extract and a type strain, Pseudomonas putida ATCC 23973. A substantial proportion (74%) of the colonies from the diesel-consortium possessed the xylE gene, and the ndoB gene (78%), while a minority (29%) of the toluene-consortium harbored the xylE gene. 59% of the colonies from the naphthalene-consortium had the ndoB gene, and did not have the xylE gene. These results indicate that the microbial population has been naturally enriched in organisms carrying genes for aromatic hydrocarbon degradation and that significant aromatic biodegradative potential exists at the site. Characterization of the population genotype constitutes a molecular diagnosis which permits the determination of the catabolic potential of the site to degrade the contaminant present. (author)

  9. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.

    Science.gov (United States)

    Fuentes, Sebastián; Méndez, Valentina; Aguila, Patricia; Seeger, Michael

    2014-06-01

    Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

  10. Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae.

    Science.gov (United States)

    Yost, Christopher K; Rath, Amber M; Noel, Tanya C; Hynes, Michael F

    2006-07-01

    A genetic locus encoding erythritol uptake and catabolism genes was identified in Rhizobium leguminosarum bv. viciae, and shown to be plasmid encoded in a wide range of R. leguminosarum strains. A Tn5-B22 mutant (19B-3) unable to grow on erythritol was isolated from a mutant library of R. leguminosarum strain VF39SM. The mutated gene eryF was cloned and partially sequenced, and determined to have a high homology to permease genes of ABC transporters. A cosmid complementing the mutation (pCos42) was identified and was shown to carry all the genes necessary to restore the ability to grow on erythritol to a VF39SM strain cured of pRleVF39f. In the genomic DNA sequence of strain 3841, the gene linked to the mutation in 19B-3 is flanked by a cluster of genes with high homology to the known erythritol catabolic genes from Brucella spp. Through mutagenesis studies, three distinct operons on pCos42 that are required for growth on erythritol were identified: an ABC-transporter operon (eryEFG), a catabolic operon (eryABCD) and an operon (deoR-tpiA2-rpiB) that encodes a gene with significant homology to triosephosphate isomerase (tpiA2). These genes all share high sequence identity to genes in the erythritol catabolism region of Brucella spp., and clustalw alignments suggest that horizontal transfer of the erythritol locus may have occurred between R. leguminosarum and Brucella. Transcription of the eryABCD operon is repressed by EryD and is induced by the presence of erythritol. Mutant 19B-3 was impaired in its ability to compete against wild-type for nodulation of pea plants but was still capable of forming nitrogen-fixing nodules.

  11. Organization and control of genes encoding catabolic enzymes in Rhizobiaceae

    Energy Technology Data Exchange (ETDEWEB)

    Parke, D.; Ornston, L.N.

    1993-03-01

    Rhizobiaceae, a diverse bacterial group comprising rhizobia and agrobacteria, symbiotic partnership with plants form nitrogen-fixing nodules on plant roots or are plant pathogens. Phenolic compounds produced by plants serve as inducers of rhizobial nodulation genes and agrobacterial virulence genes reflect their capacity to utilize numerous aromatics, including phenolics, as a source of carbon and energy. In many microbes the aerobic degradation of numerous aromatic compounds to tricarboxylic acid cycle intermediates is achieved by the [beta]-ketoadipate pathway. Our initial studies focused on the organization and regulation of the ketoadipate pathway in Agrobacterium tumefaciens. We have cloned, identified and characterized a novel regulatory gene that modulates expression of an adjacent pca (protocatechuate) structural gene, pcaD. Regulation of pcaD is mediated by the regulatory gene, termed pcaQ, in concert with the intermediate [beta]-carboxy-cis,cis-muconate. [beta]-carboxy-cis,cismuconate is an unstable chemical, not marketed commercially, and it is unlikely to permeate Escherichia coli cells if supplied in media. Because of these factors, characterization of pcaQ in E. coli required an in vivo delivery system for [beta]-carboxycis,cis-muconate. This was accomplished by designing an E. coli strain that expressed an Acinetobacter calcoaceticus pcaA gene for conversion of protocatechuate to [beta]-carboxy-cis,cis-muconate.

  12. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  13. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  14. Imbalanced protein expression patterns of anabolic, catabolic, anti-catabolic and inflammatory cytokines in degenerative cervical disc cells: new indications for gene therapeutic treatments of cervical disc diseases.

    Directory of Open Access Journals (Sweden)

    Demissew S Mern

    Full Text Available Degenerative disc disease (DDD of the cervical spine is common after middle age and can cause loss of disc height with painful nerve impingement, bone and joint inflammation. Despite the clinical importance of these problems, in current publications the pathology of cervical disc degeneration has been studied merely from a morphologic view point using magnetic resonance imaging (MRI, without addressing the issue of biological treatment approaches. So far a wide range of endogenously expressed bioactive factors in degenerative cervical disc cells has not yet been investigated, despite its importance for gene therapeutic approaches. Although degenerative lumbar disc cells have been targeted by different biological treatment approaches, the quantities of disc cells and the concentrations of gene therapeutic factors used in animal models differ extremely. These indicate lack of experimentally acquired data regarding disc cell proliferation and levels of target proteins. Therefore, we analysed proliferation and endogenous expression levels of anabolic, catabolic, ant-catabolic, inflammatory cytokines and matrix proteins of degenerative cervical disc cells in three-dimensional cultures. Preoperative MRI grading of cervical discs was used, then grade III and IV nucleus pulposus (NP tissues were isolated from 15 patients, operated due to cervical disc herniation. NP cells were cultured for four weeks with low-glucose in collagen I scaffold. Their proliferation rates were analysed using 3-(4, 5-dimethylthiazolyl-2-2,5-diphenyltetrazolium bromide. Their protein expression levels of 28 therapeutic targets were analysed using enzyme-linked immunosorbent assay. During progressive grades of degeneration NP cell proliferation rates were similar. Significantly decreased aggrecan and collagen II expressions (P<0.0001 were accompanied by accumulations of selective catabolic and inflammatory cytokines (disintegrin and metalloproteinase with thrombospondin motifs 4

  15. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism.

    Directory of Open Access Journals (Sweden)

    Jennifer E Griffin

    2011-09-01

    Full Text Available The pathways that comprise cellular metabolism are highly interconnected, and alterations in individual enzymes can have far-reaching effects. As a result, global profiling methods that measure gene expression are of limited value in predicting how the loss of an individual function will affect the cell. In this work, we employed a new method of global phenotypic profiling to directly define the genes required for the growth of Mycobacterium tuberculosis. A combination of high-density mutagenesis and deep-sequencing was used to characterize the composition of complex mutant libraries exposed to different conditions. This allowed the unambiguous identification of the genes that are essential for Mtb to grow in vitro, and proved to be a significant improvement over previous approaches. To further explore functions that are required for persistence in the host, we defined the pathways necessary for the utilization of cholesterol, a critical carbon source during infection. Few of the genes we identified had previously been implicated in this adaptation by transcriptional profiling, and only a fraction were encoded in the chromosomal region known to encode sterol catabolic functions. These genes comprise an unexpectedly large percentage of those previously shown to be required for bacterial growth in mouse tissue. Thus, this single nutritional change accounts for a significant fraction of the adaption to the host. This work provides the most comprehensive genetic characterization of a sterol catabolic pathway to date, suggests putative roles for uncharacterized virulence genes, and precisely maps genes encoding potential drug targets.

  16. Microbial diversity and PAH catabolic genes tracking spatial heterogeneity of PAH concentrations.

    Science.gov (United States)

    Bengtsson, Göran; Törneman, Niklas; De Lipthay, Julia R; Sørensen, Søren J

    2013-01-01

    We analyzed the within-site spatial heterogeneity of microbial community diversity, polyaromatic hydrocarbon (PAH) catabolic genotypes, and physiochemical soil properties at a creosote contaminated site. Genetic diversity and community structure were evaluated from an analysis of denaturant gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified sequences of 16S rRNA gene. The potential PAH degradation capability was determined from PCR amplification of a suit of aromatic dioxygenase genes. Microbial diversity, evenness, and PAH genotypes were patchily distributed, and hot and cold spots of their distribution coincided with hot and cold spots of the PAH distribution. The analyses revealed a positive covariation between microbial diversity, biomass, evenness, and PAH concentration, implying that the creosote contamination at this site promotes diversity and abundance. Three patchily distributed PAH-degrading genotypes, NAH, phnA, and pdo1, were identified, and their abundances were positively correlated with the PAH concentration and the fraction of soil organic carbon. The covariation of the PAH concentration with the number and spatial distribution of catabolic genotypes suggests that a field site capacity to degrade PAHs may vary with the extent of contamination.

  17. Wounding of potato tubers induces increases in ABA biosynthesis and catabolism and alters expression of ABA metabolic genes

    Science.gov (United States)

    The effects of physical wounding on ABA biosynthesis and catabolism and expression of genes encoding key ABA metabolic enzymes were determined in potato (Solanum tuberosum L.) tubers. An increase in ABA and ABA metabolite content was observed 48 h after wounding and remained elevated through 96 h. ...

  18. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    ter Schure, E G; Silljé, H H; Vermeulen, E E; Kalhorn, J W; Verkleij, A J; Boonstra, J; Verrips, C T

    1998-01-01

    Growth of Saccharomyces cerevisiae on ammonia and glutamine decreases the expression of many nitrogen catabolic genes to low levels. To discriminate between ammonia- and glutamine-driven repression of GAP1, PUT4, GDH1 and GLN1, a gln1-37 mutant was used. This mutant is not able to convert ammonia in

  19. [Production and study of Bacillus subtilis mutants for genes involved in nucleoside catabolism].

    Science.gov (United States)

    Rumiantseva, E V; Sukhodolets, V V; Smirnov, Iu V

    1979-01-01

    By means of selection for a low thymine requirement the mutants fo thymine auxotrophs for deoxyriboaldolase (dra) and phosphodeoxyribomutase (drm) genes were obtained. Besides the mutants for pyrimidinenucleoside phosphorylase gene (pdp) were olso isolated using selection on the fluorodeoxyuridine resistance. The latter enzyme provides for pyrimidine nucleosides catabolism (thymidine, uridine) in Bacilli, as well as the conversion of exogenous thymine to thymidine in thymine auxotrophs. The data obtained when studying the deo-enzymes activities in various types of the mutants and also under the condition of induction by thymidine and acetoaldehyde are in accordance with the assumption that deoxyriboso-5-phosphate is an inductor of the deo-enzymes in Bacillus subtilis. The genes dra and pdp were tightly linked as it had been shown by the transformation experiments; in contrast, no linkage was revealed between dra and drm or pdp and drm. A secondary mutation (adn), not linked with dra and blocking the ability of bacteria to catabolise adenosine (purine nucleoside phosphorylase activity remains constant) was found in some dra-mutants.

  20. Functional myo-inositol catabolic genes of Bacillus subtilis Natto are involved in depletion of pinitol in Natto (fermented soybean).

    Science.gov (United States)

    Morinaga, Tetsuro; Yamaguchi, Masanori; Makino, Yuki; Nanamiya, Hideaki; Takahashi, Kiwamu; Yoshikawa, Hirofumi; Kawamura, Fujio; Ashida, Hitoshi; Yoshida, Ken-Ichi

    2006-08-01

    Soybeans are rich in pinitol (PI; 3-O-methyl-D-chiro-inositol), which improves health by treating conditions associated with insulin resistance, such as diabetes mellitus and obesity. Natto is a food made from soybeans fermented by strains of Bacillus subtilis natto. In the chromosome of natto strain OK2, there is a putative promoter region almost identical to the iol promoter for myo-inositol (MI) catabolic genes of B. subtilis 168. In the presence of MI, the putative iol promoter functioned to induce inositol dehydrogenase, the enzyme for the first-step reaction in the MI catabolic pathway. PI also induced inositol dehydrogenase and the promoter was indispensable for the utilization of PI as well as MI, suggesting that PI might be an alternative carbon source metabolized in a way involving the MI catabolic genes. Natto fermentation studies have revealed that the parental natto strain consumed PI while a mutant defective in the iol promoter did not do so at all. These results suggest that inactivating the MI catabolic genes might prevent PI consumption, retaining it in natto for enrichment of possible health-promoting properties.

  1. γ-Resorcylate Catabolic-Pathway Genes in the Soil Actinomycete Rhodococcus jostii RHA1

    Science.gov (United States)

    Kasai, Daisuke; Araki, Naoto; Motoi, Kota; Yoshikawa, Shota; Iino, Toju; Imai, Shunsuke; Masai, Eiji

    2015-01-01

    The Rhodococcus jostii RHA1 gene cluster required for γ-resorcylate (GRA) catabolism was characterized. The cluster includes tsdA, tsdB, tsdC, tsdD, tsdR, tsdT, and tsdX, which encode GRA decarboxylase, resorcinol 4-hydroxylase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, an IclR-type regulator, a major facilitator superfamily transporter, and a putative hydrolase, respectively. The tsdA gene conferred GRA decarboxylase activity on Escherichia coli. Purified TsdB oxidized NADH in the presence of resorcinol, suggesting that tsdB encodes a unique NADH-specific single-component resorcinol 4-hydroxylase. Mutations in either tsdA or tsdB resulted in growth deficiency on GRA. The tsdC and tsdD genes conferred hydroxyquinol 1,2-dioxygenase and maleylacetate reductase activities, respectively, on E. coli. Inactivation of tsdT significantly retarded the growth of RHA1 on GRA. The growth retardation was partially suppressed under acidic conditions, suggesting the involvement of tsdT in GRA uptake. Reverse transcription-PCR analysis revealed that the tsd genes constitute three transcriptional units, the tsdBADC and tsdTX operons and tsdR. Transcription of the tsdBADC and tsdTX operons was induced during growth on GRA. Inactivation of tsdR derepressed transcription of the tsdBADC and tsdTX operons in the absence of GRA, suggesting that tsd gene transcription is negatively regulated by the tsdR-encoded regulator. Binding of TsdR to the tsdR-tsdB and tsdT-tsdR intergenic regions was inhibited by the addition of GRA, indicating that GRA interacts with TsdR as an effector molecule. PMID:26319878

  2. T cells stimulate catabolic gene expression by the stromal cells from giant cell tumor of bone

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Robert W. [Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L8 (Canada); Juravinski Cancer Centre, 699 Concession St., Hamilton, ON, Canada L8V 5C2 (Canada); Ghert, Michelle [Juravinski Cancer Centre, 699 Concession St., Hamilton, ON, Canada L8V 5C2 (Canada); Department of Surgery, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L8 (Canada); Singh, Gurmit, E-mail: gurmit.singh@jcc.hhsc.ca [Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L8 (Canada); Juravinski Cancer Centre, 699 Concession St., Hamilton, ON, Canada L8V 5C2 (Canada)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Two T cell lines stimulate PTHrP, RANKL, MMP13 gene expression in GCT cell cultures. Black-Right-Pointing-Pointer CD40 expressed by stromal cells; CD40L detected in whole tumor but not cultures. Black-Right-Pointing-Pointer Effect of CD40L treatment on GCT cells increased PTHrP and MMP13 gene expression. Black-Right-Pointing-Pointer PTHrP treatment increased MMP13 expression, while inhibition decreased expression. Black-Right-Pointing-Pointer T cells may stimulate GCT stromal cells and promote the osteolysis of the tumor. -- Abstract: The factors that promote the localized bone resorption by giant cell tumor of bone (GCT) are not fully understood. We investigated whether T cells could contribute to bone resorption by stimulating expression of genes for parathyroid hormone-related protein (PTHrP), matrix metalloproteinase (MMP)-13, and the receptor activator of nuclear-factor {kappa}B ligand (RANKL). Two cell lines, Jurkat clone E6-1 and D1.1, were co-cultured with isolated GCT stromal cells. Real-time PCR analyses demonstrated a significant increase of all three genes following 48 h incubation, and PTHrP and MMP-13 gene expression was also increased at 24 h. Further, we examined the expression of CD40 ligand (CD40L), a protein expressed by activated T cells, and its receptor, CD40, in GCT. Immunohistochemistry results revealed expression of the CD40 receptor in both the stromal cells and giant cells of the tumor. RNA collected from whole GCT tissues showed expression of CD40LG, which was absent in cultured stromal cells, and suggests that CD40L is expressed within GCT. Stimulation of GCT stromal cells with CD40L significantly increased expression of the PTHrP and MMP-13 genes. Moreover, we show that inhibition of PTHrP with neutralizing antibodies significantly decreased MMP13 expression by the stromal cells compared to IgG-matched controls, whereas stimulation with PTHrP (1-34) increased MMP-13 gene expression. These

  3. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB

    Directory of Open Access Journals (Sweden)

    Pratick Khara

    2014-01-01

    Full Text Available Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.

  4. Biodegradation Ability and Catabolic Genes of Petroleum-Degrading Sphingomonas koreensis Strain ASU-06 Isolated from Egyptian Oily Soil

    Directory of Open Access Journals (Sweden)

    Abd El-Latif Hesham

    2014-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are serious pollutants and health hazards. In this study, 15 PAHs-degrading bacteria were isolated from Egyptian oily soil. Among them, one Gram-negative strain (ASU-06 was selected and biodegradation ability and initial catabolic genes of petroleum compounds were investigated. Comparison of 16S rRNA gene sequence of strain ASU-06 to published sequences in GenBank database as well as phylogenetic analysis identified ASU-06 as Sphingomonas koreensis. Strain ASU-06 degraded 100, 99, 98, and 92.7% of 100 mg/L naphthalene, phenanthrene, anthracene, and pyrene within 15 days, respectively. When these PAHs present in a mixed form, the enhancement phenomenon appeared, particularly in the degradation of pyrene, whereas the degradation rate was 98.6% within the period. This is the first report showing the degradation of different PAHs by this species. PCR experiments with specific primers for catabolic genes alkB, alkB1, nahAc, C12O, and C23O suggested that ASU-06 might possess genes for aliphatic and PAHs degradation, while PAH-RHDαGP gene was not detected. Production of biosurfactants and increasing cell-surface hydrophobicity were investigated. GC/MS analysis of intermediate metabolites of studied PAHs concluded that this strain utilized these compounds via two main pathways, and phthalate was the major constant product that appeared in each day of the degradation period.

  5. Biodegradation ability and catabolic genes of petroleum-degrading Sphingomonas koreensis strain ASU-06 isolated from Egyptian oily soil.

    Science.gov (United States)

    Hesham, Abd El-Latif; Mawad, Asmaa M M; Mostafa, Yasser M; Shoreit, Ahmed

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are serious pollutants and health hazards. In this study, 15 PAHs-degrading bacteria were isolated from Egyptian oily soil. Among them, one Gram-negative strain (ASU-06) was selected and biodegradation ability and initial catabolic genes of petroleum compounds were investigated. Comparison of 16S rRNA gene sequence of strain ASU-06 to published sequences in GenBank database as well as phylogenetic analysis identified ASU-06 as Sphingomonas koreensis. Strain ASU-06 degraded 100, 99, 98, and 92.7% of 100 mg/L naphthalene, phenanthrene, anthracene, and pyrene within 15 days, respectively. When these PAHs present in a mixed form, the enhancement phenomenon appeared, particularly in the degradation of pyrene, whereas the degradation rate was 98.6% within the period. This is the first report showing the degradation of different PAHs by this species. PCR experiments with specific primers for catabolic genes alkB, alkB1, nahAc, C12O, and C23O suggested that ASU-06 might possess genes for aliphatic and PAHs degradation, while PAH-RHDαGP gene was not detected. Production of biosurfactants and increasing cell-surface hydrophobicity were investigated. GC/MS analysis of intermediate metabolites of studied PAHs concluded that this strain utilized these compounds via two main pathways, and phthalate was the major constant product that appeared in each day of the degradation period.

  6. Location and PCR analysis of catabolic genes in a novel Streptomyces sp. DUT_AHX capable of degrading nitrobenzene

    Institute of Scientific and Technical Information of China (English)

    AI Haixin; ZHOU Jiti; LV Hong; WANG Jing; GUO Jianbo; LIU Guangfei; QU Yuanyuan

    2008-01-01

    A novel strain of Streptomyces sp. DUT_AHX was isolated from sludge contaminated with nitrobenzene and identified on the basis of physiological and biochemical tests and 16S ribosomal DNA (rDNA) sequence analysis. The optimal degradation conditions were as follows: temperature 30℃, pH 7.0-8.0, shaking speed 150-180 r/min and inocula 10% (V/V). The strain, which possessed a partial reductive pathway with the release of ammonia, was also able to grow on mineral salts basal (MSB) medium plates with 2-aminophenol, phenol, or toluene as the sole carbon source. Furthermore, the enzyme activity tests showed crude extracts of nitrobenzene-grown DUT_AHX contained 2-aminophenol 1,6-dioxygenase activity. The 17-kb plasmid was isolated by the modified alkaline lysis method and was further cured by sodium dodecyl sulphate (SDS) together with 37℃. As a result, the cured derivative strain DUT_AHX-4 lost the 2-aminophenol 1,6-dioxygenase activity. The results suggested that the catabolic genes encoding the nitrobenzene-degrading enzymes were plasmid-associated. Moreover, the plasmid DNA was amplified with degenerate primers by touchdown PCR and an expected size fragment (471 bp) was generated. The Blast results revealed that the gene encoding a 157 amino acid polypeptide was 39% to 76% identical to YHS domain protein. The further examination of the plasmid would demonstrate the molecular basis of nitrobenzene catabolism in Streptomyces, such as regulation and genetic organization of the catabolic genes.

  7. Characterization of new bacterial catabolic genes and mobile genetic elements by high throughput genetic screening of a soil metagenomic library.

    Science.gov (United States)

    Jacquiod, Samuel; Demanèche, Sandrine; Franqueville, Laure; Ausec, Luka; Xu, Zhuofei; Delmont, Tom O; Dunon, Vincent; Cagnon, Christine; Mandic-Mulec, Ines; Vogel, Timothy M; Simonet, Pascal

    2014-11-20

    A mix of oligonucleotide probes was used to hybridize soil metagenomic DNA from a fosmid clone library spotted on high density membranes. The pooled radio-labeled probes were designed to target genes encoding glycoside hydrolases GH18, dehalogenases, bacterial laccases and mobile genetic elements (integrases from integrons and insertion sequences). Positive hybridizing spots were affiliated to the corresponding clones in the library and the metagenomic inserts were sequenced. After assembly and annotation, new coding DNA sequences related to genes of interest were identified with low protein similarity against the closest hits in databases. This work highlights the sensitivity of DNA/DNA hybridization techniques as an effective and complementary way to recover novel genes from large metagenomic clone libraries. This study also supports that some of the identified catabolic genes might be associated with horizontal transfer events.

  8. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants.

    Science.gov (United States)

    Nešvera, Jan; Rucká, Lenka; Pátek, Miroslav

    2015-01-01

    Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.

  9. Negative Regulation of Ectoine Uptake and Catabolism in Sinorhizobium meliloti: Characterization of the EhuR Gene.

    Science.gov (United States)

    Yu, Qinli; Cai, Hanlin; Zhang, Yanfeng; He, Yongzhi; Chen, Lincai; Merritt, Justin; Zhang, Shan; Dong, Zhiyang

    2017-01-01

    Ectoine has osmoprotective effects on Sinorhizobium meliloti that differ from its effects in other bacteria. Ectoine does not accumulate in S. meliloti cells; instead, it is degraded. The products of the ehuABCD-eutABCDE operon were previously discovered to be responsible for the uptake and catabolism of ectoine in S. meliloti However, the mechanism by which ectoine is involved in the regulation of the ehuABCD-eutABCDE operon remains unclear. The ehuR gene, which is upstream of and oriented in the same direction as the ehuABCD-eutABCDE operon, encodes a member of the MocR/GntR family of transcriptional regulators. Quantitative reverse transcription-PCR and promoter-lacZ reporter fusion experiments revealed that EhuR represses transcription of the ehuABCD-eutABCDE operon, but this repression is inhibited in the presence of ectoine. Electrophoretic mobility shift assays and DNase I footprinting assays revealed that EhuR bound specifically to the DNA regions overlapping the -35 region of the ehuA promoter and the +1 region of the ehuR promoter. Surface plasmon resonance assays further demonstrated direct interactions between EhuR and the two promoters, although EhuR was found to have higher affinity for the ehuA promoter than for the ehuR promoter. In vitro, DNA binding by EhuR could be directly inhibited by a degradation product of ectoine. Our work demonstrates that EhuR is an important negative transcriptional regulator involved in the regulation of ectoine uptake and catabolism and is likely regulated by one or more end products of ectoine catabolism.

  10. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae.

    Science.gov (United States)

    ter Schure, E G; Silljé, H H; Vermeulen, E E; Kalhorn, J W; Verkleij, A J; Boonstra, J; Verrips, C T

    1998-05-01

    Growth of Saccharomyces cerevisiae on ammonia and glutamine decreases the expression of many nitrogen catabolic genes to low levels. To discriminate between ammonia- and glutamine-driven repression of GAP1, PUT4, GDH1 and GLN1, a gln1-37 mutant was used. This mutant is not able to convert ammonia into glutamine. Glutamine-limited continuous cultures were used to completely derepress the expression of GAP1, PUT4, GDH1 and GLN1. Following an ammonia pulse, the expression of GAP1, PUT4 and GDH1 decreased while the intracellular glutamine concentration remained constant, both in the cytoplasm and in the vacuole. Therefore, it was concluded that ammonia causes gene repression independent of the intracellular glutamine concentration. The expression of GLN1 was not decreased by an ammonia pulse but solely by a glutamine pulse. Analysis of the mRNA levels of ILV5 and HIS4 showed that the response of the two biosynthetic genes, GDH1 and GLN1, to ammonia and glutamine in the wild-type and gln1-37 was not due to changes in general transcription of biosynthetic genes. Ure2p has been shown to be an essential element for nitrogen-regulated gene expression. Deletion of URE2 in the gln1-37 background prevented repression of gene expression by ammonia, showing that the ammonia-induced repression is not caused by a general stress response but represents a specific signal for nitrogen catabolite regulation.

  11. D-galactose catabolism in Penicillium chrysogenum: Expression analysis of the structural genes of the Leloir pathway.

    Science.gov (United States)

    Jónás, Ágota; Fekete, Erzsébet; Németh, Zoltán; Flipphi, Michel; Karaffa, Levente

    2016-09-01

    In this study, we analyzed the expression of the structural genes encoding the five enzymes comprising the Leloir pathway of D-galactose catabolism in the industrial cell factory Penicillium chrysogenum on various carbon sources. The genome of P. chrysogenum contains a putative galactokinase gene at the annotated locus Pc13g10140, the product of which shows strong structural similarity to yeast galactokinase that was expressed on lactose and D-galactose only. The expression profile of the galactose-1-phosphate uridylyl transferase gene at annotated locus Pc15g00140 was essentially similar to that of galactokinase. This is in contrast to the results from other fungi such as Aspergillus nidulans, Trichoderma reesei and A. niger, where the ortholog galactokinase and galactose-1-phosphate uridylyl transferase genes were constitutively expressed. As for the UDP-galactose-4-epimerase encoding gene, five candidates were identified. We could not detect Pc16g12790, Pc21g12170 and Pc20g06140 expression on any of the carbon sources tested, while for the other two loci (Pc21g10370 and Pc18g01080) transcripts were clearly observed under all tested conditions. Like the 4-epimerase specified at locus Pc21g10370, the other two structural Leloir pathway genes - UDP-glucose pyrophosphorylase (Pc21g12790) and phosphoglucomutase (Pc18g01390) - were expressed constitutively at high levels as can be expected from their indispensable function in fungal cell wall formation.

  12. Imaging B. anthracis heme catabolism in mice using the IFP1.4 gene reporter

    Science.gov (United States)

    Zhu, Banghe; Robinson, Holly; Wilganowski, Nathaniel; Nobles, Christopher L.; Sevick-Muraca, Eva; Maresso, Anthony

    2012-03-01

    B. anthracis is a gram-positive, spore-forming bacterium which likes all pathogenic bacteria, survive by sequestering heme from its host. To image B. anthracis heme catabolism in vivo, we stably transfect new red excitable fluorescent protein, IFP1.4, that requires the heme catabolism product biliverdin (BV). IFP1.4 reporter has favorable excitation and emission characteristics, which has an absorption peak at 685 nm and an emission peak at 708 nm. Therefore, IFP1.4 reporter can be imaged deeply into the tissue with less contamination from tissue autofluorescence. However, the excitation light "leakage" through optical filters can limit detection and sensitivity of IFP1.4 reporter due to the small Stoke's shift of IFP1.4 fluorescence. To minimize the excitation light leakage, an intensified CCD (ICCD) based infrared fluorescence imaging device was optimized using two band pass filters separated by a focus lens to increase the optical density at the excitation wavelength. In this study, a mouse model (DBA/J2) was first injected with B. anthracis bacteria expressing IFP1.4, 150 μl s.c., on the ventral side of the left thigh. Then mouse was given 250 μl of a 1mM BV solution via I.V. injection. Imaging was conducted as a function of time after infection under light euthanasia, excised tissues were imaged and IFP1.4 fluorescence correlated with standard culture measurements of colony forming units (CFU). The work demonstrates the use of IFP1.4 as a reporter of bacterial utilization of host heme and may provide an important tool for understanding the pathogenesis of bacterial infection and developing new anti-bacterial therapeutics.

  13. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  14. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression.

    Science.gov (United States)

    Kowalczyk, Joanna E; Gruben, Birgit S; Battaglia, Evy; Wiebenga, Ad; Majoor, Eline; de Vries, Ronald P

    2015-01-01

    In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.

  15. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression.

    Directory of Open Access Journals (Sweden)

    Joanna E Kowalczyk

    Full Text Available In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.

  16. Extra- and intracellular lactose catabolism in Penicillium chrysogenum: phylogenetic and expression analysis of the putative permease and hydrolase genes.

    Science.gov (United States)

    Jónás, Ágota; Fekete, Erzsébet; Flipphi, Michel; Sándor, Erzsébet; Jäger, Szilvia; Molnár, Ákos P; Szentirmai, Attila; Karaffa, Levente

    2014-07-01

    Penicillium chrysogenum is used as an industrial producer of penicillin. We investigated its catabolism of lactose, an abundant component of whey used in penicillin fermentation, comparing the type strain NRRL 1951 with the high producing strain AS-P-78. Both strains grew similarly on lactose as the sole carbon source under batch conditions, exhibiting almost identical time profiles of sugar depletion. In silico analysis of the genome sequences revealed that P. chrysogenum features at least five putative β-galactosidase (bGal)-encoding genes at the annotated loci Pc22g14540, Pc12g11750, Pc16g12750, Pc14g01510 and Pc06g00600. The first two proteins appear to be orthologs of two Aspergillus nidulans family 2 intracellular glycosyl hydrolases expressed on lactose. The latter three P. chrysogenum proteins appear to be distinct paralogs of the extracellular bGal from A. niger, LacA, a family 35 glycosyl hydrolase. The P. chrysogenum genome also specifies two putative lactose transporter genes at the annotated loci Pc16g06850 and Pc13g08630. These are orthologs of paralogs of the gene encoding the high-affinity lactose permease (lacpA) in A. nidulans for which P. chrysogenum appears to lack the ortholog. Transcript analysis of Pc22g14540 showed that it was expressed exclusively on lactose, whereas Pc12g11750 was weakly expressed on all carbon sources tested, including D-glucose. Pc16g12750 was co-expressed with the two putative intracellular bGal genes on lactose and also responded on L-arabinose. The Pc13g08630 transcript was formed exclusively on lactose. The data strongly suggest that P. chrysogenum exhibits a dual assimilation strategy for lactose, simultaneously employing extracellular and intracellular hydrolysis, without any correlation to the penicillin-producing potential of the studied strains.

  17. Organization and control of genes encoding catabolic enzymes in Rhizobiaceae. Progress report, March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Parke, D.; Ornston, L.N.

    1993-03-01

    Rhizobiaceae, a diverse bacterial group comprising rhizobia and agrobacteria, symbiotic partnership with plants form nitrogen-fixing nodules on plant roots or are plant pathogens. Phenolic compounds produced by plants serve as inducers of rhizobial nodulation genes and agrobacterial virulence genes reflect their capacity to utilize numerous aromatics, including phenolics, as a source of carbon and energy. In many microbes the aerobic degradation of numerous aromatic compounds to tricarboxylic acid cycle intermediates is achieved by the {beta}-ketoadipate pathway. Our initial studies focused on the organization and regulation of the ketoadipate pathway in Agrobacterium tumefaciens. We have cloned, identified and characterized a novel regulatory gene that modulates expression of an adjacent pca (protocatechuate) structural gene, pcaD. Regulation of pcaD is mediated by the regulatory gene, termed pcaQ, in concert with the intermediate {beta}-carboxy-cis,cis-muconate. {beta}-carboxy-cis,cismuconate is an unstable chemical, not marketed commercially, and it is unlikely to permeate Escherichia coli cells if supplied in media. Because of these factors, characterization of pcaQ in E. coli required an in vivo delivery system for {beta}-carboxycis,cis-muconate. This was accomplished by designing an E. coli strain that expressed an Acinetobacter calcoaceticus pcaA gene for conversion of protocatechuate to {beta}-carboxy-cis,cis-muconate.

  18. Homologous gene clusters of nicotine catabolism, including a new ω-amidase for α-ketoglutaramate, in species of three genera of Gram-positive bacteria.

    Science.gov (United States)

    Cobzaru, Cristina; Ganas, Petra; Mihasan, Marius; Schleberger, Paula; Brandsch, Roderich

    2011-04-01

    Gram-positive soil bacteria Arthrobacter nicotinovorans, Nocardioides sp. JS614 and Rhodococcus opacus were shown to contain similarly organized clusters of homologous genes for nicotine catabolism. An uncharacterized gene of a predicted nitrilase within these gene clusters was cloned from A. nicotinovorans and biochemical data unexpectedly showed that the protein exhibited ω-amidase activity toward α-ketoglutaramate. Structural modelling of the protein suggested the presence of the catalytic triad Cys-Glu-Lys, characteristic of this class of enzymes, and supported α-ketoglutaramate as substrate. A-ketoglutaramate could be generated by hydrolytic cleavage of the C-N bond of the trihydroxypyridine ring produced by nicotine catabolism in these bacteria. This ω-amidase, together with glutamate dehydrogenase, may form a physiologically relevant enzyme couple, leading to transformation of metabolically inert α-ketoglutaramate derived from trihydroxypyridine into glutamate, a central compound of nitrogen metabolism.

  19. Biodegradation of pyrene and catabolic genes in contaminated soils cultivated with Lolium multiflorum L

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sardar [Dept. of Environmental Sciences, Univ. of Preshawar (Pakistan); Hesham, Abd El-Latif [Genetics Dept., Faculty of Agriculture, Assiut Univ. (Egypt); Qing Gu; Shuang Liu; He Jizheng [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (China)

    2009-10-15

    Background, aim, and scope In the soil environment, polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are of great environmental and human health concerns due to their widespread occurrence, persistence, and carcinogenic properties. Bioremediation of contaminated soil is a cost-effective, environmentally friendly, and publicly acceptable approach to address the removal of environmental contaminants. However, biore-mediation of contaminants depends on plant-microbe interactions in the rhizosphere. The microorganisms that can mineralize various PAHs have PAH dioxygenase genes like nahAc, phnAc, and pdol. To understand the fate of pyrene in rhizospheric and non-rhizospheric soils in the presence or absence of Pb, pyrene biodegradation, bacterial community structure, and dioxygenase genes were investigated in a pot experiment. (orig.)

  20. Expanded insecticide catabolic activity gained by a single nucleotide substitution in a bacterial carbamate hydrolase gene.

    Science.gov (United States)

    Öztürk, Başak; Ghequire, Maarten; Nguyen, Thi Phi Oanh; De Mot, René; Wattiez, Ruddy; Springael, Dirk

    2016-12-01

    Carbofuran-mineralizing strain Novosphingobium sp. KN65.2 produces the CfdJ enzyme that converts the N-methylcarbamate insecticide to carbofuran phenol. Purified CfdJ shows a remarkably low KM towards carbofuran. Together with the carbaryl hydrolase CehA of Rhizobium sp. strain AC100, CfdJ represents a new protein family with several uncharacterized bacterial members outside the proteobacteria. Although both enzymes differ by only four amino acids, CehA does not recognize carbofuran as a substrate whereas CfdJ also hydrolyzes carbaryl. None of the CfdJ amino acids that differ from CehA were shown to be silent regarding carbofuran hydrolytic activity but one particular amino acid substitution, i.e., L152 to F152, proved crucial. CfdJ is more efficient in degrading methylcarbamate pesticides with an aromatic side chain whereas CehA is more efficient in degrading the oxime carbamate nematicide oxamyl. The presence of common flanking sequences suggest that the cfdJ gene is located on a remnant of the mobile genetic element Tnceh carrying cehA. Our results suggest that these enzymes can be acquired through horizontal gene transfer and can evolve to degrade new carbamate substrates by limited amino acid substitutions. We demonstrate that a carbaryl hydrolase can gain the additional capacity to degrade carbofuran by a single nucleotide transversion. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Degradation of Benzene by Pseudomonas veronii 1YdBTEX2 and 1YB2 Is Catalyzed by Enzymes Encoded in Distinct Catabolism Gene Clusters

    Science.gov (United States)

    de Lima-Morales, Daiana; Chaves-Moreno, Diego; Wos-Oxley, Melissa L.; Jáuregui, Ruy; Vilchez-Vargas, Ramiro

    2015-01-01

    Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR. PMID:26475106

  2. Comparable dynamics of linuron catabolic genes and IncP-1 plasmids in biopurification systems (BPSs) as a response to linuron spiking.

    Science.gov (United States)

    Nour, Eman H; Elsayed, Tarek R; Springael, Dirk; Smalla, Kornelia

    2017-06-01

    On-farm biopurification systems (BPSs) represent an efficient technology for treating pesticide-contaminated wastewater. Biodegradation by genetically adapted bacteria has been suggested to perform a major contribution to the removal of pesticides in BPSs. Recently, several studies pointed to the role of IncP-1 plasmids in the degradation of pesticides in BPSs but this was never linked with catabolic markers. Therefore, a microcosm experiment was conducted in order to examine whether changes in mobile genetic element (MGE) abundances in response to the application of phenylurea herbicide linuron are linked with changes in catabolic genes. Denaturing gradient gel electrophoresis (DGGE) fingerprints of 16S ribosomal RNA gene fragments amplified from total community (TC)-DNA suggested significant shifts in the bacterial community composition. PCR-Southern blot-based detection of genes involved in linuron hydrolysis (libA and hylA) or degradation of its metabolite 3,4-dichloroaniline (dcaQ I , dcaQ II , and ccdC) in TC-DNA showed that the abundance of the hylA gene was increased faster and stronger in response to linuron application than that of the libA gene, and that the dcaQ II gene was more abundant than the isofunctional gene dcaQ I 20 and 60 days after linuron addition. Furthermore, a significant increase in the relative abundance of the IncP-1-specific korB gene in response to linuron was recorded. Our data suggest that different bacterial populations bearing isofunctional genes coding for enzymes degrading linuron seemed to be enriched in BPSs in response to linuron and that IncP-1 plasmids might be involved in their dissemination.

  3. Characterization and gene cloning of l-xylulose reductase involved in l-arabinose catabolism from the pentose-fermenting fungus Rhizomucor pusillus.

    Science.gov (United States)

    Yamasaki-Yashiki, Shino; Komeda, Hidenobu; Hoshino, Kazuhiro; Asano, Yasuhisa

    2017-08-01

    l-Xylulose reductase (LXR) catalyzes the reduction of l-xylulose to xylitol in the fungal l-arabinose catabolic pathway. LXR (RpLXR) was purified from the pentose-fermenting zygomycetous fungus Rhizomucor pusillus NBRC 4578. The native RpLXR is a homotetramer composed of 29 kDa subunits and preferred NADPH as a coenzyme. The Km values were 8.71 mM for l-xylulose and 3.89 mM for dihydroxyacetone. The lxr3 (Rplxr3) gene encoding RpLXR consists of 792 bp and encodes a putative 263 amino acid protein (Mr = 28,341). The amino acid sequence of RpLXR showed high similarity to 3-oxoacyl-(acyl-carrier-protein) reductase. The Rplxr3 gene was expressed in Escherichia coli and the recombinant RpLXR exhibited properties similar to those of native RpLXR. Transcription of the Rplxr3 gene in R. pusillus NBRC 4578 was induced in the presence of l-arabinose and inhibited in the presence of d-glucose, d-xylose, and d-mannitol, indicating that RpLXR is involved in the l-arabinose catabolic pathway.

  4. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8′-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition

    Science.gov (United States)

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Kobayashi, Daisuke; Kawakami, Naoto

    2013-01-01

    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8′-hydroxyase gene which was highly expressed during seed development (TaABA8′OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8′OH1 on the D genome (TaABA8′OH1-D) was identified in Japanese cultivars including ‘Tamaizumi’. However, a single mutation in TaABA8′OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8′OH1 on the A genome (TaABA8′OH1-A), TM1833, was identified from gamma-ray irradiation lines of ‘Tamaizumi’. TM1833 (a double mutant in TaABA8′OH1-A and TaABA8′OH1-D) showed lower TaABA8′OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in ‘Tamaizumi’ (a single mutant in TaABA8′OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8′OH1 may be effective in germination inhibition in field-grown wheat. PMID:23641187

  5. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8'-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition.

    Science.gov (United States)

    Chono, Makiko; Matsunaka, Hitoshi; Seki, Masako; Fujita, Masaya; Kiribuchi-Otobe, Chikako; Oda, Shunsuke; Kojima, Hisayo; Kobayashi, Daisuke; Kawakami, Naoto

    2013-03-01

    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8'-hydroxyase gene which was highly expressed during seed development (TaABA8'OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8'OH1 on the D genome (TaABA8'OH1-D) was identified in Japanese cultivars including 'Tamaizumi'. However, a single mutation in TaABA8'OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8'OH1 on the A genome (TaABA8'OH1-A), TM1833, was identified from gamma-ray irradiation lines of 'Tamaizumi'. TM1833 (a double mutant in TaABA8'OH1-A and TaABA8'OH1-D) showed lower TaABA8'OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in 'Tamaizumi' (a single mutant in TaABA8'OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8'OH1 may be effective in germination inhibition in field-grown wheat.

  6. Alpha-Calcitonin Gene-Related Peptide Can Reverse The Catabolic Influence Of UHMWPE Particles On RANKL Expression In Primary Human Osteoblasts

    Directory of Open Access Journals (Sweden)

    Max D. Kauther, Jie Xu, Christian Wedemeyer

    2010-01-01

    Full Text Available Background and purpose: A linkage between the neurotransmitter alpha-calcitonin gene-related peptide (alpha-CGRP and particle-induced osteolysis has been shown previously. The suggested osteoprotective influence of alpha-CGRP on the catabolic effects of ultra-high molecular weight polyethylene (UHMWPE particles is analyzed in this study in primary human osteoblasts. Methods: Primary human osteoblasts were stimulated by UHMWPE particles (cell/particle ratios 1:100 and 1:500 and different doses of alpha-CGRP (10-7 M, 10-9 M, 10-11 M. Receptor activator of nuclear factor-κB ligand (RANKL and osteoprotegerin (OPG mRNA expression and protein levels were measured by RT-PCR and Western blot. Results: Particle stimulation leads to a significant dose-dependent increase of RANKL mRNA in both cell-particle ratios and a significant down-regulation of OPG mRNA in cell-particle concentrations of 1:500. A significant depression of alkaline phosphatase was found due to particle stimulation. Alpha-CGRP in all tested concentrations showed a significant depressive effect on the expression of RANKL mRNA in primary human osteoblasts under particle stimulation. Comparable reactions of RANKL protein levels due to particles and alpha-CGRP were found by Western blot analysis. In cell-particle ratios of 1:100 after 24 hours the osteoprotective influence of alpha-CGRP reversed the catabolic effects of particles on the RANKL expression. Interpretation: The in-vivo use of alpha-CGRP, which leads to down-regulated RANKL in-vitro, might inhibit the catabolic effect of particles in conditions of particle induced osteolysis.

  7. GntR family regulator SCO6256 is involved in antibiotic production and conditionally regulates the transcription of myo-inositol catabolic genes in Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Yu, Lingjun; Gao, Wenyan; Li, Shuxian; Pan, Yuanyuan; Liu, Gang

    2016-03-01

    SCO6256 belongs to the GntR family and shows 74% identity with SCO6974, which is the repressor of myo-inositol catabolism in Streptomyces coelicolor A3(2). Disruption of SCO6256 significantly enhanced the transcription of myo-inositol catabolic genes in R2YE medium. The purified recombinant SCO6256 directly bound to the upstream regions of SCO2727, SCO6978 and SCO6985, as well as its encoding gene. Footprinting assays demonstrated that SCO6256 bound to the same sites in the myo-inositol catabolic gene cluster as SCO6974. The expression of SCO6256 was repressed by SCO6974 in minimal medium with myo-inositol as the carbon source, but not in R2YE medium. Glutathione-S-transferase pull-down assays demonstrated that SCO6974 and SCO6256 interacted with each other; and both of the proteins controlled the transcription of myo-inositol catabolic genes in R2YE medium. These results indicated SCO6256 regulates the transcription of myo-inositol catabolic genes in coordination with SCO6974 in R2YE medium. In addition, SCO6256 negatively regulated the production of actinorhodin and calcium-dependent antibiotic via control of the transcription of actII-ORF4 and cdaR. SCO6256 bound to the upstream region of cdaR and the binding sequence was proved to be TTTCGGCACGCAGACAT, which was further confirmed through base substitution. Four putative targets (SCO2652, SCO4034, SCO4237 and SCO6377) of SCO6256 were found by screening the genome sequence of Strep. coelicolor A3(2) based on the conserved binding motif, and confirmed by transcriptional analysis and electrophoretic mobility shift assays. These results revealed that SCO6256 is involved in the regulation of myo-inositol catabolic gene transcription and antibiotic production in Strep. coelicolor A3(2).

  8. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Daugherty, J R; Rai, R; el Berry, H M; Cooper, T G

    1993-01-01

    We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupted. Expression of the GDH1, PUT1, PUT2, and PUT4 genes also responded to DAL80 disruption, but much more modestly. Expression of GLN1 and GDH2 exhibited parallel responses to the provision of asparagine and glutamine as nitrogen sources but did not follow the regulatory responses noted above for the nitrogen catabolic genes such as DAL5. Steady-state mRNA levels of both genes did not significantly decrease when glutamine was provided as nitrogen source but were lowered by the provision of asparagine. They also did not respond to disruption of DAL80.

  9. Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1.

    Science.gov (United States)

    Bertoni, G; Bolognese, F; Galli, E; Barbieri, P

    1996-10-01

    In order to study the toluene and o-xylene catabolic genes of Pseudomonas stutzeri OX1, a genomic library was constructed. A 28-kb EcoRI restriction endonuclease DNA fragment, cloned into the vector plasmid pLAFR1 and designated pFB3401, permitted Pseudomonas putida PaW340 to convert toluene and o-xylene into the corresponding meta-ring fission products. Physical and functional endonuclease restriction maps have been derived from the cloned DNA fragment. Further subcloning into and deletion analysis in the Escherichia coli vector pGEM-3Z allowed the genes for the conversion of toluene or o-xylene into the corresponding catechols to be mapped within a 6-kb region of the pFB3401 insert and their direction of transcription to be determined. Following exposure to toluene, E. coli cells carrying this 6-kb region produce a mixture of o-cresol, m-cresol, and p-cresol, which are further converted to 3-methylcatechol and 4-methylcatechol. Similarly, a mixture of 2,3-dimethylphenol and 3,4-dimethylphenol, further converted into dimethylcatechols, was detected after exposure to o-xylene. The enzyme involved in the first step of toluene and o-xylene degradation exhibited a broad substrate specificity, being able to oxidize also benzene, ethylbenzene, m-xylene, p-xylene, styrene, and naphthalene. Deletions of the 6-kb region which affect the ability to convert toluene or o-xylene into the corresponding methylphenols compromise also their further oxidation to methylcatechols. This suggests that a single enzyme system could be involved in both steps of the early stages of toluene and o-xylene catabolism.

  10. The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc.

    Science.gov (United States)

    MacLean, Jeffery J; Lee, Cynthia R; Alini, Mauro; Iatridis, James C

    2005-09-01

    The goal of this study was to determine the time-dependent response of the intervertebral disc cells to in vivo dynamic compression. Forty-seven skeletally mature Wistar rats (>12 months old) were instrumented with an Ilizarov-type device spanning caudal disc 8-9. Using a load magnitude (1 MPa) and frequency (1.0 Hz) that were previously shown to significantly alter mRNA levels in the disc, the effects of 0.5 and 4 h of loading were investigated and compared to a sham group and our previous 2 h results. Annulus and nucleus tissue of loaded (c8-9) and internal control discs (c6-7 and c10-11) were separately analyzed by real-time RT-PCR for levels of mRNA coding for various anabolic (collagen-1A1, collagen-2A1, aggrecan) and catabolic (MMP-3, MMP-13, ADAMTs-4) proteins. In the annulus, mRNA levels increased for Collagen types I & II, and MMP 3 & 13 with increasing load duration. In contrast, the nucleus had the largest increases in aggrecan, ADAMTs-4, MMP-3 and MMP-13 after 2 h of loading, with aggrecan and MMP-13 mRNA levels returning to control values after 4 h of loading. Taken in context with our previous studies, we conclude that intervertebral disc cells from the nucleus and annulus have distinct responses to dynamic mechanical compression in vivo with sensitivity to compression magnitude, frequency and duration.

  11. Mechanism of internal browning of pineapple: The role of gibberellins catabolism gene (AcGA2ox) and GAs

    Science.gov (United States)

    Zhang, Qin; Rao, Xiuwen; Zhang, Lubin; He, Congcong; Yang, Fang; Zhu, Shijiang

    2016-01-01

    Internal browning (IB), a physiological disorder (PD) that causes severe losses in harvested pineapple, can be induced by exogenous gibberellins (GAs). Over the years, studies have focused on roles of Gibberellin 2-oxidase (GA2oxs), the major GAs catabolic enzyme in plants, in the regulation of changes in morphology or biomass. However, whether GA2oxs could regulate PD has not been reported. Here, a full-length AcGA2ox cDNA was isolated from pineapple, with the putative protein sharing 23.59% to 72.92% identity with GA2oxs from five other plants. Pineapples stored at 5 °C stayed intact, while those stored at 20 °C showed severe IB. Storage at 5 °C enhanced AcGA2ox expression and decreased levels of a GAs (GA4) ‘compared with storage at 20 °C. However, at 20 °C, exogenous application of abscisic acid (ABA) significantly suppressed IB. ABA simultaneously upregulated AcGA2ox and reduced GA4. Ectopic expression of AcGA2ox in Arabidopsis resulted in reduced GA4, lower seed germination, and shorter hypocotyls and roots, all of which were restored by exogenous GA4/7. Moreover, in pineapple, GA4/7 upregulated polyphenol oxidase, while storage at 5 °C and ABA downregulated it. These results strongly suggest the involvement of AcGA2ox in regulation of GAs levels and a role of AcGA2ox in regulating IB. PMID:27982026

  12. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes.

    Science.gov (United States)

    Battaglia, Evy; Zhou, Miaomiao; de Vries, Ronald P

    2014-09-01

    The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. Here we assessed whether XlnR and AraR also regulate the PPP. Expression of two genes, rpiA and talB, was reduced in the ΔaraR/ΔxlnR strain and increased in the xylulokinase negative strain (xkiA1) on d-xylose and/or l-arabinose. Bioinformatic analysis of the 1 kb promoter regions of rpiA and talB showed the presence of putative XlnR binding sites. Combining all results in this study, it strongly suggests that these two PPP genes are under regulation of XlnR in A. niger.

  13. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes.

    Science.gov (United States)

    Dowd, Carola D; Chronis, Demosthenis; Radakovic, Zoran S; Siddique, Shahid; Schmülling, Thomas; Werner, Tomáš; Kakimoto, Tatsuo; Grundler, Florian M W; Mitchum, Melissa G

    2017-07-26

    Cyst and root-knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root-knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. Regulation of carbon catabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Aleksandrzak, T; Kowalczyk, M; Kok, J; Bardowski, J; Bielecki, S; Tramper, J; Polak, J

    2000-01-01

    The Lactococcus lactis IL1403 is a lactose negative, plasmid free strain. Nevertheless, it is able to hydrolyze lactose in the presence of cellobiose. In this work we describe identification of a gene involved in this process. The gene was found to be homologous to the sugar catabolism regulator, cc

  15. Regulation of carbon catabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Aleksandrzak, T; Kowalczyk, M; Kok, J; Bardowski, J; Bielecki, S; Tramper, J; Polak, J

    2000-01-01

    The Lactococcus lactis IL1403 is a lactose negative, plasmid free strain. Nevertheless, it is able to hydrolyze lactose in the presence of cellobiose. In this work we describe identification of a gene involved in this process. The gene was found to be homologous to the sugar catabolism regulator,

  16. Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1.

    Science.gov (United States)

    Liu, Hong; Wang, Shu-Jun; Zhang, Jun-Jie; Dai, Hui; Tang, Huiru; Zhou, Ning-Yi

    2011-07-01

    Pseudomonas stutzeri ZWLR2-1 utilizes 2-chloronitrobenzene (2CNB) as a sole source of carbon, nitrogen, and energy. To identify genes involved in this pathway, a 16.2-kb DNA fragment containing putative 2CNB dioxygenase genes was cloned and sequenced. Of the products from the 19 open reading frames that resulted from this fragment, CnbAc and CnbAd exhibited striking identities to the respective α and β subunits of the Nag-like ring-hydroxylating dioxygenases involved in the metabolism of nitrotoluene, nitrobenzene, and naphthalene. The encoding genes were also flanked by two copies of insertion sequence IS6100. CnbAa and CnbAb are similar to the ferredoxin reductase and ferredoxin for anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. Escherichia coli cells expressing cnbAaAbAcAd converted 2CNB to 3-chlorocatechol with concomitant nitrite release. Cell extracts of E. coli/pCNBC exhibited chlorocatechol 1,2-dioxygenase activity. The cnbCDEF gene cluster, homologous to a 3-chlorocatechol degradation cluster in Sphingomonas sp. strain TFD44, probably contains all of the genes necessary for the conversion of 3-chlorocatechol to 3-oxoadipate. The patchwork-like structure of this catabolic cluster suggests that the cnb cluster for 2CNB degradation evolved by recruiting two catabolic clusters encoding a nitroarene dioxygenase and a chlorocatechol degradation pathway. This provides another example to help elucidate the bacterial evolution of catabolic pathways in response to xenobiotic chemicals.

  17. Simvastatin and atorvastatin reduce the mechanical properties of tendon constructs in vitro and introduce catabolic changes in the gene expression pattern

    Science.gov (United States)

    Svensson, Rene B.; Giannopoulos, Antonis; Eismark, Christian; Kjær, Michael; Schjerling, Peter; Heinemeier, Katja M.

    2017-01-01

    Treatment with lipid-lowering drugs, statins, is common all over the world. Lately, the occurrence of spontaneous tendon ruptures or tendinosis have suggested a negative influence of statins upon tendon tissue. But how statins might influence tendons is not clear. In the present study, we investigated the effect of statin treatment on mechanical strength, cell proliferation, collagen content and gene expression pattern in a tendon-like tissue made from human tenocytes in vitro. Human tendon fibroblasts were grown in a 3D tissue culture model (tendon constructs), and treated with either simvastatin or atorvastatin, low or high dose, respectively, for up to seven days. After seven days of treatment, mechanical testing of the constructs was performed. Collagen content and cell proliferation were also determined. mRNA levels of several target genes were measured after one or seven days. The maximum force and stiffness were reduced by both statins after 7 days (p<0.05), while the cross sectional area was unaffected. Further, the collagen content was reduced by atorvastatin (p = 0.01) and the cell proliferation rate was decreased by both types of statins (p<0.05). Statin treatment also introduced increased mRNA levels of MMP-1, MMP-3, MMP-13, TIMP-1 and decreased levels of collagen type 1 and 3. In conclusion, statin treatment appears to have a negative effect on tendon matrix quality as seen by a reduced strength of the tendon constructs. Further, activated catabolic changes in the gene expression pattern and a reduced collagen content indicated a disturbed balance in matrix production of tendon due to statin administration. PMID:28264197

  18. Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice

    Science.gov (United States)

    In flowering plants, knotted1-like homeobox (KNOX) transcription factors play crucial roles in establishment and maintenance of the shoot apical meristem (SAM), from which aerial organs such as leaves, stems, and flowers initiate. We report that a rice (Oryza sativa) KNOX gene Oryza sativa homeobox1...

  19. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12.

    Science.gov (United States)

    Maurer, Lisa M; Yohannes, Elizabeth; Bondurant, Sandra S; Radmacher, Michael; Slonczewski, Joan L

    2005-01-01

    Gene expression profiles of Escherichia coli K-12 W3110 were compared as a function of steady-state external pH. Cultures were grown to an optical density at 600 nm of 0.3 in potassium-modified Luria-Bertani medium buffered at pH 5.0, 7.0, and 8.7. For each of the three pH conditions, cDNA from RNA of five independent cultures was hybridized to Affymetrix E. coli arrays. Analysis of variance with an alpha level of 0.001 resulted in 98% power to detect genes showing a twofold difference in expression. Normalized expression indices were calculated for each gene and intergenic region (IG). Differential expression among the three pH classes was observed for 763 genes and 353 IGs. Hierarchical clustering yielded six well-defined clusters of pH profiles, designated Acid High (highest expression at pH 5.0), Acid Low (lowest expression at pH 5.0), Base High (highest at pH 8.7), Base Low (lowest at pH 8.7), Neutral High (highest at pH 7.0, lower in acid or base), and Neutral Low (lowest at pH 7.0, higher at both pH extremes). Flagellar and chemotaxis genes were repressed at pH 8.7 (Base Low cluster), where the cell's transmembrane proton potential is diminished by the maintenance of an inverted pH gradient. High pH also repressed the proton pumps cytochrome o (cyo) and NADH dehydrogenases I and II. By contrast, the proton-importing ATP synthase F1Fo and the microaerophilic cytochrome d (cyd), which minimizes proton export, were induced at pH 8.7. These observations are consistent with a model in which high pH represses synthesis of flagella, which expend proton motive force, while stepping up electron transport and ATPase components that keep protons inside the cell. Acid-induced genes, on the other hand, were coinduced by conditions associated with increased metabolic rate, such as oxidative stress. All six pH-dependent clusters included envelope and periplasmic proteins, which directly experience external pH. Overall, this study showed that (i) low pH accelerates acid

  20. Metagenomic survey of methanesulfonic acid (MSA) catabolic genes in an Atlantic Ocean surface water sample and in a partial enrichment

    Science.gov (United States)

    Henriques, Ana C.; Azevedo, Rui M.S.

    2016-01-01

    Methanesulfonic acid (MSA) is a relevant intermediate of the biogeochemical cycle of sulfur and environmental microorganisms assume an important role in the mineralization of this compound. Several methylotrophic bacterial strains able to grow on MSA have been isolated from soil or marine water and two conserved operons, msmABCD coding for MSA monooxygenase and msmEFGH coding for a transport system, have been repeatedly encountered in most of these strains. Homologous sequences have also been amplified directly from the environment or observed in marine metagenomic data, but these showed a base composition (G + C content) very different from their counterparts from cultivated bacteria. The aim of this study was to understand which microorganisms within the coastal surface oceanic microflora responded to MSA as a nutrient and how the community evolved in the early phases of an enrichment by means of metagenome and gene-targeted amplicon sequencing. From the phylogenetic point of view, the community shifted significantly with the disappearance of all signals related to the Archaea, the Pelagibacteraceae and phylum SAR406, and the increase in methylotroph-harboring taxa, accompanied by other groups so far not known to comprise methylotrophs such as the Hyphomonadaceae. At the functional level, the abundance of several genes related to sulfur metabolism and methylotrophy increased during the enrichment and the allelic distribution of gene msmA diagnostic for MSA monooxygenase altered considerably. Even more dramatic was the disappearance of MSA import-related gene msmE, which suggests that alternative transporters must be present in the enriched community and illustrate the inadequacy of msmE as an ecofunctional marker for MSA degradation at sea. PMID:27761315

  1. Metagenomic survey of methanesulfonic acid (MSA) catabolic genes in an Atlantic Ocean surface water sample and in a partial enrichment.

    Science.gov (United States)

    Henriques, Ana C; Azevedo, Rui M S; De Marco, Paolo

    2016-01-01

    Methanesulfonic acid (MSA) is a relevant intermediate of the biogeochemical cycle of sulfur and environmental microorganisms assume an important role in the mineralization of this compound. Several methylotrophic bacterial strains able to grow on MSA have been isolated from soil or marine water and two conserved operons, msmABCD coding for MSA monooxygenase and msmEFGH coding for a transport system, have been repeatedly encountered in most of these strains. Homologous sequences have also been amplified directly from the environment or observed in marine metagenomic data, but these showed a base composition (G + C content) very different from their counterparts from cultivated bacteria. The aim of this study was to understand which microorganisms within the coastal surface oceanic microflora responded to MSA as a nutrient and how the community evolved in the early phases of an enrichment by means of metagenome and gene-targeted amplicon sequencing. From the phylogenetic point of view, the community shifted significantly with the disappearance of all signals related to the Archaea, the Pelagibacteraceae and phylum SAR406, and the increase in methylotroph-harboring taxa, accompanied by other groups so far not known to comprise methylotrophs such as the Hyphomonadaceae. At the functional level, the abundance of several genes related to sulfur metabolism and methylotrophy increased during the enrichment and the allelic distribution of gene msmA diagnostic for MSA monooxygenase altered considerably. Even more dramatic was the disappearance of MSA import-related gene msmE, which suggests that alternative transporters must be present in the enriched community and illustrate the inadequacy of msmE as an ecofunctional marker for MSA degradation at sea.

  2. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose.

    Science.gov (United States)

    Sasaki, Miho; Teramoto, Haruhiko; Inui, Masayuki; Yukawa, Hideaki

    2011-03-01

    Here, focus is on Corynebacterium glutamicum mannose metabolic genes with the aim to improve this industrially important microorganism's ability to ferment mannose present in mixed sugar substrates. cgR_0857 encodes C. glutamicum's protein with 36% amino acid sequence identity to mannose 6-phosphate isomerase encoded by manA of Escherichia coli. Its deletion mutant did not grow on mannose and exhibited noticeably reduced growth on glucose as sole carbon sources. In effect, C. glutamicum manA is not only essential for growth on mannose but also important in glucose metabolism. A double deletion mutant of genes encoding glucose and fructose permeases (ptsG and ptsF, respectively) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was not able to grow on mannose unlike the respective single deletion mutants with mannose utilization ability. A mutant deficient in ptsH, a general PTS gene, did not utilize mannose. These indicate that the glucose-PTS and fructose-PTS are responsible for mannose uptake in C. glutamicum. When cultured with a glucose and mannose mixture, mannose utilization of manA-overexpressing strain CRM1 was significantly higher than that of its wild-type counterpart, but with a strong preference for glucose. ptsF-overexpressing strain CRM2 co-utilized mannose and glucose, but at a total sugar consumption rate much lower than that of the wild-type strain and CRM1. Strain CRM3 overexpressing both manA and ptsF efficiently co-utilized mannose and glucose. Under oxygen-deprived conditions, high volumetric productivity of organic acids concomitant with the simultaneous consumption of the mixed sugars was achieved by the densely packed growth-arrested CRM3 cells.

  3. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk.

    Science.gov (United States)

    Do Carmo, A P; De Oliveira, M N V; Da Silva, D F; Castro, S B; Borges, A C; De Carvalho, A F; De Moraes, C A

    2012-03-01

    There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh - lactate dehydrogenase, adhE - Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 - catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property

  4. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pistorius Elfriede K

    2007-11-01

    Full Text Available Abstract Background So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis. Results We have evaluated 24 cyanobacterial genomes of freshwater or marine strains for the presence of putative L-arginine-degrading enzymes. We identified an L-arginine decarboxylase pathway in all 24 strains. In addition, cyanobacteria have one or two further pathways representing either an arginase pathway or L-arginine deiminase pathway or an L-arginine oxidase/dehydrogenase pathway. An L-arginine amidinotransferase pathway as a major L-arginine-degrading pathway is not likely but can not be entirely excluded. A rather unusual finding was that the cyanobacterial L-arginine deiminases are substantially larger than the enzymes in non-photosynthetic bacteria and that they are membrane-bound. A more detailed bioinformatic analysis of Synechocystis sp. PCC 6803 revealed that three different L-arginine-degrading pathways may in principle be functional in this cyanobacterium. These are (i an L-arginine decarboxylase pathway, (ii an L-arginine deiminase pathway, and (iii an L-arginine oxidase/dehydrogenase pathway. A transcript analysis of cells grown either with nitrate or L-arginine as sole N-source and with an illumination of 50 μmol photons m-2 s-1 showed that the transcripts for the first enzyme(s of all three pathways were present, but that the transcript levels for the L-arginine deiminase and the L-arginine oxidase/dehydrogenase were substantially higher than that of the three isoenzymes of L-arginine decarboxylase. Conclusion The evaluation of 24

  5. The Completely Sequenced Plasmid pEST4011 Contains a Novel IncP1 Backbone and a Catabolic Transposon Harboring tfd Genes for 2,4-Dichlorophenoxyacetic Acid Degradation

    Science.gov (United States)

    Vedler, Eve; Vahter, Merle; Heinaru, Ain

    2004-01-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium Achromobacter xylosoxidans subsp. denitrificans strain EST4002 contains plasmid pEST4011. This plasmid ensures its host a stable 2,4-D+ phenotype. We determined the complete 76,958-bp nucleotide sequence of pEST4011. This plasmid is a deletion and duplication derivative of pD2M4, the 95-kb highly unstable laboratory ancestor of pEST4011, and was self-generated during different laboratory manipulations performed to increase the stability of the 2,4-D+ phenotype of the original strain, strain D2M4(pD2M4). The 47,935-bp catabolic region of pEST4011 forms a transposon-like structure with identical copies of the hybrid insertion element IS1071::IS1471 at the two ends. The catabolic regions of pEST4011 and pJP4, the best-studied 2,4-D-degradative plasmid, both contain homologous, tfd-like genes for complete 2,4-D degradation, but they have little sequence similarity other than that. The backbone genes of pEST4011 are most similar to the corresponding genes of broad-host-range self-transmissible IncP1 plasmids. The backbones of the other three IncP1 catabolic plasmids that have been sequenced (the 2,4-D-degradative plasmid pJP4, the haloacetate-catabolic plasmid pUO1, and the atrazine-catabolic plasmid pADP-1) are nearly identical to the backbone of R751, the archetype plasmid of the IncP1 β subgroup. We show that despite the overall similarity in plasmid organization, the pEST4011 backbone is sufficiently different (51 to 86% amino acid sequence identity between individual backbone genes) from the backbones of members of the three IncP1 subgroups (the α, β, and γ subgroups) that it belongs to a new IncP1subgroup, the δ subgroup. This conclusion was also supported by a phylogenetic analysis of the trfA2, korA, and traG gene products of different IncP1 plasmids. PMID:15489427

  6. EIN3 and ORE1 Accelerate Degreening during Ethylene-Mediated Leaf Senescence by Directly Activating Chlorophyll Catabolic Genes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Kai Qiu

    2015-07-01

    Full Text Available Degreening, caused by chlorophyll degradation, is the most obvious symptom of senescing leaves. Chlorophyll degradation can be triggered by endogenous and environmental cues, and ethylene is one of the major inducers. ETHYLENE INSENSITIVE3 (EIN3 is a key transcription factor in the ethylene signaling pathway. It was previously reported that EIN3, miR164, and a NAC (NAM, ATAF, and CUC transcription factor ORE1/NAC2 constitute a regulatory network mediating leaf senescence. However, how this network regulates chlorophyll degradation at molecular level is not yet elucidated. Here we report a feed-forward regulation of chlorophyll degradation that involves EIN3, ORE1, and chlorophyll catabolic genes (CCGs. Gene expression analysis showed that the induction of three major CCGs, NYE1, NYC1 and PAO, by ethylene was largely repressed in ein3 eil1 double mutant. Dual-luciferase assay revealed that EIN3 significantly enhanced the promoter activity of NYE1, NYC1 and PAO in Arabidopsis protoplasts. Furthermore, Electrophoretic mobility shift assay (EMSA indicated that EIN3 could directly bind to NYE1, NYC1 and PAO promoters. These results reveal that EIN3 functions as a positive regulator of CCG expression during ethylene-mediated chlorophyll degradation. Interestingly, ORE1, a senescence regulator which is a downstream target of EIN3, could also activate the expression of NYE1, NYC1 and PAO by directly binding to their promoters in EMSA and chromatin immunoprecipitation (ChIP assays. In addition, EIN3 and ORE1 promoted NYE1 and NYC1 transcriptions in an additive manner. These results suggest that ORE1 is also involved in the direct regulation of CCG transcription. Moreover, ORE1 activated the expression of ACS2, a major ethylene biosynthesis gene, and subsequently promoted ethylene production. Collectively, our work reveals that EIN3, ORE1 and CCGs constitute a coherent feed-forward loop involving in the robust regulation of ethylene-mediated chlorophyll

  7. Polyamine catabolism and disease.

    Science.gov (United States)

    Casero, Robert A; Pegg, Anthony E

    2009-07-15

    In addition to polyamine homoeostasis, it has become increasingly clear that polyamine catabolism can play a dominant role in drug response, apoptosis and the response to stressful stimuli, and contribute to the aetiology of several pathological states, including cancer. The highly inducible enzymes SSAT (spermidine/spermine N1-acetyltransferase) and SMO (spermine oxidase) and the generally constitutively expressed APAO (N1-acetylpolyamine oxidase) appear to play critical roles in many normal and disease processes. The dysregulation of polyamine catabolism frequently accompanies several disease states and suggests that such dysregulation may both provide useful insight into disease mechanism and provide unique druggable targets that can be exploited for therapeutic benefit. Each of these enzymes has the potential to alter polyamine homoeostasis in response to multiple cell signals and the two oxidases produce the reactive oxygen species H2O2 and aldehydes, each with the potential to produce pathological states. The activity of SSAT provides substrates for APAO or substrates for the polyamine exporter, thus reducing the intracellular polyamine concentration, the net effect of which depends on the magnitude and rate of any increase in SSAT. SSAT may also influence cellular metabolism via interaction with other proteins and by perturbing the content of acetyl-CoA and ATP. The goal of the present review is to cover those aspects of polyamine catabolism that have an impact on disease aetiology or treatment and to provide a solid background in this ever more exciting aspect of polyamine biology.

  8. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a D-mannitol dehydrogenase and is not involved in L-arabinose catabolism

    NARCIS (Netherlands)

    Metz, Benjamin; de Vries, Ronald P; Polak, Stefan; Seidl, Verena; Seiboth, Bernhard

    2009-01-01

    The Hypocrea jecorina LXR1 was described as the first fungal L-xylulose reductase responsible for NADPH dependent reduction of L-xylulose to xylitol in L-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal D-mannitol 2-dehydrogenases. Lxr1 and the orthologous

  9. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a D-mannitol dehydrogenase and is not involved in L-arabinose catabolism

    NARCIS (Netherlands)

    Metz, Benjamin; de Vries, Ronald P; Polak, Stefan; Seidl, Verena; Seiboth, Bernhard

    2009-01-01

    The Hypocrea jecorina LXR1 was described as the first fungal L-xylulose reductase responsible for NADPH dependent reduction of L-xylulose to xylitol in L-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal D-mannitol 2-dehydrogenases. Lxr1 and the orthologous

  10. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes

    NARCIS (Netherlands)

    Battaglia, Evy; Zhou, M.; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. H

  11. Pathway and Enzyme Redundancy in Putrescine Catabolism in Escherichia coli

    OpenAIRE

    Schneider, Barbara L.; Reitzer, Larry

    2012-01-01

    Putrescine as the sole carbon source requires a novel catabolic pathway with glutamylated intermediates. Nitrogen limitation does not induce genes of this glutamylated putrescine (GP) pathway but instead induces genes for a putrescine catabolic pathway that starts with a transaminase-dependent deamination. We determined pathway utilization with putrescine as the sole nitrogen source by examining mutants with defects in both pathways. Blocks in both the GP and transaminase pathways were requir...

  12. Inferring Gene Networks for Strains of Dehalococcoides Highlights Conserved Relationships between Genes Encoding Core Catabolic and Cell-Wall Structural Proteins.

    Science.gov (United States)

    Mansfeldt, Cresten B; Heavner, Gretchen W; Rowe, Annette R; Hayete, Boris; Church, Bruce W; Richardson, Ruth E

    2016-01-01

    The interpretation of high-throughput gene expression data for non-model microorganisms remains obscured because of the high fraction of hypothetical genes and the limited number of methods for the robust inference of gene networks. Therefore, to elucidate gene-gene and gene-condition linkages in the bioremediation-important genus Dehalococcoides, we applied a Bayesian inference strategy called Reverse Engineering/Forward Simulation (REFS™) on transcriptomic data collected from two organohalide-respiring communities containing different Dehalococcoides mccartyi strains: the Cornell University mixed community D2 and the commercially available KB-1® bioaugmentation culture. In total, 49 and 24 microarray datasets were included in the REFS™ analysis to generate an ensemble of 1,000 networks for the Dehalococcoides population in the Cornell D2 and KB-1® culture, respectively. Considering only linkages that appeared in the consensus network for each culture (exceeding the determined frequency cutoff of ≥ 60%), the resulting Cornell D2 and KB-1® consensus networks maintained 1,105 nodes (genes or conditions) with 974 edges and 1,714 nodes with 1,455 edges, respectively. These consensus networks captured multiple strong and biologically informative relationships. One of the main highlighted relationships shared between these two cultures was a direct edge between the transcript encoding for the major reductive dehalogenase (tceA (D2) or vcrA (KB-1®)) and the transcript for the putative S-layer cell wall protein (DET1407 (D2) or KB1_1396 (KB-1®)). Additionally, transcripts for two key oxidoreductases (a [Ni Fe] hydrogenase, Hup, and a protein with similarity to a formate dehydrogenase, "Fdh") were strongly linked, generalizing a strong relationship noted previously for Dehalococcoides mccartyi strain 195 to multiple strains of Dehalococcoides. Notably, the pangenome array utilized when monitoring the KB-1® culture was capable of resolving signals from multiple

  13. Inferring Gene Networks for Strains of Dehalococcoides Highlights Conserved Relationships between Genes Encoding Core Catabolic and Cell-Wall Structural Proteins

    Science.gov (United States)

    Mansfeldt, Cresten B.; Heavner, Gretchen W.; Rowe, Annette R.; Hayete, Boris; Church, Bruce W.; Richardson, Ruth E.

    2016-01-01

    The interpretation of high-throughput gene expression data for non-model microorganisms remains obscured because of the high fraction of hypothetical genes and the limited number of methods for the robust inference of gene networks. Therefore, to elucidate gene-gene and gene-condition linkages in the bioremediation-important genus Dehalococcoides, we applied a Bayesian inference strategy called Reverse Engineering/Forward Simulation (REFS™) on transcriptomic data collected from two organohalide-respiring communities containing different Dehalococcoides mccartyi strains: the Cornell University mixed community D2 and the commercially available KB-1® bioaugmentation culture. In total, 49 and 24 microarray datasets were included in the REFS™ analysis to generate an ensemble of 1,000 networks for the Dehalococcoides population in the Cornell D2 and KB-1® culture, respectively. Considering only linkages that appeared in the consensus network for each culture (exceeding the determined frequency cutoff of ≥ 60%), the resulting Cornell D2 and KB-1® consensus networks maintained 1,105 nodes (genes or conditions) with 974 edges and 1,714 nodes with 1,455 edges, respectively. These consensus networks captured multiple strong and biologically informative relationships. One of the main highlighted relationships shared between these two cultures was a direct edge between the transcript encoding for the major reductive dehalogenase (tceA (D2) or vcrA (KB-1®)) and the transcript for the putative S-layer cell wall protein (DET1407 (D2) or KB1_1396 (KB-1®)). Additionally, transcripts for two key oxidoreductases (a [Ni Fe] hydrogenase, Hup, and a protein with similarity to a formate dehydrogenase, “Fdh”) were strongly linked, generalizing a strong relationship noted previously for Dehalococcoides mccartyi strain 195 to multiple strains of Dehalococcoides. Notably, the pangenome array utilized when monitoring the KB-1® culture was capable of resolving signals from

  14. Control of hydroxyproline catabolism in Sinorhizobium meliloti.

    Science.gov (United States)

    White, Catharine E; Gavina, Jennilee M A; Morton, Richard; Britz-McKibbin, Philip; Finan, Turlough M

    2012-09-01

    Hydroxyproline (Hyp) in decaying organic matter is a rich source of carbon and nitrogen for microorganisms. A bacterial pathway for Hyp catabolism is known; however, genes and function relationships are not established. In the pathway, trans-4-hydroxy-L-proline (4-L-Hyp) is epimerized to cis-4-hydroxy-D-proline (4-D-Hyp), and then, in three enzymatic reactions, the D-isomer is converted via Δ-pyrroline-4-hydroxy-2-carboxylate (HPC) and α-ketoglutarate semialdehyde (KGSA) to α-ketoglutarate (KG). Here a transcriptional analysis of cells growing on 4-L-Hyp, and the regulation and functions of genes from a Hyp catabolism locus of the legume endosymbiont Sinorhizobium meliloti are reported. Fourteen hydroxyproline catabolism genes (hyp), in five transcripts hypR, hypD, hypH, hypST and hypMNPQO(RE)XYZ, were negatively regulated by hypR. hypRE was shown to encode 4-hydroxyproline 2-epimerase and a hypRE mutant grew with 4-D-Hyp but not 4-L-Hyp. hypO, hypD and hypH are predicted to encode 4-D-Hyp oxidase, HPC deaminase and α-KGSA dehydrogenase respectively. The functions for hypS, hypT, hypX, hypY and hypZ remain to be determined. The data suggest 4-Hyp is converted to the tricarboxylic acid cycle intermediate α-ketoglutarate via the pathway established biochemically for Pseudomonas. This report describes the first molecular characterization of a Hyp catabolism locus.

  15. Tryptophan catabolizing enzymes – party of three

    Directory of Open Access Journals (Sweden)

    Helen J Ball

    2014-10-01

    Full Text Available Indoleamine 2,3-dioxygenase (IDO and tryptophan 2,3-dioxygenase (TDO are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway. The depletion of tryptophan and formation of kynurenine pathway metabolites modulates the activity of the mammalian immune, reproductive and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties and biological functions. This review analyses the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.

  16. Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide

    Science.gov (United States)

    Ueki, Iori; Roman, Heather B.; Valli, Alessandro; Fieselmann, Krista; Lam, Jimmy; Peters, Rachel; Hirschberger, Lawrence L.

    2011-01-01

    Cysteine homeostasis is dependent on the regulation of cysteine dioxygenase (CDO) in response to changes in sulfur amino acid intake. CDO oxidizes cysteine to cysteinesulfinate, which is further metabolized to either taurine or to pyruvate plus sulfate. To gain insight into the physiological function of CDO and the consequence of a loss of CDO activity, mice carrying a null CDO allele (CDO+/− mice) were crossed to generate CDO−/−, CDO+/−, and CDO+/+ mice. CDO−/− mice exhibited postnatal mortality, growth deficit, and connective tissue pathology. CDO−/− mice had extremely low taurine levels and somewhat elevated cysteine levels, consistent with the lack of flux through CDO-dependent catabolic pathways. However, plasma sulfate levels were slightly higher in CDO−/− mice than in CDO+/− or CDO+/+ mice, and tissue levels of acid-labile sulfide were elevated, indicating an increase in cysteine catabolism by cysteine desulfhydration pathways. Null mice had lower hepatic cytochrome c oxidase levels, suggesting impaired electron transport capacity. Supplementation of mice with taurine improved survival of male pups but otherwise had little effect on the phenotype of the CDO−/− mice. H2S has been identified as an important gaseous signaling molecule as well as a toxicant, and pathology may be due to dysregulation of H2S production. Control of cysteine levels by regulation of CDO may be necessary to maintain low H2S/sulfane sulfur levels and facilitate the use of H2S as a signaling molecule. PMID:21693692

  17. Novel inositol catabolic pathway in Thermotoga maritima.

    Science.gov (United States)

    Rodionova, Irina A; Leyn, Semen A; Burkart, Michael D; Boucher, Nathalie; Noll, Kenneth M; Osterman, Andrei L; Rodionov, Dmitry A

    2013-08-01

    myo-inositol (MI) is a key sugar alcohol component of various metabolites, e.g. phosphatidylinositol-based phospholipids that are abundant in animal and plant cells. The seven-step pathway of MI degradation was previously characterized in various soil bacteria including Bacillus subtilis. Through a combination of bioinformatics and experimental techniques we identified a novel variant of the MI catabolic pathway in the marine hyperthermophilic bacterium Thermotoga maritima. By using in vitro biochemical assays with purified recombinant proteins we characterized four inositol catabolic enzymes encoded in the TM0412-TM0416 chromosomal gene cluster. The novel catabolic pathway in T. maritima starts as the conventional route using the myo-inositol dehydrogenase IolG followed by three novel reactions. The first 2-keto-myo-inositol intermediate is oxidized by another, previously unknown NAD-dependent dehydrogenase TM0412 (named IolM), and a yet unidentified product of this reaction is further hydrolysed by TM0413 (IolN) to form 5-keto-l-gluconate. The fourth step involves epimerization of 5-keto-l-gluconate to d-tagaturonate by TM0416 (IolO). T. maritima is unable to grow on myo-inositol as a single carbon source. The determined in vitro specificity of the InoEFGK (TM0418-TM0421) transporter to myo-inositol-phosphate suggests that the novel pathway in Thermotoga utilizes a phosphorylated derivative of inositol.

  18. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator

    DEFF Research Database (Denmark)

    Schultz, Anna Charlotte; Nygaard, P.; Saxild, Hans Henrik

    2001-01-01

    expression of five genes (pucA, pucB, pucC, pucD, and pucE). Uricase activity is encoded by the pucL and pucM genes, and a uric acid transport system is encoded by pucJ and pucK. Allantoinase is encoded by the pucH gene, and allantoin permease is encoded by the pucI gene. Allantoate amidohydrolase is encoded...... acid, allantoin, and uric acid were all found to function as effector molecules for PucR-dependent regulation of puc gene expression. When cells were grown in the presence of glutamate plus allantoin, a 3- to 10-fold increase in expression was seen for most of the genes. However, expression of the puc...

  19. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae.

    OpenAIRE

    Daugherty, J R; Rai, R; el Berry, H M; Cooper, T. G.

    1993-01-01

    We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupt...

  20. The interplay of StyR and IHF regulates substrate-dependent induction and carbon catabolite repression of styrene catabolism genes in Pseudomonas fluorescens ST

    Directory of Open Access Journals (Sweden)

    Leoni Livia

    2008-06-01

    Full Text Available Abstract Background In Pseudomonas fluorescens ST, the promoter of the styrene catabolic operon, PstyA, is induced by styrene and is subject to catabolite repression. PstyA regulation relies on the StyS/StyR two-component system and on the IHF global regulator. The phosphorylated response regulator StyR (StyR-P activates PstyA in inducing conditions when it binds to the high-affinity site STY2, located about -40 bp from the transcription start point. A cis-acting element upstream of STY2, named URE, contains a low-affinity StyR-P binding site (STY1, overlapping the IHF binding site. Deletion of the URE led to a decrease of promoter activity in inducing conditions and to a partial release of catabolite repression. This study was undertaken to assess the relative role played by IHF and StyR-P on the URE, and to clarify if PstyA catabolite repression could rely on the interplay of these regulators. Results StyR-P and IHF compete for binding to the URE region. PstyA full activity in inducing conditions is achieved when StyR-P and IHF bind to site STY2 and to the URE, respectively. Under catabolite repression conditions, StyR-P binds the STY1 site, replacing IHF at the URE region. StyR-P bound to both STY1 and STY2 sites oligomerizes, likely promoting the formation of a DNA loop that closes the promoter in a repressed conformation. We found that StyR and IHF protein levels did not change in catabolite repression conditions, implying that PstyA repression is achieved through an increase in the StyR-P/StyR ratio. Conclusion We propose a model according to which the activity of the PstyA promoter is determined by conformational changes. An open conformation is operative in inducing conditions when StyR-P is bound to STY2 site and IHF to the URE. Under catabolite repression conditions StyR-P cellular levels would increase, displacing IHF from the URE and closing the promoter in a repressed conformation. The balance between the open and the closed

  1. Small-molecule inhibition of choline catabolism in Pseudomonas aeruginosa and other aerobic choline-catabolizing bacteria.

    Science.gov (United States)

    Fitzsimmons, Liam F; Flemer, Stevenson; Wurthmann, A Sandy; Deker, P Bruce; Sarkar, Indra Neil; Wargo, Matthew J

    2011-07-01

    Choline is abundant in association with eukaryotes and plays roles in osmoprotection, thermoprotection, and membrane biosynthesis in many bacteria. Aerobic catabolism of choline is widespread among soil proteobacteria, particularly those associated with eukaryotes. Catabolism of choline as a carbon, nitrogen, and/or energy source may play important roles in association with eukaryotes, including pathogenesis, symbioses, and nutrient cycling. We sought to generate choline analogues to study bacterial choline catabolism in vitro and in situ. Here we report the characterization of a choline analogue, propargylcholine, which inhibits choline catabolism at the level of Dgc enzyme-catalyzed dimethylglycine demethylation in Pseudomonas aeruginosa. We used genetic analyses and 13C nuclear magnetic resonance to demonstrate that propargylcholine is catabolized to its inhibitory form, propargylmethylglycine. Chemically synthesized propargylmethylglycine was also an inhibitor of growth on choline. Bioinformatic analysis suggests that there are genes encoding DgcA homologues in a variety of proteobacteria. We examined the broader utility of propargylcholine and propargylmethylglycine by assessing growth of other members of the proteobacteria that are known to grow on choline and possess putative DgcA homologues. Propargylcholine showed utility as a growth inhibitor in P. aeruginosa but did not inhibit growth in other proteobacteria tested. In contrast, propargylmethylglycine was able to inhibit choline-dependent growth in all tested proteobacteria, including Pseudomonas mendocina, Pseudomonas fluorescens, Pseudomonas putida, Burkholderia cepacia, Burkholderia ambifaria, and Sinorhizobium meliloti. We predict that chemical inhibitors of choline catabolism will be useful for studying this pathway in clinical and environmental isolates and could be a useful tool to study proteobacterial choline catabolism in situ.

  2. The D-galacturonic acid catabolic pathway in Botrytis cinerea.

    Science.gov (United States)

    Zhang, Lisha; Thiewes, Harry; van Kan, Jan A L

    2011-10-01

    D-galacturonic acid is the most abundant component of pectin, one of the major polysaccharide constituents of plant cell walls. Galacturonic acid potentially is an important carbon source for microorganisms living on (decaying) plant material. A catabolic pathway was proposed in filamentous fungi, comprising three enzymatic steps, involving D-galacturonate reductase, L-galactonate dehydratase, and 2-keto-3-deoxy-L-galactonate aldolase. We describe the functional, biochemical and genetic characterization of the entire D-galacturonate-specific catabolic pathway in the plant pathogenic fungus Botrytis cinerea. The B. cinerea genome contains two non-homologous galacturonate reductase genes (Bcgar1 and Bcgar2), a galactonate dehydratase gene (Bclgd1), and a 2-keto-3-deoxy-L-galactonate aldolase gene (Bclga1). Their expression levels were highly induced in cultures containing GalA, pectate, or pectin as the sole carbon source. The four proteins were expressed in Escherichia coli and their enzymatic activity was characterized. Targeted gene replacement of all four genes in B. cinerea, either separately or in combinations, yielded mutants that were affected in growth on D-galacturonic acid, pectate, or pectin as the sole carbon source. In Aspergillus nidulans and A. niger, the first catabolic conversion only involves the Bcgar2 ortholog, while in Hypocrea jecorina, it only involves the Bcgar1 ortholog. In B. cinerea, however, BcGAR1 and BcGAR2 jointly contribute to the first step of the catabolic pathway, albeit to different extent. The virulence of all B. cinerea mutants in the D-galacturonic acid catabolic pathway on tomato leaves, apple fruit and bell peppers was unaltered.

  3. Contribution of Asparagine Catabolism to Salmonella Virulence.

    Science.gov (United States)

    McLaughlin, Patrick A; McClelland, Michael; Yang, Hee-Jeong; Porwollik, Steffen; Bogomolnaya, Lydia; Chen, Juei-Suei; Andrews-Polymenis, Helene; van der Velden, Adrianus W M

    2017-02-01

    Salmonellae are pathogenic bacteria that cause significant morbidity and mortality in humans worldwide. Salmonellae establish infection and avoid clearance by the immune system by mechanisms that are not well understood. We previously showed that l-asparaginase II produced by Salmonella enterica serovar Typhimurium (S Typhimurium) inhibits T cell responses and mediates virulence. In addition, we previously showed that asparagine deprivation such as that mediated by l-asparaginase II of S Typhimurium causes suppression of activation-induced T cell metabolic reprogramming. Here, we report that STM3997, which encodes a homolog of disulfide bond protein A (dsbA) of Escherichia coli, is required for l-asparaginase II stability and function. Furthermore, we report that l-asparaginase II localizes primarily to the periplasm and acts together with l-asparaginase I to provide S Typhimurium the ability to catabolize asparagine and assimilate nitrogen. Importantly, we determined that, in a murine model of infection, S Typhimurium lacking both l-asparaginase I and II genes competes poorly with wild-type S Typhimurium for colonization of target tissues. Collectively, these results indicate that asparagine catabolism contributes to S Typhimurium virulence, providing new insights into the competition for nutrients at the host-pathogen interface.

  4. Amino Acid Catabolism in Plants.

    Science.gov (United States)

    Hildebrandt, Tatjana M; Nunes Nesi, Adriano; Araújo, Wagner L; Braun, Hans-Peter

    2015-11-02

    Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology.

  5. Reprogramming amino acid catabolism in CHO cells with CRISPR-Cas9 genome editing improves cell growth and reduces by-product secretion

    DEFF Research Database (Denmark)

    Ley, Daniel; Pereira, Sara; Pedersen, Lasse Ebdrup

    2017-01-01

    CHO cells primarily utilize amino acids for three processes: biomass synthesis, recombinant protein production and catabolism. In this work, we disrupted 9 amino acid catabolic genes participating in 7 dierent catabolic pathways, to increase synthesis of biomass and recombinant protein, while red...

  6. Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli.

    Science.gov (United States)

    Schneider, Barbara L; Reitzer, Larry

    2012-08-01

    Putrescine as the sole carbon source requires a novel catabolic pathway with glutamylated intermediates. Nitrogen limitation does not induce genes of this glutamylated putrescine (GP) pathway but instead induces genes for a putrescine catabolic pathway that starts with a transaminase-dependent deamination. We determined pathway utilization with putrescine as the sole nitrogen source by examining mutants with defects in both pathways. Blocks in both the GP and transaminase pathways were required to prevent growth with putrescine as the sole nitrogen source. Genetic and biochemical analyses showed redundant enzymes for γ-aminobutyraldehyde dehydrogenase (PatD/YdcW and PuuC), γ-aminobutyrate transaminase (GabT and PuuE), and succinic semialdehyde dehydrogenase (GabD and PuuC). PuuC is a nonspecific aldehyde dehydrogenase that oxidizes all the aldehydes in putrescine catabolism. A puuP mutant failed to use putrescine as the nitrogen source, which implies one major transporter for putrescine as the sole nitrogen source. Analysis of regulation of the GP pathway shows induction by putrescine and not by a product of putrescine catabolism and shows that putrescine accumulates in puuA, puuB, and puuC mutants but not in any other mutant. We conclude that two independent sets of enzymes can completely degrade putrescine to succinate and that their relative importance depends on the environment.

  7. Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans.

    Science.gov (United States)

    Khrameeva, Ekaterina E; Bozek, Katarzyna; He, Liu; Yan, Zheng; Jiang, Xi; Wei, Yuning; Tang, Kun; Gelfand, Mikhail S; Prufer, Kay; Kelso, Janet; Paabo, Svante; Giavalisco, Patrick; Lachmann, Michael; Khaitovich, Philipp

    2014-04-01

    Although Neanderthals are extinct, fragments of their genomes persist in contemporary humans. Here we show that while the genome-wide frequency of Neanderthal-like sites is approximately constant across all contemporary out-of-Africa populations, genes involved in lipid catabolism contain more than threefold excess of such sites in contemporary humans of European descent. Evolutionally, these genes show significant association with signatures of recent positive selection in the contemporary European, but not Asian or African populations. Functionally, the excess of Neanderthal-like sites in lipid catabolism genes can be linked with a greater divergence of lipid concentrations and enzyme expression levels within this pathway, seen in contemporary Europeans, but not in the other populations. We conclude that sequence variants that evolved in Neanderthals may have given a selective advantage to anatomically modern humans that settled in the same geographical areas.

  8. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications.

    Science.gov (United States)

    Kumar, Ajit; Trefault, Nicole; Olaniran, Ademola Olufolahan

    2016-01-01

    A considerable progress has been made to understand the mechanisms of biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D biodegradation pathway has been elucidated in many microorganisms including Cupriavidus necator JMP134 (previously known as Wautersia eutropha, Ralstonia eutropha and Alcaligenes eutrophus) and Pseudomonas strains. It generally involves the side chain removal of 2,4-D by α-ketoglutarate-dependent 2,4-D dioxygenase (tfdA) to form 2,4-dichlorophenol (2,4-DCP); hydroxylation of 2,4-DCP by 2,4-DCP hydroxylase (tfdB) to form dichlorocatechol; ortho or meta cleavage of dichlorocatechol by chlorocatechol 1,2-dioxygenase (tfdC) to form 2,4-dichloro-cis,cis-muconate; conversion of 2,4-dichloro-cis,cis-muconate to 2-chlorodienelactone by chloromuconate cycloisomerase (tfdD); conversion of 2-chlorodienelactone to 2-chloromaleylacetate by chlorodienelactone hydrolase (tfdE) and, finally, conversion of 2-chloromaleylacetate to 3-oxoadepate via maleylacetate by chloromaleylacetate reductase and maleylacetate reductase (tfdF), respectively, which is funnelled to the tricarboxylic acid cycle. The latest review on microbial breakdown of 2,4-D, other halogenated aromatic pesticides, and related compounds was compiled by Haggblom, however, a considerable progress has been made in this area of research since then. Thus, this review focuses on the recent advancement on 2,4-D biodegradation, the enzymes, and genes involved and their biotechlogical implications.

  9. A previously undescribed pathway for pyrimidine catabolism.

    Science.gov (United States)

    Loh, Kevin D; Gyaneshwar, Prasad; Markenscoff Papadimitriou, Eirene; Fong, Rebecca; Kim, Kwang-Seo; Parales, Rebecca; Zhou, Zhongrui; Inwood, William; Kustu, Sydney

    2006-03-28

    The b1012 operon of Escherichia coli K-12, which is composed of seven unidentified ORFs, is one of the most highly expressed operons under control of nitrogen regulatory protein C. Examination of strains with lesions in this operon on Biolog Phenotype MicroArray (PM3) plates and subsequent growth tests indicated that they failed to use uridine or uracil as the sole nitrogen source and that the parental strain could use them at room temperature but not at 37 degrees C. A strain carrying an ntrB(Con) mutation, which elevates transcription of genes under nitrogen regulatory protein C control, could also grow on thymidine as the sole nitrogen source, whereas strains with lesions in the b1012 operon could not. Growth-yield experiments indicated that both nitrogens of uridine and thymidine were available. Studies with [(14)C]uridine indicated that a three-carbon waste product from the pyrimidine ring was excreted. After trimethylsilylation and gas chromatography, the waste product was identified by mass spectrometry as 3-hydroxypropionic acid. In agreement with this finding, 2-methyl-3-hydroxypropionic acid was released from thymidine. Both the number of available nitrogens and the waste products distinguished the pathway encoded by the b1012 operon from pyrimidine catabolic pathways described previously. We propose that the genes of this operon be named rutA-G for pyrimidine utilization. The product of the divergently transcribed gene, b1013, is a tetracycline repressor family regulator that controls transcription of the b1012 operon negatively.

  10. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression

    NARCIS (Netherlands)

    Kowalczyk, Joanna E; Gruben, Birgit S; Battaglia, Evy; Wiebenga, Ad; Majoor, Eline; de Vries, Ronald P

    2015-01-01

    In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosacchari

  11. Regulation and evolution of malonate and propionate catabolism in proteobacteria.

    Science.gov (United States)

    Suvorova, I A; Ravcheev, D A; Gelfand, M S

    2012-06-01

    Bacteria catabolize malonate via two pathways, encoded by the mdc and mat genes. In various bacteria, transcription of these genes is controlled by the GntR family transcription factors (TFs) MatR/MdcY and/or the LysR family transcription factor MdcR. Propionate is metabolized via the methylcitrate pathway, comprising enzymes encoded by the prp and acn genes. PrpR, the Fis family sigma 54-dependent transcription factor, is known to be a transcriptional activator of the prp genes. Here, we report a detailed comparative genomic analysis of malonate and propionate metabolism and its regulation in proteobacteria. We characterize genomic loci and gene regulation and identify binding motifs for four new TFs and also new regulon members, in particular, tripartite ATP-independent periplasmic (TRAP) transporters. We describe restructuring of the genomic loci and regulatory interactions during the evolution of proteobacteria.

  12. The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti.

    Science.gov (United States)

    Kohler, Petra R A; Choong, Ee-Leng; Rossbach, Silvia

    2011-10-01

    Sinorhizobium meliloti, the nitrogen-fixing symbiont of alfalfa, has the ability to catabolize myo-, scyllo-, and D-chiro-inositol. Functional inositol catabolism (iol) genes are required for growth on these inositol isomers, and they play a role during plant-bacterium interactions. The inositol catabolism genes comprise the chromosomally encoded iolA (mmsA) and the iolY(smc01163)RCDEB genes, as well as the idhA gene located on the pSymB plasmid. Reverse transcriptase assays showed that the iolYRCDEB genes are transcribed as one operon. The iol genes were weakly expressed without induction, but their expression was strongly induced by myo-inositol. The putative transcriptional regulator of the iol genes, IolR, belongs to the RpiR-like repressor family. Electrophoretic mobility shift assays demonstrated that IolR recognized a conserved palindromic sequence (5'-GGAA-N6-TTCC-3') in the upstream regions of the idhA, iolY, iolR, and iolC genes. Complementation assays found IolR to be required for the repression of its own gene and for the downregulation of the idhA-encoded myo-inositol dehydrogenase activity in the presence and absence of inositol. Further expression studies indicated that the late pathway intermediate 2-keto-5-deoxy-D-gluconic acid 6-phosphate (KDGP) functions as the true inducer of the iol genes. The iolA (mmsA) gene encoding methylmalonate semialdehyde dehydrogenase was not regulated by IolR. The S. meliloti iolA (mmsA) gene product seems to be involved in more than only the inositol catabolic pathway, since it was also found to be essential for valine catabolism, supporting its more recent annotation as mmsA.

  13. Understanding Sugar Catabolism in Unicellular Cyanobacteria Toward the Application in Biofuel and Biomaterial Production.

    Science.gov (United States)

    Osanai, Takashi; Iijima, Hiroko; Hirai, Masami Yokota

    2016-01-01

    Synechocystis sp. PCC 6803 is a model species of the cyanobacteria that undergo oxygenic photosynthesis, and has garnered much attention for its potential biotechnological applications. The regulatory mechanism of sugar metabolism in this cyanobacterium has been intensively studied and recent omics approaches have revealed the changes in transcripts, proteins, and metabolites of sugar catabolism under different light and nutrient conditions. Several transcriptional regulators that control the gene expression of enzymes related to sugar catabolism have been identified in the past 10 years, including a sigma factor, transcription factors, and histidine kinases. The modification of these genes can lead to alterations in the primary metabolism as well as the levels of high-value products such as bioplastics and hydrogen. This review summarizes recent studies on sugar catabolism in Synechocystis sp. PCC 6803, emphasizing the importance of elucidating the molecular mechanisms of cyanobacterial metabolism for biotechnological applications.

  14. Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium.

    Science.gov (United States)

    Yudistira, Harry; McClarty, Leigh; Bloodworth, Ruhi A M; Hammond, Sydney A; Butcher, Haley; Mark, Brian L; Cardona, Silvia T

    2011-09-01

    Synthetic cystic fibrosis sputum medium (SCFM) is rich in amino acids and supports robust growth of Burkholderia cenocepacia, a member of the Burkholderia cepacia complex (Bcc). Previous work demonstrated that B. cenocepacia phenylacetic acid (PA) catabolic genes are up-regulated during growth in SCFM and are required for full virulence in a Caenorhabditis elegans host model. In this work, we investigated the role of phenylalanine, one of the aromatic amino acids present in SCFM, as an inducer of the PA catabolic pathway. Phenylalanine degradation intermediates were used as sole carbon sources for growth and gene reporter experiments. In addition to phenylalanine and PA, phenylethylamine, phenylpyruvate, and 2-phenylacetamide were usable as sole carbon sources by wild type B. cenocepacia K56-2, but not by a PA catabolism-defective mutant. EMSA analysis showed that the binding of PaaR, the negative regulator protein of B. cenocepacia PA catabolism, to PA regulatory DNA could only be relieved by phenylacetyl-Coenzyme A (PA-CoA), but not by any of the putative phenylalanine degradation intermediates. Taken together, our results show that in B. cenocepacia, phenylalanine is catabolized to PA and induces PA catabolism through PA activation to PA-CoA. Thus, PaaR shares the same inducer with PaaX, the regulator of PA catabolism in Escherichia coli, despite belonging to a different protein family.

  15. Intracellular growth is dependent on tyrosine catabolism in the dimorphic fungal pathogen Penicillium marneffei.

    Science.gov (United States)

    Boyce, Kylie J; McLauchlan, Alisha; Schreider, Lena; Andrianopoulos, Alex

    2015-03-01

    During infection, pathogens must utilise the available nutrient sources in order to grow while simultaneously evading or tolerating the host's defence systems. Amino acids are an important nutritional source for pathogenic fungi and can be assimilated from host proteins to provide both carbon and nitrogen. The hpdA gene of the dimorphic fungus Penicillium marneffei, which encodes an enzyme which catalyses the second step of tyrosine catabolism, was identified as up-regulated in pathogenic yeast cells. As well as enabling the fungus to acquire carbon and nitrogen, tyrosine is also a precursor in the formation of two types of protective melanin; DOPA melanin and pyomelanin. Chemical inhibition of HpdA in P. marneffei inhibits ex vivo yeast cell production suggesting that tyrosine is a key nutrient source during infectious growth. The genes required for tyrosine catabolism, including hpdA, are located in a gene cluster and the expression of these genes is induced in the presence of tyrosine. A gene (hmgR) encoding a Zn(II)2-Cys6 binuclear cluster transcription factor is present within the cluster and is required for tyrosine induced expression and repression in the presence of a preferred nitrogen source. AreA, the GATA-type transcription factor which regulates the global response to limiting nitrogen conditions negatively regulates expression of cluster genes in the absence of tyrosine and is required for nitrogen metabolite repression. Deletion of the tyrosine catabolic genes in the cluster affects growth on tyrosine as either a nitrogen or carbon source and affects pyomelanin, but not DOPA melanin, production. In contrast to other genes of the tyrosine catabolic cluster, deletion of hpdA results in no growth within macrophages. This suggests that the ability to catabolise tyrosine is not required for macrophage infection and that HpdA has an additional novel role to that of tyrosine catabolism and pyomelanin production during growth in host cells.

  16. Catabolism and detoxification of 1-aminoalkylphosphonic acids

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McSorley, Fern R.; Zechel, David L.

    2012-01-01

    In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphospho...

  17. Body weight independently affects articular cartilage catabolism.

    Science.gov (United States)

    Denning, W Matt; Winward, Jason G; Pardo, Michael Becker; Hopkins, J Ty; Seeley, Matthew K

    2015-06-01

    Although obesity is associated with osteoarthritis, it is unclear whether body weight (BW) independently affects articular cartilage catabolism (i.e., independent from physiological factors that also accompany obesity). The primary purpose of this study was to evaluate the independent effect of BW on articular cartilage catabolism associated with walking. A secondary purpose was to determine how decreased BW influenced cardiovascular response due to walking. Twelve able-bodied subjects walked for 30 minutes on a lower-body positive pressure treadmill during three sessions: control (unadjusted BW), +40%BW, and -40%BW. Serum cartilage oligomeric matrix protein (COMP) was measured immediately before (baseline) and after, and 15 and 30 minutes after the walk. Heart rate (HR) and rate of perceived exertion (RPE) were measured every three minutes during the walk. Relative to baseline, average serum COMP concentration was 13% and 5% greater immediately after and 15 minutes after the walk. Immediately after the walk, serum COMP concentration was 14% greater for the +40%BW session than for the -40%BW session. HR and RPE were greater for the +40%BW session than for the other two sessions, but did not differ between the control and -40%BW sessions. BW independently influences acute articular cartilage catabolism and cardiovascular response due to walking: as BW increases, so does acute articular cartilage catabolism and cardiovascular response. These results indicate that lower-body positive pressure walking may benefit certain individuals by reducing acute articular cartilage catabolism, due to walking, while maintaining cardiovascular response. Key pointsWalking for 30 minutes with adjustments in body weight (normal body weight, +40% and -40% body weight) significantly influences articular cartilage catabolism, measured via serum COMP concentration.Compared to baseline levels, walking with +40% body weight and normal body weight both elicited significant increases in

  18. Arginine Catabolism and the Arginine Succinyltransferase Pathway in Escherichia coli

    OpenAIRE

    Schneider, Barbara L.; Kiupakis, Alexandros K.; Reitzer, Lawrence J.

    1998-01-01

    Arginine catabolism produces ammonia without transferring nitrogen to another compound, yet the only known pathway of arginine catabolism in Escherichia coli (through arginine decarboxylase) does not produce ammonia. Our aims were to find the ammonia-producing pathway of arginine catabolism in E. coli and to examine its function. We showed that the only previously described pathway of arginine catabolism, which does not produce ammonia, accounted for only 3% of the arginine consumed. A search...

  19. CLONING AND CHARACTERIZATION OF THE PHTHALATE CATABOLISM REGION OF PRE1 OF ARTHROBACTER KEYSERI 12B

    Science.gov (United States)

    o-Phthalate (benzene-1,2-dicarboxylate) is a central intermediate in the bacterial degradation of phthalate ester plasticizers as well as of a number of fused-ring polycyclic aromatic hydrocarbons found in fossil fuels. In Arthrobacter keyseri 12B, the genes encoding catabolism o...

  20. Catabolism of pyrimidines in yeast: a tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, G; Merico, A; Björnberg, O;

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides....../antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway...

  1. Catabolism of pyrimidines in yeast: A tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, Gorm; Merico, A.; Bjornberg, O.

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides....../antibiotics. During the last decade we have developed a yeast species, Saccharomyces kluyveri, as a model and tool to study the genes and enzymes of the pyrimidine catabolic pathway. In this report, we studied degradation of uracil and its putative degradation products in 38 yeasts and showed that this pathway...

  2. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity.

    Science.gov (United States)

    McGaha, Tracy L; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C; Mellor, Andrew L

    2012-09-01

    Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field.

  3. Xylan catabolism is improved by blending bioprospecting and metabolic pathway engineering in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2015-04-01

    Complete utilization of all available carbon sources in lignocellulosic biomass still remains a challenge in engineering Saccharomyces cerevisiae. Even with efficient heterologous xylose catabolic pathways, S. cerevisiae is unable to utilize xylose in lignocellulosic biomass unless xylan is depolymerized to xylose. Here we demonstrate that a blended bioprospecting approach along with pathway engineering and evolutionary engineering can be used to improve xylan catabolism in S. cerevisiae. Specifically, we perform whole genome sequencing-based bioprospecting of a strain with remarkable pentose catabolic potential that we isolated and named Ustilago bevomyces. The heterologous expression of xylan catabolic genes enabled S. cerevisiae to grow on xylan as a single carbon source in minimal medium. A combination of bioprospecting and metabolic pathway evolution demonstrated that the xylan catabolic pathway could be further improved. Ultimately, engineering efforts were able to achieve xylan conversion into ethanol of up to 0.22 g/L on minimal medium compositions with xylan. This pathway provides a novel starting point for improving lignocellulosic conversion by yeast.

  4. Transfer of a Catabolic Pathway for Chloromethane in Methylobacterium Strains Highlights Different Limitations for Growth with Chloromethane or with Dichloromethane

    Directory of Open Access Journals (Sweden)

    Joshua Michener

    2016-07-01

    Full Text Available Chloromethane is an ozone-depleting gas, produced predominantly from natural sources, that provides an important carbon source for microbes capable of consuming it. Chloromethane catabolism has been difficult to study owing to the challenging genetics of its native microbial hosts. Since the pathways for chloromethane catabolism show evidence of horizontal gene transfer, we reproduced this transfer process in the laboratory to generate new chloromethane-catabolizing strains in tractable hosts. We demonstrate that six putative accessory genes improve chloromethane catabolism, though heterologous expression of only one of the six is strictly necessary for growth on chloromethane. In contrast to growth of Methylobacterium strains with the closely-related compound dichloromethane, we find that chloride export does not limit growth on chloromethane and, in general, that the ability of a strain to grow on dichloromethane is uncorrelated with its ability to grow on chloromethane. This heterologous expression system allows us to investigate the components required for effective chloromethane catabolism and the factors that limit effective catabolism after horizontal transfer.

  5. Activation and Inactivation of Pseudomonas stutzeri Methylbenzene Catabolism Pathways Mediated by a Transposable Element

    Science.gov (United States)

    Bolognese, Fabrizio; di Lecce, Cinzia; Galli, Enrica; Barbieri, Paola

    1999-01-01

    The arrangement of the genes involved in o-xylene, m-xylene, and p-xylene catabolism was investigated in three Pseudomonas stutzeri strains: the wild-type strain OX1, which is able to grow on o-xylene but not on the meta and para isomers; the mutant M1, which grows on m-xylene and p-xylene but is unable to utilize the ortho isomer; and the revertant R1, which can utilize all the three isomers of xylene. A 3-kb insertion sequence (IS) termed ISPs1, which inactivates the m-xylene and p-xylene catabolic pathway in P. stutzeri OX1 and the o-xylene catabolic genes in P. stutzeri M1, was detected. No IS was detected in the corresponding catabolic regions of the P. stutzeri R1 genome. ISPs1 is present in several copies in the genomes of the three strains. It is flanked by 24-bp imperfect inverted repeats, causes the direct duplication of 8 bp in the target DNA, and seems to be related to the ISL3 family. PMID:10223973

  6. Regulation of myo-inositol catabolism by a GntR-type repressor SCO6974 in Streptomyces coelicolor.

    Science.gov (United States)

    Yu, Lingjun; Li, Shuxian; Gao, Wenyan; Pan, Yuanyuan; Tan, Huarong; Liu, Gang

    2015-04-01

    Myo-inositol is important for Streptomyces growth and morphological differentiation. Genomic sequence analysis revealed a myo-inositol catabolic gene cluster in Streptomyces coelicolor. Disruption of the corresponding genes in this cluster abolished the bacterial growth on myo-inositol as a single carbon source. The transcriptions of these genes were remarkably enhanced by addition of myo-inositol in minimal medium. A putative regulatory gene SCO6974, encoding a GntR family protein, is situated in the cluster. Disruption of SCO6974 significantly enhanced the transcription of myo-inositol catabolic genes. SCO6974 was shown to interact with the promoter regions of myo-inositol catabolic genes using electrophoretic mobility shift assays. DNase I footprinting assays demonstrated that SCO6974 recognized a conserved palindromic sequence (A/T)TGT(A/C)N(G/T)(G/T)ACA(A/T). Base substitution of the conserved sequence completely abolished the binding of SCO6974 to the targets demonstrating that SCO6974 directly represses the transcriptions of myo-inositol catabolic genes. Furthermore, the disruption of SCO6974 was correlated with a reduced sporulation of S. coelicolor in mannitol soya flour medium and with the overproduction of actinorhodin and calcium-dependent antibiotic. The addition of myo-inositol suppressed the sporulation deficiency of the mutant, indicating that the effect could be related to a shortage in myo-inositol due to its enhanced catabolism in this strain. This enhanced myo-inositol catabolism likely yields dihydroxyacetone phosphate and acetyl-CoA that are indirect or direct precursors of the overproduced antibiotics.

  7. Insights into the evolution of sialic acid catabolism among bacteria

    Directory of Open Access Journals (Sweden)

    Almagro-Moreno Salvador

    2009-05-01

    Full Text Available Abstract Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA, epimerase (NanE, and kinase (NanK, necessary for the catabolism of sialic acid (the Nan cluster, are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body

  8. Catabolism of volatile organic compounds influences plant survival.

    Science.gov (United States)

    Oikawa, Patricia Y; Lerdau, Manuel T

    2013-12-01

    Plants emit a diverse array of phytogenic volatile organic compounds (VOCs). The production and emission of VOCs has been an important area of research for decades. However, recent research has revealed the importance of VOC catabolism by plants and VOC degradation in the atmosphere for plant growth and survival. Specifically, VOC catabolism and degradation have implications for plant C balance, tolerance to environmental stress, plant signaling, and plant-atmosphere interactions. Here we review recent advances in our understanding of VOC catabolism and degradation, propose experiments for investigating VOC catabolism, and suggest ways to incorporate catabolism into VOC emission models. Improving our knowledge of VOC catabolism and degradation is crucial for understanding plant metabolism and predicting plant survival in polluted environments.

  9. Catabolism of hyaluronan: involvement of transition metals

    OpenAIRE

    Šoltés, Ladislav; Kogan, Grigorij

    2009-01-01

    One of the very complex structures in the vertebrates is the joint. The main component of the joint is the synovial fluid with its high-molar-mass glycosaminoglycan hyaluronan, which turnover is approximately twelve hours. Since the synovial fluid does not contain any hyaluronidases, the fast hyaluronan catabolism is caused primarily by reductive-oxidative processes. Eight transition metals – V23, Mn25, Fe26, Co27, Ni28, Cu29, Zn30, and Mo42 – naturally occurring in living organism are essent...

  10. Application of p-toluidine in chromogenic detection of catechol and protocatechuate, diphenolic intermediates in catabolism of aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Parke, D. (Yale Univ., New Haven, CT (United States))

    1992-08-01

    In the presence of p-toluidine and iron, protocatechuate and catechols yield color. Inclusion of p-toluidine in media facilities the screening of microbial strains for alterations affecting aromatic catabolism. Such strains include mutants affected in the expression of oxygenases and Escherichia coli colonies carrying cloned or subcloned aromatic catabolic genes which encode enzymes giving rise to protocatechuate or catechol. The diphenolic detection system can also be applied to the creation of vectors relying on insertion of cloned DNA into one of the latter marker genes.

  11. Putrescine catabolism is a metabolic response to several stresses in Escherichia coli.

    Science.gov (United States)

    Schneider, Barbara L; Hernandez, V James; Reitzer, Larry

    2013-05-01

    Genes whose products degrade arginine and ornithine, precursors of putrescine synthesis, are activated by either regulators of the nitrogen-regulated (Ntr) response or σ(S) -RNA polymerase. To determine if dual control regulates a complete putrescine catabolic pathway, we examined expression of patA and patD, which specify the first two enzymes of one putrescine catabolic pathway. Assays of PatA (putrescine transaminase) activity and β-galactosidase from cells with patA-lacZ transcriptional and translational fusions indicate dual control of patA transcription and putrescine-stimulated patA translation. Similar assays for PatD indicate that patD transcription required σ(S) -RNA polymerase, and Nac, an Ntr regulator, enhanced the σ(S) -dependent transcription. Since Nac activation via σ(S) -RNA polymerase is without precedent, transcription with purified components was examined and the results confirmed this conclusion. This result indicates that the Ntr regulon can intrude into the σ(S) regulon. Strains lacking both polyamine catabolic pathways have defective responses to oxidative stress, high temperature and a sublethal concentration of an antibiotic. These defects and the σ(S) -dependent expression indicate that polyamine catabolism is a core metabolic response to stress.

  12. Catabolism and safety of supplemental L-arginine in animals.

    Science.gov (United States)

    Wu, Zhenlong; Hou, Yongqing; Hu, Shengdi; Bazer, Fuller W; Meininger, Cynthia J; McNeal, Catherine J; Wu, Guoyao

    2016-07-01

    L-arginine (Arg) is utilized via multiple pathways to synthesize protein and low-molecular-weight bioactive substances (e.g., nitric oxide, creatine, and polyamines) with enormous physiological importance. Furthermore, Arg regulates cell signaling pathways and gene expression to improve cardiovascular function, augment insulin sensitivity, enhance lean tissue mass, and reduce obesity in humans. Despite its versatile roles, the use of Arg as a dietary supplement is limited due to the lack of data to address concerns over its safety in humans. Data from animal studies are reviewed to assess arginine catabolism and the safety of long-term Arg supplementation. The arginase pathway was responsible for catabolism of 76-85 and 81-96 % Arg in extraintestinal tissues of pigs and rats, respectively. Dietary supplementation with Arg-HCl or the Arg base [315- and 630-mg Arg/(kg BW d) for 91 d] had no adverse effects on male or female pigs. Similarly, no safety issues were observed for male or female rats receiving supplementation with 1.8- and 3.6-g Arg/(kg BW d) for at least 91 d. Intravenous administration of Arg-HCl to gestating sheep at 81 and 180 mg Arg/(kg BW d) is safe for at least 82 and 40 d, respectively. Animals fed conventional diets can well tolerate large amounts of supplemental Arg [up to 630-mg Arg/(kg BW d) in pigs or 3.6-g Arg/(kg BW d) in rats] for 91 d, which are equivalent to 573-mg Arg/(kg BW d) for humans. Collectively, these results can help guide studies to determine the safety of long-term oral administration of Arg in humans.

  13. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Andersen, Joakim Mark; Barrangou, Rodolphe; Abou Hachem, Maher

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake...... and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC......-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively...

  14. Dietary Energy Level Affects Lipid Catabolism-Related Gene Expression in Adipose Tissue of Wujin Pigs%饲粮能量水平对乌金猪脂肪组织脂类分解代谢相关基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    潘洪彬; 王静; 黄英; 赵素梅; 张曦; 葛长荣; 高士争

    2011-01-01

    The aim or this study was to investigate the effects of dietary energy level on the expression of lipid catabolism-related genes in adipose tissue of Wujin pigs. Fifty-four Wujin pigs with body weight of 15 kg were randomly assigned into 3 groups with 3 replicates per group and 6 heads in each replicate. Pigs in low digestive energy group (11. 74 MJ/kg, LDE group) , middle digestive energy group (12.89 MJ/kg, MDE group) and high digestive energy group (14.22 MJ/kg, HDE group) were fed diets with three different digestive energy levels. At the body weight of 30, 60 and 100 kg, pigs were slaughtered and subcutaneous adipose tissue was collected for analysis of gene expression levels of lipid catabolism-related enzymes and factors [ hormone-sensitive lipase ( HSL), carnitine acyl transferase I (CPT-I ), lipoprotein lipase (LPL) and preoxisome prolifer-ator-activated receptor -γ (PPAR-γ) ] by real-time PCR. The results showed as follows: at the body weight of 30 and 100 kg, the gene expression levels of HSL, CPT-I and PPAR-y in adipose tissue of Wujin pigs fed high energy level diet significantly decreased (P <0. 05) , while the gene expression level of LPL significantly increased (P < 0.05); however, at the body weight of 60 kg, the expression levels of the four genes were significantly increased (P <0. 05). The results indicate that high dietary energy level can decrease lipid catabo-lism and fatty acid β-oxadation of Wujin pigs at the body weight of 30 and 100 kg, but enhance lipid catabo-lism and fatty acid β-oxadation of Wujin pigs at the body weight of 60 kg.%本试验旨在研究饲粮不同能量水平对乌金猪脂肪组织脂类分解代谢相关基因表达的影响.选取体重约15 kg的乌金猪54头,随机分为3组,每组3个重复,每个重复6头猪,分别饲喂消化能为11.74(低能组)、12.89(中能组)和14.22 MJ/kg(高能组)的饲粮,在体重30、60和100 kg时屠宰取皮下脂肪组织,提取总RNA,荧光定量PCR法检测脂肪组织

  15. The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866.

    Science.gov (United States)

    Chen, Yan-Fei; Chao, Hongjun; Zhou, Ning-Yi

    2014-02-01

    Pseudomonas putida NCIMB 9866 utilizes p-cresol or 2,4-xylenol as a sole carbon and energy source. Enzymes catalyzing the oxidation of the para-methyl group of p-cresol have been studied in detail. However, those responsible for the oxidation of the para-methyl group in 2,4-xylenol catabolism are still not reported. In this study, real-time quantitative PCR analysis indicated pchC- and pchF-encoded p-cresol methylhydroxylase (PCMH) and pchA-encoded p-hydroxybenzaldehyde dehydrogenase (PHBDD) in p-cresol catabolism were also likely involved in the catabolism of 2,4-xylenol. Enzyme activity assays and intermediate identification indicated that the PCMH and PHBDD catalyzed the oxidations of 2,4-xylenol to 4-hydroxy-3-methylbenzaldehyde and 4-hydroxy-3-methylbenzaldehyde to 4-hydroxy-3-methylbenzoic acid, respectively. Furthermore, the PCMH-encoding gene pchF was found to be necessary for the catabolism of 2,4-xylenol, whereas the PHBDD-encoding gene pchA was not essential for the catabolism by gene knockout and complementation. Analyses of the maximum specific growth rate (μ m) and specific activity of the gene-knockout strain to different intermediates revealed the presence of other enzyme(s) with PHBDD activity in strain 9866. However, PHBDD played a major role in the catabolism of 2,4-xylenol in contrast to the other enzyme(s).

  16. Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis.

    Science.gov (United States)

    Yokooji, Yuusuke; Sato, Takaaki; Fujiwara, Shinsuke; Imanaka, Tadayuki; Atomi, Haruyuki

    2013-05-01

    Amino acid catabolism in Thermococcales is presumed to proceed via three steps: oxidative deamination of amino acids by glutamate dehydrogenase (GDH) or aminotransferases, oxidative decarboxylation by 2-oxoacid:ferredoxin oxidoreductases (KOR), and hydrolysis of acyl-coenzyme A (CoA) by ADP-forming acyl-CoA synthetases (ACS). Here, we performed a genetic examination of enzymes involved in Glu catabolism in Thermococcus kodakarensis. Examination of amino acid dehydrogenase activities in cell extracts of T. kodakarensis KUW1 (ΔpyrF ΔtrpE) revealed high NADP-dependent GDH activity, along with lower levels of NAD-dependent activity. NADP-dependent activities toward Gln/Ala/Val/Cys and an NAD-dependent threonine dehydrogenase activity were also detected. In KGDH1, a gene disruption strain of T. kodakarensis GDH (Tk-GDH), only threonine dehydrogenase activity was detected, indicating that all other activities were dependent on Tk-GDH. KGDH1 could not grow in a medium in which growth was dependent on amino acid catabolism, implying that Tk-GDH is the only enzyme that can discharge the electrons (to NADP(+)/NAD(+)) released from amino acids in their oxidation to 2-oxoacids. In a medium containing excess pyruvate, KGDH1 displayed normal growth, but higher degrees of amino acid catabolism were observed compared to those for KUW1, suggesting that Tk-GDH functions to suppress amino acid oxidation and plays an anabolic role under this condition. We further constructed disruption strains of 2-oxoglutarate:ferredoxin oxidoreductase and succinyl-CoA synthetase. The two strains displayed growth defects in both media compared to KUW1. Succinate generation was not observed in these strains, indicating that the two enzymes are solely responsible for Glu catabolism among the multiple KOR and ACS enzymes in T. kodakarensis.

  17. A role for TNFα in intervertebral disc degeneration: A non-recoverable catabolic shift

    Energy Technology Data Exchange (ETDEWEB)

    Purmessur, D.; Walter, B.A. [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Roughley, P.J. [Shriners Hospital for Children, Montreal, QC (Canada); Laudier, D.M.; Hecht, A.C. [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Iatridis, James, E-mail: james.iatridis@mssm.edu [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2013-03-29

    Highlights: ► TNFα induced catabolic changes similar to human intervertebral disc degeneration. ► The metabolic shift induced by TNFα was sustained following removal. ► TNFα induced changes suggestive of cell senescence without affecting cell viability. ► Interventions are required to stimulate anabolism and increase cell proliferation. -- Abstract: This study examines the effect of TNFα on whole bovine intervertebral discs in organ culture and its association with changes characteristic of intervertebral disc degeneration (IDD) in order to inform future treatments to mitigate the chronic inflammatory state commonly found with painful IDD. Pro-inflammatory cytokines such as TNFα contribute to disc pathology and are implicated in the catabolic phenotype associated with painful IDD. Whole bovine discs were cultured to examine cellular (anabolic/catabolic gene expression, cell viability and senescence using β-galactosidase) and structural (histology and aggrecan degradation) changes in response to TNFα treatment. Control or TNFα cultures were assessed at 7 and 21 days; the 21 day group also included a recovery group with 7 days TNFα followed by 14 days in basal media. TNFα induced catabolic and anti-anabolic shifts in the nucleus pulposus (NP) and annulus fibrosus (AF) at 7 days and this persisted until 21 days however cell viability was not affected. Data indicates that TNFα increased aggrecan degradation products and suggests increased β-galactosidase staining at 21 days without any recovery. TNFα treatment of whole bovine discs for 7 days induced changes similar to the degeneration processes that occur in human IDD: aggrecan degradation, increased catabolism, pro-inflammatory cytokines and nerve growth factor expression. TNFα significantly reduced anabolism in cultured IVDs and a possible mechanism may be associated with cell senescence. Results therefore suggest that successful treatments must promote anabolism and cell proliferation in

  18. D-Allose catabolism of Escherichia coli

    DEFF Research Database (Denmark)

    Poulsen, Tim S.; Chang, Ying-Ying; Hove-Jensen, Bjarne

    1999-01-01

    Genes involved in allose utilization of Escherichia coli K-12 are organized in at least two operons, alsRBACE and alsI, located next to each other on the chromosome but divergently transcribed. Mutants defective in alsI (allose 6-phosphate isomerase gene) and alsE (allulose 6-phosphate epimerase...... gene) were Als-. Transcription of the two allose operons, measured as β-galactosidase activity specified by alsI-lacZ+ or alsE-lacZ+ operon fusions, was induced by allose. Ribose also caused derepression of expression of the regulon under conditions in which ribose phosphate catabolism was impaired....

  19. Bone marrow: its contribution to heme catabolism.

    Science.gov (United States)

    Mähönen, Y; Anttinen, M; Vuopio, P; Tenhunen, R

    1976-01-01

    Heme oxygenase (HO) and biliverdin reductase (BR), the two NADPH-dependent enzymes involved in the degradation of hemoglobin and its derivatives, were measured in bone marrow aspirates from 5 hematologically normal persons, 4 patients with chronic leucemia (CL), 11 patients with acute leucemia (AL), 8 patients with refractory sideroblastic anemia (RA), 7 patients with iron-deficiency anemia (IA), 5 patients with hemolytic anemia (HA), and 7 patients with secondary anemia (SA) to determine the enzymatic capacity of the bone marrow in different hematologic disorders for heme catabolism. HO activity in the bone marrow of normal persons was 0.42 +/- 0.28 (SD) nmoles bilirubin/10 mg protein/min; in CL, 2.15 +/- 1.34; in AL, 0.39 +/- 0.25; in RA, 0.58 +/- 0.37; in IA, 0.41 +/- 0.28; in HA, 2.56 +/- 1.40; and in SA, 1.72 +/- 1.06. BR activity, respectively, was in normal persons 8.7 +/- 2.4 (SD) nmoles bilirubin/10 mg protein/min; in CL, 13.6 +/- 9.1; in AL, 3.8 +/- 3.1 in RA, 5.1 +/- 2.7; in IA, 5.5 +/- 3.7; in HA, 17.0 +/- 7.2; and in SA, 10.5 +/- 4.2. On the basis of these findings it seems evident that both oxygenase and biliverdin reductase activities of the bone marrow are capable of adaptive regulation. The physiologic role of bone marrow in heme catabolism seems to be of significant importance.

  20. Expression of Lipid Catabolism Genes in Diannan Small-ear Pigs with Different H-FABP Genotypes%H-FABP不同基因型对滇南小耳猪脂肪分解代谢相关基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    江佳伟; 黄英; 杨明华; 潘洪彬; 高士争; 赵素梅

    2013-01-01

    本研究旨在探讨不同H-FABP基因型滇南小耳猪肌内脂肪细胞脂类代谢相关基因的表达及其与肌内脂肪细胞甘油三酯(Triglycerol,TG)含量的相关性.本研究利用试剂盒测定肌内脂肪细胞TG含量,采用RT-qPCR检测肌内脂肪细胞脂类分解代谢基因mRNA表达水平.结果显示:HH基因型个体的脂类分解代谢相关基因肉碱脂酰转移酶1(Carnitine palmitoyl transferase 1,CPT-1)、脂蛋白酯酶(Lipoprotein lipase,LPL)和过氧化物酶体增殖物激活受体γ(Preoxisome proliferator-activated receptor γ,PPARγ)3种基因mRNA表达水平均显著高于hh基因型个体(P<0.05);且CPT-1、LPL、PPARγ基因mRNA的表达量与肌内脂肪细胞TG含量呈正相关.不同H-FABP基因型影响滇南小耳猪肌内脂肪细胞中脂肪分解代谢相关基因的表达,HH基因型猪脂肪分解代谢相关基因的表达量较高,可能脂类代谢活动更强,从而相对增加了肌内脂肪沉积.%This study aimed to investigate the expression of the lipid metabolism related genes,and the association between the lipid metabolism related genes and triglyceride(TG) content in intramuscular fat cells of Diannan Small-ear pigs with different H-FABP genotypes.The kit was used to determine the triglyceride(TG) content and to investigate the level of mRNA expression of lipid catabolism genes by reverse transcription quantitative real-time PCR(RT-qPCR).The resuits showed that significantly higher expression levels of carnitine palmitoyl transferase 1 (CPT-1),lipoprotein lipase(LPL) and preoxisome proliferator-activated receptor γ(PPARγ) mRNA were found in the HH genotype individuals comparing with that in hh genotype individuals(P<0.05).The expression levels of CPT-1,LPL,PPARγ genes and TG content in intramuscular adipocytes were positively correlated.The expression of fat catabolism related genes in Diannan Small-ear pigs with different H-FABP genotypes is discrepant,the expression level of the pig

  1. Catabolism of serine by Pediococcus acidilactici and Pediococcus pentosaceus.

    Science.gov (United States)

    Irmler, Stefan; Bavan, Tharmatha; Oberli, Andrea; Roetschi, Alexandra; Badertscher, René; Guggenbühl, Barbara; Berthoud, Hélène

    2013-02-01

    The ability to produce diacetyl from pyruvate and l-serine was studied in various strains of Pediococcus pentosaceus and Pediococcus acidilactici isolated from cheese. After being incubated on both substrates, only P. pentosaceus produced significant amounts of diacetyl. This property correlated with measurable serine dehydratase activity in cell extracts. A gene encoding the serine dehydratase (dsdA) was identified in P. pentosaceus, and strains that showed no serine dehydratase activity carried mutations that rendered the gene product inactive. A functional dsdA was cloned from P. pentosaceus FAM19132 and expressed in Escherichia coli. The purified recombinant enzyme catalyzed the formation of pyruvate from L- and D-serine and was active at low pH and elevated NaCl concentrations, environmental conditions usually present in cheese. Analysis of the amino acid profiles of culture supernatants from dsdA wild-type and dsdA mutant strains of P. pentosaceus did not show differences in serine levels. In contrast, P. acidilactici degraded serine. Moreover, this species also catabolized threonine and produced alanine and α-aminobutyrate.

  2. Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2016-06-01

    Full Text Available The liver is critical for maintaining systemic energy balance during starvation. To understand the role of hepatic fatty acid β-oxidation on this process, we generated mice with a liver-specific knockout of carnitine palmitoyltransferase 2 (Cpt2L−/−, an obligate step in mitochondrial long-chain fatty acid β-oxidation. Fasting induced hepatic steatosis and serum dyslipidemia with an absence of circulating ketones, while blood glucose remained normal. Systemic energy homeostasis was largely maintained in fasting Cpt2L−/− mice by adaptations in hepatic and systemic oxidative gene expression mediated in part by Pparα target genes including procatabolic hepatokines Fgf21, Gdf15, and Igfbp1. Feeding a ketogenic diet to Cpt2L−/− mice resulted in severe hepatomegaly, liver damage, and death with a complete absence of adipose triglyceride stores. These data show that hepatic fatty acid oxidation is not required for survival during acute food deprivation but essential for constraining adipocyte lipolysis and regulating systemic catabolism when glucose is limiting.

  3. Amino Acid Catabolism in Staphylococcus aureus and the Function of Carbon Catabolite Repression

    Science.gov (United States)

    Halsey, Cortney R.; Lei, Shulei; Wax, Jacqueline K.; Lehman, Mckenzie K.; Nuxoll, Austin S.; Steinke, Laurey; Sadykov, Marat

    2017-01-01

    ABSTRACT Staphylococcus aureus must rapidly adapt to a variety of carbon and nitrogen sources during invasion of a host. Within a staphylococcal abscess, preferred carbon sources such as glucose are limiting, suggesting that S. aureus survives through the catabolism of secondary carbon sources. S. aureus encodes pathways to catabolize multiple amino acids, including those that generate pyruvate, 2-oxoglutarate, and oxaloacetate. To assess amino acid catabolism, S. aureus JE2 and mutants were grown in complete defined medium containing 18 amino acids but lacking glucose (CDM). A mutation in the gudB gene, coding for glutamate dehydrogenase, which generates 2-oxoglutarate from glutamate, significantly reduced growth in CDM, suggesting that glutamate and those amino acids generating glutamate, particularly proline, serve as the major carbon source in this medium. Nuclear magnetic resonance (NMR) studies confirmed this supposition. Furthermore, a mutation in the ackA gene, coding for acetate kinase, also abrogated growth of JE2 in CDM, suggesting that ATP production from pyruvate-producing amino acids is also critical for growth. In addition, although a functional respiratory chain was absolutely required for growth, the oxygen consumption rate and intracellular ATP concentration were significantly lower during growth in CDM than during growth in glucose-containing media. Finally, transcriptional analyses demonstrated that expression levels of genes coding for the enzymes that synthesize glutamate from proline, arginine, and histidine are repressed by CcpA and carbon catabolite repression. These data show that pathways important for glutamate catabolism or ATP generation via Pta/AckA are important for growth in niches where glucose is not abundant, such as abscesses within skin and soft tissue infections. PMID:28196956

  4. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency: functional and molecular studies on a defect in isoleucine catabolism

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf;

    2007-01-01

    individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant...

  5. Morphine enhances purine nucleotide catabolism in rive and in vitro

    Institute of Scientific and Technical Information of China (English)

    Chang LIU; Jian-kai LIU; Mu-jie KAN; Lin GAO; Hai-ying FU; Hang ZHOU; Min HONG

    2007-01-01

    Aim: To investigate the effect and mechanism of morphine on purine nucleotide catabolism. Methods: The rat model of morphine dependence and withdrawal and rat C6 glioma cells in culture were used. Concentrations of uric acid in the plasma were measured by the uricase-rap method, adenosine deaminase (ADA) and xan- thine oxidase (XO) in the plasma and tissues were measured by the ADA and XO test kit. RT-PCR and RT-PCR-Southern blotting were used to examine the relative amount of ADA and XO gene transcripts in tissues and C6 cells. Results: (i) the concentration of plasma uric acid in the morphine-administered group was signifi-cantly higher (P<0.05) than the control group; (ii) during morphine administration and withdrawal periods, the ADA and XO concentrations in the plasma increased significantly (P<0.05); (iii) the amount of ADA and XO in the parietal lobe, liver, small intestine, and skeletal muscles of the morphine-administered groups increased, while the level of ADA and XO in those tissues of the withdrawal groups decreased; (iv) the transcripts of the ADA and XO genes in the parietal lobe, liver, small intestine, and skeletal muscles were higher in the morphine-administered group. The expression of the ADA and XO genes in those tissues returned to the control level during morphine withdrawal, with the exception of the skeletal muscles; and (v) the upregulation of the expression of the ADA and XO genes induced by morphine treatment could be reversed by naloxone. Conclusion: The effects of morphine on purine nucleotide metabolism might be an important, new biochemical pharmacological mechanism of morphine action.

  6. SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation.

    Science.gov (United States)

    Pang, Shanshan; Lynn, Dana A; Lo, Jacqueline Y; Paek, Jennifer; Curran, Sean P

    2014-10-06

    Mechanisms that coordinate different metabolic pathways, such as glucose and lipid, have been recognized. However, a potential interaction between amino acid and lipid metabolism remains largely elusive. Here we show that during starvation of Caenorhabditis elegans, proline catabolism is coupled with lipid metabolism by SKN-1. Mutation of alh-6, a conserved proline catabolic enzyme, accelerates fat mobilization, enhances the expression of genes involved in fatty acid oxidation and reduces survival in response to fasting. This metabolic coordination is mediated by the activation of the transcription factor SKN-1/Nrf2, possibly due to the accumulation of the alh-6 substrate P5C, and also requires the transcriptional co-regulator MDT-15. Constitutive activation of SKN-1 induces a similar transcriptional response, which protects animals from fat accumulation when fed a high carbohydrate diet. In human cells, an orthologous alh-6 enzyme, ALDH4A1, is also linked to the activity of Nrf2, the human orthologue of SKN-1, and regulates the expression of lipid metabolic genes. Our findings identify a link between proline catabolism and lipid metabolism, and uncover a physiological role for SKN-1 in metabolism.

  7. Enzyme IIANtr Regulates Salmonella Invasion Via 1,2-Propanediol And Propionate Catabolism

    Science.gov (United States)

    Yoo, Woongjae; Kim, Dajeong; Yoon, Hyunjin; Ryu, Sangryeol

    2017-01-01

    Many Proteobacteria possess a nitrogen-metabolic phosphotransferase system (PTSNtr) consisting of EINtr, NPr, and EIIANtr (encoded by ptsP, ptsO, and ptsN, respectively). The PTSNtr plays diverse regulatory roles, but the substrate phosphorylated by EIIANtr and its primary functions have not yet been identified. To comprehensively understand the roles of PTSNtr in Salmonella Typhimurium, we compared the whole transcriptomes of wild-type and a ΔptsN mutant. Genome-wide RNA sequencing revealed that 3.5% of the annotated genes were up- or down-regulated by three-fold or more in the absence of EIIANtr. The ΔptsN mutant significantly down-regulated the expression of genes involved in vitamin B12 synthesis, 1,2-propanediol utilization, and propionate catabolism. Moreover, the invasiveness of the ΔptsN mutant increased about 5-fold when 1,2-propanediol or propionate was added, which was attributable to the increased stability of HilD, the transcriptional regulator of Salmonella pathogenicity island-1. Interestingly, an abundance of 1,2-propanediol or propionate promoted the production of EIIANtr, suggesting the possibility of a positive feedback loop between EIIANtr and two catabolic pathways. These results demonstrate that EIIANtr is a key factor for the utilization of 1,2-propanediol and propionate as carbon and energy sources, and thereby modulates the invasiveness of Salmonella via 1,2-propanediol or propionate catabolism. PMID:28333132

  8. Catabolism of host-derived compounds during extracellular bacterial infections.

    Science.gov (United States)

    Meadows, Jamie A; Wargo, Matthew J

    2014-02-01

    Efficient catabolism of host-derived compounds is essential for bacterial survival and virulence. While these links in intracellular bacteria are well studied, such studies in extracellular bacteria lag behind, mostly for technical reasons. The field has identified important metabolic pathways, but the mechanisms by which they impact infection and in particular, establishing the importance of a compound's catabolism versus alternate metabolic roles has been difficult. In this review we will examine evidence for catabolism during extracellular bacterial infections in animals and known or potential roles in virulence. In the process, we point out key gaps in the field that will require new or newly adapted techniques.

  9. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out...... specifying that flux control often resides at the step following an intermediate present at high concentrations was, therefore, shown not to hold. The intracellular xylitol concentration was measured in batch cultivations of two different strains of Aspergillus niger and two different strains of Aspergillus...

  10. The Role of Placental Tryptophan Catabolism

    Science.gov (United States)

    Sedlmayr, Peter; Blaschitz, Astrid; Stocker, Roland

    2014-01-01

    This review discusses the mechanisms and consequences of degradation of tryptophan (Trp) in the placenta, focusing mainly on the role of indoleamine 2,3-dioxygenase-1 (IDO1), one of three enzymes catalyzing the first step of the kynurenine pathway of Trp degradation. IDO1 has been implicated in regulation of feto-maternal tolerance in the mouse. Local depletion of Trp and/or the presence of metabolites of the kynurenine pathway mediate immunoregulation and exert antimicrobial functions. In addition to the decidual glandular epithelium, IDO1 is localized in the vascular endothelium of the villous chorion and also in the endothelium of spiral arteries of the decidua. Possible consequences of IDO1-mediated catabolism of Trp in the endothelium encompass antimicrobial activity and immunosuppression, as well as relaxation of the placental vasotonus, thereby contributing to placental perfusion and growth of both placenta and fetus. It remains to be evaluated whether other enzymes mediating Trp oxidation, such as indoleamine 2,3-dioxygenase-2, Trp 2,3-dioxygenase, and Trp hydroxylase-1 are of relevance to the biology of the placenta. PMID:24904580

  11. Genetic dissection of methylcrotonyl CoA carboxylase indicates a complex role for mitochondrial leucine catabolism during seed development and germination.

    Science.gov (United States)

    Ding, Geng; Che, Ping; Ilarslan, Hilal; Wurtele, Eve S; Nikolau, Basil J

    2012-05-01

    3-methylcrotonyl CoA carboxylase (MCCase) is a nuclear-encoded, mitochondrial-localized biotin-containing enzyme. The reaction catalyzed by this enzyme is required for leucine (Leu) catabolism, and it may also play a role in the catabolism of isoprenoids and the mevalonate shunt. In Arabidopsis, two MCCase subunits (the biotinylated MCCA subunit and the non-biotinylated MCCB subunit) are each encoded by single genes (At1g03090 and At4g34030, respectively). A reverse genetic approach was used to assess the physiological role of MCCase in plants. We recovered and characterized T-DNA and transposon-tagged knockout alleles of the MCCA and MCCB genes. Metabolite profiling studies indicate that mutations in either MCCA or MCCB block mitochondrial Leu catabolism, as inferred from the increased accumulation of Leu. Under light deprivation conditions, the hyper-accumulation of Leu, 3-methylcrotonyl CoA and isovaleryl CoA indicates that mitochondrial and peroxisomal Leu catabolism pathways are independently regulated. This biochemical block in mitochondrial Leu catabolism is associated with an impaired reproductive growth phenotype, which includes aberrant flower and silique development and decreased seed germination. The decreased seed germination phenotype is only observed for homozygous mutant seeds collected from a parent plant that is itself homozygous, but not from a parent plant that is heterozygous. These characterizations may shed light on the role of catabolic processes in growth and development, an area of plant biology that is poorly understood.

  12. Identification of possible cigarette smoke constituents responsible for muscle catabolism.

    Science.gov (United States)

    Rom, Oren; Kaisari, Sharon; Aizenbud, Dror; Reznick, Abraham Z

    2012-08-01

    The age-related loss of muscle mass and strength also known as sarcopenia is significantly influenced by life style factors such as physical inactivity and impaired nutrition. Cigarette smoking is another life style habit that has been shown to be associated with sarcopenia and to affect skeletal muscle. Even today, smoking is still prevalent worldwide and is probably the most significant source of toxic chemicals exposure to humans. Cigarette smoke (CS) is a complex aerosol consisting of thousands of various constituents including reactive oxygen and nitrogen free radicals, toxic aldehydes and more. Previous epidemiological studies have identified tobacco smoking as a risk factor for sarcopenia. Clinical, in vivo and in vitro studies have revealed CS-induced skeletal muscle damage due to impaired muscle metabolism, increased inflammation and oxidative stress, over-expression of atrophy related genes and activation of various intracellular signaling pathways. This review aims to discuss and identify the components of CS that may promote catabolism of skeletal muscle.

  13. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy.

    Science.gov (United States)

    Sinha, Rohit Anthony; You, Seo-Hee; Zhou, Jin; Siddique, Mobin M; Bay, Boon-Huat; Zhu, Xuguang; Privalsky, Martin L; Cheng, Sheue-Yann; Stevens, Robert D; Summers, Scott A; Newgard, Christopher B; Lazar, Mitchell A; Yen, Paul M

    2012-07-01

    For more than a century, thyroid hormones (THs) have been known to exert powerful catabolic effects, leading to weight loss. Although much has been learned about the molecular mechanisms used by TH receptors (TRs) to regulate gene expression, little is known about the mechanisms by which THs increase oxidative metabolism. Here, we report that TH stimulation of fatty acid β-oxidation is coupled with induction of hepatic autophagy to deliver fatty acids to mitochondria in cell culture and in vivo. Furthermore, blockade of autophagy by autophagy-related 5 (ATG5) siRNA markedly decreased TH-mediated fatty acid β-oxidation in cell culture and in vivo. Consistent with this model, autophagy was altered in livers of mice expressing a mutant TR that causes resistance to the actions of TH as well as in mice with mutant nuclear receptor corepressor (NCoR). These results demonstrate that THs can regulate lipid homeostasis via autophagy and help to explain how THs increase oxidative metabolism.

  14. Basal autophagy is required for the efficient catabolism of sialyloligosaccharides.

    Science.gov (United States)

    Seino, Junichi; Wang, Li; Harada, Yoichiro; Huang, Chengcheng; Ishii, Kumiko; Mizushima, Noboru; Suzuki, Tadashi

    2013-09-13

    Macroautophagy is an essential, homeostatic process involving degradation of a cell's own components; it plays a role in catabolizing cellular components, such as protein or lipids, and damaged or excess organelles. Here, we show that in Atg5(-/-) cells, sialyloligosaccharides specifically accumulated in the cytosol. Accumulation of these glycans was observed under non-starved conditions, suggesting that non-induced, basal autophagy is essential for their catabolism. Interestingly, once accumulated in the cytosol, sialylglycans cannot be efficiently catabolized by resumption of the autophagic process, suggesting that functional autophagy is important for preventing sialyloligosaccharides from accumulating in the cytosol. Moreover, knockdown of sialin, a lysosomal transporter of sialic acids, resulted in a significant reduction of sialyloligosaccharides, implying that autophagy affects the substrate specificity of this transporter. This study thus provides a surprising link between basal autophagy and catabolism of N-linked glycans.

  15. Roles of a sustained activation of NCED3 and the synergistic regulation of ABA biosynthesis and catabolism in ABA signal production in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    REN HuiBo; JIA WenSuo; FAN YiJian; GAO ZhiHui; WEI KaiFa; LI GuiFen; LIU Jing; CHEN Lin; LI BingBing; HU JianFang

    2007-01-01

    ABA, acting as a stress signal, plays crucial roles in plant resistance to water stress. Because ABA signal production is based on ABA biosynthesis, the regulation of NCED, a key enzyme in the ABA biosynthesis pathway, is normally thought of as the sole factor controlling ABA signal production. Here we demonstrate that ABA catabolism in combination with a synergistic regulation of ABA biosynthesis plays a crucial role in governing ABA signal production. Water stress induced a significant accumulation of ABA, which exhibited different patterns in detached and attached leaves. ABA catabolism followed a temporal trend of exponential decay for both basic and stress ABA, and there was little difference in the catabolic half-lives of basic ABA and stress ABA. Thus, the absolute rate of ABA catabolism, i.e. the amount of ABA catabolized per unit time, increases with increased ABA accumulation. From the dynamic processes of ABA biosynthesis and catabolism, it can be inferred that stress ABA accumulation may be governed by a synergistic regulation of all the steps in the ABA biosynthesis pathway. Moreover, to maintain an elevated level of stress ABA sustained activation of NCED3 should be required. This inference was supported by further findings that the genes encoding major enzymes in the ABA biosynthesis pathway, e.g. NCED3, AAO3 and ABA3 were all activated by water stress, and with ABA accumulation progressing, the expressions of NCED3, AAO3 and ABA3 remained activated. Data on ABA catabolism and gene expression jointly indicate that ABA signal production is controlled by a sustained activation of NCED3 and the synergistic regulation of ABA biosynthesis and catabolism.

  16. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling.

    Science.gov (United States)

    Karner, Courtney M; Esen, Emel; Okunade, Adewole L; Patterson, Bruce W; Long, Fanxin

    2015-02-01

    WNT signaling stimulates bone formation by increasing both the number of osteoblasts and their protein-synthesis activity. It is not clear how WNT augments the capacity of osteoblast progenitors to meet the increased energetic and synthetic needs associated with mature osteoblasts. Here, in cultured osteoblast progenitors, we determined that WNT stimulates glutamine catabolism through the tricarboxylic acid (TCA) cycle and consequently lowers intracellular glutamine levels. The WNT-induced reduction of glutamine concentration triggered a general control nonderepressible 2-mediated (GCN2-mediated) integrated stress response (ISR) that stimulated expression of genes responsible for amino acid supply, transfer RNA (tRNA) aminoacylation, and protein folding. WNT-induced glutamine catabolism and ISR were β-catenin independent, but required mammalian target of rapamycin complex 1 (mTORC1) activation. In a hyperactive WNT signaling mouse model of human osteosclerosis, inhibition of glutamine catabolism or Gcn2 deletion suppressed excessive bone formation. Together, our data indicate that glutamine is both an energy source and a protein-translation rheostat that is responsive to WNT and suggest that manipulation of the glutamine/GCN2 signaling axis may provide a valuable approach for normalizing deranged protein anabolism associated with human diseases.

  17. CsPAO4 of Citrus sinensis functions in polyamine terminal catabolism and inhibits plant growth under salt stress.

    Science.gov (United States)

    Wang, Wei; Liu, Ji-Hong

    2016-08-18

    Polyamine oxidase (PAO) is a key enzyme catalyzing polyamine catabolism leading to H2O2 production. We previously demonstrated that Citrus sinensis contains six putative PAO genes, but their functions are not well understood. In this work, we reported functional elucidation of CsPAO4 in polyamine catabolism and salt stress response. CsPAO4 was localized to the apoplast and used both spermidine (Spd) and spermine (Spm) as substrates for terminal catabolism. Transgenic plants overexpressing CsPAO4 displayed prominent increase in PAO activity, concurrent with marked decrease of Spm and Spd and elevation of H2O2. Seeds of transgenic lines displayed better germination when compared with wild type (WT) under salt stress. However, both vegetative growth and root elongation of the transgenic lines were prominently inhibited under salt stress, accompanied by higher level of H2O2 and more conspicuous programmed cell death (PCD). Exogenous supply of catalase (CAT), a H2O2 scavenger, partially recovered the vegetative growth and root elongation. In addition, spermine inhibited root growth of transgenic plants. Taken together, these data demonstrated that CsPAO4 accounts for production of H2O2 causing oxidative damages under salt stress and that down-regulation of a PAO gene involved in polyamine terminal catabolism may be an alternative approach for improving salt stress tolerance.

  18. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination.

    Science.gov (United States)

    Liu, Yinggao; Ye, Nenghui; Liu, Rui; Chen, Moxian; Zhang, Jianhua

    2010-06-01

    H(2)O(2) is known as a signal molecule in plant cells, but its role in the regulation of aqbscisic acid (ABA) and gibberellic acid (GA) metabolism and hormonal balance is not yet clear. In this study it was found that H(2)O(2) affected the regulation of ABA catabolism and GA biosynthesis during seed imbibition and thus exerted control over seed dormancy and germination. As seen by quantitative RT-PCR (QRT-PCR), H(2)O(2) up-regulated ABA catabolism genes (e.g. CYP707A genes), resulting in a decreased ABA content during imbibition. This action required the participation of nitric oxide (NO), another signal molecule. At the same time, H(2)O(2) also up-regulated GA biosynthesis, as shown by QRT-PCR. When an ABA catabolism mutant, cyp707a2, and an overexpressing plant, CYP707A2-OE, were tested, ABA content was negatively correlated with GA biosynthesis. Exogenously applied GA was able to over-ride the inhibition of germination at low concentrations of ABA, but had no obvious effect when ABA concentrations were high. It is concluded that H(2)O(2) mediates the up-regulation of ABA catabolism, probably through an NO signal, and also promotes GA biosynthesis. High concentrations of ABA inhibit GA biosynthesis but a balance of these two hormones can jointly control the dormancy and germination of Arabidopsis seeds.

  19. Substrate Specificity of Atrazine Chlorohydrolase and Atrazine-Catabolizing Bacteria

    Science.gov (United States)

    Seffernick, Jennifer L.; Johnson, Gilbert; Sadowsky, Michael J.; Wackett, Lawrence P.

    2000-01-01

    Bacterial atrazine catabolism is initiated by the enzyme atrazine chlorohydrolase (AtzA) in Pseudomonas sp. strain ADP. Other triazine herbicides are metabolized by bacteria, but the enzymological basis of this is unclear. Here we begin to address this by investigating the catalytic activity of AtzA by using substrate analogs. Purified AtzA from Pseudomonas sp. strain ADP catalyzed the hydrolysis of an atrazine analog that was substituted at the chlorine substituent by fluorine. AtzA did not catalyze the hydrolysis of atrazine analogs containing the pseudohalide azido, methoxy, and cyano groups or thiomethyl and amino groups. Atrazine analogs with a chlorine substituent at carbon 2 and N-alkyl groups, ranging in size from methyl to t-butyl, all underwent dechlorination by AtzA. AtzA catalyzed hydrolytic dechlorination when one nitrogen substituent was alkylated and the other was a free amino group. However, when both amino groups were unalkylated, no reaction occurred. Cell extracts were prepared from five strains capable of atrazine dechlorination and known to contain atzA or closely homologous gene sequences: Pseudomonas sp. strain ADP, Rhizobium strain PATR, Alcaligenes strain SG1, Agrobacterium radiobacter J14a, and Ralstonia picketti D. All showed identical substrate specificity to purified AtzA from Pseudomonas sp. strain ADP. Cell extracts from Clavibacter michiganensis ATZ1, which also contains a gene homologous to atzA, were able to transform atrazine analogs containing pseudohalide and thiomethyl groups, in addition to the substrates used by AtzA from Pseudomonas sp. strain ADP. This suggests that either (i) another enzyme(s) is present which confers the broader substrate range or (ii) the AtzA itself has a broader substrate range. PMID:11010866

  20. [Biochemical methods for the determination of a clinical protein catabolism].

    Science.gov (United States)

    Roth, E; Funovics, J; Schulz, F; Karner, J

    1980-12-01

    1. 20 patients before surgery received enteral nutrition for three days (12 g nitrogen, 1800 Kcal). Nitrogen and urea excretions in urine during the second and third day were determined. Eleven patients had a negative nitrogen balance (-2,7 and -2,4 g/day). In these patients urea production rates were 21,1 and 20,1 g/day. An urea production rate exceeding 15 g urea/day is probable an indication for a protein catabolism. The reason for this catabolic state seems to be a decreased protein utilisation (49 and 47 percent) as the result of a metabolic stress situation. This metabolic stress was determined according the stress index (Bistrian). The patients were in a stress situation comparable to postoperative stress (+3,7 and +3,9). The determination of urea production rate and catabolic index seems a suitable tool for defining a catabolic state. 2. 3-met-histidine excretion in urine were measured in seven patients postoperatively. In different periods saline or aminoacids solutions (5% alanine) were infused. During alanine administration protein (+49%)--and 3-met-histidine excretions (+50%) increased. It is not possible to state a catabolic situation out of the 3-met-histidine excretion, because an increased excretion may result from a stimulated protein synthesis in muscle tissue or from an increased muscleprotein wasting. 3. Free amino acid pools in plasma and muscle tissue were analysed in patients with severe illness of liver and pancreas. The free amino acid pattern differed from healthy volunteers. In patients with liver disease significantly increased concentrations of phenylalanine, tyrosine and methionine were found. In patients with acute pancreatitis highly abnormal pattern of intracellular amino acids occurred with decreased concentrations of glutamine, cysteine, histidine, lysine, arginine and ornithine. The highly significant decreased concentrations of glutamine (p less than 0,01) indicate a catabolic situation of these patients. A quantification of the

  1. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention.

    Science.gov (United States)

    Battaglia, Valentina; DeStefano Shields, Christina; Murray-Stewart, Tracy; Casero, Robert A

    2014-03-01

    Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N (1)-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N (1)-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.

  2. Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Maria Miragaia

    Full Text Available BACKGROUND: The methicillin-resistant Staphylococcus aureus clone USA300 contains a novel mobile genetic element, arginine catabolic mobile element (ACME, that contributes to its enhanced capacity to grow and survive within the host. Although ACME appears to have been transferred into USA300 from S. epidermidis, the genetic diversity of ACME in the latter species remains poorly characterized. METHODOLOGY/PRINCIPAL FINDINGS: To assess the prevalence and genetic diversity of ACME, 127 geographically diverse S. epidermidis isolates representing 86 different multilocus sequence types (STs were characterized. ACME was found in 51% (65/127 of S. epidermidis isolates. The vast majority (57/65 of ACME-containing isolates belonged to the predominant S. epidermidis clonal complex CC2. ACME was often found in association with different allotypes of staphylococcal chromosome cassette mec (SCCmec which also encodes the recombinase function that facilities mobilization ACME from the S. epidermidis chromosome. Restriction fragment length polymorphism, PCR scanning and DNA sequencing allowed for identification of 39 distinct ACME genetic variants that differ from one another in gene content, thereby revealing a hitherto uncharacterized genetic diversity within ACME. All but one ACME variants were represented by a single S. epidermidis isolate; the singular variant, termed ACME-I.02, was found in 27 isolates, all of which belonged to the CC2 lineage. An evolutionary model constructed based on the eBURST algorithm revealed that ACME-I.02 was acquired at least on 15 different occasions by strains belonging to the CC2 lineage. CONCLUSIONS/SIGNIFICANCE: ACME-I.02 in diverse S. epidermidis isolates were nearly identical in sequence to the prototypical ACME found in USA300 MRSA clone, providing further evidence for the interspecies transfer of ACME from S. epidermidis into USA300.

  3. Bioanalytical approaches for characterizing catabolism of antibody-drug conjugates.

    Science.gov (United States)

    Saad, Ola M; Shen, Ben-Quan; Xu, Keyang; Khojasteh, S Cyrus; Girish, Sandhya; Kaur, Surinder

    2015-01-01

    The in vivo stability and catabolism of antibody-drug conjugates (ADCs) directly impact their PK, efficacy and safety, and metabolites of the cytotoxic or small molecule drug component of an ADC can further complicate these factors. This perspective highlights the importance of understanding ADC catabolism and the associated bioanalytical challenges. We evaluated different bioanalytical approaches to qualitatively and quantitatively characterize ADC catabolites. Here we review and discuss the rationale and experimental strategies used to design bioanalytical assays for characterization of ADC catabolism and supporting ADME studies during ADC clinical development. This review covers both large and small molecule approaches, and uses examples from Kadcyla® (T-DM1) and a THIOMAB™ antibody-drug conjugate to illustrate the process.

  4. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out......, and flux control was shown to be dependent on the metabolite levels. Due to thermodynamic constraints, flux control may reside at the first step in the pathway, i.e., at the xylose reductase, even when the intracellular xylitol concentration is high. On the basis of the kinetic analysis, the general dogma...... specifying that flux control often resides at the step following an intermediate present at high concentrations was, therefore, shown not to hold. The intracellular xylitol concentration was measured in batch cultivations of two different strains of Aspergillus niger and two different strains of Aspergillus...

  5. Renal catabolism of albumin – current views and controversies

    Directory of Open Access Journals (Sweden)

    Jakub Gburek

    2011-10-01

    Full Text Available Albumin is the main protein of blood plasma, lymph, cerebrospinal fluid and interstitial fluid. The protein assists in many important body functions, including maintenance of proper colloidal osmotic pressure, transport of important metabolites and antioxidant action. Synthesis of albumin takes place mainly in the liver, and its catabolism occurs mostly in vascular endothelium of muscle, skin and liver as well as in the kidney tubular epithelium. Renal catabolism of albumin consists of glomerular filtration and tubular reabsorption. The tubular processes include endocytosis via the multiligand scavenger receptor tandem megalin and cubilin-amnionless complex. Possible ways of further catabolism of this protein are lysosomal proteolysis to amino acids and short peptides, recycling of degradation products into the bloodstream and tubular lumen or transcytosis of whole molecules. The article discusses the molecular aspects of these processes and presents the controversies arising in the light of the last decade of research.

  6. Osthole Inhibits Proliferation and Induces Catabolism in Rat Chondrocytes and Cartilage Tissue

    Directory of Open Access Journals (Sweden)

    Guoqing Du

    2015-08-01

    Full Text Available Background/Aims: Cartilage destruction is thought to be the major mediator of osteoarthritis. Recent studies suggest that inhibition of subchrondral bone loss by anti-osteoporosis (OP drug can protect cartilige erosion. Osthole, as a promising agent for treating osteoporosis, may show potential in treating osteoarthritis. The purpose of this study was to investigate whether Osthole affects the proliferation and catabolism of rat chondrocytes, and the degeneration of cartilage explants. Methods: Rat chondrocytes were treated with Osthole (0 μM, 6.25 μM, 12.5 μM, and 25 μM with or without IL1-β (10ng/ml for 24 hours. The expression levels of type II collagen and MMP13 were detected by western Blot. Marker genes for chondrocytes (A-can and Sox9, matrix metalloproteinases (MMPs, aggrecanases (ADAMTS5 and genes implicated in extracellular matrix catabolism were evaluated by qPCR. Cell proliferation was assessed by measuring proliferating cell nuclear antigen (PCNA expression and fluorescence activated cell sorter. Wnt7b/β-catenin signaling was also investigated. Cartilage explants from two-week old SD rats were cultured with IL-1β, Osthole and Osthole plus IL-1β for four days and glycosaminoglycan (GAG synthesis was assessed with toluidine blue staining and Safranine O/Fast Green FCF staining, collagen type II expression was detected by immunofuorescence. Results: Osthole reduced expression of chondrocyte markers and increased expression of MMP13, ADAMTS5 and MMP9 in a dose-dependent manner. Catabolic gene expression levels were further improved by Osthole plus IL-1β. Osthole inhibited chondrocyte proliferation. GAG synthesis and type II collagen were decreased in both the IL-1β groups and the Osthole groups, and significantly reduced by Osthole plus IL-1β. Conclusions: Our data suggested that Osthole increases the catabolism of rat chondrocytes and cartilage explants, this effect might be mediated through inhibiting Wnt7b

  7. Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2.

    Science.gov (United States)

    Nguyen, Thi Phi Oanh; Helbling, Damian E; Bers, Karolien; Fida, Tekle Tafese; Wattiez, Ruddy; Kohler, Hans-Peter E; Springael, Dirk; De Mot, René

    2014-10-01

    The widespread agricultural application of carbofuran and concomitant contamination of surface and ground waters has raised health concerns due to the reported toxic effects of this insecticide and its degradation products. Most bacteria that degrade carbofuran only perform partial degradation involving carbamate hydrolysis without breakdown of the resulting phenolic metabolite. The capacity to mineralize carbofuran beyond the benzofuran ring has been reported for some bacterial strains, especially sphingomonads, and some common metabolites, including carbofuran phenol, were identified. In the current study, the catabolism of carbofuran by Novosphingobium sp. KN65.2 (LMG 28221), a strain isolated from a carbofuran-exposed Vietnamese soil and utilizing the compound as a sole carbon and nitrogen source, was studied. Several KN65.2 plasposon mutants with diminished or abolished capacity to degrade and mineralize carbofuran were generated and characterized. Metabolic profiling of representative mutants revealed new metabolic intermediates, in addition to the initial hydrolysis product carbofuran phenol. The promiscuous carbofuran-hydrolyzing enzyme Mcd, which is present in several bacteria lacking carbofuran ring mineralization capacity, is not encoded by the Novosphingobium sp. KN65.2 genome. An alternative hydrolase gene required for this step was not identified, but the constitutively expressed genes of the unique cfd operon, including the oxygenase genes cfdC and cfdE, could be linked to further degradation of the phenolic metabolite. A third involved oxygenase gene, cfdI, and the transporter gene cftA, encoding a TonB-dependent outer membrane receptor with potential regulatory function, are located outside the cfd cluster. This study has revealed the first dedicated carbofuran catabolic genes and provides insight in the early steps of benzofuran ring degradation.

  8. NahY, a Catabolic Plasmid-Encoded Receptor Required for Chemotaxis of Pseudomonas putida to the Aromatic Hydrocarbon Naphthalene

    OpenAIRE

    1999-01-01

    Pseudomonas putida G7 exhibits chemotaxis to naphthalene, but the molecular basis for this was not known. A new gene, nahY, was found to be cotranscribed with meta cleavage pathway genes on the NAH7 catabolic plasmid for naphthalene degradation. The nahY gene encodes a 538-amino-acid protein with a membrane topology and a C-terminal region that resemble those of chemotaxis transducer proteins. A P. putida G7 nahY mutant grew on naphthalene but was not chemotactic to this aromatic hydrocarbon....

  9. Piperine mediates LPS induced inflammatory and catabolic effects in rat intervertebral disc.

    Science.gov (United States)

    Li, Yan; Li, Kang; Hu, Yiqin; Xu, Bo; Zhao, Jie

    2015-01-01

    Piperine is an exact of the active phenolic component from Black pepper. It has been reported to have many biological activities including anti-oxidant, anti-inflammatory and anti-tumor effects. Intervertebral disc degeneration (IDD) is a degenerative disease closely relate to inflammation of nucleus pulposus (NP) cells. This study aimed to assess the anti-inflammatory and anti-catabolic effects of piperine in rat intervertebral disc using in vitro and ex vivo analyzes. We demonstrated that piperine could inhibit LPS induced expression and production of inflammatory factors and catabolic proteases in NP cells culture model. It significantly inhibited multiple inflammatory factors and oxidative stress-associated genes (IL-1β, TNF-α, IL-6, iNOS), MMPs (MMP-3, MMP-13), ADAMTS (ADAMTS-4, ADAMTS-5) mRNA expression and NO production in a concentration-dependent manner. Moreover, piperine could reverse the LPS-induced inhibition of gene expression of aggrecan and collagen-II. Histologic and dimethylmethylene blue analysis indicated piperine could also against LPS induced proteoglycan (PG) depletion in a rat intervertebral disc culture model. Western blot results showed that piperine inhibited the LPS-mediated phosphorylation of JNK and activation of NF-κB. Finally, our results demonstrated the ability of piperine to antagonize LPS-mediated inflammation of NP cells and suppression of PG in rat intervertebral disc, suggesting a potential agent for treatment of IDD in future.

  10. Ectoine-induced proteins in Sinorhizobium meliloti include an Ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism.

    Science.gov (United States)

    Jebbar, Mohamed; Sohn-Bösser, Linda; Bremer, Erhard; Bernard, Théophile; Blanco, Carlos

    2005-02-01

    To understand the mechanisms of ectoine-induced osmoprotection in Sinorhizobium meliloti, a proteomic examination of S. meliloti cells grown in minimal medium supplemented with ectoine was undertaken. This revealed the induction of 10 proteins. The protein products of eight genes were identified by using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Five of these genes, with four other genes whose products were not detected on two-dimensional gels, belong to the same gene cluster, which is localized on the pSymB megaplasmid. Four of the nine genes encode the characteristic components of an ATP-binding cassette transporter that was named ehu, for ectoine/hydroxyectoine uptake. This transporter was encoded by four genes (ehuA, ehuB, ehuC, and ehuD) that formed an operon with another gene cluster that contains five genes, named eutABCDE for ectoine utilization. On the basis of sequence homologies, eutABCDE encode enzymes with putative and hypothetical functions in ectoine catabolism. Analysis of the properties of ehuA and eutA mutants suggests that S. meliloti possesses at least one additional ectoine catabolic pathway as well as a lower-affinity transport system for ectoine and hydroxyectoine. The expression of ehuB, as determined by measurements of UidA activity, was shown to be induced by ectoine and hydroxyectoine but not by glycine betaine or by high osmolality.

  11. Variable carbon catabolism among Salmonella enterica serovar Typhi isolates.

    Directory of Open Access Journals (Sweden)

    Lay Ching Chai

    Full Text Available BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. METHODOLOGY/PRINCIPAL FINDINGS: To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas of typhoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. CONCLUSION: The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen.

  12. Hormonal regulation of leucine catabolism in mammary epithelial cells.

    Science.gov (United States)

    Lei, Jian; Feng, Dingyuan; Zhang, Yongliang; Dahanayaka, Sudath; Li, Xilong; Yao, Kang; Wang, Junjun; Wu, Zhenlong; Dai, Zhaolai; Wu, Guoyao

    2013-09-01

    Branched-chain amino acids (BCAA) are actively taken up and catabolized by the mammary gland during lactation for syntheses of glutamate, glutamine and aspartate. Available evidence shows that the onset of lactation is associated with increases in circulating levels of cortisol, prolactin and glucagon, but decreases in insulin and growth hormone. This study determined the effects of physiological concentrations of these hormones on the catabolism of leucine (a representative BCAA) in bovine mammary epithelial cells. Cells were incubated at 37 °C for 2 h in Krebs buffer containing 3 mM D-glucose, 0.5 mM L-leucine, L-[1-14C]leucine or L-[U-14C]leucine, and 0-50 μU/mL insulin, 0-20 ng/mL growth hormone 0-200 ng/mL prolactin, 0-150 nM cortisol or 0-300 pg/mL glucagon. Increasing extracellular concentrations of insulin did not affect leucine transamination or oxidative decarboxylation, but decreased the rate of oxidation of leucine carbons 2-6. Elevated levels of growth hormone dose dependently inhibited leucine catabolism, α-ketoisocaproate (KIC) production and the syntheses of glutamate plus glutamine. In contrast, cortisol and glucagon increased leucine transamination, leucine oxidative decarboxylation, KIC production, the oxidation of leucine 2-6 carbons and the syntheses of glutamate plus glutamine. Prolactin did not affect leucine catabolism in the cells. The changes in leucine degradation were consistent with alterations in abundances of BCAA transaminase and phosphorylated levels of branched-chain α-ketoacid dehydrogenase. Reductions in insulin and growth hormone but increases in cortisol and glucagon with lactation act in concert to stimulate BCAA catabolism for glutamate and glutamine syntheses. These coordinated changes in hormones may facilitate milk production in lactating mammals.

  13. Physiological Role of phnP-specified Phosphoribosyl Cyclic Phosphodiesterase in Catabolism of Organophosphonic Acids by the Carbon−Phosphorus Lyase Pathway

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McSorley, Fern R.; Zechel, David L.

    2011-01-01

    In Escherichia coli , internalization and catabolism of organophosphonicacids are governed by the 14-cistron phnCDEFGHIJKLMNOP operon. The phnP gene product was previously shown to encode a phosphodiesterase with unusual specificity toward ribonucleoside 2',3'-cyclic phosphates. Furthermore, phnP...

  14. The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development.

    Directory of Open Access Journals (Sweden)

    R van der Geize

    2011-08-01

    Full Text Available Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551, ipdB (rv3552, fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD and 3aα-H-4α(3'-propionic acid-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP. Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections.

  15. The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development.

    Directory of Open Access Journals (Sweden)

    R van der Geize

    2011-08-01

    Full Text Available Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551, ipdB (rv3552, fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD and 3aα-H-4α(3'-propionic acid-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP. Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections.

  16. The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development.

    Science.gov (United States)

    van der Geize, R; Grommen, A W F; Hessels, G I; Jacobs, A A C; Dijkhuizen, L

    2011-08-01

    Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551), ipdB (rv3552), fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD) and 3aα-H-4α(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP). Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections.

  17. Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction.

    Science.gov (United States)

    Barrett, Perry; Ebling, Francis J P; Schuhler, Sandrine; Wilson, Dana; Ross, Alexander W; Warner, Amy; Jethwa, Preeti; Boelen, Anita; Visser, Theo J; Ozanne, Daniel M; Archer, Zoe A; Mercer, Julian G; Morgan, Peter J

    2007-08-01

    Seasonal adaptations in physiology exhibited by many animals involve an interface between biological timing and specific neuroendocrine systems, but the molecular basis of this interface is unknown. In this study of Siberian hamsters, we show that the availability of thyroid hormone within the hypothalamus is a key determinant of seasonal transitions. The expression of the gene encoding type III deiodinase (Dio3) and Dio3 activity in vivo (catabolism of T(4) and T(3)) is dynamically and temporally regulated by photoperiod, consistent with the loss of hypothalamic T(3) concentrations under short photoperiods. Chronic replacement of T(3) in the hypothalamus of male hamsters exposed to short photoperiods, thus bypassing synthetic or catabolic deiodinase enzymes located in cells of the ependyma of the third ventricle, prevented the onset of short-day physiology: hamsters maintained a long-day body weight phenotype and failed to undergo testicular and epididymal regression. However, pelage moult to a winter coat was not affected. Type II deiodinase gene expression was not regulated by photoperiod in these hamsters. Collectively, these data point to a pivotal role for hypothalamic DIO3 and T(3) catabolism in seasonal cycles of body weight and reproduction in mammals.

  18. A Forward Genetic Approach in Chlamydomonas reinhardtii as a Strategy for Exploring Starch Catabolism

    Science.gov (United States)

    Duchêne, Thierry; Cogez, Virginie; Cousin, Charlotte; Peltier, Gilles; Ball, Steven G.; Dauvillée, David

    2013-01-01

    A screen was recently developed to study the mobilization of starch in the unicellular green alga Chlamydomonas reinhardtii. This screen relies on starch synthesis accumulation during nitrogen starvation followed by the supply of nitrogen and the switch to darkness. Hence multiple regulatory networks including those of nutrient starvation, cell cycle control and light to dark transitions are likely to impact the recovery of mutant candidates. In this paper we monitor the specificity of this mutant screen by characterizing the nature of the genes disrupted in the selected mutants. We show that one third of the mutants consisted of strains mutated in genes previously reported to be of paramount importance in starch catabolism such as those encoding β-amylases, the maltose export protein, and branching enzyme I. The other mutants were defective for previously uncharacterized functions some of which are likely to define novel proteins affecting starch mobilization in green algae. PMID:24019981

  19. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy

    Directory of Open Access Journals (Sweden)

    Ximena Escalera-Fanjul

    2017-06-01

    Full Text Available Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s. Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64

  20. HipH Catalyzes the Hydroxylation of 4-Hydroxyisophthalate to Protocatechuate in 2,4-Xylenol Catabolism by Pseudomonas putida NCIMB 9866.

    Science.gov (United States)

    Chao, Hong-Jun; Chen, Yan-Fei; Fang, Ti; Xu, Ying; Huang, Wei E; Zhou, Ning-Yi

    2015-11-13

    In addition to growing on p-cresol, Pseudomonas putida NCIMB 9866 is the only reported strain capable of aerobically growing on 2,4-xylenol, which is listed as a priority pollutant by the U.S. Environmental Protection Agency. Several enzymes involved in the oxidation of the para-methyl group, as well as the corresponding genes, have previously been reported. The enzyme catalyzing oxidation of the catabolic intermediate 4-hydroxyisophthalate to the ring cleavage substrate protocatechuate was also purified from strain NCIMB 9866, but its genetic determinant is still unavailable. In this study, the gene hipH, encoding 4-hydroxyisophthalate hydroxylase, from strain NCIMB 9866 was cloned by transposon mutagenesis. Purified recombinant HipH-His6 was found to be a dimer protein with a molecular mass of approximately 110 kDa. HipH-His6 catalyzed the hydroxylation of 4-hydroxyisophthalate to protocatechuate with a specific activity of 1.54 U mg(-1) and showed apparent Km values of 11.40 ± 3.05 μM for 4-hydroxyisophthalate with NADPH and 11.23 ± 2.43 μM with NADH and similar Km values for NADPH and NADH (64.31 ± 13.16 and 72.76 ± 12.06 μM, respectively). The identity of protocatechuate generated from 4-hydroxyisophthalate hydroxylation by HipH-His6 has also been confirmed by high-performance liquid chromatography and mass spectrometry. Gene transcriptional analysis, gene knockout, and complementation indicated that hipH is essential for 2,4-xylenol catabolism but not for p-cresol catabolism in this strain. This fills a gap in our understanding of the gene that encodes a critical step in 2,4-xylenol catabolism and also provides another example of biochemical and genetic diversity of microbial catabolism of structurally similar compounds.

  1. Specific and Quantitative Assessment of Naphthalene and Salicylate Bioavailability by Using a Bioluminescent Catabolic Reporter Bacterium

    Science.gov (United States)

    Heitzer, Armin; Webb, Oren F.; Thonnard, Janeen E.; Sayler, Gary S.

    1992-01-01

    A bioassay was developed and standardized for the rapid, specific, and quantitative assessment of naphthalene and salicylate bioavailability by use of bioluminescence monitoring of catabolic gene expression. The bioluminescent reporter strain Pseudomonas fluorescens HK44, which carries a transcriptional nahG-luxCDABE fusion for naphthalene and salicylate catabolism, was used. The physiological state of the reporter cultures as well as the intrinsic regulatory properties of the naphthalene degradation operon must be taken into account to obtain a high specificity at low target substrate concentrations. Experiments have shown that the use of exponentially growing reporter cultures has advantages over the use of carbon-starved, resting cultures. In aqueous solutions for both substrates, naphthalene and salicylate, linear relationships between initial substrate concentration and bioluminescence response were found over concentration ranges of 1 to 2 orders of magnitude. Naphthalene could be detected at a concentration of 45 ppb. Studies conducted under defined conditions with extracts and slurries of experimentally contaminated sterile soils and identical uncontaminated soil controls demonstrated that this method can be used for specific and quantitative estimations of target pollutant presence and bioavailability in soil extracts and for specific and qualitative estimations of napthalene in soil slurries. PMID:16348717

  2. Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum.

    Science.gov (United States)

    Du, Lei; Ma, Li; Qi, Feifei; Zheng, Xianliang; Jiang, Chengying; Li, Ailei; Wan, Xiaobo; Liu, Shuang-Jiang; Li, Shengying

    2016-03-18

    4-Cresol is not only a significant synthetic intermediate for production of many aromatic chemicals, but also a priority environmental pollutant because of its toxicity to higher organisms. In our previous studies, a gene cluster implicated to be involved in 4-cresol catabolism, creCDEFGHIR, was identified in Corynebacterium glutamicum and partially characterized in vivo. In this work, we report on the discovery of a novel 4-cresol biodegradation pathway that employs phosphorylated intermediates. This unique pathway initiates with the phosphorylation of the hydroxyl group of 4-cresol, which is catalyzed by a novel 4-methylbenzyl phosphate synthase, CreHI. Next, a unique class I P450 system, CreJEF, specifically recognizes phosphorylated intermediates and successively oxidizes the aromatic methyl group into carboxylic acid functionality via alcohol and aldehyde intermediates. Moreover, CreD (phosphohydrolase), CreC (alcohol dehydrogenase), and CreG (aldehyde dehydrogenase) were also found to be required for efficient oxidative transformations in this pathway. Steady-state kinetic parameters (Km and kcat) for each catabolic step were determined, and these results suggest that kinetic controls serve a key role in directing the metabolic flux to the most energy effective route.

  3. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice.

  4. Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression

    DEFF Research Database (Denmark)

    Sørensen, Kim I.; Hove-Jensen, Bjarne

    1996-01-01

    . The rpiB gene resided on a 4.6-kbp HindIII-EcoRV DNA fragment from phage lambda 10H5 (642) of the Kohara gene library and mapped at 92.85 min. Consistent with this map position, the cloned DNA fragment contained two divergent open reading frames of 149 and 296 codons, encoding ribose phosphate isomerase B...

  5. The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans.

    Science.gov (United States)

    Martins, Tiago M; Hartmann, Diego O; Planchon, Sébastien; Martins, Isabel; Renaut, Jenny; Silva Pereira, Cristina

    2015-01-01

    Aspergilli play major roles in the natural turnover of elements, especially through the decomposition of plant litter, but the end catabolism of lignin aromatic hydrocarbons remains largely unresolved. The 3-oxoadipate pathway of their degradation combines the catechol and the protocatechuate branches, each using a set of specific genes. However, annotation for most of these genes is lacking or attributed to poorly- or un-characterised families. Aspergillus nidulans can utilise as sole carbon/energy source either benzoate or salicylate (upstream aromatic metabolites of the protocatechuate and the catechol branches, respectively). Using this cultivation strategy and combined analyses of comparative proteomics, gene mining, gene expression and characterisation of particular gene-replacement mutants, we precisely assigned most of the steps of the 3-oxoadipate pathway to specific genes in this fungus. Our findings disclose the genetically encoded potential of saprophytic Ascomycota fungi to utilise this pathway and provide means to untie associated regulatory networks, which are vital to heightening their ecological significance.

  6. Serine one-carbon catabolism with formate overflow

    Science.gov (United States)

    Meiser, Johannes; Tumanov, Sergey; Maddocks, Oliver; Labuschagne, Christiaan Fred; Athineos, Dimitris; Van Den Broek, Niels; Mackay, Gillian M.; Gottlieb, Eyal; Blyth, Karen; Vousden, Karen; Kamphorst, Jurre J.; Vazquez, Alexei

    2016-01-01

    Serine catabolism to glycine and a one-carbon unit has been linked to the anabolic requirements of proliferating mammalian cells. However, genome-scale modeling predicts a catabolic role with one-carbon release as formate. We experimentally prove that in cultured cancer cells and nontransformed fibroblasts, most of the serine-derived one-carbon units are released from cells as formate, and that formate release is dependent on mitochondrial reverse 10-CHO-THF synthetase activity. We also show that in cancer cells, formate release is coupled to mitochondrial complex I activity, whereas in nontransformed fibroblasts, it is partially insensitive to inhibition of complex I activity. We demonstrate that in mice, about 50% of plasma formate is derived from serine and that serine starvation or complex I inhibition reduces formate synthesis in vivo. These observations transform our understanding of one-carbon metabolism and have implications for the treatment of diabetes and cancer with complex I inhibitors.

  7. Threshold Acetate Concentrations for Acetate Catabolism by Aceticlastic Methanogenic Bacteria

    OpenAIRE

    Westermann, Peter; Ahring, Birgitte K.; Mah, Robert A.

    1989-01-01

    Marked differences were found for minimum threshold concentrations of acetate catabolism by Methanosarcina barkeri 227 (1.180 mM), Methanosarcina mazei S-6 (0.396 mM), and a Methanothrix sp. (0.069 mM). This indicates that the aceticlastic methanogens responsible for the conversion of acetate to methane in various ecosystems might be different, depending on the prevailing in situ acetate concentrations.

  8. Mediated Electrochemical Measurements of Intracellular Catabolic Activities of Yeast Cells

    Institute of Scientific and Technical Information of China (English)

    Jin Sheng ZHAO; Zhen Yu YANG; Yao LU; Zheng Yu YANG

    2005-01-01

    Coupling with the dual mediator system menadione/ferricyanide, microelectrode voltammetric measurements were undertaken to detect the ferrocyanide accumulations arising from the mediated reduction of ferricyanide by yeast cells. The results indicate that the dual mediator system menadione/ferricyanide could be used as a probe to detect cellular catabolic activities in yeast cells and the electrochemical response has a positive relationship with the specific growth rate of yeast cells.

  9. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway

    OpenAIRE

    Grishin, Andrey M.; Miroslaw Cygler

    2015-01-01

    Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA) utilization pathway is abundant and represents the central route for degradation of a variety of organic compo...

  10. Geochemical Energy for Catabolism and Anabolism in Hydrothermal Systems

    Science.gov (United States)

    Amend, J. P.; McCollom, T. M.; Bach, W.

    2008-12-01

    Chemically reduced deep-sea vent fluids mixed with oxidized seawater can generate redox disequilibria that serve as energy sources for chemolithoautotrophic (catabolism) and biomass synthesis (anabolism) reactions. Numerical models can be used to evaluate Gibbs energies of such processes on the early Earth and in present-day systems. Here, geochemical data from compositionally diverse vent fluids (Lost City, Rainbow, Logatchev, TAG, 21 °N EPR) are combined with several seawater chemistries to yield a wide range of mixed hydrothermal solutions; this is the starting point for our thermodynamic calculations. In ultramafic-hosted hydrothermal systems, such as Rainbow or Lost City, aerobic chemolithotrophic catabolisms (oxidation of H2, FeII, CH4) are the most energy-yielding at low temperatures (catabolic reaction energetics can then be used to put constraints on the amount of primary biomass production. Under putative early Earth conditions, for example, the net chemoautotrophic synthesis of cellular building blocks is thermodynamically most favorable at moderate temperatures (~50°C), where the energy contributions from HCO3- and H+ in cool seawater coupled to the reducing power in hot vent fluid are optimized. At these conditions, and counter to conventional wisdom, the synthesis of amino acids may even yield small amounts of energy.

  11. Pyridine metabolism in tea plants: salvage, conjugate formation and catabolism.

    Science.gov (United States)

    Ashihara, Hiroshi; Deng, Wei-Wei

    2012-11-01

    Pyridine compounds, including nicotinic acid and nicotinamide, are key metabolites of both the salvage pathway for NAD and the biosynthesis of related secondary compounds. We examined the in situ metabolic fate of [carbonyl-(14)C]nicotinamide, [2-(14)C]nicotinic acid and [carboxyl-(14)C]nicotinic acid riboside in tissue segments of tea (Camellia sinensis) plants, and determined the activity of enzymes involved in pyridine metabolism in protein extracts from young tea leaves. Exogenously supplied (14)C-labelled nicotinamide was readily converted to nicotinic acid, and some nicotinic acid was salvaged to nicotinic acid mononucleotide and then utilized for the synthesis of NAD and NADP. The nicotinic acid riboside salvage pathway discovered recently in mungbean cotyledons is also operative in tea leaves. Nicotinic acid was converted to nicotinic acid N-glucoside, but not to trigonelline (N-methylnicotinic acid), in any part of tea seedlings. Active catabolism of nicotinic acid was observed in tea leaves. The fate of [2-(14)C]nicotinic acid indicates that glutaric acid is a major catabolite of nicotinic acid; it was further metabolised, and carbon atoms were finally released as CO(2). The catabolic pathway observed in tea leaves appears to start with the nicotinic acid N-glucoside formation; this pathway differs from catabolic pathways observed in microorganisms. Profiles of pyridine metabolism in tea plants are discussed.

  12. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    Science.gov (United States)

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  13. Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073.

    Science.gov (United States)

    Anfora, Andrew T; Haugen, Brian J; Roesch, Paula; Redford, Peter; Welch, Rodney A

    2007-11-01

    A D-serine deaminase (DsdA) mutant of uropathogenic Escherichia coli strain CFT073 has a hypercolonization phenotype in a murine model of urinary tract infection (UTI) due to increased virulence gene expression by an unknown mechanism (B. J. Haugen et al., Infect. Immun. 75:278-289, 2007). DsdC is a D-serine-dependent activator of dsdXA transcription. DsdC may regulate the virulence genes responsible for hypercolonization. The loss of DsdA leads to increased intracellular accumulation of D-serine. In this study we show that deletion of the genes encoding L-serine deaminases SdaA and SdaB resulted in a mutant that accumulates higher intracellular levels of L-serine than CFT073. CFT073 sdaA sdaB has a mild competitive colonization defect whereas a CFT073 dsdA sdaA sdaB triple mutant shows a greater loss in competitive colonization ability. Thus, the inability to generate serine-specific catabolic products does not result in hypercolonization and the ability to catabolize serine represents a positive physiological trait during murine UTI. CFT073 dsdC and CFT073 dsdC dsdA mutants continue to outcompete the wild type in the UTI model. These results confirm that loss of DsdA activity results in the hypercolonization phenotype and that DsdC does not play a direct role in the elevated-colonization phenotype. Interestingly, a CFT073 dsdA mutant with deletions of D-serine transporter genes dsdX and cycA shows wild-type colonization levels of the bladder but is attenuated for kidney colonization. Thus, D-serine acts as a signal for hypercolonization and virulence gene expression by CFT073 dsdA, whereas overall catabolism of serine represents a positive Escherichia coli fitness trait during UTI.

  14. Roles of Serine Accumulation and Catabolism in the Colonization of the Murine Urinary Tract by Escherichia coli CFT073▿

    Science.gov (United States)

    Anfora, Andrew T.; Haugen, Brian J.; Roesch, Paula; Redford, Peter; Welch, Rodney A.

    2007-01-01

    A d-serine deaminase (DsdA) mutant of uropathogenic Escherichia coli strain CFT073 has a hypercolonization phenotype in a murine model of urinary tract infection (UTI) due to increased virulence gene expression by an unknown mechanism (B. J. Haugen et al., Infect. Immun. 75:278-289, 2007). DsdC is a d-serine-dependent activator of dsdXA transcription. DsdC may regulate the virulence genes responsible for hypercolonization. The loss of DsdA leads to increased intracellular accumulation of d-serine. In this study we show that deletion of the genes encoding l-serine deaminases SdaA and SdaB resulted in a mutant that accumulates higher intracellular levels of l-serine than CFT073. CFT073 sdaA sdaB has a mild competitive colonization defect whereas a CFT073 dsdA sdaA sdaB triple mutant shows a greater loss in competitive colonization ability. Thus, the inability to generate serine-specific catabolic products does not result in hypercolonization and the ability to catabolize serine represents a positive physiological trait during murine UTI. CFT073 dsdC and CFT073 dsdC dsdA mutants continue to outcompete the wild type in the UTI model. These results confirm that loss of DsdA activity results in the hypercolonization phenotype and that DsdC does not play a direct role in the elevated-colonization phenotype. Interestingly, a CFT073 dsdA mutant with deletions of d-serine transporter genes dsdX and cycA shows wild-type colonization levels of the bladder but is attenuated for kidney colonization. Thus, d-serine acts as a signal for hypercolonization and virulence gene expression by CFT073 dsdA, whereas overall catabolism of serine represents a positive Escherichia coli fitness trait during UTI. PMID:17785472

  15. Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine.

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E Fidelma

    2009-09-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.

  16. Metabolomic profiling of permethrin-treated Drosophila melanogaster identifies a role for tryptophan catabolism in insecticide survival.

    Science.gov (United States)

    Brinzer, Robert A; Henderson, Louise; Marchiondo, Alan A; Woods, Debra J; Davies, Shireen A; Dow, Julian A T

    2015-12-01

    Insecticides and associated synergists are rapidly losing efficacy in target insect pest populations making the discovery of alternatives a priority. To discover novel targets for permethrin synergists, metabolomics was performed on permethrin-treated Drosophila melanogaster. Changes were observed in several metabolic pathways including those for amino acids, glycogen, glycolysis, energy, nitrogen, NAD(+), purine, pyrimidine, lipids and carnitine. Markers for acidosis, ammonia stress, oxidative stress and detoxification responses were also observed. Many of these changes had not been previously characterized after permethrin exposure. From the altered pathways, tryptophan catabolism was selected for further investigation. The knockdown of some tryptophan catabolism genes (vermilion, cinnabar and CG6950) in the whole fly and in specific tissues including fat body, midgut and Malpighian tubules using targeted RNAi resulted in altered survival phenotypes against acute topical permethrin exposure. The knockdown of vermilion, cinnabar and CG6950 in the whole fly also altered survival phenotypes against chronic oral permethrin, fenvalerate, DDT, chlorpyriphos and hydramethylnon exposure. Thus tryptophan catabolism has a previously uncharacterized role in defence against insecticides, and shows that metabolomics is a powerful tool for target identification in pesticide research.

  17. Hot air treatment-induced arginine catabolism is associated with elevated polyamines and proline levels and alleviates chilling injury in postharvest tomato fruit.

    Science.gov (United States)

    Zhang, Xinhua; Shen, Lin; Li, Fujun; Meng, Demei; Sheng, Jiping

    2013-10-01

    To understand whether arginine catabolism might be involved in hot air (HA)-induced chilling tolerance mechanism in tomato fruit, we investigated the effect of HA treatment on endogenous arginine catabolism in relation to chilling injury. Tomato fruit were harvested at mature green stage and treated with HA at 38°C for 12 h and then stored at 2°C for 21 days. The effects of HA treatment on fruit chilling injury and gene expression levels or enzyme activity, and metabolites related to arginine catabolism were evaluated. HA treatment reduced the chilling injury symptoms of tomato fruit and enhanced the accumulation of endogenous polyamines, especially putrescine and proline. This accumulation is associated with the increased transcript levels of genes encoding arginase (LeARG1 and LeARG2), arginine decarboxylase (LeADC), ornithine decarboxylase (LeODC) and ornithine aminotransferase (LeOAT) at most sampling times. However, HA treatment had little effect on nitric oxide synthase activity and nitric oxide concentration. These results revealed that the reduction in chilling injury by HA treatment may be due to the accumulation of putrescine and proline induced primarily by activating the catabolism of endogenous arginine. © 2013 Society of Chemical Industry.

  18. Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Bradley Smith

    2016-10-01

    Full Text Available Metabolic reprogramming is critical to oncogenesis, but the emergence and function of this profound reorganization remain poorly understood. Here we find that cooperating oncogenic mutations drive large-scale metabolic reprogramming, which is both intrinsic to cancer cells and obligatory for the transition to malignancy. This involves synergistic regulation of several genes encoding metabolic enzymes, including the lactate dehydrogenases LDHA and LDHB and mitochondrial glutamic pyruvate transaminase 2 (GPT2. Notably, GPT2 engages activated glycolysis to drive the utilization of glutamine as a carbon source for TCA cycle anaplerosis in colon cancer cells. Our data indicate that the Warburg effect supports oncogenesis via GPT2-mediated coupling of pyruvate production to glutamine catabolism. Although critical to the cancer phenotype, GPT2 activity is dispensable in cells that are not fully transformed, thus pinpointing a metabolic vulnerability specifically associated with cancer cell progression to malignancy.

  19. Glycine betaine catabolism contributes to Pseudomonas syringae tolerance to hyperosmotic stress by relieving betaine-mediated suppression of compatible solute synthesis.

    Science.gov (United States)

    Li, Shanshan; Yu, Xilan; Beattie, Gwyn A

    2013-05-01

    Many bacteria can accumulate glycine betaine for osmoprotection and catabolize it as a growth substrate, but how they regulate these opposing roles is poorly understood. In Pseudomonas syringae B728a, expression of the betaine catabolism genes was reduced by an osmotic upshift to an intermediate stress level, consistent with betaine accumulation, but was increased by an upshift to a high stress level, as confirmed by an accompanying increase in degradation of radiolabeled betaine. Deletion of the gbcAB betaine catabolism genes reduced osmotolerance at a high osmolarity, and this reduction was due to the relief of betaine-mediated suppression of compatible solute synthesis. This conclusion was supported by the findings that, at high osmolarity, the ΔgbcAB mutant accumulated high betaine levels and low endogenous solutes and exhibited reduced expression of the solute synthesis genes. Moreover, the ΔgbcAB mutant and a mutant deficient in the synthesis of the compatible solutes NAGGN and trehalose exhibited similar reductions in osmotolerance and also in fitness on bean leaves. Activation of betaine catabolism at high osmotic stress resulted, in part, from induction of gbdR, which encodes the transcriptional activator GbdR. Betaine catabolism was subject to partial repression by succinate under hyperosmotic stress conditions, in contrast to strong repression in the absence of stress, suggesting that betaine functions both in nutrition and as an intracellular signal modulating solute synthesis under hyperosmotic stress conditions. Collectively, these results begin to provide a detailed mechanistic understanding of how P. syringae transitions from reliance on exogenously derived betaine to the use of endogenous solutes during adaptation to hyperosmotic conditions.

  20. Janus kinase 2/signal transducer and activator of transcription 3 path-ways mediate effect of leptin on expression of catabolic genes in rat nu-cleus pulposus cells%瘦素通过 JAK2/STAT3途径调控椎间盘髓核细胞的分解代谢

    Institute of Scientific and Technical Information of China (English)

    薛恩兴; 张雪; 陈成旺; 张宇; 张凌洲

    2015-01-01

    AIM:To explore the effect of leptin on the expression of degeneration-related genes in rat nucleus pulposus ( NP) cells and to detect the possible mechanism .METHODS:The normal NP cells isolated from SD rats were analyzed by immunochemistry and immunofluorescence for the collagen II and cytokeratin 19 expression.The NP cells were treated with leptin and/or interleukin-1β( IL-β).The mRNA expression of MMP-1, MMP-3, MMP-9, MMP-13, ADAMTS-4, ADAMTS-5, aggrecan and COL2A1 in the cells was detected by real-time PCR.Alcian blue staining and im-munochemistry were used to examine the expression of proteoglycan and collagen II .Activation of involved pathways was studied by Western blot .The inhibitors of the pathways were used to reveal the effect of these pathways on NP cells .RE-SULTS:The results of real-time PCR revealed that leptin alone up-regulated the mRNA expression of MMP-1, MMP-13, ADAMTS-4, ADAMTS-5 and COL2A1.The synergy of leptin and IL-βwas found in the increased expression of MMP-1, MMP-3 and ADAMTS-5.The NP cells treated with leptin showed less expression of collagen II .Both PI3K/Akt and JAK2/SATA3 pathways were activated by leptin , whereas only inhibitor of JAK 2/SATA3 pathway reversed the expression of MMP-1 and MMP-13.CONCLUSION:Leptin may promote catabolism in rat NP cells via JAK2/SATA3 pathways, which may be the mechanism mediating the association between obesity and intervertebral disc degeneration .%目的:探讨瘦素对椎间盘髓核细胞中退行性变相关分解代谢基因的影响,并探讨其机制。方法:培养SD大鼠髓核细胞,行cytokeratin 19和II型胶原免疫组化进行鉴定。使用瘦素和(或)白细胞介素1β( IL-1β)作用于髓核细胞,real-time PCR分析MMP-1、MMP-3、MMP-9、MMP-13、ADAMTS-4、ADAMTS-5、aggrecan 和COL2A1的表达水平。阿利辛蓝染色和免疫组化分析II型胶原和蛋白多糖的生成。 Western blot 分析激活的信号通路,并使用不同

  1. The use of amino sugars by Bacillus subtilis: presence of a unique operon for the catabolism of glucosamine.

    Science.gov (United States)

    Gaugué, Isabelle; Oberto, Jacques; Putzer, Harald; Plumbridge, Jacqueline

    2013-01-01

    B. subtilis grows more rapidly using the amino sugar glucosamine as carbon source, than with N-acetylglucosamine. Genes for the transport and metabolism of N-acetylglucosamine (nagP and nagAB) are found in all the sequenced Bacilli (except Anoxybacillus flavithermus). In B. subtilis there is an additional operon (gamAP) encoding second copies of genes for the transport and catabolism of glucosamine. We have developed a method to make multiple deletion mutations in B. subtilis employing an excisable spectinomycin resistance cassette. Using this method we have analysed the contribution of the different genes of the nag and gam operons for their role in utilization of glucosamine and N-acetylglucosamine. Faster growth on glucosamine is due to the presence of the gamAP operon, which is strongly induced by glucosamine. Although the gamA and nagB genes encode isozymes of GlcN6P deaminase, catabolism of N-acetylglucosamine relies mostly upon the gamA gene product. The genes for use of N-acetylglucosamine, nagAB and nagP, are repressed by YvoA (NagR), a GntR family regulator, whose gene is part of the nagAB yvoA(nagR) operon. The gamAP operon is repressed by YbgA, another GntR family repressor, whose gene is expressed divergently from gamAP. The nagAB yvoA synton is found throughout the Bacilli and most firmicutes. On the other hand the ybgA-gamAP synton, which includes the ybgB gene for a small protein of unknown provenance, is only found in B. subtilis (and a few very close relatives). The origin of ybgBA-gamAP grouping is unknown but synteny analysis suggests lateral transfer from an unidentified donor. The presence of gamAP has enabled B. subtilis to efficiently use glucosamine as carbon source.

  2. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production

    Science.gov (United States)

    Córdova, Pamela; Marcoleta, Andrés E.; Contreras, Gabriela; Barahona, Salvador; Sepúlveda, Dionisia; Fernández-Lobato, María; Baeza, Marcelo; Cifuentes, Víctor

    2016-01-01

    The red yeast X. dendrorhous is one of the few natural sources of astaxanthin, a carotenoid used in aquaculture for salmonid fish pigmentation and in the cosmetic and pharmaceutical industries for its antioxidant properties. Genetic control of carotenogenesis is well characterized in this yeast; however, little is known about the regulation of the carotenogenesis process. Several lines of evidence have suggested that carotenogenesis is regulated by catabolic repression, and the aim of this work was to identify and functionally characterize the X. dendrorhous MIG1 gene encoding the catabolic repressor Mig1, which mediates transcriptional glucose-dependent repression in other yeasts and fungi. The identified gene encodes a protein of 863 amino acids that demonstrates the characteristic conserved features of Mig1 proteins, and binds in vitro to DNA fragments containing Mig1 boxes. Gene functionality was demonstrated by heterologous complementation in a S. cerevisiae mig1- strain; several aspects of catabolic repression were restored by the X. dendrorhous MIG1 gene. Additionally, a X. dendrorhous mig1- mutant was constructed and demonstrated a higher carotenoid content than the wild-type strain. Most important, the mig1- mutation alleviated the glucose-mediated repression of carotenogenesis in X. dendrorhous: the addition of glucose to mig1- and wild-type cultures promoted the growth of both strains, but carotenoid synthesis was observed only in the mutant strain. Transcriptomic and RT-qPCR analyses revealed that several genes were differentially expressed between X. dendrorhous mig1- and the wild-type strain when cultured with glucose as the sole carbon source. The results obtained in this study demonstrate that catabolic repression in X. dendrorhous is an active process in which the identified MIG1 gene product plays a central role in the regulation of several biological processes, including carotenogenesis. PMID:27622474

  3. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production.

    Science.gov (United States)

    Alcaíno, Jennifer; Bravo, Natalia; Córdova, Pamela; Marcoleta, Andrés E; Contreras, Gabriela; Barahona, Salvador; Sepúlveda, Dionisia; Fernández-Lobato, María; Baeza, Marcelo; Cifuentes, Víctor

    2016-01-01

    The red yeast X. dendrorhous is one of the few natural sources of astaxanthin, a carotenoid used in aquaculture for salmonid fish pigmentation and in the cosmetic and pharmaceutical industries for its antioxidant properties. Genetic control of carotenogenesis is well characterized in this yeast; however, little is known about the regulation of the carotenogenesis process. Several lines of evidence have suggested that carotenogenesis is regulated by catabolic repression, and the aim of this work was to identify and functionally characterize the X. dendrorhous MIG1 gene encoding the catabolic repressor Mig1, which mediates transcriptional glucose-dependent repression in other yeasts and fungi. The identified gene encodes a protein of 863 amino acids that demonstrates the characteristic conserved features of Mig1 proteins, and binds in vitro to DNA fragments containing Mig1 boxes. Gene functionality was demonstrated by heterologous complementation in a S. cerevisiae mig1- strain; several aspects of catabolic repression were restored by the X. dendrorhous MIG1 gene. Additionally, a X. dendrorhous mig1- mutant was constructed and demonstrated a higher carotenoid content than the wild-type strain. Most important, the mig1- mutation alleviated the glucose-mediated repression of carotenogenesis in X. dendrorhous: the addition of glucose to mig1- and wild-type cultures promoted the growth of both strains, but carotenoid synthesis was observed only in the mutant strain. Transcriptomic and RT-qPCR analyses revealed that several genes were differentially expressed between X. dendrorhous mig1- and the wild-type strain when cultured with glucose as the sole carbon source. The results obtained in this study demonstrate that catabolic repression in X. dendrorhous is an active process in which the identified MIG1 gene product plays a central role in the regulation of several biological processes, including carotenogenesis.

  4. Catabolic effects of FGF-1 on chondrocytes and its possible role in osteoarthritis.

    Science.gov (United States)

    El-Seoudi, Abdellatif; El Kader, Tarek Abd; Nishida, Takashi; Eguchi, Takanori; Aoyama, Eriko; Takigawa, Masaharu; Kubota, Satoshi

    2017-03-25

    Fibroblast growth factor 1 (FGF-1) is a classical member of the FGF family and is produced by chondrocytes cultured from osteoarthritic patients. Also, this growth factor was shown to bind to CCN family protein 2 (CCN2), which regenerates damaged articular cartilage and counteracts osteoarthritis (OA) in an animal model. However, the pathophysiological role of FGF-1 in cartilage has not been well investigated. In this study, we evaluated the effects of FGF-1 in vitro and its production in vivo by use of an OA model. Treatment of human chondrocytic cells with FGF-1 resulted in marked repression of genes for cartilaginous extracellular matrix components, whereas it strongly induced matrix metalloproteinase 13 (MMP-13), representing its catabolic effects on cartilage. Interestingly, expression of the CCN2 gene was dramatically repressed by FGF-1, which repression eventually caused the reduced production of CCN2 protein from the chondrocytic cells. The results of a reporter gene assay revealed that this repression could be ascribed, at least in part, to transcriptional regulation. In contrast, the gene expression of FGF-1 was enhanced by exogenous FGF-1, indicating a positive feedback system in these cells. Of note, induction of FGF-1 was observed in the articular cartilage of a rat OA model. These results collectively indicate a pathological role of FGF-1 in OA development, which includes an insufficient cartilage regeneration response caused by CCN2 down regulation.

  5. Molecular characterization of lysR-lysXE, gcdR-gcdHG and amaR-amaAB operons for lysine export and catabolism: a comprehensive lysine catabolic network in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Madhuri Indurthi, Sai; Chou, Han-Ting; Lu, Chung-Dar

    2016-05-01

    Among multiple interconnected pathways for l-Lysine catabolism in pseudomonads, it has been reported that Pseudomonas aeruginosa PAO1 employs the decarboxylase and the transaminase pathways. However, up until now, knowledge of several genes involved in operation and regulation of these pathways was still missing. Transcriptome analyses coupled with promoter activity measurements and growth phenotype analyses led us to identify new members in l-Lys and d-Lys catabolism and regulation, including gcdR-gcdHG for glutarate utilization, dpkA, amaR-amaAB and PA2035 for d-Lys catabolism, lysR-lysXE for putative l-Lys efflux and lysP for putative l-Lys uptake. The gcdHG operon encodes an acyl-CoA transferase (gcdG) and glutaryl-CoA dehydrogenase (gcdH) and is under the control of the transcriptional activator GcdR. Growth on l-Lys was enhanced in the mutants of lysX and lysE, supporting the operation of l-Lys efflux. The transcriptional activator LysR is responsible for l-Lys specific induction of lysXE and the PA4181-82 operon of unknown function. The putative operator sites of GcdR and LysR were deduced from serial deletions and comparative genomic sequence analyses, and the formation of nucleoprotein complexes was demonstrated with purified His-tagged GcdR and LysR. The amaAB operon encodes two enzymes to convert pipecolate to 2-aminoadipate. Induction of the amaAB operon by l-Lys, d-Lys and pipecolate requires a functional AmaR, supporting convergence of Lys catabolic pathways to pipecolate. Growth on pipecolate was retarded in the gcdG and gcdH mutants, suggesting the importance of glutarate in pipecolate and 2-aminoadipate utilization. Furthermore, this study indicated links in the control of interconnected networks of lysine and arginine catabolism in P. aeruginosa.

  6. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway

    Directory of Open Access Journals (Sweden)

    Andrey M. Grishin

    2015-06-01

    Full Text Available Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism—coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and β-oxidation of fatty acids.

  7. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway.

    Science.gov (United States)

    Grishin, Andrey M; Cygler, Miroslaw

    2015-06-12

    Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA) utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism-coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and β-oxidation of fatty acids.

  8. Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust.

    Science.gov (United States)

    Ishiga, Yasuhiro; Uppalapati, Srinivasa Rao; Gill, Upinder S; Huhman, David; Tang, Yuhong; Mysore, Kirankumar S

    2015-08-12

    Asian soybean rust (ASR) caused by Phakopsora pachyrhizi is a devastating foliar disease affecting soybean production worldwide. Understanding nonhost resistance against ASR may provide an avenue to engineer soybean to confer durable resistance against ASR. We characterized a Medicago truncatula-ASR pathosystem to study molecular mechanisms of nonhost resistance. Although urediniospores formed appressoria and penetrated into epidermal cells of M. truncatula, P. pachyrhizi failed to sporulate. Transcriptomic analysis revealed the induction of phenylpropanoid, flavonoid and isoflavonoid metabolic pathway genes involved in the production of phytoalexin medicarpin in M. truncatula upon infection with P. pachyrhizi. Furthermore, genes involved in chlorophyll catabolism were induced during nonhost resistance. We further characterized one of the chlorophyll catabolism genes, Stay-green (SGR), and demonstrated that the M. truncatula sgr mutant and alfalfa SGR-RNAi lines showed hypersensitive-response-like enhanced cell death upon inoculation with P. pachyrhizi. Consistent with transcriptomic analysis, metabolomic analysis also revealed the accumulation of medicarpin and its intermediate metabolites. In vitro assay showed that medicarpin inhibited urediniospore germination and differentiation. In addition, several triterpenoid saponin glycosides accumulated in M. truncatula upon inoculation with P. pachyrhizi. In summary, using multi-omic approaches, we identified a correlation between phytoalexin production and M. truncatula defense responses against ASR.

  9. XacR - a novel transcriptional regulator of D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii.

    Science.gov (United States)

    Johnsen, Ulrike; Sutter, Jan-Moritz; Schulz, Anne-Christine; Tästensen, Julia-Beate; Schönheit, Peter

    2015-05-01

    The haloarchaeon Haloferax volcanii degrades D-xylose and L-arabinose via oxidative pathways to α-ketoglutarate. The genes involved in these pathways are clustered and were transcriptionally upregulated by both D-xylose and L-arabinose suggesting a common regulator. Adjacent to the gene cluster, a putative IclR-like transcriptional regulator, HVO_B0040, was identified. It is shown that HVO_B0040, designated xacR, encodes an activator of both D-xylose and L-arabinose catabolism: in ΔxacR cells, transcripts of genes involved in pentose catabolism could not be detected; transcript formation could be recovered by complementation, indicating XacR dependent transcriptional activation. Upstream activation promoter regions and nucleotide sequences that were essential for XacR-mediated activation of pentose-specific genes were identified by in vivo deletion and scanning mutagenesis. Besides its activator function XacR acted as repressor of its own synthesis: xacR deletion resulted in an increase of xacR promoter activity. A palindromic sequence was identified at the operator site of xacR promoter, and mutation of this sequence also resulted in an increase and thus derepression of xacR promoter activity. It is concluded that the palindromic sequence represents the binding site of XacR as repressor. This is the first report of a transcriptional regulator of pentose catabolism in the domain of archaea.

  10. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit.

    Science.gov (United States)

    Gonda, Itay; Bar, Einat; Portnoy, Vitaly; Lev, Shery; Burger, Joseph; Schaffer, Arthur A; Tadmor, Ya'akov; Gepstein, Shimon; Giovannoni, James J; Katzir, Nurit; Lewinsohn, Efraim

    2010-02-01

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and alpha-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[(13)C(6)]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective alpha-keto acids, utilizing alpha-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.

  11. Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits

    Institute of Scientific and Technical Information of China (English)

    Andrej Kochevenko; Wagner L.Araújo; Gregory S.Maloney; Denise M.Tieman; Phuc Thi Do; Mark G.Taylor; Harry J.Klee; Alisdair R.Fernie

    2012-01-01

    The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine,isoleucine,and valine.These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids.Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized,their catabolism in plants is not yet completely understood.We previously characterized the branched chain amino acid transaminase gene family in tomato,revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes.Here,we examined possible functions of the enzymes during fruit development.We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3,evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3.We quantitatively tested,via precursor and isotope feeding experiments,the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles.Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration,but also reveal that keto acids,rather than amino acids,are the likely precursors for the branched chain flavor volatiles.

  12. Redundancy in putrescine catabolism in solvent tolerant Pseudomonas putida S12.

    Science.gov (United States)

    Bandounas, Luaine; Ballerstedt, Hendrik; de Winde, Johannes H; Ruijssenaars, Harald J

    2011-06-10

    Pseudomonas putida S12 is a promising platform organism for the biological production of substituted aromatic compounds due to its extreme tolerance towards toxic chemicals. Solvent or aromatic stress tolerance may be due to membrane modifications and efflux pumps; however in general, polyamines have also been implicated in stressed cells. Previous transcriptomics results of P. putida strains producing an aromatic compound, or being exposed to the solvent toluene, indicated differentially expressed genes involved in polyamine transport and metabolism. Therefore, the metabolism of the polyamine, putrescine was investigated in P. putida S12, as no putrescine degradation pathways have been described for this strain. Via transcriptome analysis various, often redundant, putrescine-induced genes were identified as being potentially involved in putrescine catabolism via oxidative deamination and transamination. A series of knockout mutants were constructed in which up to six of these genes were sequentially deleted, and although putrescine degradation was affected in some of these mutants, complete elimination of putrescine degradation in P. putida S12 was not achieved. Evidence was found for the presence of an alternative pathway for putrescine degradation involving γ-glutamylation. The occurrence of multiple putrescine degradation routes in the solvent-tolerant P. putida S12 is indicative of the importance of controlling polyamine homeostasis, as well as of the high metabolic flexibility exhibited by this microorganism.

  13. Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis

    Science.gov (United States)

    Zeman, Igor; Neboháčová, Martina; Gérecová, Gabriela; Katonová, Kornélia; Jánošíková, Eva; Jakúbková, Michaela; Centárová, Ivana; Dunčková, Ivana; Tomáška, L'ubomír; Pryszcz, Leszek P.; Gabaldón, Toni; Nosek, Jozef

    2016-01-01

    The pathogenic yeast Candida parapsilosis metabolizes hydroxyderivatives of benzene and benzoic acid to compounds channeled into central metabolism, including the mitochondrially localized tricarboxylic acid cycle, via the 3-oxoadipate and gentisate pathways. The orchestration of both catabolic pathways with mitochondrial metabolism as well as their evolutionary origin is not fully understood. Our results show that the enzymes involved in these two pathways operate in the cytoplasm with the exception of the mitochondrially targeted 3-oxoadipate CoA-transferase (Osc1p) and 3-oxoadipyl-CoA thiolase (Oct1p) catalyzing the last two reactions of the 3-oxoadipate pathway. The cellular localization of the enzymes indicates that degradation of hydroxyaromatic compounds requires a shuttling of intermediates, cofactors, and products of the corresponding biochemical reactions between cytosol and mitochondria. Indeed, we found that yeast cells assimilating hydroxybenzoates increase the expression of genes SFC1, LEU5, YHM2, and MPC1 coding for succinate/fumarate carrier, coenzyme A carrier, oxoglutarate/citrate carrier, and the subunit of pyruvate carrier, respectively. A phylogenetic analysis uncovered distinct evolutionary trajectories for sparsely distributed gene clusters coding for enzymes of both pathways. Whereas the 3-oxoadipate pathway appears to have evolved by vertical descent combined with multiple losses, the gentisate pathway shows a striking pattern suggestive of horizontal gene transfer to the evolutionarily distant Mucorales. PMID:27707801

  14. A proteomic and transcriptomic view of amino acids catabolism in the yeast Yarrowia lipolytica.

    Science.gov (United States)

    Mansour, Soulaf; Bailly, Julie; Delettre, Jérôme; Bonnarme, Pascal

    2009-10-01

    The yeast Yarrowia lipolytica has to develop dynamic metabolic adaptation mechanisms to survive within the cheese habitat. The availability of amino acids (AAs) is of major importance for microbial development and/or aroma production during cheese ripening. Using 2-D protein gel electrophoresis, we analyzed the adaptation mechanisms of Y. lipolytica for AAs limitation or supplementation in a batch culture containing lactate as a carbon source. Proteome analyses allow the identification of 34 differentially expressed proteins between the culture conditions. These analyses demonstrated that prior to the AAs addition, mainly proteins involved in the oxidative stress of the yeast were induced. Following the AAs addition, yeast cells reorganize their metabolism toward AAs catabolism and also generate a higher induction of proteins related to carbon metabolism and proteins biosynthesis. Using real-time reverse transcription PCR, we re-evaluated the expression of genes encoding proteins involved in these processes. The expression levels of the genes were in accordance with the proteomic results, with the up-regulation of genes encoding a branched-chain amino transferase BAT2, a pyruvate decarboxylase PDC6 and an Hsp70 protein SSZ1 involved in protein biosynthesis. A volatile compound analysis was also performed, and increased production of dimethyldisulfide from methionine and 3-methyl-butanal from leucine was observed in media supplemented with AAs.

  15. Molecular characterization of LhpR in control of hydroxyproline catabolism and transport in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Li, Guoqing; Lu, Chung-Dar

    2016-07-01

    Utilization of hydroxy-l-proline (l-Hyp) in Pseudomonas aeruginosa requires conversion of l-Hyp to d-Hyp followed by the d-Hyp dehydrogenase pathway; however, the molecular mechanism in control of l-Hyp catabolism and transport was not clear. DNA microarray analysis revealed twelve genes in two adjacent loci that were induced by exogenous l-Hyp and d-Hyp. The first locus includes lhpABFE encoding a Hyp epimerase (LhpA) and d-Hyp dehydrogenase (LhpBEF), while the second locus codes for a putative ABC transporter (LhpPMNO), a protein of unknown function (LhpH), Hyp/Pro racemase (LhpK) and two enzymes in l-Hyp catabolism (LhpC and LhpG). Proximal to these two loci, lhpR encodes a transcriptional regulator of the AraC family. The importance of these genes on l-Hyp catabolism was supported by growth phenotype analysis on knockout mutants. Induction of the lhpA and lhpP promoters by exogenous l-Hyp and d-Hyp was demonstrated by the measurement of β-galactosidase activities from promoter-lacZ fusions in PAO1, and no induction could be detected in the ΔlhpR mutant. Induction of the lhpA promoter by d-Hyp was completely abolished in the lhpA lhpK double mutant devoid of two epimerases, while the induction effect of l-Hyp remained unchanged. The purified His-tagged LhpR binds specifically to the lhp promoter regions, and formation of nucleoprotein complexes is affected by the presence of l-Hyp but not d-Hyp. Putative LhpR binding sites were deduced from serial deletions and comparative genomic sequence analysis. In summary, expression of lhp genes for Hyp catabolism and uptake requires the transcriptional activator LhpR and l-Hyp as the signalling compound.

  16. Draft Genome Sequences of Three β-Lactam-Catabolizing Soil Proteobacteria

    Science.gov (United States)

    Wang, Bin; Spivak, Aaron; Gianoulis, Tara A.; Forsberg, Kevin J.; Gibson, Molly K.; Johnsky, Lauren A.; Broomall, Stacey M.; Rosenzweig, C. Nicole; Skowronski, Evan W.; Gibbons, Henry S.; Sommer, Morten O. A.; Dantas, Gautam

    2017-01-01

    ABSTRACT Most antibiotics are derived from the soil, but their catabolism there, which is necessary to close the antibiotic carbon cycle, remains uncharacterized. We report the first draft genome sequences of soil Proteobacteria identified for subsisting solely on β-lactams as their carbon sources. The genomes encode multiple β-lactamases, although their antibiotic catabolic pathways remain enigmatic. PMID:28798166

  17. Distinct Tryptophan Catabolism and Th17/Treg Balance in HIV Progressors and Elite Controllers

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; Patel, Mital; Kema, Ido; Kanagaratham, Cynthia; Radzioch, Danuta; Thebault, Pamela; Lapointe, Rejean; Tremblay, Cecile; Gilmore, Norbert; Ancuta, Petronela; Routy, Jean-Pierre

    2013-01-01

    Tryptophan (Trp) catabolism into immunosuppressive kynurenine (Kyn) by indoleamine 2,3-dioxygenase (IDO) was previously linked to Th17/Treg differentiation and immune activation. Here we examined Trp catabolism and its impact on Th17/Treg balance in uninfected healthy subjects (HS) and a large cohor

  18. HbNIN2, a cytosolic alkaline/neutral-invertase, is responsible for sucrose catabolism in rubber-producing laticifers of Hevea brasiliensis (para rubber tree).

    Science.gov (United States)

    Liu, Shujin; Lan, Jixian; Zhou, Binhui; Qin, Yunxia; Zhou, Yihua; Xiao, Xiaohu; Yang, Jianghua; Gou, Jiqing; Qi, Jiyan; Huang, Yacheng; Tang, Chaorong

    2015-04-01

    In Hevea brasiliensis, an alkaline/neutral invertase (A/N-Inv) is responsible for sucrose catabolism in latex (essentially the cytoplasm of rubber-producing laticifers, the source of natural rubber) and implicated in rubber yield. However, neither the gene encoding this enzyme nor its molecular and biochemical properties have been well documented. Three Hevea A/N-Inv genes, namely HbNIN1, 2 and 3, were first cloned and characterized in planta and in Escherichia coli. Cellular localizations of HbNIN2 mRNA and protein were probed. From latex, active A/N-Inv proteins were purified, identified, and explored for enzymatic properties. HbNIN2 was identified as the major A/N-Inv gene functioning in latex based on its functionality in E. coli, its latex-predominant expression, the conspicuous localization of its mRNA and protein in the laticifers, and its expressional correlation with rubber yield. An active A/N-Inv protein was partially purified from latex, and determined as HbNIN2. The enhancement of HbNIN2 enzymatic activity by pyridoxal is peculiar to A/N-Invs in other plants. We conclude that HbNIN2, a cytosolic A/N-Inv, is responsible for sucrose catabolism in rubber laticifers. The results contribute to the studies of sucrose catabolism in plants as a whole and natural rubber synthesis in particular.

  19. Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate.

    Science.gov (United States)

    Kitaoka, Naoki; Matsubara, Takuya; Sato, Michio; Takahashi, Kosaku; Wakuta, Shinji; Kawaide, Hiroshi; Matsui, Hirokazu; Nabeta, Kensuke; Matsuura, Hideyuki

    2011-10-01

    The hormonal action of jasmonate in plants is controlled by the precise balance between its biosynthesis and catabolism. It has been shown that jasmonyl-L-isoleucine (JA-Ile) is the bioactive form involved in the jasmonate-mediated signaling pathway. However, the catabolism of JA-Ile is poorly understood. Although a metabolite, 12-hydroxyJA-Ile, has been characterized, detailed functional studies of the compound and the enzyme that produces it have not been conducted. In this report, the kinetics of wound-induced accumulation of 12-hydroxyJA-Ile in plants were examined, and its involvement in the plant wound response is described. Candidate genes for the catabolic enzyme were narrowed down from 272 Arabidopsis Cyt P450 genes using Arabidopsis mutants. The candidate gene was functionally expressed in Pichia pastoris to reveal that CYP94B3 encodes JA-Ile 12-hydroxylase. Expression analyses demonstrate that expression of CYP94B3 is induced by wounding and shows specific activity toward JA-Ile. Plants grown in medium containing JA-Ile show higher sensitivity to JA-Ile in cyp94b3 mutants than in wild-type plants. These results demonstrate that CYP94B3 plays a major regulatory role in controlling the level of JA-Ile in plants.

  20. Epigenetic Regulation of Chondrocyte Catabolism and Anabolism in Osteoarthritis.

    Science.gov (United States)

    Kim, Hyeonkyeong; Kang, Donghyun; Cho, Yongsik; Kim, Jin-Hong

    2015-08-01

    Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenetic regulations are implicated in driving an imbalance between the expression of catabolic and anabolic factors, leading eventually to osteoarthritic cartilage destruction. Cellular senescence and metabolic abnormalities driven by OA-associated risk factors appear to accompany epigenetic drifts in chondrocytes. Notably, molecular events associated with metabolic disorders influence epigenetic regulation in chondrocytes, supporting the notion that OA is a metabolic disease. Here, we review accumulating evidence supporting a role for epigenetics in the regulation of cartilage homeostasis and OA pathogenesis.

  1. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.

    2005-01-01

    -arabinose, a level that resulted in realistic intermediate concentrations in the model, flux control coefficients for L-arabinose reductase, L-arabitol dehydrogenase and L-xylulose reductase were 0.68, 0.17 and 0.14, respectively. The analysis can be used as a guide to identify targets for metabolic engineering......, and their kinetic properties were characterized. For the other enzymes of the pathway the kinetic data were available from the literature. The metabolic model was used to analyze flux and metabolite concentration control of the L-arabinose catabolic pathway. The model demonstrated that flux control does not reside...... at the enzyme following the intermediate with the highest concentration, L-arabitol, but is distributed over the first three steps in the pathway, preceding and following L-arabitol. Flux control appeared to be strongly dependent on the intracellular L-arabinose concentration. At 5 mM intracellular L...

  2. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos.

    Science.gov (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim

    2015-11-15

    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome.

  3. Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth.

    Science.gov (United States)

    Prabhu, Antony; Sarcar, Bhaswati; Kahali, Soumen; Yuan, Zhigang; Johnson, Joseph J; Adam, Klaus-Peter; Kensicki, Elizabeth; Chinnaiyan, Prakash

    2014-02-01

    The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.

  4. The phn island: A new genomic island encoding catabolism of polynuclear aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    William James Hickey

    2012-04-01

    Full Text Available Bacteria are key in the biodegradation of polycyclic aromatic hydrocarbons (PAH, which are widespread environmental pollutants. At least six genotypes of PAH-degraders are distinguishable via phylogenies of the ring-hydroxylating dioxygenase (RHD that initiates bacterial PAH metabolism, and a given genotype has a characteristic taxonomic distribution. The latter pattern implies each genotype may have distinct pathways for horizontal gene transfer (HGT. But, while such processes are important in the function of PAH-degrader communities, mechanisms of HGT for most RHD genotypes are unknown. Here, we report in silico and functional analyses of the phenanthrene-degrader Delftia sp. Cs1-4, a representative of the phnAFK2 RHD group. The phnAFK2 genotype predominates PAH degrader communities in some soils and sediments, but, until now, their genomic biology has not been explored. In the present studies, genes for the entire phenanthrene catabolic pathway were discovered on a novel ca. 232 kb genomic island (GEI, now termed the phn island. This GEI had characteristics of an integrative and conjugative element with a mobilization/stabilization system similar to that of SXT/R391-type GEI. But, it could not be grouped with any known GEI, and was the first member of a new GEI class. The island also carried genes predicted to encode: synthesis of quorum sensing signal molecules, fatty acid/polyhydroxyalkonate biosynthesis, a type IV secretory system, a PRTRC system, DNA mobilization functions and > 50 hypothetical proteins. The 50% G+C content of the phn gene cluster differed significantly from the 66.7% G+C level of the island as a whole and the strain Cs1-4 chromosome, indicating a divergent phylogenetic origin for the phn genes. Collectively, these studies added new insights into the genetic elements affecting the PAH biodegradation capacity of microbial communities specifically, and the potential vehicles of HGT in general.

  5. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores.

    Science.gov (United States)

    Lass, Achim; Zimmermann, Robert; Oberer, Monika; Zechner, Rudolf

    2011-01-01

    Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cellular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subsequently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose tissue. Over the last 5years, important enzymes and regulatory protein factors involved in lipolysis have been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL) [annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative gene identification-58 [annotated as α/β hydrolase containing protein 5], and the ATGL inhibitor G0/G1 switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and monoglyceride lipase, these proteins constitute the basic "lipolytic machinery". Additionally, a large number of hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and the activity of the "lipolysome". This review summarizes the current knowledge concerning the enzymes and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special emphasis will be given to ATGL, its regulation, and physiological function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Lipolysis – A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores

    Science.gov (United States)

    Lass, Achim; Zimmermann, Robert; Oberer, Monika; Zechner, Rudolf

    2011-01-01

    Summary Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cellular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subsequently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose tissue. Over the last 5 years, important enzymes and regulatory protein factors involved in lipolysis have been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL) [annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative gene identification-58 [annotated as α/β hydrolase containing protein 5], and the ATGL inhibitor G0/G1 switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and monoglyceride lipase, these proteins constitute the basic “lipolytic machinery”. Additionally, a large number of hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and the activity of the “lipolysome”. This review summarizes the current knowledge concerning the enzymes and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special emphasis will be given to ATGL, its regulation, and physiological function. PMID:21087632

  7. Simultaneous catabolism of plant-derived aromatic compounds results in enhanced growth for members of the Roseobacter lineage.

    Science.gov (United States)

    Gulvik, Christopher A; Buchan, Alison

    2013-06-01

    Plant-derived aromatic compounds are important components of the dissolved organic carbon pool in coastal salt marshes, and their mineralization by resident bacteria contributes to carbon cycling in these systems. Members of the roseobacter lineage of marine bacteria are abundant in coastal salt marshes, and several characterized strains, including Sagittula stellata E-37, utilize aromatic compounds as primary growth substrates. The genome sequence of S. stellata contains multiple, potentially competing, aerobic ring-cleaving pathways. Preferential hierarchies in substrate utilization and complex transcriptional regulation have been demonstrated to be the norm in many soil bacteria that also contain multiple ring-cleaving pathways. The purpose of this study was to ascertain whether substrate preference exists in S. stellata when the organism is provided a mixture of aromatic compounds that proceed through different ring-cleaving pathways. We focused on the protocatechuate (pca) and the aerobic benzoyl coenzyme A (box) pathways and the substrates known to proceed through them, p-hydroxybenzoate (POB) and benzoate, respectively. When these two substrates were provided at nonlimiting carbon concentrations, temporal patterns of cell density, gene transcript abundance, enzyme activity, and substrate concentrations indicated that S. stellata simultaneously catabolized both substrates. Furthermore, enhanced growth rates were observed when S. stellata was provided both compounds simultaneously compared to the rates of cells grown singly with an equimolar concentration of either substrate alone. This simultaneous-catabolism phenotype was also demonstrated in another lineage member, Ruegeria pomeroyi DSS-3. These findings challenge the paradigm of sequential aromatic catabolism reported for soil bacteria and contribute to the growing body of physiological evidence demonstrating the metabolic versatility of roseobacters.

  8. Biomimetic molecules lower catabolic expression and prevent chondroitin sulfate degradation in an osteoarthritic ex vivo model.

    Science.gov (United States)

    Sharma, Shaili; Vazquez-Portalatin, Nelda; Calve, Sarah; Panitch, Alyssa

    2016-02-08

    Aggrecan, the major proteoglycan in cartilage, serves to protect cartilage tissue from damage and degradation during the progression of osteoarthritis (OA). In cartilage extracellular matrix (ECM) aggrecan exists in an aggregate composed of several aggrecan molecules that bind to a single filament of hyaluronan. Each molecule of aggrecan is composed of a protein core and glycosaminoglycan sides chains, the latter of which provides cartilage with the ability to retain water and resist compressive loads. During the progression of OA, loss of aggrecan is considered to occur first, after which other cartilage matrix components become extremely susceptible to degradation. Proteolytic cleavage of the protein core of aggrecan by enzymes such as aggrecanases, prevent its binding to HA and lower cartilage mechanical strength. Here we present the use of HA-binding or collagen type II-binding molecules that functionally mimic aggrecan but lack known cleavage sites, protecting the molecule from proteolytic degradation. These molecules synthesized with chondroitin sulfate backbones conjugated to hyaluronan- or collagen type II- binding peptides, are capable of diffusing through a cartilage explant and adhering to the ECM of this tissue. The objective of this study was to test the functional efficacy of these molecules in an ex vivo osteoarthritic model to discern the optimal molecule for further studies. Different variations of chondroitin sulfate conjugated to the binding peptides were diffused through aggrecan depleted explants and assessed for their ability to enhance compressive stiffness, prevent CS degradation, and modulate catabolic (MMP-13 and ADAMTS-5) and anabolic (aggrecan and collagen type II) gene expression. A pilot in vivo study assessed the ability to retain the molecule within the joint space of an osteoarthritic guinea pig model. The results indicate chondroitin sulfate conjugated to hyaluronan-binding peptides is able to significantly restore equilibrium

  9. Microbial urate catabolism: characterization of HpyO, a non-homologous isofunctional isoform of the flavoprotein urate hydroxylase HpxO.

    Science.gov (United States)

    Michiel, Magalie; Perchat, Nadia; Perret, Alain; Tricot, Sabine; Papeil, Aude; Besnard, Marielle; de Berardinis, Véronique; Salanoubat, Marcel; Fischer, Cécile

    2012-12-01

    In aerobic cells, urate is oxidized to 5-hydroxyisourate by two distinct enzymes: a coenzyme-independent urate oxidase (EC 1.7.3.3) found in eukaryotes and bacteria like Bacillus subtilis and a prokaryotic flavoprotein urate hydroxylase (HpxO) originally found in some Klebsiella species. More cases of analogous or non-homologous isofunctional enzymes (NISE) for urate catabolism have been hypothesized by inspecting bacterial genomes. Here, we used a functional complementation approach in which a candidate gene for urate oxidation is integrated by homologous recombination in the Acinetobacter baylyi ADP1 genome at the locus of its original hpxO gene. Catabolism of urate was restored in A. baylyi ADP1 expressing a FAD-dependent protein from Xanthomonas campestris, representing a new urate hydroxylase family that we called HpyO. This enzyme was kinetically characterized and compared with other HpxO enzymes. In contrast to the latter, HpyO is a typical Michaelian enzyme. This work provides the first experimental evidences for the function of HpyO in bacterial urate catabolism and establishes it as a NISE of HpxO. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway.

    Science.gov (United States)

    Barbey, Corinne; Crépin, Alexandre; Bergeau, Dorian; Ouchiha, Asma; Mijouin, Lily; Taupin, Laure; Orange, Nicole; Feuilloley, Marc; Dufour, Alain; Burini, Jean-François; Latour, Xavier

    2013-01-01

    The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. erythropolis disrupts Pectobacterium communication and prevents plant soft-rot. We report the first characterization and demonstration of N-acyl homoserine lactone quenching in planta. In particular, we describe the transcription of the R. erythropolis lactonase gene, encoding the key enzyme of this pathway, and the subsequent lactone breakdown. The role of this catabolic pathway in biocontrol activity was confirmed by deletion of the lactonase gene from R. erythropolis and also its heterologous expression in Escherichia coli. The γ-lactone catabolic pathway is induced by pathogen communication rather than by pathogen invasion. This is thus a novel and unusual biocontrol pathway, differing from those previously described as protecting plants from phytopathogens. These findings also suggest the existence of an additional pathway contributing to plant protection.

  11. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway.

    Directory of Open Access Journals (Sweden)

    Corinne Barbey

    Full Text Available The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. erythropolis disrupts Pectobacterium communication and prevents plant soft-rot. We report the first characterization and demonstration of N-acyl homoserine lactone quenching in planta. In particular, we describe the transcription of the R. erythropolis lactonase gene, encoding the key enzyme of this pathway, and the subsequent lactone breakdown. The role of this catabolic pathway in biocontrol activity was confirmed by deletion of the lactonase gene from R. erythropolis and also its heterologous expression in Escherichia coli. The γ-lactone catabolic pathway is induced by pathogen communication rather than by pathogen invasion. This is thus a novel and unusual biocontrol pathway, differing from those previously described as protecting plants from phytopathogens. These findings also suggest the existence of an additional pathway contributing to plant protection.

  12. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.

    Science.gov (United States)

    Linares, Daniel M; del Río, Beatriz; Ladero, Victor; Redruello, Begoña; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2013-07-01

    Lactococcus lactis is the lactic acid bacterium most widely used by the dairy industry as a starter for the manufacture of fermented products such as cheese and buttermilk. However, some strains produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The proteins involved in this pathway, including those necessary for agmatine uptake and conversion into putrescine, are encoded by the aguB, aguD, aguA and aguC genes, which together form an operon. This paper reports the mechanism of regulation of putrescine biosynthesis in L. lactis. It is shown that the aguBDAC operon, which contains a cre site at the promoter of aguB (the first gene of the operon), is transcriptionally regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA.

  13. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes.

    Science.gov (United States)

    Rom, Oren; Kaisari, Sharon; Aizenbud, Dror; Reznick, Abraham Z

    2013-12-01

    The toxic aldehydes acetaldehyde and acrolein were previously suggested to damage skeletal muscle. Several conditions in which exposure to acetaldehyde and acrolein is increased were associated with muscle wasting and dysfunction. These include alcoholic myopathy, renal failure, oxidative stress, and inflammation. A main exogenous source of both acetaldehyde and acrolein is cigarette smoking, which was previously associated with increased muscle catabolism. Recently, we have shown that exposure of skeletal myotubes to cigarette smoke stimulated muscle catabolism via increased oxidative stress, activation of p38 MAPK, and upregulation of muscle-specific E3 ubiquitin ligases. In this study, we aimed to investigate the effects of acetaldehyde and acrolein on catabolism of skeletal muscle. Skeletal myotubes differentiated from the C2 myoblast cell line were exposed to acetaldehyde or acrolein and their effects on signaling pathways related to muscle catabolism were studied. Exposure of myotubes to acetaldehyde did not promote muscle catabolism. However, exposure to acrolein caused increased generation of free radicals, activation of p38 MAPK, upregulation of the muscle-specific E3 ligases atrogin-1 and MuRF1, degradation of myosin heavy chain, and atrophy of myotubes. Inhibition of p38 MAPK by SB203580 abolished acrolein-induced muscle catabolism. Our findings demonstrate that acrolein but not acetaldehyde activates a signaling cascade resulting in muscle catabolism in skeletal myotubes. Although within the limitations of an in vitro study, these findings indicate that acrolein may promote muscle wasting in conditions of increased exposure to this aldehyde.

  14. Polyamine oxidase 7 is a terminal catabolism-type enzyme in Oryza sativa and is specifically expressed in anthers.

    Science.gov (United States)

    Liu, Taibo; Kim, Dong Wook; Niitsu, Masaru; Maeda, Shunsuke; Watanabe, Masao; Kamio, Yoshiyuki; Berberich, Thomas; Kusano, Tomonobu

    2014-06-01

    Polyamine oxidase (PAO), which requires FAD as a cofactor, functions in polyamine catabolism. Plant PAOs are classified into two groups based on their reaction modes. The terminal catabolism (TC) reaction always produces 1,3-diaminopropane (DAP), H2O2, and the respective aldehydes, while the back-conversion (BC) reaction produces spermidine (Spd) from tetraamines, spermine (Spm) and thermospermine (T-Spm) and/or putrescine from Spd, along with 3-aminopropanal and H2O2. The Oryza sativa genome contains seven PAO-encoded genes termed OsPAO1-OsPAO7. To date, we have characterized four OsPAO genes. The products of these genes, i.e. OsPAO1, OsPAO3, OsPAO4 and OsPAO5, catalyze BC-type reactions. Whereas OsPAO1 remains in the cytoplasm, the other three PAOs localize to peroxisomes. Here, we examined OsPAO7 and its gene product. OsPAO7 shows high identity to maize ZmPAO1, the best characterized plant PAO having TC-type activity. OsPAO7 seems to remain in a peripheral layer of the plant cell with the aid of its predicted signal peptide and transmembrane domain. Recombinant OsPAO7 prefers Spm and Spd as substrates, and it produces DAP from both substrates in a time-dependent manner, indicating that OsPAO7 is the first TC-type enzyme identified in O. sativa. The results clearly show that two types of PAOs co-exist in O. sativa. Furthermore, OsPAO7 is specifically expressed in anthers, with an expressional peak at the bicellular pollen stage. The physiological function of OsPAO7 in anthers is discussed.

  15. Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803.

    Science.gov (United States)

    Osanai, Takashi; Oikawa, Akira; Numata, Keiji; Kuwahara, Ayuko; Iijima, Hiroko; Doi, Yoshiharu; Saito, Kazuki; Hirai, Masami Yokota

    2014-04-01

    Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar catabolism and nitrogen metabolism were up-regulated by rre37 overexpression. Protein levels of GlgP(slr1367), one of the two glycogen phosphorylases, in the rre37-overexpressing strain were higher than those of the parental wild-type strain under both nitrogen-replete and nitrogen-depleted conditions. Glycogen amounts decreased to less than one-tenth by rre37 overexpression under nitrogen-replete conditions. Metabolome analysis revealed that metabolites of the sugar catabolic pathway and amino acids were altered in the rre37-overexpressing strain after nitrogen depletion. These results demonstrate that Rre37 is a pathway-level regulator that activates the metabolic flow from glycogen to polyhydroxybutyrate and the hybrid tricarboxylic acid and ornithine cycle, unraveling the mechanism of the transcriptional regulation of primary metabolism in this unicellular cyanobacterium.

  16. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Atsushi eKouzuma

    2015-06-01

    Full Text Available Shewanella oneidensis MR-1 is a facultative anaerobe that respires using a variety of inorganic and organic compounds. MR-1 is also capable of utilizing extracellular solid materials, including anodes in microbial fuel cells (MFCs, as electron acceptors, thereby enabling electricity generation. As MFCs have the potential to generate electricity from biomass waste and wastewater, MR-1 has been extensively studied to identify the molecular systems that are involved in electricity generation in MFCs. These studies have demonstrated the importance of extracellular electron-transfer pathways that electrically connect the quinone pool in the cytoplasmic membrane to extracellular electron acceptors. Electricity generation is also dependent on intracellular catabolic pathways that oxidize electron donors, such as lactate, and regulatory systems that control the expression of genes encoding the components of catabolic and electron-transfer pathways. In addition, recent findings suggest that cell-surface polymers, e.g., exopolysaccharides, and secreted chemicals, which function as electron shuttles, are also involved in electricity generation. Despite these advances in our knowledge on the extracellular electron-transfer processes in MR-1, further efforts are necessary to fully understand the underlying intra- and extra-cellular molecular systems for electricity generation in MFCs. We suggest that investigating how MR-1 coordinates these systems to efficiently transfer electrons to electrodes and conserve electrochemical energy for cell proliferation is important for establishing the biological bases for MFCs.

  17. 25-Hydroxyvitamin D₃ 24-Hydroxylase: A Key Regulator of 1,25(OH)₂D₃ Catabolism and Calcium Homeostasis.

    Science.gov (United States)

    Veldurthy, Vaishali; Wei, Ran; Campbell, Megan; Lupicki, Kamil; Dhawan, Puneet; Christakos, Sylvia

    2016-01-01

    One of the most pronounced effects of the hormonally active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), is increased synthesis of 25-hydroxyvitamin D3 24-hydroxylase (CYP24A1), the enzyme responsible for the catabolism of 1,25(OH)2D3. Thus, 1,25(OH)2D3 regulates its own metabolism, protecting against hypercalcemia and limiting the levels of 1,25(OH)2D3 in cells. This chapter summarizes the catalytic properties of CYP24A1, the recent data related to the crystal structure of CYP24A1, the findings obtained from the generation of mice deficient for the Cyp24a1 gene as well as recent data identifying a causal role of a genetic defect in CYP24A1 in certain patients with idiopathic infantile hypercalcemia. This chapter also reviews the regulation of renal and placental CYP24A1 as well as the genomic mechanisms, including coactivators, repressors, and epigenetic modification, involved in modulating 1,25(OH)2D3 regulation of CYP24A1. We conclude with future research directions related to this key regulator of 1,25(OH)2D3 catabolism and calcium homeostasis.

  18. Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders.

    Science.gov (United States)

    Ravikumar, A; Deepadevi, K V; Arun, P; Manojkumar, V; Kurup, P A

    2000-09-01

    Catabolism of tryptophan and tyrosine in relation to the isoprenoid pathway was studied in neurological and psychiatric disorders. The concentration of trytophan, quinolinic acid, kynurenic acid, serotonin and 5-hydroxyindoleacetic acid was found to be higher in the plasma of patients with all these disorders; while that of tyrosine, dopamine, epinephrine and norepinephrine was lower. There was increase in free fatty acids and decrease in albumin (factors modulating tryptophan transport) in the plasma of these patients. Concentration of digoxin, a modulator of amino acid transport, and the activity of HMG CoA reductase, which synthesizes digoxin, were higher in these patients; while RBC membrane Na+-K+ ATPase activity showed a decrease. Concentration of plasma ubiquinone (part of which is synthesised from tyrosine) and magnesium was also lower in these patients. No morphine could be detected in the plasma of these patients except in MS. On the other hand, strychnine and nicotine were detectable. These results indicate hypercatabolism of tryptophan and hypocatabolism of tyrosine in these disorders, which could be a consequence of the modulating effect of hypothalamic digoxin on amino acid transport.

  19. Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Ravikumar A

    2000-07-01

    Full Text Available Catabolism of tryptophan and tyrosine in relation to the isoprenoid pathway was studied in neurological and psychiatric disorders. The concentration of trytophan, quinolinic acid, kynurenic acid, serotonin and 5-hydroxyindoleacetic acid was found to be higher in the plasma of patients with all these disorders; while that of tyrosine, dopamine, epinephrine and norepinephrine was lower. There was increase in free fatty acids and decrease in albumin (factors modulating tryptophan transport in the plasma of these patients. Concentration of digoxin, a modulator of amino acid transport, and the activity of HMG CoA reductase, which synthesizes digoxin, were higher in these patients; while RBC membrane Na+-K+ ATPase activity showed a decrease. Concentration of plasma ubiquinone (part of which is synthesised from tyrosine and magnesium was also lower in these patients. No morphine could be detected in the plasma of these patients except in MS. On the other hand, strychnine and nicotine were detectable. These results indicate hypercatabolism of tryptophan and hypocatabolism of tyrosine in these disorders, which could be a consequence of the modulating effect of hypothalamic digoxin on amino acid transport.

  20. Lipid catabolism of invertebrate predator indicates widespread wetland ecosystem degradation

    Science.gov (United States)

    Anteau, Michael J.; Afton, Alan D.

    2011-01-01

    Animals frequently undergo periods when they accumulate lipid reserves for subsequent energetically expensive activities, such as migration or breeding. During such periods, daily lipid-reserve dynamics (DLD) of sentinel species can quantify how landscape modifications affect function, health, and resilience of ecosystems. Aythya affinis (Eyton 1838; lesser scaup; diving duck) are macroinvertebrate predators; they migrate through an agriculturally dominated landscape in spring where they select wetlands with the greatest food density to refuel and accumulate lipid reserves for subsequent reproduction. We index DLD by measuring plasma-lipid metabolites of female scaup (n = 459) that were refueling at 75 spring migration stopover areas distributed across the upper Midwest, USA. We also indexed DLD for females (n = 44) refueling on a riverine site (Pool 19) south of our upper Midwest study area. We found that mean DLD estimates were significantly (Plipid reserves throughout the upper Midwest. Moreover, levels of lipid catabolism are alarming, because scaup use the best quality wetlands available within a given stopover area. Accordingly, these results provide evidence of wetland ecosystem degradation across this large agricultural landscape and document affects that are carried-up through several trophic levels. Interestingly, storing of lipids by scaup at Pool 19 likely reflects similar ecosystem perturbations as observed in the upper Midwest because wetland drainage and agricultural runoff nutrifies the riverine habitat that scaup use at Pool 19. Finally, our results underscore how using this novel technique to monitor DLD, of a carefully selected sentinel species, can index ecosystem health at a landscape scale.

  1. Allantoin catabolism influences the production of antibiotics in Streptomyces coelicolor.

    Science.gov (United States)

    Navone, Laura; Casati, Paula; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K; Rodriguez, Eduardo; Gramajo, Hugo

    2014-01-01

    Purines are a primary source of carbon and nitrogen in soil; however, their metabolism is poorly understood in Streptomyces. Using a combination of proteomics, metabolomics, and metabolic engineering, we characterized the allantoin pathway in Streptomyces coelicolor. When cells grew in glucose minimal medium with allantoin as the sole nitrogen source, quantitative proteomics identified 38 enzymes upregulated and 28 downregulated. This allowed identifying six new functional enzymes involved in allantoin metabolism in S. coelicolor. From those, using a combination of biochemical and genetic engineering tools, it was found that allantoinase (EC 3.5.2.5) and allantoicase (EC 3.5.3.4) are essential for allantoin metabolism in S. coelicolor. Metabolomics showed that under these growth conditions, there is a significant intracellular accumulation of urea and amino acids, which eventually results in urea and ammonium release into the culture medium. Antibiotic production of a urease mutant strain showed that the catabolism of allantoin, and the subsequent release of ammonium, inhibits antibiotic production. These observations link the antibiotic production impairment with an imbalance in nitrogen metabolism and provide the first evidence of an interaction between purine metabolism and antibiotic biosynthesis.

  2. Inactivity amplifies the catabolic response of skeletal muscle to cortisol

    Science.gov (United States)

    Ferrando, A. A.; Stuart, C. A.; Sheffield-Moore, M.; Wolfe, R. R.

    1999-01-01

    Severe injury or trauma is accompanied by both hypercortisolemia and prolonged inactivity or bed rest (BR). Trauma and BR alone each result in a loss of muscle nitrogen, albeit through different metabolic alterations. Although BR alone can result in a 2-3% loss of lean body mass, the effects of severe trauma can be 2- to 3-fold greater. We investigated the combined effects of hypercortisolemia and prolonged inactivity on muscle protein metabolism in healthy volunteers. Six males were studied before and after 14 days of strict BR using a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis and breakdown rates of skeletal muscle protein were also directly calculated. Each assessment of protein metabolism was conducted during a 12-h infusion of hydrocortisone sodium succinate (120 microg/kg x h), resulting in blood cortisol concentrations that mimic severe injury (approximately 31 microg/dL). After 14 days of strict BR, hypercortisolemia increased phenylalanine efflux from muscle by 3-fold (P catabolic effects of hypercortisolemia. Furthermore, these effects on healthy volunteers are analogous to those seen after severe injury.

  3. Increase in sphingolipid catabolic enzyme activity during aging

    Institute of Scientific and Technical Information of China (English)

    Santosh J SACKET; Hae-young CHUNG; Fumikazu OKAJIMA; Dong-soon IM

    2009-01-01

    Aim:To understand the contribution of sphingolipid metabolism and its metabolites to development and aging.Methods: A systemic analysis on the changes in activity of sphingolipid metabolic enzymes in kidney, liver and brain tissues during development and aging was conducted. The study was conducted using tissues from 1-day-old to 720-day-old rats.Results: Catabolic enzyme activities as well as the level of sphingomyelinase (SMase) and ceramidase (CDase) were higher than that of anabolic enzyme activities, sphingomyelin synthase and ceramide synthase. This suggested an accumulation of ceramide and sphingosine during development and aging. The liver showed the highest neutral-SMase activity among the tested enzymes while the kidney and brain exhibited higher neutral-SMase and ceramidase activities, indicating a high production of ceramide in liver and ceramide/sphingosine in the kidney and brain. The activities of sphingolipid metabolic enzymes were significantly elevated in all tested tissues during development and aging, although the onset of significant increase in activity varied on the tissue and enzyme type. During aging, 18 out of 21 enzyme activities were further increased on day 720 compared to day 180.Conclusion: Differential increases in sphingolipid metabolic enzyme activities suggest that sphingolipids including ceramide and sphingosine might play important and dynamic roles in proliferation, differentiation and apoptosis during development and aging.

  4. A product of heme catabolism modulates bacterial function and survival.

    Directory of Open Access Journals (Sweden)

    Christopher L Nobles

    Full Text Available Bilirubin is the terminal metabolite in heme catabolism in mammals. After deposition into bile, bilirubin is released in large quantities into the mammalian gastrointestinal (GI tract. We hypothesized that intestinal bilirubin may modulate the function of enteric bacteria. To test this hypothesis, we investigated the effect of bilirubin on two enteric pathogens; enterohemorrhagic E. coli (EHEC, a Gram-negative that causes life-threatening intestinal infections, and E. faecalis, a Gram-positive human commensal bacterium known to be an opportunistic pathogen with broad-spectrum antibiotic resistance. We demonstrate that bilirubin can protect EHEC from exogenous and host-generated reactive oxygen species (ROS through the absorption of free radicals. In contrast, E. faecalis was highly susceptible to bilirubin, which causes significant membrane disruption and uncoupling of respiratory metabolism in this bacterium. Interestingly, similar results were observed for other Gram-positive bacteria, including B. cereus and S. aureus. A model is proposed whereby bilirubin places distinct selective pressure on enteric bacteria, with Gram-negative bacteria being protected from ROS (positive outcome and Gram-positive bacteria being susceptible to membrane disruption (negative outcome. This work suggests bilirubin has differential but biologically relevant effects on bacteria and justifies additional efforts to determine the role of this neglected waste catabolite in disease processes, including animal models.

  5. Catabolism of coffee chlorogenic acids by human colonic microbiota.

    Science.gov (United States)

    Ludwig, Iziar A; Paz de Peña, Maria; Concepción, Cid; Alan, Crozier

    2013-01-01

    Several studies have indicated potential health benefits associated with coffee consumption. These benefits might be ascribed in part to the chlorogenic acids (CGAs), the main (poly)phenols in coffee. The impact of these dietary (poly)phenols on health depends on their bioavailability. As they pass along the gastrointestinal tract, CGAs are metabolized extensively and it is their metabolites rather than the parent compounds that predominate in the circulatory system. This article reports on a study in which after incubation of espresso coffee with human fecal samples, high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to monitor CGA breakdown and identify and quantify the catabolites produced by the colonic microflora. The CGAs were rapidly degraded by the colonic microflora and over the 6-h incubation period, 11 catabolites were identified and quantified. The appearance of the initial degradation products, caffeic and ferulic acids, was transient, with maximum quantities at 1 h. Dihydrocaffeic acid, dihydroferulic acid, and 3-(3'-hydroxyphenyl)propionic acid were the major end products, comprising 75-83% of the total catabolites, whereas the remaining 17-25% consisted of six minor catabolites. The rate and extent of the degradation showed a clear influence of the composition of the gut microbiota of individual volunteers. Pathways involved in colonic catabolism of CGAs are proposed and comparison with studies on the bioavailability of coffee CGAs ingested by humans helped distinguish between colonic catabolites and phase II metabolites of CGAs.

  6. Catabolism of citronellol and related acyclic terpenoids in pseudomonads.

    Science.gov (United States)

    Förster-Fromme, Karin; Jendrossek, Dieter

    2010-07-01

    Terpenes are a huge group of natural compounds characterised by their predominantly pleasant smell. They are built up by isoprene units in cyclic or acyclic form and can be functionalised by carbonyl, hydroxyl or carboxyl groups and by presence of additional carbon-carbon double bonds (terpenoids). Currently, much more than 10,000 terpenoid compounds are known, and many thereof are present in different iso- and stereoforms. Terpenoids are secondary metabolites and can have important biological functions in living organisms. In many cases, the biological functions of terpenoids are not known at all. Nevertheless, terpenoids are used in large quantities as perfumes and aroma compounds for food additives. Terpenoids can be also precursors and building blocks for synthesis of complex chiral compounds in chemical and pharmaceutical industry. Unfortunately, only few terpenoids are available in large quantities at reasonable costs. Therefore, characterisation of suited biocatalysts specific for terpenoid compounds and development of biotransformation processes of abundant terpenoids to commercially interesting derivates becomes more and more important. This minireview summarises knowledge on catabolic pathways and biotransformations of acyclic monoterpenes that have received only little attention. Terpenoids with 20 or more carbon atoms are not a subject of this study.

  7. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    Science.gov (United States)

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  8. Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans Dsij(T).

    Science.gov (United States)

    Barbeyron, Tristan; Thomas, François; Barbe, Valérie; Teeling, Hanno; Schenowitz, Chantal; Dossat, Carole; Goesmann, Alexander; Leblanc, Catherine; Oliver Glöckner, Frank; Czjzek, Mirjam; Amann, Rudolf; Michel, Gurvan

    2016-12-01

    The marine flavobacterium Zobellia galactanivorans Dsij(T) was isolated from a red alga and by now constitutes a model for studying algal polysaccharide bioconversions. We present an in-depth analysis of its complete genome and link it to physiological traits. Z. galactanivorans exhibited the highest gene numbers for glycoside hydrolases, polysaccharide lyases and carbohydrate esterases and the second highest sulfatase gene number in a comparison to 125 other marine heterotrophic bacteria (MHB) genomes. Its genome contains 50 polysaccharide utilization loci, 22 of which contain sulfatase genes. Catabolic profiling confirmed a pronounced capacity for using algal polysaccharides and degradation of most polysaccharides could be linked to dedicated genes. Physiological and biochemical tests revealed that Z. galactanivorans stores and recycles glycogen, despite loss of several classic glycogen-related genes. Similar gene losses were observed in most Flavobacteriia, suggesting presence of an atypical glycogen metabolism in this class. Z. galactanivorans features numerous adaptive traits for algae-associated life, such as consumption of seaweed exudates, iodine metabolism and methylotrophy, indicating that this bacterium is well equipped to form profitable, stable interactions with macroalgae. Finally, using statistical and clustering analyses of the MHB genomes we show that their carbohydrate catabolism correlates with both taxonomy and habitat. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Zebrafish 20β-hydroxysteroid dehydrogenase type 2 is important for glucocorticoid catabolism in stress response.

    Directory of Open Access Journals (Sweden)

    Janina Tokarz

    Full Text Available Stress, the physiological reaction to a stressor, is initiated in teleost fish by hormone cascades along the hypothalamus-pituitary-interrenal (HPI axis. Cortisol is the major stress hormone and contributes to the appropriate stress response by regulating gene expression after binding to the glucocorticoid receptor. Cortisol is inactivated when 11β-hydroxysteroid dehydrogenase (HSD type 2 catalyzes its oxidation to cortisone. In zebrafish, Danio rerio, cortisone can be further reduced to 20β-hydroxycortisone. This reaction is catalyzed by 20β-HSD type 2, recently discovered by us. Here, we substantiate the hypothesis that 20β-HSD type 2 is involved in cortisol catabolism and stress response. We found that hsd11b2 and hsd20b2 transcripts were up-regulated upon cortisol treatment. Moreover, a cortisol-independent, short-term physical stressor led to the up-regulation of hsd11b2 and hsd20b2 along with several HPI axis genes. The morpholino-induced knock down of hsd20b2 in zebrafish embryos revealed no developmental phenotype under normal culture conditions, but prominent effects were observed after a cortisol challenge. Reporter gene experiments demonstrated that 20β-hydroxycortisone was not a physiological ligand for the zebrafish glucocorticoid or mineralocorticoid receptor but was excreted into the fish holding water. Our experiments show that 20β-HSD type 2, together with 11β-HSD type 2, represents a short pathway in zebrafish to rapidly inactivate and excrete cortisol. Therefore, 20β-HSD type 2 is an important enzyme in stress response.

  10. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed.

  11. Changes in substrate utilisation and protein catabolism during multiday cycling in well-trained cyclists.

    Science.gov (United States)

    Oosthuyse, Tanja; Avidon, Ingrid

    2015-01-01

    There is a paucity of studies that have evaluated substrate utilisation and protein catabolism during multiday strenuous exercise in athletes. Eleven well-trained male cyclists completed 3 h of race-simulated cycling on 4 consecutive days. Cyclist exercised 2 h postprandially and with carbohydrate supplementation (~50 g · h(-1)) during exercise. Whole body substrate utilisation was measured by indirect calorimetry, protein catabolism from sweat and urine urea excretion, and blood metabolite concentration was evaluated. Protein catabolism during exercise was significantly greater on days 2-4 (29.9 ± 8.8; 34.0 ± 11.2; 32.0 ± 7.3 g for days 2, 3, and 4, respectively) compared to day 1 (23.3 ± 7.6 g), P catabolism on all successive days.

  12. Irritability rather than depression during interferon treatment is linked to increased tryptophan catabolism

    NARCIS (Netherlands)

    Russo, S; Kema, IP; Haagsma, EB; Boon, JC; Willemse, PHB; Den Boer, JA; De Vries, EGE; Korf, J

    2005-01-01

    Objective: Treatment with recombinant interferon is associated with high rates of psychiatric comorbidity. We investigated the relation between catabolism of the essential amino acid tryptophan, being rate-limiting of peripheral and cerebral serotonin formation, and psychiatric symptoms in patients

  13. House sparrows (Passer domesticus) increase protein catabolism in response to water restriction.

    Science.gov (United States)

    Gerson, Alexander R; Guglielmo, Christopher G

    2011-04-01

    Birds primarily rely on fat for energy during fasting and to fuel energetically demanding activities. Proteins are catabolized supplemental to fat, the function of which in birds remains poorly understood. It has been proposed that birds may increase the catabolism of body protein under dehydrating conditions as a means to maintain water balance, because catabolism of wet protein yields more total metabolic and bound water (0.155·H(2)O(-1)·kJ(-1)) than wet lipids (0.029 g·H(2)O(-1)·kJ(-1)). On the other hand, protein sparing should be important to maintain function of muscles and organs. We used quantitative magnetic resonance body composition analysis and hygrometry to investigate the effect of water restriction on fat and lean mass catabolism during short-term fasting at rest and in response to a metabolic challenge (4-h shivering) in house sparrows (Passer domesticus). Water loss at rest and during shivering was compared with water gains from the catabolism of tissue. At rest, water-restricted birds had significantly greater lean mass loss, higher plasma uric acid concentration, and plasma osmolality than control birds. Endogenous water gains from lean mass catabolism offset losses over the resting period. Water restriction had no effect on lean mass catabolism during shivering, as water gains from fat oxidation appeared sufficient to maintain water balance. These data provide direct evidence supporting the hypothesis that water stress can increase protein catabolism at rest, possibly as a metabolic strategy to offset high rates of evaporative water loss.

  14. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

    OpenAIRE

    Liu., S; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J.

    1995-01-01

    l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria....

  15. Effect of gold nanoparticles and ciprofloxacin on microbial catabolism: a community-based approach.

    Science.gov (United States)

    Weber, Kela P; Petersen, Elijah J; Bissegger, Sonja; Koch, Iris; Zhang, Jun; Reimer, Kenneth J; Rehmann, Lars; Slawson, Robin M; Legge, Raymond L; O'Carroll, Denis M

    2014-01-01

    The effect of gold nanoparticles (AuNPs) and ciprofloxacin on the catabolism of microbial communities was assessed. This was accomplished through an ex situ methodology designed to give a priori knowledge on the potential for nanoparticles, or other emerging contaminants, to affect the catabolic capabilities of microbial communities in the environment. Microbial communities from a variety of sources were incubated with 31 prespecified carbon sources and either National Institute of Standards and Technology reference material 10-nm AuNPs or ciprofloxacin on 96-well microtiter plates. From the ciprofloxacin study, dose-response curves were generated and exemplified how this method can be used to assess the effect of a toxicant on overall catabolic capabilities of microbial communities. With 10-nm AuNPs at concentrations ranging from 0.01 µg/mL to 0.5 µg/mL, rhizosphere communities from Typha roots were only slightly catabolically inhibited at a single concentration (0.05 µg/mL); no effects were seen on wetland water communities, and a minor positive (i.e., enhanced catabolic capabilities) effect was observed for loamy soil communities. This positive effect might have been because of a thin layer of citrate found on these AuNPs that initiated cometabolism with some of the carbon sources studied. Under the conditions considered, the possible adverse effects of AuNPs on the catabolic capabilities of microbial communities appears to be minimal. © 2013 SETAC.

  16. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease.

    Science.gov (United States)

    Romani, Luigina; Fallarino, Francesca; De Luca, Antonella; Montagnoli, Claudia; D'Angelo, Carmen; Zelante, Teresa; Vacca, Carmine; Bistoni, Francesco; Fioretti, Maria C; Grohmann, Ursula; Segal, Brahm H; Puccetti, Paolo

    2008-01-10

    Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.

  17. A Two-Component para-Nitrophenol Monooxygenase Initiates a Novel 2-Chloro-4-Nitrophenol Catabolism Pathway in Rhodococcus imtechensis RKJ300.

    Science.gov (United States)

    Min, Jun; Zhang, Jun-Jie; Zhou, Ning-Yi

    2015-11-13

    Rhodococcus imtechensis RKJ300 (DSM 45091) grows on 2-chloro-4-nitrophenol (2C4NP) and para-nitrophenol (PNP) as the sole carbon and nitrogen sources. In this study, by genetic and biochemical analyses, a novel 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with hydroxyquinol (hydroxy-1,4-hydroquinone or 1,2,4-benzenetriol [BT]) as the ring cleavage substrate. Real-time quantitative PCR analysis indicated that the pnp cluster located in three operons is likely involved in the catabolism of both 2C4NP and PNP. The oxygenase component (PnpA1) and reductase component (PnpA2) of the two-component PNP monooxygenase were expressed and purified to homogeneity, respectively. The identification of chlorohydroquinone (CHQ) and BT during 2C4NP degradation catalyzed by PnpA1A2 indicated that PnpA1A2 catalyzes the sequential denitration and dechlorination of 2C4NP to BT and catalyzes the conversion of PNP to BT. Genetic analyses revealed that pnpA1 plays an essential role in both 2C4NP and PNP degradations by gene knockout and complementation. In addition to catalyzing the oxidation of CHQ to BT, PnpA1A2 was also found to be able to catalyze the hydroxylation of hydroquinone (HQ) to BT, revealing the probable fate of HQ that remains unclear in PNP catabolism by Gram-positive bacteria. This study fills a gap in our knowledge of the 2C4NP degradation mechanism in Gram-positive bacteria and also enhances our understanding of the genetic and biochemical diversity of 2C4NP catabolism.

  18. FoxO-dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension.

    Science.gov (United States)

    Brocca, Lorenza; Toniolo, Luana; Reggiani, Carlo; Bottinelli, Roberto; Sandri, Marco; Pellegrino, Maria Antonietta

    2017-02-15

    Muscle atrophy is a debilitating condition that affects a high percentage of the population with a negative impact on quality of life. Dissecting the molecular level of the atrophy process, and the similarities/dissimilarities among different catabolic conditions, is a necessary step for designing specific countermeasures to attenuate/prevent muscle loss. The FoxO family transcription factors represent one of the most important regulators of atrophy programme stimulating the expression of many atrophy-related genes. The findings of the present study clearly indicate that the signalling network controlling the atrophy programme is specific for each catabolic condition. Muscle atrophy is a complex process that is in common with many different catabolic diseases including disuse/inactivity and ageing. The signalling pathways that control the atrophy programme in the different disuse/inactivity conditions have not yet been completely dissected. The inhibition of FoxO is considered to only partially spare muscle mass after denervation. The present study aimed: (i) to determine the involvement of FoxOs in hindlimb suspension disuse model; (ii) to define whether the molecular events of protein breakdown are shared among different unloaded muscles; and finally (iii) to compare the data obtained in this model with another model of inactivity such as denervation. Both wild-type and muscle-specific FoxO1,3,4 knockout (FoxO1,3,4(-/-) ) mice were unloaded for 3 and 14 days and muscles were characterized by functional, morphological, biochemical and molecular assays. The data obtained show that FoxOs are required for muscle loss and force drop during unloading. Moreover, we found that FoxO-dependent atrogenes vary in different unloaded muscles and that they diverge from denervation. The findings of the present study clearly indicate that the signalling network that controls the atrophy programme is specific for each catabolic condition. © 2016 The Authors. The Journal of

  19. Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the γ-glutamylation pathway in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Chou, Han Ting; Li, Jeng-Yi; Peng, Yu-Chih; Lu, Chung-Dar

    2013-09-01

    Pseudomonas aeruginosa PAO1 grows on a variety of polyamines as the sole source of carbon and nitrogen. Catabolism of polyamines is mediated by the γ-glutamylation pathway, which is complicated by the existence of multiple homologous enzymes with redundant specificities toward different polyamines for a more diverse metabolic capacity in this organism. Through a series of markerless gene knockout mutants and complementation tests, specific combinations of pauABCD (polyamine utilization) genes were deciphered for catabolism of different polyamines. Among six pauA genes, expression of pauA1, pauA2, pauA4, and pauA5 was found to be inducible by diamines putrescine (PUT) and cadaverine (CAD) but not by diaminopropane. Activation of these promoters was regulated by the PauR repressor, as evidenced by constitutively active promoters in the pauR mutant. The activities of these promoters were further enhanced by exogenous PUT or CAD in the mutant devoid of all six pauA genes. The recombinant PauR protein with a hexahistidine tag at its N terminus was purified, and specific bindings of PauR to the promoter regions of most pau operons were demonstrated by electromobility shift assays. Potential interactions of PUT and CAD with PauR were also suggested by chemical cross-linkage analysis with glutaraldehyde. In comparison, growth on PUT was more proficient than that on CAD, and this observed growth phenotype was reflected in a strong catabolite repression of pauA promoter activation by CAD but was completely absent as reflected by activation by PUT. In summary, this study clearly establishes the function of PauR in control of pau promoters in response to PUT and CAD for their catabolism through the γ-glutamylation pathway.

  20. Biomimetic aggrecan reduces cartilage extracellular matrix from degradation and lowers catabolic activity in ex vivo and in vivo models.

    Science.gov (United States)

    Sharma, Shaili; Lee, Aeju; Choi, Kuiwon; Kim, Kwangmeyung; Youn, Inchan; Trippel, Stephen B; Panitch, Alyssa

    2013-09-01

    Aggrecan, a major macromolecule in cartilage, protects the extracellular matrix (ECM) from degradation during the progression of osteoarthritis (OA). However, aggrecan itself is also susceptible to proteolytic cleavage. Here, the use of a biomimetic proteoglycan (mAGC) is presented, which functionally mimics aggrecan but lacks the known cleavage sites, protecting the molecule from proteolytic degradation. The objective of this study is to test the efficacy of this molecule in ex vivo (human OA synovial fluid) and in vivo (Sprague-Dawley rats) osteoarthritic models. These results indicate that mAGC's may protect articular cartilage against the loss of key ECM components, and lower catabolic protein and gene expression in both models. This suppression of matrix degradation has the potential to provide a healthy environment for tissue repair.

  1. Catabolism of biomass-derived sugars in fungi and metabolic engineering as a tool for organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Koivistoinen, O.

    2013-11-01

    The use of metabolic engineering as a tool for production of biochemicals and biofuels requires profound understanding of cell metabolism. The pathways for the most abundant and most important hexoses have already been studied quite extensively but it is also important to get a more complete picture of sugar catabolism. In this thesis, catabolic pathways of L-rhamnose and D-galactose were studied in fungi. Both of these hexoses are present in plant biomass, such as in hemicellulose and pectin. Galactoglucomannan, a type of hemicellulose that is especially rich in softwood, is an abundant source of D-galactose. As biotechnology is moving from the usage of edible and easily metabolisable carbon sources towards the increased use of lignocellulosic biomass, it is important to understand how the different sugars can be efficiently turned into valuable biobased products. Identification of the first fungal L-rhamnose 1-dehydrogenase gene, which codes for the first enzyme of the fungal catabolic L-rhamnose pathway, showed that the protein belongs to a protein family of short-chain alcohol dehydrogenases. Sugar dehydrogenases oxidising a sugar to a sugar acid are not very common in fungi and thus the identification of the L-rhamnose dehydrogenase gene provides more understanding of oxidative sugar catabolism in eukaryotic microbes. Further studies characterising the L-rhamnose cluster in the yeast Scheffersomyces stipitis including the expression of the L-rhamnonate dehydratase in Saccharomyces cerevisiae finalised the biochemical characterisation of the enzymes acting on the pathway. In addition, more understanding of the regulation and evolution of the pathway was gained. D-Galactose catabolism was studied in the filamentous fungus Aspergillus niger. Two genes coding for the enzymes of the oxido-reductive pathway were identified. Galactitol dehydrogenase is the second enzyme of the pathway converting galactitol to L-xylo-3-hexulose. The galactitol dehydrogenase encoding

  2. Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid and 1,4-androstadiene-3,17-dione.

    Science.gov (United States)

    Yeh, Chin-Hsing; Kuo, Yung-Shun; Chang, Che-Ming; Liu, Wen-Hsiung; Sheu, Meei-Ling; Meng, Menghsiao

    2014-09-09

    The gene encoding the putative reductase component (KshB) of 3-ketosteroid 9α-hydroxylase was cloned from Rhodococcus equi USA-18, a cholesterol oxidase-producing strain formerly named Arthrobacter simplex USA-18, by PCR according to consensus amino acid motifs of several bacterial KshB subunits. Deletion of the gene in R. equi USA-18 by a PCR-targeted gene disruption method resulted in a mutant strain that could accumulate up to 0.58 mg/ml 1,4-androstadiene-3,17-dione (ADD) in the culture medium when 0.2% cholesterol was used as the carbon source, indicating the involvement of the deleted enzyme in 9α-hydroxylation of steroids. In addition, this mutant also accumulated 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (Δ1,4-BNC). Because both ADD and Δ1,4-BNC are important intermediates for the synthesis of steroid drugs, this mutant derived from R. equi USA-18 may deserve further investigation for its application potential.

  3. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes.

    Science.gov (United States)

    Prokesch, A; Pelzmann, H J; Pessentheiner, A R; Huber, K; Madreiter-Sokolowski, C T; Drougard, A; Schittmayer, M; Kolb, D; Magnes, C; Trausinger, G; Graier, W F; Birner-Gruenberger, R; Pospisilik, J A; Bogner-Strauss, J G

    2016-04-05

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes.

  4. The 3,4-dihydroxyphenylacetic acid catabolon, a catabolic unit for degradation of biogenic amines tyramine and dopamine in Pseudomonas putida U.

    Science.gov (United States)

    Arcos, Mario; Olivera, Elías R; Arias, Sagrario; Naharro, Germán; Luengo, José M

    2010-06-01

    Degradation of tyramine and dopamine by Pseudomonas putida U involves the participation of twenty one proteins organized in two coupled catabolic pathways, Tyn (tynABFEC tynG tynR tynD, 12 338 bp) and Hpa (hpaR hpaBC hpaHI hpaX hpaG1G2EDF hpaA hpaY, 12 722 bp). The Tyn pathway catalyses the conversion of tyramine and dopamine into 4-hydroxyphenylacetic acid (4HPA) and 3,4-dihydroxyphenylacetic acid (3,4HPA) respectively. Together, the Tyn and Hpa pathways constitute a complex catabolic unit (the 3,4HPA catabolon) in which 3,4HPA is the central intermediate. The genes encoding Tyn proteins are organized in four consecutive transcriptional units (tynABFEC, tynG, tynR and tynD), whereas those encoding Hpa proteins constitute consecutive operons (hpaBC, hpaG1G2EDF, hpaX, hpaHI) and three independent units (hpaA, hpaR and hpaY). Genetic engineering approaches were used to clone tyn and hpa genes and then express them, either individually or in tandem, in plasmids and/or bacterial chromosomes, resulting in recombinant bacterial strains able to eliminate tyramine and dopamine from different media. These results enlarge our biochemical and genetic knowledge of the microbial catabolic routes involved in the degradation of aromatic bioamines. Furthermore, they provide potent biotechnological tools to be used in food processing and fermentation as well as new strategies that could be used for pharmacological and gene therapeutic applications in the near future.

  5. Substrate uptake and subcellular compartmentation of anoxic cholesterol catabolism in Sterolibacterium denitrificans.

    Science.gov (United States)

    Lin, Ching-Wen; Wang, Po-Hsiang; Ismail, Wael; Tsai, Yu-Wen; El Nayal, Ashraf; Yang, Chia-Ying; Yang, Fu-Chun; Wang, Chia-Hsiang; Chiang, Yin-Ru

    2015-01-09

    Cholesterol catabolism by actinobacteria has been extensively studied. In contrast, the uptake and catabolism of cholesterol by Gram-negative species are poorly understood. Here, we investigated microbial cholesterol catabolism at the subcellular level. (13)C metabolomic analysis revealed that anaerobically grown Sterolibacterium denitrificans, a β-proteobacterium, adopts an oxygenase-independent pathway to degrade cholesterol. S. denitrificans cells did not produce biosurfactants upon growth on cholesterol and exhibited high cell surface hydrophobicity. Moreover, S. denitrificans did not produce extracellular catabolic enzymes to transform cholesterol. Accordingly, S. denitrificans accessed cholesterol by direction adhesion. Cholesterol is imported through the outer membrane via a putative FadL-like transport system, which is induced by neutral sterols. The outer membrane steroid transporter is able to selectively import various C27 sterols into the periplasm. S. denitrificans spheroplasts exhibited a significantly higher efficiency in cholest-4-en-3-one-26-oic acid uptake than in cholesterol uptake. We separated S. denitrificans proteins into four fractions, namely the outer membrane, periplasm, inner membrane, and cytoplasm, and we observed the individual catabolic reactions within them. Our data indicated that, in the periplasm, various periplasmic and peripheral membrane enzymes transform cholesterol into cholest-4-en-3-one-26-oic acid. The C27 acidic steroid is then transported into the cytoplasm, in which side-chain degradation and the subsequent sterane cleavage occur. This study sheds light into microbial cholesterol metabolism under anoxic conditions.

  6. Vitamin A deficiency increases protein catabolism and induces urea cycle enzymes in rats.

    Science.gov (United States)

    Esteban-Pretel, Guillermo; Marín, M Pilar; Cabezuelo, Francisco; Moreno, Verónica; Renau-Piqueras, Jaime; Timoneda, Joaquín; Barber, Teresa

    2010-04-01

    Chronic vitamin A deficiency induces a substantial delay in the rates of weight and height gain in both humans and experimental animals. This effect has been associated with an impaired nutrient metabolism and loss of body protein. Therefore, we analyzed the effect of vitamin A deficiency on endogenous proteolysis and nitrogen metabolism and its reversibility with all-trans retinoic acid (RA). Male weanling rats, housed in pairs, were pair-fed a vitamin A-deficient (VAD) or control diet until they were 60 d old. A group of deficient rats were further treated with daily intraperitoneal injections of all-trans RA for 10 d. Final body and tissue (i.e. liver and heart) weights were significantly lower and tissue:body weight ratios were similar in VAD rats and in controls. Conversely, the epididymal white fat:body weight ratio and the plasma concentrations of alanine aminotransferase and adiponectin were significantly higher in VAD rats, which also had hepatic macrovesicular lipid accumulations. Plasma and gastrocnemius muscle 3-methylhistidine, urine nitrogen, and plasma and urine urea concentrations were all significantly higher in the VAD group. The expression of the genes encoding urea cycle enzymes and their activities increased in VAD livers. These changes were partially reverted by all-trans RA. We propose that fuel partitioning in vitamin A deficiency may shift from fatty acids to protein catabolism as an energy source. Our results emphasize the importance of vitamin A on the energy balance control system and they provide an explanation for the role of vitamin A in protein turnover, development, and growth.

  7. Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both?

    Science.gov (United States)

    Wang, Yanlin; Casero, Robert A

    2006-01-01

    With the recent discovery of the polyamine catabolic enzyme spermine oxidase (SMO/PAOh1), the apparent complexity of the polyamine metabolic pathway has increased considerably. Alone or in combination with the two other known members of human polyamine catabolism, spermidine/spermine N(1)-acetyltransferase, and N(1)-acetylpolyamine oxidase (PAO), SMO/PAOh1 expression has the potential to alter polyamine homeostasis in response to normal cellular signals, drug treatment and environmental and/or cellular stressors. The activity of the oxidases producing toxic aldehydes and the reactive oxygen species (ROS) H(2)O(2), suggest a mechanism by which these oxidases can be exploited as an antineoplastic drug target. However, inappropriate activation of the pathways may also lead to pathological outcomes, including DNA damage that can lead to cellular transformation. The most recent data suggest that the two polyamine catabolic pathways exhibit distinct properties and understanding these properties should aid in their exploitation for therapeutic and/or chemopreventive strategies.

  8. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary starter...... for developing new cheese products with enhanced flavour. The aim of this Ph.D. study was to investigate the importance of strain variation of Lb. helveticus in relation flavour formation in cheese related to amino acid catabolism. Aspects of using Lb. helveticus as starter as well as adjunct culture in cheese...... manufacture were studied. Amino acid catabolism related enzyme activities were studied in vitro from eight out of 39 Lb. helveticus strains selected based on different pulsed field gel electrophoresis profiles. Amino acids can be initially converted into a-keto acids by transamination reaction. Lb helveticus...

  9. Flight at low ambient humidity increases protein catabolism in migratory birds.

    Science.gov (United States)

    Gerson, Alexander R; Guglielmo, Christopher G

    2011-09-09

    Although fat is the primary fuel for migratory flight in birds, protein is also used. Catabolism of tissue protein yields five times as much water per kilojoule as fat, and so one proposed function of protein catabolism is to maintain water balance during nonstop flights. To test the protein-for-water hypothesis, we flew Swainson's thrushes (Catharus ustulatus) in a climatic wind tunnel under high- and low-humidity conditions at 18°C for up to 5 hours. Flight under dry conditions increased the rates of lean mass loss and endogenous water production and also increased plasma uric acid concentration. These data demonstrate that atmospheric humidity influences fuel composition in flight and suggest that protein deposition and catabolism during migration are, in part, a metabolic strategy to maintain osmotic homeostasis during flight.

  10. An unexpected location of the arginine catabolic mobile element (ACME) in a USA300-related MRSA strain

    DEFF Research Database (Denmark)

    Bartels, Mette Damkjær; Hansen, Lars Hestbjerg; Boye, Kit

    2011-01-01

    In methicillin resistant Staphylococcus aureus (MRSA), the arginine catabolic mobile element (ACME) was initially described in USA300 (t008-ST8) where it is located downstream of the staphylococcal cassette chromosome mec (SCCmec). A common health-care associated MRSA in Copenhagen, Denmark (t024......-ST8) is clonally related to USA300 and is frequently PCR positive for the ACME specific arcA-gene. This study is the first to describe an ACME element upstream of the SCCmec in MRSA. By traditional SCCmec typing schemes, the SCCmec of t024-ST8 strain M1 carries SCCmec IVa, but full sequencing...... of SCCmec, M1 had two new DR between the orfX gene and the J3 region of the SCCmec. The region between the orfX DR (DR1) and DR2 contained the ccrAB4 genes. An ACME II-like element was located between DR2 and DR3. The entire 26,468 bp sequence between DR1 and DR3 was highly similar to parts of the ACME...

  11. Purification and characterization of 3-dehydroshikimate dehydratase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa.

    Science.gov (United States)

    Strøman, P; Reinert, W R; Giles, N H

    1978-07-10

    3-Dehydroshikimate dehydratase catalyzes the third reaction in the inducible quinic acid catabolic pathway of Neurospora crassa and is encoded in the qa-4 gene of the qa gene cluster. As part of continuing genetic and biochemical studies concerning the organization and regulation of this gene cluster, 3-dehydroshikimate dehydratase has been purified and characterized biochemically. The enzyme was purified 1650-fold using the following techniques: 1) (NH4)2SO4 fractionation; 2) ion exchange chromatography on DEAE-cellulose; 3) gel filtration on Sephadex G-100; 4) ion exchange chromatography on Cellex QAE (quaternary aminoethyl); and 5) hydroxylapatite chromatography. 3-Dehydroshikimate dehydratase is a monomer with a molecular weight of about 37,000 and a sedimentation coefficient of 3.27 S. It has a Km value of 5.9 X 10(-4) and an average isoelectric point of 4.92. The purified enzyme is extremely sensitive to thermal denaturation but can be significantly stabilized by Mg2+ ions. The purified enzyme also exhibits maximal catalytic activity only when assayed in the presence of certain divalent cations, e.g. magnesium. The NH2-terminal residue of 3-dehydroshikimate dehydratase is proline, and its alpha-amino group is unblocked.

  12. An Unexpected Location of the Arginine Catabolic Mobile Element (ACME) in a USA300-Related MRSA Strain

    DEFF Research Database (Denmark)

    Damkjær Bartels, Mette; Hansen, Lars H.; Boye, Kit;

    2011-01-01

    In methicillin resistant Staphylococcus aureus (MRSA), the arginine catabolic mobile element (ACME) was initially described in USA300 (t008-ST8) where it is located downstream of the staphylococcal cassette chromosome mec (SCCmec). A common health-care associated MRSA in Copenhagen, Denmark (t024......-ST8) is clonally related to USA300 and is frequently PCR positive for the ACME specific arcA-gene. This study is the first to describe an ACME element upstream of the SCCmec in MRSA. By traditional SCCmec typing schemes, the SCCmec of t024-ST8 strain M1 carries SCCmec IVa, but full sequencing...... of SCCmec, M1 had two new DR between the orfX gene and the J3 region of the SCCmec. The region between the orfX DR (DR1) and DR2 contained the ccrAB4 genes. An ACME II-like element was located between DR2 and DR3. The entire 26,468 bp sequence between DR1 and DR3 was highly similar to parts of the ACME...

  13. Isolation of a mutation resulting in constitutive synthesis of L-fucose catabolic enzymes.

    OpenAIRE

    Bartkus, J. M.; Mortlock, R P

    1986-01-01

    A ribitol-positive transductant of Escherichia coli K-12, JM2112, was used to facilitate the isolation and identification of mutations affecting the L-fucose catabolic pathway. Analysis of L-fucose-negative mutants of JM2112 enabled us to confirm that L-fucose-1-phosphate is the apparent inducer of the fucose catabolic enzymes. Plating of an L-fuculokinase-negative mutant of JM2112 on D-arabinose yielded an isolate containing a second fucose mutation which resulted in the constitutive synthes...

  14. Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Egebo, L A; Nielsen, S V; Jochimsen, B U

    1991-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid (IAA). Examination of this catabolism in strain 110 by in vivo experiments has revealed an enzymatic activity catalyzing the degradation of IAA and 5-hydroxy-indole-3-acetic acid. The activity requires...... an oxygen-consuming opening of the indole ring analogous to the one catalyzed by tryptophan 2,3-dioxygenase. The pattern of metabolite usage by known tryptophan-auxotrophic mutants and studies of metabolites by high-performance liquid chromatography indicate that anthranilic acid is a terminal degradation...

  15. Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Xu, Tao [University of Oklahoma, Norman; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Graham, David E [ORNL; He, Zhili [University of Oklahoma, Norman; Zhou, Jizhong [University of Oklahoma, Norman

    2014-01-01

    Background Clostridium cellulolyticum can degrade lignocellulosic biomass, and ferment the soluble sugars to produce valuable chemicals such as lactate, acetate, ethanol and hydrogen. However, the cellulose utilization efficiency of C. cellulolyticum still remains very low, impeding its application in consolidated bioprocessing for biofuels production. In this study, two metabolic engineering strategies were exploited to improve cellulose utilization efficiency, including sporulation abolishment and carbon overload alleviation. Results The spo0A gene at locus Ccel_1894, which encodes a master sporulation regulator was inactivated. The spo0A mutant abolished the sporulation ability. In a high concentration of cellulose (50 g/l), the performance of the spo0A mutant increased dramatically in terms of maximum growth, final concentrations of three major metabolic products, and cellulose catabolism. The microarray and gas chromatography mass spectrometry (GC-MS) analyses showed that the valine, leucine and isoleucine biosynthesis pathways were up-regulated in the spo0A mutant. Based on this information, a partial isobutanol producing pathway modified from valine biosynthesis was introduced into C. cellulolyticum strains to further increase cellulose consumption by alleviating excessive carbon load. The introduction of this synthetic pathway to the wild-type strain improved cellulose consumption from 17.6 g/l to 28.7 g/l with a production of 0.42 g/l isobutanol in the 50 g/l cellulose medium. However, the spo0A mutant strain did not appreciably benefit from introduction of this synthetic pathway and the cellulose utilization efficiency did not further increase. A technical highlight in this study was that an in vivo promoter strength evaluation protocol was developed using anaerobic fluorescent protein and flow cytometry for C. cellulolyticum. Conclusions In this study, we inactivated the spo0A gene and introduced a heterologous synthetic pathway to manipulate the stress

  16. Insulin-like growth factor-I fails to reverse corticosteroid-induced protein catabolism in growing piglets

    NARCIS (Netherlands)

    Hellstern, G; Reijngoud, DJ; Stellaard, F; Okken, A

    1996-01-01

    Corticosteroids such as dexamethasone (DEX) increase leucine turnover and oxidation in humans and animals, indicating whole body protein catabolism. Recently, interest has been growing in the use of recombinant polypeptides such as GH and IGF-I in reversing various states of catabolism. The aim of o

  17. Catabolism of Serine by Pediococcus acidilactici and Pediococcus pentosaceus

    OpenAIRE

    Irmler, Stefan; Bavan, Tharmatha; Oberli, Andrea; Roetschi, Alexandra; Badertscher, René; Guggenbühl, Barbara; Berthoud, Hélène

    2013-01-01

    The ability to produce diacetyl from pyruvate and l-serine was studied in various strains of Pediococcus pentosaceus and Pediococcus acidilactici isolated from cheese. After being incubated on both substrates, only P. pentosaceus produced significant amounts of diacetyl. This property correlated with measurable serine dehydratase activity in cell extracts. A gene encoding the serine dehydratase (dsdA) was identified in P. pentosaceus, and strains that showed no serine dehydratase activity car...

  18. Mechanical ventilation induces myokine expression and catabolism in peripheral skeletal muscle in pigs

    Science.gov (United States)

    Endotoxin (LPS)-induced sepsis increases circulating cytokines which have been associated with skeletal muscle catabolism. During critical illness, it has been postulated that muscle wasting associated with mechanical ventilation (MV) occurs due to inactivity. We hypothesize that MV and sepsis promo...

  19. A previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis

    Science.gov (United States)

    Oxalate is produced by several catabolic pathways in plants. The best characterized pathway for subsequent oxalate degradation is via oxalate oxidase, but some species, such as Arabidopsis thaliana, have no oxalate oxidase activity. Previously, an alternative pathway was proposed in which oxalyl-CoA...

  20. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis.

    Science.gov (United States)

    Green, Courtney R; Wallace, Martina; Divakaruni, Ajit S; Phillips, Susan A; Murphy, Anne N; Ciaraldi, Theodore P; Metallo, Christian M

    2016-01-01

    Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation.

  1. The activation of hepatic and muscle polyamine catabolism improves glucose homeostasis.

    Science.gov (United States)

    Koponen, Taina; Cerrada-Gimenez, Marc; Pirinen, Eija; Hohtola, Esa; Paananen, Jussi; Vuohelainen, Susanna; Tusa, Maija; Pirnes-Karhu, Sini; Heikkinen, Sami; Virkamäki, Antti; Uimari, Anne; Alhonen, Leena; Laakso, Markku

    2012-02-01

    The mitochondrial biogenesis and energy expenditure regulator, PGC-1α, has been previously reported to be induced in the white adipose tissue (WAT) and liver of mice overexpressing spermidine/spermine N (1)-acetyltransferase (SSAT). The activation of PGC-1α in these mouse lines leads to increased number of mitochondria, improved glucose homeostasis, reduced WAT mass and elevated basal metabolic rate. The constant activation of polyamine catabolism produces a futile cycle that greatly reduces the ATP pools and induces 5'-AMP-activated protein kinase (AMPK), which in turn activates PGC-1α in WAT. In this study, we have investigated the effects of activated polyamine catabolism on the glucose and energy metabolisms when targeted to specific tissues. For that we used a mouse line overexpressing SSAT under the endogenous SSAT promoter, an inducible SSAT overexpressing mouse model using the metallothionein I promoter (MT-SSAT), and a mouse model with WAT-specific SSAT overexpression (aP2-SSAT). The results demonstrated that WAT-specific SSAT overexpression was sufficient to increase the number of mitochondria, reduce WAT mass and protect the mice from high-fat diet-induced obesity. However, the improvement in the glucose homeostasis is achieved only when polyamine catabolism is enhanced at the same time in the liver and skeletal muscle. Our results suggest that the tissue-specific targeting of activated polyamine catabolism may reveal new possibilities for the development of drugs boosting mitochondrial metabolism and eventually for treatment of obesity and type 2 diabetes.

  2. Phytochemicals that modulate amino acid and peptide catabolism by caprine rumen microbes

    Science.gov (United States)

    Background: Microbe-derived ionophores and macrolide antibiotics are often added to ruminant diets, and growth promotion and feed efficiency are among the benefits. One mechanism is inhibition of microbes that catabolize amino acids or peptides and produce ammonia. Plants also produce antimicrobial ...

  3. Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon

    Directory of Open Access Journals (Sweden)

    Andre Mancebo Mazzetto

    2016-03-01

    Full Text Available Abstract Land use changes strongly impact soil functions, particularly microbial biomass diversity and activity. We hypothesized that the catabolic respiration response of the microbial biomass would differ depending on land use and that these differences would be consistent at the landscape scale. In the present study, we analyzed the catabolic response profile of the soil microbial biomass through substrate-induced respiration in different land uses over a wide geographical range in Mato Grosso and Rondônia state (Southwest Amazon region. We analyzed the differences among native areas, pastures and crop areas and within each land use and examined only native areas (Forest, Dense Cerrado and Cerrado, pastures (Nominal, Degraded and Improved and crop areas (Perennial, No-Tillage, Conventional Tillage. The metabolic profile of the microbial biomass was accessed using substrate-induced respiration. Pasture soils showed significant responses to amino acids and carboxylic acids, whereas native areas showed higher responses to malonic acid, malic acid and succinic acid. Within each land use category, the catabolic responses showed similar patterns in both large general comparisons (native area, pasture and crop areas and more specific comparisons (biomes, pastures and crop types. The results showed that the catabolic responses of the microbial biomass are highly correlated with land use, independent of soil type or climate. The substrate induced respiration approach is useful to discriminate microbial communities, even on a large scale.

  4. Chronic Drought Decreases Anabolic and Catabolic BVOC Emissions of Quercus pubescens in a Mediterranean Forest

    Science.gov (United States)

    Saunier, Amélie; Ormeño, Elena; Wortham, Henri; Temime-Roussel, Brice; Lecareux, Caroline; Boissard, Christophe; Fernandez, Catherine

    2017-01-01

    Biogenic volatile organic compounds (BVOC) emitted by plants can originate from both anabolism (metabolite production through anabolic processes) and catabolism (metabolite degradation by oxidative reactions). Drought can favor leaf oxidation by increasing the oxidative pressure in plant cells. Thus, under the precipitation decline predicted for the Mediterranean region, it can be expected both strong oxidation of anabolic BVOC within leaves and, as a result, enhanced catabolic BVOC emissions. Using an experimental rain exclusion device in a natural forest, we compared the seasonal course of the emissions of the main anabolic BVOC released by Q. pubescens (isoprene and methanol) and their catabolic products (MACR+MVK+ISOPOOH and formaldehyde, respectively) after 3 years of precipitation restriction (−30% of rain). Thus, we assume that this repetitive amplified drought promoted a chronic drought. BVOC emissions were monitored, on-line, with a PTR-ToF-MS. Amplified drought decreased all BVOC emissions rates in spring and summer by around 40–50 %, especially through stomatal closure, with no effect in autumn. Moreover, ratios between catabolic and anabolic BVOC remained unchanged with amplified drought, suggesting a relative stable oxidative pressure in Q. pubescens under the water stress applied. Moreover, these results suggest a quite good resilience of this species under the most severe climate change scenario in the Mediterranean region. PMID:28228762

  5. Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon.

    Science.gov (United States)

    Mazzetto, Andre Mancebo; Feigl, Brigitte Josefine; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente

    2016-01-01

    Land use changes strongly impact soil functions, particularly microbial biomass diversity and activity. We hypothesized that the catabolic respiration response of the microbial biomass would differ depending on land use and that these differences would be consistent at the landscape scale. In the present study, we analyzed the catabolic response profile of the soil microbial biomass through substrate-induced respiration in different land uses over a wide geographical range in Mato Grosso and Rondônia state (Southwest Amazon region). We analyzed the differences among native areas, pastures and crop areas and within each land use and examined only native areas (Forest, Dense Cerrado and Cerrado), pastures (Nominal, Degraded and Improved) and crop areas (Perennial, No-Tillage, Conventional Tillage). The metabolic profile of the microbial biomass was accessed using substrate-induced respiration. Pasture soils showed significant responses to amino acids and carboxylic acids, whereas native areas showed higher responses to malonic acid, malic acid and succinic acid. Within each land use category, the catabolic responses showed similar patterns in both large general comparisons (native area, pasture and crop areas) and more specific comparisons (biomes, pastures and crop types). The results showed that the catabolic responses of the microbial biomass are highly correlated with land use, independent of soil type or climate. The substrate induced respiration approach is useful to discriminate microbial communities, even on a large scale.

  6. Ischemic nucleotide breakdown increases during cardiac development due to drop in adenosine anabolism/catabolism ratio

    NARCIS (Netherlands)

    J.W. de Jong (Jan Willem); E. Keijzer (Elisabeth); T. Huizer (Tom); B. Schoutsen

    1990-01-01

    markdownabstractAbstract Our earlier work on reperfusion showed that adult rat hearts released almost twice as much purine nucleosides and oxypurines as newborn hearts did [Am J Physiol 254 (1988) H1091]. A change in the ratio anabolism/catabolism of adenosine could be responsible for this effect.

  7. Coumestrol Counteracts Interleukin-1β-Induced Catabolic Effects by Suppressing Inflammation in Primary Rat Chondrocytes.

    Science.gov (United States)

    You, Jae-Seek; Cho, In-A; Kang, Kyeong-Rok; Oh, Ji-Su; Yu, Sang-Joun; Lee, Gyeong-Je; Seo, Yo-Seob; Kim, Su-Gwan; Kim, Chun Sung; Kim, Do Kyung; Im, Hee-Jeong; Kim, Jae-Sung

    2017-02-01

    In the present study, we investigated the anti-catabolic effects of coumestrol, a phytoestrogen derived from herbal plants, against interleukin-1β-induced cartilage degeneration in primary rat chondrocytes and articular cartilage. Coumestrol did not affect the viability of human normal oral keratinocytes and primary rat chondrocytes treated for 24 h and 21 days, respectively. Although coumestrol did not significantly increase the proteoglycan contents in long-term culture, it abolished the interleukin-1β-induced loss of proteoglycans in primary rat chondrocytes and knee articular cartilage. Furthermore, coumestrol suppressed the expression of matrix-degrading enzymes such as matrix metalloproteinase-13, -3, and -1 in primary rat chondrocytes stimulated with interleukin-1β. Moreover, the expression of catabolic factors such as nitric oxide synthase, cyclooxygenase-2, prostaglandin E2, and inflammatory cytokines in interleukin-1β-stimulated primary rat chondrocytes was suppressed by coumestrol. In summary, these results indicate that coumestrol counteracts the catabolic effects induced by interleukin-1β through the suppression of inflammation. Therefore, based on its biological activity and safety profile, coumestrol could be used as a potential anti-catabolic biomaterial for osteoarthritis.

  8. Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism

    Science.gov (United States)

    Pratiksha Bhatnagar; Rakesh Minocha; Subhash C. Minocha

    2002-01-01

    We investigated the catabolism of putrescine (Put) in a non-transgenic (NT) and a transgenic cell line of poplar (Populus nigra x maximowiczii) expressing a mouse (Mus musculus) ornithine (Orn) decarboxylase (odc) cDNA. The transgenic cells produce 3- to 4-fold higher amounts of Put than the NT...

  9. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol

    DEFF Research Database (Denmark)

    Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.

    2016-01-01

    We report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conv...

  10. Draft Genome Sequences of Three β-Lactam-Catabolizing Soil Proteobacteria

    DEFF Research Database (Denmark)

    Crofts, Terence S.; Wang, Bin; Spivak, Aaron

    2017-01-01

    Most antibiotics are derived from the soil, but their catabolism there, which is necessary to close the antibiotic carbon cycle, remains uncharacterized. We report the first draft genome sequences of soil Proteobacteria identified for subsisting solely on β-lactams as their carbon sources. The ge...

  11. Actinobacterial acyl coenzyme A synthetases involved in steroid side-chain catabolism.

    Science.gov (United States)

    Casabon, Israël; Swain, Kendra; Crowe, Adam M; Eltis, Lindsay D; Mohn, William W

    2014-02-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 10(5) ± 0.03 × 10(5) M(-1) s(-1)) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2'-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 10(5) ± 0.1 × 10(5) M(-1) s(-1) and 3.2 × 10(5) ± 0.3 × 10(5) M(-1) s(-1), respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid

  12. Inactivation of a heterocyst-specific invertase indicates a principal role of sucrose catabolism in heterocysts of Anabaena sp.

    Science.gov (United States)

    López-Igual, Rocío; Flores, Enrique; Herrero, Antonia

    2010-10-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that carries out N(2) fixation in specialized cells called heterocysts, which exchange nutrients and regulators with the filament's vegetative cells that perform the photosynthetic fixation of CO(2). The Anabaena genome carries two genes coding for alkaline/neutral invertases, invA and invB. As shown by Northern analysis, both genes were expressed monocistronically and induced under nitrogen deprivation, although induction was stronger for invB than for invA. Whereas expression of an InvA-N-GFP fusion (green fluorescent protein [GFP] fused to the N terminus of the InvA protein [InvA-N]) was homogeneous along the cyanobacterial filament, consistent with the lack of dependence on HetR, expression of an InvB-N-GFP fusion upon combined nitrogen deprivation took place mainly in differentiating and mature heterocysts. In an hetR genetic background, the InvB-N-GFP fusion was strongly expressed all along the filament. An insertional mutant of invA could grow diazotrophically but was impaired in nifHDK induction and exhibited an increased frequency of heterocysts, suggesting a regulatory role of the invertase-mediated carbon flux in vegetative cells. In contrast, an invB mutant was strongly impaired in diazotrophic growth, showing a crucial role of sucrose catabolism mediated by the InvB invertase in the heterocysts.

  13. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    Science.gov (United States)

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF.

  14. The genome of Variovorax paradoxus strain TBEA6 provides new understandings for the catabolism of 3,3'-thiodipropionic acid and hence the production of polythioesters.

    Science.gov (United States)

    Wübbeler, Jan Hendrik; Hiessl, Sebastian; Meinert, Christina; Poehlein, Anja; Schuldes, Jörg; Daniel, Rolf; Steinbüchel, Alexander

    2015-09-10

    The betaproteobacterium Variovorax paradoxus strain TBEA6 is capable of using 3,3'-thiodipropionic acid (TDP) as sole carbon and energy source for growth. This thioether is employed for several industrial applications. It can be applied as precursor for the biotechnical production of polythioesters (PTE), which represent persistent bioplastics. Consequently, the genome of V. paradoxus strain TBEA6 was sequenced. The draft genome sequence comprises approximately 7.2Mbp and 6852 predicted open reading frames. Furthermore, transposon mutagenesis to unravel the catabolism of TDP in strain TBEA6 was performed. Screening of 20,000 mutants mapped the insertions of Tn5::mob in 32 mutants, which all showed no growth with TDP as sole carbon source. Based on the annotated genome sequence together with transposon-induced mutagenesis, defined gene deletions, in silico analyses and comparative genomics, a comprehensive pathway for the catabolism of TDP is proposed: TDP is imported via the tripartite tricarboxcylate transport system and/or the TRAP-type dicarboxylate transport system. The initial cleavage of TDP into 3-hydroxypropionic acid (3HP) and 3-mercaptopropionic acid (3MP), which serves as precursor substrate for PTE synthesis, is most probably performed by the FAD-dependent oxidoreductase Fox. 3HP is presumably catabolized via malonate semialdehyde, whereas 3MP is oxygenated by the 3MP-dioxygenase Mdo yielding 3-sulfinopropionic acid (3SP). Afterwards, 3SP is linked to coenzyme A. The next step is the abstraction of sulfite by a desulfinase, and the resulting propionyl-CoA enters the central metabolism. Sulfite is oxidized to sulfate by the sulfite-oxidizing enzyme SoeABC and is subsequently excreted by the cells by the sulfate exporter Pse.

  15. Functional characterization and expression analysis of rice δ(1)-pyrroline-5-carboxylate dehydrogenase provide new insight into the regulation of proline and arginine catabolism.

    Science.gov (United States)

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar

    2015-01-01

    While intracellular proline accumulation in response to various stress conditions has been investigated in great detail, the biochemistry and physiological relevance of proline degradation in plants is much less understood. Moreover, the second and last step in proline catabolism, the oxidation of δ(1)-pyrroline-5-carboxylic acid (P5C) to glutamate, is shared with arginine catabolism. Little information is available to date concerning the regulatory mechanisms coordinating these two pathways. Expression of the gene coding for P5C dehydrogenase was analyzed in rice by real-time PCR either following the exogenous supply of amino acids of the glutamate family, or under hyperosmotic stress conditions. The rice enzyme was heterologously expressed in E. coli, and the affinity-purified protein was thoroughly characterized with respect to structural and functional properties. A tetrameric oligomerization state was observed in size exclusion chromatography, which suggests a structure of the plant enzyme different from that shown for the bacterial P5C dehydrogenases structurally characterized to date. Kinetic analysis accounted for a preferential use of NAD(+) as the electron acceptor. Cations were found to modulate enzyme activity, whereas anion effects were negligible. Several metal ions were inhibitory in the micromolar range. Interestingly, arginine also inhibited the enzyme at higher concentrations, with a mechanism of uncompetitive type with respect to P5C. This implies that millimolar levels of arginine would increase the affinity of P5C dehydrogenase toward its specific substrate. Results are discussed in view of the involvement of the enzyme in either proline or arginine catabolism.

  16. Autophagy attenuates the catabolic effect during inflammatory conditions in nucleus pulposus cells, as sustained by NF-κB and JNK inhibition.

    Science.gov (United States)

    Xu, Kang; Chen, Weijian; Wang, Xiaofei; Peng, Yan; Liang, Anjing; Huang, Dongsheng; Li, Chunhai; Ye, Wei

    2015-09-01

    Proteoglycan degradation contributing to the pathogenesis of intervertebral disc (IVD) degeneration is induced by inflammatory cytokines, such as tumor necrosis factor‑α (TNF‑α) and interleukin‑1β (IL‑1β). Cell autophagy exists in degenerative diseases, including osteoarthritis and intervertebral disc degeneration. However, the autophagy induced by TNF‑α and IL‑1β and the corresponding molecular mechanism appear to be cell‑type dependent. The effect and mechanism of autophagy regulated by TNF‑α and IL‑1β in IVDs remains unclear. Additionally, the impact of autophagy on the catabolic effect in inflammatory conditions also remains elusive. In the present study, autophagy activator and inhibitor were used to demonstrate the impact of autophagy on the catabolic effect induced by TNF‑α. A critical role of autophagy was identified in rat nucleus pulposus (NP) cells: Inhibition of autophagy suppresses, while activation of autophagy enhances, the catabolic effect of cytokines. Subsequently, the autophagy‑related gene expression in rat NP cells following TNF‑α and IL‑1β treatment was observed using immunofluorescence, quantitative polymerase chain reaction and western blot analysis; however, no association was present. In addition, nuclear factor κB (NF‑κB), c‑Jun N‑terminal kinase (JNK), extracellular signal‑regulated kinases and p38 mitogen‑activated protein kinase inhibitors and TNF‑α were used to determine the molecular mechanism of autophagy during the inflammatory conditions, and only the NF‑κB and JNK inhibitor were found to enhance the autophagy of rat NP cells. Finally, IKKβ knockdown was used to further confirm the effect of the NF‑κB signal on human NP cells autophagy, and the data showed that IKKβ knockdown upregulated the autophagy of NP cells during inflammatory conditions.

  17. Genomic plasticity and catabolic potential of Pseudomonas cepacia

    Energy Technology Data Exchange (ETDEWEB)

    Lessie, T.G.

    1996-04-01

    The primary goal of this project was to gain information about the size and organization of the genome of Burkholderia cepacia (formerly Pseudomonas cepacia), a microbe which continues to attract attention because of its extraordinary degradative abilities and potential as an agent of bioremediation. This bacterium is no longer considered to be a member of genus Pseudomonas nor does it belong in the gamma-subclass of the proteobacteria, in which the authentic pseudomonads are grouped. It belongs in the less well characterized beta-subclass of the proteobacteria. Technology for manipulation of large DNA fragments developed by Cantor was used to demonstrate that chromosomal multiplicity, a characteristic yet to be observed in a gamma-subclass bacterium, is common among B. cepacia strains. A derivative of Tn5 suitable for determining the chromosomal locations of various B. cepacia genes was also constructed.

  18. The Maize Transcription Factor KNOTTED1 Directly Regulates the Gibberellin Catabolism Gene ga2ox1

    Science.gov (United States)

    ga2oxl mRNA level is elevated in immature leaves of dominant KNOX mutants and down-regulated in reproductive meristems of the null allele knl-el. KNl binds in vivo to an intron of ga2oxl through a cw-regulatory element containing two TGAC motifs. VP16-KN1 activates transcription inplanta from a chim...

  19. Natural variation in synthesis and catabolism genes influences dhurrin content in sorghum (Sorghum bicolor L. Moench)

    Science.gov (United States)

    Cyanogenic glucosides are natural compounds found in over 1,000 species of angiosperms that produce HCN and are deemed undesirable for agricultural use. However, these compounds are important components of primary defensive mechanisms of many plant species. One of the best-studied cyanogenic glucos...

  20. Amyloid beta-protein and lipid rafts: focused on biogenesis and catabolism.

    Science.gov (United States)

    Araki, Wataru; Tamaoka, Akira

    2015-01-01

    Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity. γ-Secretase is enriched in lipid rafts, which are considered an important site for Aβ generation. Additionally, Aβ-degrading peptidases located in lipid rafts, such as neprilysin, appear to play a role in Aβ catabolism. This mini-review focuses on the roles of lipid rafts in the biogenesis and catabolism of Aβ, covering recent research on the relationship between lipid rafts and the three secretases or Aβ-degrading peptidases. Furthermore, the significance of lipid rafts in Aβ aggregation and neurotoxicity is briefly summarized.

  1. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.

    Science.gov (United States)

    Zhang, Minjie; Mani, Sriniwasan B; He, Yao; Hall, Amber M; Xu, Lin; Li, Yefu; Zurakowski, David; Jay, Gregory D; Warman, Matthew L

    2016-08-01

    Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease.

  2. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  3. An unexpected location of the arginine catabolic mobile element (ACME in a USA300-related MRSA strain.

    Directory of Open Access Journals (Sweden)

    Mette Damkjær Bartels

    Full Text Available In methicillin resistant Staphylococcus aureus (MRSA, the arginine catabolic mobile element (ACME was initially described in USA300 (t008-ST8 where it is located downstream of the staphylococcal cassette chromosome mec (SCCmec. A common health-care associated MRSA in Copenhagen, Denmark (t024-ST8 is clonally related to USA300 and is frequently PCR positive for the ACME specific arcA-gene. This study is the first to describe an ACME element upstream of the SCCmec in MRSA. By traditional SCCmec typing schemes, the SCCmec of t024-ST8 strain M1 carries SCCmec IVa, but full sequencing of the cassette revealed that the entire J3 region had no homology to published SCCmec IVa. Within the J3 region of M1 was a 1705 bp sequence only similar to a sequence in S. haemolyticus strain JCSC1435 and 2941 bps with no homology found in GenBank. In addition to the usual direct repeats (DR at each extremity of SCCmec, M1 had two new DR between the orfX gene and the J3 region of the SCCmec. The region between the orfX DR (DR1 and DR2 contained the ccrAB4 genes. An ACME II-like element was located between DR2 and DR3. The entire 26,468 bp sequence between DR1 and DR3 was highly similar to parts of the ACME composite island of S. epidermidis strain ATCC12228. Sequencing of an ACME negative t024-ST8 strain (M299 showed that DR1 and the sequence between DR1 and DR3 was missing. The finding of a mobile ACME II-like element inserted downstream of orfX and upstream of SCCmec indicates a novel recombination between staphylococcal species.

  4. Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer

    OpenAIRE

    Kennedy, Kelly M; Scarbrough, Peter M.; Anthony Ribeiro; Rachel Richardson; Hong Yuan; Pierre Sonveaux; Landon, Chelsea D.; Jen-Tsan Chi; Salvatore Pizzo; Thies Schroeder; Dewhirst, Mark W.

    2013-01-01

    Lactate accumulation in tumors has been associated with metastases and poor overall survival in cancer patients. Lactate promotes angiogenesis and metastasis, providing rationale for understanding how it is processed by cells. The concentration of lactate in tumors is a balance between the amount produced, amount carried away by vasculature and if/how it is catabolized by aerobic tumor or stromal cells. We examined lactate metabolism in human normal and breast tumor cell lines and rat breast ...

  5. Targeting Tryptophan Catabolism: A Novel Method to Block Triple-Negative Breast Cancer Metastasis

    Science.gov (United States)

    2016-04-01

    on the beginnings of this work in http://www.eurekalert.org/pub_releases/2014-12/uocd-ptd121014. php What do you plan to do during the next reporting...14). The essential amino acid tryptophan is required for protein synthesis and is a precursor for the formation of multiple signaling molecules...including serotonin (15). The majority of tryptophan catabolism occurs via the kynurenine pathway, leading to synthesis of NADþ along with intermediate

  6. A Program for the Study of Skeletal Muscle Catabolism Following Physical Trauma.

    Science.gov (United States)

    1987-12-06

    amino acids ( BCAA - leucine, isoleucine, and valine) are the only essential amino acids that are primarily oxidized in skeletal muscle (16). The amino...it is clear that BCAA (primarily leucine) can reduce net protein degradation in vitro, the effect of amino acid formulas supplemented with additional... BCAA on skeletal muscle breakdown in catabolic patients remains controversial. For example, Freund and Cerra have administered solutions containing up

  7. Prediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine

    OpenAIRE

    Kumar, Ritesh; Zhao, Suwen; Vetting, Matthew W.; Wood, B. McKay; Sakai, Ayano; Cho, Kyuil; Solbiati, José; Steven C Almo; Jonathan V Sweedler; Matthew P Jacobson; Gerlt, John A.; Cronan, John E.

    2014-01-01

    ABSTRACT Through the use of genetic, enzymatic, metabolomic, and structural analyses, we have discovered the catabolic pathway for proline betaine, an osmoprotectant, in Paracoccus denitrificans and Rhodobacter sphaeroides. Genetic and enzymatic analyses showed that several of the key enzymes of the hydroxyproline betaine degradation pathway also function in proline betaine degradation. Metabolomic analyses detected each of the metabolic intermediates of the pathway. The proline betaine catab...

  8. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway.

    Science.gov (United States)

    Rosado, Ivan V; Langevin, Frédéric; Crossan, Gerry P; Takata, Minoru; Patel, Ketan J

    2011-11-13

    Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival.

  9. Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Pierre Millard

    2017-02-01

    Full Text Available The metabolism of microorganisms is regulated through two main mechanisms: changes of enzyme capacities as a consequence of gene expression modulation ("hierarchical control" and changes of enzyme activities through metabolite-enzyme interactions. An increasing body of evidence indicates that hierarchical control is insufficient to explain metabolic behaviors, but the system-wide impact of metabolic regulation remains largely uncharacterized. To clarify its role, we developed and validated a detailed kinetic model of Escherichia coli central metabolism that links growth to environment. Metabolic control analyses confirm that the control is widely distributed across the network and highlight strong interconnections between all the pathways. Exploration of the model solution space reveals that several robust properties emerge from metabolic regulation, from the molecular level (e.g. homeostasis of total metabolite pool to the overall cellular physiology (e.g. coordination of carbon uptake, catabolism, energy and redox production, and growth, while allowing a large degree of flexibility at most individual metabolic steps. These properties have important physiological implications for E. coli and significantly expand the self-regulating capacities of its metabolism.

  10. Genomic and functional analyses of the 2-aminophenol catabolic pathway and partial conversion of its substrate into picolinic acid in Burkholderia xenovorans LB400.

    Directory of Open Access Journals (Sweden)

    Bernardita Chirino

    Full Text Available 2-aminophenol (2-AP is a toxic nitrogen-containing aromatic pollutant. Burkholderia xenovorans LB400 possess an amn gene cluster that encodes the 2-AP catabolic pathway. In this report, the functionality of the 2-aminophenol pathway of B. xenovorans strain LB400 was analyzed. The amnRJBACDFEHG cluster located at chromosome 1 encodes the enzymes for the degradation of 2-aminophenol. The absence of habA and habB genes in LB400 genome correlates with its no growth on nitrobenzene. RT-PCR analyses in strain LB400 showed the co-expression of amnJB, amnBAC, amnACD, amnDFE and amnEHG genes, suggesting that the amn cluster is an operon. RT-qPCR showed that the amnB gene expression was highly induced by 2-AP, whereas a basal constitutive expression was observed in glucose, indicating that these amn genes are regulated. We propose that the predicted MarR-type transcriptional regulator encoded by the amnR gene acts as repressor of the amn gene cluster using a MarR-type regulatory binding sequence. This report showed that LB400 resting cells degrade completely 2-AP. The amn gene cluster from strain LB400 is highly identical to the amn gene cluster from P. knackmussi strain B13, which could not grow on 2-AP. However, we demonstrate that B. xenovorans LB400 is able to grow using 2-AP as sole nitrogen source and glucose as sole carbon source. An amnBA (- mutant of strain LB400 was unable to grow with 2-AP as nitrogen source and glucose as carbon source and to degrade 2-AP. This study showed that during LB400 growth on 2-AP this substrate was partially converted into picolinic acid (PA, a well-known antibiotic. The addition of PA at lag or mid-exponential phase inhibited LB400 growth. The MIC of PA for strain LB400 is 2 mM. Overall, these results demonstrate that B. xenovorans strain LB400 posses a functional 2-AP catabolic central pathway, which could lead to the production of picolinic acid.

  11. Increased fat catabolism sustains water balance during fasting in zebra finches.

    Science.gov (United States)

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. © 2016. Published by The Company of Biologists Ltd.

  12. Review article: hyperammonaemic and catabolic consequences of upper gastrointestinal bleeding in cirrhosis.

    Science.gov (United States)

    Olde Damink, S W M; Dejong, C H C; Jalan, R

    2009-04-15

    Upper gastrointestinal (UGI) bleeding in patients with cirrhosis of the liver induces hyperammonaemia and leads to a catabolic cascade that precipitates life-threatening complications. The haemoglobin molecule is unique because it lacks the essential amino acid isoleucine and contains high amounts of leucine and valine. UGI bleed therefore presents the gut with protein of very low biologic value, which may be the stimulus to induce net catabolism. To describe the hyperammonaemic and catabolic consequences of UGI bleeding in cirrhosis. A semi-structured literature search was performed using PubMed and article references. It has recently been proven that ('simulation of ') a UGI bleed in patients with cirrhosis leads to impaired protein synthesis that can be restored by intravenous infusion of isoleucine. This may have therapeutic implications for the function of rapidly dividing cells and short half-life proteins such as clotting factors. Renal and small bowel ammoniagenesis were shown to be the most prominent causes for the hyperammonaemia that resulted from a UGI bleed. This provides an explanation for the therapeutic failure of the current clinical therapies that are aimed at large bowel-derived ammonia production. Isoleucine infusion did not diminish renal ammoniagenesis. New pharmacological therapies to diminish postbleeding hyperammonaemia should target the altered inter-organ ammonia metabolism and promote ammonia excretion and/or increase the excretion of precursors of ammoniagenesis, e.g. l-ornithine-phenylacetate.

  13. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    Science.gov (United States)

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome.

  14. Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis.

    Science.gov (United States)

    Liu, Lixia; Zhang, Lei; Tang, Wei; Gu, Yang; Hua, Qiang; Yang, Sheng; Jiang, Weihong; Yang, Chen

    2012-10-01

    Solvent-producing clostridia are capable of utilizing pentose sugars, including xylose and arabinose; however, little is known about how pentose sugars are catabolized through the metabolic pathways in clostridia. In this study, we identified the xylose catabolic pathways and quantified their fluxes in Clostridium acetobutylicum based on [1-(13)C]xylose labeling experiments. The phosphoketolase pathway was found to be active, which contributed up to 40% of the xylose catabolic flux in C. acetobutylicum. The split ratio of the phosphoketolase pathway to the pentose phosphate pathway was markedly increased when the xylose concentration in the culture medium was increased from 10 to 20 g liter(-1). To our knowledge, this is the first time that the in vivo activity of the phosphoketolase pathway in clostridia has been revealed. A phosphoketolase from C. acetobutylicum was purified and characterized, and its activity with xylulose-5-P was verified. The phosphoketolase was overexpressed in C. acetobutylicum, which resulted in slightly increased xylose consumption rates during the exponential growth phase and a high level of acetate accumulation.

  15. Sesamin inhibits lipopolysaccharide-induced inflammation and extracellular matrix catabolism in rat intervertebral disc.

    Science.gov (United States)

    Li, Kang; Li, Yan; Xu, Bo; Mao, Lu; Zhao, Jie

    2016-09-01

    Intervertebral disc (IVD) degeneration contributes to most spinal degenerative diseases, while treatment inhibiting IVD degeneration is still in the experimental stage. Sesamin, a bioactive component extracted from sesame, has been reported to exert chondroprotective and anti-inflammatory effects. Here, we analyzed the anti-inflammatory and anti-catabolic effects of sesamin on rat IVD in vitro and ex vivo. Results show that sesamin significantly inhibits the lipopolysaccharide (LPS)-induced expression of catabolic enzymes (MMP-1, MMP-3, MMP-13, ADAMTS-4, ADAMTS-5) and inflammation factors (IL-1β, TNF-α, iNOS, NO, COX-2, PGE2) in a dose-dependent manner in vitro. It is also proven that migration of macrophages induced by LPS can be inhibited by treatment with sesamin. Organ culture experiments demonstrate that sesamin protects the IVD from LPS-induced depletion of the extracellular matrix ex vivo. Moreover, sesamin suppresses LPS-induced activation of the mitogen-activated protein kinase (MAPK) pathway through inhibiting phosphorylation of JNK, the common downstream signaling pathway of LPS and IL-1β, which may be the potential mechanism of the effects of sesamin. In light of our results, sesamin protects the IVD from inflammation and extracellular matrix catabolism, presenting positive prospects in the treatment of IVD degenerative diseases.

  16. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise.

    Science.gov (United States)

    Shimomura, Yoshiharu; Murakami, Taro; Nakai, Naoya; Nagasaki, Masaru; Harris, Robert A

    2004-06-01

    Branched-chain amino acids (BCAAs) are essential amino acids that can be oxidized in skeletal muscle. It is known that BCAA oxidation is promoted by exercise. The mechanism responsible for this phenomenon is attributed to activation of the branched-chain alpha-keto acid dehydrogenase (BCKDH) complex, which catalyzes the second-step reaction of the BCAA catabolic pathway and is the rate-limiting enzyme in the pathway. This enzyme complex is regulated by a phosphorylation-dephosphorylation cycle. The BCKDH kinase is responsible for inactivation of the complex by phosphorylation, and the activity of the kinase is inversely correlated with the activity state of the BCKDH complex, which suggests that the kinase is the primary regulator of the complex. We found recently that administration of ligands for peroxisome proliferator-activated receptor-alpha (PPARalpha) in rats caused activation of the hepatic BCKDH complex in association with a decrease in the kinase activity, which suggests that promotion of fatty acid oxidation upregulates the BCAA catabolism. Long-chain fatty acids are ligands for PPARalpha, and the fatty acid oxidation is promoted by several physiological conditions including exercise. These findings suggest that fatty acids may be one of the regulators of BCAA catabolism and that the BCAA requirement is increased by exercise. Furthermore, BCAA supplementation before and after exercise has beneficial effects for decreasing exercise-induced muscle damage and promoting muscle-protein synthesis; this suggests the possibility that BCAAs are a useful supplement in relation to exercise and sports.

  17. Effects of Zinc Magnesium Aspartate (ZMA Supplementation on Training Adaptations and Markers of Anabolism and Catabolism

    Directory of Open Access Journals (Sweden)

    Almada Anthony

    2004-12-01

    Full Text Available Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P or ZMA 30–60 minutes prior to going to sleep during 8-weeks of standardized resistance-training. Subjects completed testing sessions at 0, 4, and 8 weeks that included body composition assessment as determined by dual energy X-ray absorptiometry, 1-RM and muscular endurance tests on the bench and leg press, a Wingate anaerobic power test, and blood analysis to assess anabolic/catabolic status as well as markers of health. Data were analyzed using repeated measures ANOVA. Results indicated that ZMA supplementation non-significantly increased serum zinc levels by 11 – 17% (p = 0.12. However, no significant differences were observed between groups in anabolic or catabolic hormone status, body composition, 1-RM bench press and leg press, upper or lower body muscular endurance, or cycling anaerobic capacity. Results indicate that ZMA supplementation during training does not appear to enhance training adaptations in resistance trained populations.

  18. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Mcintyre, Mhairi; Nielsen, Jens

    2004-01-01

    The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars. In the cultivat......The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars...... of key enzymes in the xylose utilisation pathway revealed that xylose metabolism was occurring in the creA deleted strain, even at high glucose concentrations. Conversely, in the wild type strain, activities of the key enzymes for xylose metabolism increased only when the effects of glucose repression...... had been relieved. Xylose was both a repressor and an inducer of xylanases at the same time. The creA mutation seemed to have pleiotropic effects on carbohydratases and carbon catabolism....

  19. Reverse cholesterol transport: its contribution to cholesterol catabolism in normal and disease states.

    Science.gov (United States)

    Loh, K C; Tan, M H

    1996-10-01

    To review the reverse cholesterol transport (RCT) model and its contribution to cholesterol catabolism in normal and disease states. Pertinent articles were identified through a MEDLINE search of the English language literature from 1983 to 1995, followed by a manual search of the bibliographies of pertinent articles. Review articles, laboratory and clinical studies and case reports. The physiology of the RCT pathway as well as alterations observed in individuals with diseases or lifestyle changes were reviewed. Data were derived mainly from laboratory studies and clinical observations. The RCT model is proposed to explain the removal of excess cholesterol from extrahepatic tissues and its delivery to liver for catabolism. This involves several regulated steps mediated by the plasma apolipoproteins and two key enzymes, lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP). In essence free cholesterol in peripheral tissues is taken up by nascent high density lipoprotein (HDL) particles, converted to cholesteryl esters (by LCAT), and then transferred to apo B-containing lipoproteins (by CETP) for hepatic removal. Altered cholesterol catabolism may occur in individuals with disorders of a genetic or acquired nature as well as lifestyle changes, as a result of alterations in one of several of the putative steps or enzymes involved in RCT. The proposed antiatherogenic role of RCT remains to be validated as a review of the possible alterations noted in various disorders showed conflicting results in atherogenic propensity.

  20. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats.

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Pan

    Full Text Available Some mammals hibernate in response to harsh environments. Although hibernating mammals may metabolize proteins, the nitrogen metabolic pathways commonly activated during hibernation are not fully characterized. In contrast to the hypothesis of amino acid preservation, we found evidence of amino acid metabolism as three of five key enzymes, including phenylalanine hydroxylase (PAH, homogentisate 1,2-dioxygenase (HGD, fumarylacetoacetase (FAH, involved in phenylalanine and tyrosine catabolism were co-upregulated during hibernation in two distantly related species of bats, Myotis ricketti and Rhinolophus ferrumequinum. In addition, the levels of phenylalanine in the livers of these bats were significantly decreased during hibernation. Because phenylalanine and tyrosine are both glucogenic and ketogenic, these results indicate the role of this catabolic pathway in energy supply. Since any deficiency in the catabolism of these two amino acids can cause accumulations of toxic metabolites, these results also suggest the detoxification role of these enzymes during hibernation. A higher selective constraint on PAH, HPD, and HGD in hibernators than in non-hibernators was observed, and hibernators had more conserved amino acid residues in each of these enzymes than non-hibernators. These conserved amino acid residues are mostly located in positions critical for the structure and activity of the enzymes. Taken together, results of this work provide novel insights in nitrogen metabolism and removal of harmful metabolites during bat hibernation.

  1. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats.

    Science.gov (United States)

    Pan, Yi-Hsuan; Zhang, Yijian; Cui, Jie; Liu, Yang; McAllan, Bronwyn M; Liao, Chen-Chung; Zhang, Shuyi

    2013-01-01

    Some mammals hibernate in response to harsh environments. Although hibernating mammals may metabolize proteins, the nitrogen metabolic pathways commonly activated during hibernation are not fully characterized. In contrast to the hypothesis of amino acid preservation, we found evidence of amino acid metabolism as three of five key enzymes, including phenylalanine hydroxylase (PAH), homogentisate 1,2-dioxygenase (HGD), fumarylacetoacetase (FAH), involved in phenylalanine and tyrosine catabolism were co-upregulated during hibernation in two distantly related species of bats, Myotis ricketti and Rhinolophus ferrumequinum. In addition, the levels of phenylalanine in the livers of these bats were significantly decreased during hibernation. Because phenylalanine and tyrosine are both glucogenic and ketogenic, these results indicate the role of this catabolic pathway in energy supply. Since any deficiency in the catabolism of these two amino acids can cause accumulations of toxic metabolites, these results also suggest the detoxification role of these enzymes during hibernation. A higher selective constraint on PAH, HPD, and HGD in hibernators than in non-hibernators was observed, and hibernators had more conserved amino acid residues in each of these enzymes than non-hibernators. These conserved amino acid residues are mostly located in positions critical for the structure and activity of the enzymes. Taken together, results of this work provide novel insights in nitrogen metabolism and removal of harmful metabolites during bat hibernation.

  2. Polyamine catabolism is involved in response to salt stress in soybean hypocotyls.

    Science.gov (United States)

    Campestre, María Paula; Bordenave, Cesar Daniel; Origone, Andrea Cecilia; Menéndez, Ana Bernardina; Ruiz, Oscar Adolfo; Rodríguez, Andrés Alberto; Maiale, Santiago Javier

    2011-07-15

    The possible relationship between polyamine catabolism mediated by copper-containing amine oxidase and the elongation of soybean hypocotyls from plants exposed to NaCl has been studied. Salt treatment reduced values of all hypocotyl growth parameters. In vitro, copper-containing amine oxidase activity was up to 77-fold higher than that of polyamine oxidase. This enzyme preferred cadaverine over putrescine and it was active even under the saline condition. On the other hand, saline stress increased spermine and cadaverine levels, and the in vivo copper-containing amine oxidase activity in the elongation zone of hypocotyls. The last effect was negatively modulated by the addition of the copper-containing amine oxidase inhibitor N,N'-diaminoguanidine. In turn, plants treated with the inhibitor showed a significant reduction of reactive oxygen species in the elongation zone, even in the saline situation. In addition, plants grown in cadaverine-amended culture medium showed increased hypocotyl length either in saline or control conditions and this effect was also abolished by N,N'-diaminoguanidine. Taken together, our results suggest that the activity of the copper-containing amine oxidase may be partially contributing to hypocotyl growth under saline stress, through the production of hydrogen peroxide by polyamine catabolism and reinforce the importance of polyamine catabolism and hydrogen peroxide production in the induction of salt tolerance in plants.

  3. Detection of norfloxacin and monitoring its effect on caffeine catabolism in urine samples.

    Science.gov (United States)

    Agrawal, Bharati; Chandra, Pranjal; Goyal, Rajendra N; Shim, Yoon-Bo

    2013-09-15

    A multi-walled carbon nano tube (MWCNT) modified pyrolytic graphite (MPG) electrode is prepared and applied to detect norfloxacin (NFX) based on its electrochemical reduction. The experimental parameters affecting the NFX determination were optimized in terms of MWCNT amount, pH, reaction time, and square wave frequency. The dynamic range for the NFX analysis ranged between 1.2 and 1000µM with a detection limit of 40.6±3.3nM. The effect of NFX on the catabolism of caffeine has been studied by determining its concentration in the urine samples after the prolonged administration of NFX using the MPG electrode. The results show that the catabolism of caffeine is inhibited by ~65% after five days of NFX administration, consequently the caffeine concentration in the urine sample is increased, which is reflected in terms of ~2.5 times increase in the peak current of caffeine. The determinations of NFX and caffeine were selective and the method was successfully applied in biological fluids and pharmaceutical tablets for the test compound analysis. In future this method can be useful for the selective determination of NFX and studying its effect on caffeine catabolism. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.

    Science.gov (United States)

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-09-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.

  5. The influence of environmental parameters on the catabolism of branched-chain amino acids by Staphylococcus xylosus and Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Olesen, Pelle Thonning; Stahnke, Louise Heller

    2004-01-01

    detection (GC/FID). Main volatile catabolic products of leucine, isoleucine and valine were 3-methylbutanoic, 2-methylbutanoic and 2-methylpropanoic acids, respectively. The generation of branched flavour compounds was influenced significantly by most of the investigated environmental parameters...

  6. Simple generic model for dynamic experiments with Saccharomyces cerevisiae in continuous culture. Decoupling between anabolism and catabolism

    DEFF Research Database (Denmark)

    Duboc, Philippe Jean; von Stockar, U.; Villadsen, John

    1998-01-01

    The dynamic behavior of a continuous culture of Saccharomyces cerevisiae subjected to a sudden increase in the dilution rate has been successfully modelled for anaerobic growth on glucose, and for aerobic growth on acetate, on ethanol, and on glucose. The catabolism responded by an immediate jump...... whereas biosynthesis did not. Thus catabolism was in excess to anabolism. The model considers the decoupling between biosynthesis and catabolism, both types of reactions being modelled by first-order kinetic expressions evolving towards maximal values. Yield parameters and maximal reaction rates were...... identified in steady state continuous cultures or during batch experiments. Only the time constant of biosynthesis regeneration, tau(x), and the time constant of catabolic capacity regeneration, tau(cat), had to be identified during transient experiments. In most experiments 7, was around 3 h, and tau...

  7. The nitrogen-regulated response regulator NrrA controls cyanophycin synthesis and glycogen catabolism in the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Liu, Deng; Yang, Chen

    2014-01-24

    The cellular metabolism in cyanobacteria is extensively regulated in response to changes of environmental nitrogen availability. Multiple regulators are involved in this process, including a nitrogen-regulated response regulator NrrA. However, the regulatory role of NrrA in most cyanobacteria remains to be elucidated. In this study, we combined a comparative genomic reconstruction of NrrA regulons in 15 diverse cyanobacterial species with detailed experimental characterization of NrrA-mediated regulation in Synechocystis sp. PCC 6803. The reconstructed NrrA regulons in most species included the genes involved in glycogen catabolism, central carbon metabolism, amino acid biosynthesis, and protein degradation. A predicted NrrA-binding motif consisting of two direct repeats of TG(T/A)CA separated by an 8-bp A/T-rich spacer was verified by in vitro binding assays with purified NrrA protein. The predicted target genes of NrrA in Synechocystis sp. PCC 6803 were experimentally validated by comparing the transcript levels and enzyme activities between the wild-type and nrrA-inactivated mutant strains. The effect of NrrA deficiency on intracellular contents of arginine, cyanophycin, and glycogen was studied. Severe impairments in arginine synthesis and cyanophycin accumulation were observed in the nrrA-inactivated mutant. The nrrA inactivation also resulted in a significantly decreased rate of glycogen degradation. Our results indicate that by directly up-regulating expression of the genes involved in arginine synthesis, glycogen degradation, and glycolysis, NrrA controls cyanophycin accumulation and glycogen catabolism in Synechocystis sp. PCC 6803. It is suggested that NrrA plays a role in coordinating the synthesis and degradation of nitrogen and carbon reserves in cyanobacteria.

  8. The Nitrogen-regulated Response Regulator NrrA Controls Cyanophycin Synthesis and Glycogen Catabolism in the Cyanobacterium Synechocystis sp. PCC 6803*

    Science.gov (United States)

    Liu, Deng; Yang, Chen

    2014-01-01

    The cellular metabolism in cyanobacteria is extensively regulated in response to changes of environmental nitrogen availability. Multiple regulators are involved in this process, including a nitrogen-regulated response regulator NrrA. However, the regulatory role of NrrA in most cyanobacteria remains to be elucidated. In this study, we combined a comparative genomic reconstruction of NrrA regulons in 15 diverse cyanobacterial species with detailed experimental characterization of NrrA-mediated regulation in Synechocystis sp. PCC 6803. The reconstructed NrrA regulons in most species included the genes involved in glycogen catabolism, central carbon metabolism, amino acid biosynthesis, and protein degradation. A predicted NrrA-binding motif consisting of two direct repeats of TG(T/A)CA separated by an 8-bp A/T-rich spacer was verified by in vitro binding assays with purified NrrA protein. The predicted target genes of NrrA in Synechocystis sp. PCC 6803 were experimentally validated by comparing the transcript levels and enzyme activities between the wild-type and nrrA-inactivated mutant strains. The effect of NrrA deficiency on intracellular contents of arginine, cyanophycin, and glycogen was studied. Severe impairments in arginine synthesis and cyanophycin accumulation were observed in the nrrA-inactivated mutant. The nrrA inactivation also resulted in a significantly decreased rate of glycogen degradation. Our results indicate that by directly up-regulating expression of the genes involved in arginine synthesis, glycogen degradation, and glycolysis, NrrA controls cyanophycin accumulation and glycogen catabolism in Synechocystis sp. PCC 6803. It is suggested that NrrA plays a role in coordinating the synthesis and degradation of nitrogen and carbon reserves in cyanobacteria. PMID:24337581

  9. Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Durant, N. D.; Dennis, P.;

    2008-01-01

    Dehalococcoides bacteria that produce catabolic vinyl chloride (VC) reductive dehalogenase enzymes have been implicated as a requirement for successful biological dechlorination of VC to ethene in groundwater systems. Therefore, the functional genes in Dehalococcoides that produce VC reductase (e...

  10. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde park, Niagara Falls, chemical landfill.

    Science.gov (United States)

    Peel, M C; Wyndham, R C

    1999-04-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fcb) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32 degrees C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl (M. C. Peel and R. C. Wyndham, Microb. Ecol: 33:59-68, 1997). Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns. These observations are consistent with the recent spread of the cba genes by horizontal transfer as part of transposon Tn5271 in response to contaminant exposure at Hyde Park. Consistent with this hypothesis, IS1071, the flanking element in Tn5271, was found in all isolates that carried the cba genes. Interestingly, IS1071 was also found in a high proportion of isolates from Hyde Park carrying the clc and fcb genes, as well as in type

  11. Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H.

    Science.gov (United States)

    Hanke, Tanja; Nöh, Katharina; Noack, Stephan; Polen, Tino; Bringer, Stephanie; Sahm, Hermann; Wiechert, Wolfgang; Bott, Michael

    2013-04-01

    In this study, the distribution and regulation of periplasmic and cytoplasmic carbon fluxes in Gluconobacter oxydans 621H with glucose were studied by (13)C-based metabolic flux analysis ((13)C-MFA) in combination with transcriptomics and enzyme assays. For (13)C-MFA, cells were cultivated with specifically (13)C-labeled glucose, and intracellular metabolites were analyzed for their labeling pattern by liquid chromatography-mass spectrometry (LC-MS). In growth phase I, 90% of the glucose was oxidized periplasmically to gluconate and partially further oxidized to 2-ketogluconate. Of the glucose taken up by the cells, 9% was phosphorylated to glucose 6-phosphate, whereas 91% was oxidized by cytoplasmic glucose dehydrogenase to gluconate. Additional gluconate was taken up into the cells by transport. Of the cytoplasmic gluconate, 70% was oxidized to 5-ketogluconate and 30% was phosphorylated to 6-phosphogluconate. In growth phase II, 87% of gluconate was oxidized to 2-ketogluconate in the periplasm and 13% was taken up by the cells and almost completely converted to 6-phosphogluconate. Since G. oxydans lacks phosphofructokinase, glucose 6-phosphate can be metabolized only via the oxidative pentose phosphate pathway (PPP) or the Entner-Doudoroff pathway (EDP). (13)C-MFA showed that 6-phosphogluconate is catabolized primarily via the oxidative PPP in both phases I and II (62% and 93%) and demonstrated a cyclic carbon flux through the oxidative PPP. The transcriptome comparison revealed an increased expression of PPP genes in growth phase II, which was supported by enzyme activity measurements and correlated with the increased PPP flux in phase II. Moreover, genes possibly related to a general stress response displayed increased expression in growth phase II.

  12. Identification and pharmacological induction of autophagy in the larval stages of Echinococcus granulosus: an active catabolic process in calcareous corpuscles.

    Science.gov (United States)

    Loos, Julia A; Caparros, Pedro A; Nicolao, María Celeste; Denegri, Guillermo M; Cumino, Andrea C

    2014-06-01

    Autophagy is a fundamental catabolic pathway conserved from yeast to mammals, but which remains unknown in parasite cestodes. In this work, the pharmacological induction of autophagy was cellularly and molecularly analysed in the larval stages of Echinococcus granulosus. Metacestode sensitivity to rapamycin and TORC1 expression in protoscoleces and metacestodes were shown. Ultrastructural studies showed that treated parasites had an isolation membrane, autophagosomes and autolysosomes, all of which evidenced the autophagic flux. Genes coding for key autophagy-related proteins were also identified in the Echinococcus genome. These genes were involved in autophagosome formation and transcriptional over-expression of Eg-atg5, Eg-atg6, Eg-atg8, Eg-atg12, Eg-atg16 and Eg-atg18 was shown in presence of rapamycin or arsenic trioxide. Thus, Echinococcus autophagy could be regulated by non-transcriptional inhibition through TOR and by transcription-dependent up-regulation via FoxO-like transcription factors and/or TFEB proteins. An increase in the punctate pattern and Eg-Atg8 polypeptide level in the tegument, parenchyma cells and excretory system of protoscoleces and in vesicularised parasites was detected after rapamycin treatment. This suggests the occurrence of basal autophagy in the larval stages and during vesicular development. In arsenic-treated protoscoleces, high Eg-Atg8 polypeptide levels within the free cytoplasmic matrix of calcareous corpuscles were observed, thus verifying the occurrence of autophagic events. These experiments also confirmed that the calcareous corpuscles are sites of arsenic trioxide accumulation. The detection of the autophagic machinery in this parasite represents a basic starting point to unravel the role of autophagy under both physiological and stress conditions which will allow identification of new strategies for drug discovery against neglected parasitic diseases caused by cestodes.

  13. Dietary Lipid Levels Influence Lipid Deposition in the Liver of Large Yellow Croaker (Larimichthys crocea) by Regulating Lipoprotein Receptors, Fatty Acid Uptake and Triacylglycerol Synthesis and Catabolism at the Transcriptional Level.

    Science.gov (United States)

    Yan, Jing; Liao, Kai; Wang, Tianjiao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2015-01-01

    Ectopic lipid accumulation has been observed in fish fed a high-lipid diet. However, no information is available on the mechanism by which dietary lipid levels comprehensively regulate lipid transport, uptake, synthesis and catabolism in fish. Therefore, the present study aimed to gain further insight into how dietary lipids affect lipid deposition in the liver of large yellow croaker(Larimichthys crocea). Fish (150.00±4.95 g) were fed a diet with a low (6%), moderate (12%, the control diet) or high (18%) crude lipid content for 10 weeks. Growth performance, plasma biochemical indexes, lipid contents and gene expression related to lipid deposition, including lipoprotein assembly and clearance, fatty acid uptake and triacylglycerol synthesis and catabolism, were assessed. Growth performance was not significantly affected. However, the hepato-somatic and viscera-somatic indexes as well as plasma triacylglycerol, non-esterified fatty acids and LDL-cholesterol levels were significantly increased in fish fed the high-lipid diet. In the livers of fish fed the high-lipid diet, the expression of genes related to lipoprotein clearance (LDLR) and fatty acid uptake (FABP11) was significantly up-regulated, whereas the expression of genes involved in lipoprotein assembly (apoB100), triacylglycerol synthesis and catabolism (DGAT2, CPT I) was significantly down-regulated compared with fish fed the control diet, and hepatic lipid deposition increased. In fish fed the low-lipid diet, the expression of genes associated with lipoprotein assembly and clearance (apoB100, LDLR, LRP-1), fatty acid uptake (CD36, FATP1, FABP3) and triacylglycerol synthesis (FAS) was significantly increased, whereas the expression of triacylglycerol catabolism related genes (ATGL, CPT I) was reduced compared with fish fed the control diet. However, hepatic lipid content in fish fed the low-lipid diet decreased mainly due to low dietary lipid intake. In summary, findings of this study provide molecular

  14. Effects of human growth hormone on the catabolic state after surgical trauma.

    Science.gov (United States)

    Vara-Thorbeck, R; Ruiz-Requena, E; Guerrero-Fernández, J A

    1996-01-01

    The aims of our studies were: (1) to determine if the protein catabolic response after a major or moderate surgical trauma can be restrained by the administration of exogenous human growth hormone (hGH); (2) to determine if the administration of hGH can improve systemic host defenses, thus reducing the risk of infection, and (3) given that the postoperative fatigue syndrome (POF) is mediated by the endocrino-metabolic response to surgery we attempt to determine if the administration of hGH can prevent or reduce POF. Therefore, we performed three placebo-controlled randomized double-blind trials on 216 patients. Major gastrointestinal surgery was treated only with total parenteral nutrition (TPN; n = 20) or TPN plus 4 IU hGH (n = 18). Patients with moderate surgical trauma received either hypocaloric parenteral nutrition (HPN; n = 93) or HPN and 8 IU hGH (n = 87). In this study, we also determined the evolution of the systemic host defenses and thereby the risk of infection. In 48 patients who underwent cholecystectomy treated (n = 26) either with HPN or HPN plus 8 IU hGH, we measured the protein catabolic response, postoperative fatigue and anthropometric modifications. The treatment with hGH together with HPN or TPN (1) overcomes the protein catabolic effects of the trauma response induced by major or moderate surgery by increasing protein synthesis, (2) improves humoral and cellular systemic host defenses, thus reducing the risk of infection, (3) preserves or increases lean body mass and reduces adipose tissue and (4) minimizes POF.

  15. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eLeprince

    2015-01-01

    Full Text Available Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signalling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K, VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1, a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  16. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases.

    Science.gov (United States)

    Ferraz, Maria J; Marques, André R A; Appelman, Monique D; Verhoek, Marri; Strijland, Anneke; Mirzaian, Mina; Scheij, Saskia; Ouairy, Cécile M; Lahav, Daniel; Wisse, Patrick; Overkleeft, Herman S; Boot, Rolf G; Aerts, Johannes M

    2016-03-01

    Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.

  17. Biochemical and Structural Characterization of a Ureidoglycine Aminotransferase in the Klebsiella pneumoniae Uric Acid Catabolic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Ealick, Steven E. (Cornell)

    2010-09-03

    Many plants, fungi, and bacteria catabolize allantoin as a mechanism for nitrogen assimilation. Recent reports have shown that in plants and some bacteria the product of hydrolysis of allantoin by allantoinase is the unstable intermediate ureidoglycine. While this molecule can spontaneously decay, genetic analysis of some bacterial genomes indicates that an aminotransferase may be present in the pathway. Here we present evidence that Klebsiella pneumoniae HpxJ is an aminotransferase that preferentially converts ureidoglycine and an {alpha}-keto acid into oxalurate and the corresponding amino acid. We determined the crystal structure of HpxJ, allowing us to present an explanation for substrate specificity.

  18. Catabolism of Exogenous Lactate Reveals It as a Legitimate Metabolic Substrate in Breast Cancer

    Science.gov (United States)

    Kennedy, Kelly M.; Scarbrough, Peter M.; Ribeiro, Anthony; Richardson, Rachel; Yuan, Hong; Sonveaux, Pierre; Landon, Chelsea D.; Chi, Jen-Tsan; Pizzo, Salvatore

    2013-01-01

    Lactate accumulation in tumors has been associated with metastases and poor overall survival in cancer patients. Lactate promotes angiogenesis and metastasis, providing rationale for understanding how it is processed by cells. The concentration of lactate in tumors is a balance between the amount produced, amount carried away by vasculature and if/how it is catabolized by aerobic tumor or stromal cells. We examined lactate metabolism in human normal and breast tumor cell lines and rat breast cancer: 1. at relevant concentrations, 2. under aerobic vs. hypoxic conditions, 3. under conditions of normo vs. hypoglucosis. We also compared the avidity of tumors for lactate vs. glucose and identified key lactate catabolites to reveal how breast cancer cells process it. Lactate was non-toxic at clinically relevant concentrations. It was taken up and catabolized to alanine and glutamate by all cell lines. Kinetic uptake rates of lactate in vivo surpassed that of glucose in R3230Ac mammary carcinomas. The uptake appeared specific to aerobic tumor regions, consistent with the proposed “metabolic symbiont” model; here lactate produced by hypoxic cells is used by aerobic cells. We investigated whether treatment with alpha-cyano-4-hydroxycinnamate (CHC), a MCT1 inhibitor, would kill cells in the presence of high lactate. Both 0.1 mM and 5 mM CHC prevented lactate uptake in R3230Ac cells at lactate concentrations at ≤20 mM but not at 40 mM. 0.1 mM CHC was well-tolerated by R3230Ac and MCF7 cells, but 5 mM CHC killed both cell lines ± lactate, indicating off-target effects. This study showed that breast cancer cells tolerate and use lactate at clinically relevant concentrations in vitro (± glucose) and in vivo. We provided additional support for the metabolic symbiont model and discovered that breast cells prevailingly take up and catabolize lactate, providing rationale for future studies on manipulation of lactate catabolism pathways for therapy. PMID:24069390

  19. Effects of Zinc Magnesium Aspartate (ZMA) Supplementation on Training Adaptations and Markers of Anabolism and Catabolism

    OpenAIRE

    Almada Anthony; Greenwood Mike C; Rasmussen Christopher J; Marcello Brandon M; Taylor Lem W; Campbell Bill I; Kerksick Chad M; Wilborn Colin D; Kreider Richard B

    2004-01-01

    Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA) during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat) were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P) or ZMA 30–60 minutes prior...

  20. Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer.

    Science.gov (United States)

    Kennedy, Kelly M; Scarbrough, Peter M; Ribeiro, Anthony; Richardson, Rachel; Yuan, Hong; Sonveaux, Pierre; Landon, Chelsea D; Chi, Jen-Tsan; Pizzo, Salvatore; Schroeder, Thies; Dewhirst, Mark W

    2013-01-01

    Lactate accumulation in tumors has been associated with metastases and poor overall survival in cancer patients. Lactate promotes angiogenesis and metastasis, providing rationale for understanding how it is processed by cells. The concentration of lactate in tumors is a balance between the amount produced, amount carried away by vasculature and if/how it is catabolized by aerobic tumor or stromal cells. We examined lactate metabolism in human normal and breast tumor cell lines and rat breast cancer: 1. at relevant concentrations, 2. under aerobic vs. hypoxic conditions, 3. under conditions of normo vs. hypoglucosis. We also compared the avidity of tumors for lactate vs. glucose and identified key lactate catabolites to reveal how breast cancer cells process it. Lactate was non-toxic at clinically relevant concentrations. It was taken up and catabolized to alanine and glutamate by all cell lines. Kinetic uptake rates of lactate in vivo surpassed that of glucose in R3230Ac mammary carcinomas. The uptake appeared specific to aerobic tumor regions, consistent with the proposed "metabolic symbiont" model; here lactate produced by hypoxic cells is used by aerobic cells. We investigated whether treatment with alpha-cyano-4-hydroxycinnamate (CHC), a MCT1 inhibitor, would kill cells in the presence of high lactate. Both 0.1 mM and 5 mM CHC prevented lactate uptake in R3230Ac cells at lactate concentrations at ≤ 20 mM but not at 40 mM. 0.1 mM CHC was well-tolerated by R3230Ac and MCF7 cells, but 5 mM CHC killed both cell lines ± lactate, indicating off-target effects. This study showed that breast cancer cells tolerate and use lactate at clinically relevant concentrations in vitro (± glucose) and in vivo. We provided additional support for the metabolic symbiont model and discovered that breast cells prevailingly take up and catabolize lactate, providing rationale for future studies on manipulation of lactate catabolism pathways for therapy.

  1. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    Science.gov (United States)

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  2. Effects of chronic dietary selenomethionine exposure on repeat swimming performance, aerobic metabolism and methionine catabolism in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Thomas, Jith K; Wiseman, Steve; Giesy, John P; Janz, David M

    2013-04-15

    In a previous study we reported impaired swimming performance and greater stored energy in adult zebrafish (Danio rerio) after chronic dietary exposure to selenomethionine (SeMet). The goal of the present study was to further investigate effects of chronic exposure to dietary SeMet on repeat swimming performance, oxygen consumption (MO2), metabolic capacities (standard metabolic rate [SMR], active metabolic rate [AMR], factorial aerobic scope [F-AS] and cost of transport [COT]) and gene expression of energy metabolism and methionine catabolism enzymes in adult zebrafish. Fish were fed SeMet at measured concentrations of 1.3, 3.4, 9.8 or 27.5 μg Se/g dry mass (d.m.) for 90 d. At the end of the exposure period, fish from each treatment group were divided into three subgroups: (a) no swim, (b) swim, and (c) repeat swim. Fish from the no swim group were euthanized immediately at 90 d and whole body triglycerides, glycogen and lactate, and gene expression of energy metabolism and methionine catabolism enzymes were determined. Individual fish from the swim group were placed in a swim tunnel respirometer and swimming performance was assessed by determining the critical swimming speed (U(crit)). After both Ucrit and MO2 analyses, fish were euthanized and whole body energy stores and lactate were determined. Similarly, individual fish from the repeat swim group were subjected to two U(crit) tests (U(crit-1) and U(crit-2)) performed with a 60 min recovery period between tests, followed by determination of energy stores and lactate. Impaired swim performance was observed in fish fed SeMet at concentrations greater than 3 μg Se/g in the diet. However, within each dietary Se treatment group, no significant differences between single and repeat U(crits) were observed. Oxygen consumption, SMR and COT were significantly greater, and F-AS was significantly lesser, in fish fed SeMet. Whole body triglycerides were proportional to the concentration of SeMet in the diet. While

  3. Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit.

    Science.gov (United States)

    Gonda, Itay; Lev, Shery; Bar, Einat; Sikron, Noga; Portnoy, Vitaly; Davidovich-Rikanati, Rachel; Burger, Joseph; Schaffer, Arthur A; Tadmor, Ya'akov; Giovannonni, James J; Huang, Mingyun; Fei, Zhangjun; Katzir, Nurit; Fait, Aaron; Lewinsohn, Efraim

    2013-05-01

    Sulfur-containing aroma volatiles are important contributors to the distinctive aroma of melon and other fruits. Melon cultivars and accessions differ in the content of sulfur-containing and other volatiles. L-methionine has been postulated to serve as a precursor of these volatiles. Incubation of melon fruit cubes with ¹³C- and ²H-labeled L-methionine revealed two distinct catabolic routes into volatiles. One route apparently involves the action of an L-methionine aminotransferase and preserves the main carbon skeleton of L-methionine. The second route apparently involves the action of an L-methionine-γ-lyase activity, releasing methanethiol, a backbone for formation of thiol-derived aroma volatiles. Exogenous L-methionine also generated non-sulfur volatiles by further metabolism of α-ketobutyrate, a product of L-methionine-γ-lyase activity. α-Ketobutyrate was further metabolized into L-isoleucine and other important melon volatiles, including non-sulfur branched and straight-chain esters. Cell-free extracts derived from ripe melon fruit exhibited L-methionine-γ-lyase enzymatic activity. A melon gene (CmMGL) ectopically expressed in Escherichia coli, was shown to encode a protein possessing L-methionine-γ-lyase enzymatic activity. Expression of CmMGL was relatively low in early stages of melon fruit development, but increased in the flesh of ripe fruits, depending on the cultivar tested. Moreover, the levels of expression of CmMGL in recombinant inbred lines co-segregated with the levels of sulfur-containing aroma volatiles enriched with +1 m/z unit and postulated to be produced via this route. Our results indicate that L-methionine is a precursor of both sulfur and non-sulfur aroma volatiles in melon fruit.

  4. Catabolism and Deactivation of the Lipid-derived Hormone Jasmonoyl-isoleucine

    Directory of Open Access Journals (Sweden)

    Abraham JK Koo

    2012-02-01

    Full Text Available The oxylipin hormone jasmonate controls myriad processes involved in plant growth, development and immune function. The discovery of jasmonoyl-L-isoleucine (JA-Ile as the major bioactive form of the hormone highlights the need to understand biochemical and cell biological processes underlying JA-Ile homeostasis. Among the major metabolic control points governing the accumulation of JA-Ile in plant tissues are the availability of jasmonic acid, the immediate precursor of JA-Ile, and oxidative enzymes involved in catabolism and deactivation of the hormone. Recent studies indicate that JA-Ile turnover is mediated by a ω-oxidation pathway involving members of the CYP94 family of cytochromes P450. This discovery opens new opportunities to genetically manipulate JA-Ile levels for enhanced resistance to environmental stress, and further highlights ω-oxidation as a conserved pathway for catabolism of lipid-derived signals in plants and animals. Functional characterization of the full complement of CYP94 P450s promises to reveal new pathways for jasmonate metabolism and provide insight into the evolution of oxylipin signaling in land plants.

  5. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis.

    Science.gov (United States)

    Goodwin, Andrew C; Destefano Shields, Christina E; Wu, Shaoguang; Huso, David L; Wu, XinQun; Murray-Stewart, Tracy R; Hacker-Prietz, Amy; Rabizadeh, Shervin; Woster, Patrick M; Sears, Cynthia L; Casero, Robert A

    2011-09-13

    It is estimated that the etiology of 20-30% of epithelial cancers is directly associated with inflammation, although the direct molecular events linking inflammation and carcinogenesis are poorly defined. In the context of gastrointestinal disease, the bacterium enterotoxigenic Bacteroides fragilis (ETBF) is a significant source of chronic inflammation and has been implicated as a risk factor for colorectal cancer. Spermine oxidase (SMO) is a polyamine catabolic enzyme that is highly inducible by inflammatory stimuli resulting in increased reactive oxygen species (ROS) and DNA damage. We now demonstrate that purified B. fragilis toxin (BFT) up-regulates SMO in HT29/c1 and T84 colonic epithelial cells, resulting in SMO-dependent generation of ROS and induction of γ-H2A.x, a marker of DNA damage. Further, ETBF-induced colitis in C57BL/6 mice is associated with increased SMO expression and treatment of mice with an inhibitor of polyamine catabolism, N(1),N(4)-bis(2,3-butandienyl)-1,4-butanediamine (MDL 72527), significantly reduces ETBF-induced chronic inflammation and proliferation. Most importantly, in the multiple intestinal neoplasia (Min) mouse model, treatment with MDL 72527 reduces ETBF-induced colon tumorigenesis by 69% (P < 0.001). The results of these studies indicate that SMO is a source of bacteria-induced ROS directly associated with tumorigenesis and could serve as a unique target for chemoprevention.

  6. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis

    Science.gov (United States)

    Goodwin, Andrew C.; Shields, Christina E. Destefano; Wu, Shaoguang; Huso, David L.; Wu, XinQun; Murray-Stewart, Tracy R.; Hacker-Prietz, Amy; Rabizadeh, Shervin; Woster, Patrick M.; Sears, Cynthia L.; Casero, Robert A.

    2011-01-01

    It is estimated that the etiology of 20–30% of epithelial cancers is directly associated with inflammation, although the direct molecular events linking inflammation and carcinogenesis are poorly defined. In the context of gastrointestinal disease, the bacterium enterotoxigenic Bacteroides fragilis (ETBF) is a significant source of chronic inflammation and has been implicated as a risk factor for colorectal cancer. Spermine oxidase (SMO) is a polyamine catabolic enzyme that is highly inducible by inflammatory stimuli resulting in increased reactive oxygen species (ROS) and DNA damage. We now demonstrate that purified B. fragilis toxin (BFT) up-regulates SMO in HT29/c1 and T84 colonic epithelial cells, resulting in SMO-dependent generation of ROS and induction of γ-H2A.x, a marker of DNA damage. Further, ETBF-induced colitis in C57BL/6 mice is associated with increased SMO expression and treatment of mice with an inhibitor of polyamine catabolism, N1,N4-bis(2,3-butandienyl)-1,4-butanediamine (MDL 72527), significantly reduces ETBF-induced chronic inflammation and proliferation. Most importantly, in the multiple intestinal neoplasia (Min) mouse model, treatment with MDL 72527 reduces ETBF-induced colon tumorigenesis by 69% (P < 0.001). The results of these studies indicate that SMO is a source of bacteria-induced ROS directly associated with tumorigenesis and could serve as a unique target for chemoprevention. PMID:21876161

  7. Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice.

    Science.gov (United States)

    Lian, Kun; Du, Chaosheng; Liu, Yi; Zhu, Di; Yan, Wenjun; Zhang, Haifeng; Hong, Zhibo; Liu, Peilin; Zhang, Lijian; Pei, Haifeng; Zhang, Jinglong; Gao, Chao; Xin, Chao; Cheng, Hexiang; Xiong, Lize; Tao, Ling

    2015-01-01

    The branched-chain amino acids (BCAA) accumulated in type 2 diabetes are independent contributors to insulin resistance. The activity of branched-chain α-keto acid dehydrogenase (BCKD) complex, rate-limiting enzyme in BCAA catabolism, is reduced in diabetic states, which contributes to elevated BCAA concentrations. However, the mechanisms underlying decreased BCKD activity remain poorly understood. Here, we demonstrate that mitochondrial phosphatase 2C (PP2Cm), a newly identified BCKD phosphatase that increases BCKD activity, was significantly downregulated in ob/ob and type 2 diabetic mice. Interestingly, in adiponectin (APN) knockout (APN(-/-)) mice fed with a high-fat diet (HD), PP2Cm expression and BCKD activity were significantly decreased, whereas BCKD kinase (BDK), which inhibits BCKD activity, was markedly increased. Concurrently, plasma BCAA and branched-chain α-keto acids (BCKA) were significantly elevated. APN treatment markedly reverted PP2Cm, BDK, BCKD activity, and BCAA and BCKA levels in HD-fed APN(-/-) and diabetic animals. Additionally, increased BCKD activity caused by APN administration was partially but significantly inhibited in PP2Cm knockout mice. Finally, APN-mediated upregulation of PP2Cm expression and BCKD activity were abolished when AMPK was inhibited. Collectively, we have provided the first direct evidence that APN is a novel regulator of PP2Cm and systematic BCAA levels, suggesting that targeting APN may be a pharmacological approach to ameliorating BCAA catabolism in the diabetic state.

  8. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.

    Science.gov (United States)

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E; Rhee, Kyu Y; Jacobs, William R; Berney, Michael; Blanchard, John S

    2016-03-25

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb.

  9. Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism.

    Science.gov (United States)

    Briand, François; Mayoux, Eric; Brousseau, Emmanuel; Burr, Noémie; Urbain, Isabelle; Costard, Clément; Mark, Michael; Sulpice, Thierry

    2016-07-01

    In clinical trials, a small increase in LDL cholesterol has been reported with sodium-glucose cotransporter 2 (SGLT2) inhibitors. The mechanisms by which the SGLT2 inhibitor empagliflozin increases LDL cholesterol levels were investigated in hamsters with diet-induced dyslipidemia. Compared with vehicle, empagliflozin 30 mg/kg/day for 2 weeks significantly reduced fasting blood glucose by 18%, with significant increase in fasting plasma LDL cholesterol, free fatty acids, and total ketone bodies by 25, 49, and 116%, respectively. In fasting conditions, glycogen hepatic levels were further reduced by 84% with empagliflozin, while 3-hydroxy-3-methylglutaryl-CoA reductase activity and total cholesterol hepatic levels were 31 and 10% higher, respectively (both P catabolism of (3)H-cholesteryl oleate-labeled LDL injected intravenously by 20%, indicating that empagliflozin raises LDL levels through reduced catabolism. Unexpectedly, empagliflozin also reduced intestinal cholesterol absorption in vivo, which led to a significant increase in LDL- and macrophage-derived cholesterol fecal excretion (both P < 0.05 vs. vehicle). These data suggest that empagliflozin, by switching energy metabolism from carbohydrate to lipid utilization, moderately increases ketone production and LDL cholesterol levels. Interestingly, empagliflozin also reduces intestinal cholesterol absorption, which in turn promotes LDL- and macrophage-derived cholesterol fecal excretion.

  10. Multiscale investigation of USPIO nanoparticles in atherosclerotic plaques and their catabolism and storage in vivo.

    Science.gov (United States)

    Maraloiu, Valentin-Adrian; Appaix, Florence; Broisat, Alexis; Le Guellec, Dominique; Teodorescu, Valentin Serban; Ghezzi, Catherine; van der Sanden, Boudewijn; Blanchin, Marie-Genevieve

    2016-01-01

    The storage and catabolism of Ultrasmall SuperParamagnetic Iron Oxide (USPIO) nanoparticles were analyzed through a multiscale approach combining Two Photon Laser Scanning Microscopy (TPLSM) and High-Resolution Transmission Electron Microscopy (HRTEM) at different times after intravenous injection in an atherosclerotic ApoE(-/-) mouse model. The atherosclerotic plaque features and the USPIO heterogeneous biodistribution were revealed down from organ's scale to subcellular level. The biotransformation of the nanoparticle iron oxide (maghemite) core into ferritin, the non-toxic form of iron storage, was demonstrated for the first time ex vivo in atherosclerotic plaques as well as in spleen, the iron storage organ. These results rely on an innovative spatial and structural investigation of USPIO's catabolism in cellular phagolysosomes. This study showed that these nanoparticles were stored as non-toxic iron compounds: maghemite oxide or ferritin, which is promising for MRI detection of atherosclerotic plaques in clinics using these USPIOs. From the Clinical Editor: Advance in nanotechnology has brought new contrast agents for clinical imaging. In this article, the authors investigated the use and biotransformation of Ultrasmall Super-paramagnetic Iron Oxide (USPIO) nanoparticles for analysis of atherosclerotic plagues in Two Photon Laser Scanning Microscopy (TPLSM) and High-Resolution Transmission Electron Microscopy (HRTEM). The biophysical data generated from this study could enable the possible use of these nanoparticles for the benefits of clinical patients.

  11. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism.

    Science.gov (United States)

    Madiraju, Anila K; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T; Kibbey, Richard G; Shulman, Gerald I

    2016-06-14

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism.

  12. Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity.

    Science.gov (United States)

    Cusumano, Zachary T; Watson, Michael E; Caparon, Michael G

    2014-01-01

    A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS(-/-)) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient.

  13. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites.

    Science.gov (United States)

    Jaganath, Indu B; Mullen, William; Lean, Michael E J; Edwards, Christine A; Crozier, Alan

    2009-10-15

    The role of colonic microflora in the breakdown of quercetin-3-O-rutinoside (rutin) was investigated. An in vitro fermentation model was used and (i) 28 micromol of rutin and (ii) 55 micromol of quercetin plus 18 x 10(6) dpm of [4-(14)C]quercetin (60 nmol) were incubated with fresh fecal samples from three human volunteers, in the presence and absence of glucose. The accumulation of quercetin during in vitro fermentation demonstrated that deglycosylation is the initial step in the breakdown of rutin. The subsequent degradation of quercetin was dependent upon the interindividual composition of the bacterial microflora and was directed predominantly toward the production of either hydroxyphenylacetic acid derivatives or hydroxybenzoic acids. Possible catabolic pathways for these conversions are proposed. The presence of glucose as a carbon source stimulated the growth and production of bacterial microflora responsible for both the deglycosylation of rutin and the catabolism of quercetin. 3,4-Dihydroxyphenylacetic acid accumulated in large amounts in the fecal samples and was found to possess significant reducing power and free radical scavenging activity. This catabolite may play a key role in the overall antioxidant capacity of the colonic lumen after the ingestion of quercetin-rich foods.

  14. Glibenclamide Induces Collagen IV Catabolism in High Glucose-Stimulated Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Liping Zhu

    2012-01-01

    Full Text Available We have shown the full prevention of mesangial expansion in insulin-deficient diabetic rats by treatment with clinically-relevant dosages of glibenclamide (Glib. Studies in mesangial cells (MCs also demonstrated reduction in the high glucose (HG-induced accumulation of collagens, proposing that this was due to increased catabolism. In the present study, we investigated the signaling pathways that may be implicated in Glib action. Rat primary MCs were exposed to HG for 8 weeks with or without Glib in therapeutic (0.01 μM or supratherapeutic (1.0 μM concentrations. We found that HG increased collagen IV protein accumulation and PAI-1 mRNA and protein expression, in association with decreased cAMP generating capacity and decreased PKA activity. Low Glib increased collagen IV mRNA but fully prevented collagen IV protein accumulation and PAI-1 overexpression while enhancing cAMP formation and PKA activity. MMP2 mRNA, protein expression and gelatinolytic activity were also enhanced. High Glib was, overall, ineffective. In conclusion, low dosage/concentration Glib prevents HG-induced collagen accumulation in MC by enhancing collagen catabolism in a cAMP-PKA-mediated PAI-1 inhibition.

  15. Phylogeny of culturable estuarine bacteria catabolizing riverine organic matter in the northern Baltic Sea.

    Science.gov (United States)

    Kisand, Veljo; Cuadros, Rocio; Wikner, Johan

    2002-01-01

    The objective of our study was to isolate and determine the phylogenetic affiliation of culturable estuarine bacteria capable of catabolizing riverine dissolved organic matter (RDOM) under laboratory conditions. Additions of RDOM consistently promoted the growth of estuarine bacteria in carbon-limited dilution cultures, with seasonal variation in growth rates and yields. At least 42 different taxa were culturable on solid agar media and, according to quantitative DNA-DNA hybridizations, constituted 32 to 89% of the total bacterial number in the enriched treatments. Five species in the Cytophaga-Flexibacter-Bacteroides group and one in the gamma-proteobacteria phylogenetic group (Marinomonas sp.) were numerically dominant during the stationary phase of the RDOM-enriched dilution cultures but not in the control cultures. Four of the isolates in Cytophaga-Flexibacter-Bacteroides group were putatively affiliated with the genus FLAVOBACTERIUM: All dominating isolates were determined to be new species based on comparison to the current databases. The same group of species dominated independently of the season investigated, suggesting a low diversity of bacteria catabolizing RDOM in the estuary. It also suggested a broad tolerance of the dominating species to seasonal variation in hydrography, chemistry, and competition with other species. Taken together, our results suggest that a limited group of bacteria, mainly in the Flavobacterium genus, played an important role in introducing new energy and carbon to the marine system in the northern Baltic Sea.

  16. Catabolism of haemoglobin-haptoglobin complexes in haemolytic uraemia-like syndromes of different etiologies.

    Science.gov (United States)

    Brandslund, I; Petersen, P H; Brinkløv, M M; Andersen, P K; Parlev, E

    1982-10-01

    The catabolism of haemoglobin-haptoglobin complexes was studied in four patients with increased vascular haemolysis as part of acute or subacute haemolytic uraemic syndromes. The apparent volumic substance elimination rates for haemoglobin (Fe) bound to haptoglobin in plasma were 1.1 mumol/h/l and 2.9 mumol/h/l in two patients suffering from sublimate and hydrochloric acid poisoning, respectively. This is estimated to correspond to a normal catabolism, when the increased haptoglobin synthesis is taken into account. In the other two patients suffering from serum-sickness there was reduced clearance and thereby an accumulation of haemoglobin-haptoglobin complexes in plasma during penicillin administration. When the offending drug was withdrawn the plasma concentration of haemoglobin bound to haptoglobin remained high for about three days and then fell rapidly (approximately with 3.8 mumol/l/h and 1.9 mumol/l/h). Thus, also in these patients the clearance capacity could be normalized after discontinuation of the drug.

  17. Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicae WSM419 symbiosis

    Directory of Open Access Journals (Sweden)

    Estibaliz eLarrainzar

    2014-08-01

    Full Text Available The symbiotic association between Medicago truncatula and Sinorhizobium meliloti is a well-established model system in the legume-Rhizobium community. Despite its wide use, the symbiotic efficiency of this model has been recently questioned and an alternative microsymbiont, S. medicae, has been proposed. However, little is known about the physiological mechanisms behind the higher symbiotic efficiency of S. medicae WSM419. In the present study, we inoculated M. truncatula Jemalong A17 with either S. medicae WSM419 or S. meliloti 2011 and compared plant growth, photosynthesis, N2-fixation rates, and plant nodule carbon and nitrogen metabolic activities in the two systems. M. truncatula plants in symbiosis with S. medicae showed increased biomass and photosynthesis rates per plant. Plants grown in symbiosis with S. medicae WSM419 also showed higher N2-fixation rates, which were correlated with a larger nodule biomass, while nodule number was similar in both systems. In terms of plant nodule metabolism, M. truncatula-S. medicae WSM419 nodules showed increased sucrose-catabolic activity, mostly associated with sucrose synthase, accompanied by a reduced starch content, whereas nitrogen-assimilation activities were comparable to those measured in nodules infected with S. meliloti 2011. Taken together, these results suggest that S. medicae WSM419 is able to enhance plant carbon catabolism in M. truncatula nodules, which allows for the maintaining of high symbiotic N2-fixation rates, better growth and improved general plant performance.

  18. The ygeW encoded protein from Escherichia coli is a knotted ancestral catabolic transcarbamylase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongdong; Jin, Zhongmin; Yu, Xiaolin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang (Maryland); (GWU); (Georgia)

    2012-06-28

    Purine degradation plays an essential role in nitrogen metabolism in most organisms. Uric acid is the final product of purine catabolism in humans, anthropoid apes, birds, uricotelic reptiles, and almost all insects. Elevated levels of uric acid in blood (hyperuricemia) cause human diseases such as gout, kidney stones, and renal failure. Although no enzyme has been identified that further degrades uric acid in humans, it can be oxidized to produce allantoin by free-radical attack. Indeed, elevated levels of allantoin are found in patients with rheumatoid arthritis, chronic lung disease, bacterial meningitis, and noninsulin-dependent diabetes mellitus. In other mammals, some insects and gastropods, uric acid is enzymatically degraded to the more soluble allantoin through the sequential action of three enzymes: urate oxidase, 5-hydroxyisourate (HIU) hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase. Therefore, an elective treatment for acute hyperuricemia is the administration of urate oxidase. Many organisms, including plants, some fungi and several bacteria, are able to catabolize allantoin to release nitrogen, carbon, and energy. In Arabidopsis thaliana and Eschrichia coli, S-allantoin has recently been shown to be degraded to glycolate and urea by four enzymes: allantoinase, allantoate amidohydrolase, ureidoglycine aminohydrolase, and ureidoglycolate amidohydrolase.

  19. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    Energy Technology Data Exchange (ETDEWEB)

    Damron, D.S.; Dorman, R.V. (Kent State Univ., OH (USA))

    1990-06-01

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with ({sup 3}H)arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of ({sup 3}H)free fatty acids. These effects were attenuated in Ca{sup 2}{sup +}-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca{sup 2}{sup +} with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of ({sup 3}H)free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca{sup 2}{sup +} influx and that at least 80% of the ({sup 3}H)free fatty acid accumulation required calcium.

  20. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids

    Science.gov (United States)

    Grottoli, Andréa G.; Rodrigues, Lisa J.

    2011-09-01

    Corals rely on stored energy reserves (i.e., lipids, carbohydrates, and protein) to survive bleaching events. To better understand the physiological implications of coral bleaching on lipid catabolism and/or synthesis, we measured the δ13C of coral total lipids (δ13CTL) in experimentally bleached (treatment) and non-bleached (control) Porites compressa and Montipora capitata corals immediately after bleaching and after 1.5 and 4 months of recovery on the reef. Overall δ13CTL values in treatment corals were significantly lower than in control corals because of a 1.9 and 3.4‰ decrease in δ13CTL immediately after bleaching in P. compressa and M. capitata, respectively. The decrease in δ13CTL coincided with decreases in total lipid concentration, indicating that corals catabolized δ13C-enriched lipids. Since storage lipids are primarily depleted during bleaching, we hypothesize that they are isotopically enriched relative to other lipid classes. This work further helps clarify our understanding of changes to coral metabolism and biogeochemistry when bleached and helps elucidate how lipid classes may influence recovery from bleaching and ultimately coral survival.

  1. Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling.

    Science.gov (United States)

    Pillai, Bhinu V S; Swarup, Sanjay

    2002-01-01

    Flavonoids are 15-carbon plant secondary metabolites exuded in the rhizosphere that hosts several flavonoid-degrading bacteria. We studied flavonoid catabolism in a plant growth-promoting rhizobacterial strain of Pseudomonas by using a combination of biochemical and genetic approaches. Transposants carrying mini-Tn5gfp insertions were screened for flavonoid auxotrophy, and these mutant strains were found to be unable to grow in the flavonols naringenin and quercetin, while their growth in glycerol was comparable to that of the parental strain. In order to understand flavonoid catabolism, culture supernatants, whole-cell fractions, cell lysate, and cell debris of the wild-type and mutant strains were analyzed. Intermediates that accumulated intracellularly and those secreted in the medium were identified by a combination of reversed-phase high-pressure liquid chromatography and electrospray ionization-mass spectrometry. Structures of four key intermediates were confirmed by one-dimensional nuclear magnetic resonance spectroscopy. Comparative metabolic profiling of the compounds in the wild-type and mutant strains allowed us to understand the degradation events and to identify six metabolic intermediates. The first step in the pathway involves 3,3'-didehydroxylation, followed by hydrolysis and cleavage of the C-ring, leading via subsequent oxidations to the formation of protocatechuate. This is the first report on quercetin dehydroxylation in aerobic conditions leading to naringenin accumulation.

  2. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.

  3. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity[S

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-01-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  4. Ergosteryl-β-glucosidase (Egh1) involved in sterylglucoside catabolism and vacuole formation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Watanabe, Takashi; Tani, Motohiro; Ishibashi, Yohei; Endo, Ikumi; Okino, Nozomu; Ito, Makoto

    2015-10-01

    Sterylglucosides (SGs) are composed of a glucose and sterol derivatives, and are distributed in fungi, plants and mammals. We recently identified EGCrP1 and EGCrP2 (endoglycoceramidase-related proteins 1 and 2) as a β-glucocerebrosidase and steryl-β-glucosidase, respectively, in Cryptococcus neoformans. We herein describe an EGCrP2 homologue (Egh1; ORF name, Yir007w) involved in SG catabolism in Saccharomyces cerevisiae. The purified recombinant Egh1 hydrolyzed various β-glucosides including ergosteryl β-glucoside (EG), cholesteryl β-glucoside, sitosteryl β-glucoside, para-nitrophenyl β-glucoside, 4-methylumberifellyl β-glucoside and glucosylceramide. The disruption of EGH1 in S. cerevisiae BY4741 (egh1Δ) resulted in the accumulation of EG and fragmentation of vacuoles. The expression of EGH1 in egh1Δ (revertant) reduced the accumulation of EG, and restored the morphology of vacuoles. The accumulation of EG was not detected in EGH1 and UGT51(ATG26) double-disrupted mutants (ugt51Δegh1Δ), indicating that EG was synthesized by Ugt51(Atg26) and degraded by Egh1 in vivo. These results clearly demonstrated that Egh1 is an ergosteryl-β-glucosidase that is functionally involved in the EG catabolic pathway and vacuole formation in S. cerevisiae.

  5. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  6. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Todd, Jonathan D.; Thrash, J. Cameron; Qian, Yanping; Qian, Michael C.; Temperton, Ben; Guo, Jiazhen; Fowler, Emily K.; Aldrich, Joshua T.; Nicora, Carrie D.; Lipton, Mary S.; Smith, Richard D.; De Leenheer, Patrick; Payne, Samuel H.; Johnston, Andrew W. B.; Davie-Martin, Cleo L.; Halsey, Kimberly H.; Giovannoni, Stephen J.

    2016-05-16

    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a DMSP lyase, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis. These findings suggest that DMSP supply and demand relationships in Pelagibacter metabolism are important to determining rates of oceanic DMS production.

  7. The development of phenanthrene catabolism in soil amended with transformer oil.

    Science.gov (United States)

    Lee, Philip H; Doick, Kieron J; Semple, Kirk T

    2003-11-21

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants frequently associated with light non-aqueous-phase liquids (LNAPLs) in soil. Microbial degradation comprises a major loss process for PAHs in the environment. Various laboratory studies, using known degraders, have shown reduced or enhanced mineralisation of PAHs when dissolved in different LNAPLs. Effects due to the presence of LNAPLs on indigenous micro-organisms, however, are not fully understood. A pristine pasture soil was spiked with [14C]phenanthrene and transformer oil to 0, 0.01 and 0.1%, and incubated for 180 days. The catabolic potential of the soil towards phenanthrene was assessed periodically during ageing. The extent of the lag phase (prior to >5% mineralisation), maximum rates and overall extents of mineralisation observed during the course of a 14-day bioassay appeared to be dependent upon phenanthrene concentration, the presence of transformer oil, and soil-contaminant contact time. Putatively, transformer oil enhanced acclimation and facilitated the development of measurable catabolic activity towards phenanthrene in a previously uncontaminated pasture soil. Exact mechanisms for the observed enhancement, longer-term fate/degradation of the oil and residual phenanthrene, and effects of the presence of the oil on the indigenous microbes over extended time frames warrant further investigation.

  8. Biaxial stress relaxation of semilunar heart valve leaflets during simulated collagen catabolism: Effects of collagenase concentration and equibiaxial strain state.

    Science.gov (United States)

    Huang, Siyao; Huang, Hsiao-Ying Shadow

    2015-10-01

    Heart valve leaflet collagen turnover and remodeling are innate to physiological homeostasis; valvular interstitial cells routinely catabolize damaged collagen and affect repair. Moreover, evidence indicates that leaflets can adapt to altered physiological (e.g. pregnancy) and pathological (e.g. hypertension) mechanical load states, tuning collagen structure and composition to changes in pressure and flow. However, while valvular interstitial cell-secreted matrix metalloproteinases are considered the primary effectors of collagen catabolism, the mechanisms by which damaged collagen fibers are selectively degraded remain unclear. Growing evidence suggests that the collagen fiber strain state plays a key role, with the strain-dependent configuration of the collagen molecules either masking or presenting proteolytic sites, thereby protecting or accelerating collagen proteolysis. In this study, the effects of equibiaxial strain state on collagen catabolism were investigated in porcine aortic valve and pulmonary valve tissues. Bacterial collagenase (0.2 and 0.5 mg/mL) was utilized to simulate endogenous matrix metalloproteinases, and biaxial stress relaxation and biochemical collagen concentration served as functional and compositional measures of collagen catabolism, respectively. At a collagenase concentration of 0.5 mg/mL, increasing the equibiaxial strain imposed during stress relaxation (0%, 37.5%, and 50%) yielded significantly lower median collagen concentrations in the aortic valve (p = 0.0231) and pulmonary valve (p = 0.0183), suggesting that relatively large strain magnitudes may enhance collagen catabolism. Collagen concentration decreases were paralleled by trends of accelerated normalized stress relaxation rate with equibiaxial strain in aortic valve tissues. Collectively, these in vitro results indicate that biaxial strain state is capable of affecting the susceptibility of valvular collagens to catabolism, providing a basis for further investigation of

  9. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types

    Science.gov (United States)

    Amend, Jan P.; McCollom, Thomas M.; Hentscher, Michael; Bach, Wolfgang

    2011-10-01

    Active deep-sea hydrothermal vents are hosted by a range of different rock types, including basalt, peridotite, and felsic rocks. The associated hydrothermal fluids exhibit substantial chemical variability, which is largely attributable to compositional differences among the underlying host rocks. Numerical models were used to evaluate the energetics of seven inorganic redox reactions (potential catabolisms of chemolithoautotrophs) and numerous biomolecule synthesis reactions (anabolism) in a representative sampling of these systems, where chemical gradients are established by mixing hydrothermal fluid with seawater. The wide ranging fluid compositions dictate demonstrable differences in Gibbs energies (Δ G r) of these catabolic and anabolic reactions in three peridotite-hosted, six basalt-hosted, one troctolite-basalt hybrid, and two felsic rock-hosted systems. In peridotite-hosted systems at low to moderate temperatures (10), hydrogen oxidation yields the most catabolic energy, but the oxidation of methane, ferrous iron, and sulfide can also be moderately exergonic. At higher temperatures, and consequent SW:HF mixing ratios catabolic energy source at all temperatures (and SW:HF ratios) considered. The energetics of catabolism at the troctolite-basalt hybrid system were intermediate to these extremes. Reaction energetics for anabolism in chemolithoautotrophs—represented here by the synthesis of amino acids, nucleotides, fatty acids, saccharides, and amines—were generally most favorable at moderate temperatures (22-32 °C) and corresponding SW:HF mixing ratios (˜15). In peridotite-hosted and the troctolite-basalt hybrid systems, Δ G r for primary biomass synthesis yielded up to ˜900 J per g dry cell mass. The energetics of anabolism in basalt- and felsic rock-hosted systems were far less favorable. The results suggest that in peridotite-hosted (and troctolite-basalt hybrid) systems, compared with their basalt (and felsic rock) counterparts, microbial

  10. Summer-to-Winter Phenotypic Flexibility of Fatty Acid Transport and Catabolism in Skeletal Muscle and Heart of Small Birds.

    Science.gov (United States)

    Zhang, Yufeng; King, Marisa O; Harmon, Erin; Swanson, David L

    2015-01-01

    Prolonged shivering in birds is mainly fueled by lipids. Consequently, lipid transport and catabolism are vital for thermogenic performance and could be upregulated along with thermogenic capacity as part of the winter phenotype. We investigated summer-to-winter variation in lipid transport and catabolism by measuring mRNA expression, protein levels, and enzyme activities for several key steps of lipid transport and catabolic pathways in pectoralis muscle and heart in two small temperate-zone resident birds, American goldfinches (Spinus tristis) and black-capped chickadees (Poecile atricapillus). Cytosolic fatty acid binding protein (FABPc; a key component of intramyocyte lipid transport) mRNA and/or protein levels were generally higher in winter for pectoralis muscle and heart for both species. However, seasonal variation in plasma membrane lipid transporters, fatty acyl translocase, and plasma membrane fatty acid binding protein in pectoralis and heart differed between the two species, with winter increases for chickadees and seasonal stability or summer increases for goldfinches. Catabolic enzyme activities generally showed limited seasonal differences for both tissues and both species. These data suggest that FABPc is an important target of upregulation for the winter phenotype in pectoralis and heart of both species. Plasma membrane lipid transporters and lipid catabolic capacity were also elevated in winter for chickadees but not for goldfinches. Because the two species show differential regulation of distinct aspects of lipid transport and catabolism, these data are consistent with other recent studies documenting that different bird species or populations employ a variety of strategies to promote elevated winter thermogenic capacity.

  11. Influence of black gram (Vigna mungo) trypsin inhibitory fraction on the hepatic protein catabolism in male albino mice.

    Science.gov (United States)

    Kamalakannan, V; Sathyamoorthy, A V; Motlag, D B

    1984-01-01

    The effect of black gram and black gram trypsin inhibitor on the protein catabolism of male albino mice has been investigated. Group 1 was given autoclaved black gram (control), Group II raw black gram and Group III the autoclaved black gram incorporated with 1% black gram trypsin inhibitor. Blood as well as urinary urea and creatine were found to be elevated in Groups II and III. Increased levels of arginase, ornithine transcarbamylase and transaminases were noted in Groups II and III. The results suggested an enhanced catabolism of proteins evoked by the native black gram trypsin inhibitor.

  12. Homeostatic imbalance of purine catabolism in first-episode neuroleptic-naive patients with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jeffrey K Yao

    Full Text Available BACKGROUND: Purine catabolism may be an unappreciated, but important component of the homeostatic response of mitochondria to oxidant stress. Accumulating evidence suggests a pivotal role of oxidative stress in schizophrenia pathology. METHODOLOGY/PRINCIPAL FINDINGS: Using high-pressure liquid chromatography coupled with a coulometric multi-electrode array system, we compared 6 purine metabolites simultaneously in plasma between first-episode neuroleptic-naïve patients with schizophrenia (FENNS, n = 25 and healthy controls (HC, n = 30, as well as between FENNS at baseline (BL and 4 weeks (4w after antipsychotic treatment. Significantly higher levels of xanthosine (Xant and lower levels of guanine (G were seen in both patient groups compared to HC subjects. Moreover, the ratios of G/guanosine (Gr, uric acid (UA/Gr, and UA/Xant were significantly lower, whereas the ratio of Xant/G was significantly higher in FENNS-BL than in HC. Such changes remained in FENNS-4w with exception that the ratio of UA/Gr was normalized. All 3 groups had significant correlations between G and UA, and Xan and hypoxanthine (Hx. By contrast, correlations of UA with each of Xan and Hx, and the correlation of Xan with Gr were all quite significant for the HC but not for the FENNS. Finally, correlations of Gr with each of UA and G were significant for both HC and FENNS-BL but not for the FENNS-4w. CONCLUSIONS/SIGNIFICANCE: During purine catabolism, both conversions of Gr to G and of Xant to Xan are reversible. Decreased ratios of product to precursor suggested a shift favorable to Xant production from Xan, resulting in decreased UA levels in the FENNS. Specifically, the reduced UA/Gr ratio was nearly normalized after 4 weeks of antipsychotic treatment. In addition, there are tightly correlated precursor and product relationships within purine pathways; although some of these correlations persist across disease or medication status, others appear to be lost among FENNS

  13. A mass spectrometric method to determine activities of enzymes involved in polyamine catabolism

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Shunsuke; Iwasaki, Kaori [Department of Molecular Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya-ku, Tokyo 156-8506 (Japan); Samejima, Keijiro, E-mail: samejima-kj@igakuken.or.jp [Department of Molecular Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya-ku, Tokyo 156-8506 (Japan); Takao, Koichi [Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295 (Japan); Kohda, Kohfuku [Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585 (Japan); Hiramatsu, Kyoko; Kawakita, Masao [Department of Molecular Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya-ku, Tokyo 156-8506 (Japan)

    2012-10-20

    Highlights: Black-Right-Pointing-Pointer Compounds in polyamine catabolic pathway were determined by a column-free ESI-TOF MS. Black-Right-Pointing-Pointer N{sup 1}- and N{sup 8}-acetylspermidine were determined by a column-free ESI-MS/MS. Black-Right-Pointing-Pointer The method was applied to determine activities of APAO, SMO, and SSAT in the pathway. Black-Right-Pointing-Pointer The assay method contained stable isotope-labeled natural substrates. Black-Right-Pointing-Pointer It is applicable to biological samples containing natural substrate and product. - Abstract: An analytical method for the determination of three polyamines (putrescine, spermidine, and spermine) and five acetylpolyamines [N{sup 1}-acetylspermidine (N{sup 1}AcSpd), N{sup 8}-acetylspermidine (N{sup 8}AcSpd), N{sup 1}-acetylspermine, N{sup 1},N{sup 8}-diacetylspermidine, and N{sup 1},N{sup 12}-diacetylspermine] involved in the polyamine catabolic pathway has been developed using a hybrid tandem mass spectrometer. Heptafluorobutyryl (HFB) derivatives of these compounds and respective internal standards labeled with stable isotopes were analyzed simultaneously by TOF MS, based on peak areas appearing at appropriate m/z values. The isomers, N{sup 1}AcSpd and N{sup 8}AcSpd were determined from their fragment ions, the acetylamidopropyl and acetylamidobutyl groups, respectively, using MS/MS with {sup 13}C{sub 2}-N{sup 1}AcSpd and {sup 13}C{sub 2}-N{sup 8}AcSpd which have the {sup 13}C{sub 2}-acetyl group as an internal standard. The TOF MS method was successfully applied to measure the activity of enzymes involved in polyamine catabolic pathways, namely N{sup 1}-acetylpolyamine oxidase (APAO), spermine oxidase (SMO), and spermidine/spermine N{sup 1}-acetyltransferase (SSAT). The following natural substrates and products labeled with stable isotopes considering the application to biological samples were identified; for APAO, [4,9,12-{sup 15}N{sub 3}]-N{sup 1}-acetylspermine and [1,4,8-{sup 15}N{sub 3

  14. Overexpression, purification, crystallization and preliminary structural studies of catabolic ornithine transcarbamylase from Lactobacillus hilgardii

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, Blanca de las; Rodríguez, Héctor [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Angulo, Iván [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Muñoz, Rosario [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Mancheño, José M., E-mail: xjosemi@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)

    2007-07-01

    The catabolic ornithine transcarbamylase (cOTC) from L. hilgardii has been overexpressed in E. coli, purified and crystallized under two different experimental conditions. The structure has been solved by the molecular-replacement method using the atomic coordinates of catabolic ornithine transcarbamylase from P. aeruginosa as the search model. The catabolic ornithine transcarbamylase (cOTC; EC 2.1.3.3) from the lactic acid bacteria Lactobacillus hilgardii is a key protein involved in the degradation of arginine during malolactic fermentation. cOTC containing an N-terminal His{sub 6} tag has been overexpressed in Escherichia coli, purified and crystallized under two different experimental conditions using the hanging-drop vapour-diffusion method. Crystals obtained from a solution containing 8%(w/v) PEG 4000, 75 mM sodium acetate pH 4.6 belong to the trigonal space group P321 and have unit-cell parameters a = b = 157.04, c = 79.28 Å. Conversely, crystals grown in 20%(v/v) 2-methyl-2,4-pentanediol, 7.5%(w/v) PEG 4000, 100 mM HEPES pH 7.8 belong to the monoclinic space group C2 and have unit-cell parameters a = 80.06, b = 148.90, c = 91.67 Å, β = 100.25°. Diffraction data were collected in-house to 3.00 and 2.91 Å resolution for trigonal and monoclinic crystals, respectively. The estimated Matthews coefficient for the crystal forms were 2.36 and 2.24 Å{sup 3} Da{sup −1}, respectively, corresponding to 48% and 45% solvent content. In both cases, the results are consistent with the presence of three protein subunits in the asymmetric unit. The structure of cOTC has been determined by the molecular-replacement method using the atomic coordinates of cOTC from Pseudomonas aeruginosa (PDB code) as the search model.

  15. DETERMINATION OF PROTEIN CATABOLIC RATE IN PATIENTS ON CHRONIC INTERMITTENT HEMODIALYSIS - UREA OUTPUT MEASUREMENTS COMPARED WITH DIETARY-PROTEIN INTAKE AND WITH CALCULATION OF UREA GENERATION RATE

    NARCIS (Netherlands)

    STEGEMAN, CA; HUISMAN, RM; DEROUW, B; JOOSTEMA, A; DEJONG, PE

    1995-01-01

    We assessed the agreement between different methods of determining protein catabolic rate (PCR) in hemodialysis patients and the possible influence of postdialysis urea rebound and the length of the interdialytic interval on the PCR determination. Protein catabolic rate derived from measured total u

  16. Coordinated regulation of ammonium assimilation and carbon catabolism by glyoxylate in Saccharomyces cerevisiae.

    Science.gov (United States)

    González, A; Rodríguez, L; Folch, J; Soberón, M; Olivera, H

    1987-09-01

    The activities of citrate synthase (EC 4.1.3.7) and NADP+-dependent glutamate dehydrogenase (GDH) (EC 1.4.1.4) of Saccharomyces cerevisiae were inhibited in vitro by glyoxylate. In the presence of glyoxylate, pyruvate and glyoxylate pools increased, suggesting that glyoxylate was efficiently transported and catabolized. Pyruvate accumulation also indicates that citrate synthase was inhibited. A decrease in the glutamate pool was also observed under these conditions. This can be attributed to an increased transamination rate and to the inhibitory effect of glyoxylate on NADP+-dependent GDH. Furthermore, the increase in the ammonium pool in the presence of glyoxylate suggests that NADP+-dependent GDH was being inhibited in vivo, since the activity of glutamine synthetase did not decrease under these conditions. We propose that the inhibition of both citrate synthase and NADP+-dependent GDH could form part of a mechanism that regulates the internal 2-oxoglutarate concentration.

  17. Bioaugmentation of DDT-contaminated soil by dissemination of the catabolic plasmid pDOD.

    Science.gov (United States)

    Gao, Chunming; Jin, Xiangxiang; Ren, Jingbei; Fang, Hua; Yu, Yunlong

    2015-01-01

    A plasmid transfer-mediated bioaugmentation method for the enhancement of dichlorodiphenyltrichloroethane (DDT) degradation in soil was developed using the catabolic plasmid pDOD from Sphingobacterium sp. D-6. The pDOD plasmid could be transferred to soil bacteria, such as members of Cellulomonas, to form DDT degraders and thus accelerate DDT degradation. The transfer efficiency of pDOD was affected by the donor, temperature, moisture, and soil type. Approximately 50.7% of the DDT in the contaminated field was removed 210 days after the application of Escherichia coli TG I (pDOD-gfp). The results suggested that seeding pDOD into soil is an effective bioaugmentation method for enhancing the degradation of DDT.

  18. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass.

    Science.gov (United States)

    Khosravi, Claire; Benocci, Tiziano; Battaglia, Evy; Benoit, Isabelle; de Vries, Ronald P

    2015-01-01

    Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.

  19. Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Darling, T.N.; Davis, D.G.; London, R.E.; Blum, J.J.

    1987-10-01

    Leishmania braziliensis panamensis promastigotes were incubated with glucose as the sole carbon source. About one-fifth of the glucose consumed under aerobic conditions was oxidized to CO/sub 2/. Nuclear magnetic resonance studies with (1-/sup 13/C)glucose showed that the other products released were succinate, acetate, alanine, pyruvate, and lactate. Under anaerobic conditions, lactate output increased, glycerol became a major product, and, surprisingly, glucose consumption decreased. Enzymatic assays showed that the lactate formed was D(-)-lactate. The release of alanine during incubation with glucose as the sole carbon source suggested that appreciable proteolysis occurred, consistent with our observation that a large amount of ammonia was released under these conditions. The discoveries that D-lactate is a product of L. braziliensis glucose catabolism, that glycerol is produced under anaerobic conditions, and that the cells exhibit a reverse Pasteur effect open the way for detailed studies of the pathways of glucose metabolism and their regulation in this organism.

  20. Phenotype MicroArray™ system in the study of fungal functional diversity and catabolic versatility.

    Science.gov (United States)

    Pinzari, Flavia; Ceci, Andrea; Abu-Samra, Nadir; Canfora, Loredana; Maggi, Oriana; Persiani, Annamaria

    Fungi cover a range of important ecological functions associated with nutrient and carbon cycling in leaf litter and soil. As a result, research on existing relationships between fungal functional diversity, decomposition rates and competition is of key interest. Indeed, availability of nutrients in soil is largely the consequence of organic matter degradation dynamics. The Biolog(®) Phenotype MicroArrays™ (PM) system allows for the testing of fungi against many different carbon sources at any one time. The use and potential of the PM system as a tool for studying niche overlap and catabolic versatility of saprotrophic fungi is discussed here, and examples of its application are provided. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Role of Myofibrillar Protein Catabolism in Development of Glucocorticoid Myopathy: Aging and Functional Activity Aspects.

    Science.gov (United States)

    Seene, Teet; Kaasik, Priit

    2016-05-13

    Muscle weakness in corticosteroid myopathy is mainly the result of the destruction and atrophy of the myofibrillar compartment of fast-twitch muscle fibers. Decrease of titin and myosin, and the ratio of nebulin and MyHC in myopathic muscle, shows that these changes of contractile and elastic proteins are the result of increased catabolism of the abovementioned proteins in skeletal muscle. Slow regeneration of skeletal muscle is in good correlation with a decreased number of satellite cells under the basal lamina of muscle fibers. Aging causes a reduction of AMP-activated protein kinase (AMPK) activity as the result of the reduced function of the mitochondrial compartment. AMPK activity increases as a result of increased functional activity. Resistance exercise causes anabolic and anticatabolic effects in skeletal muscle: muscle fibers experience hypertrophy while higher myofibrillar proteins turn over. These changes are leading to the qualitative remodeling of muscle fibers. As a result of these changes, possible maximal muscle strength is increasing. Endurance exercise improves capillary blood supply, increases mitochondrial biogenesis and muscle oxidative capacity, and causes a faster turnover rate of sarcoplasmic proteins as well as qualitative remodeling of type I and IIA muscle fibers. The combination of resistance and endurance exercise may be the fastest way to prevent or decelerate muscle atrophy due to the anabolic and anticatabolic effects of exercise combined with an increase in oxidative capacity. The aim of the present short review is to assess the role of myofibrillar protein catabolism in the development of glucocorticoid-caused myopathy from aging and physical activity aspects.

  2. Role of Myofibrillar Protein Catabolism in Development of Glucocorticoid Myopathy: Aging and Functional Activity Aspects

    Directory of Open Access Journals (Sweden)

    Teet Seene

    2016-05-01

    Full Text Available Muscle weakness in corticosteroid myopathy is mainly the result of the destruction and atrophy of the myofibrillar compartment of fast-twitch muscle fibers. Decrease of titin and myosin, and the ratio of nebulin and MyHC in myopathic muscle, shows that these changes of contractile and elastic proteins are the result of increased catabolism of the abovementioned proteins in skeletal muscle. Slow regeneration of skeletal muscle is in good correlation with a decreased number of satellite cells under the basal lamina of muscle fibers. Aging causes a reduction of AMP-activated protein kinase (AMPK activity as the result of the reduced function of the mitochondrial compartment. AMPK activity increases as a result of increased functional activity. Resistance exercise causes anabolic and anticatabolic effects in skeletal muscle: muscle fibers experience hypertrophy while higher myofibrillar proteins turn over. These changes are leading to the qualitative remodeling of muscle fibers. As a result of these changes, possible maximal muscle strength is increasing. Endurance exercise improves capillary blood supply, increases mitochondrial biogenesis and muscle oxidative capacity, and causes a faster turnover rate of sarcoplasmic proteins as well as qualitative remodeling of type I and IIA muscle fibers. The combination of resistance and endurance exercise may be the fastest way to prevent or decelerate muscle atrophy due to the anabolic and anticatabolic effects of exercise combined with an increase in oxidative capacity. The aim of the present short review is to assess the role of myofibrillar protein catabolism in the development of glucocorticoid-caused myopathy from aging and physical activity aspects.

  3. Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: intersecting metabolic pathways.

    Science.gov (United States)

    Hutson, Susan M; Islam, Mohammad Mainul; Zaganas, Ioannis

    2011-09-01

    Branched-chain amino acids (BCAAs) catabolism follows sequential reactions and their metabolites intersect with other metabolic pathways. The initial enzymes in BCAA metabolism, the mitochondrial branched-chain aminotransferase (BCATm), which deaminates the BCAAs to branched-chain α-keto acids (BCKAs); and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), which oxidatively decarboxylates the BCKAs, are organized in a supramolecular complex termed metabolon. Glutamate dehydrogenase (GDH1) is found in the metabolon in rat tissues. Bovine GDH1 binds to the pyridoxamine 5'-phosphate (PMP)-form of human BCATm (PMP-BCATm) but not to pyridoxal 5'-phosphate (PLP)-BCATm in vitro. This protein interaction facilitates reamination of the α-ketoglutarate (αKG) product of the GDH1 oxidative deamination reaction. Human GDH1 appears to act like bovine GDH1 but human GDH2 does not show the same enhancement of BCKDC enzyme activities. Another metabolic enzyme is also found in the metabolon is pyruvate carboxylase (PC). Kinetic results suggest that PC binds to the E1 decarboxylase of BCKDC but does not effect BCAA catabolism. The protein interaction of BCATm and GDH1 promotes regeneration of PLP-BCATm which then binds to BCKDC resulting in channeling of the BCKA products from BCATm first half reaction to E1 and promoting BCAA oxidation and net nitrogen transfer from BCAAs. The cycling of nitrogen through glutamate via the actions of BCATm and GDH1 releases free ammonia. Formation of ammonia may be important for astrocyte glutamine synthesis in the central nervous system. In peripheral tissue association of BCATm and GDH1 would promote BCAA oxidation at physiologically relevant BCAA concentrations.

  4. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    Science.gov (United States)

    Leissring, Malcolm A.; Malito, Enrico; Hedouin, Sabrine; Reinstatler, Lael; Sahara, Tomoko; Abdul-Hay, Samer O.; Choudhry, Shakeel; Maharvi, Ghulam M.; Fauq, Abdul H.; Huzarska, Malwina; May, Philip S.; Choi, Sungwoon; Logan, Todd P.; Turk, Benjamin E.; Cantley, Lewis C.; Manolopoulou, Marika; Tang, Wei-Jen; Stein, Ross L.; Cuny, Gregory D.; Selkoe, Dennis J.

    2010-01-01

    Background Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. Methodology/Principal Findings We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are ∼106 times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's “closed,” inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes. PMID:20498699

  5. Training reduces catabolic and inflammatory response to a single practice in female volleyball players.

    Science.gov (United States)

    Eliakim, Alon; Portal, Shawn; Zadik, Zvi; Meckel, Yoav; Nemet, Dan

    2013-11-01

    We examined the effect of training on hormonal and inflammatory response to a single volleyball practice in elite adolescent players. Thirteen female, national team level, Israeli volleyball players (age 16.0 ± 1.4 years, Tanner stage 4-5) participated in the study. Blood samples were collected before and immediately after a typical 60 minutes of volleyball practice, before and after 7 weeks of training during the initial phase of the season. Training involved tactic and technical drills (20% of time), power and speed drills (25% of time), interval sessions (25% of time), endurance-type training (15% of time), and resistance training (15% of time). To achieve greater training responses, the study was performed during the early phase (first 7 weeks) of the volleyball season. Hormonal measurements included the anabolic hormones growth hormone (GH), insulin-like growth factor-I (IGF-I) and IGF-binding protein-3, the catabolic hormone cortisol, the proinflammatory marker interleukin-6 (IL-6), and the anti-inflammatory marker IL-1 receptor antagonist. Training led to a significant improvement of vertical jump, anaerobic properties (peak and mean power by the Wingate Anaerobic Test), and predicted VO2max (by the 20-m shuttle run). Volleyball practice, both before and after the training intervention, was associated with a significant increase of serum lactate, GH, and IL-6. Training resulted in a significantly reduced cortisol response ([INCREMENT]cortisol: 4.2 ± 13.7 vs. -4.4 ± 12.3 ng · ml, before and after training, respectively; p volleyball practice. The results suggest that along with the improvement of power and anaerobic and aerobic characteristics, training reduces the catabolic and inflammatory response to exercise.

  6. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    Energy Technology Data Exchange (ETDEWEB)

    Leissring, Malcolm A.; Malito, Enrico; Hedouin, Sabrine; Reinstatler, Lael; Sahara, Tomoko; Abdul-Hay, Samer O.; Choudhry, Shakeel; Maharvi, Ghulam M.; Fauq, Abdul H.; Huzarska, Malwina; May, Philip S.; Choi, Sungwoon; Logan, Todd P.; Turk, Benjamin E.; Cantley, Lewis C.; Manolopoulou, Marika; Tang, Wei-Jen; Stein, Ross L.; Cuny, Gregory D.; Selkoe, Dennis J. (Harvard-Med); (BWH); (Yale-MED); (Scripps); (UC); (Mayo)

    2010-09-20

    Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are {approx} 10{sup 6} times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-a-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's 'closed,' inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  7. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin.

    Directory of Open Access Journals (Sweden)

    Malcolm A Leissring

    Full Text Available BACKGROUND: Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE, a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. METHODOLOGY/PRINCIPAL FINDINGS: We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are approximately 10(6 times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's "closed," inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. CONCLUSIONS/SIGNIFICANCE: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  8. Microbial life in frozen boreal soils-environmental constraints on catabolic and anabolic activity

    Science.gov (United States)

    Oquist, M. G.; Sparrman, T.; Haei, M.; Segura, J.; Schleucher, J.; Nilsson, M. B.

    2013-12-01

    Microbial activity in frozen soils has recently gained increasing attention and the fact that soil microorganisms can perform significant metabolic activity at temperatures below freezing is apparent. However, to what extent microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is still very uncertain. This presentation will address how the fundamental environmental factors of temperature, liquid water availability and substrate availability combine to regulate rates of catabolic and anabolic microbial processes in frozen soils. The presented results are gained from investigations of the surface layers of boreal forest soils with seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. In turn, the capacity for a specific soil to retain liquid water at sub-zero temperatures is controlled by the structural composition of the soil, and especially the soil organic matter is of integral importance. We also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless

  9. The coupling of the plant and microbial catabolisms of phenanthrene in the rhizosphere of Medicago sativa.

    Science.gov (United States)

    Muratova, Anna; Dubrovskaya, Ekaterina; Golubev, Sergey; Grinev, Vyacheslav; Chernyshova, Marina; Turkovskaya, Olga

    2015-09-01

    We studied the catabolism of the polycyclic aromatic hydrocarbon phenanthrene by four rhizobacterial strains and the possibility of enzymatic oxidation of this compound and its microbial metabolites by the root exudates of alfalfa (Medicago sativa L.) in order to detect the possible coupling of the plant and microbial metabolisms under the rhizospheric degradation of the organic pollutant. A comparative study of phenanthrene degradation pathways in the PAH-degrading rhizobacteria Ensifer meliloti, Pseudomonas kunmingensis, Rhizobium petrolearium, and Stenotrophomonas sp. allowed us to identify the key metabolites from the microbial transformation of phenanthrene, including 9,10-phenanthrenequinone, 2-carboxybenzaldehyde, and 1-hydroxy-2-naphthoic, salicylic, and o-phthalic acids. Sterile alfalfa plants were grown in the presence and absence of phenanthrene (0.03 g kg(-1)) in quartz sand under controlled environmental conditions to obtain plant root exudates. The root exudates were collected, concentrated by ultrafiltration, and the activity of oxidoreductases was detected spectrophotometrically by the oxidation rate for various substrates. The most marked activity was that of peroxidase, whereas the presence of oxidase and tyrosinase was detected on the verge of the assay sensitivity. Using alfalfa root exudates as a crude enzyme preparation, we found that in the presence of the synthetic mediator, the plant peroxidase could oxidize phenanthrene and its microbial metabolites. The results indicate the possibility of active participation of plants in the rhizospheric degradation of polycyclic aromatic hydrocarbons and their microbial metabolites, which makes it possible to speak about the coupling of the plant and microbial catabolisms of these contaminants in the rhizosphere.

  10. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  11. Essential amino acid leucine and proteasome inhibitor MG132 attenuate cigarette smoke induced catabolism in C2 myotubes.

    Science.gov (United States)

    Rom, Oren; Kaisari, Sharon; Aizenbud, Dror; Reznick, A Z

    2013-01-01

    Exposure to cigarette smoke (CS) and cigarette smoking have been shown to promote catabolism of skeletal muscle. Previous studies and recent findings from our laboratory have demonstrated the involvement of the ubiquitin proteasome system and the muscle-specific E3 ubiquitin ligases MAFbx/atrogin-1 and MuRF1 in CS induced skeletal muscle catabolism. The essential amino acid leucine is a known anticatabolic agent that improves skeletal muscle metabolism in various atrophic conditions. To examine the protective effect of leucine and proteasome inhibition in CS induced muscle catabolism, C2 myotubes, from an in vitro skeletal muscle cell line, were exposed to CS in the presence or absence of leucine and a proteasome inhibitor, MG132. Diameter of myotubes, levels of the main contractile proteins - myosin heavy chain and actin, expression of MAFbx/atrogin-1 and MuRF1 were studied by microscopy, Western blotting, and qPCR. Leucine pretreatment prevented the CS-induced reduction in diameter of myotubes and degradation of myosin heavy chain by suppressing the upregulation of MAFbx/atrogin-1 and MuRF1. MG132 also attenuated the CS-induced decrease in diameter of myotubes and degradation of myosin heavy chain. Our findings demonstrate that supplementation with the essential amino acid leucine and inhibition of the proteasome may protect skeletal muscle from CS induced catabolism.

  12. Increased VLDL in nephrotic patients results from a decreased catabolism while increased LDL results from increased synthesis

    NARCIS (Netherlands)

    de Sain-van der Velden, M; Kaysen, GA; Barrett, HA; Stellaard, F; Gadellaa, MM; Voorbij, HA; Reijngoud, DJ; Rabelink, TJ

    1998-01-01

    Increased very low density lipoprotein (VLDL) in nephrotic patients results from a decreased catabolism while increased low density lipoprotein (LDL) results from increased synthesis. Hyperlipidemias a hallmark of nephrotic syndrome that has been associated with increased risk for ischemic heart dis

  13. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatogr...

  14. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    Directory of Open Access Journals (Sweden)

    V. Barquissau

    2016-05-01

    Conclusions: Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria.

  15. Sialic acid transport and catabolism are cooperatively regulated by SiaR and CRP in nontypeable Haemophilus influenzae

    Directory of Open Access Journals (Sweden)

    Johnston Jason W

    2010-09-01

    Full Text Available Abstract Background The transport and catabolism of sialic acid, a critical virulence factor for nontypeable Haemophilus influenzae, is regulated by two transcription factors, SiaR and CRP. Results Using a mutagenesis approach, glucosamine-6-phosphate (GlcN-6P was identified as a co-activator for SiaR. Evidence for the cooperative regulation of both the sialic acid catabolic and transport operons suggested that cooperativity between SiaR and CRP is required for regulation. cAMP was unable to influence the expression of the catabolic operon in the absence of SiaR but was able to induce catabolic operon expression when both SiaR and GlcN-6P were present. Alteration of helical phasing supported this observation by uncoupling SiaR and CRP regulation. The insertion of one half-turn of DNA between the SiaR and CRP operators resulted in the loss of SiaR-mediated repression of the transport operon while eliminating cAMP-dependent induction of the catabolic operon when GlcN-6P was present. SiaR and CRP were found to bind to their respective operators simultaneously and GlcN-6P altered the interaction of SiaR with its operator. Conclusions These results suggest multiple novel features for the regulation of these two adjacent operons. SiaR functions as both a repressor and an activator and SiaR and CRP interact to regulate both operons from a single set of operators.

  16. Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7

    Directory of Open Access Journals (Sweden)

    Zhang Shuangyu

    2012-03-01

    Full Text Available Abstract Background para-Nitrophenol (PNP, a priority environmental pollutant, is hazardous to humans and animals. However, the information relating to the PNP degradation pathways and their enzymes remain limited. Results Pseudomonas sp.1-7 was isolated from methyl parathion (MP-polluted activated sludge and was shown to degrade PNP. Two different intermediates, hydroquinone (HQ and 4-nitrocatechol (4-NC were detected in the catabolism of PNP. This indicated that Pseudomonas sp.1-7 degraded PNP by two different pathways, namely the HQ pathway, and the hydroxyquinol (BT pathway (also referred to as the 4-NC pathway. A gene cluster (pdcEDGFCBA was identified in a 10.6 kb DNA fragment of a fosmid library, which cluster encoded the following enzymes involved in PNP degradation: PNP 4-monooxygenase (PdcA, p-benzoquinone (BQ reductase (PdcB, hydroxyquinol (BT 1,2-dioxygenase (PdcC, maleylacetate (MA reductase (PdcF, 4-hydroxymuconic semialdehyde (4-HS dehydrogenase (PdcG, and hydroquinone (HQ 1,2-dioxygenase (PdcDE. Four genes (pdcDEFG were expressed in E. coli and the purified pdcDE, pdcG and pdcF gene products were shown to convert HQ to 4-HS, 4-HS to MA and MA to β-ketoadipate respectively by in vitro activity assays. Conclusions The cloning, sequencing, and characterization of these genes along with the functional PNP degradation studies identified 4-NC, HQ, 4-HS, and MA as intermediates in the degradation pathway of PNP by Pseudomonas sp.1-7. This is the first conclusive report for both 4-NC and HQ- mediated degradation of PNP by one microorganism.

  17. Research Advance on the Mechanism of Anaerobic Catabolism of Aromatic Compounds by Rhodopseudomonas palustris%沼泽红甲单胞菌对芳香族化合物的厌氧降解机制研究进展

    Institute of Scientific and Technical Information of China (English)

    舒巧玉; 刘洋; 肖莉; 韩志萍; 叶金云

    2011-01-01

    The anaerobic catabolism of aromatic compounds by microorganism was very important for the sustainable development of biosphere and recycling of chemicals in environment. The paper summarized the mechanism of anaerobic catabolism of aromatic compounds by R. Palustris and the enzymes and genes related to it,and introduced the application of R. Palustris in degradation of aromatic compounds,which will provide reference for solving environmental pollution and biology energy study.%微生物厌氧降解芳香族化合物对于环境生化循环和生物圈的可持续发展具有重要作用.综述了沼泽红甲单胞菌(Rhodopseudomonas palustris)对芳香族化合物的厌氧降解机制、厌氧降解途径中的关键酶及其编码基因以及降解应用,为解决环境污染问题和生物能源研究提供了参考.

  18. Estimating fermentative amino acid catabolism in the small intestine of growing pigs.

    Science.gov (United States)

    Columbus, D A; Cant, J P; de Lange, C F M

    2015-11-01

    Fermentative catabolism (FAAC) of dietary and endogenous amino acids (AA) in the small intestine contributes to loss of AA available for protein synthesis and body maintenance functions in pigs. A continuous isotope infusion study was performed to determine whole body urea flux, urea recycling and FAAC in the small intestine of ileal-cannulated growing pigs fed a control diet (CON, 18.6% CP; n=6), a high fibre diet with 12% added pectin (HF, 17.7% CP; n = 4) or a low-protein diet (LP, 13.4% CP; n = 6). (15)N-ammonium chloride and (13)C-urea were infused intragastrically and intravenously, respectively, for 4 days. Recovery of ammonia at the distal ileum was increased by feeding additional fibre when compared with the CON (P > 0.05) but was not affected by dietary protein (0.24, 0.39 and 0.14 mmol nitrogen/kg BW/day for CON, HF and LP, respectively; P 0.05)compared with CON. The two-pool model developed in the present study allows for estimation of FAAC but still has limitations. Quantifying FAAC in the small intestine of pigs, as well as other non-ruminants and humans, offers a number of challenges but warrants further investigation.

  19. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Margaret E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Mukhopadhyay, Aindrila [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Keasling, Jay D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Technical Univ. of Denmark, Horsholm (Denmark)

    2016-07-12

    In this paper, we report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. Finally, in the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.

  20. Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp.

    Science.gov (United States)

    Sviridov, Alexey V; Shushkova, Tatyana V; Zelenkova, Nina F; Vinokurova, Natalya G; Morgunov, Igor G; Ermakova, Inna T; Leontievsky, Alexey A

    2012-01-01

    Bacterial strains capable of utilizing methylphosphonic acid (MP) or glyphosate (GP) as the sole sources of phosphorus were isolated from soils contaminated with these organophosphonates. The strains isolated from MP-contaminated soils grew on MP and failed to grow on GP. One group of the isolates from GP-contaminated soils grew only on MP, while the other one grew on MP and GP. Strains Achromobacter sp. MPS 12 (VKM B-2694), MP degraders group, and Ochrobactrum anthropi GPK 3 (VKM B-2554D), GP degraders group, demonstrated the best degradative capabilities towards MP and GP, respectively, and were studied for the distribution of their organophosphonate catabolism systems. In Achromobacter sp. MPS 12, degradation of MP was catalyzed by C-P lyase incapable of degrading GP (C-P lyase I). Adaptation to growth on GP yielded the strain Achromobacter sp. MPS 12A, which retained its ability to degrade MP via C-P lyase I and was capable of degrading GP with formation of sarcosine, thus suggesting the involvement of a GP-specific C-P lyase II. O. anthropi GPK 3 also degraded MP via C-P lyase I, but degradation of GP in it was initiated by glyphosate oxidoreductase, which was followed by product transformation via the phosphonatase pathway.

  1. Phenomenological model for predicting the catabolic potential of an arbitrary nutrient.

    Science.gov (United States)

    Seaver, Samuel M D; Sales-Pardo, Marta; Guimerà, Roger; Amaral, Luís A Nunes

    2012-01-01

    The ability of microbial species to consume compounds found in the environment to generate commercially-valuable products has long been exploited by humanity. The untapped, staggering diversity of microbial organisms offers a wealth of potential resources for tackling medical, environmental, and energy challenges. Understanding microbial metabolism will be crucial to many of these potential applications. Thermodynamically-feasible metabolic reconstructions can be used, under some conditions, to predict the growth rate of certain microbes using constraint-based methods. While these reconstructions are powerful, they are still cumbersome to build and, because of the complexity of metabolic networks, it is hard for researchers to gain from these reconstructions an understanding of why a certain nutrient yields a given growth rate for a given microbe. Here, we present a simple model of biomass production that accurately reproduces the predictions of thermodynamically-feasible metabolic reconstructions. Our model makes use of only: i) a nutrient's structure and function, ii) the presence of a small number of enzymes in the organism, and iii) the carbon flow in pathways that catabolize nutrients. When applied to test organisms, our model allows us to predict whether a nutrient can be a carbon source with an accuracy of about 90% with respect to in silico experiments. In addition, our model provides excellent predictions of whether a medium will produce more or less growth than another (p<10(-6)) and good predictions of the actual value of the in silico biomass production.

  2. Phenomenological model for predicting the catabolic potential of an arbitrary nutrient.

    Directory of Open Access Journals (Sweden)

    Samuel M D Seaver

    Full Text Available The ability of microbial species to consume compounds found in the environment to generate commercially-valuable products has long been exploited by humanity. The untapped, staggering diversity of microbial organisms offers a wealth of potential resources for tackling medical, environmental, and energy challenges. Understanding microbial metabolism will be crucial to many of these potential applications. Thermodynamically-feasible metabolic reconstructions can be used, under some conditions, to predict the growth rate of certain microbes using constraint-based methods. While these reconstructions are powerful, they are still cumbersome to build and, because of the complexity of metabolic networks, it is hard for researchers to gain from these reconstructions an understanding of why a certain nutrient yields a given growth rate for a given microbe. Here, we present a simple model of biomass production that accurately reproduces the predictions of thermodynamically-feasible metabolic reconstructions. Our model makes use of only: i a nutrient's structure and function, ii the presence of a small number of enzymes in the organism, and iii the carbon flow in pathways that catabolize nutrients. When applied to test organisms, our model allows us to predict whether a nutrient can be a carbon source with an accuracy of about 90% with respect to in silico experiments. In addition, our model provides excellent predictions of whether a medium will produce more or less growth than another (p<10(-6 and good predictions of the actual value of the in silico biomass production.

  3. Hypoxia-inducible factor-2α is an essential catabolic regulator of inflammatory rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Je-Hwang Ryu

    2014-06-01

    Full Text Available Rheumatoid arthritis (RA is a systemic autoimmune disorder that manifests as chronic inflammation and joint tissue destruction. However, the etiology and pathogenesis of RA have not been fully elucidated. Here, we explored the role of the hypoxia-inducible factors (HIFs, HIF-1α (encoded by HIF1A and HIF-2α (encoded by EPAS1. HIF-2α was markedly up-regulated in the intimal lining of RA synovium, whereas HIF-1α was detected in a few cells in the sublining and deep layer of RA synovium. Overexpression of HIF-2α in joint tissues caused an RA-like phenotype, whereas HIF-1α did not affect joint architecture. Moreover, a HIF-2α deficiency in mice blunted the development of experimental RA. HIF-2α was expressed mainly in fibroblast-like synoviocytes (FLS of RA synovium and regulated their proliferation, expression of RANKL (receptor activator of nuclear factor-κB ligand and various catabolic factors, and osteoclastogenic potential. Moreover, HIF-2α-dependent up-regulation of interleukin (IL-6 in FLS stimulated differentiation of TH17 cells-crucial effectors of RA pathogenesis. Additionally, in the absence of IL-6 (Il6-/- mice, overexpression of HIF-2α in joint tissues did not cause an RA phenotype. Thus, our results collectively suggest that HIF-2α plays a pivotal role in the pathogenesis of RA by regulating FLS functions, independent of HIF-1α.

  4. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice.

    Science.gov (United States)

    Niewiadomski, Julie; Zhou, James Q; Roman, Heather B; Liu, Xiaojing; Hirschberger, Lawrence L; Locasale, Jason W; Stipanuk, Martha H

    2016-01-01

    To gain further insights into the effects of elevated cysteine levels on energy metabolism and the possible mechanisms underlying these effects, we conducted studies in cysteine dioxygenase (Cdo1)-null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression are also seen in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggests impaired mitochondrial β-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2 S production and impairments in energy metabolism suggest that H2 S signaling could be involved.

  5. Ubiquity and quantitative significance of detoxification catabolism of chlorophyll associated with protistan herbivory.

    Science.gov (United States)

    Kashiyama, Yuichiro; Yokoyama, Akiko; Kinoshita, Yusuke; Shoji, Sunao; Miyashiya, Hideaki; Shiratori, Takashi; Suga, Hisami; Ishikawa, Kanako; Ishikawa, Akira; Inouye, Isao; Ishida, Ken-ichiro; Fujinuma, Daiki; Aoki, Keisuke; Kobayashi, Masami; Nomoto, Shinya; Mizoguchi, Tadashi; Tamiaki, Hitoshi

    2012-10-23

    Chlorophylls are essential components of the photosynthetic apparati that sustain all of the life forms that ultimately depend on solar energy. However, a drawback of the extraordinary photosensitizing efficiency of certain chlorophyll species is their ability to generate harmful singlet oxygen. Recent studies have clarified the catabolic processes involved in the detoxification of chlorophylls in land plants, but little is understood about these strategies in aquatic ecosystem. Here, we report that a variety of heterotrophic protists accumulate the chlorophyll a catabolite 13(2),17(3)-cyclopheophorbide a enol (cPPB-aE) after their ingestion of algae. This chlorophyll derivative is nonfluorescent in solution, and its inability to generate singlet oxygen in vitro qualifies it as a detoxified catabolite of chlorophyll a. Using a modified analytical method, we show that cPPB-aE is ubiquitous in aquatic environments, and it is often the major chlorophyll a derivative. Our findings suggest that cPPB-aE metabolism is one of the most important, widely distributed processes in aquatic ecosystems. Therefore, the herbivorous protists that convert chlorophyll a to cPPB-aE are suggested to play more significant roles in the modern oceanic carbon flux than was previously recognized, critically linking microscopic primary producers to the macroscopic food web and carbon sequestration in the ocean.

  6. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts.

    Science.gov (United States)

    Abdelgawad, Mohamed Essameldin; Delaisse, Jean-Marie; Hinge, Maja; Jensen, Pia Rosgaard; Alnaimi, Ragad Walid; Rolighed, Lars; Engelholm, Lars H; Marcussen, Niels; Andersen, Thomas Levin

    2016-06-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts. Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone through electron microscopy and analysis of molecular markers. Periosteoclastic reversal cells show direct contacts with the osteoclasts and with the demineralized resorption debris. These early reversal cells show (1) ¾-collagen fragments typically generated by extracellular collagenases of the MMP family, (2) MMP-13 (collagenase-3) and (3) the endocytic collagen receptor uPARAP/Endo180. The prevalence of these markers was lower in the later reversal cells, which are located near the osteoid surfaces and morphologically resemble mature bone-forming osteoblasts. In conclusion, this study demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic.

  7. [Protein catabolism and malnutrition in liver cirrhosis - impact of oral nutritional therapy].

    Science.gov (United States)

    Norman, K; Valentini, L; Lochs, H; Pirlich, M

    2010-07-01

    Malnutrition with loss of muscle is common in patients with liver cirrhosis and has negative impact on morbidity and mortality. The aetiology of malnutrition is multifactorial and includes inflammation, early onset of gluconeogenesis due to impaired glycogen storage and sometimes hypermetabolism. Reduced nutritional intake, however, plays the most important role in the pathogenesis of malnutrition. There is, however, ample evidence that nutritional intake and therapy are inadequate in liver cirrhosis although studies have clearly shown that dietary counselling and nutritional therapy with oral supplements improve intake in these patients. Protein requirement is considered to be increased in liver cirrhosis and high protein intake has been shown to be well tolerated and associated with an improvement of liver function and nutritional status. Protein intolerance on the other hand is uncommon and hepatic encephalopathy can thus rarely be attributed to high protein consumption. Recommendations for general protein restriction must therefore be considered obsolete and rather a risk factor for an impaired clinical outcome. Furthermore, the administration of late evening meals is highly beneficial in patients with liver disease since the rapid onset of the overnight catabolic state is counteracted. The serum concentration of branched-chain amino acids (BCAA) is decreased in patients with liver cirrhosis and long-term supplementation of BCAA has been shown to improve nutritional status and prolong event-free survival and quality of life.

  8. Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes.

    Directory of Open Access Journals (Sweden)

    Iain Anderson

    Full Text Available BACKGROUND: The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. METHODOLOGY/PRINCIPAL FINDINGS: We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. CONCLUSIONS: These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.

  9. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol.

    Science.gov (United States)

    Brown, Margaret E; Mukhopadhyay, Aindrila; Keasling, Jay D

    2016-12-16

    We report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. In the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.

  10. Catabolism of exogenously supplied thymidine to thymine and dihydrothymine by platelets in human peripheral blood

    Energy Technology Data Exchange (ETDEWEB)

    Pero, R.W.; Johnson, D.; Olsson, A.

    1984-11-01

    The interference of platelets with the estimation of unscheduled DNA synthesis in human peripheral mononuclear leukocytes following genotoxic exposure was studied. A 96% reduction in the unscheduled DNA synthesis value was achieved by incubating (/sup 3/H)thymidine with platelet-rich plasma for 5 hr at 37 degrees. Using radioactive thymine-containing compounds, together with quantitative analyses based on thin-layer and ion-exchange chromatographies, we have shown that thymidine was converted to thymine which, in turn, was converted to dihydrothymine in platelet-rich plasma. The enzymes responsible were separated from platelet lysates by gel filtration and were identified as thymidine phosphorylase and dihydrothymine dehydrogenase. The phosphorylase reversibly catalyzed the formation of thymine from thymidine and converted bromodeoxyuridine to bromouracil. The dehydrogenase reversibly catalyzed the interconversion of thymine and dihydrothymine in a reaction dependent on NADP(H), and it was inhibited by diazouracil and by thymine. Nearly all the thymidine-catabolizing activity found in whole blood samples supplied exogenously with thymidine was accounted for by the platelets. Since most genetic toxicological tests that use blood samples do not involve removing platelets from the blood cell cultures, then it is concluded that precautions should be taken in the future to determine the influence of platelets on these test systems. This is particularly true for methods dependent on thymidine pulses such as unscheduled DNA synthesis, or those dependent on bromodeoxyuridine, such as sister chromatid exchanges, since this nucleoside is also a substrate for thymidine phosphorylase.

  11. Seasonal dynamics of flight muscle fatty acid binding protein and catabolic enzymes in a migratory shorebird.

    Science.gov (United States)

    Guglielmo, Christopher G; Haunerland, Norbert H; Hochachka, Peter W; Williams, Tony D

    2002-05-01

    We developed an ELISA to measure heart-type fatty acid binding protein (H-FABP) in muscles of the western sandpiper (Calidris mauri), a long-distance migrant shorebird. H-FABP accounted for almost 11% of cytosolic protein in the heart. Pectoralis H-FABP levels were highest during migration (10%) and declined to 6% in tropically wintering female sandpipers. Premigratory birds increased body fat, but not pectoralis H-FABP, indicating that endurance flight training may be required to stimulate H-FABP expression. Juveniles making their first migration had lower pectoralis H-FABP than adults, further supporting a role for flight training. Aerobic capacity, measured by citrate synthase activity, and fatty acid oxidation capacity, measured by 3-hydroxyacyl-CoA-dehydrogenase and carnitine palmitoyl transferase activities, did not change during premigration but increased during migration by 6, 12, and 13%, respectively. The greater relative induction of H-FABP (+70%) with migration than of catabolic enzymes suggests that elevated H-FABP is related to the enhancement of uptake of fatty acids from the circulation. Citrate synthase, 3-hydroxyacyl-CoA-dehydrogenase, and carnitine palmitoyl transferase were positively correlated within individuals, suggesting coexpression, but enzyme activities were unrelated to H-FABP levels.

  12. Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Scheuner, Carmen; Goker, Markus; Mavromatis, Kostas; Hooper, Sean D.; Porat, Iris; Klenk, Hans-Peter; Ivanova, Natalia; Kyrpides, Nikos

    2011-05-03

    The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.

  13. Experimental evidence of a xylose-catabolic pathway on the pAO1 megaplasmid of Arthrobacter nicotinovorans

    Directory of Open Access Journals (Sweden)

    Marius Mihasan

    2012-09-01

    Full Text Available The pAO1 megaplasmid of A. nicotinovorans consists of 165 ORF's related mainly to nicotine degradation, uptake and utilization of carbohydrates, amino acids and sarcosine. A putative sugar catabolic pathway consisting of 11 ORF's organized as a single operon were previously described. The current work brings experimental data supporting the existence of a D-Xylose catabolic pathway on the pAO1 megaplasmid. When grown on D-xylose containing media, the cells harboring the pAO1 megaplasmid grow to higher cell densities and also express the OxRe protein coded by the megaplasmid. A putative pathway similar to Weimberg pentose pathway is postulated, in which D-xylose is transported in the cell by the ABC-type transport system and then transformed using the putative sugar-dehidrogenase OxRe to D-xylonate, which is further degrated to 2-ketoglutarate and integrated into the general metabolism of the cell

  14. Regulation of glutamate dehydrogenase activity in relation to carbon limitation and protein catabolism in carrot cell suspension cultures.

    Science.gov (United States)

    Robinson, S A; Stewart, G R; Phillips, R

    1992-03-01

    Glutamate dehydrogenase (GDH) specific activity and function have been studied in cell suspension cultures of carrot (Daucus carota L. cv Chantenay) in response to carbon and nitrogen supply in the culture medium. The specific activity of GDH was derepressed in sucrose-starved cells concomitant with protein catabolism, ammonium excretion, and the accumulation of metabolically active amino acids. The addition of sucrose led to a rapid decrease in GDH specific activity, an uptake of ammonium from the medium, and a decrease in amino acid levels. The extent of GDH derepression was correlated positively with cellular glutamate concentration. These findings strengthen the view that the function of GDH is the catabolism of glutamate, which under conditions of carbon stress provides carbon skeletons for tricarboxylic acid cycle activity.

  15. Neuraminidase-1 contributes significantly to the degradation of neuronal B-series gangliosides but not to the bypass of the catabolic block in Tay–Sachs mouse models

    Directory of Open Access Journals (Sweden)

    Z.K. Timur

    2015-09-01

    Full Text Available Tay–Sachs disease is a severe lysosomal storage disorder caused by mutations in the HEXA gene coding for α subunit of lysosomal β-Hexosaminidase A enzyme, which converts GM2 to GM3 ganglioside. HexA−/− mice, depleted of the β-Hexosaminidase A iso-enzyme, remain asymptomatic up to 1 year of age because of a metabolic bypass by neuraminidase(s. These enzymes remove a sialic acid residue converting GM2 to GA2, which is further degraded by the still intact β-Hexosaminidase B iso-enzyme into lactosylceramide. A previously identified ganglioside metabolizing neuraminidase, Neu4, is abundantly expressed in the mouse brain and has activity against gangliosides like GM2 in vitro. Neu4−/− mice showed increased GD1a and decreased GM1 ganglioside in the brain suggesting the importance of the Neu4 in ganglioside catabolism. Mice with targeted disruption of both HexA and Neu4 genes showed accumulating GM2 ganglioside and epileptic seizures with 40% penetrance, indicating that the neuraminidase Neu4 is a modulatory gene, but may not be the only neuraminidase contributing to the metabolic bypass in HexA−/− mice. Therefore, we elucidated the biological role of neuraminidase-1 in ganglioside degradation in mouse. Analysis of HexA−/−Neu1−/− and HexA−/−Neu4−/−Neu1−/− mice models showed significant contribution of neuraminidase-1 on B-series ganglioside degradation in the brain. Therefore, we speculate that other neuraminidase/neuraminidases such as Neu2 and/or Neu3 might be also involved in the ganglioside degradation pathway in HexA−/− mice.

  16. Neuraminidase-1 contributes significantly to the degradation of neuronal B-series gangliosides but not to the bypass of the catabolic block in Tay-Sachs mouse models.

    Science.gov (United States)

    Timur, Z K; Akyildiz Demir, S; Marsching, C; Sandhoff, R; Seyrantepe, V

    2015-09-01

    Tay–Sachs disease is a severe lysosomal storage disorder caused by mutations in the HEXA gene coding for α subunit of lysosomal β-Hexosaminidase A enzyme, which converts GM2 to GM3 ganglioside. HexA(−/−) mice, depleted of the β-Hexosaminidase A iso-enzyme, remain asymptomatic up to 1 year of age because of a metabolic bypass by neuraminidase(s). These enzymes remove a sialic acid residue converting GM2 to GA2, which is further degraded by the still intact β-Hexosaminidase B iso-enzyme into lactosylceramide. A previously identified ganglioside metabolizing neuraminidase, Neu4, is abundantly expressed in the mouse brain and has activity against gangliosides like GM2in vitro. Neu4(−/−) mice showed increased GD1a and decreased GM1 ganglioside in the brain suggesting the importance of the Neu4 in ganglioside catabolism. Mice with targeted disruption of both HexA and Neu4 genes showed accumulating GM2 ganglioside and epileptic seizures with 40% penetrance, indicating that the neuraminidase Neu4 is a modulatory gene, but may not be the only neuraminidase contributing to the metabolic bypass in HexA(−/−) mice. Therefore, we elucidated the biological role of neuraminidase-1 in ganglioside degradation in mouse. Analysis of HexA(−/−) Neu1(−/−) and HexA(−/−) Neu4(−/−) Neu1(−/−) mice models showed significant contribution of neuraminidase-1 on B-series ganglioside degradation in the brain. Therefore, we speculate that other neuraminidase/neuraminidases such as Neu2 and/or Neu3 might be also involved in the ganglioside degradation pathway in HexA(−/−) mice.

  17. Molecular characterization of arginine deiminase pathway in Laribacter hongkongensis and unique regulation of arginine catabolism and anabolism by multiple environmental stresses.

    Science.gov (United States)

    Xiong, Lifeng; Teng, Jade L L; Watt, Rory M; Liu, Cuihua; Lau, Susanna K P; Woo, Patrick C Y

    2015-11-01

    The betaproteobacterium Laribacter hongkongensis is associated with invasive bacteremic infections and gastroenteritis. Its genome contains two adjacent arc gene cassettes (arc1 and arc2) under independent transcriptional control, which are essential for acid resistance. Laribacter hongkongensis also encodes duplicate copies of the argA and argB genes from the arginine biosynthesis pathway. We show that arginine enhances the transcription of arcA2 but suppresses arcA1 expression. We demonstrate that ArgR acts as a transcriptional regulator of the two arc operons through binding to ARG operator sites (ARG boxes). Upon temperature shift from 20°C to 37°C, arcA1 transcription is upregulated while arcA2, argA2, argB2 and argG are downregulated. The transcription of arcA1 and arcA2 are augmented under anaerobic and acidic conditions. The transcription levels of argA1, argA2, argB1, argB2 and argG are significantly increased under anaerobic and acidic conditions but are repressed by the addition of arginine. Deletion of argR significantly decreases bacterial survival in macrophages, while expression of both arc operons, argR and all five of the anabolic arg genes increases 8 h post-infection. Our results show that arginine catabolism in L. hongkongensis is finely regulated by controlling the transcription of two arc operons, whereas arginine anabolism is controlled by two copies of argA and argB.

  18. Krill protein hydrolysate reduces plasma triacylglycerol level with concurrent increase in plasma bile acid level and hepatic fatty acid catabolism in high-fat fed mice

    Directory of Open Access Journals (Sweden)

    Marie S. Ramsvik

    2013-11-01

    Full Text Available Background: Krill powder, consisting of both lipids and proteins, has been reported to modulate hepatic lipid catabolism in animals. Fish protein hydrolysate diets have also been reported to affect lipid metabolism and to elevate bile acid (BA level in plasma. BA interacts with a number of nuclear receptors and thus affects a variety of signaling pathways, including very low density lipoprotein (VLDL secretion. The aim of the present study was to investigate whether a krill protein hydrolysate (KPH could affect lipid and BA metabolism in mice. Method: C57BL/6 mice were fed a high-fat (21%, w/w diet containing 20% crude protein (w/w as casein (control group or KPH for 6 weeks. Lipids and fatty acid composition were measured from plasma, enzyme activity and gene expression were analyzed from liver samples, and BA was measured from plasma. Results: The effect of dietary treatment with KPH resulted in reduced levels of plasma triacylglycerols (TAG and non-esterified fatty acids (NEFAs. The KPH treated mice had also a marked increased plasma BA concentration. The increased plasma BA level was associated with induction of genes related to membrane canalicular exporter proteins (Abcc2, Abcb4 and to BA exporters to blood (Abcc3 and Abcc4. Of note, we observed a 2-fold increased nuclear farnesoid X receptor (Fxr mRNA levels in the liver of mice fed KPH. We also observed increased activity of the nuclear peroxiosme proliferator-activated receptor alpha (PPARα target gene carnitine plamitoyltransferase 2 (CPT-2. Conclusion: The KPH diet showed to influence lipid and BA metabolism in high-fat fed mice. Moreover, increased mitochondrial fatty acid oxidation and elevation of BA concentration may regulate the plasma level of TAGs and NEFAs.

  19. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential.

    Science.gov (United States)

    Sharma, Sandeep; Villamor, Joji Grace; Verslues, Paul E

    2011-09-01

    To better define the still unclear role of proline (Pro) metabolism in drought resistance, we analyzed Arabidopsis (Arabidopsis thaliana) Δ(1)-pyrroline-5-carboxylate synthetase1 (p5cs1) mutants deficient in stress-induced Pro synthesis as well as proline dehydrogenase (pdh1) mutants blocked in Pro catabolism and found that both Pro synthesis and catabolism were required for optimal growth at low water potential (ψ(w)). The abscisic acid (ABA)-deficient mutant aba2-1 had similar reduction in root elongation as p5cs1 and p5cs1/aba2-1 double mutants. However, the reduced growth of aba2-1 but not p5cs1/aba2-1 could be complemented by exogenous ABA, indicating that Pro metabolism was required for ABA-mediated growth protection at low ψ(w). PDH1 maintained high expression in the root apex and shoot meristem at low ψ(w) rather than being repressed, as in the bulk of the shoot tissue. This, plus a reduced oxygen consumption and buildup of Pro in the root apex of pdh1-2, indicated that active Pro catabolism was needed to sustain growth at low ψ(w). Conversely, P5CS1 expression was most highly induced in shoot tissue. Both p5cs1-4 and pdh1-2 had a more reduced NADP/NADPH ratio than the wild type at low ψ(w). These results indicate a new model of Pro metabolism at low ψ(w) whereby Pro synthesis in the photosynthetic tissue regenerates NADP while Pro catabolism in meristematic and expanding cells is needed to sustain growth. Tissue-specific differences in Pro metabolism and function in maintaining a favorable NADP/NADPH ratio are relevant to understanding metabolic adaptations to drought and efforts to enhance drought resistance.

  20. Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions.

    Science.gov (United States)

    Souza, Rodrigo W A; Piedade, Warlen P; Soares, Luana C; Souza, Paula A T; Aguiar, Andreo F; Vechetti-Júnior, Ivan J; Campos, Dijon H S; Fernandes, Ana A H; Okoshi, Katashi; Carvalho, Robson F; Cicogna, Antonio C; Dal-Pai-Silva, Maeli

    2014-01-01

    Heart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting. We employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65), MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels. Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.

  1. Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions.

    Directory of Open Access Journals (Sweden)

    Rodrigo W A Souza

    Full Text Available BACKGROUND: Heart failure (HF is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting. METHODS AND RESULTS: We employed ascending aortic stenosis (AS inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET or to an untrained group (AS-UN. At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65, MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels. CONCLUSIONS: Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.

  2. Maternal saturated-fat-rich diet promotes leptin resistance in fetal liver lipid catabolism and programs lipid homeostasis impairments in the liver of rat offspring.

    Science.gov (United States)

    Mazzucco, María Belén; Fornes, Daiana; Capobianco, Evangelina; Higa, Romina; Jawerbaum, Alicia; White, Verónica

    2016-01-01

    We aimed to analyze if an overload of saturated fat in maternal diet induced lipid metabolic impairments in livers from rat fetuses that persist in the offspring and to identify potential mechanisms involving fetal leptin resistance. Female rats were fed either a diet enriched in 25% of saturated fat (SFD rats) or a regular diet (controls). Fetuses of 21days of gestation and offspring of 21 and 140days of age were obtained and plasma and liver were kept for further analysis. Livers from a group of control and SFD fetuses were cultured in the presence or absence of leptin. Leptin or vehicle was administered to control fetuses during the last days of gestation and, on day 21, fetal livers and plasma were obtained. Lipid levels were assessed by thin-layer chromatography and mRNA gene expression of CPT1, ACO and PPARα by RT-PCR. Liver lipid levels were increased and CPT1 and ACO were down-regulated in fetuses and offspring from SFD rats compared to controls. After the culture with leptin, control fetal livers showed increased ACO and CPT1 expression and decreased lipid levels, while fetal livers from SFD rats showed no changes. Fetal administration of leptin induced a decrease in ACO and no changes in CPT1 expression. In summary, our results suggest that a saturated fat overload in maternal diet induces fetal leptin resistance in liver lipid catabolism, which might be contributing to liver lipid alterations that are sustained in the offspring.

  3. Genomic insights into the carbohydrate catabolism of Cairneyella variabilis gen. nov. sp. nov., the first reports from a genome of an ericoid mycorrhizal fungus from the southern hemisphere.

    Science.gov (United States)

    Midgley, David J; Rosewarne, Carly P; Greenfield, Paul; Li, Dongmei; Vockler, Cassandra J; Hitchcock, Catherine J; Sawyer, Nicole A; Brett, Robyn; Edwards, Jacqueline; Pitt, John I; Tran-Dinh, Nai

    2016-05-01

    This paper describes a novel species of ericoid mycorrhizal fungus from Australia, Cairneyella variabilis, Midgley and Tran-Dinh, gen. nov. sp. nov. The genome of C. variabilis was sequenced and a draft genome assembled. The draft genome of C. variabilis is 52.4 Mbp in length, and to our knowledge, this is the first study to present a genome of an ericoid mycorrhizal fungus from the southern hemisphere. Using the SignalP and dbCAN bioinformatic pipelines, a study of the catabolic potential of C. variabilis was undertaken and showed genes for an array of degradative enzymes, most of which appear to be secreted from the hyphae, to access a suite of different carbon sources. Isolates of C. variabilis have been previously shown to utilise cellulose, carboxymethyl cellulose (CMC), cellobiose, xylan, pectin, starch and tannic acid for growth, and in the current study, putative enzymes for these processes were revealed. These enzymes likely play key roles in nutrient cycling and other edaphic processes in heathland environments. ITS phylogenetic analyses showed C. variabilis to be distinct from the fungi of the "Hymenoscyphus ericae aggregate".

  4. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soil microbes play a major role in ecological processes and are closely associated with the aboveground plant community. In order to understand the effects of vegetation type on the characteristics of soil microbial communities, the soil microbial communities were assessed by plate counts, phospholipid fatty acid (PLFA) and Biolog microplate techniques in five plant communities, i.e., soybean field (SF), artificial turf (AT), artificial shrub (AS), natural shrub (NS), and maize field (MF) in Jinan, Shandong Province, North China. The results showed that plant diversity had little discernible effect on microbial biomass but a positive impact on the evennessof utilized substrates in Biolog microplate. Legumes could significantly enhance the number of cultural microorganisms, microbial biomass, and community catabolic diversity. Except for SF dominated by legumes, the biomass of fungi and the catabolic diversity of microbial community were higher in less disturbed soil beneath NS than in frequently disturbed soils beneath the other vegetation types. These results confirmed that high number of plant species, legumes, and natural vegetation types tend to support soil microbial communities with higher function. The present study also found a significant correlation between the number of cultured bacteria and catabolic diversity of the bacterial community. Different research methods led to varied results in this study. The combination of several approaches is recommended for accurately describing the characteristics of microbial communities in many respects.

  5. Comparison of Catabolic Rates of sn-1, sn-2, and sn-3 Fatty Acids in Triacylglycerols Using (13)CO2 Breath Test in Mice.

    Science.gov (United States)

    Beppu, Fumiaki; Kawamatsu, Takashi; Yamatani, Yoshio; Nagai, Toshiharu; Yoshinaga, Kazuaki; Mizobe, Hoyo; Yoshida, Akihiko; Kubo, Atsushi; Kanda, Jota; Gotoh, Naohiro

    2017-01-01

    Fatty acids in triacylglycerols (TAGs) are catabolized after digestion. However, the catabolic rates of the fatty acids at the sn-1, sn-2, and sn-3 positions of TAGs have not been compared. To elucidate the differences, we studied the catabolic rates of (13)C-labeled palmitic acid, oleic acid, and capric acid at the sn-1, sn-2, or sn-3 position of TAGs using isotope-ratio mass spectrometry. Specifically, we measured the (13)C-to-(12)C ratio in CO2 (Δ(13)C (‰)) exhaled by mice. For all analyzed fatty acids, we observed significant differences between sn-2 and other binding positions. In contrast, no significant difference was detected between the sn-1 and sn-3 positions. These results indicated that the catabolic rates of fatty acids are strongly influenced by their positions in TAGs.

  6. Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses.

    Science.gov (United States)

    Broman, K; Lauwers, N; Stalon, V; Wiame, J M

    1978-09-01

    Bacillus licheniformis has two pathways of arginine catabolism. In well-aerated cultures, the arginase route is present, and levels of catabolic ornithine carbamoyltransferase were low. An arginase pathway-deficient mutant, BL196, failed to grow on arginine as a nitrogen source under these conditions. In anaerobiosis, the wild type contained very low levels of arginase and ornithine transaminase. BL196 grew normally on glucose plus arginine in anaerobiosis and, like the wild type, had appreciable levels of catabolic transferase. Nitrate, like oxygen, repressed ornithine carbamoyltransferase and stimulated arginase synthesis. In aerobic cultures, arginase was repressed by glutamine in the presence of glucose, but not when the carbon-energy source was poor. In anaerobic cultures, ammonia repressed catabolic ornithine carbamoyltransferase, but glutamate and glutamine stimulated its synthesis. A second mutant, derived from BL196, retained the low arginase and ornithine transaminase levels of BL196 but produced high levels of deiminase pathway enzymes in the presence of oxygen.

  7. PLASMID-ENCODED PHTHALATE CATABOLIC PATHWAY IN ARTHROBACTER KEYSERI 12B: BIOTRANSFORMATIONS OF 2-SUBSTITUTED BENZOATES AND THEIR USE IN CLONING AND CHARACTERIZATION OF PHTHALATE CATABOLISM GENES AND GENE PRODUCTS

    Science.gov (United States)

    Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates)...

  8. Decreased response to cAMP in the glucose and glycogen catabolism in perfused livers of Walker-256 tumor-bearing rats.

    Science.gov (United States)

    de Morais, Hely; Cassola, Priscila; Moreira, Carolina Campos Lima; Bôas, Suéllen Kathiane Fernandes Vilas; Borba-Murad, Glaucia Regina; Bazotte, Roberto Barbosa; de Souza, Helenir Medri

    2012-09-01

    The hepatic response to cyclic adenosine monophosphate (cAMP) and N6-monobutyryl-cAMP (N6-MB-cAMP) in the glucose and glycogen catabolism and hepatic glycogen levels were evaluated in Walker-256 tumor-bearing rats, on days 5 (WK5), 8 (WK8), and 11 (WK11) after the implantation of tumor. Rats without tumor fed ad libitum (fed control rats) or that received the same daily amount of food ingested by anorexics tumor-bearing rats (pair-fed control rats) or 24 h fasted (fasted control rats) were used as controls. Glucose and glycogen catabolism were measured in perfused liver. Hepatic glycogen levels were lower (p catabolism was lower (p catabolism, under condition of depletion of hepatic glycogen (24 h fast), was lower (p catabolism was lower (p catabolism in various stages of tumor development (days 5, 8 and 11), which was probably not due to the lower hepatic glycogen levels nor due to the increased activity of PDE3B.

  9. Increased ophthalmic acid production is supported by amino acid catabolism under fasting conditions in mice.

    Science.gov (United States)

    Kobayashi, Sho; Lee, Jaeyong; Takao, Toshifumi; Fujii, Junichi

    2017-09-23

    Glutathione (GSH) plays pivotal roles in antioxidation and detoxification. The transsulfuration pathway, in conjunction with methionine metabolism, produces equimolar amounts of cysteine (Cys) and 2-oxobutyric acid (2OB). The resulting 2OB is then converted into 2-aminobutyric acid (2AB) by a transaminase and is utilized as a substitute for Cys by the GSH-synthesizing machinery to produce ophthalmic acid (OPT). By establishing a method for simultaneously measuring Cys, GSH, and OPT by liquid chromatography-mass spectrometry, we found that fasting causes an elevation in OPT levels in the liver and blood plasma, even though the levels of Cys and GSH are decreased. Autophagy was activated, but the levels of GSH/OPT-synthesizing enzymes remained unchanged. After 6 h of fasting, the mice were given 1% 2AB and/or 5% glucose in the drinking water for an additional 24 h and the above metabolites analyzed. 2AB administration caused an increase in OPT levels, and, when glucose was co-administered with 2AB, the levels of OPT were elevated further but GSH levels were decreased somewhat. These results suggest that, while Cys is utilized for glyconeogenesis under fasting conditions, reaching levels that were insufficient for the synthesis of GSH, 2OB was preferentially converted to 2AB via amino acid catabolism and was utilized as a building block for OPT. Thus the consumption of Cys and the parallel elevation of 2AB under fasting conditions appeared to force γ-glutamylcysteine synthetase to form γ-glutamyl-2AB, despite the fact that the enzyme has a higher Km value for 2AB than Cys. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Organic matter mineralization in frozen boreal soils-environmental constraints on catabolic and anabolic microbial activity

    Science.gov (United States)

    Oquist, Mats G.; Sparrman, Tobias; Schleucher, Jürgen; Nilsson, Mats B.

    2014-05-01

    Heterotrophic microbial mineralization of soil organic matter (SOM) and associated production and emission of atmospheric trace gases proceed during the winter months in the frozen soils of high latitude ecosystems. However, in what ways this microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is uncertain. This presentation will address how temperature, water availability and substrate availability combine to regulate rates of microbial activity at below freezing temperatures and the implications of this activity for SOM mineralization in the surface layers of boreal forest soils experiencing seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. Using stable isotope labeling (13C) we also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity prior to substrate uptake. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless, the soil microbial population appear very adapted to seasonal freezing with respect to their metabolic performance.

  11. In situ exposure to low herbicide concentrations affects microbial population composition and catabolic gene frequency in an aerobic shallow aquifer

    DEFF Research Database (Denmark)

    de Lipthay, J.R.; Tuxen, Nina; Johnsen, Kaare

    2003-01-01

    The aim of this study was to evaluate how the in situ exposure of a Danish subsurface aquifer to phenoxy acid herbicides at low concentrations (... measured by either PCR or plating on selective agar media was higher in sediments subjected to high levels of phenoxy acid. Furthermore, high numbers of CFU compared to direct counting of 4',6-diamidino-2-phenylindole-stained cells in the microscope suggested an increased culturability of the indigenous...... microbial communities from acclimated sediments. The findings of this study demonstrate that continuous exposure to low herbicide concentrations can markedly change the bacterial community composition of a subsurface aquifer....

  12. Functional myo-Inositol Catabolic Genes of Bacillus subtilis Natto Are Involved in Depletion of Pinitol in Natto (Fermented Soybean)

    National Research Council Canada - National Science Library

    MORINAGA, Tetsuro; YAMAGUCHI, Masanori; MAKINO, Yuki; NANAMIYA, Hideaki; TAKAHASHI, Kiwamu; YOSHIKAWA, Hirofumi; KAWAMURA, Fujio; ASHIDA, Hitoshi; YOSHIDA, Ken-ichi

    2006-01-01

    .... Natto is a food made from soybeans fermented by strains of Bacillus subtilis natto. In the chromosome of natto strain OK2, there is a putative promoter region almost identical to the iol promoter for myo-inositol (MI...

  13. Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria

    Directory of Open Access Journals (Sweden)

    Carere Carlo R

    2012-12-01

    encoded hydrogenases appear to have little impact on H2 production in organisms that do not encode ethanol producing pathways, they do influence reduced end-product yields in those that do. Conclusions Here we show that composition of genes encoding pathways involved in pyruvate catabolism and end-product synthesis pathways can be used to approximate potential end-product distribution patterns. We have identified a number of genetic biomarkers for streamlining ethanol and H2 producing capabilities. By linking genome content, reaction thermodynamics, and end-product yields, we offer potential targets for optimization of either ethanol or H2 yields through metabolic engineering.

  14. Importance of the pentose phosphate pathway for D-glucose catabolism in the obligatory aerobic yeast Rhodotorula gracilis.

    Science.gov (United States)

    Höfer, M; Brand, K; Deckner, K; Becker, J U

    1971-08-01

    d-Glucose catabolism of a phosphofructokinase-deficient yeast Rhodotorula gracilis has been studied. By using d-glucose specifically (14)C-labelled at different positions and measuring the distribution of the label in various fractions of cell metabolism, the following results were found. 1. The pentose phosphate pathway, being the main pathway of d-glucose catabolism, simultaneously converts glucose molecules into pentose phosphates oxidatively by using two NADP-linked dehydrogenases and via the non-oxidative transketolase-transaldolase pathway. 2. From the correlation of the (14)CO(2) liberation and the d-glucose consumption and from the fact that the pentose phosphate moiety in nucleic acids is almost equally labelled from d-[1-(14)C]- and d-[6-(14)C]-glucose, it is concluded that of the glucose utilized about 80% undergoes transformation via the non-oxidative pentose phosphate pathway. Only about 20% of glucose is directly decarboxylated to pentose phosphate. 3. For further degradation it is postulated that the pentose phosphates are split into C(2) fragments and glyceraldehyde 3-phosphates. 4. All three loci of oxidative decarboxylation appear to be effective in Rh. gracilis, the oxidative part of the pentose phosphate pathway, the decarboxylation of pyruvate in the later part of the glycolytic pathway as well as the oxidation in the tricarboxylic acid cycle. 5. d-Glucose molecules taken up are only partially oxidized to CO(2): about four-fifths of each glucose molecule metabolized is incorporated into cell constituents. 6. The quantitative interrelations of the fluxes of d-glucose subunits along the catabolic pathways have been estimated and are discussed.

  15. Biochanin-A antagonizes the interleukin-1β-induced catabolic inflammation through the modulation of NFκB cellular signaling in primary rat chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Ji-Su [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Cho, In-A; Kang, Kyeong-Rok [Department of Dental Bioengineering, Chosun University, Gwangju, 61452 (Korea, Republic of); You, Jae-Seek [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Yu, Sang-Joun [Department of Periodontology, Chosun University, Gwangju, 61452 (Korea, Republic of); Lee, Gyeong-Je [Department of Prosthodontics, Chosun University, Gwangju, 61452 (Korea, Republic of); Seo, Yo-Seob [Department of Oral and Maxillofacial Radiology, Chosun University, Gwangju, 61452 (Korea, Republic of); Kim, Chun Sung; Kim, Do Kyung [Pre-Dentistry, School of Dentistry, Chosun University, Gwangju, 61452 (Korea, Republic of); Kim, Su-Gwan [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Seo, Young-Woo [Korea Basic Science Institute, Gwangju Center, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Im, Hee-Jeong [Department of Biochemistry, Rush University Medical Center, Chicago, IL, 60612 (United States); Kim, Jae-Sung, E-mail: js_kim@chosun.ac.kr [Pre-Dentistry, School of Dentistry, Chosun University, Gwangju, 61452 (Korea, Republic of)

    2016-09-02

    Biochanin-A, a phytoestrogen derived from herbal plants, protected from the IL-1β-induced loss of proteoglycans through the suppression of matrix degrading enzymes such as matrix metalloproteinase (MMP)-13, MMP-3, MMP-1, and ADAMTS-5 in primary rat chondrocytes and the knee articular cartilage. It also suppressed the expression of IL-1β-induced catabolic factors such as nitric oxide synthase 2, cyclooxygenase-2, prostaglandin E{sub 2}, and inflammatory cytokines. Furthermore, biochanin-A suppressed the IL-1β-induced phosphorylation of NFκB, and inhibited its nuclear translocation in primary rat chondrocytes. These results indicate that biochanin-A antagonizes the IL-1β-induced catabolic effects through its anti-inflammatory activity that involves the modulation of NFκB signaling. - Highlights: • Biochanin-A is a phytoestrogen derived from medicinal plants. • It suppressed the IL-1β-induced matrix degrading enzymes and catabolic factors. • It inhibited IL-1β-induced proteoglycan loss in chondrocytes and cartilage tissues. • Its anti-catabolic effects were mediated by modulation of NFκB signaling. • It may be used as a potential anti-catabolic biomaterial for osteoarthritis.

  16. Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system.

    Science.gov (United States)

    Vilchez-Vargas, Ramiro; Geffers, Robert; Suárez-Diez, María; Conte, Ianina; Waliczek, Agnes; Kaser, Vanessa Sabrina; Kralova, Monika; Junca, Howard; Pieper, Dietmar H

    2013-04-01

    Despite various efforts to develop tools to detect and compare the catabolic potential and activity for pollutant degradation in environmental samples, there is still a need for an open-source, curated and reliable array method. We developed a custom array system including a novel normalization strategy that can be applied to any microarray design, allowing the calculation of the reliability of signals and make cross-experimental comparisons. Array probes, which are fully available to the scientific community, were designed from knowledge-based curated databases for key aromatic catabolic gene families and key alkane degradation genes. This design assigns signals to the respective protein subfamilies, thus directly inferring function and substrate specificity. Experimental procedures were optimized using DNA of four genome sequenced biodegradation strains and reliability of signals assessed through a novel normalization procedure, where a plasmid containing four artificial targets in increased copy numbers and co-amplified with the environmental DNA served as an internal calibration curve. The array system was applied to assess the catabolic gene landscape and transcriptome of aromatic contaminated environmental samples, confirming the abundance of catabolic gene subfamilies previously detected by functional metagenomics but also revealing the presence of previously undetected catabolic groups and specifically their expression under pollutant stress.

  17. Unravelling the complete genome sequence of Advenella mimigardefordensis strain DPN7T and novel insights in the catabolism of the xenobiotic polythioester precursor 3,3'-dithiodipropionate.

    Science.gov (United States)

    Wübbeler, Jan Hendrik; Hiessl, Sebastian; Schuldes, Jörg; Thürmer, Andrea; Daniel, Rolf; Steinbüchel, Alexander

    2014-07-01

    Advenella mimigardefordensis strain DPN7(T) is a remarkable betaproteobacterium because of its extraordinary ability to use the synthetic disulfide 3,3'-dithiodipropionic acid (DTDP) as the sole carbon source and electron donor for aerobic growth. One application of DTDP is as a precursor substrate for biotechnically synthesized polythioesters (PTEs), which are interesting non-degradable biopolymers applicable for plastics materials. Metabolic engineering for optimization of PTE production requires an understanding of DTDP conversion. The genome of A. mimigardefordensis strain DPN7(T) was sequenced and annotated. The circular chromosome was found to be composed of 4,740,516 bp and 4112 predicted ORFs, whereas the circular plasmid consisted of 23,610 bp and 24 predicted ORFs. The genes participating in DTDP catabolism had been characterized in detail previously, but knowing the complete genome sequence and with support of Tn5: :mob-induced mutants, putatively involved transporter proteins and a transcriptional regulator were also identified. Most probably, DTDP is transported into the cell by a specific tripartite tricarboxylate transport system and is then cleaved by the disulfide reductase LpdA, sulfoxygenated by the 3-mercaptopropionate dioxygenase Mdo, activated by the CoA ligase SucCD and desulfinated by the acyl-CoA dehydrogenase-like desulfinase AcdA. Regulation of this pathway is presumably performed by a transcriptional regulator of the xenobiotic response element family. The excessive sulfate that is inevitably produced is secreted by the cells by a unique sulfate exporter of the CPA (cation : proton antiporter) superfamily.

  18. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena.

    Science.gov (United States)

    Burnat, Mireia; Flores, Enrique

    2014-10-01

    Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [(14) C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The ∆alr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [(14) C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the ∆alr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium.

  19. Influence of long term irrigation with pulp and paper mill effluent on the bacterial community structure and catabolic function in soil.

    Science.gov (United States)

    Tripathi, Binu Mani; Kumari, Priyanka; Weber, Kela P; Saxena, Anil Kumar; Arora, Dilip Kumar; Kaushik, Rajeev

    2014-03-01

    Microbial communities play a vital role in maintaining soil health. A multiphasic approach to assess the effect of pulp and paper mill effluent on both the structure and function of microbial soil communities is taken. Bacterial communities from agricultural soils irrigated with pulp and paper mill effluent were compared to communities form soils irrigated with well water. Samples were taken from fields in the state of Uttarakhand, India, where pulp and paper mill effluent has been used for irrigation for over 25 years. Comparisons of bacterial community structure were conducted using sequencing of the 16S rRNA gene from both isolates and clone libraries attained from the soil. Community-level physiological profiling was used to characterize the functional diversity and catabolic profile of the bacterial communities. The multiphasic approach using both physiological and molecular techniques proved to be a powerful tool in evaluating the soil bacterial community population and population differences therein. A significant and consistent difference in the population structure and function was found for the bacterial communities from soil irrigated with effluent in comparison to fields irrigated with well water. The diversity index parameters indicated that the microbial community in pulp and paper mill effluent irrigated fields were more diverse in both structure and function. This suggests that the pulp and paper mill effluent is not having a negative effect on the soil microbial community, but in fact may have a positive influence. In terms of soil health, this finding supports the continued use of pulp and paper mill effluent for irrigation. This is however only one aspect of soil health which was evaluated. Further studies on soil resistance and robustness could be undertaken to holistically evaluate soil health in this situation.

  20. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism.

    Science.gov (United States)

    Schweiger, Martina; Schreiber, Renate; Haemmerle, Guenter; Lass, Achim; Fledelius, Christian; Jacobsen, Poul; Tornqvist, Hans; Zechner, Rudolf; Zimmermann, Robert

    2006-12-29

    The mobilization of free fatty acids from adipose triacylglycerol (TG) stores requires the activities of triacylglycerol lipases. In this study, we demonstrate that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major enzymes contributing to TG breakdown in in vitro assays and in organ cultures of murine white adipose tissue (WAT). To differentiate between ATGL- and HSL-specific activities in cytosolic preparations of WAT and to determine the relative contribution of these TG hydrolases to the lipolytic catabolism of fat, mutant mouse models lacking ATGL or HSL and a mono-specific, small molecule inhibitor for HSL (76-0079) were used. We show that 76-0079 had no effect on TG catabolism in HSL-deficient WAT but, in contrast, essentially abolished free fatty acid mobilization in ATGL-deficient fat. CGI-58, a recently identified coactivator of ATGL, stimulates TG hydrolase activity in wild-type and HSL-deficient WAT but not in ATGL-deficient WAT, suggesting that ATGL is the sole target for CGI-58-mediated activation of adipose lipolysis. Together, ATGL and HSL are responsible for more than 95% of the TG hydrolase activity present in murine WAT. Additional known or unknown lipases appear to play only a quantitatively minor role in fat cell lipolysis.

  1. Membrane-Associated Glucose-Methanol-Choline Oxidoreductase Family Enzymes PhcC and PhcD Are Essential for Enantioselective Catabolism of Dehydrodiconiferyl Alcohol

    Science.gov (United States)

    Takahashi, Kenji; Hirose, Yusaku; Kamimura, Naofumi; Hishiyama, Shojiro; Hara, Hirofumi; Araki, Takuma; Kasai, Daisuke; Kajita, Shinya; Katayama, Yoshihiro; Fukuda, Masao

    2015-01-01

    Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived biaryls, including a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA). In SYK-6 cells, the alcohol group of the B-ring side chain of DCA is initially oxidized to the carboxyl group to generate 3-(2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzofuran-5-yl) acrylic acid (DCA-C). Next, the alcohol group of the A-ring side chain of DCA-C is oxidized to the carboxyl group, and then the resulting metabolite is catabolized through vanillin and 5-formylferulate. In this study, the genes involved in the conversion of DCA-C were identified and characterized. The DCA-C oxidation activities in SYK-6 were enhanced in the presence of flavin adenine dinucleotide and an artificial electron acceptor and were induced ca. 1.6-fold when the cells were grown with DCA. Based on these observations, SLG_09480 (phcC) and SLG_09500 (phcD), encoding glucose-methanol-choline oxidoreductase family proteins, were presumed to encode DCA-C oxidases. Analyses of phcC and phcD mutants indicated that PhcC and PhcD are essential for the conversion of (+)-DCA-C and (−)-DCA-C, respectively. When phcC and phcD were expressed in SYK-6 and Escherichia coli, the gene products were mainly observed in their membrane fractions. The membrane fractions of E. coli that expressed phcC and phcD catalyzed the specific conversion of DCA-C into the corresponding carboxyl derivatives. In the oxidation of DCA-C, PhcC and PhcD effectively utilized ubiquinone derivatives as electron acceptors. Furthermore, the transcription of a putative cytochrome c gene was significantly induced in SYK-6 grown with DCA. The DCA-C oxidation catalyzed by membrane-associated PhcC and PhcD appears to be coupled to the respiratory chain. PMID:26362985

  2. Organization and regulation of meta cleavage pathway genes for toluene and o-xylene derivative degradation in Pseudomonas stutzeri OX1.

    Science.gov (United States)

    Arenghi, F L; Berlanda, D; Galli, E; Sello, G; Barbieri, P

    2001-07-01

    Pseudomonas stutzeri OX1 meta pathway genes for toluene and o-xylene catabolism were analyzed, and loci encoding phenol hydroxylase, catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde dehydrogenase, and 2-hydroxymuconate semialdehyde hydrolase were mapped. Phenol hydroxylase converted a broad range of substrates, as it was also able to transform the nongrowth substrates 2,4-dimethylphenol and 2,5-dimethylphenol into 3,5-dimethylcatechol and 3,6-dimethylcatechol, respectively, which, however, were not cleaved by catechol 2,3-dioxygenase. The identified gene cluster displayed a gene order similar to that of the Pseudomonas sp. strain CF600 dmp operon for phenol catabolism and was found to be coregulated by the tou operon activator TouR. A hypothesis about the evolution of the toluene and o-xylene catabolic pathway in P. stutzeri OX1 is discussed.

  3. Increased HDL Size and Enhanced Apo A-I Catabolic Rates Are Associated With Doxorubicin-Induced Proteinuria in New Zealand White Rabbits.

    Science.gov (United States)

    López-Olmos, Victoria; Carreón-Torres, Elizabeth; Luna-Luna, María; Flores-Castillo, Cristobal; Martínez-Ramírez, Miriam; Bautista-Pérez, Rocío; Franco, Martha; Sandoval-Zárate, Julio; Roldán, Francisco-Javier; Aranda-Fraustro, Alberto; Soria-Castro, Elizabeth; Muñoz-Vega, Mónica; Fragoso, José-Manuel; Vargas-Alarcón, Gilberto; Pérez-Méndez, Oscar

    2016-03-01

    The catabolism and structure of high-density lipoproteins (HDL) may be the determining factor of their atheroprotective properties. To better understand the role of the kidney in HDL catabolism, here we characterized HDL subclasses and the catabolic rates of apo A-I in a rabbit model of proteinuria. Proteinuria was induced by intravenous administration of doxorubicin in New Zealand white rabbits (n = 10). HDL size and HDL subclass lipids were assessed by electrophoresis of the isolated lipoproteins. The catabolic rate of HDL-apo A-I was evaluated by exogenous radiolabelling with iodine-131. Doxorubicin induced significant proteinuria after 4 weeks (4.47 ± 0.55 vs. 0.30 ± 0.02 g/L of protein in urine, P HDL2b augmented significantly during proteinuria, whereas small HDL3b and HDL3c decreased compared to basal conditions. HDL2b, HDL2a, and HDL3a subclasses were enriched with triacylglycerols in proteinuric animals as determined by the triacylglycerol-to-phospholipid ratio; the cholesterol content in HDL subclasses remained unchanged. The fractional catabolic rate (FCR) of [(131)I]-apo A-I in the proteinuric rabbits was faster (FCR = 0.036 h(-1)) compared to control rabbits group (FCR = 0.026 h(-1), P HDL, whereas PON-1 activity increased in proteinuric rabbits. Proteinuria was associated with an increased number of large HDL2b particles and a decreased number of small HDL3b and 3c. Proteinuria was also connected to an alteration in HDL subclass lipids, apolipoprotein content of HDL, high paraoxonase-1 activity, and a rise in the fractional catabolic rate of the [(131)I]-apo A-I.

  4. Ability of a solid state fermentation technique to significantly minimize catabolic repression of. alpha. -amylase production by Bacillus licheniformis M27

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, M.V.; Lonsane, B.K. (Central Food Technological Research Inst., Mysore (India). Fermentation Technology and Bioengineering Discipline)

    1991-08-01

    The production of {alpha}-amylase by Bacillus licheniformis M27 in submerged fermentation was completely inhibited due to catabolic repression in medium containing 1% glucose. In contrast, the enzyme production in a solid state fermentation system was 19,550 units/ml extract even when the medium contained 15% glucose. The peak in enzyme titre was, however, shifted from 48 to 72 h. The ability of the solid state fermentation system to significantly overcome catabolic repression was not known earlier and is probably conferred by various physico-chemical factors and culture conditions specific to the system. (orig.).

  5. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus

    Directory of Open Access Journals (Sweden)

    Yan Jun

    2011-03-01

    Full Text Available Abstract Background Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. Results We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3, which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. Conclusions Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments.

  6. Aspergillus niger RhaR, a regulator involved in L-rhamnose release and catabolism

    NARCIS (Netherlands)

    Gruben, B.S.; Zhou, M.; Wiebenga, A.; Ballering, J.; Overkamp, K.M.; Punt, P.J.; Vries, R.P. de

    2014-01-01

    The genome of the filamentous fungus Aspergillus niger is rich in genes encoding pectinases, a broad class of enzymes that have been extensively studied due to their use in industrial applications. The sequencing of the A. niger genome provided more knowledge concerning the individual pectinolytic g

  7. Homeostatic imbalance of purine catabolism in first-episode neuroleptic-naïve patients with schizophrenia.

    Science.gov (United States)

    Yao, Jeffrey K; Dougherty, George G; Reddy, Ravinder D; Keshavan, Matcheri S; Montrose, Debra M; Matson, Wayne R; McEvoy, Joseph; Kaddurah-Daouk, Rima

    2010-03-03

    Purine catabolism may be an unappreciated, but important component of the homeostatic response of mitochondria to oxidant stress. Accumulating evidence suggests a pivotal role of oxidative stress in schizophrenia pathology. Using high-pressure liquid chromatography coupled with a coulometric multi-electrode array system, we compared 6 purine metabolites simultaneously in plasma between first-episode neuroleptic-naïve patients with schizophrenia (FENNS, n = 25) and healthy controls (HC, n = 30), as well as between FENNS at baseline (BL) and 4 weeks (4w) after antipsychotic treatment. Significantly higher levels of xanthosine (Xant) and lower levels of guanine (G) were seen in both patient groups compared to HC subjects. Moreover, the ratios of G/guanosine (Gr), uric acid (UA)/Gr, and UA/Xant were significantly lower, whereas the ratio of Xant/G was significantly higher in FENNS-BL than in HC. Such changes remained in FENNS-4w with exception that the ratio of UA/Gr was normalized. All 3 groups had significant correlations between G and UA, and Xan and hypoxanthine (Hx). By contrast, correlations of UA with each of Xan and Hx, and the correlation of Xan with Gr were all quite significant for the HC but not for the FENNS. Finally, correlations of Gr with each of UA and G were significant for both HC and FENNS-BL but not for the FENNS-4w. During purine catabolism, both conversions of Gr to G and of Xant to Xan are reversible. Decreased ratios of product to precursor suggested a shift favorable to Xant production from Xan, resulting in decreased UA levels in the FENNS. Specifically, the reduced UA/Gr ratio was nearly normalized after 4 weeks of antipsychotic treatment. In addition, there are tightly correlated precursor and product relationships within purine pathways; although some of these correlations persist across disease or medication status, others appear to be lost among FENNS. Taken together, these results suggest that the potential for steady formation of

  8. Oxidative stress and the enzyme system of aldehyde catabolism in the muscle mitochondria of immobilized pubertal rats

    Directory of Open Access Journals (Sweden)

    Amjad Hamdallah

    2014-12-01

    Full Text Available The aim of the work is to find out peculiarities in manifestation of oxidative stress and to determine activity of enzymes, responsible for utilization of endogenous aldehydes in the mitochondrial fraction of the skeletal (femoral muscle in pubertal rats during immobilization stress. Our study has shown that differently directed changes in the activity of mitochondrial aldehyde dehydrogenases and aldehyde reductases occur in the pubertal immobilized rats, that limits the catabolism effectiveness as regards carbonyl products of free radical oxidation in the muscle cells. Corroboration of the effect under consideration is an increased level of protein free radical oxidation products in the mitochondria of the skeletal muscle. On the basis of the obtained data the authors draw a conclusion about an increased sensitivity of the skeletal muscle to the oxidative stress impact due to modulation in the state of enzyme system, responsible for utilization of endogenous aldehydes in the mitochondria.

  9. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid...... chromatography and conventional mass spectrometry (MS) methods, including MS-mass spectroscopy, UV spectroscopy, and high-performance liquid chromatography-MS. The identified products indicate a novel metabolic pathway in which IAA is metabolized via dioxindole-3-acetic acid, dioxindole, isatin, and 2......-aminophenyl glyoxylic acid (isatinic acid) to anthranilic acid, which is further metabolized. Degradation of 4-Cl-IAA apparently stops at the 4-Cl-dioxindole step in contrast to 5-Cl-IAA which is metabolized to 5-Cl-anthranilic acid. Udgivelsesdato: 1995-Oct...

  10. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Hye-Rim Lee

    2016-01-01

    Full Text Available Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP, containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW rabbits were incubated for 3, 10, 14 and 21 days with PRP(−, 10% PRP (PRP(+, IL(+ or IL(+PRP(+. The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR. Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+ and in IL(+PRP(+. In PRP(+, the aggrecan expression levels were lower than in the PRP(− until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+ and IL(+PRP(+, at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage.

  11. Effects of polyhalogenated aromatic hydrocarbons on vitamin A catabolism and the regulation of vitamin A homeostasis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bank, P.A.

    1989-01-01

    Polyhalogenated aromatic hydrocarbons (PHAH) are known to adversely affect vitamin A status resulting in the hepatic depletion and enhanced excretion of vitamin A. Increased renal and serum vitamin A content occurs subsequent to these PHAH-related alterations. Vitamin A, a highly regulated system, appears to undergo rapid compensatory changes to maintain homeostasis in response to nutritional, metabolic, or toxicologic conditions. The present study was undertaken in order to elucidate the mechanism(s) responsible for these PHAH-related effects on vitamin A homeostasis. To this end, the toxin prototype of the PHAH class 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the 3,4,5,3{prime},4{prime},5{prime}-hexabromo- or hexachloro-biphenyls were used in this study. Results presented in this study indirectly showed that PHAH caused enhanced hepatic and extrahepatic catabolism of intravenously administered {sup 3}H-retinol-retinol binding protein-transthyretin as evidenced by increased inactive polar retinoids in liver, kidney, bile, and excreta. These polar retinoids were isolated from tissues and bile and are thought to represent oxidized and/or glucuronidated, elimination metabolites of vitamin A. PHAH increased the microsomal activity of cytochrome P-450 MFO and UDP-glucuronosyl transferase toward retinoic acid (RA), enzyme systems that are also known to be coordinately induced by PHAH. Increased serum and kidney vitamin A is likely a homeostatic response to PHAH-related increased target tissue catabolism. For serum, this was shown directly by the finding that PHAH caused decreased liver esterification of retinol recycled from the extrahepatic tissues and indirectly by the administration of the active target tissue metabolite, RA. After RA, both control and PHAH-treated rats lowered their serum vitamin A.

  12. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model.

    Science.gov (United States)

    Lee, Hye-Rim; Shon, Oog-Jin; Park, Se-Il; Kim, Han-Jun; Kim, Sukyoung; Ahn, Myun-Whan; Do, Sun Hee

    2016-01-16

    Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP), containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW) rabbits were incubated for 3, 10, 14 and 21 days with PRP(-), 10% PRP (PRP(+)), IL(+) or IL(+)PRP(+). The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR). Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP) catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+) and in IL(+)PRP(+). In PRP(+), the aggrecan expression levels were lower than in the PRP(-) until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+) and IL(+)PRP(+), at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control) or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage.

  13. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland); Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland)

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  14. Mean transit times and the sites of synthesis and catabolism of tissue plasminogen activator and plasminogen activator inhibitor type 1 in young subjects

    DEFF Research Database (Denmark)

    Jørgensen, M; Petersen, K R; Vinberg, N

    2001-01-01

    that active t-PA was also eliminated outside the splanchnic region with a catabolism rate of about 8.4 pmol/min. No net complex formation could be demonstrated in the peripheral circulation. We therefore suggest that active t-PA is eliminated by a re-uptake in the endothelium in the peripheral vessels...

  15. Application of a [13CO2] breath test to study short-term amino acid catabolism during the postprandial phase of a meal

    NARCIS (Netherlands)

    Bujko, J.; Schreurs, V.V.A.M.; Nolles, J.A.; Verreijen, A.M.; Koopmanschap, R.E.; Verstegen, M.W.A.

    2007-01-01

    A [13CO2] breath test was applied as a non-invasive method to study the catabolism of ingested amino acids shortly after a meal. This test requires the ingestion of a [1-13C]-labelled amino acid and the analysis of expired air for [13C] enrichment and CO2. The recovery of label as [13CO2] reflects

  16. EYK1 encoding erythrulose kinase as a catabolic selectable marker for genome editing in the non-conventional yeast Yarrowia lipolytica.

    Science.gov (United States)

    Vandermies, Marie; Denies, Olivia; Nicaud, Jean-Marc; Fickers, Patrick

    2017-08-01

    We report here on EYK1, encoding erythrulose kinase, as an efficient catabolic selectable marker for genome editing in Y. lipolytica. Compared to auxotrophic markers, EYK1 increases the growth rate of transformants and allows improved efficiency of transformation. The utility of the marker EYK1 in a replicative vector was also demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influence of Hepatitis C Virus Sustained Virological Response on Immunosuppressive Tryptophan Catabolism in ART-Treated HIV/HCV Coinfected Patients

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; Mehraj, Vikram; Costiniuk, Cecilia T.; Vyboh, Kishanda; Kema, Ido; Rollet, Kathleen; Ramirez, Robert Paulino; Klein, Marina B.; Routy, Jean-Pierre

    2016-01-01

    Background: We previously reported an association between tryptophan (Trp) catabolism and immune dysfunction in HIV monoinfection. Coinfection with HIV is associated with more rapid evolution of hepatitis C virus (HCV)-associated liver disease despite antiretroviral therapy (ART), possibly due to im

  18. Genetic variation in the rate-limiting enzyme in cholesterol catabolism (cholesterol 7 alpha-hydroxylase) influences the progression of atherosclerosis and risk of new clinical events

    NARCIS (Netherlands)

    Hofman, M.K.; Princen, H.M.G.; Zwinderman, A.H.; Jukema, J.W.

    2005-01-01

    CHD (coronary heart disease) is a complex disorder which is, in part, related to serum cholesterol levels. The rate-limiting enzyme in the catabolism of cholesterol into bile acids is CYP7A1 (cholesterol 7alpha-hydroxylase). The effect of the CYP7A1 A-278C promoter polymorphism on the progression of

  19. The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis.

    Science.gov (United States)

    Ho, Ngoc Anh Thu; Dawes, Stephanie S; Crowe, Adam M; Casabon, Israël; Gao, Chen; Kendall, Sharon L; Baker, Edward N; Eltis, Lindsay D; Lott, J Shaun

    2016-04-01

    Cholesterol can be a major carbon source forMycobacterium tuberculosisduring infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, includingkstR, are either induced during infection or are essential for survival ofM. tuberculosis in vivo In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release.

  20. [Catabolism of methylphosphonic acid and its physiological regulation in Escherichia coli].

    Science.gov (United States)

    Matys, S V; Laurinavichius, K S; Nesmeianova, M A

    1996-01-01

    It was found that methyl phosphonic acid (Pn) was degraded by different Escherichia coli strains, which utilized it as the sole phosphorus source with resulting methane formation. This ability was influenced by mutations in the regulatory genes of the pho regulon. Thus, Pn was not degraded by an E. coli mutant defective in the regulatory phoB gene, responsible for the induction of pho-regulon proteins during phosphorus starvation. The intensity of Pn degradation depended on the age and concentration of the inoculum. Preincubation of bacteria in the presence of Pn accelerated subsequent degradation of both methyl phosphonic acid and its esters. Cultures developing from a small amount of inoculum degraded Pn more efficiently than heavily inoculated cultures that underwent only one cell division. However, cultures heavily inoculated with adapted cells degraded Pn as efficiently as cultures developing from a small amount of inoculum. Aeration was an important factor regulating Pn degradation: Pn was degraded more efficiently under anaerobic conditions regardless of the amount of inoculum.

  1. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme

    DEFF Research Database (Denmark)

    Madsen, Søren M; Beck, Hans Christian; Ravn, Peter

    2002-01-01

    Staphylococcus carnosus and Staphylococcus xylosus are widely used as aroma producers in the manufacture of dried fermented sausages. Catabolism of branched-chain amino acids (BCAAs) by these strains contributes to aroma formation by production of methyl-branched aldehydes and carboxy acids....... The first step in the catabolism is most likely a transamination reaction catalyzed by BCAA aminotransferases (IlvE proteins). In this study, we cloned the ilvE gene from S. carnosus by using degenerate oligonucleotides and PCR. We found that the deduced amino acid sequence was 80% identical......-branched carboxy acids, 2-methylpropanoic acid, 2-methylbutanoic acid, and 3-methylbutanoic acid, which derived from the BCAA catabolism, clearly emphasizing the role of IlvE in aroma formation. In contrast to previous reports, we found that IlvE was the only enzyme that catalyzed the deamination of BCAAs in S...

  2. p-Cymene Promotes Its Catabolism through the p-Cymene and the p-Cumate Pathways, Activates a Stress Response and Reduces the Biofilm Formation in Burkholderia xenovorans LB400

    Science.gov (United States)

    Domenech, Mirian; Seeger, Michael

    2017-01-01

    p-Cymene is an aromatic terpene that is present in diverse plant species. The aims of this study were to study the p-cymene metabolism in the model aromatic-degrading bacterium Burkholderia xenovorans LB400, and its response to p-cymene. The catabolic p-cymene (cym) and p-cumate (cmt) genes are clustered on the LB400 major chromosome. B. xenovorans LB400 was able to grow on p-cymene as well as on p-cumate as a sole carbon and energy sources. LB400 growth attained higher cell concentration at stationary phase on p-cumate than on p-cymene. The transcription of the key cymAb and cmtAb genes, and p-cumate dioxygenase activity were observed in LB400 cells grown on p-cymene and on p-cumate, but not in glucose-grown cells. Diverse changes on LB400 proteome were observed in p-cymene-grown cells compared to glucose-grown cells. An increase of the molecular chaperones DnaK, GroEL and ClpB, the organic hydroperoxide resistance protein Ohr, the alkyl hydroperoxide reductase AhpC and the copper oxidase CopA during growth on p-cymene strongly suggests that the exposure to p-cymene constitutes a stress condition for strain LB400. Diverse proteins of the energy metabolism such as enolase, pyruvate kinase, aconitase AcnA, succinyl-CoA synthetase beta subunit and ATP synthase beta subunit were induced by p-cymene. Electron microscopy showed that p-cymene-grown cells exhibited fuzzy outer and inner membranes and an increased periplasm. p-Cymene induced diverse membrane and transport proteins including the p-cymene transporter CymD. Biofilm formation was reduced during growth in p-cymene in strain LB400 compared to glucose-grown cells that may be associated with a decrease of diguanylate cyclase protein levels. Overall, these results indicate active p-cymene and p-cumate catabolic pathways in B. xenovorans LB400. In addition, this study showed that p-cymene activated a stress response in strain LB400 and reduced its biofilm formation. PMID:28072820

  3. Dataset reporting BCKDK interference in a BCAA-catabolism restricted environment

    Directory of Open Access Journals (Sweden)

    I. Bravo-Alonso

    2016-06-01

    Full Text Available This data article contains complementary figures to the research article “Mitochondrial response to the BCKDK-deficiency: some clues to understand the positive dietary response in this form of autism” [1]. Herein we present data relative to the effect of knocking down BCKDK gene on the real time oxygen consumption rate of fibroblasts obtained from a Maple Syrup Urine Disease (MSUD patient. Interference of BCKDK expression on such cells showing a reduced branched-chain α-ketoacid dehydrogenase (BCKDHc activity; let us generate a scenario to study the direct effect of BCKDK absence in an environment of high branched-chain amino acids (BCAAs concentrations. Data relative to the effectiveness of the knockdown together with the potentiality of the BCKDK-knockdown to increase the deficient branched-chain α-ketoacid dehydrogenase activity detected in MSUD patients are also shown.

  4. Dataset reporting BCKDK interference in a BCAA-catabolism restricted environment.

    Science.gov (United States)

    Bravo-Alonso, I; Oyarzabal, A; Sánchez-Aragó, M; Rejas, M T; Merinero, B; García-Cazorla, A; Artuch, R; Ugarte, M; Rodríguez-Pombo, P

    2016-06-01

    This data article contains complementary figures to the research article "Mitochondrial response to the BCKDK-deficiency: some clues to understand the positive dietary response in this form of autism" [1]. Herein we present data relative to the effect of knocking down BCKDK gene on the real time oxygen consumption rate of fibroblasts obtained from a Maple Syrup Urine Disease (MSUD) patient. Interference of BCKDK expression on such cells showing a reduced branched-chain α-ketoacid dehydrogenase (BCKDHc) activity; let us generate a scenario to study the direct effect of BCKDK absence in an environment of high branched-chain amino acids (BCAAs) concentrations. Data relative to the effectiveness of the knockdown together with the potentiality of the BCKDK-knockdown to increase the deficient branched-chain α-ketoacid dehydrogenase activity detected in MSUD patients are also shown.

  5. Engineering an arginine catabolizing bioconjugate: Biochemical and pharmacological characterization of PEGylated derivatives of arginine deiminase from Mycoplasma arthritidis.

    Science.gov (United States)

    Wang, Maoliang; Basu, Amartya; Palm, Thomas; Hua, Jack; Youngster, Stephen; Hwang, Lisa; Liu, Hsien-Ching; Li, Xiguang; Peng, Ping; Zhang, Yue; Zhao, Hong; Zhang, Zhihua; Longley, Clifford; Mehlig, Mary; Borowski, Virna; Sai, Prakash; Viswanathan, Manickam; Jang, Eun; Petti, Gerald; Liu, Sam; Yang, Karen; Filpula, David

    2006-01-01

    Arginine is an important metabolite in the normal function of several biological systems, and arginine deprivation has been investigated in animal models and human clinical trials for its effects on inhibition of tumor growth, angiogenesis, or nitric oxide synthesis. In order to design an optimal arginine-catabolizing enzyme bioconjugate, a novel recombinant arginine deiminase (ADI) from Mycoplasma arthritidis was prepared, and multi-PEGylated derivatives were examined for enzymatic and biochemical properties in vitro, as well as pharmacokinetic and pharmacodynamic behavior in rats and mice. ADI bioconjugates constructed with 12 kDa or 20 kDa monomethoxy-poly(ethylene glycol) polymers with linear succinimidyl carbonate linkers were investigated via intravenous, intramuscular, or subcutaneous administration in rodents. The selected PEG-ADI compounds have 22 +/- 2 PEG strands per protein dimer, providing an additional molecular mass of about 0.2-0.5 x 10(6) Da and prolonging the plasma mean residence time of the enzyme over 30-fold in mice. Prolonged plasma arginine deprivation was demonstrated with each injection route for these bioconjugates. Pharmacokinetic analysis employed parallel measurement of enzyme activity in bioassays and enzyme assays and demonstrated a correlation with the pharmacodynamic analysis of plasma arginine concentrations. Either ADI bioconjugate depressed plasma arginine to undetectable levels for 10 days when administered intravenously at 5 IU per mouse, while the subcutaneous and intramuscular routes exhibited only slightly reduced potency. Both bioconjugates exhibited potent growth inhibition of several cultured tumor lines that are deficient in the anabolic enzyme, argininosuccinate synthetase. Investigations of structure-activity optimization for PEGylated ADI compounds revealed a benefit to constraining the PEG size and number of attachments to both conserve catabolic activity and streamline manufacturing of the experimental therapeutics

  6. Effect of dietary fat saturation and cholesterol on LDL composition and metabolism. In vivo studies of receptor and nonreceptor-mediated catabolism of LDL in cebus monkeys.

    Science.gov (United States)

    Nicolosi, R J; Stucchi, A F; Kowala, M C; Hennessy, L K; Hegsted, D M; Schaefer, E J

    1990-01-01

    The mechanism(s) by which polyunsaturated fats reduce low density lipoprotein (LDL) cholesterol and apolipoprotein (apo) B were investigated in 20 cebus monkeys (Cebus albifrons) fed diets containing corn oil or coconut oil as fat (31% of calories) with or without dietary cholesterol (0.1% by weight) for 3 to 10 years. Coconut-oil feeding compared to corn-oil feeding resulted in significant increases in levels of plasma total cholesterol (176%), very low density lipoprotein (VLDL)-LDL cholesterol (236%), high density lipoprotein (HDL) cholesterol (148%), apo B (78%), and apo A-I (112%). The addition of dietary cholesterol to corn oil compared to corn oil alone resulted in smaller, but significant, increases in levels of total cholesterol (44%), HDL cholesterol (40%), and apo A-I (33%). Although the increases in VLDL-LDL cholesterol were of similar magnitude (52%), they barely failed to reach statistical significance (p less than 0.08), while the changes in apo B levels were negligible. The addition of dietary cholesterol to coconut oil, compared to coconut oil alone, resulted in no significant changes in lipoprotein cholesterol or apoproteins, although levels of VLDL-LDL cholesterol and apo B values increased 22% and 16%, respectively. Although hepatic free cholesterol content was not altered by diet, coconut-oil compared to corn-oil feeding resulted in significant increases in hepatic cholesteryl esters (236%) and triglycerides (325%), the latter increasing still further when dietary cholesterol was added to coconut oil (563%). To further assess the effects of these dietary changes on LDL metabolism, radioiodinated normal and glucosylated LDL kinetics were performed. The production rate of LDL apo B was not altered by diet. With corn-oil feeding, 63% of LDL catabolism was via the receptor-mediated pathway. Coconut-oil compared to corn-oil feeding resulted in a 50% decrease in receptor-mediated LDL apo B fractional catabolic rate (FCR) and a 27% reduction in

  7. Expression profiles of genes related to carbohydrate metabolism provide new insights into carbohydrate accumulation in seeds and seedlings of Ricinus communis in response to temperature.

    Science.gov (United States)

    Ribeiro, Paulo R; Ligterink, Wilco; Hilhorst, Henk W M

    2015-10-01

    Ricinus communis possesses a specific metabolic signature to adjust growth and developmental processes in response to temperature: carbohydrates are accumulated at low temperatures, whereas amino acids are accumulated at elevated temperatures. Our objective was to assess tissue-specific changes in transcript levels of genes related with carbohydrate biosynthesis and catabolism in response to temperature. For that, we measured transcript levels of genes encoding enzymes involved in starch biosynthesis, starch catabolism, and gluconeogenesis in R. communis leaves, roots, and seeds grown at 20 °C and 35 °C. Transcript levels of genes involved in starch catabolism were higher in leaves grown at 20 °C than at 35 °C, but up-regulation of genes involved in starch biosynthesis seems to compensate for this and, therefore, are the likely explanation for higher levels of starch in leaves grown at 20 °C. Higher levels of soluble carbohydrates in leaves grown at 20 °C may be caused by a coordinated increase in transcript level of genes associated with starch catabolism and gluconeogenesis pathways. In roots, transcript levels of genes associated with starch catabolism and gluconeogenesis seem to be enhanced at elevated temperatures. Higher levels of starch in seeds germinated at low temperatures is associated with higher transcript levels of genes involved in starch biosynthesis. Similarly, higher transcript levels of RcPEPCK and RcFBPase are most likely causal for fructose and glucose accumulation in seeds germinated at 20 °C. This study provides important insights in the understanding of the plasticity of R. communis in response to temperature that may apply to other species as well. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  9. H2S biosynthesis and catabolism: new insights from molecular studies.

    Science.gov (United States)

    Rose, Peter; Moore, Philip K; Zhu, Yi Zhun

    2016-11-14

    Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissues.

  10. Molecular regulation of sucrose catabolism and sugar transport for development, defence and phloem function.

    Science.gov (United States)

    Li, Jun; Wu, Limin; Foster, Ryan; Ruan, Yong-Ling

    2017-03-17

    Sucrose (Suc) is the major end product of photosynthesis in mesophyll cells of most vascular plants. It is loaded into phloem of mature leaves for long-distance translocation to non-photosynthetic organs where it is unloaded for diverse uses. Clearly, Suc transport and metabolism is central to plant growth and development and the functionality of the entire vascular system. Despite of vast information in the literature about the physiological roles of individual sugar metabolic enzymes and transporters, there is a lack of systematic evaluation about their molecular regulation from transcriptional to post-translational levels. Knowledge on this topic is essential for understanding and improving plant development, optimising resource distribution and increasing crop productivity. We therefore focused our analyses on molecular control of key players in Suc metabolism and transport, including (i) the identification of promoter elements responsive to sugars and hormones or targeted by transcription factors and microRNAs degrading transcripts of target genes and (ii) modulation of enzyme and transporter activities through protein-protein interactions and other post-translational modifications. We highlighted major remaining questions and discussed opportunities to exploit current understanding to gain new insights into molecular control of carbon partitioning for improving plant performance.

  11. ISOLATION AND CHARACTERIZATION OF BIFENTHRIN CATABOLIZING BACTERIAL STRAIN BACILLUS CIBI FROM SOIL FOR PYRETHROIDS BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    Preeti Pandey

    2014-01-01

    Full Text Available Pyrethroids are commonly used in most parts of the world and are reported to have potential health risks. Bifenthrin, a third generation pyrethroid used as insecticide has caused potential effect on aquatic life and human health. Bioremediation is a practical approach to reduce pesticide in the environment and reports of microbial degradation of bifenthrin are meagre. This study was aimed at isolating and characterizing bacterial isolates for the efficient removal of bifenthrin residues in the environment. A bacterial strain PGS-4 isolated from sewage of pesticide industry was tested for growth at higher concentration of bifenthrin (800 mg L-1 and the optimum pH and temperature were determined. The strain utilized bifenthrin as sole carbon source for growth over a wide range of pH (4.0-9.0 and temperatures (16-37°C. On the basis of growth kinetics studies, the optimal conditions were determined to be pH 7.0-8.0 and 30°C. 16S rRNA gene sequence analysis showed that strain PGS-4 forms a distinct phylogenetic lineage within the evolutionary radiation encompassed by the genus Bacillus and showed 99% similarity to that of Bacillus cibi. This study depicts the ability of B. cibi to utilize bifenthrin at higher concentration under in vitro thereby can be used in eliminating bifenthrin from contaminated soils as a practical approach to reduce pyrethroid toxicity in the environment.

  12. Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane.

    Science.gov (United States)

    Mena-Benitez, Gilda L; Gandia-Herrero, Fernando; Graham, Stuart; Larson, Tony R; McQueen-Mason, Simon J; French, Christopher E; Rylott, Elizabeth L; Bruce, Neil C

    2008-07-01

    Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize this compound, two bacterial enzymes, haloalkane dehalogenase (DhlA) and haloacid dehalogenase (DhlB) from the bacterium Xanthobacter autotrophicus GJ10, have the ability to dehalogenate a range of halogenated aliphatics, including 1,2-DCA. We have engineered the dhlA and dhlB genes into tobacco (Nicotiana tabacum 'Xanthi') plants and used 1,2-DCA as a model substrate to demonstrate the ability of the transgenic tobacco to remediate a range of halogenated, aliphatic hydrocarbons. DhlA converts 1,2-DCA to 2-chloroethanol, which is then metabolized to the phytotoxic 2-chloroacetaldehyde, then chloroacetic acid, by endogenous plant alcohol dehydrogenase and aldehyde dehydrogenase activities, respectively. Chloroacetic acid is dehalogenated by DhlB to produce the glyoxylate cycle intermediate glycolate. Plants expressing only DhlA produced phytotoxic levels of chlorinated intermediates and died, while plants expressing DhlA together with DhlB thrived at levels of 1,2-DCA that were toxic to DhlA-expressing plants. This represents a significant advance in the development of a low-cost phytoremediation approach toward the clean-up of halogenated organic pollutants from contaminated soil and groundwater.

  13. Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone.

    Directory of Open Access Journals (Sweden)

    Khalid S Mohammad

    Full Text Available During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-beta has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-beta signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-beta signaling on bone remain unclear. To examine the role of TGF-beta in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-beta type I receptor (TbetaRI kinase on bone mass, architecture and material properties. Inhibition of TbetaRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TbetaRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TbetaRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TbetaRI inhibitors may be effective in treating conditions of skeletal fragility.

  14. Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum.

    Science.gov (United States)

    Yao, Kang; Wang, Feng-Qing; Zhang, Huai-Cheng; Wei, Dong-Zhi

    2013-01-01

    Mycobacteria have been modified to transform sterols to produce valuable steroids. Here, we demonstrated that the oxidation of sterols to sterones is a rate-limiting step in the catabolic pathway of sterols in Mycobacterium neoaurum. Two cholesterol oxidases ChoM1 and ChoM2 involved in the step were identified in M. neoaurum and the ChoM2 shared up to 45% identity with other cholesterol oxidases. We demonstrated that the combination of ChoM1 and ChoM2 plays a significant role in this step. Accordingly, we developed a strategy to overcome this rate-limiting step by augmenting the activity of cholesterol oxidases in M. neoaurum strains to enhance their transformation productivity of sterols to valuable steroids. Our results indicated that the augmentation of ChoM2 achieved 5.57g/l androst-1,4-diene-3,17-dione in M. neoaurum NwIB-01MS and 6.85g/l androst-4-ene-3,17-dione in M. neoaurum NwIB-R10, greatly higher than the original yield, 3.87g/l androst-1,4-diene-3,17-dione and 4.53g/l androst-4-ene-3,17-dione, respectively. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Contribution of Amino Acid Catabolism to the Tissue Specific Persistence of Campylobacter jejuni in a Murine Colonization Model

    Science.gov (United States)

    Hofreuter, Dirk; Mohr, Juliane; Wensel, Olga; Rademacher, Sebastian; Schreiber, Kerstin; Schomburg, Dietmar; Gao, Beile; Galán, Jorge E.

    2012-01-01

    Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both in vitro and in vivo. In the present study we investigated the contribution of serine and proline catabolism to the in vitro and in vivo growth of C. jejuni 81-176. We confirmed that the serine transporter SdaC and the serine ammonia-lyase SdaA are required for serine utilization, and demonstrated that a predicted proline permease PutP and a bifunctional proline/delta-1-pyrroline-5-carboxylate dehydrogenase PutA are required for proline utilization by C. jejuni 81-176. C. jejuni 81-176 mutants unable to utilize serine were shown to be severely defective for colonization of the intestine and systemic tissues in a mouse model of infection. In contrast, C. jejuni 81-176 mutants unable to utilize proline were only defective for intestinal colonization. These results further emphasize the importance of amino acid utilization in C. jejuni colonization of various tissues. PMID:23226358

  16. Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass

    Directory of Open Access Journals (Sweden)

    Mark J. Solloway

    2015-07-01

    Full Text Available Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into β-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.

  17. Contribution of amino acid catabolism to the tissue specific persistence of Campylobacter jejuni in a murine colonization model.

    Directory of Open Access Journals (Sweden)

    Dirk Hofreuter

    Full Text Available Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both in vitro and in vivo. In the present study we investigated the contribution of serine and proline catabolism to the invitro and invivo growth of C. jejuni 81-176. We confirmed that the serine transporter SdaC and the serine ammonia-lyase SdaA are required for serine utilization, and demonstrated that a predicted proline permease PutP and a bifunctional proline/delta-1-pyrroline-5-carboxylate dehydrogenase PutA are required for proline utilization by C. jejuni 81-176. C. jejuni 81-176 mutants unable to utilize serine were shown to be severely defective for colonization of the intestine and systemic tissues in a mouse model of infection. In contrast, C. jejuni 81-176 mutants unable to utilize proline were only defective for intestinal colonization. These results further emphasize the importance of amino acid utilization in C. jejuni colonization of various tissues.

  18. Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates.

    Science.gov (United States)

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X

    2013-11-01

    Burkholderia sp. C3, an efficient polycyclic aromatic hydrocarbon degrader, can utilize nine of the ten N-methylcarbamate insecticides including carbaryl as a sole source of carbon. Rapid hydrolysis of carbaryl in C3 is followed by slow catabolism of the resulting 1-naphthol. This study focused on metabolomes and proteomes in C3 cells utilizing carbaryl in comparison to those using glucose or nutrient broth. Sixty of the 867 detected proteins were involved in primary metabolism, adaptive sensing and regulation, transport, stress response, and detoxification. Among the 41 proteins expressed in response to carbaryl were formate dehydrogenase, aldehyde-alcohol dehydrogenase and ethanolamine utilization protein involved in one carbon metabolism. Acetate kinase and phasin were 2 of the 19 proteins that were not detected in carbaryl-supported C3 cells, but detected in glucose-supported C3 cells. Down-production of phasin and polyhydroxyalkanoates in carbaryl-supported C3 cells suggests insufficient carbon sources and lower levels of primary metabolites to maintain an ordinary level of metabolism. Differential metabolomes (~196 identified polar metabolites) showed up-production of metabolites in pentose phosphate pathways and metabolisms of cysteine, cystine and some other amino acids, disaccharides and nicotinate, in contract to down-production of most of the other amino acids and hexoses. The proteomic and metabolomic analyses showed that carbaryl-supported C3 cells experienced strong toxic effects, oxidative stresses, DNA/RNA damages and carbon nutrient deficiency.

  19. New insights into {gamma}-aminobutyric acid catabolism: Evidence for {gamma}-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bach, Benoît; Meudec, Emmanuelle; Lepoutre, Jean-Paul; Rossignol, Tristan; Blondin, Bruno; Dequin, Sylvie; Camarasa, Carole

    2009-07-01

    The gamma-aminobutyrate (GABA) shunt, an alternative route for the conversion of alpha-ketoglutarate to succinate, involves the glutamate decarboxylase Gad1p, the GABA transaminase Uga1p and the succinate semialdehyde dehydrogenase Uga2p. This pathway has been extensively described in plants and animals, but its function in yeast remains unclear. We show that the flux through Gad1p is insignificant during fermentation in rich sugar-containing medium, excluding a role for this pathway in redox homeostasis under anaerobic conditions or sugar stress. However, we found that up to 4 g of exogenous GABA/liter was efficiently consumed by yeast. We studied the fate of this consumed GABA. Most was converted into succinate, with a reaction yield of 0.7 mol/mol. We also showed that a large proportion of GABA was stored within cells, indicating a possible role for this molecule in stress tolerance mechanisms or nitrogen storage. Furthermore, based on enzymatic and metabolic evidence, we identified an alternative route for GABA catabolism, involving the reduction of succinate-semialdehyde into gamma-hydroxybutyric acid and the polymerization of gamma-hydroxybutyric acid to form poly-(3-hydroxybutyric acid-co-4-hydroxybutyric acid). This study provides the first demonstration of a native route for the formation of this polymer in yeast. Our findings shed new light on the GABA pathway and open up new opportunities for industrial applications.

  20. A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes.

    Science.gov (United States)

    Rabus, Ralf; Venceslau, Sofia S; Wöhlbrand, Lars; Voordouw, Gerrit; Wall, Judy D; Pereira, Inês A C

    2015-01-01

    Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.

  1. Survival and catabolic activity of natural and genetically engineered bacteria in a laboratory-scale activated-sludge unit

    Energy Technology Data Exchange (ETDEWEB)

    McClure, N.C.; Fry, J.C.; Weightman, A.J. (Univ. of Wales College of Cardiff (Wales))

    1991-02-01

    The survival of selected naturally occurring and genetically engineered bacteria in a fully functional laboratory-scale activated-sludge unit (ASU) was investigated. The effect of the presence of 3-chlorobenzoate (3CB) on the survival of Pseudomonas putida UWC1, with or without a chimeric plasmid, pD10, which encodes 3CB catabolism, was determined. P. putida UWC1(pD10) did not enhance 3CB breakdown in the ASU, even following inoculation at a high concentration (3 x 10(8) CFU/ml). The emergence of a natural, 3CB-degrading population appeared to have a detrimental effect on the survival of strain UWC1 in the ASU. The fate of two 3CB-utilizing bacteria, derived from activated-sludge microflora, was studied in experiments in which these strains were inoculated into the ASU. Both strains, AS2, an unmanipulated natural isolate which flocculated readily in liquid media, and P. putida ASR2.8, a transconjugant containing the recombinant plasmid pD10, survived for long periods in the ASU and enhanced 3CB breakdown at 15 degrees C. The results reported in this paper illustrate the importance of choosing strains which are well adapted to environmental conditions if the use of microbial inoculants for the breakdown of target pollutants is to be successful.

  2. PSD-93 Attenuates Amyloid-β-Mediated Cognitive Dysfunction by Promoting the Catabolism of Amyloid-β.

    Science.gov (United States)

    Yu, Linjie; Liu, Yi; Yang, Hui; Zhu, Xiaolei; Cao, Xiang; Gao, Jun; Zhao, Hui; Xu, Yun

    2017-01-01

    Amyloid-β (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Postsynaptic density protein 93 (PSD-93) is a key scaffolding protein enriched at postsynaptic sites. The aim of the present study was to examine whether PSD-93 overexpression could alleviate Aβ-induced cognitive dysfunction in APPswe/PS1dE9 (APP/PS1) mice by reducing Aβ levels in the brain. The level of PSD-93 was significantly decreased in the hippocampus of 6-month-old APP/PS1 mice compared with that in wild-type mice. Following lentivirus-mediated PSD-93 overexpression, cognitive function, synaptic function, and amyloid burden were investigated. The open field test, Morris water maze test, and fear condition test revealed that PSD-93 overexpression ameliorated spatial memory deficits in APP/PS1 mice. The facilitation of long-term potentiation induction was observed in APP/PS1 mice after PSD-93 overexpression. The expression of somatostatin receptor 4 (SSTR4) and neprilysin was increased, while the amyloid plaque load and Aβ levels were decreased in the brains of APP/PS1 mice. Moreover, PSD-93 interacted with SSTR4 and affected the level of SSTR4 on cell membrane, which was associated with the ubiquitination. Together, these findings suggest that PSD-93 attenuates spatial memory deficits and decreases amyloid levels in APP/PS1 mice, which might be associated with Aβ catabolism, and overexpression of PSD-93 might be a potential therapy for AD.

  3. Catabolism of volatile sulfur compounds precursors by Brevibacterium linens and Geotrichum candidum, two microorganisms of the cheese ecosystem.

    Science.gov (United States)

    Arfi, Kenza; Amárita, Felix; Spinnler, Henry-Eric; Bonnarme, Pascal

    2003-11-01

    Two Brevibacterium linens strains and the cheese-ripening yeast Geotrichum candidum were compared with regard to their ability to produce volatile sulfur compounds (VSCs) from three different precursors namely L-methionine, 4-methylthio-2-oxobutyric acid (KMBA) and 4-methylthio-2-hydroxybutyric acid (HMBA). All microorganisms were able to convert these precursors to VSCs. However, although all were able to produce VSCs from L-methionine, only G. candidum accumulated KMBA when cultivated on this amino acid, contrary to B. linens suggesting that the transamination pathway is not active in this microorganism. Conversely, a L-methionine gamma-lyase activity--which catalyses the one step L-methionine to methanethiol (MTL) degradation route--was only found in B. linens strains. Several other enzymatic activities involved in the catabolism of the precursors tested were investigated. KMBA transiently accumulated in G. candidum cultures, and was then reduced to HMBA by a KMBA dehydrogenase (KDH) activity. This activity was not detected in B. linens. Despite no HMBA dehydrogenase (HDH) was found in G. candidum, a strong HMBA oxidase (HOX) activity was measured in this microorganism. This latter activity was weakly active in B. linens. KMBA and HMBA demethiolating activities were found in all the microorganisms. Our results illustrate the metabolic diversity between cheese-ripening microorganisms of the cheese ecosystem.

  4. Rhodococcus erythropolis and Its γ-Lactone Catabolic Pathway: An Unusual Biocontrol System That Disrupts Pathogen Quorum Sensing Communication

    Directory of Open Access Journals (Sweden)

    Xavier Latour

    2013-12-01

    Full Text Available Rhodococcus erythropolis is an environmental Gram-positive Actinobacterium with a versatile metabolism involved in various bioconversions and degradations. Rhodococci are best known for their great potential in numerous decontamination and industrial processes. However, they can also prevent plant disease by disrupting quorum sensing-based communication of Gram-negative soft-rot bacteria, by degrading N-acyl-homoserine lactone signaling molecules. Such biocontrol activity results partly from the action of the γ-lactone catabolic pathway. This pathway is responsible for cleaving the lactone bond of a wide range of compounds comprising a γ-butyrolactone ring coupled to an alkyl or acyl chain. The aliphatic products of this hydrolysis are then activated and enter fatty acid metabolism. This short pathway is controlled by the presence of the γ-lactone, presumably sensed by a TetR-like transcriptional regulator, rather than the presence of the pathogen or the plant-host in the environment of the Rhodococci. Both the density and biocontrol activity of R. erythropolis may be boosted in crop systems. Treatment with a cheap γ-lactone stimulator, for example, the food flavoring γ-caprolactone, induces the activity in the biocontrol agent, R. erythropolis, of the pathway degrading signaling molecules; such treatments thus promote plant protection.

  5. Heat Stress Modulates Both Anabolic and Catabolic Signaling Pathways Preventing Dexamethasone-Induced Muscle Atrophy In Vitro.

    Science.gov (United States)

    Tsuchida, Wakako; Iwata, Masahiro; Akimoto, Takayuki; Matsuo, Shingo; Asai, Yuji; Suzuki, Shigeyuki

    2017-03-01

    It is generally recognized that synthetic glucocorticoids induce skeletal muscle weakness, and endogenous glucocorticoid levels increase in patients with muscle atrophy. It is reported that heat stress attenuates glucocorticoid-induced muscle atrophy; however, the mechanisms involved are unknown. Therefore, we examined the mechanisms underlying the effects of heat stress against glucocorticoid-induced muscle atrophy using C2C12 myotubes in vitro, focusing on expression of key molecules and signaling pathways involved in regulating protein synthesis and degradation. The synthetic glucocorticoid dexamethasone decreased myotube diameter and protein content, and heat stress prevented the morphological and biochemical glucocorticoid effects. Heat stress also attenuated increases in mRNAs of regulated in development and DNA damage responses 1 (REDD1) and Kruppel-like factor 15 (KLF15). Heat stress recovered the dexamethasone-induced inhibition of PI3K/Akt signaling. These data suggest that changes in anabolic and catabolic signals are involved in heat stress-induced protection against glucocorticoid-induced muscle atrophy. These results have a potentially broad clinical impact because elevated glucocorticoid levels are implicated in a wide range of diseases associated with muscle wasting. J. Cell. Physiol. 232: 650-664, 2017. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.

  6. Ethylene-enhanced catabolism of ( sup 14 C)indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues. [Citrus sinensis

    Energy Technology Data Exchange (ETDEWEB)

    Sagee, O.; Riov, J.; Goren, J. (Hebrew Univ. of Jerusalem, Rehovot (Israel))

    1990-01-01

    Exogenous ({sup 14}C)indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of ({sup 14}C)IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels.

  7. Mean transit times and the sites of synthesis and catabolism of tissue plasminogen activator and plasminogen activator inhibitor type 1 in young subjects

    DEFF Research Database (Denmark)

    Jørgensen, M; Petersen, K.R.; Vinberg, N

    2001-01-01

    was sampled simultaneously from a large hepatic vein, an artery and the inferior caval vein, while measuring the splanchnic plasma flow rate and the plasma volume. We found that the catabolism of active t-PA and t-PA antigen took place in the splanchnic circulation with net rates of 7.2 and 6.3 pmol...... that active t-PA was also eliminated outside the splanchnic region with a catabolism rate of about 8.4 pmol/min. No net complex formation could be demonstrated in the peripheral circulation. We therefore suggest that active t-PA is eliminated by a re-uptake in the endothelium in the peripheral vessels...

  8. Amino acid efflux by asexual blood-stage Plasmodium falciparum and its utility in interrogating the kinetics of hemoglobin endocytosis and catabolism in vivo.

    Science.gov (United States)

    Dalal, Seema; Klemba, Michael

    2015-06-01

    The endocytosis and catabolism of large quantities of host cell hemoglobin is a hallmark of the intraerythrocytic asexual stage of the human malaria parasite Plasmodium falciparum. It is known that the parasite's production of amino acids from hemoglobin far exceeds its metabolic needs. Here, we show that P. falciparum effluxes large quantities of certain non-polar (Ala, Leu, Val, Pro, Phe, Gly) and polar (Ser, Thr, His) amino acids to the external medium. That these amino acids originate from hemoglobin catabolism is indicated by the strong correlation between individual amino acid efflux rates and their abundances in hemoglobin, and the ability of the food vacuole falcipain inhibitor E-64d to greatly suppress efflux rates. We then developed a rapid, sensitive and precise method for quantifying flux through the hemoglobin endocytic-catabolic pathway that is based on leucine efflux. Optimization of the method involved the generation of a novel amino acid-restricted RPMI formulation as well as the validation of D-norvaline as an internal standard. The utility of this method was demonstrated by characterizing the effects of the phosphatidylinositol-3-kinase inhibitors wortmannin and dihydroartemisinin on the kinetics of Leu efflux. Both compounds rapidly inhibited Leu efflux, which is consistent with a role for phosphtidylinositol-3-phosphate production in the delivery of hemoglobin to the food vacuole; however, wortmannin inhibition was transient, which was likely due to the instability of this compound in culture medium. The simplicity, convenience and non-invasive nature of the Leu efflux assay described here makes it ideal for characterizing the in vivo kinetics of hemoglobin endocytosis and catabolism, for inhibitor target validation studies, and for medium-throughput screens to identify novel inhibitors of cytostomal endocytosis.

  9. Essential Role of Tissue-Specific Proline Synthesis and Catabolism in Growth and Redox Balance at Low Water Potential1[W][OA

    Science.gov (United States)

    Sharma, Sandeep; Villamor, Joji Grace; Verslues, Paul E.

    2011-01-01

    To better define the still unclear role of proline (Pro) metabolism in drought resistance, we analyzed Arabidopsis (Arabidopsis thaliana) Δ1-pyrroline-5-carboxylate synthetase1 (p5cs1) mutants deficient in stress-induced Pro synthesis as well as proline dehydrogenase (pdh1) mutants blocked in Pro catabolism and found that both Pro synthesis and catabolism were required for optimal growth at low water potential (ψw). The abscisic acid (ABA)-deficient mutant aba2-1 had similar reduction in root elongation as p5cs1 and p5cs1/aba2-1 double mutants. However, the reduced growth of aba2-1 but not p5cs1/aba2-1 could be complemented by exogenous ABA, indicating that Pro metabolism was required for ABA-mediated growth protection at low ψw. PDH1 maintained high expression in the root apex and shoot meristem at low ψw rather than being repressed, as in the bulk of the shoot tissue. This, plus a reduced oxygen consumption and buildup of Pro in t