WorldWideScience

Sample records for catabolic plasmid pal1

  1. Quorum-Dependent Mannopine-Inducible Conjugative Transfer of an Agrobacterium Opine-Catabolic Plasmid

    Science.gov (United States)

    Wetzel, Margaret E.; Kim, Kun-Soo; Miller, Marilyn; Olsen, Gary J.

    2014-01-01

    The Ti plasmid in Agrobacterium tumefaciens strain 15955 carries two alleles of traR that regulate conjugative transfer. The first is a functional allele, called traR, that is transcriptionally induced by the opine octopine. The second, trlR, is a nonfunctional, dominant-negative mutant located in an operon that is inducible by the opine mannopine (MOP). Based on these findings, we predicted that there exist wild-type agrobacterial strains harboring plasmids in which MOP induces a functional traR and, hence, conjugation. We analyzed 11 MOP-utilizing field isolates and found five where MOP induced transfer of the MOP-catabolic element and increased production of the acyl-homoserine lactone (acyl-HSL) quormone. The transmissible elements in these five strains represent a set of highly related plasmids. Sequence analysis of one such plasmid, pAoF64/95, revealed that the 176-kb element is not a Ti plasmid but carries genes for catabolism of MOP, mannopinic acid (MOA), agropinic acid (AGA), and the agrocinopines. The plasmid additionally carries all of the genes required for conjugative transfer, including the regulatory genes traR, traI, and traM. The traR gene, however, is not located in the MOP catabolism region. The gene, instead, is monocistronic and located within the tra-trb-rep gene cluster. A traR mutant failed to transfer the plasmid and produced little to no quormone even when grown with MOP, indicating that TraRpAoF64/95 is the activator of the tra regulon. A traM mutant was constitutive for transfer and acyl-HSL production, indicating that the anti-activator function of TraM is conserved. PMID:24363349

  2. Convergent evolution of Amadori opine catabolic systems in plasmids of Agrobacterium tumefaciens.

    Science.gov (United States)

    Baek, Chang-Ho; Farrand, Stephen K; Lee, Ko-Eun; Park, Dae-Kyun; Lee, Jeong Kug; Kim, Kun-Soo

    2003-01-01

    Deoxyfructosyl glutamine (DFG, referred to elsewhere as dfg) is a naturally occurring Amadori compound found in rotting fruits and vegetables. DFG also is an opine and is found in tumors induced by chrysopine-type strains of Agrobacterium tumefaciens. Such strains catabolize this opine via a pathway coded for by their plasmids. NT1, a derivative of the nopaline-type A. tumefaciens strain C58 lacking pTiC58, can utilize DFG as the sole carbon source. Genes for utilization of DFG were mapped to the 543-kb accessory plasmid pAtC58. Two cosmid clones of pAtC58 allowed UIA5, a plasmid-free derivative of C58, harboring pSa-C that expresses MocC (mannopine [MOP] oxidoreductase that oxidizes MOP to DFG), to grow by using MOP as the sole carbon source. Genetic analysis of subclones indicated that the genes for utilization of DFG are located in a 6.2-kb BglII (Bg2) region adjacent to repABC-type genes probably responsible for the replication of pAtC58. This region contains five open reading frames organized into at least two transcriptional soc (santhopine catabolism) groups: socR and socABCD. Nucleotide sequence analysis and analyses of transposon-insertion mutations in the region showed that SocR negatively regulates the expression of socR itself and socABCD. SocA and SocB are responsible for transport of DFG and MOP. SocA is a homolog of known periplasmic amino acid binding proteins. The N-terminal half of SocB is a homolog of the transmembrane transporter proteins for several amino acids, and the C-terminal half is a homolog of the transporter-associated ATP-binding proteins. SocC and SocD could be responsible for the enzymatic degradation of DFG, being homologs of sugar oxidoreductases and an amadoriase from Corynebacterium sp., respectively. The protein products of socABCD are not related at the amino acid sequence level to those of the moc and mot genes of Ti plasmids responsible for utilization of DFG and MOP, indicating that these two sets of genes and their

  3. Complete nucleotide sequence of the self-transmissible TOL plasmid pD2RT provides new insight into arrangement of toluene catabolic plasmids

    DEFF Research Database (Denmark)

    Jutkina, Jekaterina; Hansen, Lars Hestbjerg; Li, Lili

    2013-01-01

    In the present study we report the complete nucleotide sequence of the toluene catabolic plasmid pD2RT of Pseudomonas migulae strain D2RT isolated from Baltic Sea water. The pD2RT is 129,894 base pairs in size with an average G+ C content of 53.75%. A total of 135 open reading frames (ORFs) were ...

  4. [Isolation and characterization of petroleum catabolic broad-host-range plasmids from Shen-Fu wastewater irrigation zone].

    Science.gov (United States)

    Wang, Ya-Fei; Wang, Ya-Fei; Li, Hui; Li, Xiao-Bin

    2013-11-01

    Based on triparental mating, we isolated a total of eight broad host range (BHR) petroleum hydrocarbon catabolic plasmids from the soils, sediments, and wastewater samples in the Shen-Fu irrigation zone. The antibiotic resistance of the plasmids was tested, and then, the plasmids were transferred to Escherichia coli EC100. The plasmids carrying no antibiotic resistance were tagged by miniTn5 transposon consisting of antibiotic resistant genes. The PCR-based incompatibility test revealed that the pS3-2C and pS4-6G belonged to Inc P group, the pS3-2G, pW22-3G, and pA15-7G belonged to Inc N group, the pS7-2G was identified as Inc W plasmid, and the pA23-1G and pA10-1C were placed into Inc Q group. By adopting the reported PCR amplification methods of petroleum hydrocarbon-degrading catabolic genes, the petroleum-degrading capability of these BHR plasmids were preliminarily analyzed. The plasmids pS3-2G, pS7-2G, pA23-1G, pW22-3G, and pA10-1C carried aromatic ring- hydroxylating dioxygenase gene phdA and toluene monooxygenase gene touA; the plasmid pA15-7G carried touA and toluene dioxygenase gene tod; the plasmid pS3-2C carried ben, phdA, and tod; whereas the pS4-6G only carried ben. The host range test showed that all the isolated plasmids except pS3-2C could be transferred and maintained stably in the representative strains Agrobacterium tumefaciens C58, Cupriavidus necator JMP228, and E. coli EC100 of the alpha-, beta-, and gamma-Proteobacteria, respectively.

  5. A New Catabolic Plasmid in Xanthobacter and Starkeya spp. from a 1,2-Dichloroethane-Contaminated Site

    Science.gov (United States)

    Munro, Jacob E.; Liew, Elissa F.; Ly, Mai-Anh

    2016-01-01

    ABSTRACT 1,2-Dichloroethane (DCA) is a problematic xenobiotic groundwater pollutant. Bacteria are capable of biodegrading DCA, but the evolution of such bacteria is not well understood. In particular, the mechanisms by which bacteria acquire the key dehalogenase genes dhlA and dhlB have not been well defined. In this study, the genomic context of dhlA and dhlB was determined in three aerobic DCA-degrading bacteria (Starkeya novella strain EL1, Xanthobacter autotrophicus strain EL4, and Xanthobacter flavus strain EL8) isolated from a groundwater treatment plant (GTP). A haloalkane dehalogenase gene (dhlA) identical to the canonical dhlA gene from Xanthobacter sp. strain GJ10 was present in all three isolates, and, in each case, the dhlA gene was carried on a variant of a 37-kb circular plasmid, which was named pDCA. Sequence analysis of the repA replication initiator gene indicated that pDCA was a member of the pTAR plasmid family, related to catabolic plasmids from the Alphaproteobacteria, which enable growth on aromatics, dimethylformamide, and tartrate. Genes for plasmid replication, mobilization, and stabilization were identified, along with two insertion sequences (ISXa1 and ISPme1) which were likely to have mobilized dhlA and dhlB and played a role in the evolution of aerobic DCA-degrading bacteria. Two haloacid dehalogenase genes (dhlB1 and dhlB2) were detected in the GTP isolates; dhlB1 was most likely chromosomal and was similar to the canonical dhlB gene from strain GJ10, while dhlB2 was carried on pDCA and was not closely related to dhlB1. Heterologous expression of the DhlB2 protein confirmed that this plasmid-borne dehalogenase was capable of chloroacetate dechlorination. IMPORTANCE Earlier studies on the DCA-degrading Xanthobacter sp. strain GJ10 indicated that the key dehalogenases dhlA and dhlB were carried on a 225-kb linear plasmid and on the chromosome, respectively. The present study has found a dramatically different gene organization in more

  6. [Comparative study of aromatic ring meta-cleavage enzymes in Pseudomonas strains with plasmid and chromosomal genetic control of the catabolism of biphenyl and m-toluate].

    Science.gov (United States)

    Selifonov, S A; Starozoĭtov, I I

    1990-12-01

    It was shown that two different enzymes of aromatic ring oxidative meta-cleavage (2,3-dihydroxybiphenyl-1,2-dioxygenase), DBO and catechol-2,3-dioxygenase, C230) function in Pseudomonas strains with a plasmid and chromosomal genetic control of biphenyl and toluate catabolism. A comparative analysis of DBO's and C230's expressed by the pBS241 biphenyl degradative plasmid in P. putida BS893, pBS311 in P. putida U83, chromosomal genes in P. putida BF and C230 from P. putida PaW160 (pWWO) was carried out. It was found that the DBO's of all strains under study are highly specialized enzymes in respect of 2,3-dihydroxybiphenyl cleavage and are also able to cleave 3-methyl-catechol and catechol (but not 4-methylcatechol) at low rates. In contrast with DBO's, in Pseudomonas strains the substrate specificities of all C230's are variable. The C230's expressed by the D-plasmids pBS241 and pBC311 have a moderate affinity for catechol, 3-methyl- and 4-methylcatechol, but are unable to cleave 2,3-dihydroxybiphenyl. The C230 which is encoded by the chromosomal structure gene from P. putida BF is very similar to C230 which codes for the TOL-plasmid pWWO. These plasmid differ from C230's expressed by biphenyl D-plasmids due to their capability to cleave 2,3-dihydroxybiphenyl in addition to catechol cleavage. All DBO's and C230's under study possess a number of properties that are typical for the enzymes having an oxidative meta-cleaving effect. The different roles of these enzymes in biphenyl and toluate catabolism in Pseudomonas strains are discussed.

  7. Nucleotide sequence, organization and characterization of the (halo)aromatic acid catabolic plasmid pA81 from Achromobacter xylosoxidans A8

    Czech Academy of Sciences Publication Activity Database

    Jenčová, V.; Strnad, Hynek; Chodora, Zdeněk; Ulbrich, Pavel; Vlček, Čestmír; Hickey, W. J.; Pačes, Václav

    2008-01-01

    Roč. 159, č. 2 (2008), s. 118-127 ISSN 0923-2508 R&D Projects: GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : megaplasmid * haloaromatic acid * catabolism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.055, year: 2008

  8. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.

    Science.gov (United States)

    Kim, K S; Farrand, S K

    1996-06-01

    Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes.

  9. Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola; Purkiss, Andrew G.; Thompson, Barry J. [Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY (United Kingdom); McDonald, Neil Q., E-mail: neil.mcdonald@cancer.org.uk [Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY (United Kingdom); Birkbeck College, University of London, Malet Street, London WC1E 7HX (United Kingdom)

    2015-03-01

    This study characterizes the interaction between the carboxy-terminal (ERLI) motif of the essential polarity protein Crb and the Pals1/Stardust PDZ-domain protein. Structures of human Pals1 PDZ with and without a Crb peptide are described, explaining the highly conserved nature of the ERLI motif and revealing a sterically blocked peptide-binding groove in the absence of ligand. Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction.

  10. Quorum-dependent transfer of the opine-catabolic plasmid pAoF64/95 is regulated by a novel mechanism involving inhibition of the TraR antiactivator TraM.

    Science.gov (United States)

    Wetzel, Margaret E; Asenstorfer, Robert E; Tate, Max E; Farrand, Stephen K

    2018-04-10

    We previously described a plasmid of Agrobacterium spp., pAoF64/95, in which the quorum-sensing system that controls conjugative transfer is induced by the opine mannopine. We also showed that the quorum-sensing regulators TraR, TraM, and TraI function similarly to their counterparts in other repABC plasmids. However, traR, unlike its counterpart on Ti plasmids, is monocistronic and not located in an operon that is inducible by the conjugative opine. Here, we report that both traR and traM are expressed constitutively and not regulated by growth with mannopine. We report two additional regulatory genes, mrtR and tmsP, that are involved in a novel mechanism of control of TraR activity. Both genes are located in the distantly linked region of pAoF64/95 encoding mannopine utilization. MrtR, in the absence of mannopine, represses the four-gene mocC operon as well as tmsP, which is the distal gene of the eight-gene motA operon. As judged by a bacterial two-hybrid analysis, TmsP, which shows amino acid sequence relatedness with the TraM-binding domain of TraR, interacts with the antiactivator. We propose a model in which mannopine, acting through the repressor MrtR, induces expression of TmsP which then titrates the levels of TraM thereby freeing TraR to activate the tra regulon. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  11. Characterization of promoter of EgPAL1, a novel PAL gene from the oil palm Elaeis guineensis Jacq.

    Science.gov (United States)

    Yusuf, Chong Yu Lok; Abdullah, Janna Ong; Shaharuddin, Noor Azmi; Abu Seman, Idris; Abdullah, Mohd Puad

    2018-02-01

    The oil palm EgPAL1 gene promoter and its regulatory region were functional as a promoter in the heterologous system of Arabidopsis according to the cis-acting elements present in that region. The promoter was developmentally regulated, vascular tissue specific and responsive to water stress agents. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the key enzyme of the phenylpropanoid pathway which plays important roles in plant development and adaptation. To date, there is no report on the study of PAL from oil palm (Elaeis guineensis), an economically important oil crop. In this study, the 5' regulatory sequence of a highly divergent oil palm PAL gene (EgPAL1) was isolated and fused with GUS in Arabidopsis to create two transgenic plants carrying the minimal promoter with (2302 bp) and without its regulatory elements (139 bp). The regulatory sequence contained cis-acting elements known to be important for plant development and stress response including the AC-II element for lignin biosynthesis and several stress responsive elements. The promoter and its regulatory region were fully functional in Arabidopsis. Its activities were characterised by two common fundamental features of PAL which are responsive to plant internal developmental programme and external factors. The promoter was developmentally regulated in certain organs; highly active in young organs but less active or inactive in mature organs. The presence of the AC elements and global activity of the EgPAL1 promoter in all organs resembled the property of lignin-related genes. The existence of the MBS element and enhancement of the promoter activity by PEG reflected the behaviour of drought-responsive genes. Our findings provide a platform for evaluating oil palm gene promoters in the heterologous system of Arabidopsis and give insights into the activities of EgPAL1 promoter in oil palm.

  12. Isolation and Functional Characterization of a Phenylalanine Ammonia-Lyase Gene (SsPAL1 from Coleus (Solenostemon scutellarioides (L. Codd

    Directory of Open Access Journals (Sweden)

    Qinlong Zhu

    2015-09-01

    Full Text Available Phenylalanine ammonia-lyase (PAL is the first enzyme involved in the phenylpropanoid pathway and plays important roles in the secondary metabolisms, development and defense of plants. To study the molecular function of PAL in anthocyanin synthesis of Coleus (Solenostemon scutellarioides (L. Codd, a Coleus PAL gene designated as SsPAL1 was cloned and characterized using a degenerate oligonucleotide primer PCR and RACE method. The full-length SsPAL1 was 2450 bp in size and consisted of one intron and two exons encoding a polypeptide of 711 amino acids. The deduced SsPAL1 protein showed high identities and structural similarities with other functional plant PAL proteins. A series of putative cis-acting elements involved in transcriptional regulation, light and stress responsiveness were found in the upstream regulatory sequence of SsPAL1. Transcription pattern analysis indicated that SsPAL1 was constitutively expressed in all tissues examined and was enhanced by light and different abiotic factors. The recombinant SsPAL1 protein exhibited high PAL activity, at optimal conditions of 60 °C and pH 8.2. Although the levels of total PAL activity and total anthocyanin concentration have a similar variation trend in different Coleus cultivars, there was no significant correlation between them (r = 0.7529, p > 0.1, suggesting that PAL was not the rate-limiting enzyme for the downstream anthocyanin biosynthetic branch in Coleus. This study enables us to further understand the role of SsPAL1 in the phenylpropanoid (flavonoids, anthocyanins biosynthesis in Coleus at the molecular level.

  13. A phenylalanine ammonia-lyase ortholog (PkPAL1) from Picrorhiza kurrooa Royle ex. Benth: molecular cloning, promoter analysis and response to biotic and abiotic elicitors.

    Science.gov (United States)

    Bhat, Wajid Waheed; Razdan, Sumeer; Rana, Satiander; Dhar, Niha; Wani, Tariq Ahmad; Qazi, Parvaiz; Vishwakarma, Ram; Lattoo, Surrinder K

    2014-09-01

    Picrorhiza kurrooa Royle ex Benth. is a highly reputed medicinal herb utilised in the preparation of a number of herbal drug formulations, principally due to the presence of novel monoterpene iridoid glycosides kenned as picrosides. Phenylalanine ammonia-lyase catalyses an important rate-limiting step in phenylpropanoid pathway and supplies precursors like cinnamic acid, vanillic acid, ferulic acid, etc., to a variety of secondary metabolites including picrosides. The imperilled status of P. kurrooa coupled with lack of information regarding biogenesis of picrosides necessitates deciphering the biosynthetic pathway for picrosides. In the present study, a PAL gene, designated PkPAL1 was isolated from P. kurrooa. The cDNA is 2312 bp in length, consisting of an ORF of 2142 bp encoding for a 713 amino acid protein having a predicted molecular weight of 77.66 kDa and an isoelectric point of pH 6.82. qRT-PCR analysis of various tissues of P. kurrooa showed that PkPAL1 transcript levels were highest in the leaves, consistent with picroside accumulation pattern. Using Genome walking, a 718 bp promoter region was also isolated resulting in identification of distinct cis-regulatory elements including TGA-element, TGACG-motif, CGTCA-motif, etc. qRT-PCR indicated up-regulation of PkPAL1 by methyl jasmonate, salicylic acid, 2,4-dicholorophenoxy acetic acid and UV-B elicitations that corroborated positively with the identified cis-elements within the promoter region. Moreover, altitude was found to have a positive effect on the PkPAL1 transcript levels, driving the expression of PkPAL1 abundantly. Based on docking analysis, we identified eight residues as potentially essential for substrate binding in PkPAL1. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Plasmid-mediated mineralization of 4-chlorobiphenyl

    International Nuclear Information System (INIS)

    Shields, M.S.; Hooper, S.W.; Sayler, G.S.

    1985-01-01

    Strains of Alcaligenes and Acinetobacter spp. were isolated from a mixed culture already proven to be proficient at complete mineralization of monohalogenated biphenyls. These strains were shown to harbor a 35 x 10(6)-dalton plasmid mediating a complete pathway for 4-chlorobiphenyl (4CB) oxidation. Subsequent plasmid curing of these bacteria resulted in the abolishment of the 4CB mineralization phenotype and loss of even early 4CB metabolism by Acinetobacter spp. Reestablishment of the Alcaligenes plasmid, denoted pSS50, in the cured Acinetobacter spp. via filter surface mating resulted in the restoration of 4CB mineralization abilities. 4CB mineralization, however, proved to be an unstable characteristic in some subcultured strains. Such loss was not found to coincide with any detectable alteration in plasmid size. Cultures capable of complete mineralization, as well as those limited to partial metabolism of 4CB, produced 4-chlorobenzoate as a metabolite. Demonstration of mineralization of a purified 14 C-labeled chlorobenzoate showed it to be a true intermediate in 4CB mineralization. Unlike the mineralization capability, the ability to produce a metabolite has proven to be stable on subculture. These results indicate the occurrence of a novel plasmid, or evolved catabolic plasmid, that mediates the complete mineralization of 4CB

  15. Plasmid segregation mechanisms

    DEFF Research Database (Denmark)

    Ebersbach, G.; Gerdes, Kenn

    2005-01-01

    Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments...... that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating...... filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement...

  16. Biochemistry of Catabolic Reductive Dehalogenation.

    Science.gov (United States)

    Fincker, Maeva; Spormann, Alfred M

    2017-06-20

    A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe-S cluster-containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe-S cluster cofactors and discuss physiological implications.

  17. Glutamine alimentation in catabolic state.

    Science.gov (United States)

    Boelens, P G; Nijveldt, R J; Houdijk, A P; Meijer, S; van Leeuwen, P A

    2001-09-01

    Glutamine should be reclassified as a conditionally essential amino acid in the catabolic state because the body's glutamine expenditures exceed synthesis and low glutamine levels in plasma are associated with poor clinical outcome. After severe stress, several amino acids are mobilized from muscle tissue to supply energy and substrate to the host. Glutamine is one of the most important amino acids that provide this function. Glutamine acts as the preferred respiratory fuel for lymphocytes, hepatocytes and intestinal mucosal cells and is metabolized in the gut to citrulline, ammonium and other amino acids. Low concentrations of glutamine in plasma reflect reduced stores in muscle and this reduced availability of glutamine in the catabolic state seems to correlate with increased morbidity and mortality. Adding glutamine to the nutrition of clinical patients, enterally or parenterally, may reduce morbidity. Several excellent clinical trials have been performed to prove efficacy and feasibility of the use of glutamine supplementation in parenteral and enteral nutrition. The increased intake of glutamine has resulted in lower septic morbidity in certain critically ill patient populations. This review will focus on the efficacy and the importance of glutamine supplementation in diverse catabolic states.

  18. Protocol for Evaluating the Permissiveness of Bacterial Communities Toward Conjugal Plasmids by Quantification and Isolation of Transconjugants

    DEFF Research Database (Denmark)

    Klümper, Uli; Dechesne, Arnaud; Smets, Barth F.

    2014-01-01

    may encode catabolic pathways, virulence factors, and antibiotic or metal resistances, it is of environmental, evolutionary, and medical relevance to track and monitor the fate of plasmids in mixed microbial community. When assessing the short-term and long-term implications of conjugal plasmid...... a gfp-tagged plasmid in a mCherry red fluorescently tagged donor strain repressing gfp expression. We take advantage of fluorescent marker genes to microscopically detect plasmid transfer events and use subsequent high-throughput fluorescence-activated cell sorting (FACS) to isolate...

  19. Chlamydial plasmids and bacteriophages.

    Science.gov (United States)

    Pawlikowska-Warych, Małgorzata; Śliwa-Dominiak, Joanna; Deptuła, Wiesław

    2015-01-01

    Chlamydia are absolute pathogens of humans and animals; despite being rather well recognised, they are still open for discovery. One such discovery is the occurrence of extrachromosomal carriers of genetic information. In prokaryotes, such carriers include plasmids and bacteriophages, which are present only among some Chlamydia species. Plasmids were found exclusively in Chlamydia (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. felis, C. muridarum and C. caviae. In prokaryotic organisms, plasmids usually code for genes that facilitate survival of the bacteria in the environment (although they are not essential). In chlamydia, their role has not been definitely recognised, apart from the fact that they participate in the synthesis of glycogen and encode proteins responsible for their virulence. Furthermore, in C. suis it was evidenced that the plasmid is integrated in a genomic island and contains the tetracycline-resistance gene. Bacteriophages specific for chlamydia (chlamydiaphages) were detected only in six species: C. psittaci, C. abortus, C. felis, C. caviae C. pecorum and C. pneumoniae. These chlamydiaphages cause inhibition of the developmental cycle, and delay transformation of reticulate bodies (RBs) into elementary bodies (EBs), thus reducing the possibility of infecting other cells in time. Plasmids and bacteriophages can be used in the diagnostics of chlamydioses; although especially in the case of plasmids, they are already used for detection of chlamydial infections. In addition, bacteriophages could be used as therapeutic agents to replace antibiotics, potentially addressing the problem of increasing antibiotic-resistance among chlamydia.

  20. Comparative genomic analysis of isoproturon-mineralizing sphingomonads reveals the isoproturon catabolic mechanism.

    Science.gov (United States)

    Yan, Xin; Gu, Tao; Yi, Zhongquan; Huang, Junwei; Liu, Xiaowei; Zhang, Ji; Xu, Xihui; Xin, Zhihong; Hong, Qing; He, Jian; Spain, Jim C; Li, Shunpeng; Jiang, Jiandong

    2016-12-01

    The worldwide use of the phenylurea herbicide, isoproturon (IPU), has resulted in considerable concern about its environmental fate. Although many microbial metabolites of IPU are known and IPU-mineralizing bacteria have been isolated, the molecular mechanism of IPU catabolism has not been elucidated yet. In this study, complete genes that encode the conserved IPU catabolic pathway were revealed, based on comparative analysis of the genomes of three IPU-mineralizing sphingomonads and subsequent experimental validation. The complete genes included a novel hydrolase gene ddhA, which is responsible for the cleavage of the urea side chain of the IPU demethylated products; a distinct aniline dioxygenase gene cluster adoQTA1A2BR, which has a broad substrate range; and an inducible catechol meta-cleavage pathway gene cluster adoXEGKLIJC. Furthermore, the initial mono-N-demethylation genes pdmAB were further confirmed to be involved in the successive N-demethylation of the IPU mono-N-demethylated product. These IPU-catabolic genes were organized into four transcription units and distributed on three plasmids. They were flanked by multiple mobile genetic elements and highly conserved among IPU-mineralizing sphingomonads. The elucidation of the molecular mechanism of IPU catabolism will enhance our understanding of the microbial mineralization of IPU and provide insights into the evolutionary scenario of the conserved IPU-catabolic pathway. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Catabolic Processes in Cardiosurgical Patients

    Directory of Open Access Journals (Sweden)

    V. V. Lomivorotov

    2007-01-01

    Full Text Available Objective: to evaluate catabolic and anabolic processes in cardiosurgical patients during heart operations under extracorporeal circulation.Subjects and methods. Seventy-one patients with coronary heart disease (CHD and acquired cardiac defects (ACD, who had been operated on under extracorporeal circulation, were examined. The plasma levels of cortisol, adrenaline, insulin, growth hormone, and albumin were measured. For determination of daily nitrogen excretion, blood and diurnal urine were sampled at the following stages: 1 before surgery; 2 postoperative (PO day 1; 3 PO day 3; 4 PO day 7; 5 PO day 14; 6 PO day 21.Results. The preoperative daily nitrogen excretion in CHD patients was 10.4±1.0 g/day. By PO day 3, there was a significant increase in nitrogen excretion by 66%, up to 17.3±1.6 g/day (p<0.01. In ACD patients, the baseline daily urinary nitrogen excretion was 11.9±1.7 g/day. By PO day 3, there was a 1.4-fold increase in this index — up to 16.3±2.0 g/day. Daily nitrogen excretion significantly increased up to 17.1±1.2 g/day by the end of the first PO week (p<0.05, by exceeding the baseline values by 44%. Nitrogen excretion peaked by the end of PO days 14 (17.2±1.6 g/day (p<0.05. By hospital discharge, nitrogen excretion was 23% greater than its baseline preoperative level (p>0.05. In cardiosurgical patients, an increase in daily nitrogen excretion occurred with the elevated concentrations of the stress hormones cortisol and adrenaline.Conclusion. The magnitude of catabolic reactions after cardiosurgical interventions depends on the type of cardiac disease. In patients with CHD, the maximum catabolic reactions were recorded on PO day 3 whereas in those with ACD, they continued within three weeks postoperatively.  

  2. A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway.

    Science.gov (United States)

    Bahar, M; de Majnik, J; Wexler, M; Fry, J; Poole, P S; Murphy, P J

    1998-11-01

    Rhizopines are nodule-specific compounds that confer an intraspecies competitive nodulation advantage to strains that can catabolize them. The rhizopine (3-O-methyl-scyllo-inosamine, 3-O-MSI) catabolic moc gene cluster mocCABRDE(F) in Rhizobium leguminosarum bv. viciae strain 1a is located on the Sym plasmid. MocCABR are homologous to the mocCABR gene products from Sinorhizobium meliloti. MocD and MocE contain motifs corresponding to a TOL-like oxygenase and a [2Fe-2S] Rieske-like ferredoxin, respectively. The mocF gene encodes a ferredoxin reductase that would complete the oxygenase system, but is not essential for rhizopine catabolism. We propose a rhizopine catabolic model whereby MocB transports rhizopine into the cell and MocDE and MocF (or a similar protein elsewhere in the genome), under the regulation of MocR, act in concert to form a ferredoxin oxygenase system that demethylates 3-O-MSI to form scyllo-inosamine (SI). MocA, an NAD(H)-dependent dehydrogenase, and MocC continue the catabolic process. Compounds formed then enter the inositol catabolic pathway.

  3. Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples

    International Nuclear Information System (INIS)

    Sayler, G.S.; Shields, M.S.; Tedford, E.T.; Breen, A.; Hooper, S.W.; Sirotkin, K.M.; Davis, J.W.

    1985-01-01

    The application of preexisting DNA hybridization techniques was investigated for potential in determining populations of specific gene sequences in environmental samples. Cross-hybridizations among two degradative plasmids, TOL and NAH, and two cloning vehicles, pLAFR1 and RSF1010, were determined. The detection limits for the TOL plasmid against a nonhomologous plasmid-bearing bacterial background was ascertained. The colony hybridization technique allowed detection of one colony containing TOL plasmid among 10(6) Escherichia coli colonies of nonhomologous DNA. Comparisons between population estimates derived from growth on selective substrates and from hybridizations were examined. Findings indicated that standard sole carbon source enumeration procedures for degradative populations lead to overestimations due to nonspecific growth of other bacteria on the microcontaminant carbon sources present in the media. Population estimates based on the selective growth of a microcosm population on two aromatic substrates (toluene and naphthalene) and estimates derived from DNA-DNA colony hybridizations, using the TOL or NAH plasmid as a probe, corresponded with estimates of substrate mineralization rates and past exposure to environmental contaminants. The applications of such techniques are hoped to eventually allow enumeration of any specific gene sequences in the environment, including both anabolic and catabolic genes. In addition, this procedure should prove useful in monitoring recombinant DNA clones released into environmental situations

  4. The mechanisms of haem catabolism

    International Nuclear Information System (INIS)

    Brown, S.B.; King, R.F.G.J.

    1978-01-01

    The pathway of haem breakdown in living rats was studied by using 18 0 in the oxygen that the animals consumed. By cannulation of the common bile duct and collection of bile, labelled bilirubin was isolated and its mass spectrum determined. One set of results was obtained for a rat to which haemoglobin had been intravenously administered and another set obtained for a rat that was not given exogenous haem. Isomerization of bilirubin IXα to the XIIIα and IIIα isomers did not occur to any significant extent. The 18 O-labelling pattern obtained in the bilirubin was consistent with a Two-Molecule Mechanism, whereby the terminal lactam oxygen atoms of bilirubin are derived from different oxygen molecules. The consequences of this mechanism are discussed in terms of the possible intermediates of the catabolic pathway. 18 0-labelled bilirubin appeared in the bile in less than 10 min after exposure of the animals to labelled oxygen. This result suggests that all of the chemical transformations involving production of biliverdin, reduction to bilirubin and conjugation of the bilirubin are fast processes. The quantitative recovery of label obtained in the experiments suggests that there is little or no exchange of newly synthesized bilirubin with existing bilirubin pools in the animal. (author)

  5. Plasmids in Gram negatives: molecular typing of resistance plasmids.

    Science.gov (United States)

    Carattoli, Alessandra

    2011-12-01

    A plasmid is defined as a double stranded, circular DNA molecule capable of autonomous replication. By definition, plasmids do not carry genes essential for the growth of host cells under non-stressed conditions but they have systems which guarantee their autonomous replication also controlling the copy number and ensuring stable inheritance during cell division. Most of the plasmids confer positively selectable phenotypes by the presence of antimicrobial resistance genes. Plasmids evolve as an integral part of the bacterial genome, providing resistance genes that can be easily exchanged among bacteria of different origin and source by conjugation. A multidisciplinary approach is currently applied to study the acquisition and spread of antimicrobial resistance in clinically relevant bacterial pathogens and the established surveillance can be implemented by replicon typing of plasmids. Particular plasmid families are more frequently detected among Enterobacteriaceae and play a major role in the diffusion of specific resistance genes. For instance, IncFII, IncA/C, IncL/M, IncN and IncI1 plasmids carrying extended-spectrum beta-lactamase genes and acquired AmpC genes are currently considered to be "epidemic resistance plasmids", being worldwide detected in Enterobacteriaceae of different origin and sources. The recognition of successful plasmids is an essential first step to design intervention strategies preventing their spread. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo

    International Nuclear Information System (INIS)

    Jussila, Minna M.; Zhao, Ji; Suominen, Leena; Lindstroem, Kristina

    2007-01-01

    Molecular profiling methods for horizontal transfer of aromatics-degrading plasmids were developed and applied during rhizoremediation in vivo and conjugations in vitro. pWW0 was conjugated from Pseudomonas to Rhizobium. The xylE gene was detected both in Rhizobium galegae bv. officinalis and bv. orientalis, but it was neither stably maintained in orientalis nor functional in officinalis. TOL plasmids were a major group of catabolic plasmids among the bacterial strains isolated from the oil-contaminated rhizosphere of Galega orientalis. A new finding was that some Pseudomonas migulae and Pseudomonas oryzihabitans strains harbored a TOL plasmid with both pWW0- and pDK1-type xylE gene. P. oryzihabitans 29 had received the archetypal TOL plasmid pWW0 from Pseudomonas putida PaW85. As an application for environmental biotechnology, the biodegradation potential of oil-polluted soil and the success of bioremediation could be estimated by monitoring changes not only in the type and amount but also in transfer of degradation plasmids. - Horizontal transfer of degradation plasmids in the oil-contaminated rhizosphere reveals the dynamic nature of the intrinsic biodegradation potential

  7. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2012-11-01

    Full Text Available Abstract Background Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp. Results and discussion The Large PantoeaPlasmids (LPP-1 of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS. A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS, conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. Conclusions LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse

  8. Body Weight Independently Affects Articular Cartilage Catabolism

    Directory of Open Access Journals (Sweden)

    W. Matt Denning, Jason G. Winward, Michael Becker Pardo, J. Ty Hopkins, Matthew K. Seeley

    2015-06-01

    Full Text Available Although obesity is associated with osteoarthritis, it is unclear whether body weight (BW independently affects articular cartilage catabolism (i.e., independent from physiological factors that also accompany obesity. The primary purpose of this study was to evaluate the independent effect of BW on articular cartilage catabolism associated with walking. A secondary purpose was to determine how decreased BW influenced cardiovascular response due to walking. Twelve able-bodied subjects walked for 30 minutes on a lower-body positive pressure treadmill during three sessions: control (unadjusted BW, +40%BW, and -40%BW. Serum cartilage oligomeric matrix protein (COMP was measured immediately before (baseline and after, and 15 and 30 minutes after the walk. Heart rate (HR and rate of perceived exertion (RPE were measured every three minutes during the walk. Relative to baseline, average serum COMP concentration was 13% and 5% greater immediately after and 15 minutes after the walk. Immediately after the walk, serum COMP concentration was 14% greater for the +40%BW session than for the -40%BW session. HR and RPE were greater for the +40%BW session than for the other two sessions, but did not differ between the control and -40%BW sessions. BW independently influences acute articular cartilage catabolism and cardiovascular response due to walking: as BW increases, so does acute articular cartilage catabolism and cardiovascular response. These results indicate that lower-body positive pressure walking may benefit certain individuals by reducing acute articular cartilage catabolism, due to walking, while maintaining cardiovascular response.

  9. Persistence Mechanisms of Conjugative Plasmids

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the suc...

  10. Explanatory chapter: how plasmid preparation kits work.

    Science.gov (United States)

    Koontz, Laura

    2013-01-01

    To isolate plasmid DNA from bacteria using a commercial plasmid miniprep kit (if interested, compare this protocol with Isolation of plasmid DNA from bacteria). Copyright © 2013 Elsevier Inc. All rights reserved.

  11. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

    DEFF Research Database (Denmark)

    Carattoli, Alessandra; Zankari, Ea; García-Fernández, Aurora

    2014-01-01

    In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft...... genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration...... sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection...

  12. Pentose phosphates in nucleoside interconversion and catabolism.

    Science.gov (United States)

    Tozzi, Maria G; Camici, Marcella; Mascia, Laura; Sgarrella, Francesco; Ipata, Piero L

    2006-03-01

    Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway, or are supplied by nucleoside phosphorylases. The two main pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, are readily interconverted by the action of phosphopentomutase. Ribose-5-phosphate is the direct precursor of 5-phosphoribosyl-1-pyrophosphate, for both de novo and 'salvage' synthesis of nucleotides. Phosphorolysis of deoxyribonucleosides is the main source of deoxyribose phosphates, which are interconvertible, through the action of phosphopentomutase. The pentose moiety of all nucleosides can serve as a carbon and energy source. During the past decade, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. We review herein the experimental knowledge on the molecular mechanisms by which (a) ribose-1-phosphate, produced by purine nucleoside phosphorylase acting catabolically, is either anabolized for pyrimidine salvage and 5-fluorouracil activation, with uridine phosphorylase acting anabolically, or recycled for nucleoside and base interconversion; (b) the nucleosides can be regarded, both in bacteria and in eukaryotic cells, as carriers of sugars, that are made available though the action of nucleoside phosphorylases. In bacteria, catabolism of nucleosides, when suitable carbon and energy sources are not available, is accomplished by a battery of nucleoside transporters and of inducible catabolic enzymes for purine and pyrimidine nucleosides and for pentose phosphates. In eukaryotic cells, the modulation of pentose phosphate production by nucleoside catabolism seems to be affected by developmental and physiological factors on enzyme levels.

  13. Metabolic control analysis of xylose catabolism in Aspergillus

    NARCIS (Netherlands)

    Prathumpai, W.; Gabelgaard, J.B.; Wanchanthuek, P.; Vondervoort, van de P.J.I.; Groot, de M.J.L.; McIntyre, M.; Nielsen, J.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out,

  14. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids and chr...

  15. Antimicrobial susceptibility pattern and plasmid-mediated ...

    African Journals Online (AJOL)

    negative Staphylococci (CoNS) were isolated from clinical samples and isolates subjected to antibiotic susceptibility testing, plasmid curing and plasmid DNA isolation. Result: The highest percentages isolates were recovered from urine samples and ...

  16. Taxon- and Site-Specific Melatonin Catabolism

    Directory of Open Access Journals (Sweden)

    Rüdiger Hardeland

    2017-11-01

    Full Text Available Melatonin is catabolized both enzymatically and nonenzymatically. Nonenzymatic processes mediated by free radicals, singlet oxygen, other reactive intermediates such as HOCl and peroxynitrite, or pseudoenzymatic mechanisms are not species- or tissue-specific, but vary considerably in their extent. Higher rates of nonenzymatic melatonin metabolism can be expected upon UV exposure, e.g., in plants and in the human skin. Additionally, melatonin is more strongly nonenzymatically degraded at sites of inflammation. Typical products are several hydroxylated derivatives of melatonin and N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK. Most of these products are also formed by enzymatic catalysis. Considerable taxon- and site-specific differences are observed in the main enzymatic routes of catabolism. Formation of 6-hydroxymelatonin by cytochrome P450 subforms are prevailing in vertebrates, predominantly in the liver, but also in the brain. In pineal gland and non-mammalian retina, deacetylation to 5-methoxytryptamine (5-MT plays a certain role. This pathway is quantitatively prevalent in dinoflagellates, in which 5-MT induces cyst formation and is further converted to 5-methoxyindole-3-acetic acid, an end product released to the water. In plants, the major route is catalyzed by melatonin 2-hydroxylase, whose product is tautomerized to 3-acetamidoethyl-3-hydroxy-5-methoxyindolin-2-one (AMIO, which exceeds the levels of melatonin. Formation and properties of various secondary products are discussed.

  17. Origin and Evolution of Rickettsial Plasmids.

    Directory of Open Access Journals (Sweden)

    Khalid El Karkouri

    Full Text Available Rickettsia species are strictly intracellular bacteria that have undergone a reductive genomic evolution. Despite their allopatric lifestyle, almost half of the 26 currently validated Rickettsia species have plasmids. In order to study the origin, evolutionary history and putative roles of rickettsial plasmids, we investigated the evolutionary processes that have shaped 20 plasmids belonging to 11 species, using comparative genomics and phylogenetic analysis between rickettsial, microbial and non-microbial genomes.Plasmids were differentially present among Rickettsia species. The 11 species had 1 to 4 plasmid (s with a size ranging from 12 kb to 83 kb. We reconstructed pRICO, the last common ancestor of the current rickettsial plasmids. pRICO was vertically inherited mainly from Rickettsia/Orientia chromosomes and diverged vertically into a single or multiple plasmid(s in each species. These plasmids also underwent a reductive evolution by progressive gene loss, similar to that observed in rickettsial chromosomes, possibly leading to cryptic plasmids or complete plasmid loss. Moreover, rickettsial plasmids exhibited ORFans, recent gene duplications and evidence of horizontal gene transfer events with rickettsial and non-rickettsial genomes mainly from the α/γ-proteobacteria lineages. Genes related to maintenance and plasticity of plasmids, and to adaptation and resistance to stress mostly evolved under vertical and/or horizontal processes. Those involved in nucleotide/carbohydrate transport and metabolism were under the influence of vertical evolution only, whereas genes involved in cell wall/membrane/envelope biogenesis, cycle control, amino acid/lipid/coenzyme and secondary metabolites biosynthesis, transport and metabolism underwent mainly horizontal transfer events.Rickettsial plasmids had a complex evolution, starting with a vertical inheritance followed by a reductive evolution associated with increased complexity via horizontal gene

  18. Catabolism of lysine by mixed rumen bacteria

    International Nuclear Information System (INIS)

    Onodera, Ryoji; Kandatsu, Makoto.

    1975-01-01

    Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ml of lysine was decomposed to give ether-soluble substances and CO 2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. delta-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did. (auth.)

  19. Plasmid DNA Delivery: Nanotopography Matters.

    Science.gov (United States)

    Song, Hao; Yu, Meihua; Lu, Yao; Gu, Zhengying; Yang, Yannan; Zhang, Min; Fu, Jianye; Yu, Chengzhong

    2017-12-20

    Plasmid DNA molecules with unique loop structures have widespread bioapplications, in many cases relying heavily on delivery vehicles to introduce them into cells and achieve their functions. Herein, we demonstrate that control over delicate nanotopography of silica nanoparticles as plasmid DNA vectors has significant impact on the transfection efficacy. For silica nanoparticles with rambutan-, raspberry-, and flower-like morphologies composed of spike-, hemisphere-, and bowl-type subunit nanotopographies, respectively, the rambutan-like nanoparticles with spiky surfaces demonstrate the highest plasmid DNA binding capability and transfection efficacy of 88%, higher than those reported for silica-based nanovectors. Moreover, it is shown that the surface spikes of rambutan nanoparticles provide a continuous open space to bind DNA chains via multivalent interactions and protect the gene molecules sheltered in the spiky layer against nuclease degradation, exhibiting no significant transfection decay. This unique protection feature is in great contrast to a commercial transfection agent with similar transfection performance but poor protection capability against enzymatic cleavage. Our study provides new understandings in the rational design of nonviral vectors for efficient gene delivery.

  20. Effects of lipopolysaccharide on the catabolic activity of macrophages

    International Nuclear Information System (INIS)

    Cluff, C.; Ziegler, H.K.

    1986-01-01

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of 125 -I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses

  1. Tyrosine biosynthesis, metabolism, and catabolism in plants.

    Science.gov (United States)

    Schenck, Craig A; Maeda, Hiroshi A

    2018-05-01

    L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Large-scale preparation of plasmid DNA.

    Science.gov (United States)

    Heilig, J S; Elbing, K L; Brent, R

    2001-05-01

    Although the need for large quantities of plasmid DNA has diminished as techniques for manipulating small quantities of DNA have improved, occasionally large amounts of high-quality plasmid DNA are desired. This unit describes the preparation of milligram quantities of highly purified plasmid DNA. The first part of the unit describes three methods for preparing crude lysates enriched in plasmid DNA from bacterial cells grown in liquid culture: alkaline lysis, boiling, and Triton lysis. The second part describes four methods for purifying plasmid DNA in such lysates away from contaminating RNA and protein: CsCl/ethidium bromide density gradient centrifugation, polyethylene glycol (PEG) precipitation, anion-exchange chromatography, and size-exclusion chromatography.

  3. [Replication of Streptomyces plasmids: the DNA nucleotide sequence of plasmid pSB 24.2].

    Science.gov (United States)

    Bolotin, A P; Sorokin, A V; Aleksandrov, N N; Danilenko, V N; Kozlov, Iu I

    1985-11-01

    The nucleotide sequence of DNA in plasmid pSB 24.2, a natural deletion derivative of plasmid pSB 24.1 isolated from S. cyanogenus was studied. The plasmid amounted by its size to 3706 nucleotide pairs. The G-C composition was equal to 73 per cent. The analysis of the DNA structure in plasmid pSB 24.2 revealed the protein-encoding sequence of DNA, the continuity of which was significant for replication of the plasmid containing more than 1300 nucleotide pairs. The analysis also revealed two A-T-rich areas of DNA, the G-C composition of which was less than 55 per cent and a DNA area with a branched pin structure. The results may be of value in investigation of plasmid replication in actinomycetes and experimental cloning of DNA with this plasmid as a vector.

  4. Amino Acid Catabolism in Multiple Sclerosis Affects Immune Homeostasis.

    Science.gov (United States)

    Negrotto, Laura; Correale, Jorge

    2017-03-01

    Amino acid catabolism has been implicated in immunoregulatory mechanisms present in several diseases, including autoimmune disorders. Our aims were to assess expression and activity of enzymes involved in Trp and Arg catabolism, as well as to investigate amino acid catabolism effects on the immune system of multiple sclerosis (MS) patients. To this end, 40 MS patients, 30 healthy control subjects, and 30 patients with other inflammatory neurological diseases were studied. Expression and activity of enzymes involved in Trp and Arg catabolism (IDO1, IDO2, Trp 2,3-dioxygenase [TDO], arginase [ARG] 1, ARG2, inducible NO synthetase) were evaluated in PBMCs. Expression of general control nonrepressed 2 serine/threonine kinase and mammalian target of rapamycin (both molecules involved in sensing amino acid levels) was assessed in response to different stimuli modulating amino acid catabolism, as were cytokine secretion levels and regulatory T cell numbers. The results demonstrate that expression and activity of IDO1 and ARG1 were significantly reduced in MS patients compared with healthy control subjects and other inflammatory neurological diseases. PBMCs from MS patients stimulated with a TLR-9 agonist showed reduced expression of general control nonrepressed 2 serine/threonine kinase and increased expression of mammalian target of rapamycin, suggesting reduced amino acid catabolism in MS patients. Functionally, this reduction resulted in a decrease in regulatory T cells, with an increase in myelin basic protein-specific T cell proliferation and secretion of proinflammatory cytokines. In contrast, induction of IDO1 using CTLA-4 or a TLR-3 ligand dampened proinflammatory responses. Overall, these results highlight the importance of amino acid catabolism in the modulation of the immunological responses in MS patients. Molecules involved in these pathways warrant further exploration as potential new therapeutic targets in MS. Copyright © 2017 by The American Association of

  5. Characterization of new plasmids from methylotrophic bacteria.

    Science.gov (United States)

    Brenner, V; Holubová, I; Benada, O; Hubácek, J

    1991-07-01

    Several tens of methanol-utilizing bacterial strains isolated from soil were screened for the presence of plasmids. From the obligate methylotroph Methylomonas sp. strain R103a plasmid pIH36 (36 kb) was isolated and its restriction map was constructed. In pink-pigmented facultative methylotrophs (PPFM), belonging to the genus Methylobacterium four plasmids were detected: plasmids pIB200 (200 kb) and pIB14 (14 kb) in the strain R15d and plasmids pWU14 (14 kb) and pWU7 (7.8 kb) in the strain M17. Because of the small size and the presence of several unique REN sites (HindIII, EcoRI, NcoI), plasmid pWU7 was chosen for the construction of a vector for cloning in methylotrophs. Cointegrates pKWU7A and pKWU7B were formed between pWU7 and the E. coli plasmid pK19 Kmr, which were checked for conjugative transfer from E. coli into the methylotrophic host.

  6. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.

    Science.gov (United States)

    Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G

    2018-07-01

    Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.

  7. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.

    2005-01-01

    A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography...... aiming at either flux or metabolite level optimization of the L-arabinose catabolic pathway of A. niger. Faster L-arabinose utilization may enhance utilization of readily available organic waste containing hemicelluloses to be converted into industrially interesting metabolites or valuable enzymes...

  8. The anti-catabolic role of bovine lactoferricin in cartilage.

    Science.gov (United States)

    Ahmadinia, Kasra; Yan, Dongyao; Ellman, Michael; Im, Hee-Jeong

    2013-10-01

    Bovine lactoferricin (LfcinB) is a multifunctional peptide derived from bovine lactoferrin that demonstrates antibacterial, antifungal, antiviral, antitumor, and immunomodulatory activities. Recently, studies have focused on the anti-catabolic and anti-inflammatory potential of LfcinB. LfcinB is able to modulate the effects cytokines such as IL-1 and fibroblast growth factor 2 as well as promote specific cartilage anabolic factors. These properties are particularly important in maintaining cartilage homeostasis and preventing a catabolic state, which leads to clinical pathology. This review focuses on the recent literature elucidating the role of LfcinB in preventing cartilage degradation.

  9. Plasmid fermentation process for DNA immunization applications.

    Science.gov (United States)

    Carnes, Aaron E; Williams, James A

    2014-01-01

    Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.

  10. Behavior of IncQ Plasmids in Agrobacterium tumefaciens

    NARCIS (Netherlands)

    Hille, Jacques; Schilperoort, Rob

    1981-01-01

    Inc-Q plasmids were introduced into Agrobacterium tumefuciens, by mobilization from Escherichia coli with an Inc-P plasmid, or by transformation with purified plasmid DNA. It was found that they were stably maintained. The presence of an Inc-Q plasmid did not influence tumorigenicity. These results

  11. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    NARCIS (Netherlands)

    Groot, de M.J.L.; Prathumpai, W.; Visser, J.; Ruijter, G.J.G.

    2005-01-01

    A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography, and their

  12. Immunosuppressive Tryptophan Catabolism and Gut Mucosal Dysfunction Following Early HIV Infection

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; El-Far, Mohamed; Vyboh, Kishanda; Kema, Ido; Costiniuk, Cecilia T.; Thomas, Rejean; Baril, Jean-Guy; LeBlanc, Roger; Kanagaratham, Cynthia; Radzioch, Danuta; Allam, Ossama; Ahmad, Ali; Lebouche, Bertrand; Tremblay, Cecile; Ancuta, Petronela; Routy, Jean-Pierre

    2015-01-01

    Background. Tryptophan (Trp) catabolism into kynurenine (Kyn) contributes to immune dysfunction in chronic human immunodeficiency virus (HIV) infection. To better define the relationship between Trp catabolism, inflammation, gut mucosal dysfunction, and the role of early antiretroviral therapy

  13. Variable carbon catabolism among Salmonella enterica serovar Typhi isolates.

    Directory of Open Access Journals (Sweden)

    Lay Ching Chai

    Full Text Available BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. METHODOLOGY/PRINCIPAL FINDINGS: To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas of typhoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. CONCLUSION: The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen.

  14. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary starter...... culture or as an adjunct culture. It has shown high proteolytic activities in conversion of caseins to peptides and further to amino acids and flavour compounds. Better understanding of the enzyme activity properties and the influence of different properties on final cheese flavour is favourable...... for developing new cheese products with enhanced flavour. The aim of this Ph.D. study was to investigate the importance of strain variation of Lb. helveticus in relation flavour formation in cheese related to amino acid catabolism. Aspects of using Lb. helveticus as starter as well as adjunct culture in cheese...

  15. A metabolic pathway for catabolizing levulinic acid in bacteria

    International Nuclear Information System (INIS)

    Rand, Jacqueline M.; Pisithkul, Tippapha; Clark, Ryan L.; Thiede, Joshua M.; Mehrer, Christopher R.

    2017-01-01

    Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. Here, this discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.

  16. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    Science.gov (United States)

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  17. Plasmid transfer by conjugation in Xylella fastidiosa.

    Science.gov (United States)

    Recombination and horizontal gene transfer have been implicated in the adaption of Xylella fastidiosa (Xf) to infect a wide variety of different plant species. There is evidence that certain strains of Xf carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as ...

  18. Standardized Cloning and Curing of Plasmids

    DEFF Research Database (Denmark)

    Lauritsen, Ida; Kim, Se Hyeuk; Porse, Andreas

    2018-01-01

    and exchange of genetic parts in the Standard European Vectors Architecture (SEVA) vector system. Additionally, to facilitate rapid testing and iterative bioengineering using different vector designs, we provide a one-step protocol for a universal CRISPR-Cas9-based plasmid curing system (pFREE) and demonstrate...

  19. Optimization of plasmid electrotransformation into Escherichia coli ...

    African Journals Online (AJOL)

    In order to improve electroporation, optical density of bacteria, recovery time and electrical parameter (field strength and capacitance) were optimized using the Taguchi statistical method. ANOVA of obtained data indicated that the optimal conditions of electrotransformation of pET-28a (+) plasmid into Escherichia coli ...

  20. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.; LS Klinisch Onderzoek Wagenaar

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and

  1. Plasmid and chromosome segregation in prokaryotes

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Gerdes, Kenn

    2000-01-01

    Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic...

  2. Antimicrobial resistance and plasmid profiles of Aeromonas ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the presence of Aeromonas hydrophila at commonly used water collection points on the River Njoro and to determine the in-vitro antimicrobial susceptibility and plasmid profiles of isolates. In total, 126 samples were collected and 36.5% of them were positive for A. hydrophila.

  3. Antimicrobial resistance patterns and plasmid profiles of ...

    African Journals Online (AJOL)

    Objectives: To determine the frequency of resistance of Staphylococcus aureus to various antimicrobial agents, and the relationship between antimicrobial resistance of the isolates and carriage of plasmids. Design: A random sampling of milk and meat samples was carried out. Setting: Milk was collected from various dairy ...

  4. Simple method for identification of plasmid-coded proteins

    International Nuclear Information System (INIS)

    Sancar, A.; Hack, A.M.; Rupp, W.D.

    1979-01-01

    Proteins encoded by plasmid DNA are specifically labeled in uv-irradiated cells of Escherichia coli carrying recA and uvrA mutations because extensive degradation of the chromosome DNA occurs concurrently with amplification of plasmid DNA

  5. Conjugal properties of the Sinorhizobium meliloti plasmid mobilome.

    Science.gov (United States)

    Pistorio, Mariano; Giusti, María A; Del Papa, María F; Draghi, Walter O; Lozano, Mauricio J; Tejerizo, Gonzalo Torres; Lagares, Antonio

    2008-09-01

    The biology and biochemistry of plasmid transfer in soil bacteria is currently under active investigation because of its central role in prokaryote adaptation and evolution. In this work, we examined the conjugal properties of the cryptic plasmids present in a collection of the N(2)-fixing legume-symbiont Sinorhizobium meliloti. The study was performed on 65 S. meliloti isolates recovered from 25 humic soils of Argentina, which were grouped into 22 plasmid-profile types [i.e. plasmid operational taxonomic units (OTUs)]. The cumulative Shannon index calculated for the observed plasmid profiles showed a clear saturation plateau, thus indicating an adequate representation of the S. meliloti plasmid-profile types in the isolates studied. The results show that isolates of nearly 14% of the plasmid OTUs hosted transmissible plasmids and that isolates of 29% of the plasmid OTUs were able to retransfer the previously characterized mobilizable-cryptic plasmid pSmeLPU88b to a third recipient strain. It is noteworthy that isolates belonging to 14% of the plasmid OTUs proved to be refractory to the entrance of the model plasmid pSmeLPU88b, suggesting either the presence of surface exclusion phenomena or the occurrence of restriction incompatibility with the incoming replicon. Incompatibility for replication between resident plasmids and plasmid pSmeLPU88b was observed in c. 20% of the OTUs. The results reported here reveal a widespread compatibility among the conjugal functions of the cryptic plasmids in S. meliloti, and this fact, together with the observed high proportion of existing donor genotypes, points to the extrachromosomal compartment of the species as being an extremely active plasmid mobilome.

  6. Plasmid mediated enhancement of uv resistance in Streptococcus faecalis

    International Nuclear Information System (INIS)

    Miehl, R.; Miller, M.; Yasbin, R.E.

    1980-01-01

    A 38.5-Mdal plasmid of Streptococcus faecalis subdp. zymogenes has been shown to enhance survival following uv irradiation. In addition, the presence of this plasmid increases the mutation frequencies following uv irradiation and enhanced W-reactivation. The data presented indicate that S. faecalis has an inducible error-prone repair system and that the plasmid enhances these repair functions

  7. Construction of Biologically Functional Bacterial Plasmids In Vitro

    Science.gov (United States)

    Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Helling, Robert B.

    1973-01-01

    The construction of new plasmid DNA species by in vitro joining of restriction endonuclease-generated fragments of separate plasmids is described. Newly constructed plasmids that are inserted into Escherichia coli by transformation are shown to be biologically functional replicons that possess genetic properties and nucleotide base sequences from both of the parent DNA molecules. Functional plasmids can be obtained by reassociation of endonuclease-generated fragments of larger replicons, as well as by joining of plasmid DNA molecules of entirely different origins. Images PMID:4594039

  8. Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences

    Science.gov (United States)

    Garcillán-Barcia, M. Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M.; de la Cruz, Fernando

    2014-01-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  9. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences.

    Science.gov (United States)

    Lanza, Val F; de Toro, María; Garcillán-Barcia, M Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M; de la Cruz, Fernando

    2014-12-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

  10. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET, a new method for plasmid reconstruction from whole genome sequences.

    Directory of Open Access Journals (Sweden)

    Val F Lanza

    2014-12-01

    Full Text Available Bacterial whole genome sequence (WGS methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage, comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC, comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

  11. Ecological and genetic determinants of plasmid distribution in Escherichia coli.

    Science.gov (United States)

    Medaney, Frances; Ellis, Richard J; Raymond, Ben

    2016-11-01

    Bacterial plasmids are important carriers of virulence and antibiotic resistance genes. Nevertheless, little is known of the determinants of plasmid distribution in bacterial populations. Here the factors affecting the diversity and distribution of the large plasmids of Escherichia coli were explored in cattle grazing on semi-natural grassland, a set of populations with low frequencies of antibiotic resistance genes. Critically, the population genetic structure of bacterial hosts was chararacterized. This revealed structured E. coli populations with high diversity between sites and individuals but low diversity within cattle hosts. Plasmid profiles, however, varied considerably within the same E. coli genotype. Both ecological and genetic factors affected plasmid distribution: plasmid profiles were affected by site, E. coli diversity, E. coli genotype and the presence of other large plasmids. Notably 3/26 E. coli serotypes accounted for half the observed plasmid-free isolates indicating that within species variation can substantially affect carriage of the major conjugative plasmids. The observed population structure suggest that most of the opportunities for within species plasmid transfer occur between different individuals of the same genotype and support recent experimental work indicating that plasmid-host coevolution, and epistatic interactions on fitness costs are likely to be important in determining occupancy. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids: Part I: Comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL).

    Science.gov (United States)

    Dreßen, Alana; Hilberath, Thomas; Mackfeld, Ursula; Billmeier, Arne; Rudat, Jens; Pohl, Martina

    2017-09-20

    Phenylalanine ammonia lyase (PAL) from Arabidopsis thaliana (AtPAL2) was comparatively characterized to the well-studied enzyme from parsley (PcPAL1) and Rhodosporidium toruloides (RtPAL) with respect to kinetic parameters for the deamination and the amination reaction, pH- and temperature optima and the substrate range of the amination reaction. Whereas both plant enzymes are specific for phenylalanine, the bifunctional enzyme from Rhodosporidium toruloides shows K M -values for L-Phe and L-Tyr in the same order of magnitude and, compared to both plant enzymes, a 10-15-fold higher activity. At 30°C all enzymes were sufficiently stable with half-lives of 3.4days (PcPAL1), 4.6days (AtPAL2) and 9.7days (RtPAL/TAL). Very good results for the amination of various trans-cinnamic acid derivatives were obtained using E. coli cells as whole cell biocatalysts in ammonium carbonate buffer. Investigation of the substrate ranges gave interesting results for the newly tested enzymes from A. thaliana and R. toruloides. Only the latter accepts besides 4-hydroxy-CA also 3-methoxy-4-hydroxy-CA as a substrate, which is an interesting intermediate for the formation of pharmaceutically relevant L-Dopa. AtPAL2 is a very good catalyst for the formation of (S)-3-F-Phe, (S)-4-F-Phe and (S)-2-Cl-Phe. Such non-canonical amino acids are valuable building blocks for the formation of various drug molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH.

    Science.gov (United States)

    Nielsen, Tue Kjærgaard; Rasmussen, Morten; Demanèche, Sandrine; Cecillon, Sébastien; Vogel, Timothy M; Hansen, Lars Hestbjerg

    2017-09-01

    Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Identification of the First Riboflavin Catabolic Gene Cluster Isolated from Microbacterium maritypicum G10*

    OpenAIRE

    Xu, Hui; Chakrabarty, Yindrila; Philmus, Benjamin; Mehta, Angad P.; Bhandari, Dhananjay; Hohmann, Hans-Peter; Begley, Tadhg P.

    2016-01-01

    Riboflavin is a common cofactor, and its biosynthetic pathway is well characterized. However, its catabolic pathway, despite intriguing hints in a few distinct organisms, has never been established. This article describes the isolation of a Microbacterium maritypicum riboflavin catabolic strain, and the cloning of the riboflavin catabolic genes. RcaA, RcaB, RcaD, and RcaE were overexpressed and biochemically characterized as riboflavin kinase, riboflavin reductase, ribokinase, and riboflavin ...

  15. Shared strategies for β-lactam catabolism in the soil microbiome

    DEFF Research Database (Denmark)

    Crofts, Terence S.; Wang, Bin; Spivak, Aaron

    2018-01-01

    The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. Genomic......, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility....

  16. Characterization of a collection of plasmid-containing bacteria isolated from an on-farm biopurification system used for pesticide removal.

    Science.gov (United States)

    Martini, María Carla; Albicoro, Francisco Javier; Nour, Eman; Schlüter, Andreas; van Elsas, Jan Dirk; Springael, Dirk; Smalla, Kornelia; Pistorio, Mariano; Lagares, Antonio; Del Papa, María Florencia

    2015-07-01

    Biopurification systems (BPS) are complex soil-related and artificially-generated environments usually designed for the removal of toxic compounds from contaminated wastewaters. The present study has been conducted to isolate and characterize a collection of cultivable plasmid-carrying bacterial isolates recovered from a BPS established for the decontamination of wastewater generated in a farmyard. Out of 1400 isolates, a collection of 75 plasmid-containing bacteria was obtained, of which 35 representative isolates comprising in total at least 50 plasmids were chosen for further characterization. Bacterial hosts were taxonomically assigned by 16S ribosomal RNA gene sequencing and phenotypically characterized according to their ability to grow in presence of different antibiotics and heavy metals. The study demonstrated that a high proportion of the isolates was tolerant to antibiotics and/or heavy metals, highlighting the on-farm BPS enrichment in such genetic traits. Several plasmids conferring such resistances in the bacterial collection were detected to be either mobilizable or selftransmissible. Occurrence of broad host range plasmids of the incompatibility groups IncP, IncQ, IncN and IncW was examined with positive results only for the first group. Presence of the IS1071 insertion sequence, frequently associated with xenobiotics degradation genes, was detected in DNA obtained from 24 of these isolates, strongly suggesting the presence of yet-hidden catabolic activities in the collection of isolates. The results showed a remarkable diversity in the plasmid mobilome of cultivable bacteria in the BPS with the presence of abundant resistance markers of different types, thus providing a suitable environment to investigate the genetic structure of the mobile genetic pool in a model on-farm biofilter for wastewater decontamination in intensive agricultural production. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Identification of the First Riboflavin Catabolic Gene Cluster Isolated from Microbacterium maritypicum G10.

    Science.gov (United States)

    Xu, Hui; Chakrabarty, Yindrila; Philmus, Benjamin; Mehta, Angad P; Bhandari, Dhananjay; Hohmann, Hans-Peter; Begley, Tadhg P

    2016-11-04

    Riboflavin is a common cofactor, and its biosynthetic pathway is well characterized. However, its catabolic pathway, despite intriguing hints in a few distinct organisms, has never been established. This article describes the isolation of a Microbacterium maritypicum riboflavin catabolic strain, and the cloning of the riboflavin catabolic genes. RcaA, RcaB, RcaD, and RcaE were overexpressed and biochemically characterized as riboflavin kinase, riboflavin reductase, ribokinase, and riboflavin hydrolase, respectively. Based on these activities, a pathway for riboflavin catabolism is proposed. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Identification of the First Riboflavin Catabolic Gene Cluster Isolated from Microbacterium maritypicum G10*

    Science.gov (United States)

    Xu, Hui; Chakrabarty, Yindrila; Philmus, Benjamin; Mehta, Angad P.; Bhandari, Dhananjay; Hohmann, Hans-Peter; Begley, Tadhg P.

    2016-01-01

    Riboflavin is a common cofactor, and its biosynthetic pathway is well characterized. However, its catabolic pathway, despite intriguing hints in a few distinct organisms, has never been established. This article describes the isolation of a Microbacterium maritypicum riboflavin catabolic strain, and the cloning of the riboflavin catabolic genes. RcaA, RcaB, RcaD, and RcaE were overexpressed and biochemically characterized as riboflavin kinase, riboflavin reductase, ribokinase, and riboflavin hydrolase, respectively. Based on these activities, a pathway for riboflavin catabolism is proposed. PMID:27590337

  19. Development of phenanthrene catabolism in natural and artificial soils

    International Nuclear Information System (INIS)

    Rhodes, Angela H.; Hofman, Jakub; Semple, Kirk T.

    2008-01-01

    The characteristics of natural soils often vary from those of artificial soil (e.g. OECD), which may lead to substantial differences in the bioavailability of test substances. The aim of this investigation was to characterise the development of phenanthrene catabolism in both natural and artificial soils with varying total organic carbon (TOC) content after 1, 14, 42 and 84 d soil-phenanthrene contact time. Indigenous catabolic activity was measured via the addition of 14 C-phenanthrene using the respirometric soil slurry assay. Notably, the lag phases, fastest rates and total extents of 14 C-phenanthrene degradation were relatively comparable in soils with similar TOC content after 1 d contact time. However, natural soils generally exhibited significantly shorter lag phases, faster rates and higher extents of mineralisation, than their artificial counterparts after 42 and 84 d contact time. Such findings suggest that the extrapolation of results from artificial soils to real/natural soils may not be straightforward. - Natural and artificial soils display different phenanthrene mineralisation profiles suggesting that the extrapolation of results from artificial soils to real/natural soils may not be straightforward

  20. Inhibition of AMPK catabolic action by GSK3

    Science.gov (United States)

    Suzuki, Tsukasa; Bridges, Dave; Nakada, Daisuke; Skiniotis, Georgios; Morrison, Sean J.; Lin, Jiandie; Saltiel, Alan R.; Inoki, Ken

    2013-01-01

    SUMMARY AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by inhibiting anabolic and activating catabolic processes. While AMPK activation has been extensively studied, mechanisms that inhibit AMPK remain elusive. Here we report that glycogen synthase kinase 3 (GSK3) inhibits AMPK function. GSK3 forms a stable complex with AMPK through interactions with the AMPK β regulatory subunit and phosphorylates the AMPK α catalytic subunit. This phosphorylation enhances the accessibility of the activation loop of the α subunit to phosphatases, thereby inhibiting AMPK kinase activity. Surprisingly, PI3K-Akt signaling, which is a major anabolic signaling and normally inhibits GSK3 activity, promotes GSK3 phosphorylation and inhibition of AMPK, thus revealing how AMPK senses anabolic environments in addition to cellular energy levels. Consistently, disrupting GSK3 function within the AMPK complex sustains higher AMPK activity and cellular catabolic processes even under anabolic conditions, indicating that GSK3 acts as a critical sensor for anabolic signaling to regulate AMPK. PMID:23623684

  1. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.

    Science.gov (United States)

    Peck, Spencer C; van der Donk, Wilfred A

    2013-08-01

    Natural product biosynthesis has proven a fertile ground for the discovery of novel chemistry. Herein we review the progress made in elucidating the biosynthetic pathways of phosphonate and phosphinate natural products such as the antibacterial compounds dehydrophos and fosfomycin, the herbicidal phosphinothricin-containing peptides, and the antimalarial compound FR-900098. In each case, investigation of the pathway has yielded unusual, and often unprecedented, biochemistry. Likewise, recent investigations have uncovered novel ways to cleave the CP bond to yield phosphate under phosphorus starvation conditions. These include the discovery of novel oxidative cleavage of the CP bond catalyzed by PhnY and PhnZ as well as phosphonohydrolases that liberate phosphate from phosphonoacetate. Perhaps the crown jewel of phosphonate catabolism has been the recent resolution of the longstanding problem of the C-P lyase responsible for reductively cleaving the CP bond of a number of different phosphonates to release phosphate. Taken together, the strides made on both metabolic and catabolic fronts illustrate an array of fascinating biochemistry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. CARTOGRAPHIE DU PLASMIDE pSU100, PLASMIDE CRYPTIQUE DE LACTOBACILLUS CASEI

    Directory of Open Access Journals (Sweden)

    F BENSALAH

    2003-06-01

    Ce plasmide appelé pSU100 a été cloné dans le vecteur de transformation pUC18 au site EcoRI chez E. coli JM103. Les profils électrophorétiques de restriction obtenus par des digestions simples, doubles et triples sous l’action de 33 endonucléases, ont contribué à l’élaboration d’une carte de restriction de ce plasmide. Cinq sites uniques ont été identifiés, ainsi que d’autres sites doubles et multiples. Une étude préliminaire du rôle physiologique de ce plasmide a permis de déceler une résistance à la kanamycine.

  3. Yeast transformation mediated by Agrobacterium strains harboring an Ri plasmid: comparative study between GALLS of an Ri plasmid and virE of a Ti plasmid.

    Science.gov (United States)

    Kiyokawa, Kazuya; Yamamoto, Shinji; Sato, Yukari; Momota, Naoto; Tanaka, Katsuyuki; Moriguchi, Kazuki; Suzuki, Katsunori

    2012-07-01

    Agrobacterium strains containing a Ti plasmid can transfer T-DNA not only to plants but also to fungi, including the yeast Saccharomyces cerevisiae. However, no Agrobacterium strain harboring an Ri plasmid has been evaluated in fungal transformation. Some Ri plasmids have GALLS , instead of virE1 and virE2. GALLS protein can functionally substitute in plant transformation for a structurally different protein VirE2. In this study, we compared the yeast transformation ability among Agrobacterium donors: a strain containing a Ti plasmid, strains harboring either an agropine-type or a mikimopine-type Ri plasmid, and a strain having a modified Ri plasmid supplemented with a Ti plasmid type virE operon. Agrobacterium strains possessing GALLS transformed yeast cells far less efficiently than the strain containing virE operon. Production of GALLS in recipient yeast cells improved the yeast transformation mediated by an Agrobacterium strain lacking neither GALLS nor virE operon. A reporter assay to detect mobilization of the proteins fused with Cre recombinase revealed that VirE2 protein is much more abundant in yeast cells than GALLS. Based on these results, we concluded that the low yeast transformability mediated by Agrobacterium strains having the Ri plasmid is because of low amount of mobilized GALLS in yeast cells. © 2012 The Authors Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  4. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-01-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. 14 CO 2 production from the catabolism of 14 C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. 14 CO 2 formation from [1- 14 C]- and [2- 14 C]glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate

  5. Insights into the evolution of sialic acid catabolism among bacteria

    Directory of Open Access Journals (Sweden)

    Almagro-Moreno Salvador

    2009-05-01

    Full Text Available Abstract Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA, epimerase (NanE, and kinase (NanK, necessary for the catabolism of sialic acid (the Nan cluster, are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body

  6. Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri.

    OpenAIRE

    Vescovo, M; Morelli, L; Bottazzi, V

    1982-01-01

    Sixteen strains of Lactobacillus reuteri and 20 strains of Lactobacillus acidophilus were tested for resistance to 22 antibiotics by using commercially available sensitivity disks. Evidence suggesting linkage of these resistances to plasmids was obtained by "curing" experiments with acridine dyes and high growth temperatures. Examination of plasmid patterns of agarose gel electrophoresis provided further evidence of loss in plasmid DNA under curing conditions in some of the strains examined.

  7. Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment

    International Nuclear Information System (INIS)

    Posen, Paulette; Lovett, Andrew; Hiscock, Kevin; Evers, Sarah; Ward, Rob; Reid, Brian

    2006-01-01

    The catabolic activity of incumbent microorganisms in soil samples of eleven dissimilar soil series was investigated, with respect to the herbicide isoproturon. Soils were collected from a 30 x 37 km area of river catchment to the north-west of London, England. Catabolic activity in each soil type during a 500 h assay was determined by 14 C-radiorespirometry. Results showed four soils that exhibited high levels of catabolic activity (33-44% mineralisation) while the remaining seven soils showed lower levels of catabolic activity (12-16% mineralisation). There was evidence to suggest that soils exhibiting high catabolic activity had low ( 14 C-radiorespirometric results were used to produce a GIS layer representing levels of catabolic activity for the dissimilar soils across the study area. This layer was combined with other GIS layers relating to pesticide attenuation, including soil organic carbon content, depth to groundwater and hydrogeology, to produce a map showing risk of groundwater contamination by isoproturon. The output from this approach was compared with output from an attenuation-only approach and differences appraised. Inclusion of the catabolism layer resulted in a lowering of risk in the model in 15% of the study area. Although there appears to be limited benefit in including pesticide catabolic activity in this regional-scale groundwater risk model, this type of addition could be useful in a site-specific risk assessment

  8. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use

    International Nuclear Information System (INIS)

    Reid, Brian J.; Papanikolaou, Niki D.; Wilcox, Ronah K.

    2005-01-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by 14 C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 μg kg -1 ) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant. - Dissimilar levels of isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use influence inferred risk

  9. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Brian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)]. E-mail: b.reid@uea.ac.uk; Papanikolaou, Niki D. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Wilcox, Ronah K. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by {sup 14}C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 {mu}g kg{sup -1}) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant. - Dissimilar levels of isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use influence inferred risk.

  10. Plasmid P1 replication: negative control by repeated DNA sequences.

    OpenAIRE

    Chattoraj, D; Cordes, K; Abeles, A

    1984-01-01

    The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pi...

  11. Plasmids foster diversification and adaptation of bacterial populations in soil.

    Science.gov (United States)

    Heuer, Holger; Smalla, Kornelia

    2012-11-01

    It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Permissiveness of soil microbial communities towards broad host range plasmids

    DEFF Research Database (Denmark)

    Klümper, Uli

    . Plasmids are implicated in the rapid spread of antibiotic resistance and the emergence of multi-resistant pathogenic bacteria, making it crucial to be able to quantify, understand, and, ideally, control plasmid transfer in mixed microbial communities. The fate of plasmids in microbial communities...... of microbial communities may be directly interconnected through transfer of BHR plasmids at a so far unrecognized level. The developed method furthermore enabled me to explore how agronomic practices may affect gene transfer in soil microbial communities. I compared bacterial communities extracted from plots...

  13. Expression of eicosanoid biosynthetic and catabolic enzymes in peritoneal endometriosis.

    Science.gov (United States)

    Lousse, J-C; Defrère, S; Colette, S; Van Langendonckt, A; Donnez, J

    2010-03-01

    Increased peritoneal eicosanoid concentrations have been reported in endometriosis patients and might be important in disease-associated pain and inflammation. Here, we evaluated the expression of key biosynthetic and catabolic enzymes involved in this abnormal eicosanoid production in peritoneal macrophages and endometriotic lesions. Peritoneal macrophages, endometriotic lesions and matched eutopic endometrium were collected from endometriosis patients (n = 40). Peritoneal macrophages and eutopic endometrium samples were also collected from disease-free women (n = 25). Expression of type IIA secretory phospholipase A(2) (sPLA(2)-IIA), cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and 5-lipoxygenase (5-LO) was quantified by real-time PCR, and these five key enzymes were localized by immunohistochemistry. sPLA(2)-IIA, COX-2 and mPGES-1 mRNA was significantly increased in peritoneal macrophages of endometriosis patients compared with controls (P = 0.006, P = 0.016 and P = 0.025, respectively). In endometriosis patients, sPLA(2)-IIA, mPGES-1 and 15-PGDH mRNA was significantly enhanced in peritoneal lesions compared with matched eutopic endometrium (P endometriosis group compared with controls (P = 0.023). Finally, sPLA(2)-IIA, COX-2, mPGES-1 and 15-PGDH immunostaining was found mainly in endometrial glands, whereas 5-LO was distributed throughout the glands and stroma. Our study highlights an imbalance between eicosanoid biosynthesis and degradation in endometriosis patients. Both peritoneal macrophages and endometriotic lesions may be involved. Research into new molecules inhibiting biosynthetic enzymes (such as sPLA(2)-IIA and mPGES-1) and/or activating catabolic enzymes (such as 15-PGDH) may prove to be a major field of investigation in the development of targeted medical therapies.

  14. Lipid catabolism of invertebrate predator indicates widespread wetland ecosystem degradation

    Science.gov (United States)

    Anteau, Michael J.; Afton, Alan D.

    2011-01-01

    Animals frequently undergo periods when they accumulate lipid reserves for subsequent energetically expensive activities, such as migration or breeding. During such periods, daily lipid-reserve dynamics (DLD) of sentinel species can quantify how landscape modifications affect function, health, and resilience of ecosystems. Aythya affinis (Eyton 1838; lesser scaup; diving duck) are macroinvertebrate predators; they migrate through an agriculturally dominated landscape in spring where they select wetlands with the greatest food density to refuel and accumulate lipid reserves for subsequent reproduction. We index DLD by measuring plasma-lipid metabolites of female scaup (n = 459) that were refueling at 75 spring migration stopover areas distributed across the upper Midwest, USA. We also indexed DLD for females (n = 44) refueling on a riverine site (Pool 19) south of our upper Midwest study area. We found that mean DLD estimates were significantly (P<0.05) less than zero in all ecophysiographic regions of the upper Midwest, and the greatest negative value was in the Iowa Prairie Pothole region (-31.6). Mean DLD was 16.8 at Pool 19 and was markedly greater than in any region of the upper Midwest. Our results indicate that females catabolized rather than stored lipid reserves throughout the upper Midwest. Moreover, levels of lipid catabolism are alarming, because scaup use the best quality wetlands available within a given stopover area. Accordingly, these results provide evidence of wetland ecosystem degradation across this large agricultural landscape and document affects that are carried-up through several trophic levels. Interestingly, storing of lipids by scaup at Pool 19 likely reflects similar ecosystem perturbations as observed in the upper Midwest because wetland drainage and agricultural runoff nutrifies the riverine habitat that scaup use at Pool 19. Finally, our results underscore how using this novel technique to monitor DLD, of a carefully selected sentinel

  15. Lipid catabolism of invertebrate predator indicates widespread wetland ecosystem degradation.

    Directory of Open Access Journals (Sweden)

    Michael J Anteau

    Full Text Available Animals frequently undergo periods when they accumulate lipid reserves for subsequent energetically expensive activities, such as migration or breeding. During such periods, daily lipid-reserve dynamics (DLD of sentinel species can quantify how landscape modifications affect function, health, and resilience of ecosystems. Aythya affinis (Eyton 1838; lesser scaup; diving duck are macroinvertebrate predators; they migrate through an agriculturally dominated landscape in spring where they select wetlands with the greatest food density to refuel and accumulate lipid reserves for subsequent reproduction. We index DLD by measuring plasma-lipid metabolites of female scaup (n = 459 that were refueling at 75 spring migration stopover areas distributed across the upper Midwest, USA. We also indexed DLD for females (n = 44 refueling on a riverine site (Pool 19 south of our upper Midwest study area. We found that mean DLD estimates were significantly (P<0.05 less than zero in all ecophysiographic regions of the upper Midwest, and the greatest negative value was in the Iowa Prairie Pothole region (-31.6. Mean DLD was 16.8 at Pool 19 and was markedly greater than in any region of the upper Midwest. Our results indicate that females catabolized rather than stored lipid reserves throughout the upper Midwest. Moreover, levels of lipid catabolism are alarming, because scaup use the best quality wetlands available within a given stopover area. Accordingly, these results provide evidence of wetland ecosystem degradation across this large agricultural landscape and document affects that are carried-up through several trophic levels. Interestingly, storing of lipids by scaup at Pool 19 likely reflects similar ecosystem perturbations as observed in the upper Midwest because wetland drainage and agricultural runoff nutrifies the riverine habitat that scaup use at Pool 19. Finally, our results underscore how using this novel technique to monitor DLD, of a carefully

  16. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos.

    Science.gov (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim

    2015-11-15

    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome. © 2015. Published by The Company of Biologists Ltd.

  17. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community

    DEFF Research Database (Denmark)

    Klümper, Uli; Riber, Leise; Dechesne, Arnaud

    2014-01-01

    and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse...

  18. Plasmid Conjugation in E. coli and Drug Resistance | Igwe ...

    African Journals Online (AJOL)

    This study aimed at determining the antibiotics susceptibility pattern of E. coli isolates claimed to be multidrug resistance using disc diffusion method. It also determined the presence of transferable resistance plasmids through conjugation and evaluated the medical significance of plasmid encoding E. coli and drug ...

  19. Resistant plasmid profile analysis of multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    Multiple drug resistance isolates causing UTI has seri- ous implications for the empiric therapy against patho- genic isolates and for the possible co-selection of antimicrobial resistant mediated by multi drug resistant plasmids21,22. E. coli from clinical isolates are known to harbour plasmids of different molecular sizes23.

  20. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    Science.gov (United States)

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  1. Application of methylation in improving plasmid transformation into Helicobacter pylori.

    Science.gov (United States)

    Zhao, Huilin; Xu, Linlin; Rong, Qianyu; Xu, Zheng; Ding, Yunfei; Zhang, Ying; Wu, Yulong; Li, Boqing; Ji, Xiaofei

    2018-05-23

    Helicobacter pylori is an important gastrointestinal pathogen. Its strains possess different levels of powerful restriction modification systems, which are significant barriers to genetic tools used for studying the role of functional genes in its pathogenesis. Methylating vectors in vitro was reported as an alternative to overcome this barrier in several bacteria. In this study we used two H. pylori-E. coli shuttle plasmids and several single/double-crossover homologous recombination gene-targeting plasmids, to test the role of methylation in H. pylori transformation. According to our results, transformants could be obtained only after shuttle plasmids were methylated before transformation. It is helpful in gene complementation and over-expression although at a low frequency. The frequency of gene-targeting transformation was also increased after methylation, especially for the single-crossover recombination plasmids, the transformants of which could only be obtained after methylation. For the double-crossover recombination targeting plasmids, the initial yield of transformants was 0.3-0.8 × 10 2 CFUs per microgram plasmid DNA. With the help of methylation, the yield was increased to 0.4-1.3 × 10 2 CFUs per microgram plasmid DNA. These results suggest that in vitro methylation can improve H. pylori transformation by different plasmids, which will benefit the pathogenic mechanism research. Copyright © 2018. Published by Elsevier B.V.

  2. Functional analysis of three plasmids from Lactobacillus plantarum

    NARCIS (Netherlands)

    Kranenburg, R. van; Golic, N.; Bongers, R.; Leer, R.J.; Vos, W.M. de; Siezen, R.J.; Kleerebezem, M.

    2005-01-01

    Lactobacillus plantarum WCFS1 harbors three plasmids, pWCFS101, pWCFS102, and pWCFS103, with sizes of 1,917, 2,365, and 36,069 bp, respectively. The two smaller plasmids are of unknown function and contain replication genes that are likely to function via the rolling-circle replication mechanism.

  3. Production and pharmaceutical formulation of plasmid DNA vaccines

    NARCIS (Netherlands)

    van der Heijden, I.

    2013-01-01

    Research leading to the thesis ‘Production and pharmaceutical formulation of plasmid DNA vaccines‘ can be divided into two parts. The first part describes the development of a Good Manufacturing Practice (GMP) compliant plasmid DNA production process of pDNA vaccines for the treatment of Human

  4. Transfer of conjugative plasmids among bacteria under environmentally relevant conditions

    DEFF Research Database (Denmark)

    Musovic, Sanin

    Mobile genetiske elementer (f.eks. plasmider), der ofte bærer ekstra funktioner såsom antibiotikaresistens, eller kataboliske- og xenobiotiske nedbrydnings gener, antages at have en meget vigtigt evolutionær rolle for bakterier. I denne PhD afhandling undersøgte jeg størrelsen af plasmid overførs...

  5. Two novel conjugative plasmids from a single strain of Sulfolobus

    NARCIS (Netherlands)

    Erauso, G.; Stedman, K.M.; Werken, van de H.J.G.; Zillig, W.; Oost, van der J.

    2006-01-01

    Two conjugative plasmids (CPs) were isolated and characterized from the same 'Sulfolobus islandicus' strain, SOG2/4, The plasmids were separated from each other and transferred into Sulfolobus soltataricus. One has a high copy number and is not stable (pSOG1) whereas the other has a low copy number

  6. The technology of large-scale pharmaceutical plasmid purification ...

    African Journals Online (AJOL)

    Further test demonstrated that the pcDNAlacZ purified with CTAB and authoritative endotoxin-free plasmid Kit had the similar transfection efficiency in vivo and in vitro. CTAB can be used for plasmid purification; the main advantages of the DNAs purified with CTAB include the avoidance of animal-derived enzymes, toxic ...

  7. Identification of IncA/C Plasmid Replication and Maintenance Genes and Development of a Plasmid Multilocus Sequence Typing Scheme.

    Science.gov (United States)

    Hancock, Steven J; Phan, Minh-Duy; Peters, Kate M; Forde, Brian M; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Paterson, David L; Walsh, Timothy R; Beatson, Scott A; Schembri, Mark A

    2017-02-01

    Plasmids of incompatibility group A/C (IncA/C) are becoming increasingly prevalent within pathogenic Enterobacteriaceae They are associated with the dissemination of multiple clinically relevant resistance genes, including bla CMY and bla NDM Current typing methods for IncA/C plasmids offer limited resolution. In this study, we present the complete sequence of a bla NDM-1 -positive IncA/C plasmid, pMS6198A, isolated from a multidrug-resistant uropathogenic Escherichia coli strain. Hypersaturated transposon mutagenesis, coupled with transposon-directed insertion site sequencing (TraDIS), was employed to identify conserved genetic elements required for replication and maintenance of pMS6198A. Our analysis of TraDIS data identified roles for the replicon, including repA, a toxin-antitoxin system; two putative partitioning genes, parAB; and a putative gene, 053 Construction of mini-IncA/C plasmids and examination of their stability within E. coli confirmed that the region encompassing 053 contributes to the stable maintenance of IncA/C plasmids. Subsequently, the four major maintenance genes (repA, parAB, and 053) were used to construct a new plasmid multilocus sequence typing (PMLST) scheme for IncA/C plasmids. Application of this scheme to a database of 82 IncA/C plasmids identified 11 unique sequence types (STs), with two dominant STs. The majority of bla NDM -positive plasmids examined (15/17; 88%) fall into ST1, suggesting acquisition and subsequent expansion of this bla NDM -containing plasmid lineage. The IncA/C PMLST scheme represents a standardized tool to identify, track, and analyze the dissemination of important IncA/C plasmid lineages, particularly in the context of epidemiological studies. Copyright © 2017 American Society for Microbiology.

  8. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae

    DEFF Research Database (Denmark)

    Johnson, Timothy J.; Bielak, Eliza Maria; Fortini, Daniela

    2012-01-01

    and biofilm formation. Previous plasmid-based replicon typing procedures have indicated that the prevalence of IncX plasmids is low among members of the Enterobacteriaceae. However, examination of a number of IncX-like plasmid sequences and their occurrence in various organisms suggests that IncX plasmid...

  9. Deciphering conjugative plasmid permissiveness in wastewater microbiomes

    DEFF Research Database (Denmark)

    Jacquiod, Samuel Jehan Auguste; Brejnrod, Asker Daniel; Milani, Stefan Morberg

    2017-01-01

    Wastewater treatment plants (WWTPs) are designed to robustly treat polluted water. They are characterized by ceaseless flows of organic, chemical and microbial matter, followed by treatment steps before environmental release. WWTPs are hotspots of horizontal gene transfer between bacteria via...... still remains largely uncharted. Furthermore, current in vitro methods used to assess conjugation in complex microbiomes do not include in situ behaviours of recipient cells, resulting in partial understanding of transfers. We investigated the in vitro conjugation capacities of WWTP microbiomes from...... inlet sewage and outlet treated water using the broad-host range IncP-1 conjugative plasmid, pKJK5. A thorough molecular approach coupling metagenomes to 16S rRNA DNA/cDNA amplicon sequencing was established to characterize microbiomes using the ecological concept of functional response groups. A broad...

  10. Plasmid-mediated UV-protection in Streptococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Chopin, M.C.; Rouault, A. (Institut National de la Recherche Agronomique, Rennes (France). Lab. de Recherches de Technologie Laitiere); Moillo-Batt, A. (Institut National de la Sante et de la Recherche Medicale (INSERM), Hopital de Pontchaillon, 35 - Rennes (France))

    1985-02-01

    Streptococcus lactis strain IL594 contains 9 plasmids, designated pIL1 to pIL9. On the basis of protoplast-induced curing experiments the authors showed that derivatives containing pIL7 were resistant to UV-irradiation while derivatives lacking pIL7 were sensitive. The pIL7-determined UV-protection was confirmed by co-transfer of the plasmid and of the character into a plasmid-free derivative of S. lactis IL594. Moreover, prophage induction required higher UV-fluence in this derivative carrying pIL7 than in the plasmid-free strain. This is the first report of a plasmid-mediated UV-protection in group N streptococci.

  11. Plasmid-mediated UV-protection in Streptococcus lactis

    International Nuclear Information System (INIS)

    Chopin, M.-C.; Rouault, A.

    1985-01-01

    Streptococcus lactis strain IL594 contains 9 plasmids, designated pIL1 to pIL9. On the basis of protoplast-induced curing experiments the authors showed that derivatives containing pIL7 were resistant to UV-irradiation while derivatives lacking pIL7 were sensitive. The pIL7-determined UV-protection was confirmed by cotransfer of the plasmid and of the character into a plasmid-free derivative of S. lactis IL594. Moreover, prophage induction required higher UV-fluence in this derivative carrying pIL7 than in the plasmid-free strain. This is the first report of a plasmid-mediated UV-protection in group N streptococci. (orig.)

  12. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use.

    Science.gov (United States)

    Reid, Brian J; Papanikolaou, Niki D; Wilcox, Ronah K

    2005-02-01

    The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by (14)C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 microg kg(-1)) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant.

  13. Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Posen, Paulette [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom)]. E-mail: p.posen@uea.ac.uk; Lovett, Andrew [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom); Hiscock, Kevin [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom); Evers, Sarah [Environment Agency, Olton Court, 10 Warwick Road, Olton, Solihull, B92 7HX (United Kingdom); Ward, Rob [Environment Agency, Olton Court, 10 Warwick Road, Olton, Solihull, B92 7HX (United Kingdom); Reid, Brian [School of Environmental Sciences, University of East Anglia, Earlham Road, Norwich NR4 7TJ (United Kingdom)

    2006-08-31

    The catabolic activity of incumbent microorganisms in soil samples of eleven dissimilar soil series was investigated, with respect to the herbicide isoproturon. Soils were collected from a 30 x 37 km area of river catchment to the north-west of London, England. Catabolic activity in each soil type during a 500 h assay was determined by {sup 14}C-radiorespirometry. Results showed four soils that exhibited high levels of catabolic activity (33-44% mineralisation) while the remaining seven soils showed lower levels of catabolic activity (12-16% mineralisation). There was evidence to suggest that soils exhibiting high catabolic activity had low (< 22%) clay content and tended towards lower organic carbon content (< 2.7%), but that these higher levels of catabolic activity were also related to pre-exposure to isoproturon. The {sup 14}C-radiorespirometric results were used to produce a GIS layer representing levels of catabolic activity for the dissimilar soils across the study area. This layer was combined with other GIS layers relating to pesticide attenuation, including soil organic carbon content, depth to groundwater and hydrogeology, to produce a map showing risk of groundwater contamination by isoproturon. The output from this approach was compared with output from an attenuation-only approach and differences appraised. Inclusion of the catabolism layer resulted in a lowering of risk in the model in 15% of the study area. Although there appears to be limited benefit in including pesticide catabolic activity in this regional-scale groundwater risk model, this type of addition could be useful in a site-specific risk assessment.

  14. Restriction Fragment Length Polymorphisms of Virulence Plasmids in Rhodococcus equi

    Science.gov (United States)

    Takai, Shinji; Shoda, Masato; Sasaki, Yukako; Tsubaki, Shiro; Fortier, Guillaume; Pronost, Stephane; Rahal, Karim; Becu, Teotimo; Begg, Angela; Browning, Glenn; Nicholson, Vivian M.; Prescott, John F.

    1999-01-01

    Virulent Rhodococcus equi, which is a well-known cause of pyogranulomatous pneumonia in foals, possesses a large plasmid encoding virulence-associated 15- to 17-kDa antigens. Foal and soil isolates from five countries—Argentina, Australia, Canada, France, and Japan—were investigated for the presence of 15- to 17-kDa antigens by colony blotting, using the monoclonal antibody 10G5, and the gene coding for 15- to 17-kDa antigens by PCR. Plasmid DNAs extracted from positive isolates were digested with restriction endonucleases BamHI, EcoRI, EcoT22I, and HindIII, and the digestion patterns that resulted divided the plasmids of virulent isolates into five closely related types. Three of the five types had already been reported in Canadian and Japanese isolates, and the two new types had been found in French and Japanese isolates. Therefore, we tentatively designated these five types 85-kb type I (pREAT701), 85-kb type II (a new type), 87-kb type I (EcoRI and BamHI type 2 [V. M. Nicholson and J. F. Prescott, J. Clin. Microbiol. 35:738–740, 1997]), 87-kb type II (a new type), and 90-kb (pREL1) plasmids. The 85-kb type I plasmid was found in isolates from Argentina, Australia, Canada, and France. Plasmid 87-kb type I was isolated in specimens from Argentina, Canada, and France. The 85-kb type II plasmid appeared in isolates from France. On the other hand, plasmids 87-kb type II and 90-kb were found only in isolates from Japan. These results revealed geographic differences in the distribution of the virulence plasmids found in the five countries and suggested that the restriction fragment length polymorphism of virulence plasmids might be useful to elucidate the molecular epidemiology of virulent R. equi in the world. PMID:10488224

  15. Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2016-06-01

    Full Text Available The liver is critical for maintaining systemic energy balance during starvation. To understand the role of hepatic fatty acid β-oxidation on this process, we generated mice with a liver-specific knockout of carnitine palmitoyltransferase 2 (Cpt2L−/−, an obligate step in mitochondrial long-chain fatty acid β-oxidation. Fasting induced hepatic steatosis and serum dyslipidemia with an absence of circulating ketones, while blood glucose remained normal. Systemic energy homeostasis was largely maintained in fasting Cpt2L−/− mice by adaptations in hepatic and systemic oxidative gene expression mediated in part by Pparα target genes including procatabolic hepatokines Fgf21, Gdf15, and Igfbp1. Feeding a ketogenic diet to Cpt2L−/− mice resulted in severe hepatomegaly, liver damage, and death with a complete absence of adipose triglyceride stores. These data show that hepatic fatty acid oxidation is not required for survival during acute food deprivation but essential for constraining adipocyte lipolysis and regulating systemic catabolism when glucose is limiting.

  16. l-Glucitol Catabolism in Stenotrophomonas maltophilia Ac

    Science.gov (United States)

    Brechtel, Elke; Huwig, Alexander; Giffhorn, Friedrich

    2002-01-01

    The carbohydrate catabolism of the bacterium Stenotrophomonas maltophilia Ac (previously named Pseudomonas sp. strain Ac), which is known to convert the unnatural polyol l-glucitol to d-sorbose during growth on the former as the sole source of carbon and energy, was studied in detail. All enzymes operating in a pathway that channels l-glucitol via d-sorbose into compounds of the intermediary metabolism were demonstrated, and for some prominent reactions the products of conversion were identified. d-Sorbose was converted by C-3 epimerization to d-tagatose, which, in turn, was isomerized to d-galactose. d-Galactose was the initial substrate of the De Ley-Doudoroff pathway, involving reactions of NAD-dependent oxidation of d-galactose to d-galactonate, its dehydration to 2-keto-3-deoxy-d-galactonate, and its phosphorylation to 2-keto-3-deoxy-d-galactonate 6-phosphate. Finally, aldol cleavage yielded pyruvate and d-glycerate 3-phosphate as the central metabolic intermediates. PMID:11823194

  17. A product of heme catabolism modulates bacterial function and survival.

    Directory of Open Access Journals (Sweden)

    Christopher L Nobles

    Full Text Available Bilirubin is the terminal metabolite in heme catabolism in mammals. After deposition into bile, bilirubin is released in large quantities into the mammalian gastrointestinal (GI tract. We hypothesized that intestinal bilirubin may modulate the function of enteric bacteria. To test this hypothesis, we investigated the effect of bilirubin on two enteric pathogens; enterohemorrhagic E. coli (EHEC, a Gram-negative that causes life-threatening intestinal infections, and E. faecalis, a Gram-positive human commensal bacterium known to be an opportunistic pathogen with broad-spectrum antibiotic resistance. We demonstrate that bilirubin can protect EHEC from exogenous and host-generated reactive oxygen species (ROS through the absorption of free radicals. In contrast, E. faecalis was highly susceptible to bilirubin, which causes significant membrane disruption and uncoupling of respiratory metabolism in this bacterium. Interestingly, similar results were observed for other Gram-positive bacteria, including B. cereus and S. aureus. A model is proposed whereby bilirubin places distinct selective pressure on enteric bacteria, with Gram-negative bacteria being protected from ROS (positive outcome and Gram-positive bacteria being susceptible to membrane disruption (negative outcome. This work suggests bilirubin has differential but biologically relevant effects on bacteria and justifies additional efforts to determine the role of this neglected waste catabolite in disease processes, including animal models.

  18. PLASMID-ENCODED PHTHALATE CATABOLIC PATHWAY IN ARTHROBACTER KEYSERI 12B: BIOTRANSFORMATIONS OF 2-SUBSTITUTED BENZOATES AND THEIR USE IN CLONING AND CHARACTERIZATION OF PHTHALATE CATABOLISM GENES AND GENE PRODUCTS

    Science.gov (United States)

    Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates)...

  19. Antibiotic resistance plasmids of Staphylococcus aureus and their clinical importance

    International Nuclear Information System (INIS)

    Lacey, R.W.

    1975-01-01

    A variety of plasmids were isolated physically, and most antibiotic resistance is thought to be plasmid mediated. A number of characters (e.g., resistance to erythromycin or methicillin, and production of pigment) are determined by genes that do not give clear indications of either plasmid or chromosomal location. Although the formation of a particular plasmid is probably, even in bacterial terms, a very rare event, once formed such an element can spread rapidly among the bacterial population. The spectacular increase in the incidence of penicillinase-producing hospital strains in the late 1940's could have been due in part to this process. Evidence is stronger, however, for the intercell transfer of recently isolated plasmids coding for resistance to fusidic acid (and penicillinase production), or for neomycin, or for tetracycline resistance. Study of bacterial plasmids can resolve fundamental biochemical problems, and give some insight into the life of the cell at the molecular level. But the immediate application of the study of staphylococcal plasmids may be directed towards improving the effectiveness of antibiotic therapy. The most important aspect of future anti-staphylococcal chemotherapy should thus be the limitation of the use of antibiotics, particularly for application to the skin and nose. (U.S.)

  20. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light

    International Nuclear Information System (INIS)

    Benoit, T.G.; Wilson, G.R.; Bull, D.L.; Aronson, A.I.

    1990-01-01

    Spores and vegetative cells of Bacillus thuringiensis were more sensitive to UV light than were spores or cells of plasmid-cured B. thuringiensis strains or of the closely related Bacillus cereus. Introduction of B. thuringiensis plasmids into B. cereus by cell mating increased the UV sensitivity of the cells and spores. Protoxins encoded by one or more B. thuringiensis plasmids were not involved in spore sensitivity, since a B. thuringiensis strain conditional for protoxin accumulation was equally sensitive at the permissive and nonpermissive temperatures. In addition, introduction of either a cloned protoxin gene, the cloning vector, or another plasmid not containing a protoxin gene into a plasmid-cured strain of B. thuringiensis all increased the UV sensitivity of the spores. Although the variety of small, acid-soluble proteins was the same in the spores of all strains examined, the quantity of dipicolinic acid was about twice as high in the plasmid-containing strains, and this may account for the differences in UV sensitivity of the spores. The cells of some strains harboring only B. thuringiensis plasmids were much more sensitive than cells of any of the other strains, and the differences were much greater than observed with spores

  1. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  2. Detection and Isolation of Novel Rhizopine-Catabolizing Bacteria from the Environment

    OpenAIRE

    Gardener, Brian B. McSpadden; de Bruijn, Frans J.

    1998-01-01

    Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 106 and 107 catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the know...

  3. Reprogramming amino acid catabolism in CHO cells with CRISPR-Cas9 genome editing improves cell growth and reduces by-product secretion

    DEFF Research Database (Denmark)

    Ley, Daniel; Pereira, Sara; Pedersen, Lasse Ebdrup

    2017-01-01

    CHO cells primarily utilize amino acids for three processes: biomass synthesis, recombinant protein production and catabolism. In this work, we disrupted 9 amino acid catabolic genes participating in 7 dierent catabolic pathways, to increase synthesis of biomass and recombinant protein, while red...... reducing production of growth-inhibiting metabolic by-products from amino acid catabolism....

  4. Impact of co-carriage of IncA/C plasmids with additional plasmids on the transfer of antimicrobial resistance in Salmonella enterica isolates.

    Science.gov (United States)

    Han, Jing; Pendleton, Sean J; Deck, Joanna; Singh, Ruby; Gilbert, Jeffrey; Johnson, Timothy J; Sanad, Yasser M; Nayak, Rajesh; Foley, Steven L

    2018-04-20

    Antimicrobial resistance in Salmonella enterica is often plasmid encoded. A key resistance plasmid group is the incompatibility group (Inc) A/C plasmids that often carry multiple resistance determinants. Previous studies showed that IncA/C plasmids were often co-located with other plasmids. The current study was undertaken to evaluate the impact of plasmid co-carriage on antimicrobial resistance and plasmid transfer. A total of 1267 Salmonella isolates, representing multiple serotypes and sources were previously subjected to susceptibility testing and 251 isolates with resistance to at least 5 antimicrobial agents were identified for further study. Each isolate was subjected to PCR-based replicon typing, and those with IncA/C plasmids were selected for plasmid isolation, PCR-based mapping of IncA/C plasmid backbone genes, and conjugation assays to evaluate resistance plasmid transferability. Of the 87 identified IncA/C positive isolates, approximately 75% carried a plasmid with another identified replicon type, with the most common being I1 (39%), FIA, FIIA, FIB and HI2 (each 15%). PCR-based mapping indicated significant diversity in IncA/C backbone content, especially in regions encoding transfer-associated and hypothetical proteins. Conjugation experiments showed that nearly 68% of the isolates transferred resistance plasmids, with 90% containing additional identified plasmids or larger (>50 kb) non-typeable plasmids. The majority of IncA/C-positive strains were able to conjugally transfer antimicrobial resistance to the recipient, encoded by IncA/C and/or co-carried plasmids. These findings highlight the importance of co-located plasmids for resistance dissemination either by directly transferring resistance genes or by potentially providing the needed conjugation machinery for IncA/C plasmid transfer. Copyright © 2018. Published by Elsevier B.V.

  5. Comparative assessment of plasmid DNA delivery by encapsulation ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research January 2018; 17 (1): 1-10 ... Purpose: To compare the gene delivery effectiveness of plasmid DNA (pDNA) ..... Intramuscular delivery of DNA ... copolymeric system for gene delivery in complete.

  6. The technology of large-scale pharmaceutical plasmid purification ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... DNA vaccine, the cost of purification must be decreased. Although commonly .... Three mice were killed every 4 days interval. Tissues of heart, liver, .... Now, methods such as chromatography had good prospects in plasmid ...

  7. Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids

    Directory of Open Access Journals (Sweden)

    Susu He

    2016-12-01

    Full Text Available The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance.

  8. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds.

    Science.gov (United States)

    Liu, Jianhua; Zhang, Xiaoliang; Yu, Mei; Li, Songmei; Zhang, Jindan

    2012-01-23

    Biological scaffolds are being actively explored for the synthesis of nanomaterials with novel structures and unexpected properties. Toroidal plasmid DNA separated from the Bacillus host is applied as a sacrificial mold for the synthesis of silver nanoparticles and nanorings. The photoirradiation method is applied to reduce Ag(I) on the plasmid. The nanoparticles are obtained by varying the concentration of the Ag(I) ion solution and the exposure time of the plasmid-Ag(I) complex under UV light at 254 nm and room temperature. It is found that the plasmid serves not only as a template but also as a reductant to drive the silver nucleation and deposition. The resulting nanoparticles have a face-centered cubic (fcc) crystal structure and 20-30 nm average diameter. The detailed mechanism is discussed, and other metals or alloys could also be synthesized with this method. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Isolation and properties of plasmids from Deinococcus radiodurans Sark

    International Nuclear Information System (INIS)

    Sjarief, S.H.; Kikuchi, Masahiro; Kurita, Hiromi; Kitayama, Shigeru; Watanabe, Hiroshi.

    1990-05-01

    Radioresistant bacterium, Deinococcus radiodurans, can repair completely almost all of DNA damages including double strand breaks induced by gamma-rays up to about 5 kGy. In order to reveal the repair mechanism, it is necessary to develop a cloning vector available for the genetic analysis. We tried to isolate plasmids from D.radiodurans Sark strain. In the present paper the isolation and properties of plasmids were described. (author)

  10. Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids.

    Science.gov (United States)

    He, Susu; Chandler, Michael; Varani, Alessandro M; Hickman, Alison B; Dekker, John P; Dyda, Fred

    2016-12-06

    The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content) of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE) from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance. The spread of antibiotic resistance among Gram-negative bacteria is a serious public health threat, as it can critically limit the types of drugs that can be used to treat infected patients. In particular, carbapenem-resistant members of the Enterobacteriaceae family are responsible for a significant and growing burden of morbidity and mortality. Here, we report on the mechanisms underlying the evolution of several plasmids carried by previously sequenced clinical Enterobacteriaceae isolates from the National Institutes of Health Clinical Center (NIH CC). Our ability to track genetic rearrangements that occurred within resistance plasmids was dependent on accurate annotation of the mobile genetic elements within the plasmids, which was greatly aided by access to long-read DNA sequencing data and knowledge of their mechanisms. Mobile genetic elements such as

  11. The characteristics of micrococcus (deinococcus) radiodurans sark plasmids

    International Nuclear Information System (INIS)

    Sjarief, Sri Hariani; Kikuchi, Masahiro; Watanabe, Hiroshi.

    1994-01-01

    The characterization of micrococcus (deinococcus) radiodurans sark plasmids. This bacterium has been classified as a new genus deinococcus radiodurans which is resistant to gamma-rays. It can repair itself completely almost all of DNA damages including double strand breaks induced by gamma-rays up to about 5 KGy. To reveal the repair mechanism, several investigations had been done to develop a cloning vector available for the genetic analysis. For this purpose D. radiodurans Sark are to be prepared as a vector by studying the characteristics of its plasmid. Plasmids were isolated by electrophoresis using 0.6% low-melting-temperature agarose in TAE and run for 5.5 hours, followed by the identification. An antibiotic marker was also carried out in this experiment to identify its location in the genetic materials of the cell, beside making a restriction map of the plasmid. Results have shown that D. radiodurans Sark has 4 plasmids (P1, P2, P3, and P4) and the refampicin resistant genes were not found in the plasmid. (authors). 14 refs; 4 figs

  12. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals

    Directory of Open Access Journals (Sweden)

    Lukasz eDziewit

    2015-03-01

    Full Text Available The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland. It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m Lubin mine were taken and twenty bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e. they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.

  13. Imbalanced Protein Expression Patterns of Anabolic, Catabolic, Anti-Catabolic and Inflammatory Cytokines in Degenerative Cervical Disc Cells: New Indications for Gene Therapeutic Treatments of Cervical Disc Diseases

    Science.gov (United States)

    Mern, Demissew S.; Beierfuß, Anja; Fontana, Johann; Thomé, Claudius; Hegewald, Aldemar A.

    2014-01-01

    Degenerative disc disease (DDD) of the cervical spine is common after middle age and can cause loss of disc height with painful nerve impingement, bone and joint inflammation. Despite the clinical importance of these problems, in current publications the pathology of cervical disc degeneration has been studied merely from a morphologic view point using magnetic resonance imaging (MRI), without addressing the issue of biological treatment approaches. So far a wide range of endogenously expressed bioactive factors in degenerative cervical disc cells has not yet been investigated, despite its importance for gene therapeutic approaches. Although degenerative lumbar disc cells have been targeted by different biological treatment approaches, the quantities of disc cells and the concentrations of gene therapeutic factors used in animal models differ extremely. These indicate lack of experimentally acquired data regarding disc cell proliferation and levels of target proteins. Therefore, we analysed proliferation and endogenous expression levels of anabolic, catabolic, ant-catabolic, inflammatory cytokines and matrix proteins of degenerative cervical disc cells in three-dimensional cultures. Preoperative MRI grading of cervical discs was used, then grade III and IV nucleus pulposus (NP) tissues were isolated from 15 patients, operated due to cervical disc herniation. NP cells were cultured for four weeks with low-glucose in collagen I scaffold. Their proliferation rates were analysed using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide. Their protein expression levels of 28 therapeutic targets were analysed using enzyme-linked immunosorbent assay. During progressive grades of degeneration NP cell proliferation rates were similar. Significantly decreased aggrecan and collagen II expressions (P<0.0001) were accompanied by accumulations of selective catabolic and inflammatory cytokines (disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix

  14. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes.

    Science.gov (United States)

    Rom, Oren; Kaisari, Sharon; Aizenbud, Dror; Reznick, Abraham Z

    2013-12-01

    The toxic aldehydes acetaldehyde and acrolein were previously suggested to damage skeletal muscle. Several conditions in which exposure to acetaldehyde and acrolein is increased were associated with muscle wasting and dysfunction. These include alcoholic myopathy, renal failure, oxidative stress, and inflammation. A main exogenous source of both acetaldehyde and acrolein is cigarette smoking, which was previously associated with increased muscle catabolism. Recently, we have shown that exposure of skeletal myotubes to cigarette smoke stimulated muscle catabolism via increased oxidative stress, activation of p38 MAPK, and upregulation of muscle-specific E3 ubiquitin ligases. In this study, we aimed to investigate the effects of acetaldehyde and acrolein on catabolism of skeletal muscle. Skeletal myotubes differentiated from the C2 myoblast cell line were exposed to acetaldehyde or acrolein and their effects on signaling pathways related to muscle catabolism were studied. Exposure of myotubes to acetaldehyde did not promote muscle catabolism. However, exposure to acrolein caused increased generation of free radicals, activation of p38 MAPK, upregulation of the muscle-specific E3 ligases atrogin-1 and MuRF1, degradation of myosin heavy chain, and atrophy of myotubes. Inhibition of p38 MAPK by SB203580 abolished acrolein-induced muscle catabolism. Our findings demonstrate that acrolein but not acetaldehyde activates a signaling cascade resulting in muscle catabolism in skeletal myotubes. Although within the limitations of an in vitro study, these findings indicate that acrolein may promote muscle wasting in conditions of increased exposure to this aldehyde. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Plasmids and rickettsial evolution: insight from Rickettsia felis.

    Directory of Open Access Journals (Sweden)

    Joseph J Gillespie

    2007-03-01

    Full Text Available The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG or spotted fever group (SFG rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria.Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives also occur in AG (but not SFG rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFdelta, is an artifact of the original genome assembly.Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the

  16. THE ENDOGENOUS BACILLUS-SUBTILIS (NATTO) PLASMIDS PTA1015 AND PTA1040 CONTAIN SIGNAL PEPTIDASE-ENCODING GENES - IDENTIFICATION OF A NEW STRUCTURAL MODULE ON CRYPTIC PLASMIDS

    NARCIS (Netherlands)

    MEIJER, WJJ; DEJONG, A; BEA, G; WISMAN, A; TJALSMA, H; VENEMA, G; BRON, S; MAARTEN, J; VANDIJL, JM

    Various strains of Bacillus subtilis (natto) contain small cryptic plasmids that replicate via the rolling-circle mechanism. Like plasmids from other Gram-positive bacteria, these plasmids are composed of several distinct structural modules. A new structural module was identified on the B. subtilis

  17. Multilocus sequence typing of IncN plasmids

    DEFF Research Database (Denmark)

    García-Fernández, Aurora; Villa, Laura; Moodley, Arshnee

    2011-01-01

    that spread and persistence of this particular IncN-carrying blaVIM-1 lineage in Greece. CONCLUSIONS: This study proposes the use of pMLST as a suitable and rapid method for identification of IncN epidemic plasmid lineages. The recent spread of blaCTX-M-1 among humans and animals seems to be associated......OBJECTIVES: Incompatibility group N (IncN) plasmids have been associated with the dissemination of antimicrobial resistance and are a major vehicle for the spread of blaVIM-1 in humans and blaCTX-M-1 in animals. A plasmid multilocus sequence typing (pMLST) scheme was developed for rapid...... in different countries from both animals and humans belonged to ST1, suggesting dissemination of an epidemic plasmid through the food chain. Fifteen of 17 plasmids carrying blaVIM-1 from Klebsiella pneumoniae and Escherichia coli, isolated during a 5year period in Greece were assigned to ST10, suggesting...

  18. Poly (ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents

    International Nuclear Information System (INIS)

    Alvarez-Gonzalez, R.; Althaus, F.R.

    1989-01-01

    DNA damage inflicted by the alkylating agens N-methyl-N-nitro-N-nitrosoquanidine, or by UV stimulated the catabolism of protein-bound poly (ADP-ribose) in the chromatin of cultured hepatocytes. The stimulation was highest at the largest doses of DNA-damaging treatment. As a consequence, the half-life of ADP-ribosyl polymers may drop to less than 41 s. This rapid turnover contrasts with the slow catabolism of a constitutive fraction of polymers exhibiting a half-life of 7.7 h. These data suggest that post-incisional stimulation of poly (ADP-ribose) biosynthesis in DNA-excision repair is coupled with an adaptation of poly (ADP-ribose) catabolism in mammalian cells. (Author). 37 refs.; 3 figs

  19. Plasmids in Vibrio parahemolyticus strains isolated in Japan and Bangladesh with special reference to different distributions.

    Science.gov (United States)

    Arai, T; Ando, T; Kusakabe, A; Ullah, M A

    1983-01-01

    We surveyed plasmids in naturally occurring Vibrio parahemolyticus strains isolated in Japan and Bangladesh. Among the strains isolated in Japan, about half of the strains isolated from stools of patients of domestic diarrhea outbreaks as well as of travelers returning from East Asia were found to have plasmids, but no strains from foods had plasmids. In contrast, among the strains isolated in Bangladesh, none of the four strains isolated from patients had plasmids, but two out of eight strains isolated from water had plasmids, suggesting that plasmids are common in strains from the water in Bangladesh. All plasmids so far reported in V. parahemolyticus were detected in strains isolated from stools of patients. Incidences of plasmids in this organism were not so high in either area. In Japan, all plasmids were detected in strains from human intestines at 37 C, but in Bangladesh, where the temperature is around 30-40 C, the plasmids were detected in strains from the natural environment. These results suggested the possibility that these plasmids can come from different bacteria under rather high temperatures and that incidences of plasmids are influenced by the incidences of plasmids in bacteria present in the vicinity of V. parahemolyticus strains. None of these plasmids were found to have any relation to the biological characters tested.

  20. Formation of Flavor Compounds by Amino Acid Catabolism in Cheese (Turkish with English Abstract

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Biochemical reactions which contribute flavor formation occur in result of proteolysis during cheese ripening. Casein as the main protein of cheese has a significant effect on the flavor and textural properties of cheeses via its degradation to small peptides and free amino acids by various factors like coagulant enzymes. Specific flavors of cheeses occur as a result of amino acid catabolism by starter and non-starter bacteria. Some flavor compounds are formed by enzymatic transformations as well as by non-enzymatic, chemical changes in cheese. In this paper, formation of flavor compounds by amino acid catabolism during cheese ripening reviewed.

  1. Genetic characterization of plasmid pRJ5 of Staphylococcus aureus compared to plasmid pE194

    International Nuclear Information System (INIS)

    Oliveira, S.S. de; Freire Bastos, M.C. de

    1993-01-01

    The pRJ5, a naturally occurring constitutive macrolide, lincosamide and streptogramin B (MLS) resistance plasmid of Staphylococcus aureus, was compared to pE194, a plasmid that confers the inducible phenotype. pRJ5 was stable in all strains of S. aureus tested, even under growth at 43 O C, which distinguished it from pE194 which was shown to be thermo-sensitive for replication. pRJ5, like pE194, was highly unstable in Bacillus subtilis when the cells were grown in nonselective conditions. Multimeric forms of pRJ5 DNA were detected in the few cells of B. subtilis that retained this plasmid. pE194 was transduced by phages φ 11 and φ 443 at frequencies 400 and 20-fold higher, respectively, than pRJ5. Both plasmids were co-transduced with the plasmid pRJ4. pRJ5 was shown to be compatible with pE194. Therefore they belong to distinct Inc groups. Hybridization studies revealed that pRJ5 shares a 1.35 kb region of homology to pE194, which is limited to the erm gene, conferring MLS resistance. (author)

  2. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Debets, A.J.M.; Slakhorst-Wandel, S.M.; Hoekstra, R.F.

    2008-01-01

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with

  3. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Debets, Alfons J M; Slakhorst, S Marijke; Hoekstra, Rolf F

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with

  4. Recombinogenic engineering of conjugative plasmids with fluorescent marker cassettes

    DEFF Research Database (Denmark)

    Reisner, A.; Molin, Søren; Zechner, E.L.

    2002-01-01

    An efficient approach for the insertion of fluorescent marker genes with sequence specificity into conjugative plasmids in Escherichia coli is described. For this purpose, homologous recombination of linear double-stranded targeting DNA was mediated by the bacteriophage lambda recombination...... resistance genes and fluorescent markers. The choice of 5' non-homologous extensions in primer pairs used for amplifying the marker cassettes determines the site specificity of the targeting DNA. This methodology is applicable to the modification of all plasmids that replicate in E coli and is not restricted...

  5. Infectious alphavirus production from a simple plasmid transfection+

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2011-07-01

    Full Text Available Abstract We have developed a new method for producing infectious double subgenomic alphaviruses from plasmids transfected into mammalian cells. A double subgenomic Sindbis virus (TE3'2J was transcribed from a cytomegalovirus PolII promoter, which results in the production of infectious virus. Transfection of as little as 125 ng of plasmid is able to produce 1 × 108 plaque forming units/ml (PFU/ml of infectious virus 48 hours post-transfection. This system represents a more efficient method for producing recombinant Sindbis viruses.

  6. Novel assay to measure the plasmid mobilizing potential of mixed microbial communities

    DEFF Research Database (Denmark)

    Klümper, Uli; Droumpali, Ariadni; Dechesne, Arnaud

    2014-01-01

    Mobilizable plasmids lack necessary genes for complete conjugation and are therefore non-self-transmissible. Instead, they rely on the conjugation system of conjugal plasmids to be horizontally transferred to new recipients. While community permissiveness, the fraction of a mixed microbial...... community that can receive self-transmissible conjugal plasmids, has been studied, the intrinsic ability of a community to mobilize plasmids that lack conjugation systems is unexplored. Here, we present a novel framework and experimental method to estimate the mobilization potential of mixed communities. We...... of the donors receiving the conjugal plasmid in the first step. Further work is needed to establish how plasmid mobilization potential varies within and across microbial communities....

  7. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1.

    Directory of Open Access Journals (Sweden)

    Sung Ho Yun

    Full Text Available Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs. Genome sequence analysis revealed that the large plasmid pLA1 present in N. pentaromativorans US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of N. pentaromativorans US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, N. pentaromativorans US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that N. pentaromativorans US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in N. pentaromativorans US6-1.

  8. Mutation in ESBL Plasmid from Escherichia coli O104:H4 Leads Autoagglutination and Enhanced Plasmid Dissemination

    Directory of Open Access Journals (Sweden)

    Mickaël Poidevin

    2018-02-01

    Full Text Available Conjugative plasmids are one of the main driving force of wide-spreading of multidrug resistance (MDR bacteria. They are self-transmittable via conjugation as carrying the required set of genes and cis-acting DNA locus for direct cell-to-cell transfer. IncI incompatibility plasmids are nowadays often associated with extended-spectrum beta-lactamases producing Enterobacteria in clinic and environment. pESBL-EA11 was isolated from Escherichia coli O104:H4 outbreak strain in Germany in 2011. During the previous study identifying transfer genes of pESBL-EA11, it was shown that transposon insertion at certain DNA region of the plasmid, referred to as Hft, resulted in great enhancement of transfer ability. This suggested that genetic modifications can enhance dissemination of MDR plasmids. Such ‘superspreader’ mutations have attracted little attention so far despite their high potential to worsen MDR spreading. Present study aimed to gain our understanding on regulatory elements that involved pESBL transfer. While previous studies of IncI plasmids indicated that immediate downstream gene of Hft, traA, is not essential for conjugative transfer, here we showed that overexpression of TraA in host cell elevated transfer rate of pESBL-EA11. Transposon insertion or certain nucleotide substitutions in Hft led strong TraA overexpression which resulted in activation of essential regulator TraB and likely overexpression of conjugative pili. Atmospheric Scanning Electron Microscopy observation suggested that IncI pili are distinct from other types of conjugative pili (such as long filamentous F-type pili and rather expressed throughout the cell surface. High transfer efficiency in the mutant pESBL-EA11 was involved with hyperpiliation which facilitates cell-to-cell adhesion, including autoagglutination. The capability of plasmids to evolve to highly transmissible mutant is alarming, particularly it might also have adverse effect on host pathogenicity.

  9. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates.

    Directory of Open Access Journals (Sweden)

    Jing Han

    Full Text Available Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.

  10. Characterization of pLAC1, a cryptic plasmid isolated from Lactobacillus acidipiscis and comparative analysis with its related plasmids.

    Science.gov (United States)

    Asteri, Ioanna-Areti; Papadimitriou, Konstantinos; Boutou, Effrossyni; Anastasiou, Rania; Pot, Bruno; Vorgias, Constantinos E; Tsakalidou, Effie

    2010-07-15

    The pLAC1 plasmid of Lactobacillus acidipiscis ACA-DC 1533, a strain isolated from traditional Kopanisti cheese, was characterised. Nucleotide sequence analysis revealed a circular molecule of 3478bp with a G+C content of 37.2%. Ab initio annotation indicated four putative open reading frames (orfs). orf1 and orf4 were found to encode a replication initiation protein (Rep) and a mobilization protein (Mob), respectively. The deduced products of orf2 and orf3 revealed no significant homology to other known proteins. However, in silico examination of the plasmid sequence supported the existence of a novel operon that includes rep, orf2 and orf3 in pLAC1 and that this operon is highly conserved also in plasmids pLB925A02, pSMA23, pLC88 and pC7. RT-PCR experiments allowed us to verify that these three genes are co-transcribed as a single polycistronic mRNA species. Furthermore, phylogenetic analysis of pLAC1 Rep and Mob proteins demonstrated that they may have derived from different plasmid origins, suggesting that pLAC1 is a product of a modular evolution process. Comparative analysis of full length nucleotide sequences of pLAC1 and related Lactobacillus plasmids showed that pLAC1 shares a very similar replication backbone with pLB925A02, pSMA23 and pLC88. In contrast, mob of pLAC1 was almost identical with the respective gene of plasmids pLAB1000, pLB4 and pPB1. These findings lead to the conclusion that pLAC1 acquired mob probably via an ancestral recombination event. Our overall work highlights the importance of characterizing plasmids deriving from non-starter 'wild' isolates in order to better appreciate plasmid divergence and evolution of lactic acid bacteria. 2010 Elsevier B.V. All rights reserved.

  11. BCKDK of BCAA Catabolism Cross-talking With the MAPK Pathway Promotes Tumorigenesis of Colorectal Cancer.

    Science.gov (United States)

    Xue, Peipei; Zeng, Fanfan; Duan, Qiuhong; Xiao, Juanjuan; Liu, Lin; Yuan, Ping; Fan, Linni; Sun, Huimin; Malyarenko, Olesya S; Lu, Hui; Xiu, Ruijuan; Liu, Shaoqing; Shao, Chen; Zhang, Jianmin; Yan, Wei; Wang, Zhe; Zheng, Jianyong; Zhu, Feng

    2017-06-01

    Branched-chain amino acids catabolism plays an important role in human cancers. Colorectal cancer is the third most commonly diagnosed cancer in males and the second in females, and the new global incidence is over 1.2 million cases. The branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a rate-limiting enzyme in branched-chain amino acids catabolism, which plays an important role in many serious human diseases. Here we investigated that abnormal branched-chain amino acids catabolism in colorectal cancer is a result of the disease process, with no role in disease initiation; BCKDK is widely expressed in colorectal cancer patients, and those patients that express higher levels of BCKDK have shorter survival times than those with lower levels; BCKDK promotes cell transformation or colorectal cancer ex vivo or in vivo. Mechanistically, BCKDK promotes colorectal cancer by enhancing the MAPK signaling pathway through direct MEK phosphorylation, rather than by branched-chain amino acids catabolism. And the process above could be inhibited by a BCKDK inhibitor, phenyl butyrate. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. BCKDK of BCAA Catabolism Cross-talking With the MAPK Pathway Promotes Tumorigenesis of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Peipei Xue

    2017-06-01

    Full Text Available Branched-chain amino acids catabolism plays an important role in human cancers. Colorectal cancer is the third most commonly diagnosed cancer in males and the second in females, and the new global incidence is over 1.2 million cases. The branched-chain α-keto acid dehydrogenase kinase (BCKDK is a rate-limiting enzyme in branched-chain amino acids catabolism, which plays an important role in many serious human diseases. Here we investigated that abnormal branched-chain amino acids catabolism in colorectal cancer is a result of the disease process, with no role in disease initiation; BCKDK is widely expressed in colorectal cancer patients, and those patients that express higher levels of BCKDK have shorter survival times than those with lower levels; BCKDK promotes cell transformation or colorectal cancer ex vivo or in vivo. Mechanistically, BCKDK promotes colorectal cancer by enhancing the MAPK signaling pathway through direct MEK phosphorylation, rather than by branched-chain amino acids catabolism. And the process above could be inhibited by a BCKDK inhibitor, phenyl butyrate.

  13. Catabolism of pyrimidines in yeast: A tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, Gorm; Merico, A.; Bjornberg, O.

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides/antib...

  14. Draft Genome Sequences of Three β-Lactam-Catabolizing Soil Proteobacteria

    DEFF Research Database (Denmark)

    Crofts, Terence S.; Wang, Bin; Spivak, Aaron

    2017-01-01

    Most antibiotics are derived from the soil, but their catabolism there, which is necessary to close the antibiotic carbon cycle, remains uncharacterized. We report the first draft genome sequences of soil Proteobacteria identified for subsisting solely on β-lactams as their carbon sources...

  15. CLONING AND CHARACTERIZATION OF THE PHTHALATE CATABOLISM REGION OF PRE1 OF ARTHROBACTER KEYSERI 12B

    Science.gov (United States)

    o-Phthalate (benzene-1,2-dicarboxylate) is a central intermediate in the bacterial degradation of phthalate ester plasticizers as well as of a number of fused-ring polycyclic aromatic hydrocarbons found in fossil fuels. In Arthrobacter keyseri 12B, the genes encoding catabolism o...

  16. Farnesoid X Receptor Activation Promotes Hepatic Amino Acid Catabolism and Ammonium Clearance in Mice

    NARCIS (Netherlands)

    Massafra, Vittoria; Milona, Alexandra; Vos, Harmjan R; Ramos, Rúben J J; Gerrits, Johan; Willemsen, Ellen C L; Ramos Pittol, José M; Ijssennagger, Noortje; Houweling, Martin; Prinsen, Hubertus C M T; Verhoeven-Duif, Nanda M; Burgering, Boudewijn M T; van Mil, Saskia W C

    2017-01-01

    BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4 or farnesoid X receptor [FXR]) regulates bile acid synthesis, transport, and catabolism. FXR also regulates postprandial lipid and glucose metabolism. We performed quantitative proteomic analyses of liver tissues from mice

  17. Conjugative plasmids: Vessels of the communal gene pool

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    to the hosts and, potentially, other resident prokaryotes within specific environmental niches. Insight into the evolution of plasmid modules therefore contributes to our knowledge of gene dissemination and evolution within prokaryotic communities. This communal pool provides the prokaryotes with an important...... mechanistic framework for obtaining adaptability and functional diversity that alleviates the need for large genomes of specialized ‘private genes'....

  18. Plasmid containing a DNA ligase gene from Haemophilus influenzae

    International Nuclear Information System (INIS)

    McCarthy, D.; Griffin, K.; Setlow, J.K.

    1984-01-01

    A ligase gene from Haemophilus influenzae was cloned into the shuttle vector pDM2. Although the plasmid did not affect X-ray sensitivity, it caused an increase in UV sensitivity of the wild-type but not excision-defective H. influenzae and a decrease in UV sensitivity of the rec-1 mutant. 14 references, 2 figures

  19. Antibiogram and plasmid profiling of carbapenemase and extended ...

    African Journals Online (AJOL)

    Background: The increased reports of ESBL dissemination from various centres in south western, Nigeria and the recent emergence of carbapenem resistant bacteria prompted the conception of this study. Objectives: To demonstrate the relationship between high molecular weight plasmids and the expression of antibiotic ...

  20. Quinolones Resistance And R-Plasmids Of Clinical Isolates Of ...

    African Journals Online (AJOL)

    Background: There has been reported incidence in the emergence of. Quinolones resistance in clinical isolates in Nigeria and the level in resistance has been on the increase. Objective: To determine the antimicrobial resistance patterns and plasmids profiles of 67 clinical Pseudomonas species from a teaching hospital ...

  1. Chromosomal context and replication properties of ARS plasmids in ...

    Indian Academy of Sciences (India)

    2015-11-28

    Nov 28, 2015 ... plasmid but only a subset of them functions as replication origins in their ... except that they are rich in A + T content (As on one strand and Ts .... different unique, terminal, PCR-generated restriction sites used for cloning each fragment are ..... Hall TA 1999 BioEdit: a user-friendly biological sequence align-.

  2. a positive control plasmid for reporter gene assay

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... qualification as a positive control for luciferase reporter gene assays. Key words: Reporter gene plasmid, luciferase assay, cytomegalovirus promoter/enhancer, human melanoma cell line. INTRODUCTION. Reporter genes, often called reporters, have become a precious tool in studies of gene expression ...

  3. Pharmaceutical development of the plasmid DNA vaccine pDERMATT

    NARCIS (Netherlands)

    Quaak, S.G.L.

    2009-01-01

    The discovery of tumor specific antigens and self tolerance mechanisms against these antigens led to the assumption that antigens circulating at sufficient concentration levels could break this self tolerance mechanism and evoke immunological antitumor effects. pDERMATT (plasmid DNA encoding

  4. plasmid mediated resistance in multidrug resistant bacteria isolated

    African Journals Online (AJOL)

    User

    PLASMID MEDIATED RESISTANCE IN MULTIDRUG RESISTANT BACTERIA. ISOLATED FROM CHILDREN WITH SUSPECTED SEPTICAEMIA IN ZARIA,. NIGERIA. AbdulAziz, Z. A.,1* Ehinmidu, J. O.,1 Adeshina, G. O.,1 Pala, Y. Y2., Yusuf, S. S2. and. Bugaje, M. A.3. 1Department of Pharmaceutics and Pharmaceutical ...

  5. Resistant plasmid profile analysis of multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    Background: Multi-drug resistant Escherichia coli has become a major threat and cause of many urinary tract infections (UTIs) in Abeokuta, Nigeria. Objectives: This study was carried out to determine the resistant plasmids of multidrug resistant Escherichia coli isolated from (Urinary tract infections)UTIs in Abeokuta.

  6. Effect of Surfactants on Plasmid DNA Stability and Release from ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of surfactants on plasmid DNA during preparation and release from polylactic glycolide (PLGA) microspheres. Methods: Various surfactants, both ionic and non-ionic (Span, Tween, Triton X100, cetyltrimethylammonium bromide and sodium dodecyl sulphate), were added during the ...

  7. Screening of degradative plasmids from Arthrobacter sp. HW08 and ...

    African Journals Online (AJOL)

    Administrator

    2011-06-08

    Jun 8, 2011 ... Media were solidified, if necessary, by the addition of 15 g agar ... genome extraction reagent kit, plasmid DNA fast extraction kit and. DNA segments ... spectrophotometer (Spectronic Instruments, Rochester, NY) and. SW content .... cultivation on LB slant for 100 times at 30 °C for 2 days, it was found that ...

  8. Antibiogram and plasmid profiling of carbapenemase and extended ...

    African Journals Online (AJOL)

    EB

    susceptibility was recorded against the Quinolone class of antibiotics; Meropenem remained the most active antibiotic against ESBL isolates ... Conclusion: Due to the relationship between high molecular weight plasmids and multi-drug resistance, we hereby recommend ..... Agents. Chemotherapy 2005; 49: 2137-. 2139. 7.

  9. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...

  10. Comparative assessment of plasmid DNA delivery by encapsulation ...

    African Journals Online (AJOL)

    Purpose: To compare the gene delivery effectiveness of plasmid DNA (pDNA) encapsulated within poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles with that adsorbed on PLGA nanoparticles. Methods: PLGA nanoparticles were prepared using solvent-evaporation method. To encapsulate pDNA within the particles, ...

  11. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.

    Science.gov (United States)

    Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling

    2016-11-01

    Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF. Copyright © 2016 the American Physiological Society.

  12. A role for TNFα in intervertebral disc degeneration: A non-recoverable catabolic shift

    International Nuclear Information System (INIS)

    Purmessur, D.; Walter, B.A.; Roughley, P.J.; Laudier, D.M.; Hecht, A.C.; Iatridis, James

    2013-01-01

    Highlights: ► TNFα induced catabolic changes similar to human intervertebral disc degeneration. ► The metabolic shift induced by TNFα was sustained following removal. ► TNFα induced changes suggestive of cell senescence without affecting cell viability. ► Interventions are required to stimulate anabolism and increase cell proliferation. -- Abstract: This study examines the effect of TNFα on whole bovine intervertebral discs in organ culture and its association with changes characteristic of intervertebral disc degeneration (IDD) in order to inform future treatments to mitigate the chronic inflammatory state commonly found with painful IDD. Pro-inflammatory cytokines such as TNFα contribute to disc pathology and are implicated in the catabolic phenotype associated with painful IDD. Whole bovine discs were cultured to examine cellular (anabolic/catabolic gene expression, cell viability and senescence using β-galactosidase) and structural (histology and aggrecan degradation) changes in response to TNFα treatment. Control or TNFα cultures were assessed at 7 and 21 days; the 21 day group also included a recovery group with 7 days TNFα followed by 14 days in basal media. TNFα induced catabolic and anti-anabolic shifts in the nucleus pulposus (NP) and annulus fibrosus (AF) at 7 days and this persisted until 21 days however cell viability was not affected. Data indicates that TNFα increased aggrecan degradation products and suggests increased β-galactosidase staining at 21 days without any recovery. TNFα treatment of whole bovine discs for 7 days induced changes similar to the degeneration processes that occur in human IDD: aggrecan degradation, increased catabolism, pro-inflammatory cytokines and nerve growth factor expression. TNFα significantly reduced anabolism in cultured IVDs and a possible mechanism may be associated with cell senescence. Results therefore suggest that successful treatments must promote anabolism and cell proliferation in

  13. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil

    International Nuclear Information System (INIS)

    Milcic-Terzic, J.; Saval, S.; Lopez-Vidal, Y.; Vrvic, M.M.

    2001-01-01

    Bioremediation is often used for in situ remediation of petroleum-contaminated sites. The primary focus of this study was on understanding the indigenous microbial community which can survive in contaminated environment and is responsible for the degradation. Diesel, toluene and naphthalene-degrading microbial consortia were isolated from diesel-contaminated soil by growing on selective hydrocarbon substrates. The presence and frequency of the catabolic genes responsible for aromatic hydrocarbon biodegradation (xylE, ndoB) within the isolated consortia were screened using polymerase chain reaction PCR and DNA-DNA colony hybridization. The diesel DNA-extract possessed both the xylE catabolic gene for toluene, and the nah catabolic gene for polynuclear aromatic hydrocarbon degradation. The toluene DNA-extract possessed only the xylE catabolic gene, while the naphthalene DNA-extract only the ndoB gene. Restriction enzyme analysis with HaeIII indicated similar restriction patterns for the xylE gene fragment between toluene DNA-extract and a type strain, Pseudomonas putida ATCC 23973. A substantial proportion (74%) of the colonies from the diesel-consortium possessed the xylE gene, and the ndoB gene (78%), while a minority (29%) of the toluene-consortium harbored the xylE gene. 59% of the colonies from the naphthalene-consortium had the ndoB gene, and did not have the xylE gene. These results indicate that the microbial population has been naturally enriched in organisms carrying genes for aromatic hydrocarbon degradation and that significant aromatic biodegradative potential exists at the site. Characterization of the population genotype constitutes a molecular diagnosis which permits the determination of the catabolic potential of the site to degrade the contaminant present. (author)

  14. Intracellular Growth Is Dependent on Tyrosine Catabolism in the Dimorphic Fungal Pathogen Penicillium marneffei

    Science.gov (United States)

    Boyce, Kylie J.; McLauchlan, Alisha; Schreider, Lena; Andrianopoulos, Alex

    2015-01-01

    During infection, pathogens must utilise the available nutrient sources in order to grow while simultaneously evading or tolerating the host’s defence systems. Amino acids are an important nutritional source for pathogenic fungi and can be assimilated from host proteins to provide both carbon and nitrogen. The hpdA gene of the dimorphic fungus Penicillium marneffei, which encodes an enzyme which catalyses the second step of tyrosine catabolism, was identified as up-regulated in pathogenic yeast cells. As well as enabling the fungus to acquire carbon and nitrogen, tyrosine is also a precursor in the formation of two types of protective melanin; DOPA melanin and pyomelanin. Chemical inhibition of HpdA in P. marneffei inhibits ex vivo yeast cell production suggesting that tyrosine is a key nutrient source during infectious growth. The genes required for tyrosine catabolism, including hpdA, are located in a gene cluster and the expression of these genes is induced in the presence of tyrosine. A gene (hmgR) encoding a Zn(II)2-Cys6 binuclear cluster transcription factor is present within the cluster and is required for tyrosine induced expression and repression in the presence of a preferred nitrogen source. AreA, the GATA-type transcription factor which regulates the global response to limiting nitrogen conditions negatively regulates expression of cluster genes in the absence of tyrosine and is required for nitrogen metabolite repression. Deletion of the tyrosine catabolic genes in the cluster affects growth on tyrosine as either a nitrogen or carbon source and affects pyomelanin, but not DOPA melanin, production. In contrast to other genes of the tyrosine catabolic cluster, deletion of hpdA results in no growth within macrophages. This suggests that the ability to catabolise tyrosine is not required for macrophage infection and that HpdA has an additional novel role to that of tyrosine catabolism and pyomelanin production during growth in host cells. PMID:25812137

  15. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution...

  16. Plasmid profiling of bacterial isolates from confined environments

    Science.gov (United States)

    van Houdt, Rob; Provoost, Ann; Coninx, Ilse; Leys, Natalie; Mergeay, Max

    Plasmid profiling of bacterial isolates from confined environments R. Van Houdt, I. Coninx, A. Provoost, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. Human exploration of extreme and isolated hostile environments such as space requires special confined small volume habitats to protect and house the crew. However, human confinement in such small volume habitats has restrictions on waste disposal and personal hygiene and inevitably generates a particular community of microorganisms within the habitat. These microorganisms are mainly originating from the crew (skin, mucous membranes, upper respiratory tract, mouth, and gastrointestinal tract) but also include the residing environmental microorganisms. Earth-based confined habitats such as the Antarctic Research Station Concordia are used as test beds for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. The dynamics of the environmental microbial population in such a test bed could render additional insights in assessing the potential health risks in long-duration space missions. Not only total bacterial contamination levels are important, but it is essential to identify also the predominant microbial taxa and their mobile genetic elements (MGE). These MGEs could be exchanged between bacteria by horizontal gene transfer and may alter the pathogenic potential since they often carry antibiotic resistance or more in general adaptation-enhancing traits. In this study several bacterial strains isolated in the Concordia research station were examined for their plasmid content. An optimized protocol for extraction of large plasmids showed the present of at least one plasmid in 50% of the strains. For all strains the minimal inhibitory concentration of a range of antibiotics was determined indicating resistance to

  17. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian

    2016-01-01

    sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions...... consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts....

  18. Presence of Glycopeptide-Encoding Plasmids in Enterococcal Isolates from Food and Humans in Denmark

    DEFF Research Database (Denmark)

    Migura, Lourdes Garcia; Valenzuela, Antonio Jesus Sanchez; Jensen, Lars Bogø

    2011-01-01

    developed techniques for classification of plasmids. Replicons associated with sex pheromone-inducible plasmids were detected in all GR E. faecalis, whereas GR Enterococcus faecium contained plasmids known to be widely distributed among enterococci. vanA resistance is common in E. faecium isolates from meat...... and animals in Europe and is rarely found in E. faecalis. This article describes the first characterization of MGE from vanA mediated E. faecalis, thus linking this resistance genotype to pheromone responding plasmids....

  19. Plasmid vectors for Xylella fastidiosa utilizing a toxin-antitoxin system for plasmid stability in the absence of antibiotic selection

    Science.gov (United States)

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacte...

  20. Structural and functional analysis of the kid toxin protein from E. coli Plasmid R1

    NARCIS (Netherlands)

    Hargreaves, D.; Santos-Sierra, S.; Giraldo, R.; Sabariegos-Jareño, R.; de la Cueva-Méndez, G.; Boelens, R.|info:eu-repo/dai/nl/070151407; Díaz-Orejas, R.; Rafferty, J.B.

    2002-01-01

    We have determined the structure of Kid toxin protein from E. coli plasmid R1 involved in stable plasmid inheritance by postsegregational killing of plasmid-less daughter cells. Kid forms a two-component system with its antagonist, Kis antitoxin. Our 1.4 Å crystal structure of Kid reveals a 2-fold

  1. Movement and equipositioning of plasmids by ParA filament disassembly

    DEFF Research Database (Denmark)

    Ringgaard, Simon; van Zon, Jeroen; Howard, Martin

    2009-01-01

    , plasmids consistently migrate behind disassembling ParA cytoskeletal structures, suggesting that ParA filaments pull plasmids by depolymerization. The perpetual cycles of ParA assembly and disassembly result in continuous relocation of plasmids, which, on time averaging, results in equidistribution...

  2. Studies on the expression of plasmid-borne genes in the endosymbiotic state of Rhizobium leguminosarum

    NARCIS (Netherlands)

    Krol, A.J.M.

    1982-01-01

    The subject matter of the research reported in this thesis is the role of plasmid-borne genes of Rhizobium in symbiosis and nitrogen fixation. Plasmid DNA was isolated from Rhizobium leguminosarum strain PRE and the expression of plasmid DNA in nitrogen

  3. Investigation of diversity of plasmids carrying the blaTEM-52 gene

    DEFF Research Database (Denmark)

    Bielak, Eliza Maria; Bergenholtz, Rikke D.; Jørgensen, Mikael Skaanning

    2011-01-01

    OBJECTIVES: To investigate the diversity of plasmids that carry blaTEM-52 genes among Escherichia coli and Salmonella enterica originating from animals, meat products and humans. METHODS: A collection of 22 blaTEM-52-encoding plasmids was characterized by restriction fragment length polymorphism...... of self-transfer to a plasmid-free E. coli recipient. CONCLUSIONS: The blaTEM-52 gene found in humans could have been transmitted on transferable plasmids originating from animal sources. Some of the blaTEM-52 plasmids carry replicons that differ from the classical ones. Two novel replicons were detected...

  4. Plasmids and packaging cell lines for use in phage display

    Science.gov (United States)

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  5. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  6. Transfer of the lambdadv plasmid to new bacterial hosts

    International Nuclear Information System (INIS)

    Kellenberger-Gujer, G.; Boy de la Tour, E.; Berg, D.E.

    1974-01-01

    Lambda dv, which was derived from bacteriophage lambda, replicates autonomously as a plasmid in Escherichia coli and consists of only the immunity region (imm/sup lambda/) and DNA replication genes (O, P) of the ancestral phage. Addition phages (lambda imm 21 --lambda dv) carry the lambda dv fragment inserted as a tandem duplication in their genome (sequence A imm 21 O P imm/sup lambda/ O P R) are formed as recombinants after lambda imm 21 infection of strains carrying lambda dv. Addition phages were used to transfer lambda dv to new bacterial hosts. Lambda dv transfer by excision of the lambda dv segment from the addition phage genome requires a bacterial Rec or a phage Red recombination system. Successful transfer is stimulated by uv irradiation of the addition phage before infection. Some properties of the newly transferred lambda dv plasmids are described. (U.S.)

  7. Presence and analysis of plasmids in human and animal associated arcobacter species.

    Directory of Open Access Journals (Sweden)

    Laid Douidah

    Full Text Available In this study, we report the screening of four Arcobacter species for the presence of small and large plasmids. Plasmids were present in 9.9% of the 273 examined strains. One Arcobacter cryaerophilus and four Arcobacter butzleri plasmids were selected for further sequencing. The size of three small plasmids isolated from A. butzleri and the one from A. cryaerophilus strains ranged between 4.8 and 5.1 kb, and the size of the large plasmid, isolated from A. butzleri, was 27.4 kbp. The G+C content of all plasmids ranged between 25.4% and 26.2%. A total of 95% of the large plasmid sequence represents coding information, which contrasts to the 20 to 30% for the small plasmids. Some of the open reading frames showed a high homology to putative conserved domains found in other related organisms, such as replication, mobilization and genes involved in type IV secretion system. The large plasmid carried 35 coding sequences, including seven genes in a contiguous region of 11.6 kbp that encodes an orthologous type IV secretion system found in the Wolinella succinogenes genome, Helicobacter pylori and Campylobacter jejuni plasmids, which makes this plasmid interesting for further exploration.

  8. Re-Factoring Glycolytic Genes for Targeted Engineering of Catabolism in Gram-Negative Bacteria

    DEFF Research Database (Denmark)

    Sánchez-Pascuala, Alberto; Nikel, Pablo I.; de Lorenzo, Víctor

    2018-01-01

    the potential applications of such a portable tool for targeted pathway engineering, in the present protocol we describe how the genes encoding all the enzymes of the linear EMP route have been individually recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals......The Embden-Meyerhof-Parnas (EMP) pathway is widely accepted to be the biochemical standard of glucose catabolism. The well-characterized glycolytic route of Escherichia coli, based on the EMP catabolism, is an example of an intricate pathway in terms of genomic organization of the genes involved...... and patterns of gene expression and regulation. This intrinsic genetic and metabolic complexity renders it difficult to engineer glycolytic activities and transfer them onto other microbial cell factories, thus limiting the biotechnological potential of bacterial hosts that lack the route. Taking into account...

  9. Proton-induced direct and indirect damage of plasmid DNA

    Czech Academy of Sciences Publication Activity Database

    Vyšín, Luděk; Pachnerová Brabcová, Kateřina; Štěpán, V.; Moretto-Capelle, P.; Bugler, B.; Legube, G.; Cafarelli, P.; Casta, R.; Champeaux, J. P.; Sence, M.; Vlk, M.; Wagner, Richard; Štursa, Jan; Zach, Václav; Incerti, S.; Juha, Libor; Davídková, Marie

    2015-01-01

    Roč. 54, č. 3 (2015), s. 343-352 ISSN 0301-634X R&D Projects: GA ČR GA13-28721S; GA MŠk LD12008; GA MŠk LM2011019 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : proton radiation * DNA plasmid * direct and indirect effects * clustered damage * repair enzymes Subject RIV: BO - Biophysics Impact factor: 1.923, year: 2015

  10. A binary plasmid system for shuffling combinatorial antibody libraries.

    OpenAIRE

    Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A

    1992-01-01

    We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind a...

  11. Differences in the stability of the plasmids of Yersinia pestis cultures in vitro: impact on virulence

    Directory of Open Access Journals (Sweden)

    TC Leal-Balbino

    2004-11-01

    Full Text Available Plasmid and chromosomal genes encode determinants of virulence for Yersinia pestis, the causative agent of plague. However, in vitro, Y. pestis genome is very plastic and several changes have been described. To evaluate the alterations in the plasmid content of the cultures in vitro and the impact of the alterations to their pathogenicity, three Y. pestis isolates were submitted to serial subculture, analysis of the plasmid content, and testing for the presence of characteristic genes in each plasmid of colonies selected after subculture. Different results were obtained with each strain. The plasmid content of one of them was shown to be stable; no apparent alteration was produced through 32 subcultures. In the other two strains, several alterations were observed. LD50 in mice of the parental strains and the derived cultures with different plasmid content were compared. No changes in the virulence plasmid content could be specifically correlated with changes in the LD50.

  12. Damage of plasmid DNA by high energy ions

    International Nuclear Information System (INIS)

    Michaelidesova, A.; Pachnerova Brabcova, K.; Davidkova, M.

    2018-01-01

    The aim of the study was to determine the degree of direct DNA damage by high-energy ions, which are one of the components of cosmic rays, and therefore the knowledge of the biological effects of these ions is key to long-term space missions with human crew. The pBR322 plasmid containing 4361 base pairs was used in this study. The aqueous solution of plasmid pBR322 was transferred on ice to Japan to the Heavy Ion Medical Accelerator in Chiba, the Research Center for Charged Particle Therapy. Just before the experiment, the droplets of solution of known concentration were applied to the slides and the water was allowed to evaporate to produce dry DNA samples. Half of the slides were irradiated with 290 MeV/u of carbon ions and a dose rate of 20 Gy/min. The other half of the slides were irradiated with helium nuclei of 150 MeV/hr and a dose rate of 12.6 Gy/min. Both sets of slides were irradiated with doses of 0-1,400 Gy with a 200 Gy step. After irradiation, the samples were re-dissolved in distilled water, frozen and transported on ice to the Czech Republic for processing. Samples were analyzed by agarose gel electrophoresis. The plasmid was evaluated separately to determine the degree of radiation induced lesions and further to incubation with enzymes recognizing basal damage. (authors)

  13. Lactoferricin mediates anabolic and anti-catabolic effects in the intervertebral disc.

    Science.gov (United States)

    Kim, Jae-Sung; Ellman, Michael B; An, Howard S; Yan, Dongyao; van Wijnen, Andre J; Murphy, Gillian; Hoskin, David W; Im, Hee-Jeong

    2012-04-01

    Lactoferricin (LfcinB) antagonizes biological effects mediated by angiogenic and catabolic growth factors, in addition to pro-inflammatory cytokines and chemokines in human endothelial cells and tumor cells. However, the effect of LfcinB on intervertebral disc (IVD) cell metabolism has not yet been investigated. Using bovine nucleus pulposus (NP) cells, we analyzed the effect of LfcinB on proteoglycan (PG) accumulation, PG synthesis, and anabolic gene expression. We assessed expression of genes for matrix-degrading enzymes such as matrix metalloproteases (MMPs) and a disintegrin-like and metalloprotease with thrombospondin motifs (ADAMTS family), as well as their endogenous inhibitors, tissue inhibitor of metalloproteases (TIMPs). In order to understand the specific molecular mechanisms by which LfcinB exerts its biological effects, we investigated intracellular signaling pathways in NP cells. LfcinB increased PG accumulation mainly via PG synthesis in a dose-dependent manner. Simultaneously, LfcinB dose-dependently downregulated catabolic enzymes. LfcinB's anti-catabolic effects were further demonstrated by a dose-dependent increase in multiple TIMP family members. Our results demonstrate that ERK and/or p38 mitogen-activated protein kinase pathways are the key signaling cascades that exert the biological effects of LfcinB in NP cells, regulating transcription of aggrecan, SOX-9, TIMP-1, TIMP-2, TIMP-3, and iNOS. Our results suggest that LfcinB has anabolic and potent anti-catabolic biological effects on bovine IVD cells that may have considerable promise in the treatment of disc degeneration in the future. Copyright © 2011 Wiley Periodicals, Inc.

  14. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides.

    Science.gov (United States)

    Pan, Xuefang; De Aragão, Camila De Britto Pará; Velasco-Martin, Juan P; Priestman, David A; Wu, Harry Y; Takahashi, Kohta; Yamaguchi, Kazunori; Sturiale, Luisella; Garozzo, Domenico; Platt, Frances M; Lamarche-Vane, Nathalie; Morales, Carlos R; Miyagi, Taeko; Pshezhetsky, Alexey V

    2017-08-01

    Gangliosides (sialylated glycolipids) play an essential role in the CNS by regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in the development of severe neurologic disorders, including gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that 2 mammalian enzymes, neuraminidases 3 and 4, play important roles in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains. In neuraminidase 3 and 4 double-knockout mice, G M3 ganglioside is stored in microglia, vascular pericytes, and neurons, causing micro- and astrogliosis, neuroinflammation, accumulation of lipofuscin bodies, and memory loss, whereas their cortical and hippocampal neurons have lower rate of neuritogenesis in vitro Double-knockout mice also have reduced levels of G M1 ganglioside and myelin in neuronal axons. Furthermore, neuraminidase 3 deficiency drastically increased storage of G M2 in the brain tissues of an asymptomatic mouse model of Tay-Sachs disease, a severe human gangliosidosis, indicating that this enzyme is responsible for the metabolic bypass of β-hexosaminidase A deficiency. Together, our results provide the first in vivo evidence that neuraminidases 3 and 4 have important roles in CNS function by catabolizing gangliosides and preventing their storage in lipofuscin bodies.-Pan, X., De Britto Pará De Aragão, C., Velasco-Martin, J. P., Priestman, D. A., Wu, H. Y., Takahashi, K., Yamaguchi, K., Sturiale, L., Garozzo, D., Platt, F. M., Lamarche-Vane, N., Morales, C. R., Miyagi, T., Pshezhetsky, A. V. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides. © FASEB.

  15. Amino acid catabolism and generation of volatiles by lactic acid bacteria

    OpenAIRE

    Tavaria, F. K.; Dahl, S.; Carballo, F. J.; Malcata, F. X.

    2002-01-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180- d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts...

  16. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  17. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.

    Science.gov (United States)

    Wargo, Matthew J; Szwergold, Benjamin S; Hogan, Deborah A

    2008-04-01

    Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-(13)C-labeled choline indicated that these genes are necessary for conversion of GB to DMG. Similar experiments showed that strains with mutations in the dgcAB (PA5398-PA5399) genes, which exhibit homology to genes that encode other enzymes with demethylase activity, are required for the conversion of DMG to sarcosine. Mutant analyses and (13)C NMR studies also confirmed that the soxBDAG genes, predicted to encode a sarcosine oxidase, are required for sarcosine catabolism. Our screen also identified a predicted AraC family transcriptional regulator, encoded by gbdR (PA5380), that is required for growth on GB and DMG and for the induction of gbcA, gbcB, and dgcAB in response to GB or DMG. Mutants defective in the previously described gbt gene (PA3082) grew on GB with kinetics similar to those of the wild type in both the PAO1 and PA14 strain backgrounds. These studies provided important insight into both the mechanism and the regulation of the catabolism of GB in P. aeruginosa.

  18. Characterization of a Large Antibiotic Resistance Plasmid Found in Enteropathogenic Escherichia coli Strain B171 and Its Relatedness to Plasmids of Diverse E. coli and Shigella Strains.

    Science.gov (United States)

    Hazen, Tracy H; Michalski, Jane; Nagaraj, Sushma; Okeke, Iruka N; Rasko, David A

    2017-09-01

    Enteropathogenic Escherichia coli (EPEC) is a leading cause of severe infantile diarrhea in developing countries. Previous research has focused on the diversity of the EPEC virulence plasmid, whereas less is known regarding the genetic content and distribution of antibiotic resistance plasmids carried by EPEC. A previous study demonstrated that in addition to the virulence plasmid, reference EPEC strain B171 harbors a second, larger plasmid that confers antibiotic resistance. To further understand the genetic diversity and dissemination of antibiotic resistance plasmids among EPEC strains, we describe the complete sequence of an antibiotic resistance plasmid from EPEC strain B171. The resistance plasmid, pB171_90, has a completed sequence length of 90,229 bp, a GC content of 54.55%, and carries protein-encoding genes involved in conjugative transfer, resistance to tetracycline ( tetA ), sulfonamides ( sulI ), and mercury, as well as several virulence-associated genes, including the transcriptional regulator hha and the putative calcium sequestration inhibitor ( csi ). In silico detection of the pB171_90 genes among 4,798 publicly available E. coli genome assemblies indicates that the unique genes of pB171_90 ( csi and traI ) are primarily restricted to genomes identified as EPEC or enterotoxigenic E. coli However, conserved regions of the pB171_90 plasmid containing genes involved in replication, stability, and antibiotic resistance were identified among diverse E. coli pathotypes. Interestingly, pB171_90 also exhibited significant similarity with a sequenced plasmid from Shigella dysenteriae type I. Our findings demonstrate the mosaic nature of EPEC antibiotic resistance plasmids and highlight the need for additional sequence-based characterization of antibiotic resistance plasmids harbored by pathogenic E. coli . Copyright © 2017 American Society for Microbiology.

  19. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family.

    Science.gov (United States)

    Li, Xiaobin; Top, Eva M; Wang, Yafei; Brown, Celeste J; Yao, Fei; Yang, Shan; Jiang, Yong; Li, Hui

    2014-01-01

    A self-transmissible broad-host-range (BHR) plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method. Based on its complete sequence the plasmid has a size of 41.5 kb and codes for 50 putative open reading frames (orfs), 29 of which represent genes involved in replication, partitioning and transfer functions of the plasmid. Phylogenetic analysis grouped pSFA231 into the newly defined PromA plasmid family, which currently includes five members. Further comparative genomic analysis shows that pSFA231 shares the common backbone regions with the other PromA plasmids, i.e., genes involved in replication, maintenance and control, and conjugative transfer. Nevertheless, phylogenetic divergence was found in specific gene products. We propose to divide the PromA group into two subgroups, PromA-α (pMRAD02, pSB102) and PromA-β (pMOL98, pIPO2T, pSFA231, pTer331), based on the splits network analysis of the RepA protein. Interestingly, a cluster of hypothetical orfs located between parA and traA of pSFA231 shows high similarity with the corresponding regions on pMOL98, pIPO2T, and pTer331, suggesting these hypothetical orfs may represent "essential" plasmid backbone genes for the PromA-β subgroup. Alternatively, they may also be accessory genes that were first acquired and then stayed as the plasmid diverged. Our study increases the available collection of complete genome sequences of BHR plasmids, and since pSFA231 is the only characterized PromA plasmid from China, our findings also enhance our understanding of the genetic diversity of this plasmid group in different parts of the world.

  20. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family

    Directory of Open Access Journals (Sweden)

    Xiaobin eLi

    2015-01-01

    Full Text Available A self-transmissible broad-host-range (BHR plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method. Based on its complete sequence the plasmid has a size of 41.5 kb and codes for 50 putative open reading frames (orfs, 28 of which represent genes involved in replication, partitioning and transfer functions of the plasmid. Phylogenetic analysis grouped pSFA231 into the newly defined PromA plasmid family, which currently includes five members. Further comparative genomic analysis shows that pSFA231 shares the common backbone regions with the other PromA plasmids, i.e., genes involved in replication, maintenance and control, and conjugative transfer. Nevertheless, phylogenetic divergence was found in specific gene products. We propose to divide the PromA group into two subgroups, PromA-α (pMRAD02, pSB102 and PromA-β (pMOL98, pIPO2T, pSFA231, pTer331, based on the splits network analysis of the RepA protein. Interestingly, a cluster of hypothetical orfs located between parA and traA of pSFA231 shows high similarity with the corresponding regions on pMOL98, pIPO2T and pTer331, suggesting these hypothetical orfs may represent ‘‘essential’’ plasmid backbone genes for the PromA-β subgroup. Alternatively, they may also be accessory genes that were first acquired and then stayed as the plasmid diverged. Our study increases the available collection of complete genome sequences of BHR plasmids, and since pSFA231 is the only characterized PromA plasmid from China, our findings also enhance our understanding of the genetic diversity of this plasmid group in different parts of the world.

  1. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise.

    Science.gov (United States)

    Shimomura, Yoshiharu; Murakami, Taro; Nakai, Naoya; Nagasaki, Masaru; Harris, Robert A

    2004-06-01

    Branched-chain amino acids (BCAAs) are essential amino acids that can be oxidized in skeletal muscle. It is known that BCAA oxidation is promoted by exercise. The mechanism responsible for this phenomenon is attributed to activation of the branched-chain alpha-keto acid dehydrogenase (BCKDH) complex, which catalyzes the second-step reaction of the BCAA catabolic pathway and is the rate-limiting enzyme in the pathway. This enzyme complex is regulated by a phosphorylation-dephosphorylation cycle. The BCKDH kinase is responsible for inactivation of the complex by phosphorylation, and the activity of the kinase is inversely correlated with the activity state of the BCKDH complex, which suggests that the kinase is the primary regulator of the complex. We found recently that administration of ligands for peroxisome proliferator-activated receptor-alpha (PPARalpha) in rats caused activation of the hepatic BCKDH complex in association with a decrease in the kinase activity, which suggests that promotion of fatty acid oxidation upregulates the BCAA catabolism. Long-chain fatty acids are ligands for PPARalpha, and the fatty acid oxidation is promoted by several physiological conditions including exercise. These findings suggest that fatty acids may be one of the regulators of BCAA catabolism and that the BCAA requirement is increased by exercise. Furthermore, BCAA supplementation before and after exercise has beneficial effects for decreasing exercise-induced muscle damage and promoting muscle-protein synthesis; this suggests the possibility that BCAAs are a useful supplement in relation to exercise and sports.

  2. Metabolic signature of sun exposed skin suggests catabolic pathway overweighs anabolic pathway.

    Directory of Open Access Journals (Sweden)

    Manpreet Randhawa

    Full Text Available Skin chronically exposed to sun results in phenotypic changes referred as photoaging. This aspect of aging has been studied extensively through genomic and proteomic tools. Metabolites, the end product are generated as a result of biochemical reactions are often studied as a culmination of complex interplay of gene and protein expression. In this study, we focused exclusively on the metabolome to study effects from sun-exposed and sun-protected skin sites from 25 human subjects. We generated a highly accurate metabolomic signature for the skin that is exposed to sun. Biochemical pathway analysis from this data set showed that sun-exposed skin resides under high oxidative stress and the chains of reactions to produce these metabolites are inclined toward catabolism rather than anabolism. These catabolic activities persuade the skin cells to generate metabolites through the salvage pathway instead of de novo synthesis pathways. Metabolomic profile suggests catabolic pathways and reactive oxygen species operate in a feed forward fashion to alter the biology of sun exposed skin.

  3. Detection and isolation of novel rhizopine-catabolizing bacteria from the environment

    Science.gov (United States)

    Gardener; de Bruijn FJ

    1998-12-01

    Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 10(6) and 10(7) catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the known mocA, mocB, and mocC genes of Sinorhizobium meliloti L5-30. Twenty-one of the isolates could utilize an SI preparation as the sole carbon and nitrogen source for growth. Partial sequencing of 16S ribosomal DNAs (rDNAs) amplified from these strains indicated that five distinct bacterial genera (Arthrobacter, Sinorhizobium, Pseudomonas, Aeromonas, and Alcaligenes) were represented in this set. Only 6 of these 21 isolates could catabolize 3-O-methyl-scyllo-inosamine under standard assay conditions. Two of these, strains D1 and R3, were found to have 16S rDNA sequences very similar to those of Sinorhizobium meliloti. However, these strains are not symbiotically effective on Medicago sativa, and DNA sequences homologous to the nodB and nodC genes were not detected in strains D1 and R3 by Southern hybridization analysis.

  4. Increased fat catabolism sustains water balance during fasting in zebra finches.

    Science.gov (United States)

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. © 2016. Published by The Company of Biologists Ltd.

  5. Neuronal sphingolipidoses: Membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism.

    Science.gov (United States)

    Sandhoff, Konrad

    2016-11-01

    Glycosphingolipids and sphingolipids of cellular plasma membranes (PMs) reach luminal intra-lysosomal vesicles (LVs) for degradation mainly by pathways of endocytosis. After a sorting and maturation process (e.g. degradation of sphingomyelin (SM) and secretion of cholesterol), sphingolipids of the LVs are digested by soluble enzymes with the help of activator (lipid binding and transfer) proteins. Inherited defects of lipid-cleaving enzymes and lipid binding and transfer proteins cause manifold and fatal, often neurodegenerative diseases. The review summarizes recent findings on the regulation of sphingolipid catabolism and cholesterol secretion from the endosomal compartment by lipid modifiers, an essential stimulation by anionic membrane lipids and an inhibition of crucial steps by cholesterol and SM. Reconstitution experiments in the presence of all proteins needed, hydrolase and activator proteins, reveal an up to 10-fold increase of ganglioside catabolism just by the incorporation of anionic lipids into the ganglioside carrying membranes, whereas an additional incorporation of cholesterol inhibits GM2 catabolism substantially. It is suggested that lipid and other low molecular modifiers affect the genotype-phenotype relationship observed in patients with lysosomal diseases. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  7. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM.

    Directory of Open Access Journals (Sweden)

    Joakim Mark Andersen

    Full Text Available The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β-linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS, galactoside pentose hexuronide (GPH permease, and ATP-binding cassette (ABC transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS. The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota.

  8. Effects of Zinc Magnesium Aspartate (ZMA Supplementation on Training Adaptations and Markers of Anabolism and Catabolism

    Directory of Open Access Journals (Sweden)

    Almada Anthony

    2004-12-01

    Full Text Available Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P or ZMA 30–60 minutes prior to going to sleep during 8-weeks of standardized resistance-training. Subjects completed testing sessions at 0, 4, and 8 weeks that included body composition assessment as determined by dual energy X-ray absorptiometry, 1-RM and muscular endurance tests on the bench and leg press, a Wingate anaerobic power test, and blood analysis to assess anabolic/catabolic status as well as markers of health. Data were analyzed using repeated measures ANOVA. Results indicated that ZMA supplementation non-significantly increased serum zinc levels by 11 – 17% (p = 0.12. However, no significant differences were observed between groups in anabolic or catabolic hormone status, body composition, 1-RM bench press and leg press, upper or lower body muscular endurance, or cycling anaerobic capacity. Results indicate that ZMA supplementation during training does not appear to enhance training adaptations in resistance trained populations.

  9. Increased VLDL in nephrotic patients results from a decreased catabolism while increased LDL results from increased synthesis

    NARCIS (Netherlands)

    de Sain-van der Velden, M; Kaysen, GA; Barrett, HA; Stellaard, F; Gadellaa, MM; Voorbij, HA; Reijngoud, DJ; Rabelink, TJ

    Increased very low density lipoprotein (VLDL) in nephrotic patients results from a decreased catabolism while increased low density lipoprotein (LDL) results from increased synthesis. Hyperlipidemias a hallmark of nephrotic syndrome that has been associated with increased risk for ischemic heart

  10. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.

    Science.gov (United States)

    Clarkson, Sonya M; Giannone, Richard J; Kridelbaugh, Donna M; Elkins, James G; Guss, Adam M; Michener, Joshua K

    2017-09-15

    The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. While Escherichia coli has been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineered E. coli to catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway from Pseudomonas putida KT2440. We next used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics. IMPORTANCE Lignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. Constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. We constructed and optimized one such pathway in E. coli to enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related

  11. Expansion of a plasmid classification system for Gram-positive bacteria and determination of the diversity of plasmids in Staphylococcus aureus strains of human, animal, and food origins

    DEFF Research Database (Denmark)

    Lozano, C.; Garcia-Migura, L.; Aspiroz, C.

    2012-01-01

    An expansion of a previously described plasmid classification was performed and used to reveal the plasmid content of a collection of 92 Staphylococcus aureus strains of different origins. rep genes of other genera were detected in Staphylococcus. S1 pulsed-field gel electrophoresis (PFGE) hybrid...

  12. Type 3 Fimbriae Encoded on Plasmids Are Expressed from a Unique Promoter without Affecting Host Motility, Facilitating an Exceptional Phenotype That Enhances Conjugal Plasmid Transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenlokke; Riber, Leise; Kot, Witold

    2016-01-01

    Horizontal gene transfer (HGT), the transmission of genetic material to a recipient that is not the progeny of the donor, is fundamental in bacterial evolution. HGT is often mediated by mobile genetic elements such as conjugative plasmids, which may be in conflict with the chromosomal elements...... of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded...... on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed...

  13. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids.

    Directory of Open Access Journals (Sweden)

    Mart Krupovic

    Full Text Available Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1, with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles.

  14. Comparative genomics of the IncA/C multidrug resistance plasmid family.

    Science.gov (United States)

    Fricke, W Florian; Welch, Timothy J; McDermott, Patrick F; Mammel, Mark K; LeClerc, J Eugene; White, David G; Cebula, Thomas A; Ravel, Jacques

    2009-08-01

    Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug-resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we present the complete plasmid sequences of the IncA/C reference plasmid pRA1 (143,963 bp), isolated in 1971 from the fish pathogen Aeromonas hydrophila, and of the cryptic IncA/C plasmid pRAx (49,763 bp), isolated from Escherichia coli transconjugant D7-3, which was obtained through pRA1 transfer in 1980. Using comparative sequence analysis of pRA1 and pRAx with recent members of the IncA/C plasmid family, we show that both plasmids provide novel insights into the evolution of the IncA/C MDR plasmid family and the minimal machinery necessary for stable IncA/C plasmid maintenance. Our results indicate that recent members of the IncA/C plasmid family evolved from a common ancestor, similar in composition to pRA1, through stepwise integration of horizontally acquired resistance gene arrays into a conserved plasmid backbone. Phylogenetic comparisons predict type IV secretion-like conjugative transfer operons encoded on the shared plasmid backbones to be closely related to a group of integrating conjugative elements, which use conjugative transfer for horizontal propagation but stably integrate into the host chromosome during vegetative growth. A hipAB toxin-antitoxin gene cluster found on pRA1, which in Escherichia coli is involved in the formation of persister cell subpopulations, suggests persistence as an early broad-spectrum antimicrobial resistance mechanism in the evolution of IncA/C resistance plasmids.

  15. Prevalence of plasmid-bearing and plasmid-free Chlamydia trachomatis infection among women who visited obstetrics and gynecology clinics in Malaysia.

    Science.gov (United States)

    Yeow, Tee Cian; Wong, Won Fen; Sabet, Negar Shafiei; Sulaiman, Sofiah; Shahhosseini, Fatemeh; Tan, Grace Min Yi; Movahed, Elaheh; Looi, Chung Yeng; Shankar, Esaki M; Gupta, Rishien; Arulanandam, Bernard P; Hassan, Jamiyah; Abu Bakar, Sazaly

    2016-03-18

    The 7.5 kb cryptic plasmid of Chlamydia trachomatis has been shown to be a virulence factor in animal models, but its significance in humans still remains unknown. The aim of this study was to investigate the prevalence and potential involvement of the C. trachomatis cryptic plasmid in causing various clinical manifestations; including infertility, reproductive tract disintegrity, menstrual disorder, and polycystic ovarian syndrome (PCOS) among genital C. trachomatis-infected patients. A total of 180 female patients of child bearing age (mean 30.9 years old, IQR:27-35) with gynecological complications and subfertility issues, who visited Obstetrics and Gynecology clinics in Kuala Lumpur, Malaysia were recruited for the study. Prevalence of genital chlamydial infection among these patients was alarmingly high at 51.1% (92/180). Of the 92 chlamydia-infected patients, 93.5% (86/92) were infected with plasmid-bearing (+) C. trachomatis while the remaining 6.5% (6/92) were caused by the plasmid-free (-) variant. Our data showed that genital C. trachomatis infection was associated with infertility issues, inflammation in the reproductive tract (mucopurulent cervicitis or endometriosis), irregular menstrual cycles and polycystic ovarian syndrome (PCOS). However, no statistical significance was detected among patients with plasmid (+) versus plasmid (-) C. trachomatis infection. Interestingly, plasmid (+) C. trachomatis was detected in all patients with PCOS, and the plasmid copy numbers were significantly higher among PCOS patients, relative to non-PCOS patients. Our findings show a high incidence of C. trachomatis infection among women with infertility or gynecological problems in Malaysia. However, due to the low number of plasmid (-) C. trachomatis cases, a significant role of the plasmid in causing virulence in human requires further investigation of a larger cohort.

  16. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance.

    Science.gov (United States)

    Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L

    2012-01-01

    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.

  17. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance.

    Directory of Open Access Journals (Sweden)

    Mark Eppinger

    Full Text Available Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.

  18. Multiple drug resistant carbapenemases producing Acinetobacter baumannii isolates harbours multiple R-plasmids

    Directory of Open Access Journals (Sweden)

    Rajagopalan Saranathan

    2014-01-01

    Full Text Available Background & objectives: The nosocomial human pathogen Acinetobacter baumannii has high propensity to develop resistance to antimicrobials and to become multidrug resistant (MDR, consequently complicating the treatment. This study was carried out to investigate the presence of resistant plasmids (R-plasmids among the clinical isolates of A. baumannii. In addition, the study was performed to check the presence of common β-lactamases encoding genes on these plasmids. Methods: A total of 55 clinical isolates of A. baumannii were included in the study and all were subjected to plasmid DNA isolation, followed by PCR to check the presence of resistance gene determinants such as blaOXA-23 , blaOXA-51, blaOXA-58 and blaIMP-1 on these plasmids that encode for oxacillinase (OXA and metallo-β-lactamase (MBL type of carbapenemases. Plasmid curing experiments were carried out on selected isolates using ethidium bromide and acridine orange as curing agents and the antibiotic resistance profiles were evaluated before and after curing. Results: All the isolates were identified as A. baumannii by 16SrDNA amplification and sequencing. Plasmid DNA isolated from these isolates showed the occurrence of multiple plasmids with size ranging from 500bp to ≥ 25 kb. The percentage of blaOXA-51 and blaOXA-23 on plasmids were found to be 78 and 42 per cent, respectively and 20 isolates (36% carried blaIMP-1 gene on plasmids. Significant difference was observed in the antibiograms of plasmid cured isolates when compared to their parental ones. The clinical isolates became susceptible to more than two antibiotic classes after curing of plasmids indicating plasmid borne resistance. Interpretation & conclusions: Our study determined the plasmid mediated resistance mechanisms and occurrence of different resistance genes on various plasmids isolated from MDR A. baumannii. The present findings showed the evidence for antibiotic resistance mediated through multiple plasmids in

  19. Plasmid DNA damage caused by stibine and trimethylstibine

    International Nuclear Information System (INIS)

    Andrewes, Paul; Kitchin, Kirk T.; Wallace, Kathleen

    2004-01-01

    Antimony is classified as 'possibly carcinogenic to humans' and there is also sufficient evidence for antimony carcinogenicity in experimental animals. Stibine is a volatile inorganic antimony compound to which humans can be exposed in occupational settings (e.g., lead-acid battery charging). Because it is highly toxic, stibine is considered a significant health risk; however, its genotoxicity has received little attention. For the work reported here, stibine was generated by sodium borohydride reduction of potassium antimony tartrate. Trimethylstibine is a volatile organometallic antimony compound found commonly in landfill and sewage fermentation gases at concentrations ranging between 0.1 and 100 μg/m 3 . Trimethylstibine is generally considered to pose little environmental or health risk. In the work reported here, trimethylstibine was generated by reduction of trimethylantimony dichloride using either sodium borohydride or the thiol compounds, dithioerythritol (DTE), L-cysteine, and glutathione. Here we report the evaluation of the in vitro genotoxicities of five antimony compounds--potassium antimony tartrate, stibine, potassium hexahydroxyantimonate, trimethylantimony dichloride, and trimethylstibine--using a plasmid DNA-nicking assay. Of these five antimony compounds, only stibine and trimethylstibine were genotoxic (significant nicking to pBR 322 plasmid DNA). We found stibine and trimethylstibine to be about equipotent with trimethylarsine using this plasmid DNA-nicking assay. Reaction of trimethylantimony dichloride with either glutathione or L-cysteine to produce DNA-damaging trimethylstibine was observed with a trimethylantimony dichloride concentration as low as 50 μM and L-cysteine or glutathione concentrations as low as 500 and 200 μM, respectively, for a 24 h incubation

  20. Reversible entrapment of plasmid deoxyribonucleic acid on different chromatographic supports.

    Science.gov (United States)

    Gabor, Boštjan; Černigoj, Urh; Barut, Miloš; Štrancar, Aleš

    2013-10-11

    HPLC based analytical assay is a powerful technique that can be used to efficiently monitor plasmid DNA (pDNA) purity and quantity throughout the entire purification process. Anion exchange monolithic and non-porous particle based stationary phases were used to study the recovery of the different pDNA isoforms from the analytical column. Three differently sized pDNA molecules of 3.0kbp, 5.2kbp and 14.0kbp were used. Plasmid DNA was injected onto columns under the binding conditions and the separation of the isoforms took place by increasing the ionic strength of the elution buffer. While there was no substantial decrease of the recovered supercoiled and linear isoforms of the pDNA with the increase of the plasmid size and with the increase of the flow rate (recoveries in all cases larger than 75%), a pronounced decrease of the oc isoform recovery was observed. The entrapment of the oc pDNA isoform occurred under non-binding conditions as well. The partial oc isoform elution from the column could be achieved by decreasing the flow rate of the elution mobile phase. The results suggested a reversible entrapment of the oc isoform in the restrictions within the pores of the monolithic material as well as within the intra-particle space of the non-porous particles. This phenomenon was observed on both types of the stationary phase morphologies and could only be connected to the size of a void space through which the pDNA needs to migrate. A prediction of reversible pDNA entrapment was successfully estimated with the calculation of Peclet numbers, Pe, which defines the ratio between a convective and diffusive mass transport. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. IncA/C plasmids: An emerging threat to human and animal health?

    Science.gov (United States)

    Johnson, Timothy J; Lang, Kevin S

    2012-01-01

    Incompatibility group IncA/C plasmids are large, low copy, theta-replicating plasmids that have been described in the literature for over 40 years. However, they have only recently been intensively studied on the genomic level because of their associations with the emergence of multidrug resistance in enteric pathogens of humans and animals. These plasmids are unique among other enterobacterial plasmids in many aspects, including their modular structure and gene content. While the IncA/C plasmid genome structure has now been well defined, many questions remain pertaining to their basic biological mechanisms of dissemination and regulation. Here, we discuss the history of IncA/C plasmids in light of our recent understanding of their population distribution, genomics, and effects on host bacteria.

  2. Long- term manure exposure increases soil bacterial community potential for plasmid uptake

    DEFF Research Database (Denmark)

    Musovic, Sanin; Klümper, Uli; Dechesne, Arnaud

    2014-01-01

    Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive and main......Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive...... and maintain the plasmids. The community permissiveness increased up to 100% in communities derived from manured soil. While the plasmid transfer frequency was significantly influenced by both the type of plasmid and the agronomic treatment, the diversity of the transconjugal pools was purely plasmid dependent...

  3. Strategies and approaches in plasmidome studies—uncovering plasmid diversity disregarding of linear elements?

    Science.gov (United States)

    Dib, Julián R.; Wagenknecht, Martin; Farías, María E.; Meinhardt, Friedhelm

    2015-01-01

    The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognized not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture-dependent or -independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e., the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which—despite their frequent occurrence in a large number of bacteria—are largely neglected in prevalent plasmidome conceptions. PMID:26074886

  4. Novel archaeal plasmid pAH1 and its interactions with the lipothrixvirus AFV1

    DEFF Research Database (Denmark)

    Basta, Tamara; Smyth, John; Forterre, Patrick

    2009-01-01

    . Although nucleotide sequence comparisons revealed extensive intergenomic exchange during the evolution of archaeal conjugative plasmids, pAH1 was shown to be stably maintained suggesting that the host system is suitable for studying plasmid-virus interactions. AFV1 infection and propagation leads to a loss...... of the circular form of pAH1 and this effect correlates positively with the increase in the intracellular quantity of AFV1 DNA. We infer that the virus inhibits plasmid replication since no pAH1 degradation was observed. This mechanism of archaeal viral inhibition of plasmid propagation is not observed...... in bacteria where relevant bacteriophages either are dependent on a conjugative plasmid for successful infection or are excluded by a resident plasmid....

  5. Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage.

    Science.gov (United States)

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa; Ziola, Barry

    2015-02-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.

  6. Cefotaxime resistant Escherichia coli collected from a healthy volunteer; characterisation and the effect of plasmid loss.

    Directory of Open Access Journals (Sweden)

    Miranda Kirchner

    Full Text Available In this study 6 CTX-M positive E. coli isolates collected during a clinical study examining the effect of antibiotic use in a human trial were analysed. The aim of the study was to analyse these isolates and assess the effect of full or partial loss of plasmid genes on bacterial fitness and pathogenicity. A DNA array was utilised to assess resistance and virulence gene carriage. Plasmids were characterised by PCR-based replicon typing and addiction system multiplex PCR. A phenotypic array and insect virulence model were utilised to assess the effect of plasmid-loss in E. coli of a large multi-resistance plasmid. All six E. coli carrying bla CTX-M-14 were detected from a single participant and were identical by pulse field gel electrophoresis and MLST. Plasmid profiling and arrays indicated absence of a large multi-drug resistance (MDR F-replicon plasmid carrying blaTEM, aadA4, strA, strB, dfrA17/19, sul1, and tetB from one isolate. Although this isolate partially retained the plasmid it showed altered fitness characteristics e.g. inability to respire in presence of antiseptics, similar to a plasmid-cured strain. However, unlike the plasmid-cured or plasmid harbouring strains, the survival rate for Galleria mellonella infected by the former strain was approximately 5-times lower, indicating other possible changes accompanying partial plasmid loss. In conclusion, our results demonstrated that an apparently healthy individual can harbour bla CTX-M-14 E. coli strains. In one such strain, isolated from the same individual, partial absence of a large MDR plasmid resulted in altered fitness and virulence characteristics, which may have implications in the ability of this strain to infect and any subsequent treatment.

  7. Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1.

    OpenAIRE

    Cook, W L; Wachsmuth, K; Johnson, S R; Birkness, K A; Samadi, A R

    1984-01-01

    Plasmid profiles, the location of cholera toxin subunit A genes, and the presence of the defective VcA1 prophage genome in classical Vibrio cholerae isolated from patients in Bangladesh in 1982 were compared with those in older classical strains isolated during the sixth pandemic and with those in selected eltor and nontoxigenic O1 isolates. Classical strains typically had two plasmids (21 and 3 megadaltons), eltor strains typically had no plasmids, and nontoxigenic O1 strains had zero to thr...

  8. Plasmid profiles and antibiotic susceptibility patterns of Staphylococcus aureus isolates from Nigeria.

    Science.gov (United States)

    Olukoya, D K; Asielue, J O; Olasupo, N A; Ikea, J K

    1995-06-01

    In an investigation into the problems of infections due to Staphylococcus aureus in Nigeria, 100 strains were isolated from various hospitals in Lagos. The strains were screened for the presence of plasmids and for susceptibility to antimicrobial agents. Plasmids were extracted by modification of the method of Takahashi and Nagono[1]. The plasmids were diverse in nature. The strains were found to be highly resistant to commonly prescribed antibiotics.

  9. Cloning in Streptococcus lactis of plasmid-mediated UV resistance and effect on prophage stability

    International Nuclear Information System (INIS)

    Chopin, M.C.; Chopin, A.; Rouault, A.; Simon, D.

    1986-01-01

    Plasmid pIL7 (33 kilobases) from Streptococcus lactis enhances UV resistance and prophage stability. A 5.4-kilobase pIL7 fragment carrying genes coding for both characters was cloned into S. lactis, using plasmid pHV1301 as the cloning vector. The recombinant plasmid was subsequently transferred to three other S. lactis strains by transformation or protoplast fusion. Cloned genes were expressed in all tested strains

  10. Compatibility and entry exclusion of IncA and IncC plasmids revisited: IncA and IncC plasmids are compatible.

    Science.gov (United States)

    Ambrose, Stephanie J; Harmer, Christopher J; Hall, Ruth M

    2018-02-24

    In an early study, IncA and IncC plasmids that were reported to be compatible were grouped as the "A-C complex" based on similarities and on strong entry exclusion. However, recently, the term IncA/C has been used frequently to describe plasmids belonging to both of these two groups. Granted that the supporting data was not included in the original reports and that the consensus iteron sequences have since been shown to be essentially identical, we have addressed the question again. The original IncA plasmid, RA1, and the IncC plasmid pRMH760, were introduced into the same cell by transformation, and were found to be maintained stably for over 100 generations in the absence of selection for either plasmid, i.e. they were compatible. We conclude that use of the term IncA/C for this important plasmid group is indeed incorrect and it causes unnecessary confusion. Granted the importance of IncC plasmids in the spread of antibiotic resistance genes, we recommend that use of the misleading terms IncA/C, IncA/C 1 and IncA/C 2 should cease. In addition, RA1 and pRMH760 were shown to each completely prevent entry of the other via conjugative transfer into the cell they reside in. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    Science.gov (United States)

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Endocannabinoid Catabolic Enzymes Play Differential Roles in Thermal Homeostasis in Response to Environmental or Immune Challenge.

    Science.gov (United States)

    Nass, Sara R; Long, Jonathan Z; Schlosburg, Joel E; Cravatt, Benjamin F; Lichtman, Aron H; Kinsey, Steven G

    2015-06-01

    Cannabinoid receptor agonists, such as Δ(9)-THC, the primary active constituent of Cannabis sativa, have anti-pyrogenic effects in a variety of assays. Recently, attention has turned to the endogenous cannabinoid system and how endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide, regulate multiple homeostatic processes, including thermoregulation. Inhibiting endocannabinoid catabolic enzymes, monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH), elevates levels of 2-AG or anandamide in vivo, respectively. The purpose of this experiment was to test the hypothesis that endocannabinoid catabolic enzymes function to maintain thermal homeostasis in response to hypothermic challenge. In separate experiments, male C57BL/6J mice were administered a MAGL or FAAH inhibitor, and then challenged with the bacterial endotoxin lipopolysaccharide (LPS; 2 mg/kg ip) or a cold (4 °C) ambient environment. Systemic LPS administration caused a significant decrease in core body temperature after 6 h, and this hypothermia persisted for at least 12 h. Similarly, cold environment induced mild hypothermia that resolved within 30 min. JZL184 exacerbated hypothermia induced by either LPS or cold challenge, both of which effects were blocked by rimonabant, but not SR144528, indicating a CB1 cannabinoid receptor mechanism of action. In contrast, the FAAH inhibitor, PF-3845, had no effect on either LPS-induced or cold-induced hypothermia. These data indicate that unlike direct acting cannabinoid receptor agonists, which elicit profound hypothermic responses on their own, neither MAGL nor FAAH inhibitors affect normal body temperature. However, these endocannabinoid catabolic enzymes play distinct roles in thermoregulation following hypothermic challenges.

  13. Catabolic factors and osteoarthritis-conditioned medium inhibit chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Heldens, Genoveva T H; Blaney Davidson, Esmeralda N; Vitters, Elly L; Schreurs, B Willem; Piek, Ester; van den Berg, Wim B; van der Kraan, Peter M

    2012-01-01

    Articular cartilage has a very limited intrinsic repair capacity leading to progressive joint damage. Therapies involving tissue engineering depend on chondrogenic differentiation of progenitor cells. This chondrogenic differentiation will have to survive in a diseased joint. We postulate that catabolic factors in this environment inhibit chondrogenesis of progenitor cells. We investigated the effect of a catabolic environment on chondrogenesis in pellet cultures of human mesenchymal stem cells (hMSCs). We exposed chondrogenically differentiated hMSC pellets, to interleukin (IL)-1α, tumor necrosis factor (TNF)-α or conditioned medium derived from osteoarthritic synovium (CM-OAS). IL-1α and TNF-α in CM-OAS were blocked with IL-1Ra or Enbrel, respectively. Chondrogenesis was determined by chondrogenic markers collagen type II, aggrecan, and the hypertrophy marker collagen type X on mRNA. Proteoglycan deposition was analyzed by safranin o staining on histology. IL-1α and TNF-α dose-dependently inhibited chondrogenesis when added at onset or during progression of differentiation, IL-1α being more potent than TNF-α. CM-OAS inhibited chondrogenesis on mRNA and protein level but varied in extent between patients. Inhibition of IL-1α partially overcame the inhibitory effect of the CM-OAS on chondrogenesis whereas the TNF-α contribution was negligible. We show that hMSC chondrogenesis is blocked by either IL-1α or TNF-α alone, but that there are additional factors present in CM-OAS that contribute to inhibition of chondrogenesis, demonstrating that catabolic factors present in OA joints inhibit chondrogenesis, thereby impairing successful tissue engineering.

  14. Natural Variation in Synthesis and Catabolism Genes Influences Dhurrin Content in Sorghum

    Directory of Open Access Journals (Sweden)

    Chad M. Hayes

    2015-07-01

    Full Text Available Cyanogenic glucosides are natural compounds found in more than 1000 species of angiosperms that produce HCN and are deemed undesirable for agricultural use. However, these compounds are important components of the primary defensive mechanisms of many plant species. One of the best-studied cyanogenic glucosides is dhurrin [(--hydroxymandelonitrile-β--glucopyranoside], which is produced primarily in sorghum [ (L. Moench]. The biochemical basis for dhurrin metabolism is well established; however, little information is available on its genetic control. Here, we dissect the genetic control of leaf dhurrin content through a genome-wide association study (GWAS using a panel of 700 diverse converted sorghum lines (conversion panel previously subjected to pre-breeding and selected for short stature (∼1 m in height and photoperiod insensitivity. The conversion panel was grown for 2 yr in three environments. Wide variation for leaf dhurrin content was found in the sorghum conversion panel, with the Caudatum group exhibiting the highest dhurrin content and the Guinea group showing the lowest dhurrin content. A GWAS using a mixed linear model revealed significant associations (a false discovery rate [FDR] < 0.05 close to both UGT 185B1 in the canonical biosynthetic gene cluster on chromosome 1 and close to the catabolic dhurrinase loci on chromosome 8. Dhurrin content was associated consistently with biosynthetic genes in the two N-fertilized environments, while dhurrin content was associated with catabolic loci in the environment without supplemental N. These results suggest that genes for both biosynthesis and catabolism are important in determining natural variation for leaf dhurrin in sorghum in different environments.

  15. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eLeprince

    2015-01-01

    Full Text Available Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signalling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K, VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1, a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  16. Protein catabolism in pregnant snakes (Epicrates cenchria maurus Boidae) compromises musculature and performance after reproduction.

    Science.gov (United States)

    Lourdais, O; Brischoux, F; DeNardo, D; Shine, R

    2004-07-01

    In many species the high energetic demands of reproduction induce a negative energy balance, and thus females must rely on tissue catabolism to complete the reproductive process. Previous works have shown that both fat and protein are energy resources during prolonged fasting in vertebrates. While many ecological studies on energy costs of reproduction have focused on variations in fat stores, the impact of protein investment on the female has not been thoroughly investigated. Notably, as there is no specialized storage form for proteins, intense catabolism is likely to entail structural (musculature) loss that may compromise maternal physical performance after reproduction. Measurements on captive rainbow boas ( Epicrates cenchria maurus) confirm that reproducing females undergo significant protein catabolism (as indicated by elevated plasma uric acid levels) and show considerable musculature loss during gestation (as detected by reduced width of the epaxial muscles). Protein mobilization entailed a significant functional loss that was illustrated by decrements in tests of strength and constriction after parturition. In wild situations, such effects are likely to decrease the snakes' ability to forage and apprehend prey. Hence, the time period needed to recover from reproduction can be extended not only because the female must compensate losses of both fat stores and functional muscle, but also because the ability to do so may be compromised. Performance alteration is likely to be of equal or greater importance than reduced energy stores in the physiological mediation of elevated post-reproduction mortality rates and infrequent reproductive bouts (e.g. biannual or triannual), two common ecological traits of female snakes.

  17. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis.

    Science.gov (United States)

    Raj, Dominic S C; Adeniyi, Oladipo; Dominic, Elizabeth A; Boivin, Michel A; McClelland, Sandra; Tzamaloukas, Antonios H; Morgan, Nancy; Gonzales, Lawrence; Wolfe, Robert; Ferrando, Arny

    2007-06-01

    Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown.

  18. Overexpression, purification, crystallization and preliminary structural studies of catabolic ornithine transcarbamylase from Lactobacillus hilgardii

    International Nuclear Information System (INIS)

    Rivas, Blanca de las; Rodríguez, Héctor; Angulo, Iván; Muñoz, Rosario; Mancheño, José M.

    2007-01-01

    The catabolic ornithine transcarbamylase (cOTC) from L. hilgardii has been overexpressed in E. coli, purified and crystallized under two different experimental conditions. The structure has been solved by the molecular-replacement method using the atomic coordinates of catabolic ornithine transcarbamylase from P. aeruginosa as the search model. The catabolic ornithine transcarbamylase (cOTC; EC 2.1.3.3) from the lactic acid bacteria Lactobacillus hilgardii is a key protein involved in the degradation of arginine during malolactic fermentation. cOTC containing an N-terminal His 6 tag has been overexpressed in Escherichia coli, purified and crystallized under two different experimental conditions using the hanging-drop vapour-diffusion method. Crystals obtained from a solution containing 8%(w/v) PEG 4000, 75 mM sodium acetate pH 4.6 belong to the trigonal space group P321 and have unit-cell parameters a = b = 157.04, c = 79.28 Å. Conversely, crystals grown in 20%(v/v) 2-methyl-2,4-pentanediol, 7.5%(w/v) PEG 4000, 100 mM HEPES pH 7.8 belong to the monoclinic space group C2 and have unit-cell parameters a = 80.06, b = 148.90, c = 91.67 Å, β = 100.25°. Diffraction data were collected in-house to 3.00 and 2.91 Å resolution for trigonal and monoclinic crystals, respectively. The estimated Matthews coefficient for the crystal forms were 2.36 and 2.24 Å 3 Da −1 , respectively, corresponding to 48% and 45% solvent content. In both cases, the results are consistent with the presence of three protein subunits in the asymmetric unit. The structure of cOTC has been determined by the molecular-replacement method using the atomic coordinates of cOTC from Pseudomonas aeruginosa (PDB code) as the search model

  19. Selfish restriction modification genes: resistance of a resident R/M plasmid to displacement by an incompatible plasmid mediated by host killing.

    Science.gov (United States)

    Naito, Y; Naito, T; Kobayashi, I

    1998-01-01

    Previous work from this laboratory demonstrated that plasmids carrying a type II restriction-modification gene complex are not easily lost from their bacterial host because plasmid-free segregant cells are killed through chromosome cleavage. Here, we have followed the course of events that takes place when an Escherichia coli rec BC sbcA strain carrying a plasmid coding for the PaeR7I restriction-modification (R/M) gene complex is transformed by a plasmid with an identical origin of replication. The number of transformants that appeared was far fewer than with the restriction-minus (r-) control. Most of the transformants were very small. After prolonged incubation, the number and the size of the colonies increased, but this increase never attained the level of the r- control. Most of the transformed colonies retained the drug-resistance of the resident, r+ m+ plasmid. These results indicate that post-segregational host killing occurs when a plasmid bearing an R/M gene complex is displaced by an incompatible plasmid. Such cell killing eliminates the competitor plasmid along with the host and, thus, would allow persistence of the R/M plasmid in the neighboring, clonal host cells in nature. This phenomenon is reminiscent of mammalian apoptosis and other forms of altruistic cell death strategy against infection. This type of resistance to displacement was also studied in a wild type Escherichia coli strain that was normal for homologous recombination (rec+). A number of differences between the recBC sbcA strain and the rec+ strain were observed and these will be discussed.

  20. Plasmid marker rescue transformation proceeds by breakage-reunion in Bacillus subtilis

    International Nuclear Information System (INIS)

    Weinrauch, Y.; Dubnau, D.

    1987-01-01

    Bacillus subtilis carrying a plasmid which replicates with a copy number of about 1 was transformed with linearized homologous plasmid DNA labeled with the heavy isotopes 2 H and 15 N, in the presence of 32 Pi and 6-(p-hydroxyphenylazo)-uracil to inhibit DNA replication. Plasmid DNA was isolated from the transformed culture and fractionated in cesium chloride density gradients. The distribution of total and donor plasmid DNA was examined, using specific hybridization probes. The synthesis of new DNA, associated with the integration of donor moiety, was also monitored. Donor-specific sequences were present at a density intermediate between that of light and hybrid DNA. This recombinant DNA represented 1.4% of total plasmid DNA. The latter value corresponded well with the transforming activity (1.7%) obtained for the donor marker. Newly synthesized material associated with plasmid DNA at the recombinant density amounted to a minor portion of the recombinant plasmid DNA. These data suggest that, like chromosomal transformation, plasmid marker rescue transformation does not require replication for the integration of donor markers and, also like chromosomal transformation, proceeds by a breakage-reunion mechanism. The extent of donor DNA replacement of recipient DNA per plasmid molecule of 54 kilobases (27 kilobase pairs) was estimated as 16 kilobases

  1. Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michelle D. Rodriguez

    2017-12-01

    Full Text Available Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus. These three reporter plasmids are available through BEI Resources.

  2. Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus.

    Science.gov (United States)

    Rodriguez, Michelle D; Paul, Zubin; Wood, Charles E; Rice, Kelly C; Triplett, Eric W

    2017-01-01

    Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus . These three reporter plasmids are available through BEI Resources.

  3. Nucleotide Sequences and Comparison of Two Large Conjugative Plasmids from Different Campylobacter species

    National Research Council Canada - National Science Library

    Batchelor, Roger A; Pearson, Bruce M; Friis, Lorna M; Guerry, Patricia; Wells, Jerry M

    2004-01-01

    .... Both plasmids are mosaic in structure, having homologues of genes found in a variety of different commensal and pathogenic bacteria, but nevertheless, showed striking similarities in DNA sequence...

  4. Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant Escherichia coli from Myanmar.

    Directory of Open Access Journals (Sweden)

    Yo Sugawara

    Full Text Available The bacterial enzyme New Delhi metallo-β-lactamase hydrolyzes almost all β-lactam antibiotics, including carbapenems, which are drugs of last resort for severe bacterial infections. The spread of carbapenem-resistant Enterobacteriaceae that carry the New Delhi metallo-β-lactamase gene, blaNDM, poses a serious threat to public health. In this study, we genetically characterized eight carbapenem-resistant Escherichia coli isolates from a tertiary care hospital in Yangon, Myanmar. The eight isolates belonged to five multilocus-sequence types and harbored multiple antimicrobial-resistance genes, resulting in resistance against nearly all of the antimicrobial agents tested, except colistin and fosfomycin. Nine plasmids harboring blaNDM genes were identified from these isolates. Multiple blaNDM genes were found in the distinct Inc-replicon types of the following plasmids: an IncA/C2 plasmid harboring blaNDM-1 (n = 1, IncX3 plasmids harboring blaNDM-4 (n = 2 or blaNDM-7 (n = 1, IncFII plasmids harboring blaNDM-4 (n = 1 or blaNDM-5 (n = 3, and a multireplicon F plasmid harboring blaNDM-5 (n = 1. Comparative analysis highlighted the diversity of the blaNDM-harboring plasmids and their distinct characteristics, which depended on plasmid replicon types. The results indicate circulation of phylogenetically distinct strains of carbapenem-resistant E. coli with various plasmids harboring blaNDM genes in the hospital.

  5. Repair of UV-irradiated plasmid DNA in excision repair deficient mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ikai, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-01-01

    The repair of UV-irradiated DNA of plasmid YEp13 was studied in the incision defective strains by measurement of cell transformation frequency. In Saccharomyces cerevisiae, rad1,2,3 and 4 mutants could repair UV-damaged plasmid DNA. In Escherichia coli, uvrA mutant was unable to repair UV-damaged plasmid DNA; however, pretreatment of the plasmid with Micrococcus luteus endonuclease increased repair. It was concluded that all the mutations of yeast were probably limited only to the nuclear DNA. (author)

  6. Plasmids which make their host bacteria mutable as well as resistant to ultraviolet irradiation

    International Nuclear Information System (INIS)

    Arai, Toshihiko; Ando, Takao

    1980-01-01

    Some of the naturally occurring Iα, I zeta, M, N, O and T group plasmids increase both the mutability and UV resistance of their host bacteria, while group H and S plasmids only increase mutability. This suggests that these two plasmid-mediated repair functions are separable. The two functions have no direct relation to their restriction-modification systems and nitrofuran resistant functions. In addition, the close linking between the restriction-modification genes and these repair function genes was suggested in group N plasmids. (author)

  7. Degenerate primer MOB typing of multiresistant clinical isolates of E. coli uncovers new plasmid backbones.

    Science.gov (United States)

    Garcillán-Barcia, M Pilar; Ruiz del Castillo, Belén; Alvarado, Andrés; de la Cruz, Fernando; Martínez-Martínez, Luis

    2015-01-01

    Degenerate Primer MOB Typing is a PCR-based protocol for the classification of γ-proteobacterial transmissible plasmids in five phylogenetic relaxase MOB families. It was applied to a multiresistant E. coli collection, previously characterized by PCR-based replicon-typing, in order to compare both methods. Plasmids from 32 clinical isolates of multiresistant E. coli (19 extended spectrum beta-lactamase producers and 13 non producers) and their transconjugants were analyzed. A total of 95 relaxases were detected, at least one per isolate, underscoring the high potential of these strains for antibiotic-resistance transmission. MOBP12 and MOBF12 plasmids were the most abundant. Most MOB subfamilies detected were present in both subsets of the collection, indicating a shared mobilome among multiresistant E. coli. The plasmid profile obtained by both methods was compared, which provided useful data upon which decisions related to the implementation of detection methods in the clinic could be based. The phylogenetic depth at which replicon and MOB-typing classify plasmids is different. While replicon-typing aims at plasmid replication regions with non-degenerate primers, MOB-typing classifies plasmids into relaxase subfamilies using degenerate primers. As a result, MOB-typing provides a deeper phylogenetic depth than replicon-typing and new plasmid groups are uncovered. Significantly, MOB typing identified 17 plasmids and an integrative and conjugative element, which were not detected by replicon-typing. Four of these backbones were different from previously reported elements. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Computational design and characterization of a temperature-sensitive plasmid replicon for gram positive thermophiles

    Directory of Open Access Journals (Sweden)

    Olson Daniel G

    2012-05-01

    Full Text Available Abstract Background Temperature-sensitive (Ts plasmids are useful tools for genetic engineering, but there are currently none compatible with the gram positive, thermophilic, obligate anaerobe, Clostridium thermocellum. Traditional mutagenesis techniques yield Ts mutants at a low frequency, and therefore requires the development of high-throughput screening protocols, which are also not available for this organism. Recently there has been progress in the development of computer algorithms which can predict Ts mutations. Most plasmids currently used for genetic modification of C. thermocellum are based on the replicon of plasmid pNW33N, which replicates using the RepB replication protein. To address this problem, we set out to create a Ts plasmid by mutating the gene coding for the RepB replication protein using an algorithm designed by Varadarajan et al. (1996 for predicting Ts mutants based on the amino-acid sequence of the protein. Results A library of 34 mutant plasmids was designed, synthesized and screened, resulting in 6 mutants which exhibited a Ts phenotype. Of these 6, the one with the most temperature-sensitive phenotype (M166A was compared with the original plasmid. It exhibited lower stability at 48°C and was completely unable to replicate at 55°C. Conclusions The plasmid described in this work could be useful in future efforts to genetically engineer C. thermocellum, and the method used to generate this plasmid may be useful for others trying to make Ts plasmids.

  9. The role of polyamine catabolism in anti-tumour drug response.

    Science.gov (United States)

    Casero, R A; Wang, Y; Stewart, T M; Devereux, W; Hacker, A; Wang, Y; Smith, R; Woster, P M

    2003-04-01

    Interest in polyamine catabolism has increased since it has been directly associated with the cytotoxic response of multiple tumour types to exposure to specific anti-tumour polyamine analogues. Human polyamine catabolism was considered to be a two-step pathway regulated by the rate-limiting enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) that provides substrate for an acetylpolyamine oxidase (APAO). Further, the super-induction of SSAT by several anti-tumour polyamine analogues has been implicated in the cytotoxic response of specific solid-tumour phenotypes to these agents. This high induction of SSAT has been correlated with cellular response to the anti-tumour polyamine analogues in several systems and considerable progress has been made in understanding the molecular mechanisms that regulate the analogue-induced expression of SSAT. A polyamine response element has been identified and the transacting transcription factors that bind and stimulate transcription of SSAT have been cloned and characterized. The link between SSAT activity and cellular toxicity is thought to be based on the production of H(2)O(2) by the activity of the constitutive APAO that uses the SSAT-produced acetylated polyamines. The high induction of SSAT and the subsequent activity of APAO are linked to the cytotoxic response of some tumour cell types to specific polyamine analogues. However, we have recently cloned a variably spliced human polyamine oxidase (PAOh1) that is inducible by specific polyamine analogues, efficiently uses unacetylated spermine as a substrate, and also produces toxic H(2)O(2) as a product. The results of studies with PAOh1 suggest that it is an additional enzyme in polyamine catabolism that has the potential to significantly contribute to polyamine homoeostasis and drug response. Most importantly, PAOh1 is induced by specific polyamine analogues in a tumour-phenotype-specific manner in cell lines representative of the major forms of solid tumours, including

  10. D-Allose catabolism of Escherichia coli

    DEFF Research Database (Denmark)

    Poulsen, Tim S.; Chang, Ying-Ying; Hove-Jensen, Bjarne

    1999-01-01

    Genes involved in allose utilization of Escherichia coli K-12 are organized in at least two operons, alsRBACE and alsI, located next to each other on the chromosome but divergently transcribed. Mutants defective in alsI (allose 6-phosphate isomerase gene) and alsE (allulose 6-phosphate epimerase...... gene) were Als-. Transcription of the two allose operons, measured as β-galactosidase activity specified by alsI-lacZ+ or alsE-lacZ+ operon fusions, was induced by allose. Ribose also caused derepression of expression of the regulon under conditions in which ribose phosphate catabolism was impaired....

  11. Rapid and inexpensive method for isolating plasmid DNA

    International Nuclear Information System (INIS)

    Aljanabi, S. M.; Al-Awadi, S. J.; Al-Kazaz, A. A.; Baghdad Univ.

    1997-01-01

    A small-scale and economical method for isolating plasmid DNA from bacteria is described. The method provides DNA of suitable quality for most DNA manipulation techniques. This DNA can be used for restriction endonuclease digestion, southern blot hybridization, nick translation and end labeling of DNA probes, Polymerase Chain Reaction (PCR) -based techniques, transformation, DNA cycle-sequencing, and Chain-termination method for DNA sequencing. The entire procedure is adapted to 1.5 ml microfuge tubes and takes approximately 30 mins. The DNA isolated by this method has the same purity produced by CTAB and cesium chloride precipitation and purification procedures respectively. The two previous methods require many hours to obtain the final product and require the use of very expensive equipment as ultracentrifuge. This method is well suited for the isolation of plasmid DNA from a large number of bacterial samples and in a very short time and low cost in laboratories where chemicals, expensive equipment and finance are limited factors in conducting molecular research. (authors). 11refs. 11refs

  12. Fast and efficient three-step target-specific curing of a virulence plasmid in Salmonella enterica.

    Science.gov (United States)

    de Moraes, Marcos H; Teplitski, Max

    2015-12-01

    Virulence plasmids borne by serovars of Salmonella enterica carry genes involved in its pathogenicity, as well as other functions. Characterization of phenotypes associated with virulence plasmids requires a system for efficiently curing strains of their virulence plasmids. Here, we developed a 3-step protocol for targeted curing of virulence plasmids. The protocol involves insertion of an I-SecI restriction site linked to an antibiotic resistance gene into the target plasmid using λ-Red mutagenesis, followed by the transformation with a temperature-sensitive auxiliary plasmid which carries I-SecI nuclease expressed from a tetracycline-inducible promoter. Finally, the auxiliary plasmid is removed by incubation at 42 °C and the plasmid-less strains are verified on antibiotic-containing media. This method is fast and very efficient: over 90 % of recovered colonies lacked their virulence plasmid.

  13. Prostaglandin synthesis and catabolism in the gastric mucosa: studies in normal rabbits and rabbits immunized with prostaglandin E2

    International Nuclear Information System (INIS)

    Redfern, J.S.

    1988-01-01

    Antral and fundic mucosal homogenates obtained from prostaglandin E2-immunized rabbits converted 14C-arachidonic acid to prostaglandin E2, 6-keto prostaglandin F1 alpha, prostaglandin F2 alpha, and prostaglandin D2. Percentage conversion of 14C-arachidonic acid to these prostaglandin products was not significantly different in prostaglandin E2-immunized rabbits compared with control rabbits (thyroglobulin-immunized and unimmunized rabbits combined). Synthesis of 6-keto prostaglandin F1 alpha, prostaglandin E2 and 13,14-dihydro 15-keto prostaglandin E2 from endogenous arachidonic acid after vortex mixing fundic mucosal homogenates was similar in prostaglandin E2 immunized rabbits and control rabbits. Both in prostaglandin E2-immunized rabbits and controls, 3H-prostaglandin E2 was catabolized extensively by the fundic mucosa, whereas 3H-6-keto prostaglandin F1 alpha, 3H-prostaglandin F2 alpha, and 3H-prostaglandin D2 were not catabolized to any appreciable extent. The rate of catabolism of PGs was not significantly different in prostaglandin E2-immunized rabbits and control rabbits, with the exception of prostaglandin F2 alpha which was catabolized slightly more rapidly in prostaglandin E2-immunized rabbits. These results indicate that development of gastric ulcers in prostaglandin E2-immunized rabbits is not associated with an alteration in the capacity of the gastric mucosa to synthesize or catabolize prostaglandins

  14. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: An insight into model-driven systems engineering

    Directory of Open Access Journals (Sweden)

    C Sangavai

    2017-12-01

    Full Text Available Model-driven systems engineering has been more fascinating process for the microbial production of biofuel and bio-refineries in chemical and pharmaceutical industries. Genome-scale modeling and simulations have been guided for metabolic engineering of Clostridium species for the production of organic solvents and organic acids. Among them, Clostridium sticklandii is one of the potential organisms to be exploited as a microbial cell factory for biofuel production. It is a hyper-ammonia producing bacterium and is able to catabolize amino acids as important carbon and energy sources via Stickland reactions and the development of the specific pathways. Current genomic and metabolic aspects of this bacterium are comprehensively reviewed herein, which provided information for learning about protein catabolism-directed biofuel production. It has a metabolic potential to drive energy and direct solventogenesis as well as acidogenesis from protein catabolism. It produces by-products such as ethanol, acetate, n-butanol, n-butyrate and hydrogen from amino acid catabolism. Model-driven systems engineering of this organism would improve the performance of the industrial sectors and enhance the industrial economy by using protein-based waste in environment-friendly ways. Keywords: Biofuel, Amino acid catabolism, Genome-scale model, Metabolic engineering, Systems biology, ABE fermentation, Clostridium sticklandii

  15. Bovine lactoferricin is anti-inflammatory and anti-catabolic in human articular cartilage and synovium.

    Science.gov (United States)

    Yan, Dongyao; Chen, Di; Shen, Jie; Xiao, Guozhi; van Wijnen, Andre J; Im, Hee-Jeong

    2013-02-01

    Bovine lactoferricin (LfcinB) is a multi-functional peptide derived from proteolytic cleavage of bovine lactoferrin. LfcinB was found to antagonize the biological effects mediated by angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) in endothelial cells. However, the effect of LfcinB on human articular cartilage remained unknown. Here, our findings demonstrate that LfcinB restored the proteoglycan loss promoted by catabolic factors (interleukin-1β) IL-1β and FGF-2 in vitro and ex vivo. Mechanistically, LfcinB attenuated the effects of IL-1β and FGF-2 on the expression of cartilage-degrading enzymes (MMP-1, MMP-3, and MMP-13), destructive cytokines (IL-1β and IL-6), and inflammatory mediators (iNOS and TLR2). LfcinB induced protective cytokine expression (IL-4 and IL-10), and downregulated aggrecanase basal expression. LfcinB specifically activated ERK MAPK and Akt signaling pathways, which may account for its anti-inflammatory activity. We also revealed that LfcinB exerted similar protective effects on human synovial fibroblasts challenged by IL-1β, with minimal cytotoxicity. Collectively, our results suggest that LfcinB possesses potent anti-catabolic and anti-inflammatory bioactivities in human articular tissues, and may be utilized for the prevention and/or treatment of OA in the future. Copyright © 2012 Wiley Periodicals, Inc.

  16. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Mcintyre, Mhairi; Nielsen, Jens

    2004-01-01

    The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars. In the cultivat......The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars...... on the sugar mixture, glucose repression of xylose utilisation was observed; with xylose utilisation occurring only after glucose was depleted. This phenomenon was not seen in the creA deleted strain, where glucose and xylose were catabolised simultaneously. Measurement of key metabolites and the activities...... of key enzymes in the xylose utilisation pathway revealed that xylose metabolism was occurring in the creA deleted strain, even at high glucose concentrations. Conversely, in the wild type strain, activities of the key enzymes for xylose metabolism increased only when the effects of glucose repression...

  17. Mutations Enhancing Amino Acid Catabolism Confer a Growth Advantage in Stationary Phase

    Science.gov (United States)

    Zinser, Erik R.; Kolter, Roberto

    1999-01-01

    Starved cultures of Escherichia coli undergo successive rounds of population takeovers by mutants of increasing fitness. These mutants express the growth advantage in stationary phase (GASP) phenotype. Previous work identified the rpoS819 allele as a GASP mutation allowing cells to take over stationary-phase cultures after growth in rich media (M. M. Zambrano, D. A. Siegele, M. A. Almirón, A. Tormo, and R. Kolter, Science 259:1757–1760, 1993). Here we have identified three new GASP loci from an aged rpoS819 strain: sgaA, sgaB, and sgaC. Each locus is capable of conferring GASP on the rpoS819 parent, and they can provide successively higher fitnesses for the bacteria in the starved cultures. All four GASP mutations isolated thus far allow for faster growth on both individual and mixtures of amino acids. Each mutation confers a growth advantage on a different subset of amino acids, and these mutations act in concert to increase the overall catabolic capacity of the cell. We present a model whereby this enhanced ability to catabolize amino acids is responsible for the fitness gain during carbon starvation, as it may allow GASP mutants to outcompete the parental cells when growing on the amino acids released by dying cells. PMID:10482523

  18. Metabolism and catabolism in hip fracture patients: nutritional and anabolic intervention--a review.

    Science.gov (United States)

    Hedström, Margareta; Ljungqvist, Olle; Cederholm, Tommy

    2006-10-01

    Patients suffering from hip fracture are known to be at risk of catabolism and protein-energy malnutrition. In this review we discuss the pathogenesis of hip fracture-related catabolism per- and postoperatively. We also describe the consequences of malnutrition after a hip fracture and summarize studies that have evaluated the effect of nutritional or anabolic treatment of these patients. There has been relatively little published on the effects of nutritional and anabolic pharmacological interventions for improvement of nutritional status and on the role of nutritional status in clinical outcomes. Even so, there have been 19 randomized studies in this field. 12 studies evaluated nutritional supplementation or protein supplementation. 6 found improved clinical outcome with fewer complications, faster recovery and shorter length of hospital stay, whereas the others reported no difference in clinical outcome. For pharmacological interventions, the outcomes have been even less clear. Supplementation studies in general appear to be underpowered or suffer logistic problems. Studies of higher scientific quality are needed, and enteral feeding, anabolic treatment and multimodal approaches need to be evaluated in greater depth.

  19. The ygeW encoded protein from Escherichia coli is a knotted ancestral catabolic transcarbamylase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongdong; Jin, Zhongmin; Yu, Xiaolin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang (Maryland); (GWU); (Georgia)

    2012-06-28

    Purine degradation plays an essential role in nitrogen metabolism in most organisms. Uric acid is the final product of purine catabolism in humans, anthropoid apes, birds, uricotelic reptiles, and almost all insects. Elevated levels of uric acid in blood (hyperuricemia) cause human diseases such as gout, kidney stones, and renal failure. Although no enzyme has been identified that further degrades uric acid in humans, it can be oxidized to produce allantoin by free-radical attack. Indeed, elevated levels of allantoin are found in patients with rheumatoid arthritis, chronic lung disease, bacterial meningitis, and noninsulin-dependent diabetes mellitus. In other mammals, some insects and gastropods, uric acid is enzymatically degraded to the more soluble allantoin through the sequential action of three enzymes: urate oxidase, 5-hydroxyisourate (HIU) hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase. Therefore, an elective treatment for acute hyperuricemia is the administration of urate oxidase. Many organisms, including plants, some fungi and several bacteria, are able to catabolize allantoin to release nitrogen, carbon, and energy. In Arabidopsis thaliana and Eschrichia coli, S-allantoin has recently been shown to be degraded to glycolate and urea by four enzymes: allantoinase, allantoate amidohydrolase, ureidoglycine aminohydrolase, and ureidoglycolate amidohydrolase.

  20. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  1. Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira.

    Science.gov (United States)

    Agudelo-Romero, Patricia; Ali, Kashif; Choi, Young H; Sousa, Lisete; Verpoorte, Rob; Tiburcio, Antonio F; Fortes, Ana M

    2014-01-01

    Grapes are economically the most important fruit worldwide. However, the complexity of biological events that lead to ripening of nonclimacteric fruits is not fully understood, particularly the role of polyamines' catabolism. The transcriptional and metabolic profilings complemented with biochemical data were studied during ripening of Trincadeira grapes submitted to guazatine treatment, a potent inhibitor of polyamine oxidase activity. The mRNA expression profiles of one time point (EL 38) corresponding to harvest stage was compared between mock and guazatine treatments using Affymetrix GrapeGen(®) genome array. A total of 2113 probesets (1880 unigenes) were differentially expressed between these samples. Quantitative RT-PCR validated microarrays results being carried out for EL 35 (véraison berries), EL 36 (ripe berries) and EL 38 (harvest stage berries). Metabolic profiling using HPLC and (1)H NMR spectroscopy showed increase of putrescine, proline, threonine and 1-O-ethyl-β-glucoside in guazatine treated samples. Genes involved in amino acid, carbohydrate and water transport were down-regulated in guazatine treated samples suggesting that the strong dehydrated phenotype obtained in guazatine treated samples may be due to impaired transport mechanisms. Genes involved in terpenes' metabolism were differentially expressed between guazatine and mock treated samples. Altogether, results support an important role of polyamine catabolism in grape ripening namely in cell expansion and aroma development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells.

    Science.gov (United States)

    Insausti, T C; Casas, J

    2009-12-01

    Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.

  3. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Todd, Jonathan D.; Thrash, J. Cameron; Qian, Yanping; Qian, Michael C.; Temperton, Ben; Guo, Jiazhen; Fowler, Emily K.; Aldrich, Joshua T.; Nicora, Carrie D.; Lipton, Mary S.; Smith, Richard D.; De Leenheer, Patrick; Payne, Samuel H.; Johnston, Andrew W. B.; Davie-Martin, Cleo L.; Halsey, Kimberly H.; Giovannoni, Stephen J.

    2016-05-16

    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a DMSP lyase, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis. These findings suggest that DMSP supply and demand relationships in Pelagibacter metabolism are important to determining rates of oceanic DMS production.

  4. Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism

    Science.gov (United States)

    Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray

    1999-01-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only α-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  5. Re-Factoring Glycolytic Genes for Targeted Engineering of Catabolism in Gram-Negative Bacteria.

    Science.gov (United States)

    Sánchez-Pascuala, Alberto; Nikel, Pablo I; de Lorenzo, Víctor

    2018-01-01

    The Embden-Meyerhof-Parnas (EMP) pathway is widely accepted to be the biochemical standard of glucose catabolism. The well-characterized glycolytic route of Escherichia coli, based on the EMP catabolism, is an example of an intricate pathway in terms of genomic organization of the genes involved and patterns of gene expression and regulation. This intrinsic genetic and metabolic complexity renders it difficult to engineer glycolytic activities and transfer them onto other microbial cell factories, thus limiting the biotechnological potential of bacterial hosts that lack the route. Taking into account the potential applications of such a portable tool for targeted pathway engineering, in the present protocol we describe how the genes encoding all the enzymes of the linear EMP route have been individually recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals, and synthesized de novo following a standard (i.e., GlucoBrick) that facilitates their grouping in the form of functional modules that can be combined at the user's will. This novel genetic tool allows for the à la carte implementation or boosting of EMP pathway activities into different Gram-negative bacteria. The potential of the GlucoBrick platform is further illustrated by engineering novel glycolytic activities in the most representative members of the Pseudomonas genus (Pseudomonas putida and Pseudomonas aeruginosa).

  6. A Murine Model of Persistent Inflammation, Immune Suppression, and Catabolism Syndrome

    Directory of Open Access Journals (Sweden)

    Amanda M. Pugh

    2017-08-01

    Full Text Available Critically ill patients that survive sepsis can develop a Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS, which often leads to extended recovery periods and multiple complications. Here, we utilized a cecal ligation and puncture (CLP method in mice with the goal of creating a model that concurrently displays all the characteristics of PICS. We observed that, after eight days, mice that survive the CLP develop persistent inflammation with significant myelopoiesis in the bone marrow and spleen. These mice also demonstrate ongoing immune suppression, as evidenced by the decreased total and naïve splenic CD4 and CD8 T cells with a concomitant increase in immature myeloid cells. The mice further display significant weight loss and decreased muscle mass, indicating a state of ongoing catabolism. When PICS mice are challenged with intranasal Pseudomonas aeruginosa, mortality is significantly elevated compared to sham mice. This mortality difference is associated with increased bacterial loads in the lung, as well as impaired neutrophil migration and neutrophil dysfunction in the PICS mice. Altogether, we have created a sepsis model that concurrently exhibits PICS characteristics. We postulate that this will help determine the mechanisms underlying PICS and identify potential therapeutic targets to improve outcomes for this patient population.

  7. Prevalence of plasmid-bearing and plasmid-free Chlamydia trachomatis infection among women who visited obstetrics and gynecology clinics in Malaysia

    OpenAIRE

    Yeow, Tee Cian; Wong, Won Fen; Sabet, Negar Shafiei; Sulaiman, Sofiah; Shahhosseini, Fatemeh; Tan, Grace Min Yi; Movahed, Elaheh; Looi, Chung Yeng; Shankar, Esaki M.; Gupta, Rishien; Arulanandam, Bernard P.; Hassan, Jamiyah; Abu Bakar, Sazaly

    2016-01-01

    Background The 7.5?kb cryptic plasmid of Chlamydia trachomatis has been shown to be a virulence factor in animal models, but its significance in humans still remains unknown. The aim of this study was to investigate the prevalence and potential involvement of the C. trachomatis cryptic plasmid in causing various clinical manifestations; including infertility, reproductive tract disintegrity, menstrual disorder, and polycystic ovarian syndrome (PCOS) among genital C. trachomatis?infected patie...

  8. Plant-inducible virulence promoter of the Agrobacterium tumefaciens Ti plasmid

    NARCIS (Netherlands)

    Okker, Robert J.H.; Spaink, Herman; Hille, Jacques; Brussel, Ton A.N. van; Lugtenberg, Ben; Schilperoort, Rob A.

    1984-01-01

    Agrobacterium tumefaciens is the causative agent of crown gall, a plant tumour that can arise on most species of dicotyledonous plants. The tumour-inducing capacity of the bacterium requires the presence of a large plasmid, designated the Ti plasmid, which itself contains two regions essential for

  9. Presence and analysis of plasmids in human and animal associated Arcobacter species

    DEFF Research Database (Denmark)

    Douidah, Laid; De Zutter, Lieven; Van Nieuwerburgh, Filip

    2014-01-01

    coding information, which contrasts to the 20 to 30% for the small plasmids. Some of the open reading frames showed a high homology to putative conserved domains found in other related organisms, such as replication, mobilization and genes involved in type IV secretion system. The large plasmid carried...

  10. Plasmids replicatable in Bacillus subtilis, E. coli and lactic acid streptococcus bacteria

    NARCIS (Netherlands)

    Kok, Jan; Maat, Jan; van der Vossen, Josephus Mauritius; Venema, Gerard

    1997-01-01

    The claimed invention is drawn to a recombinant plasmid which can replicate in Bacillus subtilis, Escherichia coli, and lactic acid Streptococcus bacteria comprising the replication of origin from Streptococcus cremoris plasmid pWV01 as its origin of replication, in addition to coding marker genes

  11. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    NARCIS (Netherlands)

    Dang, H. M.; van Goethem, M. J.; van der Graaf, E. R.; Brandenburg, S.; Hoekstra, R.; Schlatholter, T.

    2010-01-01

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with (12)C ions under spread-out Bragg peak conditions

  12. Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4.

    Science.gov (United States)

    Cao, Qing-Hua; Shao, Huan-Huan; Qiu, Hui; Li, Tao; Zhang, Yi-Zheng; Tan, Xue-Mei

    2017-03-01

    The CRISPR/Cas system can be used to simply and efficiently edit the genomes of various species, including animals, plants, and microbes. Zymomonas mobilis ZM4 is a highly efficient, ethanol-producing bacterium that contains five native plasmids. Here, we constructed the pSUZM2a-Cas9 plasmid and a single-guide RNA expression plasmid. The pSUZM2a-Cas9 plasmid was used to express the Cas9 gene cloned from Streptococcus pyogenes CICC 10464. The single-guide RNA expression plasmid pUC-T7sgRNA, with a T7 promoter, can be used for the in vitro synthesis of single-guide RNAs. This system was successfully employed to knockout the upp gene of Escherichia coli and the replicase genes of native Z. mobilis plasmids. This is the first study to apply the CRISPR/Cas9 system of S. pyogenes to eliminate native plasmids in Z. mobilis. It provides a new method for plasmid curing and paves the way for the genomic engineering of Z. mobilis.

  13. Structural analysis of the ParR/parC plasmid partition complex

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Ringgaard, Simon; Mercogliano, Christopher P

    2007-01-01

    Accurate DNA partition at cell division is vital to all living organisms. In bacteria, this process can involve partition loci, which are found on both chromosomes and plasmids. The initial step in Escherichia coli plasmid R1 partition involves the formation of a partition complex between the DNA...

  14. CHARACTERIZATION OF SINGLE-STRAND ORIGINS OF CRYPTIC ROLLING-CIRCLE PLASMIDS FROM BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    MEIJER, WJJ; VENEMA, G; BRON, S

    1995-01-01

    In this paper we describe the isolation and characterization of single strand origins (SSOs) of several cryptic Bacillus subtilis plasmids which use the rolling-circle mechanism of replication, The plasmids used in this study involved pTA1015, pTA1020, pTA1030, pTA1040, pTA1050 and pTA1060, The SSO

  15. trans-Acting Virulence Functions of the Octopine Ti Plasmid from Agrobacterium tumefaciens

    NARCIS (Netherlands)

    Hille, Jacques; Kan, Jan van; Schilperoort, Rob

    1984-01-01

    All Ti plasmid-encoded virulence functions that were studied act in trans. An octopine Ti plasmid-specific vir operon, called vir-O, located on an EcoRI restriction fragment has been characterized. Sequences with promoter activity in Escherichia coli were identified for a second vir operon, called

  16. Conjugal plasmid transfer (pAM beta 1) in Lactobacillus plantarum.

    OpenAIRE

    Shrago, A W; Chassy, B M; Dobrogosz, W J

    1986-01-01

    The streptococcal plasmid pAM beta 1 (erythromycin resistance) was transferred via conjugation from Streptococcus faecalis to Lactobacillus plantarum and was transferred among L. plantarum strains. Streptococcus sanguis Challis was transformed with pAM beta 1 isolated from these transconjugants, and transformants harboring intact pAM beta 1 could conjugate the plasmid back to L. plantarum.

  17. Isolation of a minireplicon of the plasmid pG6303 of Lactobacillus ...

    Indian Academy of Sciences (India)

    is a new mode of plasmid replication. [Fan J., Xi X., ... coli using the BioTeKe plasmid extraction kit (BioTeKe, Beijing, China) according .... media and incubated at 37◦C for three days. The methods of ..... Each experiment was repeated five times. Journal of ..... Cold Spring Harbor Laboratory Press, New York, USA. Soler N.

  18. Quantification bias caused by plasmid DNA conformation in quantitative real-time PCR assay.

    Science.gov (United States)

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification.

  19. Diversity and stability of plasmids from glycopeptide resistant Enterococcus faecium isolated from pigs in Denmark

    DEFF Research Database (Denmark)

    Hasman, H.; Villadsen, A. G.; Aarestrup, Frank Møller

    2005-01-01

    was seen at the end of the 7-year period, coinciding with the ban in 1998 of the macrolide tylosin as growth promoter for pig production. The stability of the plasmid in its original host was compared with stability of the same plasmid in BM4105RF, when both strains were maintained in liquid cultures...

  20. Specific structural probing of plasmid-coded ribosomal RNAs from Escherichia coli

    DEFF Research Database (Denmark)

    Aagaard, C; Rosendahl, G; Dam, M

    1991-01-01

    The preferred method for construction and in vivo expression of mutagenised Escherichia coli ribosomal RNAs (rRNAs) is via high copy number plasmids. Transcription of wild-type rRNA from the seven chromosomal rrn operons in strains harbouring plasmid-coded mutant rRNAs leads to a heterogeneous...

  1. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica.

    Science.gov (United States)

    Hoffmann, Maria; Pettengill, James B; Gonzalez-Escalona, Narjol; Miller, John; Ayers, Sherry L; Zhao, Shaohua; Allard, Marc W; McDermott, Patrick F; Brown, Eric W; Monday, Steven R

    2017-01-01

    Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in

  2. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Maria Hoffmann

    2017-08-01

    Full Text Available Determinants of multidrug resistance (MDR are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI, and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about

  3. Frequency and diversity of small cryptic plasmids in the genus Rahnella

    Directory of Open Access Journals (Sweden)

    Summers David K

    2010-02-01

    Full Text Available Abstract Background Rahnella is a widely distributed genus belonging to the Enterobacteriaceae and frequently present on vegetables. Although Rahnella has interesting agro-economical and industrial properties and several strains possess antibiotic resistances and toxin genes which might spread within microbial communities, little is known about plasmids of this genus. Thus, we isolated a number of Rahnella strains and investigated their complements of small plasmids. Results In total 53 strains were investigated and 11 plasmids observed. Seven belonged to the ColE1 family; one was ColE2-like and three shared homology to rolling circle plasmids. One of them belonged to the pC194/pUB110 family and two showed similarity to poorly characterised plasmid groups. The G+C content of two rolling circle plasmids deviated considerably from that of Rahnella, indicating that their usual hosts might belong to other genera. Most ColE1-like plasmids formed a subgroup within the ColE1 family that seems to be fairly specific for Rahnella. Intriguingly, the multimer resolution sites of all ColE1-like plasmids had the same orientation with respect to the origin of replication. This arrangement might be necessary to prevent inappropriate synthesis of a small regulatory RNA that regulates cell division. Although the ColE1-like plasmids did not possess any mobilisation system, they shared large parts with high sequence identity in coding and non-coding regions. In addition, highly homologous regions of plasmids isolated from Rahnella and the chromosomes of Erwinia tasmaniensis and Photorhabdus luminescens could be identified. Conclusions For the genus Rahnella we observed plasmid-containing isolates at a frequency of 19%, which is in the average range for Enterobacteriaceae. These plasmids belonged to diffent groups with members of the ColE1-family most frequently found. Regions of striking sequence homology of plasmids and bacterial chromosomes highlight the

  4. Distribution of Plasmids in Distinct Leptospira Pathogenic Species.

    Science.gov (United States)

    Wang, Yanzhuo; Zhuang, Xuran; Zhong, Yi; Zhang, Cuicai; Zhang, Yan; Zeng, Lingbing; Zhu, Yongzhang; He, Ping; Dong, Ke; Pal, Utpal; Guo, Xiaokui; Qin, Jinhong

    2015-11-01

    Leptospirosis, caused by pathogenic Leptospira, is a worldwide zoonotic infection. The genus Leptospira includes at least 21 species clustered into three groups--pathogens, non-pathogens, and intermediates--based on 16S rRNA phylogeny. Research on Leptospira is difficult due to slow growth and poor transformability of the pathogens. Recent identification of extrachromosomal elements besides the two chromosomes in L. interrogans has provided new insight into genome complexity of the genus Leptospira. The large size, low copy number, and high similarity of the sequence of these extrachromosomal elements with the chromosomes present challenges in isolating and detecting them without careful genome assembly. In this study, two extrachromosomal elements were identified in L. borgpetersenii serovar Ballum strain 56604 through whole genome assembly combined with S1 nuclease digestion following pulsed-field gel electrophoresis (S1-PFGE) analysis. Further, extrachromosomal elements in additional 15 Chinese epidemic strains of Leptospira, comprising L. borgpetersenii, L. weilii, and L. interrogans, were successfully separated and identified, independent of genome sequence data. Southern blot hybridization with extrachromosomal element-specific probes, designated as lcp1, lcp2 and lcp3-rep, further confirmed their occurrences as extrachromosomal elements. In total, 24 plasmids were detected in 13 out of 15 tested strains, among which 11 can hybridize with the lcp1-rep probe and 11 with the lcp2-rep probe, whereas two can hybridize with the lcp3-rep probe. None of them are likely to be species-specific. Blastp search of the lcp1, lcp2, and lcp3-rep genes with a nonredundant protein database of Leptospira species genomes showed that their homologous sequences are widely distributed among clades of pathogens but not non-pathogens or intermediates. These results suggest that the plasmids are widely distributed in Leptospira species, and further elucidation of their biological

  5. Simple generic model for dynamic experiments with Saccharomyces cerevisiae in continuous culture. Decoupling between anabolism and catabolism

    DEFF Research Database (Denmark)

    Duboc, Philippe Jean; von Stockar, U.; Villadsen, John

    1998-01-01

    The dynamic behavior of a continuous culture of Saccharomyces cerevisiae subjected to a sudden increase in the dilution rate has been successfully modelled for anaerobic growth on glucose, and for aerobic growth on acetate, on ethanol, and on glucose. The catabolism responded by an immediate jump...... identified in steady state continuous cultures or during batch experiments. Only the time constant of biosynthesis regeneration, tau(x), and the time constant of catabolic capacity regeneration, tau(cat), had to be identified during transient experiments. In most experiments 7, was around 3 h, and tau(cat...

  6. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Sonya M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Giannone, Richard J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Kridelbaugh, Donna M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Elkins, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Guss, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Michener, Joshua K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Vieille, Claire [Michigan State Univ., East Lansing, MI (United States)

    2017-07-21

    The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. WhileEscherichia colihas been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineeredE. colito catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway fromPseudomonas putidaKT2440. Then, we used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics.

    IMPORTANCELignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. By constructing defined pathways for aromatic compound degradation in a model host would allow rapid

  7. Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators.

    Science.gov (United States)

    Nock, Adam M; Wargo, Matthew J

    2016-09-15

    Burkholderia thailandensis is a soil-dwelling bacterium that shares many metabolic pathways with the ecologically similar, but evolutionarily distant, Pseudomonas aeruginosa Among the diverse nutrients it can utilize is choline, metabolizable to the osmoprotectant glycine betaine and subsequently catabolized as a source of carbon and nitrogen, similar to P. aeruginosa Orthologs of genes in the choline catabolic pathway in these two bacteria showed distinct differences in gene arrangement as well as an additional orthologous transcriptional regulator in B. thailandensis In this study, we showed that multiple glutamine amidotransferase 1 (GATase 1)-containing AraC family transcription regulators (GATRs) are involved in regulation of the B. thailandensis choline catabolic pathway (gbdR1, gbdR2, and souR). Using genetic analyses and sequencing the transcriptome in the presence and absence of choline, we identified the likely regulons of gbdR1 (BTH_II1869) and gbdR2 (BTH_II0968). We also identified a functional ortholog for P. aeruginosa souR, a GATR that regulates the metabolism of sarcosine to glycine. GbdR1 is absolutely required for expression of the choline catabolic locus, similar to P. aeruginosa GbdR, while GbdR2 is important to increase expression of the catabolic locus. Additionally, the B. thailandensis SouR ortholog (BTH_II0994) is required for catabolism of choline and its metabolites as carbon sources, whereas in P. aeruginosa, SouR function can by bypassed by GbdR. The strategy employed by B. thailandensis represents a distinct regulatory solution to control choline catabolism and thus provides both an evolutionary counterpoint and an experimental system to analyze the acquisition and regulation of this pathway during environmental growth and infection. Many proteobacteria that occupy similar environmental niches have horizontally acquired orthologous genes for metabolism of compounds useful in their shared environment. The arrangement and differential

  8. Effect of the atmospheric pressure nonequilibrium plasmas on the conformational changes of plasmid DNA

    International Nuclear Information System (INIS)

    Yan Xu; He Guangyuan; Shi Mengjun; Gao Xuan; Li Yin; Ma Fengyun; Yu Men; Wang Changdong; Wang Yuesheng; Yang Guangxiao; Zou Fei; Lu Xinpei; Xiong Qing; Xiong Zilan

    2009-01-01

    The cold atmospheric pressure plasma, which has been widely used for biomedical applications, may potentially affect the conformation of DNA. In this letter, an atmospheric pressure plasma plume is used to investigate its effects on the conformational changes of DNA of plasmid pAHC25. It is found that the plasma plume could cause plasmid DNA topology alteration, resulting in the percentage of the supercoiled plasmid DNA form decreased while that of the open circular and linearized form of plasmid DNA increased as detected by agrose gel electrophoresis. On the other hand, further investigation by using polymerase chain reaction method shows that the atmospheric pressure plasma jet treatments under proper conditions does not affect the genes of the plasmid DNA, which may have potential application in increasing the transformation frequency by genetic engineering.

  9. Imipenem-resistance in Serratia marcescens is mediated by plasmid expression of KPC-2.

    Science.gov (United States)

    Su, W-Q; Zhu, Y-Q; Deng, N-M; Li, L

    2017-04-01

    Imipenem is a broad-spectrum carbapenem antibiotic with applications against severe bacterial infections. Here, we describe the identification of imipenem-resistant Serratia marcescens in our hospital and the role of plasmid-mediated KPC-2 expression in imipenem resistance. We used the modified Hodge test to detect carbapenemase produced in imipenem-resistant strains. His resistance can be transferred to E. coli in co-culture tests, which implicates the plasmid in imipenem resistance. PCR amplification from the plasmid identified two products consistent with KPC-2 of 583 and 1050 bp that were also present in E. coli after co-culture. The restriction pattern for both plasmids was identical, supporting the transfer from the S. marcescens isolate to E. coli. Finally, gene sequencing confirmed KPC-2 in the plasmid. Due to the presence of KPC-2 in the imipenem-resistant S. marcescens, we propose that KPC-2 mediates antibiotic resistance in the S. marcescens isolate.

  10. Tn5-induced pBS286 plasmid mutations blocking early stages of napthalene oxidation

    International Nuclear Information System (INIS)

    Kosheleva, I.A.; Tsoi, T.V.; Ivashina, T.V.; Selifonov, S.A.; Starovoitov, I.I.; Boronin, A.M.

    1988-01-01

    The authors present data on the further analysis of the structural and functional organization of the nah region of plasmid pBS286 controlling the constitutive oxidation of naphthalene by Pseudomonas putida cells. They have studied Tn5-induced mutations blocking early stages of naphthalene oxidation. They present and discuss data providing evidence that, in contrast to plasmid NAH7, the mechanism of regulation of the nahl operon of plasmid NPL-1, the parent plasmid of plasmid pBS286, with inducible synthesis of naphthalene dioxygenase can include elements of a negative control with participation of the regulatory locus R, located proximal to the structural nah genes and closely linked to or overlapped by the inverted control DNA segment (4.2 kb). They also present data on the possibility of regulation of the activity of the catechol-splitting meta-pathway genes with the participation of products of early stages of naphthalene oxidation

  11. Antibiotic resistance and plasmid carriage among Escherichia coli isolates from chicken meat in Malaysia

    International Nuclear Information System (INIS)

    Tin Tin Myaing; Saleha, A.A.; Arifah, A.K.; Raha, A.R.

    2005-01-01

    Escherichia coli isolates from 131 raw chicken meat samples were tested for susceptibility to 12 antibiotics. Plasmids were isolated from many samples and their DNA molecular weight calculated. An 81.7% plasmid occurrence rate was observed among the isolates, ranging from 0 to 8 in number and with sizes from 1.2 to 118.6 MDa. Plasmids were detected in 93.8% of E. coIi isolates resistant to all 12 antibiotics, and in 90.5% of E. coli isolates resistant to 11. Three (2.8%) isolates harboured 8 plasmids and were resistant to all 12 antibiotics. Antibiotic resistant genes in bacteria are usually carried in extrachromosomal DNA and it is postulated that E. coli with a high number of plasmids possesses wider resistance to antibiotics. (author)

  12. Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual‐based modelling study

    DEFF Research Database (Denmark)

    Merkey, Brian; Lardon, Laurent; Seoane, Jose Miguel

    2011-01-01

    Plasmid invasion in biofilms is often surprisingly limited in spite of the close contact of cells in a biofilm. We hypothesized that this poor plasmid spread into deeper biofilm layers is caused by a dependence of conjugation on the growth rate (relative to the maximum growth rate) of the donor......, we find that invasion of a resident biofilm is indeed limited when plasmid transfer depends on growth, but not so in the absence of growth dependence. Using sensitivity analysis we also find that parameters related to timing (i.e. a lag before the transconjugant can transfer, transfer proficiency...... and scan speed) and spatial reach (EPS yield, conjugal pilus length) are more important for successful plasmid invasion than the recipients' growth rate or the probability of segregational loss. While this study identifies one factor that can limit plasmid invasion in biofilms, the new individual...

  13. A Ti plasmid-encoded enzyme required for degradation of mannopine is functionally homologous to the T-region-encoded enzyme required for synthesis of this opine in crown gall tumors.

    Science.gov (United States)

    Kim, K S; Chilton, W S; Farrand, S K

    1996-06-01

    The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasmid pAtC58. NT1 or UIA5 harboring pYDH208 with an insertion mutation in mocC failed to utilize MOP as the sole carbon source. Plasmid pSa-C, which encodes only mocC, complemented this mutation in both strains. This plasmid also was sufficient to confer utilization of MOP on NT1 but not on UIA5. Computer analysis showed that MocC is related at the amino acid sequence level to members of the short-chain alcohol dehydrogenase family of oxidoreductases. Lysates prepared from Escherichia coli cells expressing mocC contained an enzymatic activity that oxidizes MOP to deoxyfructosyl glutamine (santhopine [SOP]) in the presence of NAD+. The reaction catalyzed by the MOP oxidoreductase is reversible; in the presence of NADH, the enzyme reduced SOP to MOP. The apparent Km values of the enzyme for MOP and SOP were 6.3 and 1.2 mM, respectively. Among analogs of MOP tested, only N-1-(1-deoxy-D-lyxityl)-L-glutamine and N-1-(1-deoxy-D-mannityl)-L-asparagine served as substrates for MOP oxidoreductase. These results indicate that mocC encodes an oxidoreductase that, as an oxidase, is essential for the catabolism of MOP. The reductase activity of this enzyme is precisely the reaction ascribed to its T-region-encoded homolog, Mas1, which is responsible for biosynthesis of mannopine in crown gall tumors.

  14. Plasmid DNA Analysis of Pasteurella multocida Serotype B isolated from Haemorrhagic Septicaemia outbreaks in Malaysia

    Directory of Open Access Journals (Sweden)

    Jamal, H.

    2005-01-01

    Full Text Available A total of 150 purified isolates of Pasteurella multocida serotype B were used (Salmah, 2004 for plasmid DNA curing experiment to determine hyaluronidase activity, antibiotic resistance pattern (ARP and mice lethality test (LD50 for their role of pathogenicity. A plasmid curing experiment was carried out by using the intercalating agent; ethidium bromide and rifampicin, where it was found all the plasmids had been cured (plasmidless from Pasteurella multocida. All of these plasmidless isolates maintained their phenotypic characteristics. They showed the same antibiotic resistancepattern as before curing, produced hyaluronidase and possessed lethality activity in mice when injected intraperitoneally(i.p. Based on this observation, the antibiotic resistance, hyaluronidase activity and mice virulence could probably be chromosomal-mediated. Plasmids were detected 100% in all P. multocida isolates with identical profile of 2 plasmids size 3.0 and 5.5 kb. No large plasmids could be detected in all isolates. Since all the isolates appeared to have identicalplasmid profiles, they were subjected to restriction enzyme(RE analysis. From RE analysis results obtained, it can be concluded that the plasmid DNA in serotype B isolates are identical. Only 4 of 32 REs were found to cleave these plasmids with identical restriction fingerprints; BglII, HaeIII, RsaI and SspI. From RE analysis results, it can be concluded that the plasmid DNA isolates are identical. This plasmid might not played any role in pathogenicity of Pasteurella multocida serotype B, however this information is important for the construction of shuttle vectors in genetic studies of the pathogenicity of haemorrhagic septicaemia(HS.

  15. Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids

    Energy Technology Data Exchange (ETDEWEB)

    Casjens S. R.; Dunn J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Schutzer, S. E.; Gilcrease, E. B.; Huang, W. M.; Vujadinovic, M.; Aron, J. K.; Vargas, L. C.; Freeman, S.; Radune, D.; Weidman, J. F.; Dimitrov, G. I.; Khouri, H. M.; Sosa, J. E.; Halpin, R. A.; Fraser, C. M.

    2012-03-14

    Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi {approx}900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short {le}20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.

  16. A mass spectrometric method to determine activities of enzymes involved in polyamine catabolism

    International Nuclear Information System (INIS)

    Moriya, Shunsuke; Iwasaki, Kaori; Samejima, Keijiro; Takao, Koichi; Kohda, Kohfuku; Hiramatsu, Kyoko; Kawakita, Masao

    2012-01-01

    Highlights: ► Compounds in polyamine catabolic pathway were determined by a column-free ESI-TOF MS. ► N 1 - and N 8 -acetylspermidine were determined by a column-free ESI-MS/MS. ► The method was applied to determine activities of APAO, SMO, and SSAT in the pathway. ► The assay method contained stable isotope-labeled natural substrates. ► It is applicable to biological samples containing natural substrate and product. - Abstract: An analytical method for the determination of three polyamines (putrescine, spermidine, and spermine) and five acetylpolyamines [N 1 -acetylspermidine (N 1 AcSpd), N 8 -acetylspermidine (N 8 AcSpd), N 1 -acetylspermine, N 1 ,N 8 -diacetylspermidine, and N 1 ,N 12 -diacetylspermine] involved in the polyamine catabolic pathway has been developed using a hybrid tandem mass spectrometer. Heptafluorobutyryl (HFB) derivatives of these compounds and respective internal standards labeled with stable isotopes were analyzed simultaneously by TOF MS, based on peak areas appearing at appropriate m/z values. The isomers, N 1 AcSpd and N 8 AcSpd were determined from their fragment ions, the acetylamidopropyl and acetylamidobutyl groups, respectively, using MS/MS with 13 C 2 -N 1 AcSpd and 13 C 2 -N 8 AcSpd which have the 13 C 2 -acetyl group as an internal standard. The TOF MS method was successfully applied to measure the activity of enzymes involved in polyamine catabolic pathways, namely N 1 -acetylpolyamine oxidase (APAO), spermine oxidase (SMO), and spermidine/spermine N 1 -acetyltransferase (SSAT). The following natural substrates and products labeled with stable isotopes considering the application to biological samples were identified; for APAO, [4,9,12- 15 N 3 ]-N 1 -acetylspermine and [1,4,8- 15 N 3 ]spermidine ( 15 N 3 -Spd), respectively; for SMO, [1,4,8,12- 15 N 4 ]spermine and 15 N 3 -Spd, respectively; and for SSAT, 15 N 3 -Spd and [1,4,8- 15 N 3 ]-N 1 -acetylspermidine, respectively.

  17. Overexpression, purification, crystallization and preliminary structural studies of catabolic ornithine transcarbamylase from Lactobacillus hilgardii

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, Blanca de las; Rodríguez, Héctor [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Angulo, Iván [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Muñoz, Rosario [Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Mancheño, José M., E-mail: xjosemi@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)

    2007-07-01

    The catabolic ornithine transcarbamylase (cOTC) from L. hilgardii has been overexpressed in E. coli, purified and crystallized under two different experimental conditions. The structure has been solved by the molecular-replacement method using the atomic coordinates of catabolic ornithine transcarbamylase from P. aeruginosa as the search model. The catabolic ornithine transcarbamylase (cOTC; EC 2.1.3.3) from the lactic acid bacteria Lactobacillus hilgardii is a key protein involved in the degradation of arginine during malolactic fermentation. cOTC containing an N-terminal His{sub 6} tag has been overexpressed in Escherichia coli, purified and crystallized under two different experimental conditions using the hanging-drop vapour-diffusion method. Crystals obtained from a solution containing 8%(w/v) PEG 4000, 75 mM sodium acetate pH 4.6 belong to the trigonal space group P321 and have unit-cell parameters a = b = 157.04, c = 79.28 Å. Conversely, crystals grown in 20%(v/v) 2-methyl-2,4-pentanediol, 7.5%(w/v) PEG 4000, 100 mM HEPES pH 7.8 belong to the monoclinic space group C2 and have unit-cell parameters a = 80.06, b = 148.90, c = 91.67 Å, β = 100.25°. Diffraction data were collected in-house to 3.00 and 2.91 Å resolution for trigonal and monoclinic crystals, respectively. The estimated Matthews coefficient for the crystal forms were 2.36 and 2.24 Å{sup 3} Da{sup −1}, respectively, corresponding to 48% and 45% solvent content. In both cases, the results are consistent with the presence of three protein subunits in the asymmetric unit. The structure of cOTC has been determined by the molecular-replacement method using the atomic coordinates of cOTC from Pseudomonas aeruginosa (PDB code) as the search model.

  18. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Subtil Thorsten

    2012-03-01

    Full Text Available Abstract Background In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism. Results To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose. Conclusion Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization

  19. Evolutionary Diversification of Alanine Transaminases in Yeast: Catabolic Specialization and Biosynthetic Redundancy

    Directory of Open Access Journals (Sweden)

    Ximena Escalera-Fanjul

    2017-06-01

    Full Text Available Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s. Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64

  20. DETERMINATION OF PROTEIN CATABOLIC RATE IN PATIENTS ON CHRONIC INTERMITTENT HEMODIALYSIS - UREA OUTPUT MEASUREMENTS COMPARED WITH DIETARY-PROTEIN INTAKE AND WITH CALCULATION OF UREA GENERATION RATE

    NARCIS (Netherlands)

    STEGEMAN, CA; HUISMAN, RM; DEROUW, B; JOOSTEMA, A; DEJONG, PE

    We assessed the agreement between different methods of determining protein catabolic rate (PCR) in hemodialysis patients and the possible influence of postdialysis urea rebound and the length of the interdialytic interval on the PCR determination. Protein catabolic rate derived from measured total

  1. Catabolism of 6-ketoprostaglandin F1alpha by the rat kidney cortex.

    Science.gov (United States)

    Pace-Asciak, C R; Domazet, Z; Carrara, M

    1977-05-25

    Homogenates of the rat kidney cortex converted 5,8,9,11,12,14,15-hepta-tritiated 6-ketoprostaglandin F 1alpha into one major product identified by gas chromatography-mass spectrometry of the methoxime-methyl ester trimethylsilyl ether derivative as 6,15-diketo-9,11-dihydroxyprost-13-enoic acid. The sequence of derivatisation i.e. methoximation prior to methylation, was crucial as methylation of 15-keto catabolites of the E, F and 6-keto-F series affords degradation products. The corresponding 15-keto-13,14-dihydro catabolite was formed in much smaller quantities. Time course studies indicated that 6-keto-prostaglandin F1alpha was catabolised at a slower rate (about 2-5 fold) than prostaglandin F1alpha. The catabolic activity was blocked by NADH.

  2. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol

    DEFF Research Database (Denmark)

    Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.

    2016-01-01

    conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis....... Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls......We report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic...

  3. Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Bradley Smith

    2016-10-01

    Full Text Available Metabolic reprogramming is critical to oncogenesis, but the emergence and function of this profound reorganization remain poorly understood. Here we find that cooperating oncogenic mutations drive large-scale metabolic reprogramming, which is both intrinsic to cancer cells and obligatory for the transition to malignancy. This involves synergistic regulation of several genes encoding metabolic enzymes, including the lactate dehydrogenases LDHA and LDHB and mitochondrial glutamic pyruvate transaminase 2 (GPT2. Notably, GPT2 engages activated glycolysis to drive the utilization of glutamine as a carbon source for TCA cycle anaplerosis in colon cancer cells. Our data indicate that the Warburg effect supports oncogenesis via GPT2-mediated coupling of pyruvate production to glutamine catabolism. Although critical to the cancer phenotype, GPT2 activity is dispensable in cells that are not fully transformed, thus pinpointing a metabolic vulnerability specifically associated with cancer cell progression to malignancy.

  4. Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Khan, Sumia; Afzal, Muhammad; Iqbal, Samina; Mirza, Muhammad Sajjad; Khan, Qaiser M

    2013-04-01

    Plant-bacteria partnership is a promising approach for remediating soil contaminated with organic pollutants. The colonization and metabolic activity of an inoculated microorganism depend not only on environmental conditions but also on the physiological condition of the applied microorganisms. This study assessed the influence of different inoculum pretreatments on survival, gene abundance and catabolic gene expression of an applied strain (Pantoea sp. strain BTRH79) in the rhizosphere of ryegrass vegetated in diesel contaminated soil. Maximum bacterium survival, gene abundance and expression were observed in the soil inoculated with bacterial cells that had been pregrown on complex medium, and hydrocarbon degradation and genotoxicity reduction were also high in this soil. These findings propose that use of complex media for growing plant inocula may enhance bacterial survival and colonization and subsequently the efficiency of pollutant degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Stabilization of neurotensin analogues: effect on peptide catabolism, biodistribution and tumor binding

    Energy Technology Data Exchange (ETDEWEB)

    Bruehlmeier, Matthias E-mail: peter.blaeuenstein@psi.ch; Garayoa, Elisa Garcia; Blanc, Alain; Holzer, Barbara; Gergely, Suzanne; Tourwe, Dirk; Schubiger, Pius August; Blaeuenstein, Peter

    2002-04-01

    Neurotensin (NT) receptors in pancreatic and other neuroendocrine tumors are promising targets for imaging and therapeutic purposes. Here, we report on the effect of distinct changes in the peptide chain on catabolism in vitro for five radiolabeled [{sup 99m}Tc] neurotensin analogues having high affinity for neurotensin receptors. Substitution of NT(1-7) by (N{alpha}His)Ac--the Tc-binding moiety--combined with a reduced bond 8-9 (CH{sub 2}NH), N-methylation of peptide bonds or replacement of Ile(12) by tertiary leucin (Tle) led to peptide stabilization of various degrees. Biodistribution studies in nude mice bearing HT29 xenografts showed higher tumor uptake with more stable peptides, yielding high tumor to blood ratios of up to 70.

  6. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  7. Role of Myofibrillar Protein Catabolism in Development of Glucocorticoid Myopathy: Aging and Functional Activity Aspects

    Directory of Open Access Journals (Sweden)

    Teet Seene

    2016-05-01

    Full Text Available Muscle weakness in corticosteroid myopathy is mainly the result of the destruction and atrophy of the myofibrillar compartment of fast-twitch muscle fibers. Decrease of titin and myosin, and the ratio of nebulin and MyHC in myopathic muscle, shows that these changes of contractile and elastic proteins are the result of increased catabolism of the abovementioned proteins in skeletal muscle. Slow regeneration of skeletal muscle is in good correlation with a decreased number of satellite cells under the basal lamina of muscle fibers. Aging causes a reduction of AMP-activated protein kinase (AMPK activity as the result of the reduced function of the mitochondrial compartment. AMPK activity increases as a result of increased functional activity. Resistance exercise causes anabolic and anticatabolic effects in skeletal muscle: muscle fibers experience hypertrophy while higher myofibrillar proteins turn over. These changes are leading to the qualitative remodeling of muscle fibers. As a result of these changes, possible maximal muscle strength is increasing. Endurance exercise improves capillary blood supply, increases mitochondrial biogenesis and muscle oxidative capacity, and causes a faster turnover rate of sarcoplasmic proteins as well as qualitative remodeling of type I and IIA muscle fibers. The combination of resistance and endurance exercise may be the fastest way to prevent or decelerate muscle atrophy due to the anabolic and anticatabolic effects of exercise combined with an increase in oxidative capacity. The aim of the present short review is to assess the role of myofibrillar protein catabolism in the development of glucocorticoid-caused myopathy from aging and physical activity aspects.

  8. Sialic Acid Catabolism Confers a Competitive Advantage to Pathogenic Vibrio cholerae in the Mouse Intestine▿

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E. Fidelma

    2009-01-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae ΔnanA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment. PMID:19564383

  9. Training reduces catabolic and inflammatory response to a single practice in female volleyball players.

    Science.gov (United States)

    Eliakim, Alon; Portal, Shawn; Zadik, Zvi; Meckel, Yoav; Nemet, Dan

    2013-11-01

    We examined the effect of training on hormonal and inflammatory response to a single volleyball practice in elite adolescent players. Thirteen female, national team level, Israeli volleyball players (age 16.0 ± 1.4 years, Tanner stage 4-5) participated in the study. Blood samples were collected before and immediately after a typical 60 minutes of volleyball practice, before and after 7 weeks of training during the initial phase of the season. Training involved tactic and technical drills (20% of time), power and speed drills (25% of time), interval sessions (25% of time), endurance-type training (15% of time), and resistance training (15% of time). To achieve greater training responses, the study was performed during the early phase (first 7 weeks) of the volleyball season. Hormonal measurements included the anabolic hormones growth hormone (GH), insulin-like growth factor-I (IGF-I) and IGF-binding protein-3, the catabolic hormone cortisol, the proinflammatory marker interleukin-6 (IL-6), and the anti-inflammatory marker IL-1 receptor antagonist. Training led to a significant improvement of vertical jump, anaerobic properties (peak and mean power by the Wingate Anaerobic Test), and predicted VO2max (by the 20-m shuttle run). Volleyball practice, both before and after the training intervention, was associated with a significant increase of serum lactate, GH, and IL-6. Training resulted in a significantly reduced cortisol response ([INCREMENT]cortisol: 4.2 ± 13.7 vs. -4.4 ± 12.3 ng · ml, before and after training, respectively; p volleyball practice. The results suggest that along with the improvement of power and anaerobic and aerobic characteristics, training reduces the catabolic and inflammatory response to exercise.

  10. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  11. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine.

    Science.gov (United States)

    Almagro-Moreno, Salvador; Boyd, E Fidelma

    2009-09-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.

  13. Complete sequences of four plasmids of Lactococcus lactis subsp cremoris SK11 reveal extensive adaptation to the dairy environment

    NARCIS (Netherlands)

    Siezen, R.J.; Renckens, B.; Swam, van I.; Peters, S.; Kranenburg, van R.; Kleerebezem, M.; Vos, de W.M.

    2005-01-01

    Lactococcus lactis strains are known to carry plasmids encoding industrially important traits. L. lactis subsp. cremoris SK11 is widely used by the dairy industry in cheese making. Its complete plasmid complement was sequenced and found to contain the plasmids pSK11A (10,372 bp), pSK11B (13,332 bp),

  14. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatogr...

  15. Results from the European prospective investigation into cancer and nutrition link vitamin B6 catabolism and lung cancer risk

    NARCIS (Netherlands)

    Zuo, Hui; Ueland, Per Magne; Midttun, Øivind; Vollset, Stein Emil; Tell, Grethe S.; Theofylaktopoulou, Despoina; Travis, Ruth C.; Boutron-Ruault, Marie Christine; Fournier, Agnès; Severi, Gianluca; Kvaskoff, Marina; Boeing, Heiner; Bergmann, Manuela M.; Turzanski-Fortner, Renée; Kaaks, Rudolf; Trichopoulou, Antonia; Kotanidou, Anastasia; Lagiou, Pagona; Palli, Domenico; Sieri, Sabina; Panico, Salvatore; Bueno-De-Mesquita, H. Bas; Peeters, Petra H.; Grankvist, Kjell; Johansson, Mikael; Agudo, Antonio; Garcia, Jose Ramon Quiros; Larranaga, Nerea; Sanchez, Maria-Jose; Chirlaque, Maria-Dolores; Ardanaz, Eva; Chuang, Shu Chun; Gallo, Valentina; Brennan, Paul; Johansson, Mattias; Ulvik, Arve

    2018-01-01

    Circulating pyridoxal-5′-phosphate (PLP) has been linked to lung cancer risk. The PAr index, defined as the ratio 4-pyridoxic acid/(pyridoxal + PLP), reflects increased vitamin B6 catabolism during inflammation. PAr has been defined as a marker of lung cancer risk in a prospective cohort study, but

  16. Results from the European Prospective Investigation into Cancer and Nutrition Link Vitamin B6 Catabolism and Lung Cancer Risk.

    NARCIS (Netherlands)

    Zuo, Hui; Ueland, Per M; Midttun, Øivind; Vollset, Stein E; Tell, Grethe S; Theofylaktopoulou, Despoina; Travis, Ruth C; Boutron-Ruault, Marie-Christine; Fournier, Agnès; Severi, Gianluca; Kvaskoff, Marina; Boeing, Heiner; Bergmann, Manuela M; Fortner, Renée T; Kaaks, Rudolf; Trichopoulou, Antonia; Kotanidou, Anastasia; Lagiou, Pagona; Palli, Domenico; Sieri, Sabina; Panico, Salvatore; Bueno-de-Mesquita, H Bas; Peeters, Petra H; Grankvist, Kjell; Johansson, Mikael; Agudo, Antonio; Garcia, Jose Ramon Quiros; Larranaga, Nerea; Sanchez, Maria-Jose; Chirlaque, Maria Dolores; Ardanaz, Eva; Chuang, Shu-Chun; Gallo, Valentina; Brennan, Paul; Johansson, Mattias; Ulvik, Arve

    2018-01-01

    Circulating pyridoxal-5'-phosphate (PLP) has been linked to lung cancer risk. The PAr index, defined as the ratio 4-pyridoxic acid/(pyridoxal + PLP), reflects increased vitamin B6 catabolism during inflammation. PAr has been defined as a marker of lung cancer risk in a prospective cohort study, but

  17. ARA1 regulates not only l-arabinose but also d-galactose catabolism in Trichoderma reesei

    NARCIS (Netherlands)

    Benocci, Tiziano; Aguilar-Pontes, Maria Victoria; Kun, Roland Sándor; Seiboth, Bernhard; de Vries, Ronald P; Daly, Paul

    2017-01-01

    Trichoderma reesei is used to produce saccharifying enzyme cocktails for biofuels. There is limited understanding of the transcription factors (TFs) that regulate genes involved in release and catabolism of l-arabinose and d-galactose, as the main TF XYR1 is only partially involved. Here, the T.

  18. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants

    Czech Academy of Sciences Publication Activity Database

    Nešvera, Jan; Rucká, Lenka; Pátek, Miroslav

    2015-01-01

    Roč. 93, č. 2015 (2015), s. 107-160 ISSN 0065-2164 R&D Projects: GA TA ČR TA04021212 Institutional support: RVO:61388971 Keywords : Biodegradation * Bioremediation * Phenol catabolism Subject RIV: EE - Microbiology, Virology Impact factor: 4.128, year: 2015

  19. Novel Plasmid Transformation Method Mediated by Chrysotile, Sliding Friction, and Elastic Body Exposure

    Directory of Open Access Journals (Sweden)

    Naoto Yoshida

    2007-01-01

    Full Text Available Escherichia coli as a plasmid recipient cell was dispersed in a chrysotile colloidal solution, containing chrysotile adsorbed to plasmid DNA (chrysotile-plasmid cell mixture. Following this, the chrysotile-plasmid cell mixture was dropped onto the surface of an elastic body, such as agarose, and treated physically by sliding a polystyrene streak bar over the elastic body to create friction. Plasmid DNA was easily incorporated into E. coli, and antibiotic resistance was conferred by transformation. The transformation efficiency of E. coli cultured in solid medium was greater than that of E. coli cultured in broth. To obtain greater transformation efficiency, we attempted to determine optimal transformation conditions. The following conditions resulted in the greatest transformation efficiency: the recipient cell concentration within the chrysotileplasmid cell mixture had an optical density greater than or equal to 2 at 550 nm, the vertical reaction force applied to the streak bar was greater than or equal to 40 g, and the rotation speed of the elastic body was greater than or equal to 34 rpm. Under these conditions, we observed a transformation efficiency of 107 per μg plasmid DNA. The advantage of achieving bacterial transformation using the elastic body exposure method is that competent cell preparation of the recipient cell is not required. In addition to E. coli, other Gram negative bacteria are able to acquire plasmid DNA using the elastic body exposure method.

  20. Plasmid Transfer in the Ocean – A Case Study from the Roseobacter Group

    Directory of Open Access Journals (Sweden)

    Jörn Petersen

    2017-07-01

    Full Text Available Plasmid mediated horizontal gene transfer (HGT has been speculated to be one of the prime mechanisms for the adaptation of roseobacters (Rhodobacteraceae to their ecological niches in the marine habitat. Their plasmids contain ecologically crucial functional modules of up to ∼40-kb in size, e.g., for aerobic anoxygenic photosynthesis, flagellar formation and the biosynthesis of the antibiotic tropodithietic acid. Furthermore, the widely present type four secretion system (T4SS of roseobacters has been shown to mediate conjugation across genus barriers, albeit in the laboratory. Here we discovered that Confluentimicrobium naphthalenivorans NS6T, a tidal flat bacterium isolated in Korea, carries a 185-kb plasmid, which exhibits a long-range synteny with the conjugative 126-kb plasmid of Dinoroseobacter shibae DFL12T. Both replicons are stably maintained by RepABC operons of the same compatibility group (-2 and they harbor a homologous T4SS. Principal component analysis of the codon usage shows a large similarity between the two plasmids, while the chromosomes are very distinct, showing that neither of the two bacterial species represents the original host of those RepABC-2 type plasmids. The two species do not share a common habitat today and they are phylogenetically only distantly related. Our finding demonstrates the first clear-cut evidence for conjugational plasmid transfer across biogeographical and phylogenetic barriers in Rhodobacteraceae and documents the importance of conjugative HGT in the ocean.

  1. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes

    Science.gov (United States)

    Lee, JunMo; Kim, Kyeong Mi; Yang, Eun Chan; Miller, Kathy Ann; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su

    2016-01-01

    The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta. PMID:27030297

  2. Plasmid-Mediated Quinolone Resistance in Shigella flexneri Isolated From Macaques

    Directory of Open Access Journals (Sweden)

    Anthony J. Mannion

    2018-03-01

    Full Text Available Non-human primates (NHPs for biomedical research are commonly infected with Shigella spp. that can cause acute dysentery or chronic episodic diarrhea. These animals are often prophylactically and clinically treated with quinolone antibiotics to eradicate these possible infections. However, chromosomally- and plasmid-mediated antibiotic resistance has become an emerging concern for species in the family Enterobacteriaceae. In this study, five individual isolates of multi-drug resistant Shigella flexneri were isolated from the feces of three macaques. Antibiotic susceptibility testing confirmed resistance or decreased susceptibility to ampicillin, amoxicillin-clavulanic acid, cephalosporins, gentamicin, tetracycline, ciprofloxacin, enrofloxacin, levofloxacin, and nalidixic acid. S. flexneri isolates were susceptible to trimethoprim-sulfamethoxazole, and this drug was used to eradicate infection in two of the macaques. Plasmid DNA from all isolates was positive for the plasmid-encoded quinolone resistance gene qnrS, but not qnrA and qnrB. Conjugation and transformation of plasmid DNA from several S. flexneri isolates into antibiotic-susceptible Escherichia coli strains conferred the recipients with resistance or decreased susceptibility to quinolones and beta-lactams. Genome sequencing of two representative S. flexneri isolates identified the qnrS gene on a plasmid-like contig. These contigs showed >99% homology to plasmid sequences previously characterized from quinolone-resistant Shigella flexneri 2a and Salmonella enterica strains. Other antibiotic resistance genes and virulence factor genes were also identified in chromosome and plasmid sequences in these genomes. The findings from this study indicate macaques harbor pathogenic S. flexneri strains with chromosomally- and plasmid-encoded antibiotic resistance genes. To our knowledge, this is the first report of plasmid-mediated quinolone resistance in S. flexneri isolated from NHPs and warrants

  3. Natural plasmid transformation in a high-frequency-of transformation marine Vibrio strain

    International Nuclear Information System (INIS)

    Frischer, M.E.; Thurmond, J.M.; Paul, J.H.

    1990-01-01

    The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 x 10 -9 and 3.4 x 10 -7 transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42,857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 x 10 -8 to 1.3 x 10 -4 transformants per recipient with plasmid DNA and at an average frequency of 8.3 x 10 -5 transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [ 3 H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations

  4. Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes.

    Science.gov (United States)

    Shak, S; Goldstein, I M

    1984-08-25

    Leukotriene B4 (LTB4), formed by the 5-lipoxygenase pathway in human polymorphonuclear leukocytes (PMN), may be an important mediator of inflammation. Recent studies suggest that human leukocytes can convert LTB4 to products that are less biologically active. To examine the catabolism of LTB4, we developed (using high performance liquid chromatography) a sensitive, reproducible assay for this mediator and its omega-oxidation products (20-OH- and 20-COOH-LTB4). With this assay, we have found that human PMN (but not human monocytes, lymphocytes, or platelets) convert exogenous LTB4 almost exclusively to 20-OH- and 20-COOH-LTB4 (identified by gas chromatography-mass spectrometry). Catabolism of exogenous LTB4 by omega-oxidation is rapid (t1/2 approximately 4 min at 37 degrees C in reaction mixtures containing 1.0 microM LTB4 and 20 X 10(6) PMN/ml), temperature-dependent (negligible at 0 degrees C), and varies with cell number as well as with initial substrate concentration. The pathway for omega-oxidation in PMN is specific for LTB4 and 5(S),12(S)-dihydroxy-6,8,10,14-eicosatetraenoic acid (only small amounts of other dihydroxylated-derivatives of arachidonic acid are converted to omega-oxidation products). Even PMN that are stimulated by phorbol myristate acetate to produce large amounts of superoxide anion radicals catabolize exogenous leukotriene B4 primarily by omega-oxidation. Finally, LTB4 that is generated when PMN are stimulated with the calcium ionophore, A23187, is rapidly catabolized by omega-oxidation. Thus, human PMN not only generate and respond to LTB4, but also rapidly and specifically catabolize this mediator by omega-oxidation.

  5. Characterization of Endogenous Plasmids from Lactobacillus salivarius UCC118▿ †

    OpenAIRE

    Fang, Fang; Flynn, Sarah; Li, Yin; Claesson, Marcus J.; van Pijkeren, Jan-Peter; Collins, J. Kevin; van Sinderen, Douwe; O'Toole, Paul W.

    2008-01-01

    The genome of Lactobacillus salivarius UCC118 comprises a 1.83-Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids of 20 kb (pSF118-20) and 44 kb (pSF118-44). Annotation and bioinformatic analyses suggest that both of the smaller plasmids replicate by a theta replication mechanism. Furthermore, it appears that they are transmissible, although neither possesses a complete set of conjugation genes. Plasmid pSF118-20 encodes a toxin-antitoxin system composed of pemI and pemK h...

  6. Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids.

    Science.gov (United States)

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2017-04-11

    Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation

  7. Resident enhanced repair: novel repair process action on plasmid DNA transformed into Escherichia coli K-12

    International Nuclear Information System (INIS)

    Strike, P.; Roberts, R.J.

    1982-01-01

    The survival of UV-irradiated DNA of plasmid NTP16 was monitored after its transformation into recipient cells containing an essentially homologous undamaged plasmid, pLV9. The presence of pLV9 resulted in a substantial increase in the fraction of damaged NTP16 molecules which survived in the recipient cells. This enhanced survival requires the host uvrA + and uvrB + gene products, but not the host recA + gene product. The requirement for both homologous DNA and the uvrA + gene products suggests that a novel repair process may act on plasmid DNA. Possible mechanisms for this process are considered

  8. Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ayako Chino

    Full Text Available BACKGROUND: Construction of plasmids is crucial in modern genetic manipulation. As of now, the common method for constructing plasmids is to digest specific DNA sequences with restriction enzymes and to ligate the resulting DNA fragments with DNA ligase. Another potent method to construct plasmids, known as gap-repair cloning (GRC, is commonly used in the budding yeast Saccharomyces cerevisiae. GRC makes use of the homologous recombination activity that occurs within the yeast cells. Due to its flexible design and efficiency, GRC has been frequently used for constructing plasmids with complex structures as well as genome-wide plasmid collections. Although there have been reports indicating GRC feasibility in the fission yeast Schizosaccharomyces pombe, this species is not commonly used for GRC as systematic studies of reporting GRC efficiency in S. pombe have not been performed till date. METHODOLOGY/PRINCIPAL FINDINGS: We investigated GRC efficiency in S. pombe in this study. We first showed that GRC was feasible in S. pombe by constructing a plasmid that contained the LEU2 auxotrophic marker gene in vivo and showed sufficient efficiency with short homology sequences (>25 bp. No preference was shown for the sequence length from the cut site in the vector plasmid. We next showed that plasmids could be constructed in a proper way using 3 DNA fragments with 70% efficiency without any specific selections being made. The GRC efficiency with 3 DNA fragments was dramatically increased >95% in lig4Delta mutant cell, where non-homologous end joining is deficient. Following this approach, we successfully constructed plasmid vectors with leu1+, ade6+, his5+, and lys1+ markers with the low-copy stable plasmid pDblet as a backbone by applying GRC in S. pombe. CONCLUSIONS/SIGNIFICANCE: We concluded that GRC was sufficiently feasible in S. pombe for genome-wide gene functional analysis as well as for regular plasmid construction. Plasmids with different

  9. Centromere pairing by a plasmid-encoded type I ParB protein

    DEFF Research Database (Denmark)

    Ringgaard, Simon; Löwe, Jan; Gerdes, Kenn

    2007-01-01

    The par2 locus of Escherichia coli plasmid pB171 encodes two trans-acting proteins, ParA and ParB, and two cis-acting sites, parC1 and parC2, to which ParB binds cooperatively. ParA is related to MinD and oscillates in helical structures and thereby positions ParB/parC-carrying plasmids regularly......, hence identifying the N terminus of ParB as a requirement for ParB-mediated centromere pairing. These observations suggest that centromere pairing is an important intermediate step in plasmid partitioning mediated by the common type I loci....

  10. TOL Plasmid Carriage Enhances Biofilm Formation and Increases Extracellular DNA Content in Pseudomonas Putida KT2440

    DEFF Research Database (Denmark)

    Smets, Barth F.; D'Alvise, Paul; Yankelovich, T.

    laser scanning microscopy. The TOL-carrying strains formed pellicles and thick biofilms, whereas the same strains without the plasmid displayed little adherent growth. Microscopy using fluorescent nucleic acid- specific stains (cytox orange, propidium iodide) revealed differences in production...... combined with specific cytostains; release of cytoplasmic material was assayed by a β-glucosidase assay. Enhanced cell lysis due to plasmid carriage was ruled out as the mechanism for eDNA release. We report, for the first time, that carriage of a conjugative plasmid leads to increased biofilm formation...

  11. TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440

    DEFF Research Database (Denmark)

    D'Alvise, Paul; Sjoholm, O.R.; Yankelevich, T.

    2010-01-01

    laser scanning microscopy. The TOL-carrying strains formed pellicles and thick biofilms, whereas the same strains without the plasmid displayed little adherent growth. Microscopy using fluorescent nucleic acid-specific stains revealed differences in the production of extracellular polymeric substances......: TOL carriage leads to more extracellular DNA (eDNA) in pellicles and biofilms. Pellicles were dissolved by DNase I treatment. Enhanced cell lysis due to plasmid carriage was ruled out as the mechanism for eDNA release. We report, for the first time, that carriage of a conjugative plasmid leads...

  12. A novel pAA virulence plasmid encoding toxins and two distinct variants of the fimbriae of enteroaggregative Escherichia coli

    DEFF Research Database (Denmark)

    Jønsson, Rie; Struve, Carsten; Boll, Erik J.

    2017-01-01

    phylogenetically distinct, strains harboring the major pilin subunits from both AAF/III and AAF/V. Whole-genome and plasmid sequencing revealed that in these six strains the agg3A and agg5A genes were located on a novel pAA plasmid variant. Moreover, the plasmid also encoded several other virulence genes including...... some not previously found on pAA plasmids. Thus, this plasmid endows the host strains with a remarkably high number of EAEC associated virulence genes hereby likely promoting strain pathogenicity....

  13. plasmid in Saccharomyces species and in Saccharomyces cerevisiae.

    Science.gov (United States)

    Strope, Pooja K; Kozmin, Stanislav G; Skelly, Daniel A; Magwene, Paul M; Dietrich, Fred S; McCusker, John H

    2015-12-01

    We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. A binary plasmid system for shuffling combinatorial antibody libraries.

    Science.gov (United States)

    Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A

    1992-11-01

    We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis.

  15. Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region.

    Science.gov (United States)

    Ducote, M J; Prakash, S; Pettis, G S

    2000-12-01

    Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3' end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer.

  16. Acid Evolution of Escherichia coli K-12 Eliminates Amino Acid Decarboxylases and Reregulates Catabolism.

    Science.gov (United States)

    He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L

    2017-06-15

    Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of

  17. Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Thobakgale, Lebogang

    2017-01-01

    Full Text Available This presentation is about the photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses. It outlines the background on embryonic stem cells (ES) and phototransfection....

  18. 3G vector-primer plasmid for constructing full-length-enriched cDNA libraries.

    Science.gov (United States)

    Zheng, Dong; Zhou, Yanna; Zhang, Zidong; Li, Zaiyu; Liu, Xuedong

    2008-09-01

    We designed a 3G vector-primer plasmid for the generation of full-length-enriched complementary DNA (cDNA) libraries. By employing the terminal transferase activity of reverse transcriptase and the modified strand replacement method, this plasmid (assembled with a polydT end and a deoxyguanosine [dG] end) combines priming full-length cDNA strand synthesis and directional cDNA cloning. As a result, the number of steps involved in cDNA library preparation is decreased while simplifying downstream gene manipulation, sequencing, and subcloning. The 3G vector-primer plasmid method yields fully represented plasmid primed libraries that are equivalent to those made by the SMART (switching mechanism at 5' end of RNA transcript) approach.

  19. Plasmid-Mediated Resistance in Enterobacteriaceae Changing Landscape and Implications for Therapy

    NARCIS (Netherlands)

    Schultsz, Constance; Geerlings, Suzanne

    2012-01-01

    Antimicrobial resistance is increasing worldwide, and pathogenic microorganism's that are resistant to all available antimicrobial agents are increasingly reported. Emerging plasmid-encoded extended-spectrum beta-lactamases (ESBLs) and carbapenemases are increasingly reported worldwide.

  20. Estimating the Transfer Range of Plasmids Encoding Antimicrobial Resistance in a Wastewater Treatment Plant Microbial Community

    DEFF Research Database (Denmark)

    Li, Liguan; Dechesne, Arnaud; He, Zhiming

    2018-01-01

    sludge microbial community was challenged in standardized filter matings with one of three multidrug resistance plasmids (pKJK5, pB10, and RP4) harbored by Escherichia coli or Pseudomonas putida. Different donor–plasmid combinations had distinct transfer frequencies, ranging from 3 to 50 conjugation...... events per 100000 cells of the WWTP microbial community. In addition, transfer was observed to a broad phylogenetic range of 13 bacterial phyla with several taxa containing potentially pathogenic species. Preferential transfer to taxa belonging to the predicted evolutionary host range of the plasmids...... ARG transmission. However, the contribution of microbial communities in WWTPs to ARG dissemination remains poorly understood. Here, we examined for the first time plasmid permissiveness of an activated sludge microbial community by utilizing an established fluorescent bioreporter system. The activated...

  1. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Vedel, Kenneth; Needham Andersen, Josefine

    2015-01-01

    Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection...... with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle....... efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56. U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA...

  2. Plasmids of Staphylococcus cohnii isolated from the intensive-care unit.

    Science.gov (United States)

    Szewczyk, E M; Rózalska, M; Cieślikowski, T; Nowak, T

    2004-01-01

    Numerous isolates of both subspecies of Staphylococcus cohnii were found in the environment of the intensive-care unit of a pediatric hospital. These isolates carried in their cells many plasmids, up to fourteen, of a wide range of sizes ( 56 kb). Striking was the occurrence of large plasmids not very common in staphylococci. These were present in > 80% of S. cohnii isolates. Fifty-two different plasmid profiles were found in 79 investigated isolates belonging to S. cohnii ssp. cohnii and S. cohnii ssp. urealyticus. Isolates similar in plasmid profiles were grouped in antibiotic-resistance clusters established for 9 antibiotics (gentamicin, ciprofloxacin, clindamycin, erythromycin, tetracycline, chloramphenicol, mupirocin, trimethoprim-sulfamethoxazole, vancomycin) using the method of unweighted pair group mathematical averages (UPGMA). Many isolates were multiresistant to antibiotics and produced bacteriocins.

  3. Giant linear plasmids in Streptomyces: a treasure trove of antibiotic biosynthetic clusters.

    Science.gov (United States)

    Kinashi, Haruyasu

    2011-01-01

    Many giant linear plasmids have been isolated from Streptomyces by using pulsed-field gel electrophoresis and some of them were found to carry an antibiotic biosynthetic cluster(s); SCP1 carries biosynthetic genes for methylenomycin, pSLA2-L for lankacidin and lankamycin, and pKSL for lasalocid and echinomycin. Accumulated data suggest that giant linear plasmids have played critical roles in genome evolution and horizontal transfer of secondary metabolism. In this review, I summarize typical examples of giant linear plasmids whose involvement in antibiotic production has been studied in some detail, emphasizing their finding processes and interaction with the host chromosomes. A hypothesis on horizontal transfer of secondary metabolism involving giant linear plasmids is proposed at the end.

  4. Identification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII Secretion

    KAUST Repository

    Ummels, R.

    2014-09-23

    Conjugative plasmids have been identified in a wide variety of different bacteria, ranging from proteobacteria to firmicutes, and conjugation is one of the most efficient routes for horizontal gene transfer. The most widespread mechanism of plasmid conjugation relies on different variants of the type IV secretion pathway. Here, we describe the identification of a novel type of conjugative plasmid that seems to be unique for mycobacteria. Interestingly, while this plasmid is efficiently exchanged between different species of slow-growing mycobacteria, including Mycobacterium tuberculosis, it could not be transferred to any of the fast-growing mycobacteria tested. Genetic analysis of the conjugative plasmid showed the presence of a locus containing homologues of three type IV secretion system components and a relaxase. In addition, a new type VII secretion locus was present. Using transposon insertion mutagenesis, we show that in fact both these secretion systems are essential for conjugation, indicating that this plasmid represents a new class of conjugative plasmids requiring two secretion machineries. This plasmid could form a useful new tool to exchange or introduce DNA in slow-growing mycobacteria. IMPORTANCE: Conjugative plasmids play an important role in horizontal gene transfer between different bacteria and, as such, in their adaptation and evolution. This effect is most obvious in the spread of antibiotic resistance genes. Thus far, conjugation of natural plasmids has been described only rarely for mycobacterial species. In fact, it is generally accepted that M. tuberculosis does not show any recent sign of horizontal gene transfer. In this study, we describe the identification of a new widespread conjugative plasmid that can also be efficiently transferred to M. tuberculosis. This plasmid therefore poses both a threat and an opportunity. The threat is that, through the acquisition of antibiotic resistance markers, this plasmid could start a rapid spread of

  5. Ordering the mob: Insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids.

    Science.gov (United States)

    Orlek, Alex; Phan, Hang; Sheppard, Anna E; Doumith, Michel; Ellington, Matthew; Peto, Tim; Crook, Derrick; Walker, A Sarah; Woodford, Neil; Anjum, Muna F; Stoesser, Nicole

    2017-05-01

    Plasmid typing can provide insights into the epidemiology and transmission of plasmid-mediated antibiotic resistance. The principal plasmid typing schemes are replicon typing and MOB typing, which utilize variation in replication loci and relaxase proteins respectively. Previous studies investigating the proportion of plasmids assigned a type by these schemes ('typeability') have yielded conflicting results; moreover, thousands of plasmid sequences have been added to NCBI in recent years, without consistent annotation to indicate which sequences represent complete plasmids. Here, a curated dataset of complete Enterobacteriaceae plasmids from NCBI was compiled, and used to assess the typeability and concordance of in silico replicon and MOB typing schemes. Concordance was assessed at hierarchical replicon type resolutions, from replicon family-level to plasmid multilocus sequence type (pMLST)-level, where available. We found that 85% and 65% of the curated plasmids could be replicon and MOB typed, respectively. Overall, plasmid size and the number of resistance genes were significant independent predictors of replicon and MOB typing success. We found some degree of non-concordance between replicon families and MOB types, which was only partly resolved when partitioning plasmids into finer-resolution groups (replicon and pMLST types). In some cases, non-concordance was attributed to ambiguous boundaries between MOBP and MOBQ types; in other cases, backbone mosaicism was considered a more plausible explanation. β-lactamase resistance genes tended not to show fidelity to a particular plasmid type, though some previously reported associations were supported. Overall, replicon and MOB typing schemes are likely to continue playing an important role in plasmid analysis, but their performance is constrained by the diverse and dynamic nature of plasmid genomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Non-additive costs and interactions alter the competitive dynamics of co-occurring ecologically distinct plasmids.

    Science.gov (United States)

    Morton, Elise R; Platt, Thomas G; Fuqua, Clay; Bever, James D

    2014-03-22

    Plasmids play an important role in shaping bacterial evolution and adaptation to heterogeneous environments. As modular genetic elements that are often conjugative, the selective pressures that act on plasmid-borne genes are distinct from those that act on the chromosome. Many bacteria are co-infected by multiple plasmids that impart niche-specific phenotypes. Thus, in addition to host-plasmid dynamics, interactions between co-infecting plasmids are likely to be important drivers of plasmid population dynamics, evolution and ecology. Agrobacterium tumefaciens is a facultative plant pathogen that commonly harbours two distinct megaplasmids. Virulence depends on the presence of the tumour-inducing (Ti) plasmid, with benefits that are primarily restricted to the disease environment. Here, we demonstrate that a second megaplasmid, the At plasmid, confers a competitive advantage in the rhizosphere. To assess the individual and interactive costs of these plasmids, we generated four isogenic derivatives: plasmidless, pAt only, pTi only and pAtpTi, and performed pairwise competitions under carbon-limiting conditions. These studies reveal a low cost to the virulence plasmid when outside of the disease environment, and a strikingly high cost to the At plasmid. In addition, the costs of pAt and pTi in the same host were significantly lower than predicted based on single plasmid costs, signifying the first demonstration of non-additivity between naturally occurring co-resident plasmids. Based on these empirically demonstrated costs and benefits, we developed a resource-consumer model to generate predictions about the frequencies of these genotypes in relevant environments, showing that non-additivity between co-residing plasmids allows for their stable coexistence across environments.

  7. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2010-01-01

    Full Text Available Abstract Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90% to two plasmids (pTRACA10 and pTRACA22 were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In

  8. Characterization of plasmids in a human clinical strain of Lactococcus garvieae.

    Directory of Open Access Journals (Sweden)

    Mónica Aguado-Urda

    Full Text Available The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25 encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen.

  9. Plasmid fingerprinting and virulence gene detection among indigenous strains of salmonella enterica serovar enteritidis

    International Nuclear Information System (INIS)

    Sajid, S.U.; Schwarz, S.

    2009-01-01

    Salmonella enterica serovar Enteritidis is an important frequently reported zoonotic pathogen and a common cause of human gastroenteritis worldwide. The highly conserved Serospecific plasmids (SSPs) and Salmonella plasmid virulence (Spv) genes have been shown to mediate extra-intestinal colonization and systemic infection. The objective of current study was to document the presence of SSPs and SpvB/SpvC genes prevailing in the indigenous population of serovar Enteritidis. A total of 48 epidemiologically unrelated strains of Salmonella enteritidis were included in the study. Preparation of plasmids DNA suitable for endonuclease digestion and separation of respective fragments by agarose gel electrophoresis followed previously described protocols. The plasmids of Escherichia coli V517, 1-kbp ladder, and lambda DNA HindIII fragments served as DNA size standards. Transfer of DNA fragments from agarose gels to nitrocellulose membranes was achieved by capillary blot procedure. An ECL labeled 3.6 kbp HindIII fragment of plasmid PRQ 51 was used as probe for SpvB/SpvC gene detection. Plasmid DNA fingerprinting revealed the presence of two different profiles of approximately 55 kbp and 90 kbp and were identified as virulence plasmids by DNA hybridization. The SpvB/SpvC genes were located on HindIII fragments of 3.6 kbp in each of the two types of virulence plasmids. The study confirms the presence of SSPs and SpvB/SpvC genes in indigenous strains of S. enteritidis isolated from Northern Punjab area of Pakistan and substantiate the previous data on such findings from other parts of the world. (author)

  10. Development and host compatibility of plasmids for two important ruminant pathogens, Mycoplasma bovis and Mycoplasma agalactiae.

    Directory of Open Access Journals (Sweden)

    Shukriti Sharma

    Full Text Available Mycoplasma bovis is a cause of pneumonia, mastitis, arthritis and otitis media in cattle throughout the world. However, despite its clinical significance, there is a paucity of tools to genetically manipulate it, impeding our capacity to further explore the molecular basis of its virulence. To address this limitation, we developed a series of homologous and heterologous replicable plasmids from M. bovis and M. agalactiae. The shortest replicable oriC plasmid based on the region downstream of dnaA in M. bovis was 247 bp and contained two DnaA boxes, while oriC plasmids based on the region downstream of dnaA in M. agalactiae strains 5632 and PG2 were 219 bp and 217 bp in length, respectively, and contained only a single DnaA box. The efficiency of transformation in M. bovis and M. agalactiae was inversely correlated with the size of the oriC region in the construct, and, in general, homologous oriC plasmids had a higher transformation efficiency than heterologous oriC plasmids. The larger pWholeoriC45 and pMM21-7 plasmids integrated into the genomic oriC region of M. bovis, while the smaller oriC plasmids remained extrachromosomal for up to 20 serial passages in selective media. Although specific gene disruptions were not be achieved in M. bovis in this study, the oriC plasmids developed here could still be useful as tools in complementation studies and for expression of exogenous genes in both M. bovis and M. agalactiae.

  11. Broad-Host-Range IncP-1 plasmids and their resistance potential

    Directory of Open Access Journals (Sweden)

    Magdalena ePopowska

    2013-03-01

    Full Text Available The plasmids of the incompatibility group IncP-1, also called IncP, as extrachromosomal genetic elements can transfer and replicate virtually in all Gram-negative bacteria. They are composed of backbone genes that encode a variety of essential functions and accessory genes that have implications for human health and environmental bioremediation. Broad-host-range IncP plasmids are known to spread genes between distinct phylogenetic groups of bacteria. These genes often code for resistances to a broad spectrum of antibiotics, heavy metals and quaternary ammonium compounds used as disinfectants. The backbone of these plasmids carries modules that enable them to effectively replicate, move to a new host via conjugative transfer and to be stably maintained in bacterial cells. The adaptive, resistance and virulence genes are mainly located on mobile genetic elements integrated between the functional plasmid backbone modules. Environmental studies have demonstrated the wide distribution of IncP-like replicons in manure, soils and wastewater treatment plants. They also are present in strains of pathogenic or opportunistic bacteria, which can be a cause for concern, because they may encode multiresistance. Their broad distribution suggests that IncP plasmids play a crucial role in bacterial adaptation by utilizing horizontal gene transfer. This review summarizes the variety of genetic information and physiological functions carried by IncP plasmids, which can contribute to the spread of antibiotic and heavy metal resistance while also mediating the process of bioremediation of pollutants. Due to the location of the resistance genes on plasmids with a broad host range and the presence of transposons carrying these genes it seems that the spread of these genes would be possible and quite hazardous in infection control. Future studies are required to determine the level of risk of the spread of resistance genes located on these plasmids.

  12. Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Bossé, Janine T; Li, Yanwen; Walker, Stephanie; Atherton, Tom; Fernandez Crespo, Roberto; Williamson, Susanna M; Rogers, Jon; Chaudhuri, Roy R; Weinert, Lucy A; Oshota, Olusegun; Holden, Matt T G; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N; Langford, Paul R

    2015-08-01

    The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  13. Molecular processes as basis for plasmid-mediated bacterial UV-light resistance and mutagenesis

    International Nuclear Information System (INIS)

    Aleshkin, G.I.; Brukhanskij, G.V.; Skavronskaya, A.G.

    1985-01-01

    The increase of UV-resistance and UV-induced mutagenesis by lambda 1 pint intmid as well as molecular-genetic mechanisms of plasmid participation in reparation and DNA replication and its degradation after UV-irradiation in plasmid cells on pKM101 plasmid model have been investigated. Data testifying to the necessity of intmid integration in chromosome as obligatory stage of intmid participation in increasing UV-resistance of bacterial cells are obtained. It has been found that intmid raises UV-resistance of cells and increases respectively the UV-induced reverants efficiency. On the basis of the experiment data the conclusion is drawn that the intmid capacity to raise UV-resistance and, possibly, mutagenesis is bound not only with its integration into chromosome but also with pol A + chromosome replication by dependendent imtmid replication complex. It is shown that pKM101 plasmid ensures functioning in E coli cells of inducible, chloroamphenicol-resistant DNA replication, highly resistant to UV-light harmful effect and that the volume of excision reparation in E. coli cells carrying pKM101 plasmid is increased as compared with the volume of reparation in plasmid legs cells. The combination of the data obtained gives grounds to the authors to assume that inducible replication, inducible reparation of DNA and inducible decrease of DNA degradation determined by pKM101 plasmid may serve as recA + lexA + basis dependent increase of UV-resistance and mutagenesis and that these processes provide the possibility of functioning of integrative replication mechanism of plasmid participation in ensuring UV-resistance and mutagenesis of plants

  14. A classification system for plasmids from Enterococci and other Gram-positive bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Garcia-Migura, Lourdes; Valenzuela, Antonio Jesus Sanchez

    2010-01-01

    A classification system for plasmids isolated from enterococci and other Gram-positive bacteria was developed based on 111 published plasmid sequences from enterococci and other Gram-positive bacteria; mostly staphylococci. Based on PCR amplification of conserved areas of the replication initiating....... Furthermore, conjugation experiments were performed obtaining 30 transconjugants when selecting for antimicrobial resistance. Among them 19 gave no positive amplicons indicating presence of rep-families not tested for in this experimental setup....

  15. Transposition of Tn5096 from a temperature-sensitive transducible plasmid in Streptomyces spp.

    OpenAIRE

    McHenney, M A; Baltz, R H

    1991-01-01

    Transposon Tn5096 was inserted into a derivative of the temperature-sensitive plasmid pMT660 containing the bacteriophage FP43 pac site. The resulting plasmid, pRHB126, was transduced by FP43 into several Streptomyces species. Tn5096 transposed from pRHB126 into different sites in the genomes of Streptomyces ambofaciens, Streptomyces cinnamonensis, Streptomyces coelicolor A3(2), Streptomyces fradiae, Streptomyces griseofuscus, and Streptomyces thermotolerans.

  16. Development and Host Compatibility of Plasmids for Two Important Ruminant Pathogens, Mycoplasma bovis and Mycoplasma agalactiae

    Science.gov (United States)

    Sharma, Shukriti; Citti, Chistine; Sagné, Eveline; Marenda, Marc S.

    2015-01-01

    Mycoplasma bovis is a cause of pneumonia, mastitis, arthritis and otitis media in cattle throughout the world. However, despite its clinical significance, there is a paucity of tools to genetically manipulate it, impeding our capacity to further explore the molecular basis of its virulence. To address this limitation, we developed a series of homologous and heterologous replicable plasmids from M. bovis and M. agalactiae. The shortest replicable oriC plasmid based on the region downstream of dnaA in M. bovis was 247 bp and contained two DnaA boxes, while oriC plasmids based on the region downstream of dnaA in M. agalactiae strains 5632 and PG2 were 219 bp and 217 bp in length, respectively, and contained only a single DnaA box. The efficiency of transformation in M. bovis and M. agalactiae was inversely correlated with the size of the oriC region in the construct, and, in general, homologous oriC plasmids had a higher transformation efficiency than heterologous oriC plasmids. The larger pWholeoriC45 and pMM21-7 plasmids integrated into the genomic oriC region of M. bovis, while the smaller oriC plasmids remained extrachromosomal for up to 20 serial passages in selective media. Although specific gene disruptions were not be achieved in M. bovis in this study, the oriC plasmids developed here could still be useful as tools in complementation studies and for expression of exogenous genes in both M. bovis and M. agalactiae. PMID:25746296

  17. Development of a self-replicating plasmid system for Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Maglennon, Gareth A; Cook, Beth S; Matthews, Dominic; Deeney, Alannah S; Bossé, Janine T; Langford, Paul R; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N

    2013-07-29

    Mycoplasma hyopneumoniae is a prevalent swine respiratory pathogen that is a major cause of economic loss to pig producers. Control is achieved by a combination of antimicrobials, vaccination and management practices, but current vaccines offer only partial control and there is a need for improved preventative strategies. A major barrier to advances in understanding the pathogenesis of M. hyopneumoniae and in developing new vaccines is the lack of tools to genetically manipulate the organism. We describe the development and optimisation of the first successful plasmid-based system for the genetic manipulation of M. hyopneumoniae. Our artificial plasmids contain the origin of replication (oriC) of M. hyopneumoniae along with tetM, conferring resistance to tetracycline. With these plasmids, we have successfully transformed M. hyopneumoniae strain 232 by electroporation, generating tetracycline resistant organisms. The persistence of extrachromosomal plasmid and maintenance of plasmid DNA over serial passages shows that these artificial plasmids are capable of self-replication in M. hyopneumoniae. In addition to demonstrating the amenability of M. hyopneumoniae to genetic manipulation and in optimising the conditions necessary for successful transformation, we have used this system to determine the minimum functional oriC of M. hyopneumoniae. In doing so, we have developed a plasmid with a small oriC that is stably maintained over multiple passages that may be useful in generating targeted gene disruptions. In conclusion, we have generated a set of plasmids that will be valuable in studies of M. hyopneumoniae pathogenesis and provide a major step forward in the study of this important swine pathogen.

  18. Catabolism of (+/-)-abscisic acid by excised leaves of Hordeum vulgare L. cv Dyan and its modification by chemical and environmental factors

    International Nuclear Information System (INIS)

    Cowan, A.K.; Railton, I.D.

    1987-01-01

    Excised light-grown leaves and etiolated leaves of Hordeum vulgare L. cv Dyan catabolized applied (+/-)-[2- 14 C]abscisic acid ([+/-]-[2- 14 C]ABA) to phaseic acid (PA), dihydrophaseic acid (DPA), and 2'-hydroxymethyl ABA (2'-HMABA). Identification of these catabolites was made by microchemical methods and by combined capillary gas chromatography-mass spectrometry (GC-MS) following high dose feeds of nonlabeled substrate to leaves. Circular dichroism analysis revealed that 2'-HMABA was derived from the (-) enantiomer of ABA. Refeeding studies were used to confirm the catabolic route. The methyl ester of (+/-)-[2 14 C]-ABA was hydrolyzed efficiently by light-grown leaves of H. vulgare. Leaf age played a significant role in (+/-)-ABA catabolism, with younger leaves being less able than their older counterparts to catabolize this compound. The catabolism of (+/-)-ABA was inhibited markedly in water-stressed Hordeum leaves which was characterized by a decreased incorporation of label into 2'-HMABA, DPA, and conjugates. The specific, mixed function oxidase inhibitor, ancymidol, did not inhibit, dramatically (+/-)-ABA catabolism in light-grown leaves of Hordeum whereas the 80s ribosome, translational inhibitor, cycloheximide, inhibited this process markedly. The 70s ribosome translational inhibitors, lincomycin and chloramphenicol, were less effective than cycloheximide in inhibiting (+/-)-ABA catabolism, implying that cytoplasmic protein synthesis is necessary for the catabolism of (+/-)-ABA in Hordeum leaves whereas chloroplast protein synthesis plays only a minor role. This further suggests that the enzymes involved in (+/-)-ABA catabolism in this plant are cytoplasmically synthesized and are turned-over rapidly, although the enzyme responsible for glycosylating (+/-)-ABA itself appeared to be stable

  19. Repair promoted by plasmid pKM101 is different from SOS repair

    International Nuclear Information System (INIS)

    Goze, A.; Devoret, R.

    1979-01-01

    In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid PKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although Wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions. (Auth.)

  20. Spontaneous mutability and light-induced mutagenesis in Salmonella typhimurium: effects of an R-plasmid

    International Nuclear Information System (INIS)

    Valdivia, L.

    1979-01-01

    The UV-protecting plasmid R46 was transferred by conjugation to a genetically marked mouse-virulent Salmonella typhimurium strain, not derived from LT2; in this host the plasmid conferred UV protection and enhanced UV mutagenesis just as it does in LT2 lines. Tra - derivatives of R46 encountered during transduction retained UV-protecting and mutagenesis-enhancing ability. Stored strains carrying the R46-derived plasmids with strong mutator effect but not UV-protecting had lost most of their original streptomycin resistance but were slightly resistant to spectinomycin; attempts to transfer such plasmids failed. R46 enhanced the weak mutagenic effect of visible light on several his and trp mutants of strain LT2, including some whose frequency of spontaneous reversion was not increased by the plasmid. A mutagenic effect was produced by visible-light irradiation of hisG46(R46), either growing cells or nonmultiplying (histidine-deprived cells at 10 0 C). Presence of catalase or cyanide during irradiation did not prevent mutagenesis, which excludes some hypothetical mechanisms. Visible-light irradiation of hisG46 or hisG46(R46) under strict anaerobiosis had little or no mutagenic effect (controls showed that revertants if produced would have been detected). This is as expected if visible-light irradiation in air causes photodynamic damage to DNA and mutations are produced during error-prone, plasmid-enhanced repair

  1. Genetic diversity of Xanthomonas axonopodis pv. citri based on plasmid profile and pulsed field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Carvalho Flávia Maria de Souza

    2005-01-01

    Full Text Available Xanthomonas axonopodis pv. citri strains that cause disease in citrus were investigated by pulsed field and plasmid profile analysis. For the first method, genomic DNA was digested by the rare-cutting enzymes Xba I and Vsp I. The strains evaluated were collected in seven different States of Brazil and in Argentina, Bolivia, Paraguay and Uruguay. Genetic variability was found among strains of X. axonopodis pv. citri from different geographical areas Argentina, Bolivia and Uruguay, with similarities varying from 0.62 to 0.83. However, the strains collected in Brazil, despite being from different States, have shown a genetic similarity ranging from 0.83 to 1.00. Cluster analysis showed a relationship between genomic similarity and geographical origin of the strains. Plasmids were observed in all strains, with a total of five different plasmids, with sizes between 57.7 and 83.0 kilobases. The 72.6 kb plasmid was the most frequent, present in 15 out of 22 strains, while the 68.1 kb plasmid was observed in two strains only. Although the plasmid diversity detected in the present study was not very great, the X. axonopodis pv. citri strains evaluated showed a considerable degree of diversity with regard to this extrachromosomal genetic element.

  2. Plasmid-derived DNA Strand Displacement Gates for Implementing Chemical Reaction Networks.

    Science.gov (United States)

    Chen, Yuan-Jyue; Rao, Sundipta D; Seelig, Georg

    2015-11-25

    DNA nanotechnology requires large amounts of highly pure DNA as an engineering material. Plasmid DNA could meet this need since it is replicated with high fidelity, is readily amplified through bacterial culture and can be stored indefinitely in the form of bacterial glycerol stocks. However, the double-stranded nature of plasmid DNA has so far hindered its efficient use for construction of DNA nanostructures or devices that typically contain single-stranded or branched domains. In recent work, it was found that nicked double stranded DNA (ndsDNA) strand displacement gates could be sourced from plasmid DNA. The following is a protocol that details how these ndsDNA gates can be efficiently encoded in plasmids and can be derived from the plasmids through a small number of enzymatic processing steps. Also given is a protocol for testing ndsDNA gates using fluorescence kinetics measurements. NdsDNA gates can be used to implement arbitrary chemical reaction networks (CRNs) and thus provide a pathway towards the use of the CRN formalism as a prescriptive molecular programming language. To demonstrate this technology, a multi-step reaction cascade with catalytic kinetics is constructed. Further it is shown that plasmid-derived components perform better than identical components assembled from synthetic DNA.

  3. A one-step miniprep for the isolation of plasmid DNA and lambda phage particles.

    Directory of Open Access Journals (Sweden)

    George Lezin

    Full Text Available Plasmid DNA minipreps are fundamental techniques in molecular biology. Current plasmid DNA minipreps use alkali and the anionic detergent SDS in a three-solution format. In addition, alkali minipreps usually require additional column-based purification steps and cannot isolate other extra-chromosomal elements, such as bacteriophages. Non-ionic detergents (NIDs have been used occasionally as components of multiple-solution plasmid DNA minipreps, but a one-step approach has not been developed. Here, we have established a one-tube, one-solution NID plasmid DNA miniprep, and we show that this approach also isolates bacteriophage lambda particles. NID minipreps are more time-efficient than alkali minipreps, and NID plasmid DNA performs better than alkali DNA in many downstream applications. In fact, NID crude lysate DNA is sufficiently pure to be used in digestion and sequencing reactions. Microscopic analysis showed that the NID procedure fragments E. coli cells into small protoplast-like components, which may, at least in part, explain the effectiveness of this approach. This work demonstrates that one-step NID minipreps are a robust method to generate high quality plasmid DNA, and NID approaches can also isolate bacteriophage lambda particles, outperforming current standard alkali-based minipreps.

  4. Plasmid ColE1 as a Molecular Vehicle for Cloning and Amplification of DNA

    Science.gov (United States)

    Hershfield, Vickers; Boyer, Herbert W.; Yanofsky, Charles; Lovett, Michael A.; Helinski, Donald R.

    1974-01-01

    DNA fragments obtained from EcoRI endonuclease digestion of bacteriophage ϕ80pt190 (trp+) and the plasmid ColE1 were covalently joined with polynucleotide ligase. Transformation of Escherichia coli trp- strains to tryptophan independence with the recombined DNA selected for reconstituted ColE1 plasmids containing the tryptophan operon and the ϕ80 immunity region. Similarly, an EcoRI endonuclease generated fragment of plasmid pSC105 DNA containing the genetic determinant of kanamycin resistance was inserted into the ColE1 plasmid and recovered in E. coli. The plasmids containing the trp operon (ColE1-trp) and the kanamycin resistance gene were maintained under logarithmic growth conditions at a level of 25-30 copies per cell and accumulate to the extent of several hundred copies per cell in the presence of chloramphenicol. Cells carrying the ColE1-trp plasmid determined the production of highly elevated levels of trp operon-specific mRNA and tryptophan biosynthetic enzymes. Images PMID:4610576

  5. Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci

    Energy Technology Data Exchange (ETDEWEB)

    Pollet, Rebecca M.; Ingle, James D.; Hymes, Jeff P.; Eakes, Thomas C.; Eto, Karina Yui; Kwong, Stephen M.; Ramsay, Joshua P.; Firth, Neville; Redinbo, Matthew R. (Curtin U.); (Sydney); (UNC)

    2016-01-04

    Antimicrobial resistance inStaphylococcus aureuspresents an increasing threat to human health. This resistance is often encoded on mobile plasmids, such as pSK41; however, the mechanism of transfer of these plasmids is not well understood. In this study, we first examine key protein-DNA interactions formed by the relaxase enzyme, NES, which initiates and terminates the transfer of the multidrug resistance plasmid pSK41. Two loops on the NES protein, hairpin loops 1 and 2, form extensive contacts with the DNA hairpin formed at theoriTregion of pSK41, and here we establish that these contacts are essential for proper DNA cleavage and religation by the full 665-residue NES proteinin vitro. Second, pSK156 and pCA347 are nonconjugativeStaphylococcus aureusplasmids that contain sequences similar to theoriTregion of pSK41 but differ in the sequence predicted to form a DNA hairpin. We show that pSK41-encoded NES is able to bind, cleave, and religate theoriTsequences of these nonconjugative plasmidsin vitro. Although pSK41 could mobilize a coresident plasmid harboring its cognateoriT, it was unable to mobilize plasmids containing the pSK156 and pCA347 variantoriTmimics, suggesting that an accessory protein like that previously shown to confer specificity in the pWBG749 system may also be involved in transmission of plasmids containing a pSK41-likeoriT. These data indicate that the conjugative relaxase intransmechanism recently described for the pWBG749 family of plasmids also applies to the pSK41 family of plasmids, further heightening the potential significance of this mechanism in the horizontal transfer of staphylococcal plasmids.

    IMPORTANCEUnderstanding the

  6. Serum and urinary lipoproteins in the human nephrotic syndrome: evidence for renal catabolism of lipoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Shore, V.G.; Forte, T.; Licht, H.; Lewis, S.B.

    1982-03-01

    The urinary excretion of lipoproteins and the possibility of catabolic alterations on glomerular filtration were investigated in four nephrotic subjects difering in etiology, serum lipoprotein profile, and 24 hr urinary output of protein and lipids. The apolipoproteins and lipoproteins of urine were compared with those of serum with respect to distribution profile, physical properties, and composition. As expected from molecular sieving effects during glomerular filtration, the urinary HDL were more abundant than the lower density lipoproteins even when the plasma LDL was elevated markedly. Intact apolipoproteins were not found in the concentrated urinary fraction isolated by ultrafiltration between the limits of 10/sup 4/ and 5 x 10/sup 4/ daltons. On the basis of immunoreactivity, gel electrophoresis, and amino acid composition, apolipoproteins B and AI are the major and minor proteins, respectively, of urinary LDL, and apo B is the major protein of the urinary IDL and VLDL. Apolipoproteins AI, AII, CI, CIII, and possibly AIV were isolated from the urinary HDL. As much as 20% of the protein moiety of the urinary HDL appeared to be large apolipoprotien fragments with molecular weights and isoelectric points similar to those of apo CII and apo CIII. The lower density classes of urinary lipoproteins also appeared to have lost apo E and apo C's and to have undergone partial proteolysis.

  7. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments.

    Science.gov (United States)

    Colasuonno, Pasqualina; Lozito, Maria Luisa; Marcotuli, Ilaria; Nigro, Domenica; Giancaspro, Angelica; Mangini, Giacomo; De Vita, Pasquale; Mastrangelo, Anna Maria; Pecchioni, Nicola; Houston, Kelly; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2017-01-31

    In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding. Twenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait. The availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.

  8. A Role of a Newly Identified Isomerase From Yarrowia lipolytica in Erythritol Catabolism

    Directory of Open Access Journals (Sweden)

    Aleksandra M. Mirończuk

    2018-05-01

    Full Text Available Erythritol is a natural sweetener produced by microorganisms as an osmoprotectant. It belongs to the group of polyols and it can be utilized by the oleaginous yeast Yarrowia lipolytica. Despite the recent identification of the transcription factor of erythritol utilization (EUF1, the metabolic pathway of erythritol catabolism remains unknown. In this study we identified a new gene, YALI0F01628g, involved in erythritol assimilation. In silico analysis showed that YALI0F01628g is a putative isomerase and it is localized in the same region as EUF1. qRT-PCR analysis of Y. lipolytica showed a significant increase in YALI0F01628g expression during growth on erythritol and after overexpression of EUF1. Moreover, the deletion strain ΔF01628 showed significantly impaired erythritol assimilation, whereas synthesis of erythritol remained unchanged. The results showed that YALI0F1628g is involved in erythritol assimilation; thus we named the gene EYI1. Moreover, we suggest the metabolic pathway of erythritol assimilation in yeast Y. lipolytica.

  9. Biodistribution and catabolism of 18F-labelled isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine.

    Science.gov (United States)

    Hultsch, C; Bergmann, R; Pawelke, B; Pietzsch, J; Wuest, F; Johannsen, B; Henle, T

    2005-12-01

    Isopeptide bonds between the epsilon-amino group of lysine and the gamma-carboxamide group of glutamine are formed during strong heating of pure proteins or, more important, by enzymatic reaction mediated by transglutaminases. Despite the wide use of a microbial transglutaminase in food biotechnology, up to now little is known about the metabolic fate of the isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine. In the present study, N-succinimidyl-4-[(18)F]fluorobenzoate was used to modify N(epsilon)-(gamma-glutamyl)-L-lysine at each of its two alpha-amino groups, resulting in the 4-[(18)F]fluorobenzoylated derivatives, for which biodistribution, catabolism, and elimination were investigated in male Wistar rats. A significant different biochemical behavior of the two labelled isopeptides was observed in terms of in vitro stability, in vivo metabolism as well as biodistribution. The results suggest that the metabolic fate of isopeptides is likely to be dependent on how they are reabsorbed - free or peptide bound.

  10. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin.

    Science.gov (United States)

    Gonai, Takeru; Kawahara, Shusuke; Tougou, Makoto; Satoh, Shigeru; Hashiba, Teruyoshi; Hirai, Nobuhiro; Kawaide, Hiroshi; Kamiya, Yuji; Yoshioka, Toshihito

    2004-01-01

    Germination of lettuce (Lactuca sativa L. cv. 'Grand Rapids') seeds was inhibited at high temperatures (thermoinhibition). Thermoinhibition at 28 degrees C was prevented by the application of fluridone, an inhibitor of abscisic acid (ABA) biosynthesis. At 33 degrees C, the sensitivity of the seeds to ABA increased, and fluridone on its own was no longer effective. However, a combined application of fluridone and gibberellic acid (GA3) was able to restore the germination. Exogenous GA3 lowered endogenous ABA content in the seeds, enhancing catabolism of ABA and export of the catabolites from the intact seeds. The fluridone application also decreased the ABA content. Consequently, the combined application of fluridone and GA3 decreased the ABA content to a sufficiently low level to allow germination at 33 degrees C. There was no significant temperature-dependent change in endogenous GA1 contents. It is concluded that ABA is an important factor in the regulation of thermoinhibition of lettuce seed germination, and that GA affects the temperature responsiveness of the seeds through ABA metabolism.

  11. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    Science.gov (United States)

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  12. Haloacetate analogs of pheromones: effects on catabolism and electrophysiology in Plutella xylostella

    International Nuclear Information System (INIS)

    Prestwich, G.D.; Streinz, L.

    1988-01-01

    A series of mono, di-, and trihalogenated acetate analogs of Z11-16:Ac were prepared and examined for electrophysiological activity in antennae of males of the diamondback moth, Plutella xylostella. In addition, two potential affinity labels, a diazoacetate (Dza) and a trifluoromethyl ketone (Tfp), were evaluated for EAG activity. The Z11-16:Ac showed the highest activity in EAG assays, followed by the fluorinated acetates, but other haloacetates were essentially inactive. The effects of these analogs on the hydrolysis of [ 3 H]Z11-16:Ac to [ 3 H]Z11-16:OH by antennal esterases was also examined. The three fluorinated acetates showed the greatest activity as inhibitors in competition assays, with rank order F 2 Ac > F 3 Ac > FAc > AC > Cl 2 Ac > ClAc > Dza > Br 2 Ac > BrAc > Tfp > I > Cl 3 Ac > Br 3 Ac > OH. The relative polarities of the haloacetates, as determined by TLC mobility, are in the order mono- > di- > trihalo, but F, Cl, Br, and I all confer similar polarities within a substitution group. Thus, the steric size appears to be the predominant parameter affecting the interactions of the haloacetate analogs with both receptor and catabolic proteins in P. xylostella males

  13. Haloacetate analogs of pheromones: Effects on catabolism and electrophysiology inPlutella xylostella.

    Science.gov (United States)

    Prestwich, G D; Streinz, L

    1988-03-01

    A series of mono-, di-, and trihalogenated acetate analogs of Zl 1-16: Ac were prepared and examined for electrophysiological activity in antennae of males of the diamondback moth,Plutella xylostella. In addition, two potential affinity labels, a diazoacetate (Dza) and a trifluoromethyl ketone (Tfp), were evaluated for EAG activity. The Z11-16∶Ac showed the highest activity in EAG assays, followed by the fluorinated acetates, but other halo-acetates were essentially inactive. The polar diazoacetate and the trifluoromethyl ketone were also very weak EAG stimulants. The effects of these analogs on the hydrolysis of [(3)H]Z11-16∶Ac to [(3)H]Z11-16∶OH by antennal esterases was also examined. The three fluorinated acetates showed the greatest activity as inhibitors in competition assays, with rank order F2Ac > F(3)Ac > FAc > Ac > Cl2Ac > ClAc > Dza > Br2Ac > BrAc > Tfp > I > Cl3Ac > Br3Ac > OH. The relative polarities of the haloacetates, as determined by TLC mobility, are in the order mono- > di- > trihalo, but F, Cl, Br, and I all confer similar polarities within a substitution group. Thus, the steric size appears to be the predominant parameter affecting the interactions of the haloacetate analogs with both receptor and catabolic proteins inP. xylostella males.

  14. Catabolism of exogenously supplied thymidine to thymine and dihydrothymine by platelets in human peripheral blood

    International Nuclear Information System (INIS)

    Pero, R.W.; Johnson, D.; Olsson, A.

    1984-01-01

    The interference of platelets with the estimation of unscheduled DNA synthesis in human peripheral mononuclear leukocytes following genotoxic exposure was studied. A 96% reduction in the unscheduled DNA synthesis value was achieved by incubating [ 3 H]thymidine with platelet-rich plasma for 5 hr at 37 degrees. Using radioactive thymine-containing compounds, together with quantitative analyses based on thin-layer and ion-exchange chromatographies, we have shown that thymidine was converted to thymine which, in turn, was converted to dihydrothymine in platelet-rich plasma. The enzymes responsible were separated from platelet lysates by gel filtration and were identified as thymidine phosphorylase and dihydrothymine dehydrogenase. The phosphorylase reversibly catalyzed the formation of thymine from thymidine and converted bromodeoxyuridine to bromouracil. The dehydrogenase reversibly catalyzed the interconversion of thymine and dihydrothymine in a reaction dependent on NADP(H), and it was inhibited by diazouracil and by thymine. Nearly all the thymidine-catabolizing activity found in whole blood samples supplied exogenously with thymidine was accounted for by the platelets. Since most genetic toxicological tests that use blood samples do not involve removing platelets from the blood cell cultures, then it is concluded that precautions should be taken in the future to determine the influence of platelets on these test systems. This is particularly true for methods dependent on thymidine pulses such as unscheduled DNA synthesis, or those dependent on bromodeoxyuridine, such as sister chromatid exchanges, since this nucleoside is also a substrate for thymidine phosphorylase

  15. Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe

    Energy Technology Data Exchange (ETDEWEB)

    Mohn, W.W.; Tiedje, J.M. (Michigan State Univ., East Lansing (USA))

    1990-04-01

    Strain DCB-1 is a strict anaerobe capable of reductive dehalogenation. We elucidated metabolic processes in DCB-1 which may be related to dehalogenation and which further characterize the organism physiologically. Sulfoxy anions and CO2 were used by DCB-1 as catabolic electron acceptors. With suitable electron donors, sulfate and thiosulfate were reduced to sulfide. Sulfate and thiosulfate supported growth with formate or hydrogen as the electron donor and thus are probably respiratory electron acceptors. Other electron donors supporting growth with sulfate were CO, lactate, pyruvate, butyrate, and 3-methoxybenzoate. Thiosulfate also supported growth without an additional electron donor, being disproportionated to sulfide and sulfate. In the absence of other electron acceptors, CO2 reduction to acetate plus cell material was coupled to pyruvate oxidation to acetate plus CO2. Pyruvate could not be fermented without an electron acceptor. Carbon monoxide dehydrogenase activity was found in whole cells, indicating that CO2 reduction probably occurred via the acetyl coenzyme A pathway. Autotrophic growth occurred on H2 plus thiosulfate or sulfate. Diazotrophic growth occurred, and whole cells had nitrogenase activity. On the basis of these physiological characteristics, DCB-1 is a thiosulfate-disproportionating bacterium unlike those previously described.

  16. Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis

    Directory of Open Access Journals (Sweden)

    Igor Zeman

    2016-12-01

    Full Text Available The pathogenic yeast Candida parapsilosis metabolizes hydroxyderivatives of benzene and benzoic acid to compounds channeled into central metabolism, including the mitochondrially localized tricarboxylic acid cycle, via the 3-oxoadipate and gentisate pathways. The orchestration of both catabolic pathways with mitochondrial metabolism as well as their evolutionary origin is not fully understood. Our results show that the enzymes involved in these two pathways operate in the cytoplasm with the exception of the mitochondrially targeted 3-oxoadipate CoA-transferase (Osc1p and 3-oxoadipyl-CoA thiolase (Oct1p catalyzing the last two reactions of the 3-oxoadipate pathway. The cellular localization of the enzymes indicates that degradation of hydroxyaromatic compounds requires a shuttling of intermediates, cofactors, and products of the corresponding biochemical reactions between cytosol and mitochondria. Indeed, we found that yeast cells assimilating hydroxybenzoates increase the expression of genes SFC1, LEU5, YHM2, and MPC1 coding for succinate/fumarate carrier, coenzyme A carrier, oxoglutarate/citrate carrier, and the subunit of pyruvate carrier, respectively. A phylogenetic analysis uncovered distinct evolutionary trajectories for sparsely distributed gene clusters coding for enzymes of both pathways. Whereas the 3-oxoadipate pathway appears to have evolved by vertical descent combined with multiple losses, the gentisate pathway shows a striking pattern suggestive of horizontal gene transfer to the evolutionarily distant Mucorales.

  17. Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Scheuner, Carmen; Goker, Markus; Mavromatis, Kostas; Hooper, Sean D.; Porat, Iris; Klenk, Hans-Peter; Ivanova, Natalia; Kyrpides, Nikos

    2011-05-03

    The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.

  18. Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria.

    Science.gov (United States)

    Plugge, C M; van Leeuwen, J M; Hummelen, T; Balk, M; Stams, A J

    2001-07-01

    The glutamate catabolism of three thermophilic syntrophic anaerobes was compared based on the combined use of [(13)C] glutamate NMR measurements and enzyme activity determinations. In some cases the uptake of intermediates from different pathways was studied. The three organisms, Caloramator coolhaasii, Thermanaerovibrio acidaminovorans and strain TGO, had a different stoichiometry of glutamate conversion and were dependent on the presence of a hydrogen scavenger (Methanobacterium thermoautotrophicum Z245) to a different degree for their growth. C. coolhaasii formed acetate, CO(2), NH(4)(+) and H(2) from glutamate. Acetate was found to be formed through the beta-methylaspartate pathway in pure culture as well as in coculture. T. acidaminovorans converted glutamate to acetate, propionate, CO(2), NH(4)(+) and H(2). Most likely, this organism uses the beta-methylaspartate pathway for acetate formation. Propionate formation occurred through a direct oxidation of glutamate via succinyl-CoA and methylmalonyl-CoA. The metabolism of T. acidaminovorans shifted in favour of propionate formation when grown in coculture with the methanogen, but this did not lead to the use of a different glutamate degradation pathway. Strain TGO, an obligate syntrophic glutamate-degrading organism, formed propionate, traces of succinate, CO(2), NH(4)(+) and H(2). Glutamate was converted to propionate oxidatively via the intermediates succinyl-CoA and methylmalonyl-CoA. A minor part of the succinyl-CoA was converted to succinate and excreted.

  19. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    Science.gov (United States)

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-02-11

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  20. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  1. Angiotensin II induced catabolic effect and muscle atrophy are redox dependent

    Science.gov (United States)

    Semprun-Prieto, Laura C.; Sukhanov, Sergiy; Yoshida, Tadashi; Rezk, Bashir M.; Gonzalez-Villalobos, Romer A.; Vaughn, Charlotte; Tabony, A. Michael; Delafontaine, Patrice

    2011-01-01

    Angiotensin II (Ang II) causes skeletal muscle wasting via an increase in muscle catabolism. To determine whether the wasting effects of Ang II were related to its ability to increase NADPH oxidase-derived reactive oxygen species (ROS) we infused wild-type C57BL/6J or p47phox−/− mice with vehicle or Ang II for 7 days. Superoxide production was increased 2.4 fold in the skeletal muscle of Ang II infused mice, and this increase was prevented in p47phox−/− mice. Apocynin treatment prevented Ang II-induced superoxide production in skeletal muscle, consistent with Ang II increasing NADPH oxidase derived ROS. Ang II induced loss of body and skeletal muscle weight in C57BL/6J mice, whereas the reduction was significantly attenuated in p47phox−/− animals. The reduction of skeletal muscle weight caused by Ang II was associated with an increase of proteasome activity, and this increase was completely prevented in the skeletal muscle of p47phox−/− mice. In conclusion, Ang II-induced skeletal muscle wasting is in part dependent on NADPH oxidase derived ROS. PMID:21570954

  2. Acetaldehyde binding increases the catabolism of rat serum low-density lipoproteins

    International Nuclear Information System (INIS)

    Savolainen, M.J.; Baraona, E.; Lieber, C.S.

    1987-01-01

    Acetaldehyde was found to form adducts with rat serum lipoproteins. The binding of [ 14 C]acetaldehyde to lipoproteins was studied at low concentrations which are known to exist during ethanol oxidation. The amount of lipoprotein adducts was a linear function of acetaldehyde concentration up to 250 μM. Incubation of rat plasma low-density lipoproteins (LDL) with 200 μM acetaldehyde increased the disappearance rate of the 3 H-label from the cholesterol ester moiety of LDL injected into normal rats. The data show that even low concentrations of acetaldehyde are capable of affecting LDL metabolism. These findings may provide an explanation for the low concentrations of serum LDL in alcoholics. The alcohol-induced hyperlipidemia includes either a lack of increase or a decrease in the low-density lipoprotein (LDL) concentration, but the underlying mechanism is not known. It has been shown previously, that the acetylation of lysine residues of LDL apoprotein (apoB) by acetanhydride leads to rapid uptake of LDL particles by macrophages through a non-LDL receptor pathway. Since acetaldehyde, the first toxic metabolite of ethanol, is a chemically reactive compound capable of binding to proteins, they tested whether acetaldehyde forms adducts with serum lipoproteins and subsequently alters the catabolism of LDL. 19 references, 2 figures, 1 table

  3. Amino Acid Catabolism in Alzheimer’s Disease Brain: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Jeddidiah W. D. Griffin

    2017-01-01

    Full Text Available There is a dire need to discover new targets for Alzheimer’s disease (AD drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease.

  4. Salmonella Typhimurium ST213 is associated with two types of IncA/C plasmids carrying multiple resistance determinants.

    Science.gov (United States)

    Wiesner, Magdalena; Calva, Edmundo; Fernández-Mora, Marcos; Cevallos, Miguel A; Campos, Freddy; Zaidi, Mussaret B; Silva, Claudia

    2011-01-11

    Salmonella Typhimurium ST213 was first detected in the Mexican Typhimurium population in 2001. It is associated with a multi-drug resistance phenotype and a plasmid-borne blaCMY-2 gene conferring resistance to extended-spectrum cephalosporins. The objective of the current study was to examine the association between the ST213 genotype and blaCMY-2 plasmids. The blaCMY-2 gene was carried by an IncA/C plasmid. ST213 strains lacking the blaCMY-2 gene carried a different IncA/C plasmid. PCR analysis of seven DNA regions distributed throughout the plasmids showed that these IncA/C plasmids were related, but the presence and absence of DNA stretches produced two divergent types I and II. A class 1 integron (dfrA12, orfF and aadA2) was detected in most of the type I plasmids. Type I contained all the plasmids carrying the blaCMY-2 gene and a subset of plasmids lacking blaCMY-2. Type II included all of the remaining blaCMY-2-negative plasmids. A sequence comparison of the seven DNA regions showed that both types were closely related to IncA/C plasmids found in Escherichia, Salmonella, Yersinia, Photobacterium, Vibrio and Aeromonas. Analysis of our Typhimurium strains showed that the region containing the blaCMY-2 gene is inserted between traA and traC as a single copy, like in the E. coli plasmid pAR060302. The floR allele was identical to that of Newport pSN254, suggesting a mosaic pattern of ancestry with plasmids from other Salmonella serovars and E. coli. Only one of the tested strains was able to conjugate the IncA/C plasmid at very low frequencies (10-7 to 10-9). The lack of conjugation ability of our IncA/C plasmids agrees with the clonal dissemination trend suggested by the chromosomal backgrounds and plasmid pattern associations. The ecological success of the newly emerging Typhimurium ST213 genotype in Mexico may be related to the carriage of IncA/C plasmids. We conclude that types I and II of IncA/C plasmids originated from a common ancestor and that the

  5. CO₂ and O₂ respiration kinetics in hydrocarbon contaminated soils amended with organic carbon sources used to determine catabolic diversity.

    Science.gov (United States)

    Pietravalle, Stéphane; Aspray, Thomas J

    2013-05-01

    Multiple substrate induced respiration (MSIR) assays which assess the response of soils to carbon source amendment are effective approaches to determine catabolic diversity of soils. Many assays are based on a single short term (hydrocarbon contaminated soils using continuous CO2 and O2 respiration measurements. Based on cumulative CO2 and O2 measurements at 4, 24 and 120 h, the soils were found to be distinct in terms of their catabolic diversity. Most noteworthy, however, was the response to the addition of maleic acid which provided strong evidence of abiotic CO2 efflux to be the overriding process, raising questions about the interpretation of CO2 only responses from organic acid addition in MSIR assays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effect of immunomodulators and cytostatics in 125I-deoxyuridine and tumor catabolism (a rapid method of antitumour immunomodulators screening)

    International Nuclear Information System (INIS)

    Obernikhin, S.S.; Fuks, B.B.

    1992-01-01

    E1-4 and P-815 murine tumor cells labelled by 125 I-deoxyuridine or 51 Cr were administered in 7-day subcutaneous syngeneic tumors or subcutaneosly. At the same time different groups of mice were treated by immunomodulators and cytostatics. It was shown that cytostatics and immunomodulators significantly delayed catabolism and withdrawing of 125 I-deoxyuridine (that has not been incorporated in DNA) from tumor cells. This delay was correlated with the inhibition of tumor nodes growth rate. It is concluded that influence of cytostatics and immunomodulators on catabolism and withdrawing rate of 125 I-deoxyuridine from tumor cells relates to their cytostatic effect and may be used at the earliest screening step of immunomodulator analysis

  7. Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host.

    Science.gov (United States)

    Heuer, Holger; Fox, Randal E; Top, Eva M

    2007-03-01

    IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.

  8. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingrui; Du, Yinming; Jiang, Wenyan; Chang, Wei-Lun; Yang, Shang-Tian [Ohio State Univ., Columbus, OH (United States). William G. Lowrie Dept. of Chemical and Biomolecular Engineering; Tang, I-Ching [Bioprocessing Innovative Company, Dublin, OH (United States)

    2012-01-15

    Clostridium tyrobutyricum ATCC 25755 can produce butyric acid, acetic acid, and hydrogen as the main products from various carbon sources. In this study, C. tyrobutyricum was used as a host to produce n-butanol by expressing adhE2 gene under the control of a native thiolase promoter using four different conjugative plasmids (pMTL82151, 83151, 84151, and 85151) each with a different replicon (pBP1 from C. botulinum NCTC2916, pCB102 from C. butyricum, pCD6 from Clostridium difficile, and pIM13 from Bacillus subtilis). The effects of different replicons on transformation efficiency, plasmid stability, adhE2 expression and aldehyde/alcohol dehydrogenase activities, and butanol production by different mutants of C. tyrobutyricum were investigated. Among the four plasmids and replicons studied, pMTL82151 with pBP1 gave the highest transformation efficiency, plasmid stability, gene expression, and butanol biosynthesis. Butanol production from various substrates, including glucose, xylose, mannose, and mannitol were then investigated with the best mutant strain harboring adhE2 in pMTL82151. A high butanol titer of 20.5 g/L with 0.33 g/g yield and 0.32 g/L h productivity was obtained with mannitol as the substrate in batch fermentation with pH controlled at {proportional_to}6.0. (orig.)

  9. Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Ringgaard, Simon; Møller-Jensen, Jakob

    2006-01-01

    with each other in a bacterial two-hybrid assay but do not interact with FtsZ, eight other essential cell division proteins or MreB actin. Based on these observations, we propose a simple model for how oscillating ParA filaments can mediate regular cellular distribution of plasmids. The model functions...

  10. Effect on Antibody and T-Cell Responses of Mixing Five GMP-Produced DNA Plasmids and Administration With Plasmid Expressing GM-CSF

    National Research Council Canada - National Science Library

    Sedegah, M; Charoenvit, Y; Aguiar, J; Sacci, J; Hedstrom, R; Kumar, S; Belmonte, A; Lanar, DE; Jones, TR; Abot, E

    2004-01-01

    .... In preparation for a clinical trial, we assessed the immunogenicity of GMP-produced plasmids encoding five Plasmodium falciparum proteins, PfCSP, PfSSP2, PfEXP1, PfLSA1, and PfLSA3, given as a mixture, or alone...

  11. Influence of tra genes of IncP and F plasmids on the mobilization of small Kanamycin resistance ColE1-Like plasmids in bacterial biofilms

    Science.gov (United States)

    Background: Horizontal gene transfer is a mechanism for movement of antibiotic resistance genes among bacteria. Some small kanamycin resistance (KanR) ColE1-like plasmids isolated from different serotypes of Salmonella enterica were shown to carry mobilization genes; although not self-transmissibl...

  12. A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa.

    Science.gov (United States)

    Rogers, Elizabeth E; Stenger, Drake C

    2012-01-01

    A ≈ 38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19(th) century.

  13. A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa.

    Directory of Open Access Journals (Sweden)

    Elizabeth E Rogers

    Full Text Available A ≈ 38kB plasmid (pXF-RIV5 was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51 sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19(th century.

  14. An Enterobacter plasmid as a new genetic background for the transposon Tn1331

    Directory of Open Access Journals (Sweden)

    Alavi MR

    2011-11-01

    Full Text Available Mohammad R Alavi1,2, Vlado Antonic2, Adrien Ravizee1, Peter J Weina3, Mina Izadjoo1,2, Alexander Stojadinovic21Division of Wound Biology and Translational Research, Armed Forces Institute of Pathology and American Registry of Pathology, Washington DC, 2Combat Wound Initiative Program, Walter Reed Army Medical Center, Washington DC, 3The Walter Reed Army Institute of Research, Silver Spring, MD, USABackground: Genus Enterobacter includes important opportunistic nosocomial pathogens that could infect complex wounds. The presence of antibiotic resistance genes in these microorganisms represents a challenging clinical problem in the treatment of these wounds. In the authors’ screening of antibiotic-resistant bacteria from complex wounds, an Enterobacter species was isolated that harbors antibiotic-resistant plasmids conferring resistance to Escherichia coli. The aim of this study was to identify the resistance genes carried by one of these plasmids.Methods: The plasmids from the Enterobacter isolate were propagated in E. coli and one of the plasmids, designated as pR23, was sequenced by the Sanger method using fluorescent dye-terminator chemistry on a genetic analyzer. The assembled sequence was annotated by search of the GenBank database.Results: Plasmid pR23 is composed of the transposon Tn1331 and a backbone plasmid that is identical to the plasmid pPIGDM1 from Enterobacter agglomerans. The multidrug-resistance transposon Tn1331, which confers resistance to aminoglycoside and beta lactam antibiotics, has been previously isolated only from Klebsiella. The Enterobacter plasmid pPIGDM1, which carries a ColE1-like origin of replication and has no apparent selective marker, appears to provide a backbone for propagation of Tn1331 in Enterobacter. The recognition sequence of Tn1331 transposase for insertion into pPIGDM1 is the pentanucleotide TATTA, which occurs only once throughout the length of this plasmid.Conclusion: Transposition of Tn1331 into

  15. Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions.

    Directory of Open Access Journals (Sweden)

    Rodrigo W A Souza

    Full Text Available Heart failure (HF is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting.We employed ascending aortic stenosis (AS inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET or to an untrained group (AS-UN. At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65, MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels.Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.

  16. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727

    Directory of Open Access Journals (Sweden)

    Mahillon Jacques

    2005-07-01

    Full Text Available Abstract Background Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis belong to the genetically close-knit Bacillus cereus sensu lato group, a family of rod-shaped Gram-positive bacteria. pAW63 is the first conjugative plasmid from the B. cereus group to be completely sequenced. Results The 71,777 bp nucleotide sequence of pAW63 reveals a modular structure, including a 42 kb tra region encoding homologs of the Type IV secretion systems components VirB11, VirB4 and VirD4, as well as homologs of Gram-positive conjugation genes from Enterococcus, Lactococcus, Listeria, Streptococcus and Staphylococcus species. It also firmly establishes the existence of a common backbone between pAW63, pXO2 from Bacillus anthracis and pBT9727 from the pathogenic Bacillus thuringiensis serovar konkukian strain 97-27. The alignment of these three plasmids highlights the presence of well conserved segments, in contrast to distinct regions of high sequence plasticity. The study of their specific differences has provided a three-point reference framework that can be exploited to formulate solid hypotheses concerning the functionalities and the molecular evolution of these three closely related plasmids. This has provided insight into the chronology of their divergence, and led to the discovery of two Type II introns on pAW63, matching copies of the mobile element IS231L in different loci of pXO2 and pBT9727, and the identification on pXO2 of a 37 kb pathogenicity island (PAI containing the anthrax capsule genes. Conclusion The complete sequence determination of pAW63 has led to a functional map of the plasmid yielding insights into its conjugative apparatus, which includes T4SS-like components, as well as its resemblance to other large plasmids of Gram-positive bacteria. Of particular interest is the extensive homology shared between pAW63 and pXO2, the second virulence plasmid of B. anthracis, as well as pBT9727 from the pathogenic strain B. thuringiensis

  17. Increasing plasmid transformation efficiency of natural spizizen method in Bacillus Subtilis by a cell permeable peptide

    Directory of Open Access Journals (Sweden)

    Mehrdad Moosazadeh Moghaddam

    2013-01-01

    Full Text Available Introduction: Some of bacterial species are able to uptake DNA molecule from environment, the yield of this process depends on some conditions such as plasmid size and host type. In the case of Bacillus subtilis, DNA uptake has low efficacy. Using Spizizen minimal medium is common method in plasmid transformation into B. subtilis, but rate of this process is not suitable and noteworthy. The aim of this study was investigation of novel method for improvement of DNA transformation into B. subtilis based on CM11 cationic peptide as a membrane permeable agent.Materials and methods: In this study, for optimization of pWB980 plasmid transformation into B. subtilis, the CM11 cationic peptide was used. For this purpose, B. subtilis competent cell preparation in the present of different concentration of peptide was implemented by two methods. In the first method, after treatment of bacteria with different amount of peptide for 14h, plasmid was added. In the second method, several concentration of peptide with plasmid was exposed to bacteria simultaneously. Bacteria that uptake DNA were screened on LB agar medium containing kanamycin. The total transformed bacteria per microgram of DNA was calculated and compared with the control.Results: Plasmid transformation in best conditions was 6.5 folds higher than the control. This result was statistically significant (P value <0.001.Discussion and conclusion: This study showed that CM11 cationic peptide as a membrane permeable agent was able to increase plasmid transformation rate into B. subtilis. This property was useful for resolution of low transformation efficacy.

  18. In Vivo Transmission of an IncA/C Plasmid in Escherichia coli Depends on Tetracycline Concentration, and Acquisition of the Plasmid Results in a Variable Cost of Fitness.

    Science.gov (United States)

    Johnson, Timothy J; Singer, Randall S; Isaacson, Richard E; Danzeisen, Jessica L; Lang, Kevin; Kobluk, Kristi; Rivet, Bernadette; Borewicz, Klaudyna; Frye, Jonathan G; Englen, Mark; Anderson, Janet; Davies, Peter R

    2015-05-15

    IncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensal Escherichia coli host. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containing E. coli from pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containing E. coli in pig feces (P IncA/C plasmid to other indigenous E. coli hosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other than E. coli. In vitro competition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage in E. coli and Salmonella. In vitro transfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracycline in vitro strongly selected for IncA/C plasmid-containing E. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. A degenerate primer MOB typing (DPMT method to classify gamma-proteobacterial plasmids in clinical and environmental settings.

    Directory of Open Access Journals (Sweden)

    Andrés Alvarado

    Full Text Available Transmissible plasmids are responsible for the spread of genetic determinants, such as antibiotic resistance or virulence traits, causing a large ecological and epidemiological impact. Transmissible plasmids, either conjugative or mobilizable, have in common the presence of a relaxase gene. Relaxases were previously classified in six protein families according to their phylogeny. Degenerate primers hybridizing to coding sequences of conserved amino acid motifs were designed to amplify related relaxase genes from γ-Proteobacterial plasmids. Specificity and sensitivity of a selected set of 19 primer pairs were first tested using a collection of 33 reference relaxases, representing the diversity of γ-Proteobacterial plasmids. The validated set was then applied to the analysis of two plasmid collections obtained from clinical isolates. The relaxase screening method, which we call "Degenerate Primer MOB Typing" or DPMT, detected not only most known Inc/Rep groups, but also a plethora of plasmids not previously assigned to any Inc group or Rep-type.

  20. Identification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII Secretion

    KAUST Repository

    Ummels, R.; Abdallah, A. M.; Kuiper, V.; Aajoud, A.; Sparrius, M.; Naeem, R.; Spaink, H. P.; van Soolingen, D.; Pain, Arnab; Bitter, W.

    2014-01-01

    Conjugative plasmids play an important role in horizontal gene transfer between different bacteria and, as such, in their adaptation and evolution. This effect is most obvious in the spread of antibiotic resistance genes. Thus far, conjugation of natural plasmids has been described only rarely for mycobacterial species. In fact, it is generally accepted that M. tuberculosis does not show any recent sign of horizontal gene transfer. In this study, we describe the identification of a new widespread conjugative plasmid that can also be efficiently transferred to M. tuberculosis. This plasmid therefore poses both a threat and an opportunity. The threat is that, through the acquisition of antibiotic resistance markers, this plasmid could start a rapid spread of antibiotic resistance genes between pathogenic mycobacteria. The opportunity is that we could use this plasmid to generate new tools for the efficient introduction of foreign DNA in slow-growing mycobacteria.

  1. Shifting patterns of nitrogen excretion and amino acid catabolism capacity during the life cycle of the sea lamprey (Petromyzon marinus).

    Science.gov (United States)

    Wilkie, Michael P; Claude, Jaime F; Cockshutt, Amanda; Holmes, John A; Wang, Yuxiang S; Youson, John H; Walsh, Patrick J

    2006-01-01

    The jawless fish, the sea lamprey (Petromyzon marinus), spends part of its life as a burrow-dwelling, suspension-feeding larva (ammocoete) before undergoing a metamorphosis into a free swimming, parasitic juvenile that feeds on the blood of fishes. We predicted that animals in this juvenile, parasitic stage have a great capacity for catabolizing amino acids when large quantities of protein-rich blood are ingested. The sixfold to 20-fold greater ammonia excretion rates (J(Amm)) in postmetamorphic (nonfeeding) and parasitic lampreys compared with ammocoetes suggested that basal rates of amino acid catabolism increased following metamorphosis. This was likely due to a greater basal amino acid catabolizing capacity in which there was a sixfold higher hepatic glutamate dehydrogenase (GDH) activity in parasitic lampreys compared with ammocoetes. Immunoblotting also revealed that GDH quantity was 10-fold and threefold greater in parasitic lampreys than in ammocoetes and upstream migrant lampreys, respectively. Higher hepatic alanine and aspartate aminotransferase activities in the parasitic lampreys also suggested an enhanced amino acid catabolizing capacity in this life stage. In contrast to parasitic lampreys, the twofold larger free amino acid pool in the muscle of upstream migrant lampreys confirmed that this period of natural starvation is accompanied by a prominent proteolysis. Carbamoyl phosphate synthetase III was detected at low levels in the liver of parasitic and upstream migrant lampreys, but there was no evidence of extrahepatic (muscle, intestine) urea production via the ornithine urea cycle. However, detection of arginase activity and high concentrations of arginine in the liver at all life stages examined infers that arginine hydrolysis is an important source of urea. We conclude that metamorphosis is accompanied by a metabolic reorganization that increases the capacity of parasitic sea lampreys to catabolize intermittently large amino acid loads arising

  2. The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development.

    Directory of Open Access Journals (Sweden)

    R van der Geize

    2011-08-01

    Full Text Available Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551, ipdB (rv3552, fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD and 3aα-H-4α(3'-propionic acid-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP. Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections.

  3. Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution

    DEFF Research Database (Denmark)

    Dolejska, Monika; Villa, Laura; Minoia, Marco

    2014-01-01

    OBJECTIVES: To determine the structure of two multidrug-resistant IncHI1 plasmids carrying blaCTX-M-1 in Escherichia coli isolates disseminated in an equine clinic in the Czech Republic. METHODS: A complete nucleotide sequencing of 239 kb IncHI1 (pEQ1) and 287 kb IncHI1/X1 (pEQ2) plasmids was per...... highlight the structure and evolution of IncHI1 from equine E. coli. A plasmid-mediated sugar metabolic element could play a key role in strain fitness, contributing to the successful dissemination and maintenance of these plasmids in the intestinal microflora of horses....

  4. Increased ophthalmic acid production is supported by amino acid catabolism under fasting conditions in mice.

    Science.gov (United States)

    Kobayashi, Sho; Lee, Jaeyong; Takao, Toshifumi; Fujii, Junichi

    2017-09-23

    Glutathione (GSH) plays pivotal roles in antioxidation and detoxification. The transsulfuration pathway, in conjunction with methionine metabolism, produces equimolar amounts of cysteine (Cys) and 2-oxobutyric acid (2OB). The resulting 2OB is then converted into 2-aminobutyric acid (2AB) by a transaminase and is utilized as a substitute for Cys by the GSH-synthesizing machinery to produce ophthalmic acid (OPT). By establishing a method for simultaneously measuring Cys, GSH, and OPT by liquid chromatography-mass spectrometry, we found that fasting causes an elevation in OPT levels in the liver and blood plasma, even though the levels of Cys and GSH are decreased. Autophagy was activated, but the levels of GSH/OPT-synthesizing enzymes remained unchanged. After 6 h of fasting, the mice were given 1% 2AB and/or 5% glucose in the drinking water for an additional 24 h and the above metabolites analyzed. 2AB administration caused an increase in OPT levels, and, when glucose was co-administered with 2AB, the levels of OPT were elevated further but GSH levels were decreased somewhat. These results suggest that, while Cys is utilized for glyconeogenesis under fasting conditions, reaching levels that were insufficient for the synthesis of GSH, 2OB was preferentially converted to 2AB via amino acid catabolism and was utilized as a building block for OPT. Thus the consumption of Cys and the parallel elevation of 2AB under fasting conditions appeared to force γ-glutamylcysteine synthetase to form γ-glutamyl-2AB, despite the fact that the enzyme has a higher Km value for 2AB than Cys. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Clofibric acid stimulates branched-chain amino acid catabolism by three mechanisms.

    Science.gov (United States)

    Kobayashi, Rumi; Murakami, Taro; Obayashi, Mariko; Nakai, Naoya; Jaskiewicz, Jerzy; Fujiwara, Yoko; Shimomura, Yoshiharu; Harris, Robert A

    2002-11-15

    Clofibrate promotes catabolism of branched-chain amino acids by increasing the activity of the branched-chain alpha-keto acid dehydrogenase [BCKDH] complex. Depending upon the sex of the rats, nutritional state, and tissue being studied, clofibrate can affect BCKDH complex activity by three different mechanisms. First, by directly inhibiting BCKDH kinase activity, clofibrate can increase the proportion of the BCKDH complex in the active, dephosphorylated state. This occurs in situations in which the BCKDH complex is largely inactive due to phosphorylation, e.g., in the skeletal muscle of chow-fed rats or in the liver of female rats late in the light cycle. Second, by increasing the levels at which the enzyme components of the BCKDH complex are expressed, clofibrate can increase the total enzymatic activity of the BCKDH complex. This is readily demonstrated in livers of rats fed a low-protein diet, a nutritional condition that induces a decrease in the level of expression of the BCKDH complex. Third, by decreasing the amount of BCKDH kinase expressed and therefore its activity, clofibrate induces an increase in the percentage of the BCKDH complex in the active, dephosphorylated state. This occurs in the livers of rats fed a low-protein diet, a nutritional condition that causes inactivation of the BCKDH complex due to upregulation of the amount of BCKDH kinase. WY-14,643, which, like clofibric acid, is a ligand for the peroxisome-proliferator-activated receptor alpha [PPARalpha], does not directly inhibit BCKDH kinase but produces the same long-term effects as clofibrate on expression of the BCKDH complex and its kinase. Thus, clofibrate is unique in its capacity to stimulate BCAA oxidation through inhibition of BCKDH kinase activity, whereas PPARalpha activators in general promote BCAA oxidation by increasing expression of components of the BCKDH complex and decreasing expression of the BCKDH kinase.

  6. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus.

    Science.gov (United States)

    Pereira-Caro, Gema; Fernández-Quirós, Begoña; Ludwig, Iziar A; Pradas, Inmaculada; Crozier, Alan; Moreno-Rojas, José Manuel

    2018-02-01

    Orange juice (OJ) flavanones undergo limited absorption in the upper gastrointestinal tract and reach the colon where they are transformed by the microbiota prior to absorption. This study investigated the ability of two probiotic bacteria, Bifidobacterium longum R0175 and Lactobacillus rhamnosus subsp. Rhamnosus NCTC 10302 to catabolise OJ flavanones. The bacteria were incubated with hesperetin-7-O-rutinoside, naringenin-7-O-rutinoside, hesperetin and naringenin, and the culture medium and intracellular cell extracts were collected at intervals over a 48 h of incubation period. The flavanones and their phenolic acid catabolites were identified and quantified by HPLC-HR-MS. Both probiotics were able to subject hesperetin to ring fission yielding 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid which was subsequently demethylated producing 3-(3',4'-dihydroxyphenyl)propionic acid and then via successive dehydroxylations converted to 3-(3'-hydroxyphenyl)propionic acid and 3-(phenyl)propionic acid. Incubation of both bacteria with naringenin resulted in its conversion to 3-(4'-hydroxyphenyl)propionic acid which underwent dehydroxylation yielding 3-(phenyl)propionic acid. In addition, only L. rhamnosus exhibited rhamnosidase and glucosidase activity and unlike B. longum, which was able to convert hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside to their respective aglycones. The aglycones were then subjected to ring fission and further catabolised in a similar manner to that described above. The flavanones and their catabolites were found in the culture medium but not accumulated in the bacterial cells. These findings demonstrate the enzymatic potential of single strains of bifidobacterium and lactobacillus which may be involved in the colonic catabolism of OJ flavanones in vivo.

  7. Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy

    Directory of Open Access Journals (Sweden)

    Hiroyuki Horiguchi

    2018-04-01

    Full Text Available Clinical and technological advances promoting early hemorrhage control and physiologic resuscitation as well as early diagnosis and optimal treatment of sepsis have significantly decreased in-hospital mortality for many critically ill patient populations. However, a substantial proportion of severe trauma and sepsis survivors will develop protracted organ dysfunction termed chronic critical illness (CCI, defined as ≥14 days requiring intensive care unit (ICU resources with ongoing organ dysfunction. A subset of CCI patients will develop the persistent inflammation, immunosuppression, and catabolism syndrome (PICS, and these individuals are predisposed to a poor quality of life and indolent death. We propose that CCI and PICS after trauma or sepsis are the result of an inappropriate bone marrow response characterized by the generation of dysfunctional myeloid populations at the expense of lympho- and erythropoiesis. This review describes similarities among CCI/PICS phenotypes in sepsis, cancer, and aging and reviews the role of aberrant myelopoiesis in the pathophysiology of CCI and PICS. In addition, we characterize pathogen recognition, the interface between innate and adaptive immune systems, and therapeutic approaches including immune modulators, gut microbiota support, and nutritional and exercise therapy. Finally, we discuss the future of diagnostic and prognostic approaches guided by machine and deep-learning models trained and validated on big data to identify patients for whom these approaches will yield the greatest benefits. A deeper understanding of the pathophysiology of CCI and PICS and continued investigation into novel therapies harbor the potential to improve the current dismal long-term outcomes for critically ill post-injury and post-infection patients.

  8. Identification and antigenic characterization of virulence-associated, plasmid-coded proteins of Shigella spp. and enteroinvasive Escherichia coli.

    OpenAIRE

    Hale, T L; Oaks, E V; Formal, S B

    1985-01-01

    Seven plasmid-coded polypeptides, designated a through g, were identified by two-dimensional nonequilibrium pH gradient electrophoresis of radiolabeled extracts from minicells of virulent Shigella flexneri serotypes 2a and 5 and enteroinvasive Escherichia coli O143. These polypeptides were deemed to be products of 140-megadalton (MDa) virulence-associated plasmids because they were not synthesized in minicells which were not harboring a 140-MDa plasmid or in minicells which were carrying an F...

  9. Characterization of Endogenous Plasmids from Lactobacillus salivarius UCC118▿ †

    Science.gov (United States)

    Fang, Fang; Flynn, Sarah; Li, Yin; Claesson, Marcus J.; van Pijkeren, Jan-Peter; Collins, J. Kevin; van Sinderen, Douwe; O'Toole, Paul W.

    2008-01-01

    The genome of Lactobacillus salivarius UCC118 comprises a 1.83-Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids of 20 kb (pSF118-20) and 44 kb (pSF118-44). Annotation and bioinformatic analyses suggest that both of the smaller plasmids replicate by a theta replication mechanism. Furthermore, it appears that they are transmissible, although neither possesses a complete set of conjugation genes. Plasmid pSF118-20 encodes a toxin-antitoxin system composed of pemI and pemK homologs, and this plasmid could be cured when PemI was produced in trans. The minimal replicon of pSF118-20 was determined by deletion analysis. Shuttle vector derivatives of pSF118-20 were generated that included the replication region (pLS203) and the replication region plus mobilization genes (pLS208). The plasmid pLS203 was stably maintained without selection in Lactobacillus plantarum, Lactobacillus fermentum, and the pSF118-20-cured derivative strain of L. salivarius UCC118 (strain LS201). Cloning in pLS203 of genes encoding luciferase and green fluorescent protein, and expression from a constitutive L. salivarius promoter, demonstrated the utility of this vector for the expression of heterologous genes in Lactobacillus. This study thus expands the knowledge base and vector repertoire of probiotic lactobacilli. PMID:18390685

  10. Plasmid Mediated Antibiotic and Heavy Metal Resistance in Bacillus Strains Isolated From Soils in Rize, Turkey

    Directory of Open Access Journals (Sweden)

    Elif SEVİM

    2015-09-01

    Full Text Available Fifteen Bacillus strains which were isolated from soil samples were examined for resistance to 17 different antibiotics (ampicillin, methicillin, erythromycin, norfloxacin, cephalotine, gentamycin, ciprofloxacin, streptomycin, tobramycin, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, vancomycin, oxacilin, neomycin, kanamycin and, novabiocin and to 10 different heavy metals (copper, lead, cobalt, chrome, iron, mercury, zinc, nickel, manganese and, cadmium and for the presence of plasmid DNA. A total of eleven strains (67% were resistant to at least one antibiotic. The most common resistance was observed against methicillin and oxacillin. The most resistance strains were found as Bacillus sp. B3 and Bacillus sp. B11. High heavy metal resistance against copper, chromium, zinc, iron and nickel was detected, but mercury and cobalt resistance was not detected, except for 3 strains (B3, B11, and B12 which showed mercury resistance. It has been determined that seven Bacillus strains have plasmids. The isolated plasmids were transformed into the Bacillus subtilis W168 and it was shown that heavy metal and antibiotic resistance determinants were carried on these plasmids. These results showed that there was a correlation between plasmid content and resistance for both antibiotic and heavy metal resistance

  11. DNA repair in bacterial cultures and plasmid DNA exposed to infrared laser for treatment of pain

    International Nuclear Information System (INIS)

    Canuto, K S; Sergio, L P S; Marciano, R S; Guimarães, O R; Polignano, G A C; Geller, M; Fonseca, A S; Paoli, F

    2013-01-01

    Biostimulation of tissues by low intensity lasers has been described on a photobiological basis and clinical protocols are recommended for treatment of various diseases, but their effects on DNA are controversial. The objective of this work was to evaluate effects of low intensity infrared laser exposure on survival and bacterial filamentation in Escherichia coli cultures, and induction of DNA lesions in bacterial plasmids. In E. coli cultures and plasmids exposed to an infrared laser at fluences used to treat pain, bacterial survival and filamentation and DNA lesions in plasmids were evaluated by electrophoretic profile. Data indicate that the infrared laser (i) increases survival of E. coli wild type in 24 h of stationary growth phase, (ii) induces bacterial filamentation, (iii) does not alter topological forms of plasmids and (iv) does not alter the electrophoretic profile of plasmids incubated with exonuclease III or formamidopyrimidine DNA glycosylase. A low intensity infrared laser at the therapeutic fluences used to treat pain can alter survival of E. coli wild type, induce filamentation in bacterial cells, depending on physiologic conditions and DNA repair, and induce DNA lesions other than single or double DNA strand breaks or alkali-labile sites, which are not targeted by exonuclease III or formamidopyrimidine DNA glycosylase. (letter)

  12. The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA

    International Nuclear Information System (INIS)

    Roos, C; Santos, J N; Guimarães, O R; Geller, M; Fonseca, A S; Paoli, F

    2013-01-01

    Exposure of nonphotosynthesizing microorganisms to light could increase cell division in cultures, a phenomenon denominated as biostimulation. However, data concerning the importance of the genetic characteristics of cells on this effect are as yet scarce. The aim of this work was to evaluate the effects of a low-intensity red laser on the growth, filamentation and plasmids in Escherichia coli cells proficient and deficient in DNA repair. E. coli cultures were exposed to a laser (658 nm, 10 mW, 1 and 8 J cm −2 ) to study bacterial growth and filamentation. Also, bacterial cultures hosting pBSK plasmids were exposed to the laser to study DNA topological forms from the electrophoretic profile in agarose gels. Data indicate the low-intensity red laser: (i) had no effect on the growth of E. coli wild type and exonuclease III deficient cells; (ii) induced bacterial filamentation, (iii) led to no alteration in the electrophoretic profile of plasmids from exonuclease III deficient cells, but plasmids from wild type cells were altered. A low-intensity red laser at the low fluences used in phototherapy has no effect on growth, but induces filamentation and alters the topological forms of plasmid DNA in E. coli cultures depending on the DNA repair mechanisms. (paper)

  13. Effect of degradative plasmid CAM-OCT on responses of Pseudomonas bacteria to UV light

    International Nuclear Information System (INIS)

    McBeth, D.L.

    1989-01-01

    The effect of plasmid CAM-OCT on responses to UV irradiation was compared in Pseudomonas aeruginosa, in Pseudomonas putida, and in Pseudomonas putida mutants carrying mutations in UV response genes. CAM-OCT substantially increased both survival and mutagenesis in the two species. P. aeruginosa strains without CAM-OCT exhibited much higher UV sensitivity than did P. putida strains. UV-induced mutagenesis of plasmid-free P. putida was easily detected in three different assays (two reversion assays and one forward mutation assay), whereas UV mutagenesis of P. aeruginosa without CAM-OCT was seen only in the forward mutation assay. These results suggest major differences in DNA repair between the two species and highlight the presence of error-prone repair functions on CAM-OCT. A number of P. putida mutants carrying chromosomal mutations affecting either survival or mutagenesis after UV irradiation were isolated, and the effect of CAM-OCT on these mutants was determined. All mutations producing a UV-sensitive phenotype in P. putida were fully suppressed by the plasmid, whereas the plasmid had a more variable effect on mutagenesis mutations, suppressing some and producing no suppression of others. On the basis of the results reported here and results obtained by others with plasmids carrying UV response genes, it appears that CAM-OCT may differ either in regulation or in the number and functions of UV response genes encoded

  14. Ultrasound-targeted microbubble destruction enhances naked plasmid DNA transfection in rabbit Achilles tendons in vivo.

    Science.gov (United States)

    Qiu, L; Zhang, L; Wang, L; Jiang, Y; Luo, Y; Peng, Y; Lin, L

    2012-07-01

    The study was to investigate the probability of increasing the transfection of the gene in tendons by ultrasound-targeted microbubble destruction (UTMD), and to search for the most suitable transfection conditions. A mixture of microbubbles and enhanced green fluorescent protein (EGFP) plasmids was injected into rabbit Achilles tendons by different administration routes and the tendons were ultrasound pulse by different ultrasonic conditions in order to determine the most appropriate conditions. Then, the rabbits were divided into four groups: (1) ultrasound + microbubbles + plasmid; (2) ultrasound+ plasmid; (3) microbubble + plasmid; (4) plasmid only. EGFP expression in the tendons and other tissues, and the damage to tendon and paratenon were all observed. The results showed that EGFP expression in the tendon was higher by ultrasound pulse with 2 W cm(-2) of output intensity and a 20% duty cycle for 10 min. Local injection was determined to be the better administration route. Among the four groups, EGFP expression in Group 1 was higher than that in other groups. EGFP expression was highest on seventh day, then it gradually decrease over time, and lasted more than 56 days. EGFP expression was not found in other tissues. There was no obvious injury caused by UTMD. Under suitable conditions, it is feasible to use UTMD as a safe and effective gene transfection therapy for tendon injuries.

  15. Characterization of Plasmid pPO1 from the Hyperacidophile Picrophilus oshimae

    Directory of Open Access Journals (Sweden)

    Angel Angelov

    2011-01-01

    Full Text Available Picrophilus oshimae and Picrophilus torridus are free-living, moderately thermophilic and acidophilic organisms from the lineage of Euryarchaeota. With a pH optimum of growth at pH 0.7 and the ability to even withstand molar concentrations of sulphuric acid, these organisms represent the most extreme acidophiles known. So far, nothing is known about plasmid biology in these hyperacidophiles. Also, there are no genetic tools available for this genus. We have mobilized the 7.6 Kbp plasmid from P. oshimae in E. coli by introducing origin-containing transposons and described the plasmid in terms of its nucleotide sequence, copy number in the native host, mode of replication, and transcriptional start sites of the encoded ORFs. Plasmid pPO1 may encode a restriction/modification system in addition to its replication functions. The information gained from the pPO1 plasmid may prove useful in developing a cloning system for this group of extreme acidophiles.

  16. STUDY REGARDING EFFICIENCY OF INDUCED GENETIC TRANSFORMATION IN BACILLUS LICHENIFORMIS WITH PLASMID DNA

    Directory of Open Access Journals (Sweden)

    T. VINTILĂ

    2007-05-01

    Full Text Available A strain of Bacillus licheniformis was subject to genetic transformation with plasmid vectors (pLC1 and pNC61, using electroporation technique, protoplast transformation and bivalent cations (CaCl2 mediated transformation. In the case of transformation by electroporation of Bacillus licheniformis B40, the highest number of transformed colonies (3 were obtained only after a 1,79 KV electric shock, for 2,2 milliseconds. Using this transformation technique we have obtained six kanamycin resistant transformants. The frequency of Bacillus licheniformis B40 protoplasts transformation using pLC1 and pNC61 plasmid vectors is approximately 10% (TF = 10%. As a result of pLC1 plasmid integration in Bacillus licheniformis protoplasts, six kanamycin resistant transformants were obtained. The pNC61 plasmid, which confers trimethoprim resistance, does not integrate in receiver cells by protoplast transformation. The direct genetic transformation in the presence of bivalent cations (CaCl2, mediated by pLC1 and pNC61 plasmid vectors, produce a low transformation frequency. Using this technique, we have obtained three trimethoprim resistant colonies and four kanamycin resistant colonies. The chemical way of transformation is the only technique, which realizes the integration of pNC61 in B. licheniformis B40 cells.

  17. Transformation of UV-hypersensitive Chinese hamster ovary cell mutants with UV-irradiated plasmids

    International Nuclear Information System (INIS)

    Nairn, R.S.; Humphrey, R.M.; Adair, G.M.

    1988-01-01

    Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results reported for human cells, UV irradiation of transfecting DNA did not stimulate genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. Transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. The authors conclude responses of recipient cells to UV-damaged transfecting plasmids depend on type of recipient cell and characteristics of the genetic sequence used for transfection. (author)

  18. Sequential acquisition of R-plasmids in vivo by Salmonella typhimurium.

    Science.gov (United States)

    Platt, D J; Sommerville, J S; Gribben, J

    1984-01-01

    Salmonella typhimurium, resistant only to trimethoprim and sulphamethoxazole, was isolated from the faeces and blood of a chronic alcoholic patient in acute renal failure. The isolates harboured an 18 Md non-conjugative plasmid. He was dialysed peritoneally and treated with ampicillin; four days later there was no clinical improvement and his peritoneal dialysis fluid (PDF) had become infected. Salm. typhimurium was isolated from faeces and PDF. Both isolates were additionally resistant to ampicillin and contained two plasmids (55 Md and 18 Md). Therapy was changed to chloramphenicol and gentamicin was added to the PDF. Two weeks later Salm. typhimurium was again isolated from PDF and faeces. The PDF isolate was unchanged but 4% of the colonies isolated from this faecal specimen were resistant to chloramphenicol and had acquired an additional 62 Md plasmid. From all PDF and faecal specimens two different strains of Escherichia coli and one strain of Klebsiella pneumoniae were isolated which contained plasmids indistinguishable, on the basis of molecular weight and transferable resistance markers, from those acquired by Salm. typhimurium. The transferability of these plasmids in vitro to E. coli K12 and to the patient's initial Salm. typhimurium was studied and the results discussed.

  19. Construction of pTM series plasmids for gene expression in Brucella species.

    Science.gov (United States)

    Tian, Mingxing; Qu, Jing; Bao, Yanqing; Gao, Jianpeng; Liu, Jiameng; Wang, Shaohui; Sun, Yingjie; Ding, Chan; Yu, Shengqing

    2016-04-01

    Brucellosis, the most common widespread zoonotic disease, is caused by Brucella spp., which are facultative, intracellular, Gram-negative bacteria. With the development of molecular biology techniques, more and more virulence-associated factors have been identified in Brucella spp. A suitable plasmid system is an important tool to study virulence genes in Brucella. In this study, we constructed three constitutive replication plasmids (pTM1-Cm, pTM2-Amp, and pTM3-Km) using the replication origin (rep) region derived from the pBBR1-MCS vector. Also, a DNA fragment containing multiple cloning sites (MCSs) and a terminator sequence derived from the pCold vector were produced for complementation of the deleted genes. Besides pGH-6×His, a plasmid containing the groE promoter of Brucella spp. was constructed to express exogenous proteins in Brucella with high efficiency. Furthermore, we constructed the inducible expression plasmid pZT-6×His, containing the tetracycline-inducible promoter pzt1, which can induce expression by the addition of tetracycline in the Brucella culture medium. The constructed pTM series plasmids will play an important role in the functional investigation of Brucella spp. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    Energy Technology Data Exchange (ETDEWEB)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad, E-mail: amtamadon@gmail.com [Shiraz University of Medical Sciences, Department of Pharmaceutics, School of Pharmacy (Iran, Islamic Republic of)

    2016-05-15

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and {sup 1}H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol{sub 40 %}) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  1. Transformation of Saccharomyces cerevisiae with UV-irradiated single-stranded plasmid.

    Science.gov (United States)

    Zgaga, Z

    1991-08-01

    UV-irradiated single-stranded replicative plasmids were used to transform different yeast strains. The low doses of UV used in this study (10-75 J/m2) caused a significant decrease in the transforming efficiency of plasmid DNA in the Rad+ strain, while they had no effect on transformation with double-stranded plasmids of comparable size. Neither the rev3 mutation, nor the rad18 or rad52 mutations influenced the efficiency of transformation with irradiated single-stranded plasmid. However, it was found to be decreased in the double rev3 rad52 mutant. Extracellular irradiation of plasmid that contains both URA3 and LEU2 genes (psLU) gave rise to up to 5% Leu- transformants among selected Ura+ ones in the repair-proficient strain. Induction of Leu- transformants was dose-dependent and only partially depressed in the rev3 mutant. These results suggest that both mutagenic and recombinational repair processes operate on UV-damaged single-stranded DNA in yeast.

  2. Protein-Nanocrystal Conjugates Support a Single Filament Polymerization Model in R1 Plasmid Segregation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina L.; Claridge, Shelley A.; Garner, Ethan C.; Alivisatos, A. Paul; Mullins, R. Dyche

    2008-07-15

    To ensure inheritance by daughter cells, many low-copy number bacterial plasmids, including the R1 drug-resistance plasmid, encode their own DNA segregation systems. The par operon of plasmid R1 directs construction of a simple spindle structure that converts free energy of polymerization of an actin-like protein, ParM, into work required to move sister plasmids to opposite poles of rod-shaped cells. The structures of individual components have been solved, but little is known about the ultrastructure of the R1 spindle. To determine the number of ParM filaments in a minimal R1 spindle, we used DNA-gold nanocrystal conjugates as mimics of the R1 plasmid. Wefound that each end of a single polar ParM filament binds to a single ParR/parC-gold complex, consistent with the idea that ParM filaments bind in the hollow core of the ParR/parC ring complex. Our results further suggest that multifilament spindles observed in vivo are associated with clusters of plasmidssegregating as a unit.

  3. Development and application of a general plasmid reference material for GMO screening.

    Science.gov (United States)

    Wu, Yuhua; Li, Jun; Wang, Yulei; Li, Xiaofei; Li, Yunjing; Zhu, Li; Li, Jun; Wu, Gang

    The use of analytical controls is essential when performing GMO detection through screening tests. Additionally, the presence of taxon-specific sequences is analyzed mostly for quality control during GMO detection. In this study, 11 commonly used genetic elements involving three promoters (P-35S, P-FMV35S and P-NOS), four marker genes (Bar, NPTII, HPT and Pmi), and four terminators (T-NOS, T-35S, T-g7 and T-e9), together with the reference gene fragments from six major crops of maize, soybean, rapeseed, rice, cotton and wheat, were co-integrated into the same single plasmid to construct a general reference plasmid pBI121-Screening. The suitability test of pBI121-Screening plasmid as reference material indicated that the non-target sequence on the pBI121-Screening plasmid did not affect the PCR amplification efficiencies of screening methods and taxon-specific methods. The sensitivity of screening and taxon-specific assays ranged from 5 to 10 copies of pBI121-Screening plasmid, meeting the sensitivity requirement of GMO detection. The construction of pBI121-Screening solves the lack of a general positive control for screening tests, thereby reducing the workload and cost of preparing a plurality of the positive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network

    Directory of Open Access Journals (Sweden)

    Bazzicalupo Marco

    2008-12-01

    Full Text Available Abstract Background Phylogenetic methods are well-established bioinformatic tools for sequence analysis, allowing to describe the non-independencies of sequences because of their common ancestor. However, the evolutionary profiles of bacterial genes are often complicated by hidden paralogy and extensive and/or (multiple horizontal gene transfer (HGT events which make bifurcating trees often inappropriate. In this context, plasmid sequences are paradigms of network-like relationships characterizing the evolution of prokaryotes. Actually, they can be transferred among different organisms allowing the dissemination of novel functions, thus playing a pivotal role in prokaryotic evolution. However, the study of their evolutionary dynamics is complicated by the absence of universally shared genes, a prerequisite for phylogenetic analyses. Results To overcome such limitations we developed a bioinformatic package, named Blast2Network (B2N, allowing the automatic phylogenetic profiling and the visualization of homology relationships in a large number of plasmid sequences. The software was applied to the study of 47 completely sequenced plasmids coming from Escherichia, Salmonella and Shigella spps. Conclusion The tools implemented by B2N allow to describe and visualize in a new way some of the evolutionary features of plasmid molecules of Enterobacteriaceae; in particular it helped to shed some light on the complex history of Escherichia, Salmonella and Shigella plasmids and to focus on possible roles of unannotated proteins. The proposed methodology is general enough to be used for comparative genomic analyses of bacteria.

  5. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    Science.gov (United States)

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  6. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    Science.gov (United States)

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.

  7. Protein Structure Initiative Material Repository: an open shared public resource of structural genomics plasmids for the biological community

    Science.gov (United States)

    Cormier, Catherine Y.; Mohr, Stephanie E.; Zuo, Dongmei; Hu, Yanhui; Rolfs, Andreas; Kramer, Jason; Taycher, Elena; Kelley, Fontina; Fiacco, Michael; Turnbull, Greggory; LaBaer, Joshua

    2010-01-01

    The Protein Structure Initiative Material Repository (PSI-MR; http://psimr.asu.edu) provides centralized storage and distribution for the protein expression plasmids created by PSI researchers. These plasmids are a resource that allows the research community to dissect the biological function of proteins whose structures have been identified by the PSI. The plasmid annotation, which includes the full length sequence, vector information and associated publications, is stored in a freely available, searchable database called DNASU (http://dnasu.asu.edu). Each PSI plasmid is also linked to a variety of additional resources, which facilitates cross-referencing of a particular plasmid to protein annotations and experimental data. Plasmid samples can be requested directly through the website. We have also developed a novel strategy to avoid the most common concern encountered when distributing plasmids namely, the complexity of material transfer agreement (MTA) processing and the resulting delays this causes. The Expedited Process MTA, in which we created a network of institutions that agree to the terms of transfer in advance of a material request, eliminates these delays. Our hope is that by creating a repository of expression-ready plasmids and expediting the process for receiving these plasmids, we will help accelerate the accessibility and pace of scientific discovery. PMID:19906724

  8. Analysis of plasmid profiling as a method for rapid differentiation of food-associated Clostridium perfringens strains.

    Science.gov (United States)

    Jones, M K; Iwanejko, L A; Longden, M S

    1989-09-01

    Plasmid analysis of over 120 strains of Clostridium perfringens, isolated during food-poisoning incidents and from animal carcasses and food constituents with no association with food poisoning, showed the potential of plasmid profiling as a means of differentiating epidemiologically related strains. On average 65% of freshly isolated strains contained one or more plasmids which could be used in the analysis. Comparison of profiles of strains from unrelated sources or unrelated strains from the same source showed a particularly wide variety of plasmid profiles. Thus the possibility that epidemiologically-unrelated strains might possess similar profiles appears to be very low in this organism. Analysis of serologically-related strains from the same source revealed similar plasmid profiles in all the plasmid-bearing strains examined. A high proportion (71%) of fresh and well-characterized food-poisoning strains possessed plasmids of 6.2 kb in size (compared with 19% of non-food-poisoning strains). The possible role of these plasmids is discussed, since the structural gene encoding the enterotoxin type A was not present on any of the plasmids in the food-poisoning strains tested.

  9. STABILITY OF PLASMIDS IN 5 STRAINS OF SALMONELLA MAINTAINED IN STAB CULTURE AT DIFFERENT TEMPERATURES

    DEFF Research Database (Denmark)

    Olsen, J. E.; Brown, D. J.; Baggesen, Dorte Lau

    1994-01-01

    Four strains of Salmonella berta and one of Salm. enteritidis were stored as stab cultures in sugar-free agar at 5 degrees, 22 degrees and 30 degrees C and in 15% glycerol at -80 degrees C. The stability of the plasmid profiles in each of the strains was monitored over a period of 2.5 years....... Plasmid profiles were stable in all strains stored at -80 degrees C, and only six of 450 colonies examined from strains kept in sugar-free agar at 5 degrees C had lost plasmid molecules. Seventy of 440 colonies from stab cultures that were kept at 22 degrees C, and 71 of 440 colonies at 30 degrees C...

  10. Breaks in plasmid DNA strand induced by laser radiation at a wavelength of 193 nm

    International Nuclear Information System (INIS)

    Gurzadyan, G.G.; Shul'te Frolinde, D.

    1996-01-01

    DNA of plasmid pB322 irradiated with laser at a wavelength of 193 nm was treated with an extract containing proteins from E.coli K12 AB1157 (wild-type). The enzymes were found to produce single- and double-strand DNA breaks, which was interpreted as a transformation of a portion of cyclobutane pyrimidine dimers and (6-4) photoproducts into nonrepairable single-strand DNA breaks. The products resulted from ionization of DNA, in particular, single-strand breaks, transform to double-strand breaks. A comparison of these data with the data on survival of plasmid upon transformation of E.coli K12 AB1157 enables one to assess the biological significance of single- and double-strand breaks. The inactivation of the plasmid is mainly determined by the number of directly formed laser-induced single-strand breaks. 26 refs.; 2 figs

  11. Autonomous replication of plasmids bearing monkey DNA origin-enriched sequences

    International Nuclear Information System (INIS)

    Frappier, L.; Zannis-Hadjopoulos, M.

    1987-01-01

    Twelve clones of origin-enriched sequences (ORS) isolated from early replicating monkey (CV-1) DNA were examined for transient episomal replication in transfected CV-1, COS-7, and HeLa cells. Plasmid DNA was isolated at time intervals after transfection and screened by the Dpn I resistance assay or by the bromodeoxyuridine substitution assay to differentiate between input and replicated DNA. The authors have identified four monkey ORS (ORS3, -8, -9, and -12) that can support plasmid replication in mammalian cells. This replication is carried out in a controlled and semiconservative manner characteristic of mammalian replicons. ORS replication was most efficient in HeLa cells. Electron microscopy showed ORS8 and ORS12 plasmids of the correct size with replication bubbles. Using a unique restriction site in ORS12, we have mapped the replication bubble within the monkey DNA sequence

  12. Expression of recombinant myostatin propeptide pPIC9K-Msp plasmid in Pichia pastoris.

    Science.gov (United States)

    Du, W; Xia, J; Zhang, Y; Liu, M J; Li, H B; Yan, X M; Zhang, J S; Li, N; Zhou, Z Y; Xie, W Z

    2015-12-28

    Myostatin propeptide can inhibit the biological activity of myostatin protein and promote muscle growth. To express myostatin propeptide in vitro with a higher biological activity, we performed codon optimization on the sheep myostatin propeptide gene sequence, and mutated aspartic acid-76 to alanine based on the codon usage bias of Pichia pastoris and the enhanced biological activity of myostatin propeptide mutant. Modified myostatin propeptide gene was cloned into the pPIC9K plasmid to form the recombinant plasmid pPIC9K-Msp. Recombinant plasmid pPIC9K-Msp was transformed into Pichia pastoris GS115 by electrotransformation. Transformed cells were screened, and methanol was used to induce expression. SDS-PAGE and western blotting were used to verify the successful expression of myostatin propeptide with biological activity in Pichia pastoris, providing the basis for characterization of this protein.

  13. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients

    DEFF Research Database (Denmark)

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke

    2016-01-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven...... inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown...... in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying....

  14. Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm.

    Science.gov (United States)

    Ramirez, Maria S; Traglia, German M; Lin, David L; Tran, Tung; Tolmasky, Marcelo E

    Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about physiology and role in virulence and antibiotic resistance of plasmids from the gram-negative opportunistic pathogen Klebsiella pneumoniae . This bacterium has acquired multidrug resistance and is the causative agent of serious communityand hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most of US hospital infections.

  15. A genetic study of a Staphylococus aureus plasmid involving cure and transference

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Costa Darini

    Full Text Available High frequency transfer and elimination of drug resistance may indicate an extrachromosomal inheritance of genetic determinants. This study shows the cure and transfer of a small plasmid and tetracycline resistance in Staphylococcus aureus 1030 (55TetR strains. Several methods are available for plasmid elimination. We used ethidium bromide, an agent that binds to DNA, and thus inhibits DNA polymerase. This caused a high frequency of loss of the small plasmid and resistance to tetracycline. Transfer of tetracycline resistance was done in a mixed culture at a frequency of 10-6. This type of study is very important to physicians and epidemiology investigators and provides better knowledge on antibiotic-resistance mechanisms that may occur in vivo in a hospital environment.

  16. Characterization and plasmid elimination of NDM-1-producing Acinetobacter calcoaceticus from China.

    Directory of Open Access Journals (Sweden)

    Yang Sun

    Full Text Available The presence of multidrug-resistant bacterial pathogens in the environment poses a serious threat to public health. The opportunistic Acinetobacter spp. are among the most prevalent causes of nosocomial infections. Here, we performed complete genome sequencing of the Acinetobacter calcoaceticus strain XM1570, which was originally cultivated from the sputum of a patient diagnosed with pneumonia in Xiamen in 2010. We identified carbapenem resistance associated gene bla(NDM-1 located on a 47.3-kb plasmid. Three methods--natural reproduction, sodium dodecyl sulfate treatment and nalidixic acid treatment--were used to eliminate the bla(NDM-1-encoding plasmid, which achieved elimination rates of 3.32% (10/301, 83.78% (278/332, and 84.17% (298/354, respectively. Plasmid elimination dramatically increased antibiotic sensitivity, reducing the minimum bacteriostatic concentration of meropenem from 256 µg/ml in the clinical strain to 0.125 µg/ml in the plasmid-eliminated strain. Conjugation transfer assays showed that the bla(NDM-1-containing plasmid could be transferred into Escherichia coli DH5α:pBR322 in vitro as well as in vivo in mice. The bla(NDM-1 genetic environment was in accordance with that of other bla(NDM-1 genes identified from India, Japan, and Hong-Kong. The multilocus sequence type of the isolate was identified as ST-70. Two novel genes encoding intrinsic OXA and ADC were identified and named as OXA-417 and ADC-72. The finding of bla(NDM-1 in species like A. calcoaceticus demonstrates the wide spread of this gene in gram-negative bacteria which is possible by conjugative plasmid transfer. The results of this study may help in the development of a treatment strategy for controlling NDM-1 bacterial infection and transmission.

  17. Protection from ischemic heart injury by a vigilant heme oxygenase-1 plasmid system.

    Science.gov (United States)

    Tang, Yao Liang; Tang, Yi; Zhang, Y Clare; Qian, Keping; Shen, Leping; Phillips, M Ian

    2004-04-01

    Although human heme oxygenase-1 (hHO-1) could provide a useful approach for cellular protection in the ischemic heart, constitutive overexpression of hHO-1 may lead to unwanted side effects. To avoid this, we designed a hypoxia-regulated hHO-1 gene therapy system that can be switched on and off. This vigilant plasmid system is composed of myosin light chain-2v promoter and a gene switch that is based on an oxygen-dependent degradation domain from the hypoxia inducible factor-1-alpha. The vector can sense ischemia and switch on the hHO-1 gene system, specifically in the heart. In an in vivo experiment, the vigilant hHO-1 plasmid or saline was injected intramyocardially into myocardial infarction mice or sham operation mice. After gene transfer, expression of hHO-1 was only detected in the ischemic heart treated with vigilant hHO-1 plasmids. Masson trichrome staining showed significantly fewer fibrotic areas in vigilant hHO-1 plasmids-treated mice compared with saline control (43.0%+/-4.8% versus 62.5%+/-3.3%, PhHO-1 expression in peri-infarct border areas, concomitant with higher Bcl-2 levels and lower Bax, Bak, and caspase 3 levels in the ischemic myocardium compared with saline control. By use of a cardiac catheter, heart from vigilant hHO-1 plasmids-treated mice showed improved recovery of contractile and diastolic performance after myocardial infarction compared with saline control. This study documents the beneficial regulation and therapeutic potential of vigilant plasmid-mediated hHO-1 gene transfer. This novel gene transfer strategy can provide cardiac-specific protection from future repeated bouts of ischemic injury.

  18. Diversity of Clostridium perfringens isolates from various sources and prevalence of conjugative plasmids.

    Science.gov (United States)

    Park, Miseon; Deck, Joanna; Foley, Steven L; Nayak, Rajesh; Songer, J Glenn; Seibel, Janice R; Khan, Saeed A; Rooney, Alejandro P; Hecht, David W; Rafii, Fatemeh

    2016-04-01

    Clostridium perfringens is an important pathogen, causing food poisoning and other mild to severe infections in humans and animals. Some strains of C. perfringens contain conjugative plasmids, which may carry antimicrobial resistance and toxin genes. We studied genomic and plasmid diversity of 145 C. perfringens type A strains isolated from soils, foods, chickens, clinical samples, and domestic animals (porcine, bovine and canine), from different geographic areas in the United States between 1994 and 2006, using multiple-locus variable-number tandem repeat analysis (MLVA) and/or pulsed-field gel electrophoresis (PFGE). MLVA detected the genetic diversity in a majority of the isolates. PFGE, using SmaI and KspI, confirmed the MLVA results but also detected differences among the strains that could not be differentiated by MLVA. All of the PFGE profiles of the strains were different, except for a few of the epidemiologically related strains, which were identical. The PFGE profiles of strains isolated from the same domestic animal species were clustered more closely with each other than with other strains. However, a variety of C. perfringens strains with distinct genetic backgrounds were found among the clinical isolates. Variation was also observed in the size and number of plasmids in the strains. Primers for the internal fragment of a conjugative tcpH gene of C. perfringens plasmid pCPF4969 amplified identical size fragments from a majority of strains tested; and this gene hybridized to the various-sized plasmids of these strains. The sequences of the PCR-amplified tcpH genes from 12 strains showed diversity among the tcpH genes. Regardless of the sources of the isolates, the genetic diversity of C. perfringens extended to the plasmids carrying conjugative genes. Published by Elsevier Ltd.

  19. Fitness Advantage of mcr-1–Bearing IncI2 and IncX4 Plasmids in Vitro

    Directory of Open Access Journals (Sweden)

    Renjie Wu

    2018-02-01

    Full Text Available The objective of this study was to assess the impact of diverse plasmids bearing colistin resistance gene mcr-1 on host fitness. Forty-seven commensal E. coli isolates recovered from the pig farm where mcr-1 was first identified were screened for mcr-1. mcr-1-bearing plasmids were characterized by sequencing. The fitness impact of mcr-1-bearing plasmids was evaluated by in vitro competition assays. Twenty-seven (57.5% E. coli isolates were positive for mcr-1. The mcr-1 genes were mainly located on plasmids belonging to IncI2 (n = 5, IncX4 (n = 11, IncHI2/ST3 (n = 8, IncFII (n = 2, and IncY (n = 2. InHI2 plasmids also carried other resistance genes (floR, blaCTX−M, and fosA3 and were only detected in isolates from nursery pigs. Sequences of the representative mcr-1–bearing plasmids were almost identical to those of the corresponding plasmid types reported previously. An increase in the fitness of IncI2- and IncX4-carrying strains was observed, while the presence of IncHI2, IncFII and IncY plasmids showed a fitness cost although an insignificant fitness increase was initially observed in IncFII or IncY plasmids-containing strains. Acquisition of IncI2-type plasmid was more beneficial for host E. coli DH5α than either IncHI2 or IncX4 plasmid, while transformants with IncHI2-type plasmid presented a competitive disadvantage against IncI2 or IncX4 plasmid containing strains. In conclusion, IncI2, IncX4, and IncHI2 were the major plasmid types driving the dissemination of mcr-1 in this farm. Increased fitness or co-selection by other antimicrobials might contribute to the further dissemination of the three epidemic mcr-1–positive plasmids (IncI2, IncX4, and IncHI2 in this farm and worldwide.

  20. Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain

    Directory of Open Access Journals (Sweden)

    Skilton Rachel J

    2009-05-01

    Full Text Available Abstract Background Chlamydia trachomatis is the most common cause of sexually transmitted infections globally and the leading cause of preventable blindness in the developing world. There are two biovariants of C. trachomatis: 'trachoma', causing ocular and genital tract infections, and the invasive 'lymphogranuloma venereum' strains. Recently, a new variant of the genital tract C. trachomatis emerged in Sweden. This variant escaped routine diagnostic tests because it carries a plasmid with a deletion. Failure to detect this strain has meant it has spread rapidly across the country provoking a worldwide alert. In addition to being a key diagnostic target, the plasmid has been linked to chlamydial virulence. Analysis of chlamydial plasmids and their cognate chromosomes was undertaken to provide insights into the evolutionary relationship between chromosome and plasmid. This is essential knowledge if the plasmid is to be continued to be relied on as a key diagnostic marker, and for an understanding of the evolution of Chlamydia trachomatis. Results The genomes of two new C. trachomatis strains were sequenced, together with plasmids from six C. trachomatis isolates, including the new variant strain from Sweden. The plasmid from the new Swedish variant has a 377 bp deletion in the first predicted coding sequence, abolishing the site used for PCR detection, resulting in negative diagnosis. In addition, the variant plasmid has a 44 bp duplication downstream of the deletion. The region containing the second predicted coding sequence is the most highly conserved region of the plasmids investigated. Phylogenetic analysis of the plasmids and chromosomes are fully congruent. Moreover this analysis also shows that ocular and genital strains diverged from a common C. trachomatis progenitor. Conclusion The evolutionary pathways of the chlamydial genome and plasmid imply that inheritance of the plasmid is tightly linked with its cognate chromosome. These data

  1. Characterization of an IncA/C Multidrug Resistance Plasmid in Vibrio alginolyticus.

    Science.gov (United States)

    Ye, Lianwei; Li, Ruichao; Lin, Dachuan; Zhou, Yuanjie; Fu, Aisi; Ding, Qiong; Chan, Edward Wai Chi; Yao, Wen; Chen, Sheng

    2016-05-01

    Cephalosporin-resistant Vibrio alginolyticus was first isolated from food products, with β-lactamases encoded by blaPER-1, blaVEB-1, and blaCMY-2 being the major mechanisms mediating their cephalosporin resistance. The complete sequence of a multidrug resistance plasmid, pVAS3-1, harboring the blaCMY-2 and qnrVC4 genes was decoded in this study. Its backbone exhibited genetic homology to known IncA/C plasmids recoverable from members of the family Enterobacteriaceae, suggesting its possible origin in Enterobacteriaceae. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence re...... with highest similarity to DNA repair protein from Campylobacter jejuni (25% aa). Orf34 showed similarity to sigma factors with highest similarity (28% aa) to the sporulation specific Sigma factor, Sigma 28(K) from Bacillus thuringiensis....

  3. A rapid method for screening arrayed plasmid cDNA library by PCR

    International Nuclear Information System (INIS)

    Hu Yingchun; Zhang Kaitai; Wu Dechang; Li Gang; Xiang Xiaoqiong

    1999-01-01

    Objective: To develop a PCR-based method for rapid and effective screening of arrayed plasmid cDNA library. Methods: The plasmid cDNA library was arrayed and screened by PCR with a particular set of primers. Results: Four positive clones were obtained through about one week. Conclusion: This method can be applied to screening not only normal cDNA clones, but also cDNA clones-containing small size fragments. This method offers significant advantages over traditional screening method in terms of sensitivity, specificity and efficiency

  4. Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner

    DEFF Research Database (Denmark)

    Klümper, Uli; Dechesne, Arnaud; Riber, Leise

    2017-01-01

    The environmental stimulants and inhibitors of conjugal plasmid transfer in microbial communities are poorly understood. Specifically, it is not known whether exposure to stressors may cause a community to alter its plasmid uptake ability. We assessed whether metals (Cu, Cd, Ni, Zn) and one metal...... that community permissiveness is sensitive to metal(loid) stress in a manner that is both partially consistent across stressors and phylogenetically conserved.The ISME Journal advance online publication, 2 August 2016; doi:10.1038/ismej.2016.98....

  5. Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma

    DEFF Research Database (Denmark)

    Spanggaard, Iben; Snoj, Marko; Cavalcanti, Andrea

    2013-01-01

    ). In each patient, two cutaneous lesions were identified (one treated and one control). At day 1 and day 8, plasmid AMEP was injected intratumorally followed by electrotransfer. Patients were monitored weekly until day 29, and at day 64. Local efficacy was assessed at day 29 by direct measurement...... lesions increased more than 20%. No response occurred in distant lesions. This first-in-man study on electrotransfer of plasmid AMEP into cutaneous melanoma shows that the procedure and drug are safe and that local transfection was obtained....

  6. A Bipolar Spindle of Antiparallel ParM Filaments Drives Bacterial Plasmid Segregation

    DEFF Research Database (Denmark)

    Gayathri, P; Fujii, T; Møller-Jensen, Jakob

    2012-01-01

    the spindle between ParRC complexes on sister plasmids. Using a combination of structural work and total internal reflection fluorescence microscopy, we show that ParRC bound and could accelerate growth at only one end of polar ParM filaments, mechanistically resembling eukaryotic formins. The architecture...... of ParM filaments enabled two ParRC-bound filaments to associate in an antiparallel orientation, forming a bipolar spindle. The spindle elongated as a bundle of at least two antiparallel filaments, thereby pushing two plasmid clusters toward the poles....

  7. Construction of recombinant ZNF230/GFP fused plasmids and their expression and cellular localization

    DEFF Research Database (Denmark)

    Xu, Wen-Ming; Zhang, Si-Zhong; Qiu, Wei-Min

    2004-01-01

    To use green fluorescent protein as a marker to study the localization of the fusion protein, the mutant full length cDNAs of human ZNF230 and mouse znf230 with their stop codon TGA changed to TGG were obtained by PCR amplification, and then cloned into pGEM-Teasy vector. After the double enzyme...... cutting, the mutated human and mouse ZNF230(znf230) were inserted into mammalian expression plasmid pEGFP-N1. Thus we constructed the plasmid with fusion gene of ZNF230 and green fluorescent protein(GFP). Then the Cos cell was transfected with the fused gene by liposome. Fluorescence microscopy showed...

  8. Effect of ionizing radition on conjugative R plasmid in Escherichia coli

    International Nuclear Information System (INIS)

    Kmetova, M.; Puzova, H.; Rexa, R.

    1986-01-01

    Five-fold cyclic gamma irradiation of E. coli strain No. 214 with conjugative R plasmid with doses of 150 Gy, with the exception of chloramphenicol, did not essentially affect the expression of the examined determinants of resistance to antimicrobial substances (tetracycline, streptomycin, chloramphenicol, canamycin, ampicillin, sulfamethoxidine). The dose of 150 Gy from the first irradiation of the strain reduced the transfer frequency of the R plasmid approximately hundred-fold. After the second up to the fourth irradiation of the strain the transfer frequency went back to approximately its original value. (author)

  9. Cloning of Bacteroides fragilis plasmid genes affecting metronidazole resistance and ultraviolet survival in Escherichia coli

    International Nuclear Information System (INIS)

    Wehnert, G.U.; Abratt, V.R.; Goodman, H.J.; Woods, D.R.

    1990-01-01

    Since reduced metronidazole causes DNA damage, resistance to metronidazole was used as a selection method for the cloning of Bacteroides fragilis genes affecting DNA repair mechanisms in Escherichia coli. Genes from B. fragilis Bf-2 were cloned on a recombinant plasmid pMT100 which made E. coli AB1157 and uvrA, B, and C mutant strains more resistant to metronidazole, but more sensitive to far uv irradiation under aerobic conditions. The loci affecting metronidazole resistance and uv sensitivity were linked and located on a 5-kb DNA fragment which originated from the small 6-kb cryptic plasmid pBFC1 present in B. fragilis Bf-2 cells

  10. Regions on plasmid pCU1 required for the killing of Klebsiella pneumoniae.

    OpenAIRE

    Thatte, V; Gill, S; Iyer, V N

    1985-01-01

    Plasmid pCU1 was Kik+ (promotes killing of Klebsiella pneumoniae). All Tn5 insertions within the tra region of pCU1 were Kik-. Two other regions, kikA and kikB, were needed. They may be separated on different plasmids, but both must be mobilized into Klebsiella pneumoniae. Establishment of one kik region in K. pneumoniae followed by receipt of the second did not lead to killing. Kik was therefore intracellular and required concerted and transient action of both regions.

  11. Diversity and homogeneity among small plasmids of Aeromonas salmonicida subsp. salmonicida linked with geographical origin

    Directory of Open Access Journals (Sweden)

    Sabrina A Attéré

    2015-11-01

    Full Text Available Furunculosis, which is caused by Aeromonas salmonicida subsp. salmonicida, is a major salmonid disease in fish farms worldwide. Several plasmids found in this bacterium confer phenotypes such drug resistance and virulence. Small plasmids (pAsa1, pAsa2, pAsa3, and pAsal1 related to ColE1- and ColE2-type replicons are usually present in its normal plasmidome. In the present study, with the objective to investigate if these plasmids display particularities related to the origin of the isolates bearing them, a total of 153 isolates, including 78 new and 75 previously described, were analyzed for the presence of small plasmids by PCR and DNA restriction fragment profiling. A geographical dichotomy between Canadian and European isolates for their propensity to do not have pAsa3 or pAsal1 was found. In addition, the genotyping analysis led to the identification of two European isolates harboring an unusual pAsal1. An investigation by next-generation sequencing (NGS of these two isolates shed light on two pAsal1 variants (pAsal1C and pAsal1D. As with pAsal1B, another pAsal1 variant previously described, these two new variants bore a second insertion sequence (ISAS5 in addition to the usual ISAS11. The characterization of these variants suggested that they could predominate over the wild-type pAsal1 in stressful conditions such as growth at temperatures of 25°C and above. To obtain a comprehensive portrait of the mutational pressure on small plasmids, 26 isolates whose DNA had been sequenced by NGS were investigated. pAsa3 and pAsal1 were more prone to mutations than pAsa1 and pAsa2, especially in the mobA gene, which encodes a relaxase and a primase. Lastly, the average copy number of each plasmid per cell was assessed using raw sequencing data. A clear trend with respect to the relative proportion per cell of each plasmid was identified. Our large-scale study revealed a geographical dichotomy in small plasmid repertoire in addition to a clear trend

  12. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    Science.gov (United States)

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment

    DEFF Research Database (Denmark)

    Feld, Louise; Schjorring, S.; Hammer, Karin

    2008-01-01

    Objectives and methods: A Lactobacillus plantarum strain recently isolated from French raw-milk cheese was tested for its ability to transfer a small plasmid pLFE1 harbouring the erythromycin resistance gene erm(B) to Enterococcus faecalis. Mating was studied in vitro and in different gastrointes......Objectives and methods: A Lactobacillus plantarum strain recently isolated from French raw-milk cheese was tested for its ability to transfer a small plasmid pLFE1 harbouring the erythromycin resistance gene erm(B) to Enterococcus faecalis. Mating was studied in vitro and in different...

  14. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments

    Directory of Open Access Journals (Sweden)

    Yanhua Cui

    2015-06-01

    Full Text Available Plasmids are widely distributed in different sources of lactic acid bacteria (LAB as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research.

  15. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments

    Science.gov (United States)

    Cui, Yanhua; Hu, Tong; Qu, Xiaojun; Zhang, Lanwei; Ding, Zhongqing; Dong, Aijun

    2015-01-01

    Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research. PMID:26068451

  16. Formation of Escherichia coli Hfr strains by integrative suppression with the P group plasmid RP1.

    OpenAIRE

    Martin, R R; Thorlton, C L; Unger, L

    1981-01-01

    Hfr strains of Escherichia coli were obtained by integrative suppression of a dnaA(Ts) mutation by the Inc P-1 plasmid RP1 without prior creation of an unnatural homology between the plasmid and the E. coli chromosome. Unmodified RP1 mobilized the polarized transfer of the chromosome in a counterclock-wise direction from a distinct origin between 81 min (pyrE) and 82 min (dnaA) with pyrE as a leading marker. Inheritance of RP1-Hfr chromosomal and antibiotic resistance genes was due to recombi...

  17. Plasmid Complement of Lactococcus lactis NCDO712 Reveals a Novel Pilus Gene Cluster.

    Science.gov (United States)

    Tarazanova, Mariya; Beerthuyzen, Marke; Siezen, Roland; Fernandez-Gutierrez, Marcela M; de Jong, Anne; van der Meulen, Sjoerd; Kok, Jan; Bachmann, Herwig

    2016-01-01

    Lactococcus lactis MG1363 is an important gram-positive model organism. It is a plasmid-free and phage-cured derivative of strain NCDO712. Plasmid-cured strains facilitate studies on molecular biological aspects, but many properties which make L. lactis an important organism in the dairy industry are plasmid encoded. We sequenced the total DNA of strain NCDO712 and, contrary to earlier reports, revealed that the strain carries 6 rather than 5 plasmids. A new 50-kb plasmid, designated pNZ712, encodes functional nisin immunity (nisCIP) and copper resistance (lcoRSABC). The copper resistance could be used as a marker for the conjugation of pNZ712 to L. lactis MG1614. A genome comparison with the plasmid cured daughter strain MG1363 showed that the number of single nucleotide polymorphisms that accumulated in the laboratory since the strains diverted more than 30 years ago is limited to 11 of which only 5 lead to amino acid changes. The 16-kb plasmid pSH74 was found to contain a novel 8-kb pilus gene cluster spaCB-spaA-srtC1-srtC2, which is predicted to encode a pilin tip protein SpaC, a pilus basal subunit SpaB, and a pilus backbone protein SpaA. The sortases SrtC1/SrtC2 are most likely involved in pilus polymerization while the chromosomally encoded SrtA could act to anchor the pilus to peptidoglycan in the cell wall. Overexpression of the pilus gene cluster from a multi-copy plasmid in L. lactis MG1363 resulted in cell chaining, aggregation, rapid sedimentation and increased conjugation efficiency of the cells. Electron microscopy showed that the over-expression of the pilus gene cluster leads to appendices on the cell surfaces. A deletion of the gene encoding the putative basal protein spaB, by truncating spaCB, led to more pilus-like structures on the cell surface, but cell aggregation and cell chaining were no longer observed. This is consistent with the prediction that spaB is involved in the anchoring of the pili to the cell.

  18. Comparative Genomics of Rhodococcus equi Virulence Plasmids Indicates Host-Driven Evolution of the vap Pathogenicity Island.

    Science.gov (United States)

    MacArthur, Iain; Anastasi, Elisa; Alvarez, Sonsiray; Scortti, Mariela; Vázquez-Boland, José A

    2017-05-01

    The conjugative virulence plasmid is a key component of the Rhodococcus equi accessory genome essential for pathogenesis. Three host-associated virulence plasmid types have been identified the equine pVAPA and porcine pVAPB circular variants, and the linear pVAPN found in bovine (ruminant) isolates. We recently characterized the R. equi pangenome (Anastasi E, et al. 2016. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol. 8:3140-3148.) and we report here the comparative analysis of the virulence plasmid genomes. Plasmids within each host-associated type were highly similar despite their diverse origins. Variation was accounted for by scattered single nucleotide polymorphisms and short nucleotide indels, while larger indels-mostly in the plasticity region near the vap pathogencity island (PAI)-defined plasmid genomic subtypes. Only one of the plasmids analyzed, of pVAPN type, was exceptionally divergent due to accumulation of indels in the housekeeping backbone. Each host-associated plasmid type carried a unique PAI differing in vap gene complement, suggesting animal host-specific evolution of the vap multigene family. Complete conservation of the vap PAI was observed within each host-associated plasmid type. Both diversity of host-associated plasmid types and clonality of specific chromosomal-plasmid genomic type combinations were observed within the same R. equi phylogenomic subclade. Our data indicate that the overall strong conservation of the R. equi host-associated virulence plasmids is the combined result of host-driven selection, lateral transfer between strains, and geographical spread due to international livestock exchanges. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. RepA and RepB exert plasmid incompatibility repressing the transcription of the repABC operon.

    Science.gov (United States)

    Pérez-Oseguera, Angeles; Cevallos, Miguel A

    2013-11-01

    Rhizobium etli CFN42 has a multipartite genome composed of one chromosome and six large plasmids with low copy numbers, all belonging to the repABC plasmid family. All elements essential for replication and segregation of these plasmids are encoded within the repABC operon. RepA and RepB direct plasmid segregation and are involved in the transcriptional regulation of the operon, and RepC is the initiator protein of the plasmid. Here we show that in addition to RepA (repressor) and RepB (corepressor), full transcriptional repression of the operon located in the symbiotic plasmid (pRetCFN42d) of this strain requires parS, the centromere-like sequence, and the operator sequence. However, the co-expression of RepA and RepB is sufficient to induce the displacement of the parental plasmid. RepA is a Walker-type ATPase that self associates in vivo and in vitro and binds specifically to the operator region in its RepA-ADP form. In contrast, RepA-ATP is capable of binding to non-specific DNA. RepA and RepB form high molecular weight DNA-protein complexes in the presence of ATP and ADP. RepA carrying ATP-pocket motif mutations induce full repression of the repABC operon without the participation of RepB and parS. These mutants specifically bind the operator sequence in their ATP or ADP bound forms. In addition, their expression in trans exerts plasmid incompatibility against the parental plasmid. RepA and RepB expressed in trans induce plasmid incompatibility because of their ability to repress the repABC operon and not only by their capacity to distort the plasmid segregation process. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Interplay of a non-conjugative integrative element and a conjugative plasmid in the spread of antibiotic resistance via suicidal plasmid transfer from an aquaculture Vibrio isolate.

    Science.gov (United States)

    Nonaka, Lisa; Yamamoto, Tatsuya; Maruyama, Fumito; Hirose, Yuu; Onishi, Yuki; Kobayashi, Takeshi; Suzuki, Satoru; Nomura, Nobuhiko; Masuda, Michiaki; Yano, Hirokazu

    2018-01-01

    The capture of antimicrobial resistance genes (ARGs) by mobile genetic elements (MGEs) plays a critical role in resistance acquisition for human-associated bacteria. Although aquaculture environments are recognized as important reservoirs of ARGs, intra- and intercellular mobility of MGEs discovered in marine organisms is poorly characterized. Here, we show a new pattern of interspecies ARGs transfer involving a 'non-conjugative' integrative element. To identify active MGEs in a Vibrio ponticus isolate, we conducted whole-genome sequencing of a transconjugant obtained by mating between Escherichia coli and Vibrio ponticus. This revealed integration of a plasmid (designated pSEA1) into the chromosome, consisting of a self-transmissible plasmid backbone of the MOBH group, ARGs, and a 13.8-kb integrative element Tn6283. Molecular genetics analysis suggested a two-step gene transfer model. First, Tn6283 integrates into the recipient chromosome during suicidal plasmid transfer, followed by homologous recombination between the Tn6283 copy in the chromosome and that in the newly transferred pSEA1. Tn6283 is unusual among integrative elements in that it apparently does not encode transfer function and its excision barely generates unoccupied donor sites. Thus, its movement is analogous to the transposition of insertion sequences rather than to that of canonical integrative and conjugative elements. Overall, this study reveals the presence of a previously unrecognized type of MGE in a marine organism, highlighting diversity in the mode of interspecies gene transfer.

  1. Adipokines induce catabolism of newly synthesized matrix in cartilage and meniscus tissues.

    Science.gov (United States)

    Nishimuta, James F; Levenston, Marc E

    Altered synovial levels of various adipokines (factors secreted by fat as well as other tissues) have been associated with osteoarthritis (OA) onset and progression. However, the metabolic effects of adipokines on joint tissues, in particular the fibrocartilaginous menisci, are not well understood. This study investigated effects of several adipokines on release of recently synthesized extracellular matrix in bovine cartilage and meniscus tissue explants. After labeling newly synthesized proteins and sulfated glycosaminoglycans (sGAGs) with 3 H-proline and 35 S-sulfate, respectively; bovine cartilage and meniscus tissue explants were cultured for 6 days in basal medium (control) or media supplemented with adipokines (1 µg/ml of leptin, visfatin, adiponectin, or resistin) or 20 ng/ml interleukin-1 (IL-1). Release of radiolabel and sGAG to the media during culture and the final explant water, DNA, sGAG, and retained radiolabel were measured. Matrix metalloproteinase (MMP-2) and MMP-3 activities were assessed using gelatin and casein zymography, respectively. Water and DNA contents were not significantly altered by any treatment. Visfatin, adiponectin, resistin, and IL-1 stimulated sGAG release from meniscus, whereas only IL-1 stimulated sGAG release from cartilage. Release of 3 H and 35 S was stimulated not only by resistin and IL-1 in meniscus but also by IL-1 in cartilage. Retained 3 H was unaltered by any treatment, while retained 35 S was reduced by visfatin, resistin, and IL-1 in meniscus and by only IL-1 in cartilage. Resistin and IL-1 elevated active MMP-2 and total MMP-3 in meniscus, whereas cartilage MMP-3 activity was elevated by only IL-1. Resistin stimulated rapid and extensive catabolism of meniscus tissue, similar to IL-1, whereas adipokines minimally affected cartilage. Release of newly synthesized matrix was similar to overall release in both tissues. These observations provide further indications that meniscal tissue is more sensitive to pro

  2. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida.

    Science.gov (United States)

    Arias-Barrau, Elsa; Olivera, Elías R; Luengo, José M; Fernández, Cristina; Galán, Beatriz; García, José L; Díaz, Eduardo; Miñambres, Baltasar

    2004-08-01

    Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Whereas the phh, tyr, and hpd genes are not linked in the P. putida genome, the hmgABC genes appear to form a single transcriptional unit. Gel retardation assays and lacZ translational fusion experiments have shown that hmgR encodes a specific repressor that controls the inducible expression of the divergently transcribed hmgABC catabolic genes, and homogentisate is the inducer molecule. Footprinting analysis revealed that HmgR protects a region in the Phmg promoter that spans a 17-bp palindromic motif and an external direct repetition from position -16 to position 29 with respect to the transcription start site. The HmgR protein is thus the first IclR-type regulator that acts as a repressor of an aromatic catabolic pathway. We engineered a broad-host-range mobilizable catabolic cassette harboring the hmgABC, hpd, and tyrB genes that allows heterologous bacteria to use Tyr as a unique carbon and energy source. Remarkably, we show here that the catabolism of 3-hydroxyphenylacetate in P. putida U funnels also into the homogentisate central pathway, revealing that the hmg cluster is a key catabolic trait for biodegradation of a small number of aromatic compounds.

  3. Loci of catabolism of beta-very low density lipoprotein in vivo delineated with a residualizing label, 125I-dilactitol tyramine

    International Nuclear Information System (INIS)

    Daugherty, A.; Thorpe, S.R.; Lange, L.G.; Sobel, B.E.; Schonfeld, G.

    1985-01-01

    beta-Very low density lipoprotein (beta-VLDL) may be a major atherogenic lipoprotein, and knowledge of the sites of its catabolism should facilitate elucidation of mechanisms important in the regulation of its plasma concentrations. In this study, catabolic sites of beta-VLDL have been delineated in normolipidemic rabbits with a novel, radioiodinated, residualizing label, 125 I-dilactitol tyramine ( 125 I-DLT). Comparative studies of beta-VLDL and low density lipoprotein catabolism were performed with 125 I-DLT conjugated to each lipoprotein and with lipoproteins iodine-labeled conventionally. Conjugation did not alter size distributions or charge characteristics of lipoprotein particles. The overall processing (binding and degradation) of lipoproteins by cultured rabbit skin fibroblasts was not influenced by 125 I-DLT derivatization, suggesting that attachment of the label did not influence cell receptor-lipoprotein interactions. Furthermore, although degradation products of 125 I-lipoproteins leaked out of the cells and into the medium, the degradation products of 125 I-DLT lipoproteins were retained by the cells. The principal catabolic site of beta-VLDL in normolipidemic rabbits was found to be the liver with 54 +/- 4% of injected 125 I retained in this organ 24 h after injection of 125 I-DLT-beta-VLDL. When catabolism was normalized to tissue weight, the liver and adrenals were found to be approximately equally active in the metabolism of beta-VLDL. In agreement with results of other studies with residualizing labels, the principal organ of catabolism of 125 I-DLT-LDL in vivo was the liver. The adrenals were the most highly catabolizing organ when results were normalized for tissue weight

  4. [PAL-1 5G/4G polymorphism in patients with systemic lupus erythematosus].

    Science.gov (United States)

    Savov, A; Andonova, S; Tanev, D; Robeva, R; Marincheva, Ts; Tomova, A; Kumanov, Ph; Rashkov, R; Kolarov, Zl

    2014-01-01

    Systemic lupus erythematosus (SLE) is a connective tissue disease affecting predominantly women that has been widely associated with obstetric complications. Inherited thrombophilias are significant risk factors for pregnancy loss, but their role in patients with SLE, and especially in those without concomitant secondary antiphospholipid syndrome (APS) has not been clarified. The aim of the present study was to study PAI-1 5G/4G polymorphism in women with lupus. A total of 103 SLE patients as well as 69 healthy volunteers were genotyped for PAI-1 5G/4G (rs1799889). No significant differences in the PAI-1 5G/4G genotype prevalence between patients and controls were found. After exclusion of the women with secondary APS, the frequency of pregnancies and spontaneous abortions, as well as the number of live births were similar in the studied patients with different PAI-1 genotype (p> 0.05). PAI-1 5G/4G polymorphism was not significantly related to any of the lupus ACR criteria or disease activity (p > 0.05), but it could influence the platelet number in the studied patients (263.52 ± 91.10 [5G/5G genotype] versus 210.12 ± 71.79 [4G/4G genotype], p = 0.023). In conclusion, our results showed that PAI-1 4G/5G polymorphism did not worsen the reproductive outcome in SLE women without secondary APS.

  5. Sorbitol-modified hyaluronic acid reduces oxidative stress, apoptosis and mediators of inflammation and catabolism in human osteoarthritic chondrocytes.

    Science.gov (United States)

    Mongkhon, John-Max; Thach, Maryane; Shi, Qin; Fernandes, Julio C; Fahmi, Hassan; Benderdour, Mohamed

    2014-08-01

    Our study was designed to elucidate the precise molecular mechanisms by which sorbitol-modified hyaluronic acid (HA/sorbitol) exerts beneficial effects in osteoarthritis (OA). Human OA chondrocytes were treated with increasing doses of HA/sorbitol ± anti-CD44 antibody or with sorbitol alone and thereafter with or without interleukin-1beta (IL-1β) or hydrogen peroxide (H2O2). Signal transduction pathways and parameters related to oxidative stress, apoptosis, inflammation, and catabolism were investigated. HA/sorbitol prevented IL-1β-induced oxidative stress, as measured by reactive oxygen species, p47-NADPH oxidase phosphorylation, 4-hydroxynonenal (HNE) production and HNE-metabolizing glutathione-S-transferase A4-4 expression. Moreover, HA/sorbitol stifled IL-1β-induced metalloproteinase-13, nitric oxide (NO) and prostaglandin E2 release as well as inducible NO synthase expression. Study of the apoptosis process revealed that this gel significantly attenuated cell death, caspase-3 activation and DNA fragmentation elicited by exposure to a cytotoxic H2O2 dose. Examination of signaling pathway components disclosed that HA/sorbitol prevented IL-1β-induced p38 mitogen-activated protein kinase and nuclear factor-kappa B activation, but not that of extracellular signal-regulated kinases 1 and 2. Interestingly, the antioxidant as well as the anti-inflammatory and anti-catabolic effects of HA/sorbitol were attributed to sorbitol and HA, respectively. Altogether, our findings support a beneficial effect of HA/sorbitol in OA through the restoration of redox status and reduction of apoptosis, inflammation and catabolism involved in cartilage damage.

  6. Enterococcus faecalis Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer In Vivo.

    Science.gov (United States)

    Hirt, Helmut; Greenwood-Quaintance, Kerryl E; Karau, Melissa J; Till, Lisa M; Kashyap, Purna C; Patel, Robin; Dunny, Gary M

    2018-02-13

    Cell-cell communication mediated by peptide pheromones (cCF10 [CF]) is essential for high-frequency plasmid transfer in vitro in Enterococcus faecalis To examine the role of pheromone signaling in vivo , we established either a CF-producing (CF+) recipient or a recipient producing a biologically inactive variant of CF (CF- recipient) in a germfree mouse model 3 days before donor inoculation and determined transfer frequencies of the pheromone-inducible plasmid pCF10. Plasmid transfer was detected in the upper and middle sections of the intestinal tract 5 h after donor inoculation and was highly efficient in the absence of antibiotic selection. The transconjugant/donor ratio reached a maximum level approaching 1 on day 4 in the upper intestinal tract. Plasmid transfer was significantly lower with the CF- recipient. While rescue of the CF- mating defect by coculture with CF+ recipients is easily accomplished in vitro , no extracellular complementation occurred in vivo This suggests that most pheromone signaling in the gut occurs between recipient and donor cells in very close proximity. Plasmid-bearing cells (donors plus transconjugants) steadily increased in the population from 0.1% after donor inoculation to about 10% at the conclusion of the experiments. This suggests a selective advantage of pCF10 carriage distinct from antibiotic resistance or bacteriocin production. Our results demonstrate that pheromone signaling is required for efficient pCF10 transfer in vivo In the absence of CF+ recipients, a low level of transfer to CF- recipients occurred in the gut. This may result from low-level host-mediated induction of the donors in the gastrointestinal (GI) tract, similar to that previously observed in serum. IMPORTANCE Horizontal gene transfer is a major factor in the biology of Enterococcus faecalis , an important nosocomial pathogen. Previous studies showing efficient conjugative plasmid transfer in the gastrointestinal (GI) tracts of experimental animals did

  7. Complete sequencing of IncI1 sequence type 2 plasmid pJIE512b indicates mobilization of blaCMY-2 from an IncA/C plasmid.

    Science.gov (United States)

    Tagg, Kaitlin A; Iredell, Jonathan R; Partridge, Sally R

    2014-08-01

    Sequencing of pJIE512b, a 92.3-kb IncI1 sequence type 2 (ST2) plasmid carrying bla(CMY-2), revealed a bla(CMY-2) context that appeared to have been mobilized from an IncA/C plasmid by the insertion sequence IS1294. A comparison with published plasmids suggests that bla(CMY-2) has been mobilized from IncA/C to IncI1 plasmids more than once by IS1294-like elements. Alignment of pJIE512b with the only other available IncI1 ST2 plasmid revealed differences across the backbones, indicating variability within this sequence type. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Comparative proteomics of Rhizopus delemar ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation

    Directory of Open Access Journals (Sweden)

    Dorett I. Odoni

    2017-03-01

    Full Text Available The filamentous fungus Rhizopus delemar naturally accumulates relatively high amounts of fumarate. Although the culture conditions that increase fumarate yields are well established, the network underlying the accumulation of fumarate is not yet fully understood. We set out to increase the knowledge about fumarate accumulation in R. delemar. To this end, we combined a transcriptomics and proteomics approach to identify key metabolic pathways involved in fumarate production in R. delemar, and propose that a substantial part of the fumarate accumulated in R. delemar during nitrogen starvation results from the urea cycle due to amino acid catabolism.

  9. Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1 epsilon subgroup

    Czech Academy of Sciences Publication Activity Database

    Wolters, B.; Kyselková, Martina; Krögerrecklenfort, E.; Kreuzig, R.; Smalla, K.

    2015-01-01

    Roč. 5, January (2015), Article 765 ISSN 1664-302X R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : IncP-1 epsilon plasmid * class 1 integrons * biogas plant digestate * antibiotic resistance * exogenous plasmid isolation Subject RIV: EE - Microbiology, Virology Impact factor: 4.165, year: 2015

  10. Evaluation of the effect of non-B DNA structures on plasmid integrity via accelerated stability studies.

    Science.gov (United States)

    Ribeiro, S C; Monteiro, G A; Prazeres, D M F

    2009-04-01

    Plasmid biopharmaceuticals are a new class of medicines with an enormous potential. Attempts to increase the physical stability of highly purified supercoiled (SC) plasmid DNA in pharmaceutical aqueous solutions have relied on: (i) changing the DNA sequence, (ii) improving manufacturing to reduce deleterious impurities and initial DNA damage, and (iii) controlling the storage medium characteristics. In this work we analyzed the role of secondary structures on the degradation of plasmid molecules. Accelerated stability experiments were performed with SC, open circular (OC) and linear (L) isoforms of three plasmids which differed only in the "single-strandlike" content of their polyadenylation (poly A) signals. We have proved that the presence of more altered or interrupted (non-B) DNA secondary structures did not directly translate into an easier strand scission of the SC isoforms. Rather, those unusual structures imposed a lower degree of SC in the plasmids, leading to an increase in their resistance to thermal degradation. However, this behavior was reversed when the relaxed or L isoforms were tested, in which case the absence of SC rendered the plasmids essentially double-stranded. Overall, this work suggests that plasmid DNA sequence and secondary structures should be taken into account in future investigations of plasmid stability during prolonged storage.

  11. Pathogenicity of Vibrio anguillarum serogroup O1 strains compared to plasmids, outer membrane protein profiles and siderophore production

    DEFF Research Database (Denmark)

    Pedersen, K.; Gram, Lone; Austin, D.A.

    1997-01-01

    The virulence of 18 strains of Vibrio anguillarum serogroup 01 was compared to plasmid content, expression of siderophores and outer membrane proteins. All strains, irrespective of plasmid content, produced siderophores and inducible outer membrane proteins under iron-limited conditions. Only str...

  12. A procedure for maintenance of the virulence plasmid (pYV) in Yersinia pestis under culture conditions

    Science.gov (United States)

    The pathogenicity of Yersinia pestis depends on the presence of a virulence plasmid (pYV). The unstable nature of pYV in Y. pestis leads to the eventual outgrowth of pYV less cells due to its higher growth rate. Thus, it was necessary to develop procedures to monitor the presence of the plasmid du...

  13. A procedure for monitoring the presence of the virulence plasmid (pYV) in Yersinia pestis under culture conditions

    Science.gov (United States)

    The pathogenicity of Yersinia pestis depends on the presence of a virulence plasmid (pYV). The unstable nature of pYV in Y. pestis leads to the eventual outgrowth of pYV less cells due its higher growth rate. Thus, it was necessary to develop procedures to monitor the presence of the plasmid durin...

  14. Two highly divergent lineages of exfoliative toxin B-encoding plasmids revealed in impetigo strains of Staphylococcus aureus.

    Science.gov (United States)

    Botka, Tibor; Růžičková, Vladislava; Svobodová, Karla; Pantůček, Roman; Petráš, Petr; Čejková, Darina; Doškař, Jiří

    2017-09-01

    Exfoliative toxin B (ETB) encoded by some large plasmids plays a crucial role in epidermolytic diseases caused by Staphylococcus aureus. We have found as yet unknown types of etb gene-positive plasmids isolated from a set of impetigo strains implicated in outbreaks of pemphigus neonatorum in Czech maternity hospitals. Plasmids from the strains of clonal complex CC121 were related to archetypal plasmid pETB TY4 . Sharing a 33-kb core sequence including virulence genes for ETB, EDIN C, and lantibiotics, they were assigned to a stand-alone lineage, named pETB TY4 -based plasmids. Differing from each other in the content of variable DNA regions, they formed four sequence types. In addition to them, a novel unique plasmid pETB608 isolated from a strain of ST130 was described. Carrying conjugative cluster genes, as well as new variants of etb and edinA genes, pETB608 could be regarded as a source of a new lineage of ETB plasmids. We have designed a helpful detection assay, which facilitates the precise identification of the all described types of ETB plasmids. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella

    NARCIS (Netherlands)

    Garcia-Fernandez, A.; Fortini, D.; Veldman, K.T.; Mevius, D.J.; Carattoli, A.

    2009-01-01

    The aim of this study was to identify and characterize plasmids carrying qnrS1, qnrB2 and qnrB19 genes identified in Salmonella strains from The Netherlands. The identification of plasmids may help to follow the dissemination of these resistance genes in different countries and environments.

  16. Diversity and stability of Plasmids from glycopeptide-resistant Enterococcus faecium (GRE) isolated from pigs in Denmark

    DEFF Research Database (Denmark)

    Hasman, Henrik; Villadsen, A.G.; Aarestrup, Frank Møller

    2005-01-01

    was seen at the end of the 7-year period, coinciding with the ban in 1998 of the macrolide tylosin as growth promoter for pig production. The stability of the plasmid in its original host was compared with stability of the same plasmid in BM4105RF, when both strains were maintained in liquid cultures...

  17. Genomic analyses of the Chlamydia trachomatis core genome show an association between chromosomal genome, plasmid type and disease

    NARCIS (Netherlands)

    Versteeg, Bart; Bruisten, Sylvia M.; Pannekoek, Yvonne; Jolley, Keith A.; Maiden, Martin C. J.; van der Ende, Arie; Harrison, Odile B.

    2018-01-01

    Background: Chlamydia trachomatis (Ct) plasmid has been shown to encode genes essential for infection. We evaluated the population structure of Ct using whole-genome sequence data (WGS). In particular, the relationship between the Ct genome, plasmid and disease was investigated. Results: WGS data

  18. Stress responses in pathogenic Yersinia enterocolitica with reference to the stability of the virulence plasmid in food

    Science.gov (United States)

    Yersinia enterocolitica has been associated with food-borne illness, most often due the ingestion of pork products. The pathogenic effects induced by a Y. enterocolitica infection are caused by the interplay of chromosomal genes and a virulence plasmid, pYV. Generally, the plasmid is lost during g...

  19. Global transcription regulation of RK2 plasmids: a case study in the combined use of dynamical mathematical models and statistical inference for integration of experimental data and hypothesis exploration

    Directory of Open Access Journals (Sweden)

    Thomas Christopher M

    2011-07-01

    Full Text Available Abstract Background IncP-1 plasmids are broad host range plasmids that have been found in clinical and environmental bacteria. They often carry genes for antibiotic resistance or catabolic pathways. The archetypal IncP-1 plasmid RK2 is a well-characterized biological system, with a fully sequenced and annotated genome and wide range of experimental measurements. Its central control operon, encoding two global regulators KorA and KorB, is a natural example of a negatively self-regulated operon. To increase our understanding of the regulation of this operon, we have constructed a dynamical mathematical model using Ordinary Differential Equations, and employed a Bayesian inference scheme, Markov Chain Monte Carlo (MCMC using the Metropolis-Hastings algorithm, as a way of integrating experimental measurements and a priori knowledge. We also compared MCMC and Metabolic Control Analysis (MCA as approaches for determining the sensitivity of model parameters. Results We identified two distinct sets of parameter values, with different biological interpretations, that fit and explain the experimental data. This allowed us to highlight the proportion of repressor protein as dimers as a key experimental measurement defining the dynamics of the system. Analysis of joint posterior distributions led to the identification of correlations between parameters for protein synthesis and partial repression by KorA or KorB dimers, indicating the necessary use of joint posteriors for correct parameter estimation. Using MCA, we demonstrated that the system is highly sensitive to the growth rate but insensitive to repressor monomerization rates in their selected value regions; the latter outcome was also confirmed by MCMC. Finally, by examining a series of different model refinements for partial repression by KorA or KorB dimers alone, we showed that a model including partial repression by KorA and KorB was most compatible with existing experimental data. Conclusions We

  20. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human.

    Science.gov (United States)

    Wu, Shuyu; Dalsgaard, Anders; Hammerum, Anette M; Porsbo, Lone J; Jensen, Lars B

    2010-07-30

    Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans) were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc) groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%), while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively). Multireplicons were found associated with all three sul genes. Sul genes were distributed widely in E. coli isolated

  1. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    Directory of Open Access Journals (Sweden)

    Hammerum Anette M

    2010-07-01

    Full Text Available Abstract Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3 in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. Results A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%, while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively. Multireplicons were found associated with all three sul genes

  2. Bacterial mitosis: Partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell

    DEFF Research Database (Denmark)

    Ebersbach, G.; Gerdes, Kenn

    2004-01-01

    The par2 locus of Escherichia coli plasmid pB171 encodes oscillating ATPase ParA, DNA binding protein ParB and two cis-acting DNA regions to which ParB binds (parC1 and parC2). Three independent techniques were used to investigate the subcellular localization of plasmids carrying par2. In cells......A-GFP oscillated in spiral-shaped structures. Amino acid substitutions in ParA simultaneously abolished ParA spiral formation, oscillation and either plasmid localization or plasmid separation at mid-cell. Therefore, our results suggest that ParA spirals position plasmids at the middle of the bacterial nucleoid...

  3. Functionalized tetrapod-like ZnO nanostructures for plasmid DNA purification, polymerase chain reaction and delivery

    International Nuclear Information System (INIS)

    Nie Leng; Gao Lizeng; Yan Xiyun; Wang Taihong

    2007-01-01

    Functionalized tetrapodal ZnO nanostructures are tested in plasmid DNA experiments (1) as a solid-phase adsorbent for plasmid DNA purification (2) as improving reagents in a polymerase chain reaction (PCR) and (3) as novel carriers for gene delivery. The amino-modification, the tetrapod-like shape of the nanostructure and its high biocompatibility all contribute to measurements showing promise for applications. A sol-gel method is used for silica coating and amino-modification. Plasmid DNA is purified through reversible conjugations of amino-modified ZnO tetrapods with DNA. Also, as additional reagents, functionalized tetrapods are shown to improve the amount of PCR product. For transfection, ZnO tetrapods provide some protection against deoxyribonuclease cleavage of plasmid DNA and deliver plasmid DNA into cells with little cytotoxicity

  4. Development of a screening method for genetically modified soybean by plasmid-based quantitative competitive polymerase chain reaction.

    Science.gov (United States)

    Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2008-07-23

    A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.

  5. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Ishikawa, Takuya; Kadota, Yoshihiro; Terai, Chihaya; Shindo, Daichi; Morioka, Takashi; Ota, Miki; Morishita, Yukako; Ishihara, Kengo; Shimomura, Yoshiharu

    2017-01-01

    It is known that the catabolism of branched-chain amino acids (BCAAs) in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA) dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK). In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice) to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  6. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Minjun Xu

    Full Text Available It is known that the catabolism of branched-chain amino acids (BCAAs in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK. In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  7. Biochanin-A antagonizes the interleukin-1β-induced catabolic inflammation through the modulation of NFκB cellular signaling in primary rat chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Ji-Su [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Cho, In-A; Kang, Kyeong-Rok [Department of Dental Bioengineering, Chosun University, Gwangju, 61452 (Korea, Republic of); You, Jae-Seek [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Yu, Sang-Joun [Department of Periodontology, Chosun University, Gwangju, 61452 (Korea, Republic of); Lee, Gyeong-Je [Department of Prosthodontics, Chosun University, Gwangju, 61452 (Korea, Republic of); Seo, Yo-Seob [Department of Oral and Maxillofacial Radiology, Chosun University, Gwangju, 61452 (Korea, Republic of); Kim, Chun Sung; Kim, Do Kyung [Pre-Dentistry, School of Dentistry, Chosun University, Gwangju, 61452 (Korea, Republic of); Kim, Su-Gwan [Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju, 61452 (Korea, Republic of); Seo, Young-Woo [Korea Basic Science Institute, Gwangju Center, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Im, Hee-Jeong [Department of Biochemistry, Rush University Medical Center, Chicago, IL, 60612 (United States); Kim, Jae-Sung, E-mail: js_kim@chosun.ac.kr [Pre-Dentistry, School of Dentistry, Chosun University, Gwangju, 61452 (Korea, Republic of)

    2016-09-02

    Biochanin-A, a phytoestrogen derived from herbal plants, protected from the IL-1β-induced loss of proteoglycans through the suppression of matrix degrading enzymes such as matrix metalloproteinase (MMP)-13, MMP-3, MMP-1, and ADAMTS-5 in primary rat chondrocytes and the knee articular cartilage. It also suppressed the expression of IL-1β-induced catabolic factors such as nitric oxide synthase 2, cyclooxygenase-2, prostaglandin E{sub 2}, and inflammatory cytokines. Furthermore, biochanin-A suppressed the IL-1β-induced phosphorylation of NFκB, and inhibited its nuclear translocation in primary rat chondrocytes. These results indicate that biochanin-A antagonizes the IL-1β-induced catabolic effects through its anti-inflammatory activity that involves the modulation of NFκB signaling. - Highlights: • Biochanin-A is a phytoestrogen derived from medicinal plants. • It suppressed the IL-1β-induced matrix degrading enzymes and catabolic factors. • It inhibited IL-1β-induced proteoglycan loss in chondrocytes and cartilage tissues. • Its anti-catabolic effects were mediated by modulation of NFκB signaling. • It may be used as a potential anti-catabolic biomaterial for osteoarthritis.

  8. Nucleotide sequence of the Agrobacterium tumefaciens octopine Ti plasmid-encoded tmr gene

    NARCIS (Netherlands)

    Heidekamp, F.; Dirkse, W.G.; Hille, J.; Ormondt, H. van

    1983-01-01

    The nucleotide sequence of the tmr gene, encoded by the octopine Ti plasmid from Agrobacterium tumefaciens (pTiAch5), was determined. The T-DNA, which encompasses this gene, is involved in tumor formation and maintenance, and probably mediates the cytokinin-independent growth of transformed plant

  9. Identification of a low copy number plasmid in Xylella fastidiosa Strain Stag’s Leap

    Science.gov (United States)

    Xylella fastidiosa (Xf) causes Pierce’s Disease (PD) in grapevine. The Stag’s Leap strain is known for its high virulence level and is a model for PD research. Research on Xf has been difficult due to its nutritional fastidiousness. One difficult research issue is the low copy number plasmid. Plasmi...

  10. Resveratrol production in bioreactor: Assessment of cell physiological states and plasmid segregational stability

    Directory of Open Access Journals (Sweden)

    Margarida S. Afonso

    2015-03-01

    Full Text Available Resveratrol is a plant secondary metabolite commonly found in peanuts and grapevines with significant health benefits. Recombinant organisms can produce large amounts of resveratrol and, in this work, Escherichia coli BW27784 was used to produce resveratrol in bioreactors while monitoring cell physiology and plasmid stability through flow cytometry and real-time qPCR, respectively. Initially, the influence of culture conditions and precursor addition was evaluated in screening assays and the data gathered was used to perform the bioreactor assays, allowing the production of 160 μg/mL of resveratrol. Cellular physiology and plasmid instability affected the final resveratrol production, with lower viability and plasmid copy numbers associated with lower yields. In sum, this study describes new tools to monitor the bioprocess, evaluating the effect of culture conditions, and its correlation with cell physiology and plasmid segregational stability, in order to define a viable and scalable bioprocess to fulfill the need for larger quantities of resveratrol.

  11. Plasmids of Selenomonas ruminantium and development of host-vector system

    Czech Academy of Sciences Publication Activity Database

    Hermanová, A.; Pristaš, P.; Molnárová, V.; Fliegerová, Kateřina; Javorský, P.

    2001-01-01

    Roč. 46, č. 4 (2001), s. 289-291 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5045916 Keywords : COMPLETE NUCLEOTIDE-SEQUENCE * CRYPTIC PLASMID * REPLICATION Subject RIV: EE - Microbiology, Virology Impact factor: 0.776, year: 2001

  12. Quantifying and visualizing the transfer of exogenous plasmids to environmental microbial communities

    DEFF Research Database (Denmark)

    Dechesne, Arnaud

    2015-01-01

    range plasmids, with common transfer across the Gram ‘barrier’. We next looked for factors that modulate permissiveness and, in particular, identified a taxon-specific effect imposed by metals when supplemented in concentrations that cause partial inhibition of the community metabolic activity. Overall...

  13. Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1.

    Science.gov (United States)

    Cook, W L; Wachsmuth, K; Johnson, S R; Birkness, K A; Samadi, A R

    1984-07-01

    Plasmid profiles, the location of cholera toxin subunit A genes, and the presence of the defective VcA1 prophage genome in classical Vibrio cholerae isolated from patients in Bangladesh in 1982 were compared with those in older classical strains isolated during the sixth pandemic and with those in selected eltor and nontoxigenic O1 isolates. Classical strains typically had two plasmids (21 and 3 megadaltons), eltor strains typically had no plasmids, and nontoxigenic O1 strains had zero to three plasmids. The old and new isolates of classical V. cholerae had two HindIII chromosomal digest fragments containing cholera toxin subunit A genes, whereas the eltor strains from Eastern countries had one fragment. The eltor strains from areas surrounding the Gulf of Mexico also had two subunit A gene fragments, which were smaller and easily distinguished from the classical pattern. All classical strains had 8 to 10 HindIII fragments containing the defective VcA1 prophage genome; none of the Eastern eltor strains had these genes, and the Gulf Coast eltor strains contained a different array of weakly hybridizing genes. These data suggest that the recent isolates of classical cholera in Bangladesh are closely related to the bacterial strain(s) which caused classical cholera during the sixth pandemic. These data do not support hypotheses that either the eltor or the nontoxigenic O1 strains are precursors of the new classical strains.

  14. Plasmid pVAX1-NH36 purification by membrane and bead perfusion chromatography.

    Science.gov (United States)

    Franco-Medrano, Diana Ivonne; Guerrero-Germán, Patricia; Montesinos-Cisneros, Rosa María; Ortega-López, Jaime; Tejeda-Mansir, Armando

    2017-03-01

    The demand for plasmid DNA (pDNA) has increased in response to the rapid advances in vaccines applications to prevent and treat infectious diseases caused by virus, bacteria or parasites, such as Leishmania species. The immunization protocols require large amounts of supercoiled plasmid DNA (sc-pDNA) challenging the development of efficient and profitable processes for capturing and purified pDNA molecules from large volumes of lysates. A typical bioprocess involves four steps: fermentation, primary recovery, intermediate recovery and final purification. Ion-exchange chromatography is one of the key operations in the purification schemes of pDNA owing the chemical structure of these macromolecules. The goal of this research was to compare the performance of the final purification step of pDNA using ion-exchange chromatography on columns packed with Mustang Q membranes or perfusive beads POROS 50 HQ. The experimental results showed that both matrixes could separate the plasmid pVAX1-NH36 (3936 bp) from impurities in clarified Escherichia coli lysates with an adequate resolution. In addition, a 24- and 21-fold global purification factor was obtained. An 88 and 63% plasmid recuperation was achieved with ion-exchange membranes and perfusion beads, respectively. A better understanding of perfusion-based matrices for the purification of pDNA was developed in this research.

  15. Heavy ion induced damage to plasmid DNA : plateau region vs. spread out Bragg-peak

    NARCIS (Netherlands)

    Dang, H.M.; van Goethem, M.J.; van der Graaf, E.R.; Brandenburg, S.; Hoekstra, R.A.; Schlathölter, T.A.

    We have investigated the damage of synthetic plasmid pBR322 DNA in dilute aqueous solutions induced by fast carbon ions. The relative contribution of indirect damage and direct damage to the DNA itself is expected to vary with linear energy transfer along the ion track, with the direct damage

  16. Improvement of in vivo transfer of plasmid DNA in muscle : Comparison of electroporation versus ultrasound

    NARCIS (Netherlands)

    Kusumanto, Yoka H.; Mulder, Nanno H.; Dam, Wendy A.; Losen, Mario H.; Meijer, Coby; Hospers, Geke A. P.

    Plasmid-based gene delivery to muscle is a treatment strategy for many diseases with potential advantages above viral-based gene delivery methods, however, with a relative low transfection efficiency. We compared two physical methods-electroporation and ultrasound-that facilitate DNA uptake into

  17. Nucleotide Sequence and Characterization of the Broad-Host-Range Lactococcal Plasmid pWVO1

    NARCIS (Netherlands)

    Leenhouts, Cornelis; Tolner, Berend; Bron, Sierd; Kok, Jan; Venema, Gerhardus; Seegers, Jozef

    The nucleotide sequence of the Lactococcus lactis broad-host-range plasmid pWVO1, replicating in both gram-positive and gram-negative bacteria, was determined. This analysis revealed four open reading frames (ORFs). ORF A appeared to encode a trans-acting 26.8-kDa protein (RepA), necessary for

  18. Role of enzymes of homologous recombination in illegitimate plasmid recombination in Bacillus subtilis

    NARCIS (Netherlands)

    Meima, R; Haijema, BJ; Haan, GJ; Venema, G; Bron, S

    The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the

  19. Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus

    International Nuclear Information System (INIS)

    Fisher, P.R.; Appleton, J.; Pemberton, J.M.

    1978-01-01

    A strain of Alcaligenes paradoxus, unable to degrade phenoxyacetic acid, was shown to degrade two synthetic derivatives of this molecule, the herbicides 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid. The ability to degrade these pesticides is encoded by a 58-megadalton conjugal plasmid, pJP1

  20. CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.

    Science.gov (United States)

    Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo

    2017-06-25

    Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.