WorldWideScience

Sample records for catabolic plasmid pal1

  1. Molecular and population analyses of a recombination event in the catabolic plasmid pJP4.

    Science.gov (United States)

    Larraín-Linton, Juanita; De la Iglesia, Rodrigo; Melo, Francisco; González, Bernardo

    2006-10-01

    Cupriavidus necator JMP134(pJP4) harbors a catabolic plasmid, pJP4, which confers the ability to grow on chloroaromatic compounds. Repeated growth on 3-chlorobenzoate (3-CB) results in selection of a recombinant strain, which degrades 3-CB better but no longer grows on 2,4-dichlorophenoxyacetate (2,4-D). We have previously proposed that this phenotype is due to a double homologous recombination event between inverted repeats of the multicopies of this plasmid within the cell. One recombinant form of this plasmid (pJP4-F3) explains this phenotype, since it harbors two copies of the chlorocatechol degradation tfd gene clusters, which are essential to grow on 3-CB, but has lost the tfdA gene, encoding the first step in degradation of 2,4-D. The other recombinant plasmid (pJP4-FM) should harbor two copies of the tfdA gene but no copies of the tfd gene clusters. A molecular analysis using a multiplex PCR approach to distinguish the wild-type plasmid pJP4 from its two recombinant forms, was carried out. Expected PCR products confirming this recombination model were found and sequenced. Few recombinant plasmid forms in cultures grown in several carbon sources were detected. Kinetic studies indicated that cells containing the recombinant plasmid pJP4-FM were not selectable by sole carbon source growth pressure, whereas those cells harboring recombinant plasmid pJP4-F3 were selected upon growth on 3-CB. After 12 days of repeated growth on 3-CB, the complete plasmid population in C. necator JMP134 apparently corresponds to this form. However, wild-type plasmid forms could be recovered after growing this culture on 2,4-D, indicating that different plasmid forms can be found in C. necator JMP134 at the population level. PMID:16980481

  2. Bioaugmentation of DDT-contaminated soil by dissemination of the catabolic plasmid pDOD

    Institute of Scientific and Technical Information of China (English)

    Chunming Gao; Xiangxiang Jin; Jingbei Ren; Hua Fang; Yunlong Yu

    2015-01-01

    A plasmid transfer-mediated bioaugmentation method for the enhancement of dichlorodiphenyltrichloroethane (DDT) degradation in soil was developed using the catabolic plasmid pDOD from Sphingobacterium sp.D-6.The pDOD plasmid could be transferred to soil bacteria,such as members of Cellulomonas,to form DDT degraders and thus accelerate DDT degradation.The transfer efficiency of pDOD was affected by the donor,temperature,moisture,and soil type.Approximately 50.7% of the DDT in the contaminated field was removed 210 days after the application of Escherichia coli TG Ⅰ (pDOD-gfp).The results suggested that seeding pDOD into soil is an effective bioaugmentation method for enhancing the degradation of DDT.

  3. Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor.

    OpenAIRE

    Beck von Bodman, S; Hayman, G. T.; Farrand, S K

    1992-01-01

    The Ti plasmids of Agrobacterium tumefaciens are conjugal elements whose transfer is strongly repressed. Transfer is induced by the conjugal opines, a group of unique carbon compounds synthesized in crown gall tumors. The opines also induce Ti plasmid-encoded genes required by the bacteria for opine catabolism. We have cloned and sequenced a gene from the Ti plasmid pTiC58, whose product mediates the opine-dependent regulation of conjugal transfer and catabolism of the conjugal opines, agroci...

  4. Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor.

    Science.gov (United States)

    Beck von Bodman, S; Hayman, G T; Farrand, S K

    1992-01-15

    The Ti plasmids of Agrobacterium tumefaciens are conjugal elements whose transfer is strongly repressed. Transfer is induced by the conjugal opines, a group of unique carbon compounds synthesized in crown gall tumors. The opines also induce Ti plasmid-encoded genes required by the bacteria for opine catabolism. We have cloned and sequenced a gene from the Ti plasmid pTiC58, whose product mediates the opine-dependent regulation of conjugal transfer and catabolism of the conjugal opines, agrocinopines A and B. The gene, accR, is closely linked to the agrocinopine catabolic locus. A spontaneous mutant Ti plasmid, pTiC58Trac, which constitutively expresses conjugal transfer and opine catabolism, was complemented in trans by a clone of wild-type accR. Comparative sequence analysis identified a 5-base-pair deletion close to the 5' end of the mutant accR allele from pTiC58Trac. Analysis of lacZ fusions in conjugal transfer and opine catabolic structural genes demonstrated that the accR-encoded function is a transcriptional repressor. accR can encode a 28-kDa protein. This protein is related to a class of repressor proteins that includes LacR, GutR, DeoR, FucR, and GlpR that regulate sugar catabolic systems in several bacterial genera. PMID:1731335

  5. Capture of a catabolic plasmid that encodes only 2,4-dichlorophenoxyacetic acid:alpha-ketoglutaric acid dioxygenase (TfdA) by genetic complementation.

    OpenAIRE

    Top, E. M.; Maltseva, O V; Forney, L J

    1996-01-01

    The modular pathway for the metabolism of 2,4-dichlorophenoxyacetic acid (2,4-D) encoded on plasmid pJP4 of Alcaligenes eutrophus JMP134 appears to be an example in which two genes, tfdA and tfdB, have been recruited during the evolution of a catabolic pathway. The products of these genes act to convert 2,4-D to a chloro-substituted catechol that can be further metabolized by enzymes of a modified ortho-cleavage pathway encoded by tfdCDEF. Given that modified ortho-cleavage pathways are compa...

  6. Participation of the cell polarity protein PALS1 to T-cell receptor-mediated NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Gabrielle Carvalho

    Full Text Available BACKGROUND: Beside their established function in shaping cell architecture, some cell polarity proteins were proposed to participate to lymphocyte migration, homing, scanning, as well as activation following antigen receptor stimulation. Although PALS1 is a central component of the cell polarity network, its expression and function in lymphocytes remains unknown. Here we investigated whether PALS1 is present in T cells and whether it contributes to T Cell-Receptor (TCR-mediated activation. METHODOLOGY/PRINCIPAL FINDINGS: By combining RT-PCR and immunoblot assays, we found that PALS1 is constitutively expressed in human T lymphocytes as well as in Jurkat T cells. siRNA-based knockdown of PALS1 hampered TCR-induced activation and optimal proliferation of lymphocyte. We further provide evidence that PALS1 depletion selectively hindered TCR-driven activation of the transcription factor NF-κB. CONCLUSIONS: The cell polarity protein PALS1 is expressed in T lymphocytes and participates to the optimal activation of NF-κB following TCR stimulation.

  7. Comparative genetic organization of incompatibility group P degradative plasmids.

    OpenAIRE

    Burlage, R S; Bemis, L A; Layton, A C; Sayler, G. S.; Larimer, F

    1990-01-01

    Plasmids that encode genes for the degradation of recalcitrant compounds are often examined only for characteristics of the degradative pathways and ignore regions that are necessary for plasmid replication, incompatibility, and conjugation. If these characteristics were known, then the mobility of the catabolic genes between species could be predicted and different catabolic pathways might be combined to alter substrate range. Two catabolic plasmids, pSS50 and pSS60, isolated from chlorobiph...

  8. Regulation of carbon catabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Aleksandrzak, T; Kowalczyk, M; Kok, J; Bardowski, J; Bielecki, S; Tramper, J; Polak, J

    2000-01-01

    The Lactococcus lactis IL1403 is a lactose negative, plasmid free strain. Nevertheless, it is able to hydrolyze lactose in the presence of cellobiose. In this work we describe identification of a gene involved in this process. The gene was found to be homologous to the sugar catabolism regulator, cc

  9. Tight junction protein Par6 interacts with an evolutionarily conserved region in the amino terminus of PALS1/stardust.

    Science.gov (United States)

    Wang, Qian; Hurd, Toby W; Margolis, Ben

    2004-07-16

    Tight junctions are the structures in mammalian epithelial cells that separate the apical and basolateral membranes and may also be important in the establishment of cell polarity. Two evolutionarily conserved multiprotein complexes, Crumbs-PALS1 (Stardust)-PATJ and Cdc42-Par6-Par3-atypical protein kinase C, have been implicated in the assembly of tight junctions and in polarization of Drosophila melanogaster epithelia. These two complexes have been linked physically and functionally by an interaction between PALS1 and Par6. Here we identify an evolutionarily conserved region in the amino terminus of PALS1 as the Par6 binding site and identify valine and aspartic acid residues in this region as essential for interacting with the PDZ domain of Par6. We have also characterized, in more detail, the amino terminus of Drosophila Stardust and demonstrate that the interaction mechanism between Stardust and Drosophila Par6 is evolutionarily conserved. Par6 interferes with PATJ in binding PALS1, and these two interactions do not appear to function synergistically. Taken together, these results define the molecular mechanisms linking two conserved polarity complexes.

  10. Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola; Purkiss, Andrew G.; Thompson, Barry J. [Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY (United Kingdom); McDonald, Neil Q., E-mail: neil.mcdonald@cancer.org.uk [Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY (United Kingdom); Birkbeck College, University of London, Malet Street, London WC1E 7HX (United Kingdom)

    2015-03-01

    This study characterizes the interaction between the carboxy-terminal (ERLI) motif of the essential polarity protein Crb and the Pals1/Stardust PDZ-domain protein. Structures of human Pals1 PDZ with and without a Crb peptide are described, explaining the highly conserved nature of the ERLI motif and revealing a sterically blocked peptide-binding groove in the absence of ligand. Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction.

  11. Cloning and characterization of tfdS, the repressor-activator gene of tfdB, from the 2,4-dichlorophenoxyacetic acid catabolic plasmid pJP4.

    OpenAIRE

    Kaphammer, B; Olsen, R H

    1990-01-01

    Plasmid pRO101, a derivative of plasmid pJP4 which contains Tn1721 inserted into a nonessential region, is inducible for 2,4-dichlorophenol hydroxylase (DCPH) encoded by tfdB. Plasmid pRO103, which has a deletion in the BamHI-F--BamHI-E region of plasmid pRO101, has elevated basal levels of DCPH but is uninducible. The regulatory gene for tfdB, designated tfdS, was cloned as an 8.3-kilobase-pair EcoRI-E fragment. When the cloned tfdS gene was in trans with plasmid pRO103, the baseline DCPH le...

  12. Molecular cloning and promoter analysis of the specific salicylic acid biosynthetic pathway gene phenylalanine ammonia-lyase (AaPAL1) from Artemisia annua.

    Science.gov (United States)

    Zhang, Ying; Fu, Xueqing; Hao, Xiaolong; Zhang, Lida; Wang, Luyao; Qian, Hongmei; Zhao, Jingya

    2016-07-01

    Phenylalanine ammonia-lyase (PAL) is the key enzyme in the biosynthetic pathway of salicylic acid (SA). In this study, a full-length cDNA of PAL gene (named as AaPAL1) was cloned from Artemisia annua. The gene contains an open reading frame of 2,151 bps encoding 716 amino acids. Comparative and bioinformatics analysis revealed that the polypeptide protein of AaPAL1 was highly homologous to PALs from other plant species. Southern blot analysis revealed that it belonged to a gene family with three members. Quantitative RT-PCR analysis of various tissues of A. annua showed that AaPAL1 transcript levels were highest in the young leaves. A 1160-bp promoter region was also isolated resulting in identification of distinct cis-regulatory elements including W-box, TGACG-motif, and TC-rich repeats. Quantitative RT-PCR indicated that AaPAL1 was upregulated by salinity, drought, wounding, and SA stresses, which were corroborated positively with the identified cis-elements within the promoter region. AaPAL1 was successfully expressed in Escherichia. coli and the enzyme activity of the purified AaPAL1 was approximately 287.2 U/mg. These results substantiated the involvement of AaPAL1 in the phenylalanine pathway. PMID:26040426

  13. Isolation and Functional Characterization of a Phenylalanine Ammonia-Lyase Gene (SsPAL1 from Coleus (Solenostemon scutellarioides (L. Codd

    Directory of Open Access Journals (Sweden)

    Qinlong Zhu

    2015-09-01

    Full Text Available Phenylalanine ammonia-lyase (PAL is the first enzyme involved in the phenylpropanoid pathway and plays important roles in the secondary metabolisms, development and defense of plants. To study the molecular function of PAL in anthocyanin synthesis of Coleus (Solenostemon scutellarioides (L. Codd, a Coleus PAL gene designated as SsPAL1 was cloned and characterized using a degenerate oligonucleotide primer PCR and RACE method. The full-length SsPAL1 was 2450 bp in size and consisted of one intron and two exons encoding a polypeptide of 711 amino acids. The deduced SsPAL1 protein showed high identities and structural similarities with other functional plant PAL proteins. A series of putative cis-acting elements involved in transcriptional regulation, light and stress responsiveness were found in the upstream regulatory sequence of SsPAL1. Transcription pattern analysis indicated that SsPAL1 was constitutively expressed in all tissues examined and was enhanced by light and different abiotic factors. The recombinant SsPAL1 protein exhibited high PAL activity, at optimal conditions of 60 °C and pH 8.2. Although the levels of total PAL activity and total anthocyanin concentration have a similar variation trend in different Coleus cultivars, there was no significant correlation between them (r = 0.7529, p > 0.1, suggesting that PAL was not the rate-limiting enzyme for the downstream anthocyanin biosynthetic branch in Coleus. This study enables us to further understand the role of SsPAL1 in the phenylpropanoid (flavonoids, anthocyanins biosynthesis in Coleus at the molecular level.

  14. Cis-and Trans-Cinnamic Acids Have Different Effects on the Catalytic Properties of Arabidopsis Phenylalanine Ammonia Lyases PAL1, PAL2, PAL4

    Institute of Scientific and Technical Information of China (English)

    Ming-Jie CHEN; Veerappan VIJAYKUMAR; Bing-Wen LU; Bing XIA; Ning LI

    2005-01-01

    Cis-cinnamic acid (CA) is a naturally occurring compound, presumably converted from transCA in higher plants. To investigate the effect of cis-CA on the activity of Arabidopsis phenylalanine ammonia lyase (PAL), AtPAL1, AtPAL2, and AtPAL4 genes were isolated using reverse transcription polymerase chain reaction. These genes were fused to a glutathione S-transferase gene and overexpressed in a heterologous prokaryotic system of Escherichia coli. The purified PAL1, PAL2 and PAL4 enzymes were characterized biochemically to determine the effects of cis-CA on the kinetic parameter Km. The results showed that cis-CA is a competitive inhibitor for PAL1, but not PAL2 and PAL4, whereas trans-CA acts as a competitive inhibitor for all three PAL isomers, suggesting that cis- and trans-CA have different effects on the catalytic activity of PAL.

  15. A phenylalanine ammonia-lyase ortholog (PkPAL1) from Picrorhiza kurrooa Royle ex. Benth: molecular cloning, promoter analysis and response to biotic and abiotic elicitors.

    Science.gov (United States)

    Bhat, Wajid Waheed; Razdan, Sumeer; Rana, Satiander; Dhar, Niha; Wani, Tariq Ahmad; Qazi, Parvaiz; Vishwakarma, Ram; Lattoo, Surrinder K

    2014-09-01

    Picrorhiza kurrooa Royle ex Benth. is a highly reputed medicinal herb utilised in the preparation of a number of herbal drug formulations, principally due to the presence of novel monoterpene iridoid glycosides kenned as picrosides. Phenylalanine ammonia-lyase catalyses an important rate-limiting step in phenylpropanoid pathway and supplies precursors like cinnamic acid, vanillic acid, ferulic acid, etc., to a variety of secondary metabolites including picrosides. The imperilled status of P. kurrooa coupled with lack of information regarding biogenesis of picrosides necessitates deciphering the biosynthetic pathway for picrosides. In the present study, a PAL gene, designated PkPAL1 was isolated from P. kurrooa. The cDNA is 2312 bp in length, consisting of an ORF of 2142 bp encoding for a 713 amino acid protein having a predicted molecular weight of 77.66 kDa and an isoelectric point of pH 6.82. qRT-PCR analysis of various tissues of P. kurrooa showed that PkPAL1 transcript levels were highest in the leaves, consistent with picroside accumulation pattern. Using Genome walking, a 718 bp promoter region was also isolated resulting in identification of distinct cis-regulatory elements including TGA-element, TGACG-motif, CGTCA-motif, etc. qRT-PCR indicated up-regulation of PkPAL1 by methyl jasmonate, salicylic acid, 2,4-dicholorophenoxy acetic acid and UV-B elicitations that corroborated positively with the identified cis-elements within the promoter region. Moreover, altitude was found to have a positive effect on the PkPAL1 transcript levels, driving the expression of PkPAL1 abundantly. Based on docking analysis, we identified eight residues as potentially essential for substrate binding in PkPAL1.

  16. Polycystin-2 activity is controlled by transcriptional coactivator with PDZ binding motif and PALS1-associated tight junction protein.

    Science.gov (United States)

    Duning, Kerstin; Rosenbusch, Deike; Schlüter, Marc A; Tian, Yuemin; Kunzelmann, Karl; Meyer, Nina; Schulze, Ulf; Markoff, Arseni; Pavenstädt, Hermann; Weide, Thomas

    2010-10-29

    Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent monogenic cause of kidney failure, characterized by the development of renal cysts. ADPKD is caused by mutations of the polycystin-1 (PC1) or polycystin-2 (PC2) genes. PC2 encodes a Ca(2+)-permeable cation channel, and its dysfunction has been implicated in cyst development. The transcriptional coactivator with PDZ binding motif (TAZ) is required for the integrity of renal cilia. Its absence results in the development of renal cysts in a knock-out mouse model. TAZ directly interacts with PC2, and it has been suggested that another yet unidentified PDZ domain protein may be involved in the TAZ/PC2 interaction. Here we describe a novel interaction of TAZ with the multi-PDZ-containing PALS1-associated tight junction protein (PATJ). TAZ interacts with both the N-terminal PDZ domains 1-3 and the C-terminal PDZ domains 8-10 of PATJ, suggesting two distinct TAZ binding domains. We also show that the C terminus of PC2 strongly interacts with PDZ domains 8-10 and to a weaker extent with PDZ domains 1-3 of PATJ. Finally, we demonstrate that both TAZ and PATJ impair PC2 channel activity when co-expressed with PC2 in oocytes of Xenopus laevis. These results implicate TAZ and PATJ as novel regulatory elements of the PC2 channel and might thus be involved in ADPKD pathology.

  17. Plasmid Biopharmaceuticals.

    Science.gov (United States)

    Prazeres, Duarte Miguel F; Monteiro, Gabriel A

    2014-12-01

    Plasmids are currently an indispensable molecular tool in life science research and a central asset for the modern biotechnology industry, supporting its mission to produce pharmaceutical proteins, antibodies, vaccines, industrial enzymes, and molecular diagnostics, to name a few key products. Furthermore, plasmids have gradually stepped up in the past 20 years as useful biopharmaceuticals in the context of gene therapy and DNA vaccination interventions. This review provides a concise coverage of the scientific progress that has been made since the emergence of what are called today plasmid biopharmaceuticals. The most relevant topics are discussed to provide researchers with an updated overview of the field. A brief outline of the initial breakthroughs and innovations is followed by a discussion of the motivation behind the medical uses of plasmids in the context of therapeutic and prophylactic interventions. The molecular characteristics and rationale underlying the design of plasmid vectors as gene transfer agents are described and a description of the most important methods used to deliver plasmid biopharmaceuticals in vivo (gene gun, electroporation, cationic lipids and polymers, and micro- and nanoparticles) is provided. The major safety issues (integration and autoimmunity) surrounding the use of plasmid biopharmaceuticals is discussed next. Aspects related to the large-scale manufacturing are also covered, and reference is made to the plasmid products that have received marketing authorization as of today.

  18. Plasmid segregation mechanisms

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Gerdes, Kenn; Charbon, Gitte Ebersbach

    2005-01-01

    Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments...... that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating...... filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement...

  19. SPP1-mediated plasmid transduction.

    OpenAIRE

    Canosi, U; Lüder, G; Trautner, T A

    1982-01-01

    The virulent Bacillus subtilis phage SPP1 transduces plasmid DNA. Plasmid-transducing phages contain only plasmid DNA. Such DNA represents a concatemer of monomeric plasmid molecules with the molecular weight of mature SPP1 DNA. Biological parameters of plasmid transduction are described.

  20. Degradative Plasmid and Heavy Metal Resistance Plasmid Naturally Coexist in Phenol and Cyanide Assimilating Bacteria

    Directory of Open Access Journals (Sweden)

    Bahig E.  Deeb

    2009-01-01

    Full Text Available Problem statement: Heavy metals are known to be powerful inhibitors of xenobiotics biodegradation activities. Alleviation the inhibitory effect of these metals on the phenol biodegradation activities in presence of heavy metals resistant plasmid was investigated. Approach: Combination of genetic systems of degradation of xenobiotic compound and heavy metal resistance was one of the approaches to the creation of polyfunctional strains for bioremediation of soil after co-contamination with organic pollutants and heavy metals. Results: A bacterial strain Pseudomonas putida PhCN (pPhCN1, pPhCN2 had been obtained. This bacterium contained two plasmids, a 120 Kb catabolic plasmid that encode for breakdown of phenol (pPhCN1 and pPhCN2 plasmid (100 Kb that code for cadmium and copper resistant. Cyanide assimilation by this bacterium was encoded by chromosomal genes. The inhibitory effect of cadmium (Cd2+ or copper (Cu2+ on the degradation of phenol and cyanide by P. putida strains PhCN and PhCN1 (contained pPhCN1 were investigated. The resistant strain PhCN showed high ability to degrade phenol and cyanide in presence of Cd2+ or Cu2+ comparing with the sensitive strain PhCN1. In addition, Cd2+ or Cu2+ was also found to exert a strong inhibitory effect on the C23O dioxygenase enzyme activity in the presence of cyanide as a nitrogen source. Conclusion: The presence of heavy metal resistance plasmid alleviated the inhibitory effect of metals on the phenol and cyanide assimilation by resistant strain.

  1. Chlamydial plasmids and bacteriophages.

    Science.gov (United States)

    Pawlikowska-Warych, Małgorzata; Śliwa-Dominiak, Joanna; Deptuła, Wiesław

    2015-01-01

    Chlamydia are absolute pathogens of humans and animals; despite being rather well recognised, they are still open for discovery. One such discovery is the occurrence of extrachromosomal carriers of genetic information. In prokaryotes, such carriers include plasmids and bacteriophages, which are present only among some Chlamydia species. Plasmids were found exclusively in Chlamydia (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. felis, C. muridarum and C. caviae. In prokaryotic organisms, plasmids usually code for genes that facilitate survival of the bacteria in the environment (although they are not essential). In chlamydia, their role has not been definitely recognised, apart from the fact that they participate in the synthesis of glycogen and encode proteins responsible for their virulence. Furthermore, in C. suis it was evidenced that the plasmid is integrated in a genomic island and contains the tetracycline-resistance gene. Bacteriophages specific for chlamydia (chlamydiaphages) were detected only in six species: C. psittaci, C. abortus, C. felis, C. caviae C. pecorum and C. pneumoniae. These chlamydiaphages cause inhibition of the developmental cycle, and delay transformation of reticulate bodies (RBs) into elementary bodies (EBs), thus reducing the possibility of infecting other cells in time. Plasmids and bacteriophages can be used in the diagnostics of chlamydioses; although especially in the case of plasmids, they are already used for detection of chlamydial infections. In addition, bacteriophages could be used as therapeutic agents to replace antibiotics, potentially addressing the problem of increasing antibiotic-resistance among chlamydia.

  2. Plasmids encoding therapeutic agents

    Science.gov (United States)

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  3. Catabolism and detoxification of 1-aminoalkylphosphonic acids

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McSorley, Fern R.; Zechel, David L.

    2012-01-01

    In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphospho...

  4. Metabolic control analysis of xylose catabolism in Aspergillus

    NARCIS (Netherlands)

    Prathumpai, W.; Gabelgaard, J.B.; Wanchanthuek, P.; Vondervoort, van de P.J.I.; Groot, de M.J.L.; McIntyre, M.; Nielsen, J.

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out, an

  5. Mechanisms of plasmid segregation: have multicopy plasmids been overlooked?

    Science.gov (United States)

    Million-Weaver, Samuel; Camps, Manel

    2014-09-01

    Plasmids are self-replicating pieces of DNA typically bearing non-essential genes. Given that plasmids represent a metabolic burden to the host, mechanisms ensuring plasmid transmission to daughter cells are critical for their stable maintenance in the population. Here we review these mechanisms, focusing on two active partition strategies common to low-copy plasmids: par systems type I and type II. Both involve three components: an adaptor protein, a motor protein, and a centromere, which is a sequence area in the plasmid that is recognized by the adaptor protein. The centromere-bound adaptor nucleates polymerization of the motor, leading to filament formation, which can pull plasmids apart (par I) or push them towards opposite poles of the cell (par II). No such active partition mechanisms are known to occur in high copy number plasmids. In this case, vertical transmission is generally considered stochastic, due to the random distribution of plasmids in the cytoplasm. We discuss conceptual and experimental lines of evidence questioning the random distribution model and posit the existence of a mechanism for segregation in high copy number plasmids that moves plasmids to cell poles to facilitate transmission to daughter cells. This mechanism would involve chromosomally-encoded proteins and the plasmid origin of replication. Modulation of this proposed mechanism of segregation could provide new ways to enhance plasmid stability in the context of recombinant gene expression, which is limiting for large-scale protein production and for bioremediation.

  6. Plasmid-to-plasmid recombination in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Balganesh, M.; Setlow, J.K.

    1986-01-01

    No recombination between plasmids was observed after conjugal transfer of a plasmid into a cell carrying another plasmid. Two types of such recombination took place after transformation, one type being Rec/sup +/ dependent and suggesting a preferred site of recombination. The other much rarer type was at least partially Rec/sup +/ independent.

  7. Location and PCR analysis of catabolic genes in a novel Streptomyces sp. DUT_AHX capable of degrading nitrobenzene

    Institute of Scientific and Technical Information of China (English)

    AI Haixin; ZHOU Jiti; LV Hong; WANG Jing; GUO Jianbo; LIU Guangfei; QU Yuanyuan

    2008-01-01

    A novel strain of Streptomyces sp. DUT_AHX was isolated from sludge contaminated with nitrobenzene and identified on the basis of physiological and biochemical tests and 16S ribosomal DNA (rDNA) sequence analysis. The optimal degradation conditions were as follows: temperature 30℃, pH 7.0-8.0, shaking speed 150-180 r/min and inocula 10% (V/V). The strain, which possessed a partial reductive pathway with the release of ammonia, was also able to grow on mineral salts basal (MSB) medium plates with 2-aminophenol, phenol, or toluene as the sole carbon source. Furthermore, the enzyme activity tests showed crude extracts of nitrobenzene-grown DUT_AHX contained 2-aminophenol 1,6-dioxygenase activity. The 17-kb plasmid was isolated by the modified alkaline lysis method and was further cured by sodium dodecyl sulphate (SDS) together with 37℃. As a result, the cured derivative strain DUT_AHX-4 lost the 2-aminophenol 1,6-dioxygenase activity. The results suggested that the catabolic genes encoding the nitrobenzene-degrading enzymes were plasmid-associated. Moreover, the plasmid DNA was amplified with degenerate primers by touchdown PCR and an expected size fragment (471 bp) was generated. The Blast results revealed that the gene encoding a 157 amino acid polypeptide was 39% to 76% identical to YHS domain protein. The further examination of the plasmid would demonstrate the molecular basis of nitrobenzene catabolism in Streptomyces, such as regulation and genetic organization of the catabolic genes.

  8. Concerted transfer of the virulence Ti plasmid and companion At plasmid in the Agrobacterium tumefaciens-induced plant tumour.

    Science.gov (United States)

    Lang, Julien; Planamente, Sara; Mondy, Samuel; Dessaux, Yves; Moréra, Solange; Faure, Denis

    2013-12-01

    The plant pathogen Agrobacterium tumefaciens C58 harbours three independent type IV secretion (T4SS) machineries. T4SST-DNA promotes the transfer of the T-DNA to host plant cells, provoking tumour development and accumulation of opines such as nopaline and agrocinopines. T4SSpTi and T4SSpAt control the bacterial conjugation of the Ti and At plasmids respectively. Expression of T4SSpTi is controlled by the agrocinopine-responsive transcriptional repressor AccR. In this work, we compared the genome-wide transcriptional profile of the wild-type A. tumefaciens strain C58 with that of its accR KO-mutant to delineate the AccR regulon. In addition to the genes that encode agrocinopine catabolism and T4SSpTi , we found that AccR also regulated genes coding for nopaline catabolism and T4SSpAt . Further opine detection and conjugation assays confirmed the enhancement of nopaline consumption and At plasmid conjugation frequency in accR. Moreover, co-regulation of the T4SSpTi and T4SSpAt correlated with the co-transfer of the At and Ti plasmids both in vitro and in plant tumours. Finally, unlike T4SSpTi , T4SSpAt activation does not require quorum-sensing. Overall this study highlights the regulatory interplays between opines, At and Ti plasmids that contribute to a concerted dissemination of the two replicons in bacterial populations colonizing the plant tumour. PMID:24118167

  9. Glycosidases: inborn errors of glycosphingolipid catabolism.

    Science.gov (United States)

    Ashida, Hisashi; Li, Yu-Teh

    2014-01-01

    Glycosphingolipids (GSLs) are information-rich glycoconjugates that occur in nature mainly as constituents of biomembranes. Each GSL contains a complex carbohydrate chain linked to a ceramide moiety that anchors the molecule to biomembranes. In higher animals, catabolism of GSLs takes place in lysosomes where sugar chains in GSLs are hydrolyzed by exo-glycosidases to cleave a sugar residue from the non-reducing end of a sugar chain. Inborn errors of GSL-catabolism, collectively called sphingolipidoses or GSL-storage diseases, are caused by the deficiency of exo-glycosidases responsible for the degradation of the specific sugar residues at the non-reducing termini in GSLs. This chapter briefly discusses glycone, anomeric, linkage, and aglycone specificities of exo-glycosidases and some of the historical landmarks on their associations with the chemical pathology of the five best known sphingolipidoses: GM1 gangliosidosis, GM2 gangliosidosis (Tay-Sachs disease), Fabry disease, Gaucher disease, and Krabbe disease. PMID:25151392

  10. Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae.

    Science.gov (United States)

    Yost, Christopher K; Rath, Amber M; Noel, Tanya C; Hynes, Michael F

    2006-07-01

    A genetic locus encoding erythritol uptake and catabolism genes was identified in Rhizobium leguminosarum bv. viciae, and shown to be plasmid encoded in a wide range of R. leguminosarum strains. A Tn5-B22 mutant (19B-3) unable to grow on erythritol was isolated from a mutant library of R. leguminosarum strain VF39SM. The mutated gene eryF was cloned and partially sequenced, and determined to have a high homology to permease genes of ABC transporters. A cosmid complementing the mutation (pCos42) was identified and was shown to carry all the genes necessary to restore the ability to grow on erythritol to a VF39SM strain cured of pRleVF39f. In the genomic DNA sequence of strain 3841, the gene linked to the mutation in 19B-3 is flanked by a cluster of genes with high homology to the known erythritol catabolic genes from Brucella spp. Through mutagenesis studies, three distinct operons on pCos42 that are required for growth on erythritol were identified: an ABC-transporter operon (eryEFG), a catabolic operon (eryABCD) and an operon (deoR-tpiA2-rpiB) that encodes a gene with significant homology to triosephosphate isomerase (tpiA2). These genes all share high sequence identity to genes in the erythritol catabolism region of Brucella spp., and clustalw alignments suggest that horizontal transfer of the erythritol locus may have occurred between R. leguminosarum and Brucella. Transcription of the eryABCD operon is repressed by EryD and is induced by the presence of erythritol. Mutant 19B-3 was impaired in its ability to compete against wild-type for nodulation of pea plants but was still capable of forming nitrogen-fixing nodules.

  11. Protocol for Evaluating the Permissiveness of Bacterial Communities Toward Conjugal Plasmids by Quantification and Isolation of Transconjugants

    DEFF Research Database (Denmark)

    Klümper, Uli; Dechesne, Arnaud; Smets, Barth F.

    2014-01-01

    may encode catabolic pathways, virulence factors, and antibiotic or metal resistances, it is of environmental, evolutionary, and medical relevance to track and monitor the fate of plasmids in mixed microbial community. When assessing the short-term and long-term implications of conjugal plasmid......The transfer of conjugal plasmids is the main bacterial process of horizontal gene transfer to potentially distantly related bacteria. These extrachromosomal, circular DNA molecules host genes that code for their own replication and transfer to other organisms. Because additional accessory genes...... a gfp-tagged plasmid in a mCherry red fluorescently tagged donor strain repressing gfp expression. We take advantage of fluorescent marker genes to microscopically detect plasmid transfer events and use subsequent high-throughput fluorescence-activated cell sorting (FACS) to isolate...

  12. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2012-11-01

    Full Text Available Abstract Background Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp. Results and discussion The Large PantoeaPlasmids (LPP-1 of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS. A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS, conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. Conclusions LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse

  13. Catabolism of hyaluronan: involvement of transition metals

    OpenAIRE

    Šoltés, Ladislav; Kogan, Grigorij

    2009-01-01

    One of the very complex structures in the vertebrates is the joint. The main component of the joint is the synovial fluid with its high-molar-mass glycosaminoglycan hyaluronan, which turnover is approximately twelve hours. Since the synovial fluid does not contain any hyaluronidases, the fast hyaluronan catabolism is caused primarily by reductive-oxidative processes. Eight transition metals – V23, Mn25, Fe26, Co27, Ni28, Cu29, Zn30, and Mo42 – naturally occurring in living organism are essent...

  14. Catabolism of volatile organic compounds influences plant survival.

    Science.gov (United States)

    Oikawa, Patricia Y; Lerdau, Manuel T

    2013-12-01

    Plants emit a diverse array of phytogenic volatile organic compounds (VOCs). The production and emission of VOCs has been an important area of research for decades. However, recent research has revealed the importance of VOC catabolism by plants and VOC degradation in the atmosphere for plant growth and survival. Specifically, VOC catabolism and degradation have implications for plant C balance, tolerance to environmental stress, plant signaling, and plant-atmosphere interactions. Here we review recent advances in our understanding of VOC catabolism and degradation, propose experiments for investigating VOC catabolism, and suggest ways to incorporate catabolism into VOC emission models. Improving our knowledge of VOC catabolism and degradation is crucial for understanding plant metabolism and predicting plant survival in polluted environments.

  15. Persistence Mechanisms of Conjugative Plasmids

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid......Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the...... successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable...

  16. Metabolic control analysis of xylose catabolism in Aspergillus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Gabelgaard, J.B.; Wanchanthuek, P.;

    2003-01-01

    A kinetic model for xylose catabolism in Aspergillus is proposed. From a thermodynamic analysis it was found that the intermediate xylitol will accumulate during xylose catabolism. Use of the kinetic model allowed metabolic control analysis (MCA) of the xylose catabolic pathway to be carried out...... nidulans grown on media containing xylose, and a concentration up to 30 mM was found. Applying MCA showed that the first polyol dehydrogenase (XDH) in the catabolic pathway of xylose exerted the main flux control in the two strains of A. nidulans and A. niger NW324, but the flux control was exerted mainly...

  17. Conjugative plasmids of Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Emilia Pachulec

    Full Text Available Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM determinant inserted in several of these plasmids is an important cause of the rapid spread of tetracycline resistance. Previously plasmids with different backbones (Dutch and American type backbones and with and without different tetM determinants (Dutch and American type tetM determinants have been identified. Within the isolates tested, all plasmids with American or Dutch type tetM determinants contained a Dutch type plasmid backbone. This demonstrated that tetM determinants should not be used to differentiate between conjugal plasmid backbones. The nucleotide sequences of conjugative plasmids with Dutch type plasmid backbones either not containing the tetM determinant (pEP5233 or containing Dutch (pEP5289 or American (pEP5050 type tetM determinants were determined. Analysis of the backbone sequences showed that they belong to a novel IncP1 subfamily divergent from the IncP1alpha, beta, gamma, delta and epsilon subfamilies. The tetM determinants were inserted in a genetic load region found in all these plasmids. Insertion was accompanied by the insertion of a gene with an unknown function, and rearrangement of a toxin/antitoxin gene cluster. The genetic load region contains two toxin/antitoxins of the Zeta/Epsilon toxin/antitoxin family previously only found in Gram positive organisms and the virulence associated protein D of the VapD/VapX toxin/antitoxin family. Remarkably, presence of VapX of pJD1, a small cryptic neisserial plasmid, in the acceptor strain strongly increased the conjugation efficiency, suggesting that it functions as an antitoxin for the conjugative plasmid. The presence of the toxin and antitoxin on different plasmids might explain why the host range of this IncP1 plasmid is limited to Neisseria species. The isolated plasmids

  18. Phenotypic plasticity in bacterial plasmids.

    Science.gov (United States)

    Turner, Paul E

    2004-01-01

    Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments. PMID:15166133

  19. Genomics of high molecular weight plasmids isolated from an on-farm biopurification system

    Science.gov (United States)

    Martini, María C.; Wibberg, Daniel; Lozano, Mauricio; Torres Tejerizo, Gonzalo; Albicoro, Francisco J.; Jaenicke, Sebastian; van Elsas, Jan Dirk; Petroni, Alejandro; Garcillán-Barcia, M. Pilar; de la Cruz, Fernando; Schlüter, Andreas; Pühler, Alfred; Pistorio, Mariano; Lagares, Antonio; Del Papa, María F.

    2016-01-01

    The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities. PMID:27321040

  20. Plasmid acquisition in microgravity

    Science.gov (United States)

    Juergensmeyer, Margaret A.; Juergensmeyer, Elizabeth A.; Guikema, James A.

    1995-01-01

    In microgravity, bacteria often show an increased resistance to antibiotics. Bacteria can develop resistance to an antibiotic after transformation, the acquisition of DNA, usually in the form of a plasmid containing a gene for resistance to one or more antibiotics. In order to study the capacity of bacteria to become resistant to antibiotics in microgravity, we have modified the standard protocol for transformation of Escherichia coli for use in the NASA-flight-certified hardware package, The Fluid Processing Apparatus (FPA). Here we report on the ability of E. coli to remain competent for long periods of time at temperatures that are readily available on the Space Shuttle, and present some preliminary flight results.

  1. Bone marrow: its contribution to heme catabolism.

    Science.gov (United States)

    Mähönen, Y; Anttinen, M; Vuopio, P; Tenhunen, R

    1976-01-01

    Heme oxygenase (HO) and biliverdin reductase (BR), the two NADPH-dependent enzymes involved in the degradation of hemoglobin and its derivatives, were measured in bone marrow aspirates from 5 hematologically normal persons, 4 patients with chronic leucemia (CL), 11 patients with acute leucemia (AL), 8 patients with refractory sideroblastic anemia (RA), 7 patients with iron-deficiency anemia (IA), 5 patients with hemolytic anemia (HA), and 7 patients with secondary anemia (SA) to determine the enzymatic capacity of the bone marrow in different hematologic disorders for heme catabolism. HO activity in the bone marrow of normal persons was 0.42 +/- 0.28 (SD) nmoles bilirubin/10 mg protein/min; in CL, 2.15 +/- 1.34; in AL, 0.39 +/- 0.25; in RA, 0.58 +/- 0.37; in IA, 0.41 +/- 0.28; in HA, 2.56 +/- 1.40; and in SA, 1.72 +/- 1.06. BR activity, respectively, was in normal persons 8.7 +/- 2.4 (SD) nmoles bilirubin/10 mg protein/min; in CL, 13.6 +/- 9.1; in AL, 3.8 +/- 3.1 in RA, 5.1 +/- 2.7; in IA, 5.5 +/- 3.7; in HA, 17.0 +/- 7.2; and in SA, 10.5 +/- 4.2. On the basis of these findings it seems evident that both oxygenase and biliverdin reductase activities of the bone marrow are capable of adaptive regulation. The physiologic role of bone marrow in heme catabolism seems to be of significant importance.

  2. Plasmid recombination in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.

    1982-01-01

    DNA recombination in exponential phase and competent Haemophilus influenzae was measured by an electron microscopic assay that relies on the conversion of plasmid RSF0885 monomers into multimeric forms. Dimer circles were present at a frequency of 2% in plasmid preparations from competent Rd (wild-type) cells; multimers were present at a frequency of 0.2% in preparations from exponential phase cells. Thus, plasmid recombination was stimulated in competent cells. Multimer formation occurred efficiently in cells of the transformation defective mutant rec2, implying that the rec2 gene product is not required for plasmid recombination. However, the absence of multimer plasmids in preparations from competent cells of the transformation defective mutant rec1 suggests that the rec1 gene product is required. Digestion of purified plasmids with restriction endonuclease PvuII, which makes a single cut in the monomer, revealed the presence of recombination intermediates composed of two linear plasmids joined to form two pairs of arms resembling the Greek letter chi. Length measurements of these arms taken from a population of recombination intermediates gave evidence that the plasmids were joined at sites of homology. The distributions of individual DNA strands, at the intersections of the four arms, could be resolved in some recombination intermediates and were of two types. The first type of junction appeared as a single-stranded arm appended to each corner. The second type of junction consisted of a single strand of DNA linking the two linear plasmids at a site of homology. The single-stranded linker was frequently situated at the edge of a short gap on one of the plasmids in the pair. The fine structures of the recombinational joints have been interpreted in terms of previously proposed models of recombination.

  3. Evolved plasmid-host interactions reduce plasmid interference cost.

    Science.gov (United States)

    Yano, Hirokazu; Wegrzyn, Katarznya; Loftie-Eaton, Wesley; Johnson, Jenny; Deckert, Gail E; Rogers, Linda M; Konieczny, Igor; Top, Eva M

    2016-09-01

    Antibiotic selection drives adaptation of antibiotic resistance plasmids to new bacterial hosts, but the molecular mechanisms are still poorly understood. We previously showed that a broad-host-range plasmid was poorly maintained in Shewanella oneidensis, but rapidly adapted through mutations in the replication initiation gene trfA1. Here we examined if these mutations reduced the fitness cost of TrfA1, and whether this was due to changes in interaction with the host's DNA helicase DnaB. The strains expressing evolved TrfA1 variants showed a higher growth rate than those expressing ancestral TrfA1. The evolved TrfA1 variants showed a lower affinity to the helicase than ancestral TrfA1 and were no longer able to activate the helicase at the oriV without host DnaA. Moreover, persistence of the ancestral plasmid was increased upon overexpression of DnaB. Finally, the evolved TrfA1 variants generated higher plasmid copy numbers than ancestral TrfA1. The findings suggest that ancestral plasmid instability can at least partly be explained by titration of DnaB by TrfA1. Thus under antibiotic selection resistance plasmids can adapt to a novel bacterial host through partial loss of function mutations that simultaneously increase plasmid copy number and decrease unfavorably high affinity to one of the hosts' essential proteins. PMID:27121483

  4. Effects of lipopolysaccharide on the catabolic activity of macrophages

    International Nuclear Information System (INIS)

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of 125-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses

  5. The Use of Anabolic Agents in Catabolic States

    OpenAIRE

    Demling, Robert

    2007-01-01

    Objective: We plan to review the current problem of lean mass erosion in catabolic states, caused by injury and critical illness. This protein loss is driven by the hormonal imbalance and excess inflammation referred to as the “stress response to injury.” We then plan to provide the current concepts on the use of available anabolic agents to attenuate the excess catabolism. Data Source: The available published literature on the pathogenesis of acute catabolic states and the use of anabolic an...

  6. Catabolism of host-derived compounds during extracellular bacterial infections.

    Science.gov (United States)

    Meadows, Jamie A; Wargo, Matthew J

    2014-02-01

    Efficient catabolism of host-derived compounds is essential for bacterial survival and virulence. While these links in intracellular bacteria are well studied, such studies in extracellular bacteria lag behind, mostly for technical reasons. The field has identified important metabolic pathways, but the mechanisms by which they impact infection and in particular, establishing the importance of a compound's catabolism versus alternate metabolic roles has been difficult. In this review we will examine evidence for catabolism during extracellular bacterial infections in animals and known or potential roles in virulence. In the process, we point out key gaps in the field that will require new or newly adapted techniques.

  7. Arginine transport in catabolic disease states.

    Science.gov (United States)

    Pan, Ming; Choudry, Haroon A; Epler, Mark J; Meng, Qinghe; Karinch, Anne; Lin, Chengmao; Souba, Wiley

    2004-10-01

    Arginine appears to be a semiessential amino acid in humans during critical illness. Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which exceeds body production, leading to arginine depletion. This is aggravated by the reduced nutrient intake that is associated with critical illness. Arginine depletion may have negative consequences on tissue function under these circumstances. Nutritional regimens containing arginine have been shown to improve nitrogen balance and lymphocyte function, and stimulate arginine transport in the liver. We have studied the effects of stress mediators on arginine transport in vascular endothelium, liver, and gut epithelium. In vascular endothelium, endotoxin stimulates arginine uptake, an effect that is mediated by the cytokine tumor necrosis factor-alpha (TNF-alpha) and by the cyclo-oxygenase pathway. This TNF-alpha stimulation involves the activation of intracellular protein kinase C (PKC). A significant increase in hepatic arginine transport activity also occurs following burn injury and in rats with progressive malignant disease. Surgical removal of the growing tumor results in a normalization of the accelerated hepatic arginine transport within days. Chronic metabolic acidosis and sepsis individually augment intestinal arginine transport in rats and Caco-2 cell culture. PKC and mitogen-activated protein kinases are involved in mediating the sepsis/acidosis stimulation of arginine transport. Understanding the regulation of plasma membrane arginine transport will enhance our knowledge of nutrition and metabolism in seriously ill patients and may lead to the design of improved nutritional support formulas. PMID:15465794

  8. Protein catabolism and requirements in severe illness.

    Science.gov (United States)

    Genton, L; Pichard, C

    2011-03-01

    Reduced total body protein mass is a marker of protein-energy malnutrition and has been associated with numerous complications. Severe illness is characterized by a loss of total body protein mass, mainly from the skeletal muscle. Studies on protein turnover describe an increased protein breakdown and, to a lesser extent, an increased whole-body protein synthesis, as well as an increased flux of amino acids from the periphery to the liver. Appropriate nutrition could limit protein catabolism. Nutritional support limits but does not stop the loss of total body protein mass occurring in acute severe illness. Its impact on protein kinetics is so far controversial, probably due to the various methodologies and characteristics of nutritional support used in the studies. Maintaining calorie balance alone the days after an insult does not clearly lead to an improved clinical outcome. In contrast, protein intakes between 1.2 and 1.5 g/kg body weight/day with neutral energy balance minimize total body protein mass loss. Glutamine and possibly leucine may improve clinical outcome, but it is unclear whether these benefits occur through an impact on total body protein mass and its turnover, or through other mechanisms. Present recommendations suggest providing 20 - 25 kcal/kg/day over the first 72 - 96 hours and increasing energy intake to target thereafter. Simultaneously, protein intake should be between 1.2 and 1.5 g/kg/day. Enteral immunonutrition enriched with arginine, nucleotides, and omega-3 fatty acids is indicated in patients with trauma, acute respiratory distress syndrome (ARDS), and mild sepsis. Glutamine (0.2 - 0.4 g/kg/day of L-glutamine) should be added to enteral nutrition in burn and trauma patients (ESPEN guidelines 2006) and to parenteral nutrition, in the form of dipeptides, in intensive care unit (ICU) patients in general (ESPEN guidelines 2009). PMID:22139565

  9. Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation.

    OpenAIRE

    Ledger, T.; Pieper, D. H.; González, B.

    2006-01-01

    Phenoxyalkanoic compounds are used worldwide as herbicides. Cupriavidus necator JMP134(pJP4) catabolizes 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), using tfd functions carried on plasmid pJP4. TfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol (2,4-DCP) and 4-chloro-2-methylphenol (MCP), respectively. These intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdB(I) and tfdB(II) genes to produce the resp...

  10. [Biochemical methods for the determination of a clinical protein catabolism].

    Science.gov (United States)

    Roth, E; Funovics, J; Schulz, F; Karner, J

    1980-12-01

    1. 20 patients before surgery received enteral nutrition for three days (12 g nitrogen, 1800 Kcal). Nitrogen and urea excretions in urine during the second and third day were determined. Eleven patients had a negative nitrogen balance (-2,7 and -2,4 g/day). In these patients urea production rates were 21,1 and 20,1 g/day. An urea production rate exceeding 15 g urea/day is probable an indication for a protein catabolism. The reason for this catabolic state seems to be a decreased protein utilisation (49 and 47 percent) as the result of a metabolic stress situation. This metabolic stress was determined according the stress index (Bistrian). The patients were in a stress situation comparable to postoperative stress (+3,7 and +3,9). The determination of urea production rate and catabolic index seems a suitable tool for defining a catabolic state. 2. 3-met-histidine excretion in urine were measured in seven patients postoperatively. In different periods saline or aminoacids solutions (5% alanine) were infused. During alanine administration protein (+49%)--and 3-met-histidine excretions (+50%) increased. It is not possible to state a catabolic situation out of the 3-met-histidine excretion, because an increased excretion may result from a stimulated protein synthesis in muscle tissue or from an increased muscleprotein wasting. 3. Free amino acid pools in plasma and muscle tissue were analysed in patients with severe illness of liver and pancreas. The free amino acid pattern differed from healthy volunteers. In patients with liver disease significantly increased concentrations of phenylalanine, tyrosine and methionine were found. In patients with acute pancreatitis highly abnormal pattern of intracellular amino acids occurred with decreased concentrations of glutamine, cysteine, histidine, lysine, arginine and ornithine. The highly significant decreased concentrations of glutamine (p less than 0,01) indicate a catabolic situation of these patients. A quantification of the

  11. Effects of genes exerting growth inhibition and plasmid stability on plasmid maintenance.

    OpenAIRE

    Boe, L; Gerdes, K; Molin, S

    1987-01-01

    Plasmid stabilization mediated by the parA+ and parB+ genes of the R1 plasmid and the ccd+ and sop+ genes of the F plasmid was tested on a mini-R1 plasmid and a pBR322 plasmid derivative. The mini-R1 plasmid is thought to be unstably inherited owing to a low copy number and to random segregation of the plasmid at cell division, whereas cells harboring the pBR322 derivative used in this work are lost through competition with plasmid-free cells, mainly as a result of the shorter generation time...

  12. Isolation of a Pseudomonas Stutzeri strain that degrades1, 2, 4-trichlorobenzene and characterization of its degradative plasmid

    Institute of Scientific and Technical Information of China (English)

    Lei SONG; Hui WANG; Hanchang SHI; Hongying HU

    2008-01-01

    The genetic information encoding metabolic pathways for xenobiotic compounds in bacteria often resides on catabolic plasmids. The aim of the present work was to know the location of the genes for degrading 1, 2, 4-trichlorobenzen. In this paper a 1, 2, 4-trichlorobenzene-degrading strain THSL-1 was isolated from the soil of Tianjin Chemical Plant using 1, 2, 4-trichlorobenzene as the sole carbon source. The strain was identified as Pseudomonas stutzeri through morphologic survey and 16S rDNA sequence determination. A plasmid was discovered from strain THSL-1 by using the alkali lysis method. When the plasmid was transformed into E. coli. JM109 by the CaCl2 method, the transformant could grow using 1, 2, 4-trichlorobenzene as the sole carbon source and had the degradation function of 1, 2, 4-trichlorobenzene. Therefore, it could be deemed that the plasmid carried the degradative genes of 1, 2, 4-trichlorobenzene. The average size of the plasmid was finally determined to be 40.2 Kb using selectively three kinds of restricted inscribed enzymes (HindIII, BamHI, and XholI) for single cutting and double cutting the plasmid pTHSL-1, respectively.

  13. Renal catabolism of albumin – current views and controversies

    Directory of Open Access Journals (Sweden)

    Jakub Gburek

    2011-10-01

    Full Text Available Albumin is the main protein of blood plasma, lymph, cerebrospinal fluid and interstitial fluid. The protein assists in many important body functions, including maintenance of proper colloidal osmotic pressure, transport of important metabolites and antioxidant action. Synthesis of albumin takes place mainly in the liver, and its catabolism occurs mostly in vascular endothelium of muscle, skin and liver as well as in the kidney tubular epithelium. Renal catabolism of albumin consists of glomerular filtration and tubular reabsorption. The tubular processes include endocytosis via the multiligand scavenger receptor tandem megalin and cubilin-amnionless complex. Possible ways of further catabolism of this protein are lysosomal proteolysis to amino acids and short peptides, recycling of degradation products into the bloodstream and tubular lumen or transcytosis of whole molecules. The article discusses the molecular aspects of these processes and presents the controversies arising in the light of the last decade of research.

  14. Bacterial Plasmids in Antarctic Natural Microbial Assemblages

    OpenAIRE

    Kobori, Hiromi; Sullivan, Cornelius W.; Shizuya, Hiroaki

    1984-01-01

    Samples of psychrophilic and psychrotrophic bacteria were collected from sea ice, seawater, sediments, and benthic or ice-associated animals in McMurdo Sound, Antarctica. A total of 155 strains were isolated and tested for the presence of plasmids by DNA agarose gel electrophoresis. Thirty-one percent of the isolates carried at least one kind of plasmid. Bacterial isolates taken from sediments showed the highest plasmid incidence (42%), and isolates from seawater showed the lowest plasmid inc...

  15. Plasmid required for virulence of Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Watson, B.; Currier, T.C.; Gordon, M.P.; Chilton, M.D.; Nester, E.W.

    1975-07-01

    The irreversible loss of crown gall-inducing ability of Agrobacterium tumefaciens strain C-58 during growth at 37/sup 0/C is shown to be due to loss of a large plasmid (1.2 x 10/sup 8/ daltons). The gene responsible for this high rate of plasmid loss at elevated temperatures seems to be located on the plasmid. In addition, another spontaneous avirulent variant, A. tumefaciens strain IIBNV6, is shown to lack the virulence plasmid which its virulent sibling strain, IIBV7, possesses. Deoxyribonucleic acid reassociation measurements prove that the plasmid is eliminated, not integrated into the chromosome, in both of the avirulent derivatives. Transfer of virulence from donor strain C-58 to avirulent recipient strain A136 results from the transfer of a plasmid, which appears identical to the donor plasmid by deoxyribonucleic acid reassociation measurements. The transfer of virulence in another cross, K27 x A136, was also shown to result from the transfer of a large plasmid. These findings establish unequivocally that the large plasmid determines virulence. Two additional genetic determinants have been located on the virulence plasmid of A. tumefaciens strain C-58: the ability to utilize nopaline and sensitivity to a bacteriocin produced by strain 84. The latter trait can be exploited for selection of avirulent plasmid-free derivatives of strain C-58. The trait of nopaline utilization appears to be on the virulence plasmid also in strains IIBV7 and K27.

  16. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

    DEFF Research Database (Denmark)

    Carattoli, Alessandra; Zankari, Ea; García-Fernández, Aurora;

    2014-01-01

    In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft...

  17. Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4.

    OpenAIRE

    Kaphammer, B; Kukor, J J; Olsen, R H

    1990-01-01

    The closely linked structural genes tfdCDEF borne on the 2,4-dichlorophenoxyacetic acid (TFD) catabolic plasmid, pRO101, were cloned into vector pRO2321 as a 12.6-kilobase-pair BamHI C fragment and designated pRO2334. The first gene in this cluster, tfdC, encodes chlorocatechol 1,2-dioxygenase and was expressed constitutively. Chlorocatechol 1,2-dioxygenase expression by pRO2334 was repressed in trans by the negative regulatory element, tfdR, on plasmid pRO1949. Derepression of tfdC was achie...

  18. Plasmid maintenance functions encoded on Dictyostelium discoideum nuclear plasmid Ddp1.

    OpenAIRE

    Hughes, J E; H. Kiyosawa; Welker, D L

    1994-01-01

    All of the plasmid-carried genes expressed during vegetative growth are essential for long-term maintenance of plasmid Ddp1 in the nucleus of Dictyostelium discoideum. Deletion of Ddp1 genes expressed only during development had no detectable effect on plasmid maintenance. Deletion of vegetatively expressed genes, either singly or in pairs, resulted in (i) a rapid loss of plasmid from cells grown in the absence of selection for plasmid retention, (ii) variation in the proportion of monomer to...

  19. Variable carbon catabolism among Salmonella enterica serovar Typhi isolates.

    Directory of Open Access Journals (Sweden)

    Lay Ching Chai

    Full Text Available BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. METHODOLOGY/PRINCIPAL FINDINGS: To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas of typhoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. CONCLUSION: The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen.

  20. Homemade Site Directed Mutagenesis of Whole Plasmids

    Science.gov (United States)

    Laible, Mark; Boonrod, Kajohn

    2009-01-01

    Site directed mutagenesis of whole plasmids is a simple way to create slightly different variations of an original plasmid. With this method the cloned target gene can be altered by substitution, deletion or insertion of a few bases directly into a plasmid. It works by simply amplifying the whole plasmid, in a non PCR-based thermocycling reaction. During the reaction mutagenic primers, carrying the desired mutation, are integrated into the newly synthesized plasmid. In this video tutorial we demonstrate an easy and cost effective way to introduce base substitutions into a plasmid. The protocol works with standard reagents and is independent from commercial kits, which often are very expensive. Applying this protocol can reduce the total cost of a reaction to an eighth of what it costs using some of the commercial kits. In this video we also comment on critical steps during the process and give detailed instructions on how to design the mutagenic primers. PMID:19488024

  1. Serine one-carbon catabolism with formate overflow

    Science.gov (United States)

    Meiser, Johannes; Tumanov, Sergey; Maddocks, Oliver; Labuschagne, Christiaan Fred; Athineos, Dimitris; Van Den Broek, Niels; Mackay, Gillian M.; Gottlieb, Eyal; Blyth, Karen; Vousden, Karen; Kamphorst, Jurre J.; Vazquez, Alexei

    2016-01-01

    Serine catabolism to glycine and a one-carbon unit has been linked to the anabolic requirements of proliferating mammalian cells. However, genome-scale modeling predicts a catabolic role with one-carbon release as formate. We experimentally prove that in cultured cancer cells and nontransformed fibroblasts, most of the serine-derived one-carbon units are released from cells as formate, and that formate release is dependent on mitochondrial reverse 10-CHO-THF synthetase activity. We also show that in cancer cells, formate release is coupled to mitochondrial complex I activity, whereas in nontransformed fibroblasts, it is partially insensitive to inhibition of complex I activity. We demonstrate that in mice, about 50% of plasma formate is derived from serine and that serine starvation or complex I inhibition reduces formate synthesis in vivo. These observations transform our understanding of one-carbon metabolism and have implications for the treatment of diabetes and cancer with complex I inhibitors.

  2. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.;

    2005-01-01

    , and their kinetic properties were characterized. For the other enzymes of the pathway the kinetic data were available from the literature. The metabolic model was used to analyze flux and metabolite concentration control of the L-arabinose catabolic pathway. The model demonstrated that flux control does not reside......A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography......-arabinose, a level that resulted in realistic intermediate concentrations in the model, flux control coefficients for L-arabinose reductase, L-arabitol dehydrogenase and L-xylulose reductase were 0.68, 0.17 and 0.14, respectively. The analysis can be used as a guide to identify targets for metabolic engineering...

  3. pLS010 plasmid vector

    Science.gov (United States)

    Lacks, Sanford A.; Balganesh, Tanjore S.

    1988-01-01

    Disclosed is recombinant plasmid pLS101, consisting essentially of a 2.0 Kb malM gene fragment ligated to a 4.4 Kb T.sub.c r DNA fragment, which is particularly useful for transforming Gram-positive bacteria. This plasmid contains at least four restriction sites suitable for inserting exogeneous gene sequences. Also disclosed is a method for plasmid isolation by penicillin selection, as well as processes for enrichment of recombinant plasmids in Gram-positive bacterial systems.

  4. Mediated Electrochemical Measurements of Intracellular Catabolic Activities of Yeast Cells

    Institute of Scientific and Technical Information of China (English)

    Jin Sheng ZHAO; Zhen Yu YANG; Yao LU; Zheng Yu YANG

    2005-01-01

    Coupling with the dual mediator system menadione/ferricyanide, microelectrode voltammetric measurements were undertaken to detect the ferrocyanide accumulations arising from the mediated reduction of ferricyanide by yeast cells. The results indicate that the dual mediator system menadione/ferricyanide could be used as a probe to detect cellular catabolic activities in yeast cells and the electrochemical response has a positive relationship with the specific growth rate of yeast cells.

  5. Increase in sphingolipid catabolic enzyme activity during aging

    OpenAIRE

    Sacket, Santosh J; Chung, Hae-young; Okajima, Fumikazu; Im, Dong-Soon

    2009-01-01

    Aim: To understand the contribution of sphingolipid metabolism and its metabolites to development and aging. Methods: A systemic analysis on the changes in activity of sphingolipid metabolic enzymes in kidney, liver and brain tissues during development and aging was conducted. The study was conducted using tissues from 1-day-old to 720-day-old rats. Results: Catabolic enzyme activities as well as the level of sphingomyelinase (SMase) and ceramidase (CDase) were higher than that of anabolic en...

  6. ANALYSIS OF A MODEL OF PLASMID-BEARING, PLASMID-FREE COMPETITION IN A PULSED CHEMOSTAT

    OpenAIRE

    XIANGYUN SHI; XINYU SONG; XUEYONG ZHOU

    2006-01-01

    We introduce and study a chemostat model with plasmid-bearing, plasmid-free competition and impulsive effect. According to the stability analysis of the boundary periodic solution, we obtain the invasion threshold of the plasmid-free organism and plasmid-bearing organism. Furthermore, by using standard techniques of bifurcation theory, we prove the system has a positive τ-periodic solution, which shows that the impulsive effect destroys the equilibria of the unforced continuous system and ini...

  7. Effect of chromosome homology an plasmid transformation and plasmid conjugal transfer in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Balganesh, M.; Setlow, J.K.

    1984-05-14

    The pairing between plasmid and the homologous part of the chromosome associated with plasmid establishment may differ from the pairing which results from integration of a homologous region of the plasmid into the chromosome. Thus the rate of novobiocin transformation decreases with duplication of the chromosomal portion in pMB2, but the rate of establishment of the plasmid increases with this duplication. A model to explain these data is given. 17 references, 5 figures, 4 tables.

  8. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    Science.gov (United States)

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  9. The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis

    NARCIS (Netherlands)

    Cordes, C.; Meima, R; Twiest, B; Kazemier, B; Venema, G; vanDijl, JM; Bron, S

    1996-01-01

    The rolling-circle plasmid pGP1 was used to study the effects of the expression of a plasmid-specified exported protein on structural plasmid stability in Bacillus subtilis. pGP1 contains a fusion between the Bacillus licheniformis penP gene, encoding a C-terminally truncated penicillinase, and the

  10. Plasmid ColVBtrp maintenance in Erwinia carotovora.

    OpenAIRE

    Schukin, N N

    1981-01-01

    Plasmid ColVBtrp maintenance in Erwinia carotovora cells was followed by measuring kinetics of elimination of plasmid genetic markers and loss of plasmid deoxyribonucleic acid. An E. carotovora mutant stably carrying plasmid ColVBtrp was isolated. Besides stable plasmid maintenance, the mutant showed altered sensitivity to male-specific phage MS2, sensitivity to drugs, and colony morphology.

  11. Bifurcation Analysis of a Chemostat Model of Plasmid-Bearing and Plasmid-Free Competition with Pulsed Input

    OpenAIRE

    Zhong Zhao; Baozhen Wang; Liuyong Pang; Ying Chen

    2014-01-01

    A chemostat model of plasmid-bearing and plasmid-free competition with pulsed input is proposed. The invasion threshold of the plasmid-bearing and plasmid-free organisms is obtained according to the stability of the boundary periodic solution. By use of standard techniques of bifurcation theory, the periodic oscillations in substrate, plasmid-bearing, and plasmid-free organisms are shown when some conditions are satisfied. Our results can be applied to control bioreactor aimed at producing co...

  12. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants.

    Science.gov (United States)

    Nešvera, Jan; Rucká, Lenka; Pátek, Miroslav

    2015-01-01

    Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.

  13. Directed evolution of a second xylitol catabolic pathway in Klebsiella pneumoniae.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1984-01-01

    Klebsiella pneumoniae PRL-R3 has inducible catabolic pathways for the degradation of ribitol and D-arabitol but cannot utilize xylitol as a growth substrate. A mutation in the rbtB regulatory gene of the ribitol operon permits the constitutive synthesis of the ribitol catabolic enzymes and allows growth on xylitol. The evolved xylitol catabolic pathway consists of an induced D-arabitol permease system that also transports xylitol, a constitutively synthesized ribitol dehydrogenase that oxidiz...

  14. Lysosomes from rabbit type II cells catabolize surfactant lipids.

    Science.gov (United States)

    Rider, E D; Ikegami, M; Pinkerton, K E; Peake, J L; Jobe, A H

    2000-01-01

    The role of a lysosome fraction from rabbit type II cells in surfactant dipalmitoylphosphatidylcholine (DPPC) catabolism was investigated in vivo using radiolabeled DPPC and dihexadecylphosphatidylcholine (1, 2-dihexadecyl-sn-glycero-3-phosphocholine; DEPC), a phospholipase A(1)- and A(2)-resistant analog of DPPC. Freshly isolated type II cells were gently disrupted by shearing, and lysosomes were isolated with Percoll density gradients (density range 1.0591-1.1457 g/ml). The lysosome fractions were relatively free of contaminating organelles as determined by electron microscopy and organelle marker enzymes. After intratracheal injection of rabbits with [(3)H]DPPC and [(14)C]DEPC associated with a trace amount of natural rabbit surfactant, the degradation-resistant DEPC accumulated 16-fold compared with DPPC in lysosome fractions at 15 h. Lysosomes can be isolated from freshly isolated type II cells, and lysosomes from type II cells are the primary catabolic organelle for alveolar surfactant DPPC following reuptake by type II cells in vivo. PMID:10645892

  15. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.

    Science.gov (United States)

    Fuentes, Sebastián; Méndez, Valentina; Aguila, Patricia; Seeger, Michael

    2014-06-01

    Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

  16. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.

    Science.gov (United States)

    Peck, Spencer C; van der Donk, Wilfred A

    2013-08-01

    Natural product biosynthesis has proven a fertile ground for the discovery of novel chemistry. Herein we review the progress made in elucidating the biosynthetic pathways of phosphonate and phosphinate natural products such as the antibacterial compounds dehydrophos and fosfomycin, the herbicidal phosphinothricin-containing peptides, and the antimalarial compound FR-900098. In each case, investigation of the pathway has yielded unusual, and often unprecedented, biochemistry. Likewise, recent investigations have uncovered novel ways to cleave the CP bond to yield phosphate under phosphorus starvation conditions. These include the discovery of novel oxidative cleavage of the CP bond catalyzed by PhnY and PhnZ as well as phosphonohydrolases that liberate phosphate from phosphonoacetate. Perhaps the crown jewel of phosphonate catabolism has been the recent resolution of the longstanding problem of the C-P lyase responsible for reductively cleaving the CP bond of a number of different phosphonates to release phosphate. Taken together, the strides made on both metabolic and catabolic fronts illustrate an array of fascinating biochemistry. PMID:23870698

  17. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway

    Directory of Open Access Journals (Sweden)

    Andrey M. Grishin

    2015-06-01

    Full Text Available Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism—coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and β-oxidation of fatty acids.

  18. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway.

    Science.gov (United States)

    Grishin, Andrey M; Cygler, Miroslaw

    2015-06-12

    Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA) utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism-coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and β-oxidation of fatty acids.

  19. Plasmids as Tools for Containment.

    Science.gov (United States)

    García, José L; Díaz, Eduardo

    2014-10-01

    Active containment systems are a major tool for reducing the uncertainty associated with the introduction of monocultures, genetically engineered or not, into target habitats for a large number of biotechnological applications (e.g., bioremediation, bioleaching, biopesticides, biofuels, biotransformations, live vaccines, etc.). While biological containment reduces the survival of the introduced organism outside the target habitat and/or upon completion of the projected task, gene containment strategies reduce the lateral spread of the key genetic determinants to indigenous microorganisms. In fundamental research, suicide circuits become relevant tools to address the role of gene transfer, mainly plasmid transfer, in evolution and how this transfer contributes to genome plasticity and to the rapid adaptation of microbial communities to environmental changes. Many lethal functions and regulatory circuits have been used and combined to design efficient containment systems. As many new genomes are being sequenced, novel lethal genes and regulatory elements are available, e.g., new toxin-antitoxin modules, and they could be used to increase further the current containment efficiencies and to expand containment to other organisms. Although the current containment systems can increase the predictability of genetically modified organisms in the environment, containment will never be absolute, due to the existence of mutations that lead to the appearance of surviving subpopulations. In this sense, orthogonal systems (xenobiology) appear to be the solution for setting a functional genetic firewall that will allow absolute containment of recombinant organisms. PMID:26104372

  20. Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration

    OpenAIRE

    Bertoni, Carmen; Jarrahian, Sohail; Wheeler, Thurman M.; LI, YINING; Olivares, Eric C.; Michele P Calos; Rando, Thomas A.

    2005-01-01

    Plasmid-mediated gene therapy can restore dystrophin expression in skeletal muscle in the mdx mouse, a model of Duchenne muscular dystrophy. However, sufficient long-term expression and distribution of dystrophin remain a hurdle for translating this technology into a viable treatment for Duchenne muscular dystrophy. To improve plasmid-mediated gene therapy for muscle diseases, we studied the effects of targeted plasmid integration using a phage integrase (φC31) that can mediate the integratio...

  1. Characterization of a Haemophilus ducreyi mobilizing plasmid.

    OpenAIRE

    McNicol, P J; Albritton, W L; Ronald, A R

    1986-01-01

    The OriV site of Haemophilus ducreyi mobilizing plasmid pHD147, determined by replication in Escherichia coli polA, is located close to the OriT site. The OriT site, located by recombination-proficient and -deficient cells, and the OriV site map in a region of pHD147 homologous to the beta-lactamase-specifying plasmids of H. ducreyi and Neisseria gonorrhoeae.

  2. Protein diversity confers specificity in plasmid segregation.

    Science.gov (United States)

    Fothergill, Timothy J G; Barillà, Daniela; Hayes, Finbarr

    2005-04-01

    The ParG segregation protein (8.6 kDa) of multidrug resistance plasmid TP228 is a homodimeric DNA-binding factor. The ParG dimer consists of intertwined C-terminal domains that adopt a ribbon-helix-helix architecture and a pair of flexible, unstructured N-terminal tails. A variety of plasmids possess partition loci with similar organizations to that of TP228, but instead of ParG homologs, these plasmids specify a diversity of unrelated, but similarly sized, partition proteins. These include the proteobacterial pTAR, pVT745, and pB171 plasmids. The ParG analogs of these plasmids were characterized in parallel with the ParG homolog encoded by the pseudomonal plasmid pVS1. Like ParG, the four proteins are dimeric. No heterodimerization was detectable in vivo among the proteins nor with the prototypical ParG protein, suggesting that monomer-monomer interactions are specific among the five proteins. Nevertheless, as with ParG, the ParG analogs all possess significant amounts of unordered amino acid residues, potentially highlighting a common structural link among the proteins. Furthermore, the ParG analogs bind specifically to the DNA regions located upstream of their homologous parF-like genes. These nucleoprotein interactions are largely restricted to cognate protein-DNA pairs. The results reveal that the partition complexes of these and related plasmids have recruited disparate DNA-binding factors that provide a layer of specificity to the macromolecular interactions that mediate plasmid segregation. PMID:15805511

  3. Plasmid and chromosome segregation in prokaryotes

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Gerdes, Kenn

    2000-01-01

    Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic......-like apparatus in prokaryotes. The identification of chromosomal homologues of the well-characterized plasmid partitioning genes indicates that there could be a general mechanism of bacterial DNA partitioning. Udgivelsesdato: July 1...

  4. Curing of plasmid pXO1 from Bacillus anthracis using plasmid incompatibility.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome.

  5. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations

    OpenAIRE

    San Millan, Alvaro; Heilbron, Karl; MacLean, R. Craig

    2014-01-01

    Plasmids have a key role in the horizontal transfer of genes among bacteria. Although plasmids are catalysts for bacterial evolution, it is challenging to understand how they can persist in bacterial populations over the long term because of the burden they impose on their hosts (the ‘plasmid paradox'). This paradox is especially perplexing in the case of ‘small' plasmids, which are unable to self-transfer by conjugation. Here, for the first time, we investigate how interactions between co-in...

  6. Mini-F plasmid genes that couple host cell division to plasmid proliferation.

    OpenAIRE

    Ogura, T; Hiraga, S

    1983-01-01

    A mechanism for stable maintenance of plasmids, besides the replication and partition mechanisms, has been found to be specified by genes of a mini-F plasmid. An oriC plasmid carrying both a mini-F segment necessary for partition [coordinates 46.4-49.4 kilobase pairs (kb) on the F map] and another segment (42.9-43.6 kb), designated ccd (coupled cell division), is more stably maintained than are oriC plasmids carrying only the partition segment; the stability is comparable to that of the paren...

  7. Adaptive Plasmid Evolution Results in Host-Range Expansion of a Broad-Host-Range Plasmid

    OpenAIRE

    De Gelder, Leen; Williams, Julia J.; Ponciano, José M; Sota, Masahiro; Eva M. Top

    2008-01-01

    Little is known about the range of hosts in which broad-host-range (BHR) plasmids can persist in the absence of selection for plasmid-encoded traits, and whether this “long-term host range” can evolve over time. Previously, the BHR multidrug resistance plasmid pB10 was shown to be highly unstable in Stenotrophomonas maltophilia P21 and Pseudomonas putida H2. To investigate whether this plasmid can adapt to such unfavorable hosts, we performed evolution experiments wherein pB10 was maintained ...

  8. Elimination of multicopy plasmid R6K by bleomycin.

    OpenAIRE

    Attfield, P V; Pinney, R. J.

    1985-01-01

    Bleomycin eliminated multicopy plasmid R6K from growing cells of Escherichia coli AB1157 but failed to cure either of the low-copy plasmids R1 or R46. Measurements of R6K-encoded beta-lactamase and of covalently closed plasmid DNA indicated that the drug causes a progressive reduction in plasmid copy number.

  9. Behavior of IncQ Plasmids in Agrobacterium tumefaciens

    NARCIS (Netherlands)

    Hille, Jacques; Schilperoort, Rob

    1981-01-01

    Inc-Q plasmids were introduced into Agrobacterium tumefuciens, by mobilization from Escherichia coli with an Inc-P plasmid, or by transformation with purified plasmid DNA. It was found that they were stably maintained. The presence of an Inc-Q plasmid did not influence tumorigenicity. These results

  10. Plasmid Evolution and Interaction between the Plasmid Addiction Stability Systems of Two Related Broad-Host-Range IncQ-Like Plasmids

    OpenAIRE

    Deane, Shelly M.; Rawlings, Douglas E

    2004-01-01

    Plasmid pTC-F14 contains a plasmid stability system called pas (plasmid addiction system), which consists of two proteins, a PasA antitoxin and a PasB toxin. This system is closely related to the pas of plasmid pTF-FC2 (81 and 72% amino acid identity for PasA and PasB, respectively) except that the pas of pTF-FC2 contains a third protein, PasC. As both pTC-F14 and pTF-FC2 are highly promiscuous broad-host-range plasmids isolated from bacteria that share a similar ecological niche, the plasmid...

  11. Insights into the evolution of sialic acid catabolism among bacteria

    Directory of Open Access Journals (Sweden)

    Almagro-Moreno Salvador

    2009-05-01

    Full Text Available Abstract Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA, epimerase (NanE, and kinase (NanK, necessary for the catabolism of sialic acid (the Nan cluster, are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body

  12. Historical Events That Spawned the Field of Plasmid Biology.

    Science.gov (United States)

    Kado, Clarence I

    2014-10-01

    This chapter revisits the historical development and outcome of studies focused on the transmissible, extrachromosomal genetic elements called plasmids. Early work on plasmids involved structural and genetic mapping of these molecules, followed by the development of an understanding of how plasmids replicate and segregate during cell division. The intriguing property of plasmid transmission between bacteria and between bacteria and higher cells has received considerable attention. The utilitarian aspects of plasmids are described, including examples of various plasmid vector systems. This chapter also discusses the functional attributes of plasmids needed for their persistence and survival in nature and in man-made environments. The term plasmid biology was first conceived at the Fallen Leaf Lake Conference on Promiscuous Plasmids, 1990, Lake Tahoe, California. The International Society for Plasmid Biology was established in 2004 (www.ISPB.org).

  13. Relationship between plasmid content and auxotype in Neisseria gonorrhoeae isolates.

    OpenAIRE

    Dillon, J R; Pauzé, M

    1981-01-01

    One hundred and forty strains of Neisseria gonorrhoeae, representing 12 different auxotype groups, were examined for differences in plasmid content. Most auxotype groups harbored a phenotypically cryptic 2,6-megadalton plasmid; a few groups also carried a 24.5-megadalton plasmid which has been previously characterized as a transfer plasmid. However, isolates of the proline-, citrulline-, and uracil-requiring (PCU-) auxotype were consistently free of plasmids. The correlation between auxotype ...

  14. Plasmid stability and maintenance of copy number using natural marker

    OpenAIRE

    Hamzah Basil Mohammed; Sudhakar Malla

    2015-01-01

    Present study was conducted to study the plasmid stability with the help of natural plasmid isolated from the bacteria which lodges the ink gland of the sea squid and emits bioluminescence. Isolated bacterial strain was identified by using 16srRNA sequencing and its plasmid DNA was used for the experimental studies. The plasmid is found to be responsible for the bioluminescence. The stability of this plasmid was studied in shake flask method using the different sugar sources (Gluc...

  15. Distinct Tryptophan Catabolism and Th17/Treg Balance in HIV Progressors and Elite Controllers

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; Patel, Mital; Kema, Ido; Kanagaratham, Cynthia; Radzioch, Danuta; Thebault, Pamela; Lapointe, Rejean; Tremblay, Cecile; Gilmore, Norbert; Ancuta, Petronela; Routy, Jean-Pierre

    2013-01-01

    Tryptophan (Trp) catabolism into immunosuppressive kynurenine (Kyn) by indoleamine 2,3-dioxygenase (IDO) was previously linked to Th17/Treg differentiation and immune activation. Here we examined Trp catabolism and its impact on Th17/Treg balance in uninfected healthy subjects (HS) and a large cohor

  16. Catabolic effects of muramyl dipeptide on rabbit chondrocytes

    International Nuclear Information System (INIS)

    Muramyl dipeptide, an essential structure for the diverse biologic activities of bacterial cell wall peptidoglycan, inhibited the synthesis of glycosaminoglycan/proteoglycan in cultured rabbit costal chondrocytes in a dose-dependent manner. Muramyl dipeptide, as well as lipopolysaccharide and interleukin-1 alpha, also enhanced the release of 35S-sulfate-prelabeled glycosaminoglycan/proteoglycan from the cell layer, which seems to reflect, at least partially, the increasing degradation of glycosaminoglycan/proteoglycan. Five synthetic analogs of muramyl dipeptide known to be adjuvant active or adjuvant inactive were tested for their potential to inhibit synthesis of glycosaminoglycan/proteoglycan and to enhance the release of glycosaminoglycan/proteoglycan in chondrocytes. The structural dependence of these synthetic analogs on chondrocytes was found to parallel that of immunoadjuvant activity. These results suggest that muramyl dipeptide is a potent mediator of catabolism in chondrocytes

  17. Catabolic effects of muramyl dipeptide on rabbit chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ikebe, T.; Iribe, H.; Hirata, M.; Yanaga, F.; Koga, T. (Kyushu Univ., Fukuoka (Japan))

    1990-12-01

    Muramyl dipeptide, an essential structure for the diverse biologic activities of bacterial cell wall peptidoglycan, inhibited the synthesis of glycosaminoglycan/proteoglycan in cultured rabbit costal chondrocytes in a dose-dependent manner. Muramyl dipeptide, as well as lipopolysaccharide and interleukin-1 alpha, also enhanced the release of 35S-sulfate-prelabeled glycosaminoglycan/proteoglycan from the cell layer, which seems to reflect, at least partially, the increasing degradation of glycosaminoglycan/proteoglycan. Five synthetic analogs of muramyl dipeptide known to be adjuvant active or adjuvant inactive were tested for their potential to inhibit synthesis of glycosaminoglycan/proteoglycan and to enhance the release of glycosaminoglycan/proteoglycan in chondrocytes. The structural dependence of these synthetic analogs on chondrocytes was found to parallel that of immunoadjuvant activity. These results suggest that muramyl dipeptide is a potent mediator of catabolism in chondrocytes.

  18. Regulation and evolution of malonate and propionate catabolism in proteobacteria.

    Science.gov (United States)

    Suvorova, I A; Ravcheev, D A; Gelfand, M S

    2012-06-01

    Bacteria catabolize malonate via two pathways, encoded by the mdc and mat genes. In various bacteria, transcription of these genes is controlled by the GntR family transcription factors (TFs) MatR/MdcY and/or the LysR family transcription factor MdcR. Propionate is metabolized via the methylcitrate pathway, comprising enzymes encoded by the prp and acn genes. PrpR, the Fis family sigma 54-dependent transcription factor, is known to be a transcriptional activator of the prp genes. Here, we report a detailed comparative genomic analysis of malonate and propionate metabolism and its regulation in proteobacteria. We characterize genomic loci and gene regulation and identify binding motifs for four new TFs and also new regulon members, in particular, tripartite ATP-independent periplasmic (TRAP) transporters. We describe restructuring of the genomic loci and regulatory interactions during the evolution of proteobacteria.

  19. Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth.

    Science.gov (United States)

    Prabhu, Antony; Sarcar, Bhaswati; Kahali, Soumen; Yuan, Zhigang; Johnson, Joseph J; Adam, Klaus-Peter; Kensicki, Elizabeth; Chinnaiyan, Prakash

    2014-02-01

    The relevance of cysteine metabolism in cancer has gained considerable interest in recent years, largely focusing on its role in generating the antioxidant glutathione. Through metabolomic profiling using a combination of high-throughput liquid and gas chromatography-based mass spectrometry on a total of 69 patient-derived glioma specimens, this report documents the discovery of a parallel pathway involving cysteine catabolism that results in the accumulation of cysteine sulfinic acid (CSA) in glioblastoma. These studies identified CSA to rank as one of the top metabolites differentiating glioblastoma from low-grade glioma. There was strong intratumoral concordance of CSA levels with expression of its biosynthetic enzyme cysteine dioxygenase 1 (CDO1). Studies designed to determine the biologic consequence of this metabolic pathway identified its capacity to inhibit oxidative phosphorylation in glioblastoma cells, which was determined by decreased cellular respiration, decreased ATP production, and increased mitochondrial membrane potential following pathway activation. CSA-induced attenuation of oxidative phosphorylation was attributed to inhibition of the regulatory enzyme pyruvate dehydrogenase. Studies performed in vivo abrogating the CDO1/CSA axis using a lentiviral-mediated short hairpin RNA approach resulted in significant tumor growth inhibition in a glioblastoma mouse model, supporting the potential for this metabolic pathway to serve as a therapeutic target. Collectively, we identified a novel, targetable metabolic pathway involving cysteine catabolism contributing to the growth of aggressive high-grade gliomas. These findings serve as a framework for future investigations designed to more comprehensively determine the clinical application of this metabolic pathway and its contributory role in tumorigenesis.

  20. Characterization of genes for chitin catabolism in Haloferax mediterranei.

    Science.gov (United States)

    Hou, Jing; Han, Jing; Cai, Lei; Zhou, Jian; Lü, Yang; Jin, Cheng; Liu, Jingfang; Xiang, Hua

    2014-02-01

    Chitin is the second most abundant natural polysaccharide after cellulose. But degradation of chitin has never been reported in haloarchaea. In this study, we revealed that Haloferax mediterranei, a metabolically versatile haloarchaeon, could utilize colloidal or powdered chitin for growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) accumulation, and the gene cluster (HFX_5025-5039) for the chitin catabolism pathway was experimentally identified. First, reverse transcription polymerase chain reaction results showed that the expression of the genes encoding the four putative chitinases (ChiAHme, ChiBHme, ChiCHme, and ChiDHme, HFX_5036-5039), the LmbE-like deacetylase (DacHme, HFX_5027), and the glycosidase (GlyAHme, HFX_5029) was induced by colloidal or powdered chitin, and chiA Hme, chiB Hme, and chiC Hme were cotranscribed. Knockout of chiABC Hme or chiD Hme had a significant effect on cell growth and PHBV production when chitin was used as the sole carbon source, and the chiABCD Hme knockout mutant lost the capability to utilize chitin. Knockout of dac Hme or glyA Hme also decreased PHBV accumulation on chitin. These results suggested that ChiABCDHme, DacHme, and GlyAHme were indeed involved in chitin degradation in H. mediterranei. Additionally, the chitinase assay showed that each chitinase possessed hydrolytic activity toward colloidal or powdered chitin, and the major product of colloidal chitin hydrolysis by ChiABCDHme was diacetylchitobiose, which was likely further degraded to monosaccharides by DacHme, GlyAHme, and other related enzymes for both cell growth and PHBV biosynthesis. Taken together, this study revealed the genes and enzymes involved in chitin catabolism in haloarchaea for the first time and indicated the potential of H. mediterranei as a whole-cell biocatalyst in chitin bioconversion.

  1. Catabolism and safety of supplemental L-arginine in animals.

    Science.gov (United States)

    Wu, Zhenlong; Hou, Yongqing; Hu, Shengdi; Bazer, Fuller W; Meininger, Cynthia J; McNeal, Catherine J; Wu, Guoyao

    2016-07-01

    L-arginine (Arg) is utilized via multiple pathways to synthesize protein and low-molecular-weight bioactive substances (e.g., nitric oxide, creatine, and polyamines) with enormous physiological importance. Furthermore, Arg regulates cell signaling pathways and gene expression to improve cardiovascular function, augment insulin sensitivity, enhance lean tissue mass, and reduce obesity in humans. Despite its versatile roles, the use of Arg as a dietary supplement is limited due to the lack of data to address concerns over its safety in humans. Data from animal studies are reviewed to assess arginine catabolism and the safety of long-term Arg supplementation. The arginase pathway was responsible for catabolism of 76-85 and 81-96 % Arg in extraintestinal tissues of pigs and rats, respectively. Dietary supplementation with Arg-HCl or the Arg base [315- and 630-mg Arg/(kg BW d) for 91 d] had no adverse effects on male or female pigs. Similarly, no safety issues were observed for male or female rats receiving supplementation with 1.8- and 3.6-g Arg/(kg BW d) for at least 91 d. Intravenous administration of Arg-HCl to gestating sheep at 81 and 180 mg Arg/(kg BW d) is safe for at least 82 and 40 d, respectively. Animals fed conventional diets can well tolerate large amounts of supplemental Arg [up to 630-mg Arg/(kg BW d) in pigs or 3.6-g Arg/(kg BW d) in rats] for 91 d, which are equivalent to 573-mg Arg/(kg BW d) for humans. Collectively, these results can help guide studies to determine the safety of long-term oral administration of Arg in humans. PMID:27156062

  2. The Atg1-Tor pathway regulates yolk catabolism in Drosophila embryos.

    Science.gov (United States)

    Kuhn, Hallie; Sopko, Richelle; Coughlin, Margaret; Perrimon, Norbert; Mitchison, Tim

    2015-11-15

    Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome.

  3. Characterization of a Second tfd Gene Cluster for Chlorophenol and Chlorocatechol Metabolism on Plasmid pJP4 in Ralstonia eutropha JMP134(pJP4)

    OpenAIRE

    Laemmli, Caroline M.; Leveau, Johan H. J.; Zehnder, Alexander J. B.; van der Meer, Jan Roelof

    2000-01-01

    Within the 5.9-kb DNA region between the tfdR and tfdK genes on the 2,4-dichlorophenoxyacetic acid (2,4-D) catabolic plasmid pJP4 from Ralstonia eutropha JMP134, we identified five open reading frames (ORFs) with significant homology to the genes for chlorocatechol and chlorophenol metabolism (tfdCDEF and tfdB) already present elsewhere on pJP4. The five ORFs were organized and assigned as follows: tfdDIICIIEIIFII and tfdBII (in short, the tfdII cluster), by analogy to tfdCDEF and tfdB (the t...

  4. Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4.

    OpenAIRE

    Perkins, E J; Gordon, M P; Caceres, O.; Lurquin, P F

    1990-01-01

    Growth of Alcaligenes eutrophus JMP134 on 2,4-dichlorophenoxyacetate requires a 2,4-dichlorphenol hydroxylase encoded by gene tfdB. Catabolism of either 2,4-dichlorophenoxyacetate or 3-chlorobenzoate involves enzymes encoded by the chlorocatechol oxidative operon consisting of tfdCDEF, which converts 3-chloro- and 3,5-dichlorocatechol to maleylacetate and chloromaleylacetate, respectively. Transposon mutagenesis has localized tfdB and tfdCDEF to EcoRI fragment B of plasmid pJP4 (R. H. Don, A....

  5. BioShuttle-mediated Plasmid Transfer

    Directory of Open Access Journals (Sweden)

    Klaus Braun, Leonie von Brasch, Ruediger Pipkorn, Volker Ehemann, Juergen Jenne, Herbert Spring, Juergen Debus, Bernd Didinger, Werner Rittgen, Waldemar Waldeck

    2007-01-01

    Full Text Available An efficient gene transfer into target tissues and cells is needed for safe and effective treatment of genetic diseases like cancer. In this paper, we describe the development of a transport system and show its ability for transporting plasmids. This non-viral peptide-based BioShuttle-mediated transfer system consists of a nuclear localization address sequence realizing the delivery of the plasmid phNIS-IRES-EGFP coding for two independent reporter genes into nuclei of HeLa cells. The quantification of the transfer efficiency was achieved by measurements of the sodium iodide symporter activity. EGFP gene expression was measured with Confocal Laser Scanning Microscopy and quantified with biostatistical methods by analysis of the frequency of the amplitude distribution in the CLSM images. The results demonstrate that the “BioShuttle”-Technology is an appropriate tool for an effective transfer of genetic material carried by a plasmid.

  6. BioShuttle-mediated Plasmid Transfer

    Science.gov (United States)

    Braun, Klaus; von Brasch, Leonie; Pipkorn, Ruediger; Ehemann, Volker; Jenne, Juergen; Spring, Herbert; Debus, Juergen; Didinger, Bernd; Rittgen, Werner; Waldeck, Waldemar

    2007-01-01

    An efficient gene transfer into target tissues and cells is needed for safe and effective treatment of genetic diseases like cancer. In this paper, we describe the development of a transport system and show its ability for transporting plasmids. This non-viral peptide-based BioShuttle-mediated transfer system consists of a nuclear localization address sequence realizing the delivery of the plasmid phNIS-IRES-EGFP coding for two independent reporter genes into nuclei of HeLa cells. The quantification of the transfer efficiency was achieved by measurements of the sodium iodide symporter activity. EGFP gene expression was measured with Confocal Laser Scanning Microscopy and quantified with biostatistical methods by analysis of the frequency of the amplitude distribution in the CLSM images. The results demonstrate that the “BioShuttle”-Technology is an appropriate tool for an effective transfer of genetic material carried by a plasmid. PMID:18026568

  7. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    and chromosomes from prokaryotic organisms. All known plasmid-encoded par loci specify three components: a cis-acting centromere-like site and two trans-acting proteins that form a nucleoprotein complex at the centromere (i.e. the partition complex). The proteins are encoded by two genes in an operon...... that is autoregulated by the par-encoded proteins. In all cases, the upstream gene encodes an ATPase that is essential for partitioning. Recent cytological analyses indicate that the ATPases function as adaptors between a host-encoded component and the partition complex and thereby tether plasmids and chromosomal...... origin regions to specific subcellular sites (i.e. the poles or quarter-cell positions). Two types of partitioning ATPases are known: the Walker-type ATPases encoded by the par/sop gene family (type I partitioning loci) and the actin-like ATPase encoded by the par locus of plasmid R1 (type II...

  8. BioShuttle-mediated Plasmid Transfer

    OpenAIRE

    Braun, Klaus; von Brasch, Leonie; Pipkorn, Ruediger; Ehemann, Volker; Jenne, Juergen; Spring, Herbert; Debus, Juergen; Didinger, Bernd; Rittgen, Werner; Waldeck, Waldemar

    2007-01-01

    An efficient gene transfer into target tissues and cells is needed for safe and effective treatment of genetic diseases like cancer. In this paper, we describe the development of a transport system and show its ability for transporting plasmids. This non-viral peptide-based BioShuttle-mediated transfer system consists of a nuclear localization address sequence realizing the delivery of the plasmid phNIS-IRES-EGFP coding for two independent reporter genes into nuclei of HeLa cells. The quantif...

  9. Plasmid maintenance functions of the large virulence plasmid of Shigella flexneri.

    OpenAIRE

    Radnedge, L; Davis, M. A.; Youngren, B; Austin, S. J.

    1997-01-01

    The large virulence plasmid pMYSH6000 of Shigella flexneri contains a replicon and a plasmid maintenance stability determinant (Stb) on adjacent SalI fragments. The presence of a RepFIIA replicon on the SalI C fragment was confirmed, and the complete sequence of the adjacent SalI O fragment was determined. It shows homology to part of the transfer (tra) operon of the F plasmid. Stb stabilizes a partition-defective P1 miniplasmid in Escherichia coli. A 1.1-kb region containing a homolog of the...

  10. Plasmid transfer and plasmid-mediated genetic exchange in Brucella abortus.

    OpenAIRE

    Rigby, C E; Fraser, A.D.

    1989-01-01

    Naturally-occurring plasmids and gene transfer mechanisms have not yet been reported in brucellae. Here we show that Brucella abortus is capable of maintaining and transferring the broad-host-range plasmids pTH10 (IncP), pSa (IncW) and R751 (IncP), and describe pTH10-mediated transfer of B. abortus chromosomal genes to Escherichia coli. All three plasmids transferred by conjugation from E. coli to B. abortus S19, and from B. abortus S19 to B. abortus 292 (biovar 4). They were stably maintaine...

  11. Competition between Plasmid-Bearing and Plasmid-Free Organisms in a Chemostat with Pulsed Input and Washout

    Directory of Open Access Journals (Sweden)

    Sanling Yuan

    2009-01-01

    Full Text Available We consider a model of competition between plasmid-bearing and plasmid-free organisms in the chemostat with pulsed input and washout. We investigate the subsystem with nutrient and plasmid-free organism and study the stability of the boundary periodic solutions, which are the boundary periodic solutions of the system. The stability analysis of the boundary periodic solution yields the invasion threshold of the plasmid-bearing organism. By using the standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in substrate, plasmid-free, and plasmid-bearing organisms. Numerical simulations are carried out to illustrate our results.

  12. Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2010-05-01

    Full Text Available Abstract Background Cancer cells simultaneously exhibit glycolysis with lactate secretion and mitochondrial respiration even in the presence of oxygen, a phenomenon known as the Warburg effect. The maintenance of this mixed metabolic phenotype is seemingly counterintuitive given that aerobic glycolysis is far less efficient in terms of ATP yield per moles of glucose than mitochondrial respiration. Results Here, we resolve this apparent contradiction by expanding the notion of metabolic efficiency. We study a reduced flux balance model of ATP production that is constrained by the glucose uptake capacity and by the solvent capacity of the cell's cytoplasm, the latter quantifying the maximum amount of macromolecules that can occupy the intracellular space. At low glucose uptake rates we find that mitochondrial respiration is indeed the most efficient pathway for ATP generation. Above a threshold glucose uptake rate, however, a gradual activation of aerobic glycolysis and slight decrease of mitochondrial respiration results in the highest rate of ATP production. Conclusions Our analyses indicate that the Warburg effect is a favorable catabolic state for all rapidly proliferating mammalian cells with high glucose uptake capacity. It arises because while aerobic glycolysis is less efficient than mitochondrial respiration in terms of ATP yield per glucose uptake, it is more efficient in terms of the required solvent capacity. These results may have direct relevance to chemotherapeutic strategies attempting to target cancer metabolism.

  13. Tryptophan and tyrosine catabolic pattern in neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Ravikumar A

    2000-07-01

    Full Text Available Catabolism of tryptophan and tyrosine in relation to the isoprenoid pathway was studied in neurological and psychiatric disorders. The concentration of trytophan, quinolinic acid, kynurenic acid, serotonin and 5-hydroxyindoleacetic acid was found to be higher in the plasma of patients with all these disorders; while that of tyrosine, dopamine, epinephrine and norepinephrine was lower. There was increase in free fatty acids and decrease in albumin (factors modulating tryptophan transport in the plasma of these patients. Concentration of digoxin, a modulator of amino acid transport, and the activity of HMG CoA reductase, which synthesizes digoxin, were higher in these patients; while RBC membrane Na+-K+ ATPase activity showed a decrease. Concentration of plasma ubiquinone (part of which is synthesised from tyrosine and magnesium was also lower in these patients. No morphine could be detected in the plasma of these patients except in MS. On the other hand, strychnine and nicotine were detectable. These results indicate hypercatabolism of tryptophan and hypocatabolism of tyrosine in these disorders, which could be a consequence of the modulating effect of hypothalamic digoxin on amino acid transport.

  14. Hyaluronan Synthesis, Catabolism, and Signaling in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Larry S. Sherman

    2015-01-01

    Full Text Available The glycosaminoglycan hyaluronan (HA, a component of the extracellular matrix, has been implicated in regulating neural differentiation, survival, proliferation, migration, and cell signaling in the mammalian central nervous system (CNS. HA is found throughout the CNS as a constituent of proteoglycans, especially within perineuronal nets that have been implicated in regulating neuronal activity. HA is also found in the white matter where it is diffusely distributed around astrocytes and oligodendrocytes. Insults to the CNS lead to long-term elevation of HA within damaged tissues, which is linked at least in part to increased transcription of HA synthases. HA accumulation is often accompanied by elevated expression of at least some transmembrane HA receptors including CD44. Hyaluronidases that digest high molecular weight HA into smaller fragments are also elevated following CNS insults and can generate HA digestion products that have unique biological activities. A number of studies, for example, suggest that both the removal of high molecular weight HA and the accumulation of hyaluronidase-generated HA digestion products can impact CNS injuries through mechanisms that include the regulation of progenitor cell differentiation and proliferation. These studies, reviewed here, suggest that targeting HA synthesis, catabolism, and signaling are all potential strategies to promote CNS repair.

  15. Inactivity amplifies the catabolic response of skeletal muscle to cortisol

    Science.gov (United States)

    Ferrando, A. A.; Stuart, C. A.; Sheffield-Moore, M.; Wolfe, R. R.

    1999-01-01

    Severe injury or trauma is accompanied by both hypercortisolemia and prolonged inactivity or bed rest (BR). Trauma and BR alone each result in a loss of muscle nitrogen, albeit through different metabolic alterations. Although BR alone can result in a 2-3% loss of lean body mass, the effects of severe trauma can be 2- to 3-fold greater. We investigated the combined effects of hypercortisolemia and prolonged inactivity on muscle protein metabolism in healthy volunteers. Six males were studied before and after 14 days of strict BR using a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis and breakdown rates of skeletal muscle protein were also directly calculated. Each assessment of protein metabolism was conducted during a 12-h infusion of hydrocortisone sodium succinate (120 microg/kg x h), resulting in blood cortisol concentrations that mimic severe injury (approximately 31 microg/dL). After 14 days of strict BR, hypercortisolemia increased phenylalanine efflux from muscle by 3-fold (P muscle protein breakdown (P muscle protein synthesis. Muscle efflux of glutamine and alanine increased significantly after bed rest due to a significant increase in de novo synthesis (P skeletal muscle to the catabolic effects of hypercortisolemia. Furthermore, these effects on healthy volunteers are analogous to those seen after severe injury.

  16. Allantoin catabolism influences the production of antibiotics in Streptomyces coelicolor.

    Science.gov (United States)

    Navone, Laura; Casati, Paula; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K; Rodriguez, Eduardo; Gramajo, Hugo

    2014-01-01

    Purines are a primary source of carbon and nitrogen in soil; however, their metabolism is poorly understood in Streptomyces. Using a combination of proteomics, metabolomics, and metabolic engineering, we characterized the allantoin pathway in Streptomyces coelicolor. When cells grew in glucose minimal medium with allantoin as the sole nitrogen source, quantitative proteomics identified 38 enzymes upregulated and 28 downregulated. This allowed identifying six new functional enzymes involved in allantoin metabolism in S. coelicolor. From those, using a combination of biochemical and genetic engineering tools, it was found that allantoinase (EC 3.5.2.5) and allantoicase (EC 3.5.3.4) are essential for allantoin metabolism in S. coelicolor. Metabolomics showed that under these growth conditions, there is a significant intracellular accumulation of urea and amino acids, which eventually results in urea and ammonium release into the culture medium. Antibiotic production of a urease mutant strain showed that the catabolism of allantoin, and the subsequent release of ammonium, inhibits antibiotic production. These observations link the antibiotic production impairment with an imbalance in nitrogen metabolism and provide the first evidence of an interaction between purine metabolism and antibiotic biosynthesis.

  17. A product of heme catabolism modulates bacterial function and survival.

    Directory of Open Access Journals (Sweden)

    Christopher L Nobles

    Full Text Available Bilirubin is the terminal metabolite in heme catabolism in mammals. After deposition into bile, bilirubin is released in large quantities into the mammalian gastrointestinal (GI tract. We hypothesized that intestinal bilirubin may modulate the function of enteric bacteria. To test this hypothesis, we investigated the effect of bilirubin on two enteric pathogens; enterohemorrhagic E. coli (EHEC, a Gram-negative that causes life-threatening intestinal infections, and E. faecalis, a Gram-positive human commensal bacterium known to be an opportunistic pathogen with broad-spectrum antibiotic resistance. We demonstrate that bilirubin can protect EHEC from exogenous and host-generated reactive oxygen species (ROS through the absorption of free radicals. In contrast, E. faecalis was highly susceptible to bilirubin, which causes significant membrane disruption and uncoupling of respiratory metabolism in this bacterium. Interestingly, similar results were observed for other Gram-positive bacteria, including B. cereus and S. aureus. A model is proposed whereby bilirubin places distinct selective pressure on enteric bacteria, with Gram-negative bacteria being protected from ROS (positive outcome and Gram-positive bacteria being susceptible to membrane disruption (negative outcome. This work suggests bilirubin has differential but biologically relevant effects on bacteria and justifies additional efforts to determine the role of this neglected waste catabolite in disease processes, including animal models.

  18. Inactivity amplifies the catabolic response of skeletal muscle to cortisol

    Science.gov (United States)

    Ferrando, A. A.; Stuart, C. A.; Sheffield-Moore, M.; Wolfe, R. R.

    1999-01-01

    Severe injury or trauma is accompanied by both hypercortisolemia and prolonged inactivity or bed rest (BR). Trauma and BR alone each result in a loss of muscle nitrogen, albeit through different metabolic alterations. Although BR alone can result in a 2-3% loss of lean body mass, the effects of severe trauma can be 2- to 3-fold greater. We investigated the combined effects of hypercortisolemia and prolonged inactivity on muscle protein metabolism in healthy volunteers. Six males were studied before and after 14 days of strict BR using a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis and breakdown rates of skeletal muscle protein were also directly calculated. Each assessment of protein metabolism was conducted during a 12-h infusion of hydrocortisone sodium succinate (120 microg/kg x h), resulting in blood cortisol concentrations that mimic severe injury (approximately 31 microg/dL). After 14 days of strict BR, hypercortisolemia increased phenylalanine efflux from muscle by 3-fold (P catabolic effects of hypercortisolemia. Furthermore, these effects on healthy volunteers are analogous to those seen after severe injury.

  19. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy.

    Science.gov (United States)

    Sinha, Rohit Anthony; You, Seo-Hee; Zhou, Jin; Siddique, Mobin M; Bay, Boon-Huat; Zhu, Xuguang; Privalsky, Martin L; Cheng, Sheue-Yann; Stevens, Robert D; Summers, Scott A; Newgard, Christopher B; Lazar, Mitchell A; Yen, Paul M

    2012-07-01

    For more than a century, thyroid hormones (THs) have been known to exert powerful catabolic effects, leading to weight loss. Although much has been learned about the molecular mechanisms used by TH receptors (TRs) to regulate gene expression, little is known about the mechanisms by which THs increase oxidative metabolism. Here, we report that TH stimulation of fatty acid β-oxidation is coupled with induction of hepatic autophagy to deliver fatty acids to mitochondria in cell culture and in vivo. Furthermore, blockade of autophagy by autophagy-related 5 (ATG5) siRNA markedly decreased TH-mediated fatty acid β-oxidation in cell culture and in vivo. Consistent with this model, autophagy was altered in livers of mice expressing a mutant TR that causes resistance to the actions of TH as well as in mice with mutant nuclear receptor corepressor (NCoR). These results demonstrate that THs can regulate lipid homeostasis via autophagy and help to explain how THs increase oxidative metabolism.

  20. Increase in sphingolipid catabolic enzyme activity during aging

    Institute of Scientific and Technical Information of China (English)

    Santosh J SACKET; Hae-young CHUNG; Fumikazu OKAJIMA; Dong-soon IM

    2009-01-01

    Aim:To understand the contribution of sphingolipid metabolism and its metabolites to development and aging.Methods: A systemic analysis on the changes in activity of sphingolipid metabolic enzymes in kidney, liver and brain tissues during development and aging was conducted. The study was conducted using tissues from 1-day-old to 720-day-old rats.Results: Catabolic enzyme activities as well as the level of sphingomyelinase (SMase) and ceramidase (CDase) were higher than that of anabolic enzyme activities, sphingomyelin synthase and ceramide synthase. This suggested an accumulation of ceramide and sphingosine during development and aging. The liver showed the highest neutral-SMase activity among the tested enzymes while the kidney and brain exhibited higher neutral-SMase and ceramidase activities, indicating a high production of ceramide in liver and ceramide/sphingosine in the kidney and brain. The activities of sphingolipid metabolic enzymes were significantly elevated in all tested tissues during development and aging, although the onset of significant increase in activity varied on the tissue and enzyme type. During aging, 18 out of 21 enzyme activities were further increased on day 720 compared to day 180.Conclusion: Differential increases in sphingolipid metabolic enzyme activities suggest that sphingolipids including ceramide and sphingosine might play important and dynamic roles in proliferation, differentiation and apoptosis during development and aging.

  1. Characterization of purine catabolic pathway genes in coelacanths.

    Science.gov (United States)

    Forconi, Mariko; Biscotti, Maria Assunta; Barucca, Marco; Buonocore, Francesco; De Moro, Gianluca; Fausto, Anna Maria; Gerdol, Marco; Pallavicini, Alberto; Scapigliati, Giuseppe; Schartl, Manfred; Olmo, Ettore; Canapa, Adriana

    2014-09-01

    Coelacanths are a critically valuable species to explore the gene changes that took place in the transition from aquatic to terrestrial life. One interesting and biologically relevant feature of the genus Latimeria is ureotelism. However not all urea is excreted from the body; in fact high concentrations are retained in plasma and seem to be involved in osmoregulation. The purine catabolic pathway, which leads to urea production in Latimeria, has progressively lost some steps, reflecting an enzyme loss during diversification of terrestrial species. We report the results of analyses of the liver and testis transcriptomes of the Indonesian coelacanth Latimeria menadoensis and of the genome of Latimeria chalumnae, which has recently been fully sequenced in the framework of the coelacanth genome project. We describe five genes, uricase, 5-hydroxyisourate hydrolase, parahox neighbor B, allantoinase, and allantoicase, each coding for one of the five enzymes involved in urate degradation to urea, and report the identification of a putative second form of 5-hydroxyisourate hydrolase that is characteristic of the genus Latimeria. The present data also highlight the activity of the complete purine pathway in the coelacanth liver and suggest its involvement in the maintenance of high plasma urea concentrations.

  2. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and veter

  3. Plasmid maintenance and protein overproduction in selective recycle bioreactors.

    Science.gov (United States)

    Ogden, K L; Davis, R H

    1991-02-20

    A new plasmid construct has been used in conjunction with selective recycle to successfully maintain otherwise unstable plasmid-bearing E. coli cells in a continuous bioreactor and to produce significant amounts of the plasmid-encoded protein beta-lactamase. The plasmid is constructed so that pilin expression, which leads to bacterial flocculation, is under control of the tac operon. The plasmid-bearing cells are induced to flocculate in the separator, whereas cell growth and product synthesis occur in the main fermentation vessel without the inhibiting effects of pilin production. Selective recycle allows for the maintenance of the plasmid-bearing cells by separating flocculent, plasmid-bearing cells from nonflocculent, segregant cells in an inclined settler, and recycling only the plasmid-bearing cells to the reactor. As a result, product expression levels are maintained that are more than ten times the level achieved without selective recycle. All experimental data agree well with theoretical predictions. PMID:18597374

  4. The influence of biofilms in the biology of plasmids

    OpenAIRE

    Cook, Laura C.C.; Dunny, Gary M.

    2014-01-01

    The field of plasmid biology has historically focused on bacteria growing in liquid culture. Surface attached communities of bacterial biofilms have recently been understood to be the normal environment of bacteria in the natural world. Thus, studies examining plasmid replication, maintenance, and transfer in biofilms are essential for a true understanding of bacterial plasmid biology. This chapter reviews the current knowledge of the interplay between bacterial biofilms and plasmids, focusin...

  5. The 2 micron plasmid purloins the yeast cohesin complex

    OpenAIRE

    Mehta, Shwetal; Yang, Xian Mei; Chan, Clarence S.; Dobson, Melanie J.; Jayaram, Makkuni; Velmurugan, Soundarapandian

    2002-01-01

    The yeast 2 micron plasmid achieves high fidelity segregation by coupling its partitioning pathway to that of the chromosomes. Mutations affecting distinct steps of chromosome segregation cause the plasmid to missegregate in tandem with the chromosomes. In the absence of the plasmid stability system, consisting of the Rep1 and Rep2 proteins and the STB DNA, plasmid and chromosome segregations are uncoupled. The Rep proteins, acting in concert, recruit the yeast cohesin complex to the STB locu...

  6. Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids

    OpenAIRE

    Cooper, Tim F; Heinemann, Jack A.

    2000-01-01

    Postsegregational killing (PSK) systems consist of a tightly linked toxin–antitoxin pair. Antitoxin must be continually produced to prevent the longer lived toxin from killing the cell. PSK systems on plasmids are widely believed to benefit the plasmid by ensuring its stable vertical inheritance. However, experimental tests of this “stability” hypothesis were not consistent with its predictions. We suggest an alternative hypothesis to explain the evolution of PSK: ...

  7. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed. PMID:26851837

  8. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed.

  9. Irritability rather than depression during interferon treatment is linked to increased tryptophan catabolism

    NARCIS (Netherlands)

    Russo, S; Kema, IP; Haagsma, EB; Boon, JC; Willemse, PHB; Den Boer, JA; De Vries, EGE; Korf, J

    2005-01-01

    Objective: Treatment with recombinant interferon is associated with high rates of psychiatric comorbidity. We investigated the relation between catabolism of the essential amino acid tryptophan, being rate-limiting of peripheral and cerebral serotonin formation, and psychiatric symptoms in patients

  10. Compositional discordance between prokaryotic plasmids and host chromosomes

    NARCIS (Netherlands)

    M.W.J. van Passel; A. Bart; A.C.M. Luyf; A.H.C. van Kampen; A. van der Ende

    2006-01-01

    Background: Most plasmids depend on the host replication machinery and possess partitioning genes. These properties confine plasmids to a limited range of hosts, yielding a close and presumably stable relationship between plasmid and host. Hence, it is anticipated that due to amelioration the dinucl

  11. Plasmid Segregation: Spatial Awareness at the Molecular Level

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Gerdes, Kenn

    2007-01-01

    In bacteria, low-copy number plasmids ensure their stable inheritance by partition loci (par), which actively distribute plasmid replicates to each side of the cell division plane. Using time-lapse fluorescence microscopic tracking of segregating plasmid molecules, a new study provides novel...

  12. Cloning of Two Bacteriocin Genes from a Lactococcal Bacteriocin Plasmid

    NARCIS (Netherlands)

    Belkum, Marco J. van; Hayema, Bert Jan; Geis, Arnold; Kok, Jan; Venema, Gerard

    1989-01-01

    Lactococcus lactis subsp. cremoris 9B4 plasmid p9B4-6 (60 kilobases [kb]), which specifies bacteriocin production and immunity, was analyzed with restriction endonucleases, and fragments of this plasmid were cloned into shuttle vectors based on the broad-host-range plasmid pWVO1. Two regions on p9B4

  13. Abscisic Acid Catabolism in Maize Kernels in Response to Water Deficit at Early Endosperm Development

    OpenAIRE

    Wang, Zhaolong; MAMBELLI, STEFANIA; SETTER, TIM L.

    2002-01-01

    To further our understanding of the greater susceptibility of apical kernels in maize inflorescences to water stress, abscisic acid (ABA) catabolism activity was evaluated in developing kernels with chirally separated (+)‐[3H]ABA. The predominant pathway of ABA catabolism was via 8′‐hydroxylase to form phaseic acid, while conjugation to glucose was minor. In response to water deficit imposed on whole plants during kernel development, ABA accumulated to higher concentrations in apical than bas...

  14. Glutamine synthesis is a regulatory signal controlling glucose catabolism in Saccharomyces cerevisiae.

    OpenAIRE

    Flores-Samaniego, B; Olivera, H; González, A.

    1993-01-01

    The effect of glutamine biosynthesis and degradation on glucose catabolism in Saccharomyces cerevisiae was studied. A wild-type strain and mutants altered in glutamine biosynthesis and degradation were analyzed. Cells having low levels of glutamine synthetase activity showed high ATP/ADP ratios and a diminished rate of glucose metabolism. It is proposed that glutamine biosynthesis plays a role in the regulation of glucose catabolism.

  15. Competition between Plasmid-Bearing and Plasmid-Free Organisms in a Chemostat with Pulsed Input and Washout

    OpenAIRE

    Sanling Yuan; Yu Zhao; Anfeng Xiao

    2009-01-01

    We consider a model of competition between plasmid-bearing and plasmid-free organisms in the chemostat with pulsed input and washout. We investigate the subsystem with nutrient and plasmid-free organism and study the stability of the boundary periodic solutions, which are the boundary periodic solutions of the system. The stability analysis of the boundary periodic solution yields the invasion threshold of the plasmid-bearing organism. By using the standard techniques of bifurcation theory, w...

  16. Co-segregation of yeast plasmid sisters under monopolin-directed mitosis suggests association of plasmid sisters with sister chromatids

    OpenAIRE

    Liu, Yen-Ting; Ma, Chien-Hui; Jayaram, Makkuni

    2013-01-01

    The 2-micron plasmid, a high copy extrachromosomal element in Saccharomyces cerevisiae, propagates itself with nearly the same stability as the chromosomes of its host. Plasmid stability is conferred by a partitioning system consisting of the plasmid-coded proteins Rep1 and Rep2 and a cis-acting locus STB. Circumstantial evidence suggests that the partitioning system couples plasmid segregation to chromosome segregation during mitosis. However, the coupling mechanism has not been elucidated. ...

  17. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease.

    Science.gov (United States)

    Romani, Luigina; Fallarino, Francesca; De Luca, Antonella; Montagnoli, Claudia; D'Angelo, Carmen; Zelante, Teresa; Vacca, Carmine; Bistoni, Francesco; Fioretti, Maria C; Grohmann, Ursula; Segal, Brahm H; Puccetti, Paolo

    2008-01-10

    Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.

  18. Morphine enhances purine nucleotide catabolism in rive and in vitro

    Institute of Scientific and Technical Information of China (English)

    Chang LIU; Jian-kai LIU; Mu-jie KAN; Lin GAO; Hai-ying FU; Hang ZHOU; Min HONG

    2007-01-01

    Aim: To investigate the effect and mechanism of morphine on purine nucleotide catabolism. Methods: The rat model of morphine dependence and withdrawal and rat C6 glioma cells in culture were used. Concentrations of uric acid in the plasma were measured by the uricase-rap method, adenosine deaminase (ADA) and xan- thine oxidase (XO) in the plasma and tissues were measured by the ADA and XO test kit. RT-PCR and RT-PCR-Southern blotting were used to examine the relative amount of ADA and XO gene transcripts in tissues and C6 cells. Results: (i) the concentration of plasma uric acid in the morphine-administered group was signifi-cantly higher (P<0.05) than the control group; (ii) during morphine administration and withdrawal periods, the ADA and XO concentrations in the plasma increased significantly (P<0.05); (iii) the amount of ADA and XO in the parietal lobe, liver, small intestine, and skeletal muscles of the morphine-administered groups increased, while the level of ADA and XO in those tissues of the withdrawal groups decreased; (iv) the transcripts of the ADA and XO genes in the parietal lobe, liver, small intestine, and skeletal muscles were higher in the morphine-administered group. The expression of the ADA and XO genes in those tissues returned to the control level during morphine withdrawal, with the exception of the skeletal muscles; and (v) the upregulation of the expression of the ADA and XO genes induced by morphine treatment could be reversed by naloxone. Conclusion: The effects of morphine on purine nucleotide metabolism might be an important, new biochemical pharmacological mechanism of morphine action.

  19. THE INTEGRATED STATE OF THE ROLLING-CIRCLE PLASMID PTB913 IN THE COMPOSITE BACILLUS PLASMID PTB19

    NARCIS (Netherlands)

    OSKAM, L; HILLENGA, DJ; VENEMA, G; BRON, S

    1992-01-01

    pTB19, a 27 kb plasmid originating from a thermophilic Bacillus species, contains integrated copies of two rolling-circle type plasmids on a 10.6 kb DNA fragment. In the present study we analysed the part of pTB19 that contains the rolling-circle plasmid pTB913 and the region in between the two roll

  20. Stable inheritance of plasmid R1 requires two different loci.

    OpenAIRE

    Gerdes, K; Larsen, J E; Molin, S

    1985-01-01

    The largest EcoRI fragment from plasmid R1 mediates a stability phenotype which is required to ensure the stable inheritance of this low-copy-number plasmid. When covalently linked to small, unstable R1 derivatives, this fragment makes the plasmids as stable as the wild-type R1 plasmid. A genetic analysis showed that two independently acting stabilization functions are encoded by this EcoRI fragment, both of which have the potential of partial stabilization of mini-R1 plasmids. The two loci a...

  1. DNA restriction-modification systems mediate plasmid maintenance.

    OpenAIRE

    Kulakauskas, S; Lubys, A; Ehrlich, S. D.

    1995-01-01

    Two plasmid-carried restriction-modification (R-M) systems, EcoRI (from pMB1 of Escherichia coli) and Bsp6I (from pXH13 of Bacillus sp. strain RFL6), enhance plasmid segregational stability in E. coli and Bacillus subtilis, respectively. Inactivation of the endonuclease or the presence of the methylase in trans abolish the stabilizing activity of the R-M systems. We propose that R-M systems mediate plasmid segregational stability by postsegregational killing of plasmid-free cells. Plasmid-enc...

  2. Role of Plasmid in Production of Acetobacter Xylinum Biofilms

    Directory of Open Access Journals (Sweden)

    Abbas Rezaee

    2005-01-01

    Full Text Available Acetobacter xylinum has the ability to produce cellulotic biofilms. Bacterial cellulose is expected to be used in many industrial or biomedical materials for its unique characteristics. A. xylinum contains a complex system of plasmid DNA molecules. A 44 kilobases (kb plasmid was isolated in wild type of A. xylinum. To improve the cellulose producing ability of A. xylinum, role of the plasmid in production of cellulose was studied. The comparisons between wild type and cured cells of A. xylinum showed that there is considerably difference in cellulose production. In order to study the relationship between plasmid and the rate of cellulose production, bacteria were screened for plasmid profile by a modified method for preparation of plasmid. This method yields high levels of pure plasmid DNA that can be used for common molecular techniques, such as digestion and transformation, with high efficiency.

  3. Deficient sumoylation of yeast 2-micron plasmid proteins Rep1 and Rep2 associated with their loss from the plasmid-partitioning locus and impaired plasmid inheritance.

    Directory of Open Access Journals (Sweden)

    Jordan B Pinder

    Full Text Available The 2-micron plasmid of the budding yeast Saccharomyces cerevisiae encodes copy-number amplification and partitioning systems that enable the plasmid to persist despite conferring no advantage to its host. Plasmid partitioning requires interaction of the plasmid Rep1 and Rep2 proteins with each other and with the plasmid-partitioning locus STB. Here we demonstrate that Rep1 stability is reduced in the absence of Rep2, and that both Rep proteins are sumoylated. Lysine-to-arginine substitutions in Rep1 and Rep2 that inhibited their sumoylation perturbed plasmid inheritance without affecting Rep protein stability or two-hybrid interaction between Rep1 and Rep2. One-hybrid and chromatin immunoprecipitation assays revealed that Rep1 was required for efficient retention of Rep2 at STB and that sumoylation-deficient mutants of Rep1 and Rep2 were impaired for association with STB. The normal co-localization of both Rep proteins with the punctate nuclear plasmid foci was also lost when Rep1 was sumoylation-deficient. The correlation of Rep protein sumoylation status with plasmid-partitioning locus association suggests a theme common to eukaryotic chromosome segregation proteins, sumoylated forms of which are found enriched at centromeres, and between the yeast 2-micron plasmid and viral episomes that depend on sumoylation of their maintenance proteins for persistence in their hosts.

  4. Modeling sRNA-regulated Plasmid Maintenance

    CERN Document Server

    Gong, Chen Chris

    2016-01-01

    We study a theoretical model for the toxin-antitoxin (hok/sok) mechanism for plasmid maintenance in bacteria. Toxin-antitoxin systems enforce the maintenance of a plasmid through post-segregational killing of cells that have lost the plasmid. Key to their function is the tight regulation of expression of a protein toxin by an sRNA antitoxin. Here, we focus on the nonlinear nature of the regulatory circuit dynamics of the toxin-antitoxin mechanism. The mechanism relies on a transient increase in protein concentration rather than on the steady state of the genetic circuit. Through a systematic analysis of the parameter dependence of this transient increase, we confirm some known design features of this system and identify new ones: for an efficient toxin-antitoxin mechanism, the synthesis rate of the toxin's mRNA template should be lower that of the sRNA antitoxin, the mRNA template should be more stable than the sRNA antitoxin, and the mRNA-sRNA complex should be more stable than the sRNA antitoxin. Moreover, ...

  5. Imbalanced protein expression patterns of anabolic, catabolic, anti-catabolic and inflammatory cytokines in degenerative cervical disc cells: new indications for gene therapeutic treatments of cervical disc diseases.

    Directory of Open Access Journals (Sweden)

    Demissew S Mern

    Full Text Available Degenerative disc disease (DDD of the cervical spine is common after middle age and can cause loss of disc height with painful nerve impingement, bone and joint inflammation. Despite the clinical importance of these problems, in current publications the pathology of cervical disc degeneration has been studied merely from a morphologic view point using magnetic resonance imaging (MRI, without addressing the issue of biological treatment approaches. So far a wide range of endogenously expressed bioactive factors in degenerative cervical disc cells has not yet been investigated, despite its importance for gene therapeutic approaches. Although degenerative lumbar disc cells have been targeted by different biological treatment approaches, the quantities of disc cells and the concentrations of gene therapeutic factors used in animal models differ extremely. These indicate lack of experimentally acquired data regarding disc cell proliferation and levels of target proteins. Therefore, we analysed proliferation and endogenous expression levels of anabolic, catabolic, ant-catabolic, inflammatory cytokines and matrix proteins of degenerative cervical disc cells in three-dimensional cultures. Preoperative MRI grading of cervical discs was used, then grade III and IV nucleus pulposus (NP tissues were isolated from 15 patients, operated due to cervical disc herniation. NP cells were cultured for four weeks with low-glucose in collagen I scaffold. Their proliferation rates were analysed using 3-(4, 5-dimethylthiazolyl-2-2,5-diphenyltetrazolium bromide. Their protein expression levels of 28 therapeutic targets were analysed using enzyme-linked immunosorbent assay. During progressive grades of degeneration NP cell proliferation rates were similar. Significantly decreased aggrecan and collagen II expressions (P<0.0001 were accompanied by accumulations of selective catabolic and inflammatory cytokines (disintegrin and metalloproteinase with thrombospondin motifs 4

  6. PLASMID-ENCODED PHTHALATE CATABOLIC PATHWAY IN ARTHROBACTER KEYSERI 12B: BIOTRANSFORMATIONS OF 2-SUBSTITUTED BENZOATES AND THEIR USE IN CLONING AND CHARACTERIZATION OF PHTHALATE CATABOLISM GENES AND GENE PRODUCTS

    Science.gov (United States)

    Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates)...

  7. Determination of Plasmid Segregational Stability in a Growing Bacterial Population.

    Science.gov (United States)

    Kramer, M Gabriela

    2016-01-01

    Bacterial plasmids are extensively used as cloning vectors for a number of genes for academic and commercial purposes. Moreover, attenuated bacteria carrying recombinant plasmids expressing genes with anti-tumor activity have shown promising therapeutic results in animal models of cancer. Equitable plasmid distribution between daughter cells during cell division, i.e., plasmid segregational stability, depends on many factors, including the plasmid copy number, its replication mechanism, the levels of recombinant gene expression, the type of bacterial host, and the metabolic burden associated with all these factors. Plasmid vectors usually code for antibiotic-resistant functions, and, in order to enrich the culture with bacteria containing plasmids, antibiotic selective pressure is commonly used to eliminate plasmid-free segregants from the growing population. However, administration of antibiotics can be inconvenient for many industrial and therapeutic applications. Extensive ongoing research is being carried out to develop stably-inherited plasmid vectors. Here, I present an easy and precise method for determining the kinetics of plasmid loss or maintenance for every ten generations of bacterial growth in culture. PMID:26846807

  8. Comparative analysis of plasmids in the genus Listeria.

    Directory of Open Access Journals (Sweden)

    Carsten Kuenne

    Full Text Available BACKGROUND: We sequenced four plasmids of the genus Listeria, including two novel plasmids from L. monocytogenes serotype 1/2c and 7 strains as well as one from the species L. grayi. A comparative analysis in conjunction with 10 published Listeria plasmids revealed a common evolutionary background. PRINCIPAL FINDINGS: All analysed plasmids share a common replicon-type related to theta-replicating plasmid pAMbeta1. Nonetheless plasmids could be broadly divided into two distinct groups based on replicon diversity and the genetic content of the respective plasmid groups. Listeria plasmids are characterized by the presence of a large number of diverse mobile genetic elements and a commonly occurring translesion DNA polymerase both of which have probably contributed to the evolution of these plasmids. We detected small non-coding RNAs on some plasmids that were homologous to those present on the chromosome of L. monocytogenes EGD-e. Multiple genes involved in heavy metal resistance (cadmium, copper, arsenite as well as multidrug efflux (MDR, SMR, MATE were detected on all listerial plasmids. These factors promote bacterial growth and survival in the environment and may have been acquired as a result of selective pressure due to the use of disinfectants in food processing environments. MDR efflux pumps have also recently been shown to promote transport of cyclic diadenosine monophosphate (c-di-AMP as a secreted molecule able to trigger a cytosolic host immune response following infection. CONCLUSIONS: The comparative analysis of 14 plasmids of genus Listeria implied the existence of a common ancestor. Ubiquitously-occurring MDR genes on plasmids and their role in listerial infection now deserve further attention.

  9. Substrate uptake and subcellular compartmentation of anoxic cholesterol catabolism in Sterolibacterium denitrificans.

    Science.gov (United States)

    Lin, Ching-Wen; Wang, Po-Hsiang; Ismail, Wael; Tsai, Yu-Wen; El Nayal, Ashraf; Yang, Chia-Ying; Yang, Fu-Chun; Wang, Chia-Hsiang; Chiang, Yin-Ru

    2015-01-01

    Cholesterol catabolism by actinobacteria has been extensively studied. In contrast, the uptake and catabolism of cholesterol by Gram-negative species are poorly understood. Here, we investigated microbial cholesterol catabolism at the subcellular level. (13)C metabolomic analysis revealed that anaerobically grown Sterolibacterium denitrificans, a β-proteobacterium, adopts an oxygenase-independent pathway to degrade cholesterol. S. denitrificans cells did not produce biosurfactants upon growth on cholesterol and exhibited high cell surface hydrophobicity. Moreover, S. denitrificans did not produce extracellular catabolic enzymes to transform cholesterol. Accordingly, S. denitrificans accessed cholesterol by direction adhesion. Cholesterol is imported through the outer membrane via a putative FadL-like transport system, which is induced by neutral sterols. The outer membrane steroid transporter is able to selectively import various C27 sterols into the periplasm. S. denitrificans spheroplasts exhibited a significantly higher efficiency in cholest-4-en-3-one-26-oic acid uptake than in cholesterol uptake. We separated S. denitrificans proteins into four fractions, namely the outer membrane, periplasm, inner membrane, and cytoplasm, and we observed the individual catabolic reactions within them. Our data indicated that, in the periplasm, various periplasmic and peripheral membrane enzymes transform cholesterol into cholest-4-en-3-one-26-oic acid. The C27 acidic steroid is then transported into the cytoplasm, in which side-chain degradation and the subsequent sterane cleavage occur. This study sheds light into microbial cholesterol metabolism under anoxic conditions.

  10. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells.

    OpenAIRE

    Gerdes, K; Rasmussen, P. B.; Molin, S

    1986-01-01

    The stability locus parB+ of plasmid R1 has been found to specify a unique type of plasmid maintenance function. Two genes, hok (host killing) and sok (suppressor of killing), are required for the stabilizing activity. The hok gene encodes a highly toxic gene product, whose overexpression causes a rapid killing and a concomitant dramatic change in morphology of the host cell. The other gene, sok, was found to encode a product that counteracts the hok gene-mediated killing. The parB+ region wa...

  11. Molecular characterization of "plasmid-free" antibiotic-resistant Haemophilus influenzae.

    OpenAIRE

    Roberts, M C; Smith, A. L.

    1980-01-01

    We examined 14 multiresistant and 8 ampicillin- or tetracycline-resistant Haemophilus influenzae isolates and 4 ampicillin-resistant H. parainfluenzae isolates for plasmid deoxyribonucleic acid. Sixteen strains carried plasmids. Both "plasmid-free" and plasmid-carrying isolates transferred the antibiotic resistance by conjugation. All transconjugants carried plasmid deoxyribonucleic acid, suggesting that the apparent plasmid-free strains contained R plasmids encoding for antibiotic resistance.

  12. Permissiveness of soil microbial communities towards broad host range plasmids

    DEFF Research Database (Denmark)

    Klümper, Uli

    for plasmids carrying antibiotic resistance genes is increasingly suspected to majorly contribute to the emergence of multi-resistant pathogens. More specifically, I examined what fraction of a soil microbial community is permissive to plasmids, identified the phylogenetic identity of this fraction and studied......Horizontal transfer of mobile genetic elements facilitates adaptive and evolutionary processes in bacteria. Among the known mobile genetic elements, plasmids can confer their hosts with accessory adaptive traits, such as antibiotic or heavy metal resistances, or additional metabolic pathways....... Plasmids are implicated in the rapid spread of antibiotic resistance and the emergence of multi-resistant pathogenic bacteria, making it crucial to be able to quantify, understand, and, ideally, control plasmid transfer in mixed microbial communities. The fate of plasmids in microbial communities...

  13. Transformation of Haemophilus influenzae by plasmid RSF0885

    Energy Technology Data Exchange (ETDEWEB)

    Notani, N.K.; Setlow, J.K.; McCarthy, D.; Clayton, N.L.

    1981-12-01

    Plasmid RSF0885, which conferred ampicillin resistance, transformed competent Haemophilus influenzae cells with low efficiency (maximun, less than 0.01%). As judged by competition experiments and uptake of radioactivity, plasmid RSF0885 deoxyribonucleic acid was taken up into competent H. influenzae cells several orders of magnitude less efficiently than H. influenzae chromosomal deoxyribonucleic acid. Plasmid RSF0885 transformed cells with even lower efficiency than could be accounted for by the low uptake. Transformation was not affected by rec-1 and rec-2 mutations in the recipient, and strains cured of the plasmid did not show increased transformation. Plasmid molecules cut once with a restriction enzyme that made blunt ends did not transform. Transformation was favored by the closed circular form of the plasmid.

  14. Understanding Sugar Catabolism in Unicellular Cyanobacteria Toward the Application in Biofuel and Biomaterial Production.

    Science.gov (United States)

    Osanai, Takashi; Iijima, Hiroko; Hirai, Masami Yokota

    2016-01-01

    Synechocystis sp. PCC 6803 is a model species of the cyanobacteria that undergo oxygenic photosynthesis, and has garnered much attention for its potential biotechnological applications. The regulatory mechanism of sugar metabolism in this cyanobacterium has been intensively studied and recent omics approaches have revealed the changes in transcripts, proteins, and metabolites of sugar catabolism under different light and nutrient conditions. Several transcriptional regulators that control the gene expression of enzymes related to sugar catabolism have been identified in the past 10 years, including a sigma factor, transcription factors, and histidine kinases. The modification of these genes can lead to alterations in the primary metabolism as well as the levels of high-value products such as bioplastics and hydrogen. This review summarizes recent studies on sugar catabolism in Synechocystis sp. PCC 6803, emphasizing the importance of elucidating the molecular mechanisms of cyanobacterial metabolism for biotechnological applications. PMID:27023248

  15. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Andersen, Joakim Mark; Barrangou, Rodolphe; Abou Hachem, Maher;

    2012-01-01

    -phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively...... and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC...... (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6...

  16. Streamlined Purification of Plasmid DNA From Prokaryotic Cultures

    OpenAIRE

    Pueschel, Laura; Li, Hongshan; Hymes, Matthew

    2011-01-01

    We describe the complete process of AcroPrep Advance Filter Plates for 96 plasmid preparations, starting from prokaryotic culture and ending with high purity DNA. Based on multi-well filtration for bacterial lysate clearance and DNA purification, this method creates a streamlined process for plasmid preparation. Filter plates containing silica-based media can easily be processed by vacuum filtration or centrifuge to yield appreciable quantities of plasmid DNA. Quantitative analyses determine ...

  17. Processes for the production of pharmaceutical grade plasmid DNA

    OpenAIRE

    Voß, Carsten

    2008-01-01

    Plasmid DNA is currently used in gene therapy and genetic vaccination as a vector system for the delivery of therapeutic genes. Clinical trials as well as future therapeutics demand large amounts of high quality plasmid DNA that fulfils the specifications set by regulatory authorities. This thesis describes the development, analysis, and evaluation of pharmaceutical plasmid DNA production processes comprising cultivation, product isolation, and purification as well as stability assessment dur...

  18. Identification of plasmid partition function in coryneform bacteria.

    OpenAIRE

    Kurusu, Y; Satoh, Y.; Inui, M.; Kohama, K; Kobayashi, M.; Terasawa, M.; Yukawa, H

    1991-01-01

    We have identified and characterized a partition function that is required for stable maintenance of plasmids in the coryneform bacteria Brevibacterium flavum MJ233 and Corynebacterium glutamicum ATCC 31831. This function is localized to a HindIII-NspV fragment (673 bp) adjacent to the replication region of the plasmid, named pBY503, from Brevibacterium stationis IFO 12144. The function was independent of copy number control and was not associated directly with plasmid replication functions. ...

  19. Pathogenomics of the Virulence Plasmids of Escherichia coli

    OpenAIRE

    Johnson, Timothy J.; Lisa K. Nolan

    2009-01-01

    Summary: Bacterial plasmids are self-replicating, extrachromosomal elements that are key agents of change in microbial populations. They promote the dissemination of a variety of traits, including virulence, enhanced fitness, resistance to antimicrobial agents, and metabolism of rare substances. Escherichia coli, perhaps the most studied of microorganisms, has been found to possess a variety of plasmid types. Included among these are plasmids associated with virulence. Several types of E. col...

  20. Safety and efficacy of DNA vaccines: Plasmids vs. minicircles

    OpenAIRE

    Stenler, Sofia; Blomberg, Pontus; Smith, Ci Edvard

    2014-01-01

    While DNA vaccination using plasmid vectors is highly attractive, there is a need for further vector optimization regarding safety, stability, and efficiency. In this commentary, we review the minicircle vector (MC), which is an entity devoid of plasmid bacterial sequences, as an alternative to the traditional plasmid construct. The commentary highlights the recent discovery by Stenler et al. (2014) that the small size of an MC enables improved resistance to the shearing forces associated wit...

  1. Degradative Plasmid and Heavy Metal Resistance Plasmid Naturally Coexist in Phenol and Cyanide Assimilating Bacteria

    OpenAIRE

    Bahig E.  Deeb; Abdullah D. Altalhi

    2009-01-01

    Problem statement: Heavy metals are known to be powerful inhibitors of xenobiotics biodegradation activities. Alleviation the inhibitory effect of these metals on the phenol biodegradation activities in presence of heavy metals resistant plasmid was investigated. Approach: Combination of genetic systems of degradation of xenobiotic compound and heavy metal resistance was one of the approaches to the creation of polyfunctional strains for bioremediation of s...

  2. Photonic plasmid stability of transformed Salmonella typhimurium: A comparison of three unique plasmids

    Science.gov (United States)

    Acquiring a highly stable photonic plasmid in transformed Salmonella typhimurium for use in biophotonic studies of bacterial tracking in vivo is critical to experimental paradigm development. The objective of this study was to determine stability of transformed Salmonella typhimurium (S. typh-lux) u...

  3. Photonic plasmid stability of transformed Salmonella Typhimurium: A comparison of three unique plasmids

    Directory of Open Access Journals (Sweden)

    Lay Donald

    2009-07-01

    Full Text Available Abstract Background Acquiring a highly stable photonic plasmid in transformed Salmonella Typhimurium for use in biophotonic studies of bacterial tracking in vivo is critical to experimental paradigm development. The objective of this study was to determine stability of transformed Salmonella Typhimurium (S. typh-lux using three different plasmids and characterize their respective photonic properties. Results In presence of ampicillin (AMP, S. typh-lux with pCGLS-1, pAK1-lux and pXEN-1 plasmids exhibited 100% photon-emitting colonies over a 10-d study period. Photon emitters of S. typh-lux with pCGLS-1, pAK1-lux and pXEN-1 without AMP selection decreased over time (P 7 to 1 × 109 CFU, P 0.05; although photonic emissions across a range of bacterial concentrations were not different (1 × 104 to 1 × 106 CFU, P > 0.05. For very low density bacterial concentrations imaged in 96 well plates photonic emissions were positively correlated with bacterial concentration (P 3 to 1 × 105 CFU low to high were different in the 96-well plate format (P Conclusion These data characterize photon stability properties for S. typh-lux transformed with three different photon generating plasmids that may facilitate real-time Salmonella tracking using in vivo or in situ biophotonic paradigms.

  4. Photonic Plasmid Stability of Transformed Salmonella Typhimurium: A Comparison of Three Unique Plasmids

    Science.gov (United States)

    Background: Acquiring a highly stable photonic plasmid in transformed Salmonella Typhimurium for use in biophotonic studies of bacterial tracking in vivo is critical to experimental paradigm development. The objective of this study was to determine stability of transformed Salmonella Typhimurium (S....

  5. Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Egebo, L A; Nielsen, S V; Jochimsen, B U

    1991-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid (IAA). Examination of this catabolism in strain 110 by in vivo experiments has revealed an enzymatic activity catalyzing the degradation of IAA and 5-hydroxy-indole-3-acetic acid. The activity requires...... an oxygen-consuming opening of the indole ring analogous to the one catalyzed by tryptophan 2,3-dioxygenase. The pattern of metabolite usage by known tryptophan-auxotrophic mutants and studies of metabolites by high-performance liquid chromatography indicate that anthranilic acid is a terminal degradation...

  6. Isolation of a mutation resulting in constitutive synthesis of L-fucose catabolic enzymes.

    OpenAIRE

    Bartkus, J. M.; Mortlock, R. P.

    1986-01-01

    A ribitol-positive transductant of Escherichia coli K-12, JM2112, was used to facilitate the isolation and identification of mutations affecting the L-fucose catabolic pathway. Analysis of L-fucose-negative mutants of JM2112 enabled us to confirm that L-fucose-1-phosphate is the apparent inducer of the fucose catabolic enzymes. Plating of an L-fuculokinase-negative mutant of JM2112 on D-arabinose yielded an isolate containing a second fucose mutation which resulted in the constitutive synthes...

  7. Bacteriophages Limit the Existence Conditions for Conjugative Plasmids

    Science.gov (United States)

    Wood, A. Jamie; Dytham, Calvin; Pitchford, Jonathan W.; Truman, Julie; Spiers, Andrew; Paterson, Steve; Brockhurst, Michael A.

    2015-01-01

    ABSTRACT Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria interact to determine the dynamics of conjugative plasmids and their persistence. The ecological effects of bacteriophages on bacteria are predicted to limit the existence conditions for conjugative plasmids, preventing persistence under weak selection for plasmid accessory traits. Experiments showed that phages drove faster extinction of plasmids in environments where the plasmid conferred no benefit, but they also revealed more complex effects of phages on plasmid dynamics under these conditions, specifically, the temporary maintenance of plasmids at fixation followed by rapid loss. We hypothesized that the population genetic effects of bacteriophages, specifically, selection for phage resistance mutations, may have caused this. Further mathematical modeling and individual-based simulations supported our hypothesis, showing that conjugative plasmids may hitchhike with phage resistance mutations in the bacterial chromosome. PMID:26037122

  8. Plasmid genes required for microcin B17 production.

    Science.gov (United States)

    San Millán, J L; Kolter, R; Moreno, F

    1985-09-01

    The production of the antibiotic substance microcin B17 (Mcc) is determined by a 3.5-kilobase DNA fragment from plasmid pMccB17. Several Mcc- mutations on plasmid pMccB17 were obtained by both transposon insertion and nitrosoguanidine mutagenesis. Plasmids carrying these mutations were tested for their ability to complement Mcc- insertion or deletion mutations on pMM102 (pMM102 is a pBR322 derivative carrying the region encoding microcin B17). Results from these experiments indicate that at least four plasmid genes are required for microcin production.

  9. Identification of plasmid partition function in coryneform bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kurusu, Yasurou; Satoh, Yukie; Inui, Masayuki; Kohama, Keiko; Kobayashi, Miki; Terasawa, Masato; Yukawa, Hideaki (Mitsubishi Petrochemical Co., Ltd., Ibaraki (Japan))

    1991-03-01

    The authors have identified and characterized a partition function that is required for stable maintenance of plasmids in the coryneform bacteria Brevibacterium flavum MJ233 and Corynebacterium glutamicum ATCC 31831. This function is localized to a HindIII-NspV fragment (673 bp) adjacent to the replication region of the plasmid, named pBY503, from Brevibacterium stationis IFO 12144. The function was independent of copy number control and was not associated directly with plasmid replication functions. This fragment was able to stabilize the unstable plasmids in cis but not in trans.

  10. Plasmids foster diversification and adaptation of bacterial populations in soil.

    Science.gov (United States)

    Heuer, Holger; Smalla, Kornelia

    2012-11-01

    It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil.

  11. Characterization of a plasmid from moderately halophilic eubacteria

    OpenAIRE

    Fernández Castillo, Rosario; Vargas, C.; Nieto Gutiérrez, Joaquín José; Ventosa Ucero, Antonio; Ruiz Berraquero, Francisco

    1992-01-01

    A plasmid has been isolated for the first time from moderately halophilic eubacteria. Halomonas elongata, Halomonrrs halmphila, Deleya halophila and Vibrio costkola were found to harbour an 11.5 kbp plasmid (pMH1). The plasmid was isolated and characterized after transformation into Escherichia coh'JM101 cells. A restriction map was constructed, and unique restriction sites for EcoRI, EcoRV and ClaI were detected. The occurrence of such a plasmid in the original halophilic strains was confirm...

  12. Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon

    Directory of Open Access Journals (Sweden)

    Andre Mancebo Mazzetto

    2016-03-01

    Full Text Available Abstract Land use changes strongly impact soil functions, particularly microbial biomass diversity and activity. We hypothesized that the catabolic respiration response of the microbial biomass would differ depending on land use and that these differences would be consistent at the landscape scale. In the present study, we analyzed the catabolic response profile of the soil microbial biomass through substrate-induced respiration in different land uses over a wide geographical range in Mato Grosso and Rondônia state (Southwest Amazon region. We analyzed the differences among native areas, pastures and crop areas and within each land use and examined only native areas (Forest, Dense Cerrado and Cerrado, pastures (Nominal, Degraded and Improved and crop areas (Perennial, No-Tillage, Conventional Tillage. The metabolic profile of the microbial biomass was accessed using substrate-induced respiration. Pasture soils showed significant responses to amino acids and carboxylic acids, whereas native areas showed higher responses to malonic acid, malic acid and succinic acid. Within each land use category, the catabolic responses showed similar patterns in both large general comparisons (native area, pasture and crop areas and more specific comparisons (biomes, pastures and crop types. The results showed that the catabolic responses of the microbial biomass are highly correlated with land use, independent of soil type or climate. The substrate induced respiration approach is useful to discriminate microbial communities, even on a large scale.

  13. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary start...

  14. Catabolism of pyrimidines in yeast: A tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, Gorm; Merico, A.; Bjornberg, O.;

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides...

  15. Catabolism of pyrimidines in yeast: a tool to understand degradation of anticancer drugs

    DEFF Research Database (Denmark)

    Andersen, G; Merico, A; Björnberg, O;

    2006-01-01

    The pyrimidine catabolic pathway is of crucial importance in cancer patients because it is involved in degradation of several chemotherapeutic drugs, such as 5-fluorouracil; it also is important in plants, unicellular eukaryotes, and bacteria for the degradation of pyrimidine-based biocides...

  16. Mechanical ventilation induces myokine expression and catabolism in peripheral skeletal muscle in pigs

    Science.gov (United States)

    Endotoxin (LPS)-induced sepsis increases circulating cytokines which have been associated with skeletal muscle catabolism. During critical illness, it has been postulated that muscle wasting associated with mechanical ventilation (MV) occurs due to inactivity. We hypothesize that MV and sepsis promo...

  17. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis.

    Science.gov (United States)

    Green, Courtney R; Wallace, Martina; Divakaruni, Ajit S; Phillips, Susan A; Murphy, Anne N; Ciaraldi, Theodore P; Metallo, Christian M

    2016-01-01

    Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation. PMID:26571352

  18. Phytochemicals that modulate amino acid and peptide catabolism by caprine rumen microbes

    Science.gov (United States)

    Background: Microbe-derived ionophores and macrolide antibiotics are often added to ruminant diets, and growth promotion and feed efficiency are among the benefits. One mechanism is inhibition of microbes that catabolize amino acids or peptides and produce ammonia. Plants also produce antimicrobial ...

  19. Changes in expression of proteolytic genes in response to anabolic and catabolic signals in rainbow trout

    Science.gov (United States)

    Rates of protein accrual are largely affected by rates of protein degradation. Determining how proteolytic pathways are affected by catabolic and anabolic signals will contribute to the understanding of the impact and regulation these pathways have on protein turnover. Real time RT-PCR was used to...

  20. Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon.

    Science.gov (United States)

    Mazzetto, Andre Mancebo; Feigl, Brigitte Josefine; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente

    2016-01-01

    Land use changes strongly impact soil functions, particularly microbial biomass diversity and activity. We hypothesized that the catabolic respiration response of the microbial biomass would differ depending on land use and that these differences would be consistent at the landscape scale. In the present study, we analyzed the catabolic response profile of the soil microbial biomass through substrate-induced respiration in different land uses over a wide geographical range in Mato Grosso and Rondônia state (Southwest Amazon region). We analyzed the differences among native areas, pastures and crop areas and within each land use and examined only native areas (Forest, Dense Cerrado and Cerrado), pastures (Nominal, Degraded and Improved) and crop areas (Perennial, No-Tillage, Conventional Tillage). The metabolic profile of the microbial biomass was accessed using substrate-induced respiration. Pasture soils showed significant responses to amino acids and carboxylic acids, whereas native areas showed higher responses to malonic acid, malic acid and succinic acid. Within each land use category, the catabolic responses showed similar patterns in both large general comparisons (native area, pasture and crop areas) and more specific comparisons (biomes, pastures and crop types). The results showed that the catabolic responses of the microbial biomass are highly correlated with land use, independent of soil type or climate. The substrate induced respiration approach is useful to discriminate microbial communities, even on a large scale. PMID:26887228

  1. Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon.

    Science.gov (United States)

    Mazzetto, Andre Mancebo; Feigl, Brigitte Josefine; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente

    2016-01-01

    Land use changes strongly impact soil functions, particularly microbial biomass diversity and activity. We hypothesized that the catabolic respiration response of the microbial biomass would differ depending on land use and that these differences would be consistent at the landscape scale. In the present study, we analyzed the catabolic response profile of the soil microbial biomass through substrate-induced respiration in different land uses over a wide geographical range in Mato Grosso and Rondônia state (Southwest Amazon region). We analyzed the differences among native areas, pastures and crop areas and within each land use and examined only native areas (Forest, Dense Cerrado and Cerrado), pastures (Nominal, Degraded and Improved) and crop areas (Perennial, No-Tillage, Conventional Tillage). The metabolic profile of the microbial biomass was accessed using substrate-induced respiration. Pasture soils showed significant responses to amino acids and carboxylic acids, whereas native areas showed higher responses to malonic acid, malic acid and succinic acid. Within each land use category, the catabolic responses showed similar patterns in both large general comparisons (native area, pasture and crop areas) and more specific comparisons (biomes, pastures and crop types). The results showed that the catabolic responses of the microbial biomass are highly correlated with land use, independent of soil type or climate. The substrate induced respiration approach is useful to discriminate microbial communities, even on a large scale.

  2. Ischemic nucleotide breakdown increases during cardiac development due to drop in adenosine anabolism/catabolism ratio

    NARCIS (Netherlands)

    J.W. de Jong (Jan Willem); E. Keijzer (Elisabeth); T. Huizer (Tom); B. Schoutsen

    1990-01-01

    markdownabstractAbstract Our earlier work on reperfusion showed that adult rat hearts released almost twice as much purine nucleosides and oxypurines as newborn hearts did [Am J Physiol 254 (1988) H1091]. A change in the ratio anabolism/catabolism of adenosine could be responsible for this effect.

  3. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM.

    OpenAIRE

    Andersen, Joakim Mark; Barrangou, Rodolphe; Abou Hachem, Maher; Lahtinen, Sampo J.; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R.

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosph...

  4. Regulation and control of L-arabinose catabolism in Aspergillus niger

    NARCIS (Netherlands)

    Groot, de M.J.L.

    2005-01-01

    This thesis describes studies on the biochemical properties and regulation of L-arabinose metabolism and arabinan degrading enzymes of Aspergillus niger. We focused on the investigation of the catabolic pathway, firstly by isolating pathway specific regulatory mutants using a newly developed selecti

  5. Homology of plasmids in strains of unicellular cyanobacteria

    NARCIS (Netherlands)

    Hondel, C.A.M.J.J. van den; Keegstra, W.; Borrias, W.E.; Arkel, G.A. van

    1979-01-01

    Six strains of unicellular cyanobacteria were examined for the presence of plasmids. Analysis of lysates of these strains by CsCl-ethidium bromide density centrifugation yielded a major chromosomal DNA band and a minor band containing covalently closed circular plasmid DNA, as shown by electron micr

  6. Purification of large plasmids with methacrylate monolithic columns.

    Science.gov (United States)

    Krajnc, Nika Lendero; Smrekar, Franci; Cerne, Jasmina; Raspor, Peter; Modic, Martina; Krgovic, Danijela; Strancar, Ales; Podgornik, Ales

    2009-08-01

    The rapid evolution of gene therapy and DNA vaccines results in an increasing interest in producing large quantities of pharmaceutical grade plasmid DNA. Most current clinical trials involve plasmids of 10 kb or smaller in size, however, future requirements for multigene vectors including extensive control regions may require the production of larger plasmids, e. g., 20 kb and bigger. The objective of this study was to examine certain process conditions for purification of large plasmids with the size of up to 93 kb. Since there is a lack of knowledge about production and purification of bigger plasmid DNA, cell lysis and storage conditions were investigated. The impact of chromatographic system and methacrylate monolithic column on the degradation of plasmid molecules under nonbinding conditions at different flow rates was studied. Furthermore, capacity measurements varying salt concentration in loading buffer were performed and the capacities up to 13 mg of plasmid per mL of the monolithic column were obtained. The capacity flow independence in the range from 130 to 370 cm/h was observed. Using high resolution monolithic column the separation of linear and supercoiled isoforms of large plasmids was obtained. Last but not least, since the baseline separation of RNA and pDNA was achieved, the one step purification on larger CIM DEAE 8 mL tube monolithic column was performed and the fractions were analyzed by CIM analytical monolithic columns. PMID:19598166

  7. Two novel conjugative plasmids from a single strain of Sulfolobus

    NARCIS (Netherlands)

    Erauso, G.; Stedman, K.M.; Werken, van de H.J.G.; Zillig, W.; Oost, van der J.

    2006-01-01

    Two conjugative plasmids (CPs) were isolated and characterized from the same 'Sulfolobus islandicus' strain, SOG2/4, The plasmids were separated from each other and transferred into Sulfolobus soltataricus. One has a high copy number and is not stable (pSOG1) whereas the other has a low copy number

  8. Functional analysis of three plasmids from Lactobacillus plantarum

    NARCIS (Netherlands)

    Kranenburg, R. van; Golic, N.; Bongers, R.; Leer, R.J.; Vos, W.M. de; Siezen, R.J.; Kleerebezem, M.

    2005-01-01

    Lactobacillus plantarum WCFS1 harbors three plasmids, pWCFS101, pWCFS102, and pWCFS103, with sizes of 1,917, 2,365, and 36,069 bp, respectively. The two smaller plasmids are of unknown function and contain replication genes that are likely to function via the rolling-circle replication mechanism. Th

  9. Production and pharmaceutical formulation of plasmid DNA vaccines

    NARCIS (Netherlands)

    van der Heijden, I.

    2013-01-01

    Research leading to the thesis ‘Production and pharmaceutical formulation of plasmid DNA vaccines‘ can be divided into two parts. The first part describes the development of a Good Manufacturing Practice (GMP) compliant plasmid DNA production process of pDNA vaccines for the treatment of Human papil

  10. Examination of uropathogenic Escherichia coli strains conferring large plasmids

    Directory of Open Access Journals (Sweden)

    SUHARTONO

    2010-04-01

    Full Text Available Suhartono (2010 Examination of uropathogenic Escherichia coli strains conferring large plasmids. Biodiversitas 11: 59-64. Of major uropathogens, Escherichia coli has been widely known as a main pathogen of UTIs globally and has considerable medical and financial consequences. A strain of UPEC, namely E. coli ST131, confers a large plasmid encoding cephalosporinases (class C β-lactamase or AmpC that may be disseminated through horizontal transfer among bacterial populations. Therefore, it is worth examining such large plasmids by isolating, purifying, and digesting the plasmid with restriction enzymes. The examination of the large plasmids was conducted by isolating plasmid DNA visualized by agarose gel electrophoresis as well as by PFGE. The relationship of plasmids among isolates was carried out by HpaI restriction enzyme digestion. Of 36 isolates of E. coli ST 131, eight isolates possessed large plasmids, namely isolates 3, 9, 10, 12, 17, 18, 26 and 30 with the largest molecular size confirmed by agarose gel electrophoresis and PFGE was ~42kb and ~118kb respectively. Restriction enzyme analysis revealed that isolates 9, 10, 12, 17 and 18 have the common restriction patterns and those isolates might be closely related.

  11. Plasmid cloning vehicle for Haemophilus influenzae and Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.; Clayton, N.L.; Setlow, J.K.

    1982-09-01

    A new plasmid cloning vehicle (pDM2) was used to introduce a library of Haemophilus influenzae chromosomal fragments into H. influenzae. Transformants of the higly recombination-defective rec-1 mutant were more likely to contain exclusively recombinant plasmids after exposure to ligated DNA mixtures than was the wild type. pDM2 could replicate in Escherichia coli K-12.

  12. Construction and Application of R Prime Plasmids, Carrying Different Segments of an Octopine Ti Plasmid from Agrobacterium tumefaciens, for Complementation of vir Genes

    NARCIS (Netherlands)

    Hille, Jacques; Klasen, Ina; Schilperoort, Rob

    1982-01-01

    Several R prime plasmids have been obtained with high efficiency, by enclosing the R plasmid replicator, in an R::Ti cointegrate plasmid, between two copies of the transposon Tn1831, in the same orientation. These R primes carry different segments of an octopine Ti plasmid, and are compatible with T

  13. Widespread occurrence of the tfd-II genes in soil bacteria revealed by nucleotide sequence analysis of 2,4-dichlorophenoxyacetic acid degradative plasmids pDB1 and p712.

    Science.gov (United States)

    Kim, Dong-Uk; Kim, Min-Sun; Lim, Jong-Sung; Ka, Jong-Ok

    2013-05-01

    Variovorax sp. strain DB1 and Pseudomonas pickettii strain 712 are 2,4-dicholorophenoxy-acetic acid (2,4-D)-degrading bacteria, which were isolated from agricultural soils in Republic of Korea and USA, respectively. Each strain harbors a 2,4-D degradative plasmid and is able to utilize 2,4-D as the sole source of carbon for its growth. The 2,4-D degradative plasmid pDB1 of strain DB1 consisted of a 65,269-bp circular molecule with a G+C content of 66.23% and had 68 ORFs. The 2,4-D degradative plasmid p712 of strain 712 was composed of a 62,798-bp circular molecule with a 62.11% G+C content and had 62 ORFs. The plasmids pDB1 and p712 share significantly homologous 2,4-D degradative genes with high similarity to the tfdR, tfdB-II, tfdC-II, tfdD-II, tfdE-II, tfdF-II, tfdK and tfdA genes of plasmid pJP4 of Alcaligenes eutrophus isolated from Australia. In a phylogenetic analysis with trfA, traL, and trbA genes, pDB1 belonged to IncP-1β with pJP4, while p712 belonged to IncP-1ε with pKJK5 and pEMT3. The results indicated that, in spite of the differences in their backbone regions, the 2,4-D catabolic genes of the two plasmids were closely related and also related to the well-known 2,4-D degradative plasmid pJP4 even though all were isolated from different geographic regions. Other similarities in the genetic organization and the presence of IS1071 suggested that these catabolic genes may be on a transposable element, leading to widespread occurrence in soil bacteria. PMID:23376020

  14. Construction of a eukaryotic expression plasmid of Humanin

    Institute of Scientific and Technical Information of China (English)

    LUO Ben-yan; CHEN Xiang-ming; TANG Min; CHEN Feng; CHEN Zhi

    2005-01-01

    Objective: To construct a eukaryotic expression plasmid pcDNA3.1 (-)-Humanin. Methods: The recombinant plasm pGEMEX- 1-Humanin was digested with restriction endonucleases BamH I and Hind Ⅲ and the Humanin gene fragments, abo 100 bp length, were obtained. Then the Humanin gene fragments were inserted into eukaryotic expression vector pcDNA3.1 (-) and the recombinant plasmids pcDNA3. l(-)-Humanin were identified by sequencing. Results: Recombinant plasmid DNA succesfully produced a band which had the same size as that of the Humanin positive control. The sequence of recombinant plasmids accorded with the Humnain gene sequence. Conclusions: A eukaryotic expression plasmid of Humanin was successfully constructed.

  15. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil

    International Nuclear Information System (INIS)

    Bioremediation is often used for in situ remediation of petroleum-contaminated sites. The primary focus of this study was on understanding the indigenous microbial community which can survive in contaminated environment and is responsible for the degradation. Diesel, toluene and naphthalene-degrading microbial consortia were isolated from diesel-contaminated soil by growing on selective hydrocarbon substrates. The presence and frequency of the catabolic genes responsible for aromatic hydrocarbon biodegradation (xylE, ndoB) within the isolated consortia were screened using polymerase chain reaction PCR and DNA-DNA colony hybridization. The diesel DNA-extract possessed both the xylE catabolic gene for toluene, and the nah catabolic gene for polynuclear aromatic hydrocarbon degradation. The toluene DNA-extract possessed only the xylE catabolic gene, while the naphthalene DNA-extract only the ndoB gene. Restriction enzyme analysis with HaeIII indicated similar restriction patterns for the xylE gene fragment between toluene DNA-extract and a type strain, Pseudomonas putida ATCC 23973. A substantial proportion (74%) of the colonies from the diesel-consortium possessed the xylE gene, and the ndoB gene (78%), while a minority (29%) of the toluene-consortium harbored the xylE gene. 59% of the colonies from the naphthalene-consortium had the ndoB gene, and did not have the xylE gene. These results indicate that the microbial population has been naturally enriched in organisms carrying genes for aromatic hydrocarbon degradation and that significant aromatic biodegradative potential exists at the site. Characterization of the population genotype constitutes a molecular diagnosis which permits the determination of the catabolic potential of the site to degrade the contaminant present. (author)

  16. A role for TNFα in intervertebral disc degeneration: A non-recoverable catabolic shift

    Energy Technology Data Exchange (ETDEWEB)

    Purmessur, D.; Walter, B.A. [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Roughley, P.J. [Shriners Hospital for Children, Montreal, QC (Canada); Laudier, D.M.; Hecht, A.C. [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Iatridis, James, E-mail: james.iatridis@mssm.edu [Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2013-03-29

    Highlights: ► TNFα induced catabolic changes similar to human intervertebral disc degeneration. ► The metabolic shift induced by TNFα was sustained following removal. ► TNFα induced changes suggestive of cell senescence without affecting cell viability. ► Interventions are required to stimulate anabolism and increase cell proliferation. -- Abstract: This study examines the effect of TNFα on whole bovine intervertebral discs in organ culture and its association with changes characteristic of intervertebral disc degeneration (IDD) in order to inform future treatments to mitigate the chronic inflammatory state commonly found with painful IDD. Pro-inflammatory cytokines such as TNFα contribute to disc pathology and are implicated in the catabolic phenotype associated with painful IDD. Whole bovine discs were cultured to examine cellular (anabolic/catabolic gene expression, cell viability and senescence using β-galactosidase) and structural (histology and aggrecan degradation) changes in response to TNFα treatment. Control or TNFα cultures were assessed at 7 and 21 days; the 21 day group also included a recovery group with 7 days TNFα followed by 14 days in basal media. TNFα induced catabolic and anti-anabolic shifts in the nucleus pulposus (NP) and annulus fibrosus (AF) at 7 days and this persisted until 21 days however cell viability was not affected. Data indicates that TNFα increased aggrecan degradation products and suggests increased β-galactosidase staining at 21 days without any recovery. TNFα treatment of whole bovine discs for 7 days induced changes similar to the degeneration processes that occur in human IDD: aggrecan degradation, increased catabolism, pro-inflammatory cytokines and nerve growth factor expression. TNFα significantly reduced anabolism in cultured IVDs and a possible mechanism may be associated with cell senescence. Results therefore suggest that successful treatments must promote anabolism and cell proliferation in

  17. Antibiotic resistance of vibrio cholerae: special considerations of R-plasmids.

    Science.gov (United States)

    Kuwahara, S

    1978-09-01

    Studies on the transmission of R plasmid by conjugation between enterobacteria and vibrio or related bacteria were reviewed. The majority of the reports confirmed successful transmission from enterobacteria to Vibrio cholerae and related species, although the transmission frequencies were extremely low and the transmitted R plasmid was very unstable except for thermosensitive kanamycin plasmid and usual R plasmid coexisting with P plasmid. Strains of V. cholerae and Aeromonas liquefaciens as well as A. salmonicida bearing R plasmid were detected in nature. R plasmid was relatively unstable in V. cholerae strains with which transmission of R plasmid to enterobacteria was confirmed. At present, only 3 R plasmids have been obtained from naturally occurring strains of V. cholerae. Although the 2 European plasmids belong to the C incompatibility group with 98 megadalton closed covalent circular DNA molecule, one plasmid belongs to the J group with more than 25 megadalton molecular weight, and no CCC of satelite DNA was detected in bacteria harboring this plasmid.

  18. Plasmid DNA induces dodecyl triethyl ammonium bromide to aggregate into vesicle

    Institute of Scientific and Technical Information of China (English)

    Xiang Mei Ran; Xia Guo; Jia Tong Ding

    2012-01-01

    Single-chained cationic surfactant dodecyl triethyl ammonium bromide and plasmid DNA together can form vesicles once the concentration of plasmid DNA reaches a critical value (Ccvc).Bigger the size of plasmid DNA,higher the value of Ccvc.

  19. Bacterial Mitosis: ParM of Plasmid R1 Moves Plasmid DNA by an Actin-like Insertional Polymerization Mechanism

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette;

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...

  20. Bifurcation Analysis of a Chemostat Model of Plasmid-Bearing and Plasmid-Free Competition with Pulsed Input

    Directory of Open Access Journals (Sweden)

    Zhong Zhao

    2014-01-01

    to the stability of the boundary periodic solution. By use of standard techniques of bifurcation theory, the periodic oscillations in substrate, plasmid-bearing, and plasmid-free organisms are shown when some conditions are satisfied. Our results can be applied to control bioreactor aimed at producing commercial producers through genetically altered organisms.

  1. Plasmid stability in immobilized and free recombinant Escherichia coli JM105(pKK223-200): importance of oxygen diffusion, growth rate, and plasmid copy number.

    OpenAIRE

    de Taxis du Poët, P; Arcand, Y; Bernier, R.; Barbotin, J N; Thomas, D.

    1987-01-01

    Stability of the plasmid pKK223-200 in Escherichia coli JM105 was studied for both free and immobilized cells during continuous culture. The relationship between plasmid copy number, xylanase activity, which was coded for by the plasmid, and growth rate and culture conditions involved complex interactions which determined the plasmid stability. Generally, the plasmid stability was enhanced in cultured immobilized cells compared with free-cell cultures. This stability was associated with modif...

  2. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids

    OpenAIRE

    Millan, A. San; Peña-Miller, R.; Toll-Riera, M.; Halbert, Z. V.; McLean, A R; Cooper, B. S.; Maclean, R. C.

    2014-01-01

    Plasmids are important drivers of bacterial evolution, but it is challenging to understand how plasmids persist over the long term because plasmid carriage is costly. Classical models predict that horizontal transfer is necessary for plasmid persistence, but recent work shows that almost half of plasmids are non-transmissible. Here we use a combination of mathematical modelling and experimental evolution to investigate how a costly, non-transmissible plasmid, pNUK73, can be maintained in popu...

  3. Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium.

    Science.gov (United States)

    Yudistira, Harry; McClarty, Leigh; Bloodworth, Ruhi A M; Hammond, Sydney A; Butcher, Haley; Mark, Brian L; Cardona, Silvia T

    2011-09-01

    Synthetic cystic fibrosis sputum medium (SCFM) is rich in amino acids and supports robust growth of Burkholderia cenocepacia, a member of the Burkholderia cepacia complex (Bcc). Previous work demonstrated that B. cenocepacia phenylacetic acid (PA) catabolic genes are up-regulated during growth in SCFM and are required for full virulence in a Caenorhabditis elegans host model. In this work, we investigated the role of phenylalanine, one of the aromatic amino acids present in SCFM, as an inducer of the PA catabolic pathway. Phenylalanine degradation intermediates were used as sole carbon sources for growth and gene reporter experiments. In addition to phenylalanine and PA, phenylethylamine, phenylpyruvate, and 2-phenylacetamide were usable as sole carbon sources by wild type B. cenocepacia K56-2, but not by a PA catabolism-defective mutant. EMSA analysis showed that the binding of PaaR, the negative regulator protein of B. cenocepacia PA catabolism, to PA regulatory DNA could only be relieved by phenylacetyl-Coenzyme A (PA-CoA), but not by any of the putative phenylalanine degradation intermediates. Taken together, our results show that in B. cenocepacia, phenylalanine is catabolized to PA and induces PA catabolism through PA activation to PA-CoA. Thus, PaaR shares the same inducer with PaaX, the regulator of PA catabolism in Escherichia coli, despite belonging to a different protein family.

  4. Plasmid Copy Number Determination by Quantitative Polymerase Chain Reaction.

    Science.gov (United States)

    Anindyajati; Artarini, A Anita; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Recombinant therapeutic proteins are biopharmaceutical products that develop rapidly for years. Recombinant protein production in certain hosts requires vector expression harboring the gene encoding the corresponding protein. Escherichia coli is the prokaryote organism mostly used in recombinant protein production, commonly using a plasmid as the expression vector. Recombinant protein production is affected by plasmid copy number harboring the encoded gene, hence the determination of plasmid copy number also plays an important role in establishing a recombinant protein production system. On the industrial scale, a low copy number of plasmids are more suitable due to their better stability. In the previous study we constructed pCAD, a plasmid derived from the low copy number pBR322 plasmid. This study was aimed to confirm pCAD's copy number by quantitative polymerase chain reaction (qPCR). Plasmid copy number was determined by comparing the quantification signal from the plasmid to those from the chromosome. Copy number was then calculated by using a known copy number plasmid as a standard. Two pairs of primers, called tdk and ori, were designed for targeting a single gene tdk in the chromosome and a conserved domain in the plasmid's ori, respectively. Primer quality was analyzed in silico using PrimerSelect DNASTAR and PraTo software prior to in vitro evaluation on primer specificity and efficiency as well as optimization of qPCR conditions. Plasmid copy number determination was conducted on E. coli lysates harboring each plasmid, with the number of cells ranging from 10(2)-10(5) cells/μL. Cells were lysed by incubation at 95ºC for 10 minutes, followed by immediate freezing at -4°C. pBR322 plasmid with the copy number of ~19 copies/cell was used as the standard, while pJExpress414-sod plasmid possessing the high copy number pUC ori was also determined to test the method being used. In silico analysis based on primer-primer and primer-template interactions showed

  5. An updated view of plasmid conjugation and mobilization in Staphylococcus.

    Science.gov (United States)

    Ramsay, Joshua P; Kwong, Stephen M; Murphy, Riley J T; Yui Eto, Karina; Price, Karina J; Nguyen, Quang T; O'Brien, Frances G; Grubb, Warren B; Coombs, Geoffrey W; Firth, Neville

    2016-01-01

    The horizontal gene transfer facilitated by mobile genetic elements impacts almost all areas of bacterial evolution, including the accretion and dissemination of antimicrobial-resistance genes in the human and animal pathogen Staphylococcus aureus. Genome surveys of staphylococcal plasmids have revealed an unexpected paucity of conjugation and mobilization loci, perhaps suggesting that conjugation plays only a minor role in the evolution of this genus. In this letter we present the DNA sequences of historically documented staphylococcal conjugative plasmids and highlight that at least 3 distinct and widely distributed families of conjugative plasmids currently contribute to the dissemination of antimicrobial resistance in Staphylococcus. We also review the recently documented "relaxase-in trans" mechanism of conjugative mobilization facilitated by conjugative plasmids pWBG749 and pSK41, and discuss how this may facilitate the horizontal transmission of around 90% of plasmids that were previously considered non-mobilizable. Finally, we enumerate unique sequenced S. aureus plasmids with a potential mechanism of mobilization and predict that at least 80% of all non-conjugative S. aureus plasmids are mobilizable by at least one mechanism. We suggest that a greater research focus on the molecular biology of conjugation is essential if we are to recognize gene-transfer mechanisms from our increasingly in silico analyses. PMID:27583185

  6. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light

    International Nuclear Information System (INIS)

    Spores and vegetative cells of Bacillus thuringiensis were more sensitive to UV light than were spores or cells of plasmid-cured B. thuringiensis strains or of the closely related Bacillus cereus. Introduction of B. thuringiensis plasmids into B. cereus by cell mating increased the UV sensitivity of the cells and spores. Protoxins encoded by one or more B. thuringiensis plasmids were not involved in spore sensitivity, since a B. thuringiensis strain conditional for protoxin accumulation was equally sensitive at the permissive and nonpermissive temperatures. In addition, introduction of either a cloned protoxin gene, the cloning vector, or another plasmid not containing a protoxin gene into a plasmid-cured strain of B. thuringiensis all increased the UV sensitivity of the spores. Although the variety of small, acid-soluble proteins was the same in the spores of all strains examined, the quantity of dipicolinic acid was about twice as high in the plasmid-containing strains, and this may account for the differences in UV sensitivity of the spores. The cells of some strains harboring only B. thuringiensis plasmids were much more sensitive than cells of any of the other strains, and the differences were much greater than observed with spores

  7. Investigation of plasmid-induced growth defect in Pseudomonas putida.

    Science.gov (United States)

    Mi, Jia; Sydow, Anne; Schempp, Florence; Becher, Daniela; Schewe, Hendrik; Schrader, Jens; Buchhaupt, Markus

    2016-08-10

    Genetic engineering in bacteria mainly relies on the use of plasmids. But despite their pervasive use for physiological studies as well as for the design and optimization of industrially used production strains, only limited information about plasmid induced growth defects is available for different replicons and organisms. Here, we present the identification and characterization of such a phenomenon for Pseudomonas putida transformants carrying the pBBR1-derived plasmid pMiS1. We identified the kanamycin resistance gene and the transcription factor encoding rhaR gene to be causal for the growth defect in P. putida. In contrast, this effect was not observed in Escherichia coli. The plasmid-induced growth defect was eliminated after introduction of a mutation in the plasmid-encoded rep gene, thus enabling construction of the non-toxic variant pMiS4. GFP reporters construct analyses and qPCR experiments revealed a distinctly lowered plasmid copy number for pMiS4, which is probably the reason for alleviation of the growth defect by this mutation. Our work expands the knowledge about plasmid-induced growth defects and provides a useful low-copy pBBR1 replicon variant. PMID:27287537

  8. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, T.G.; Wilson, G.R.; Bull, D.L.; Aronson, A.I. (Department of Agriculture, College Station, TX (USA))

    1990-08-01

    Spores and vegetative cells of Bacillus thuringiensis were more sensitive to UV light than were spores or cells of plasmid-cured B. thuringiensis strains or of the closely related Bacillus cereus. Introduction of B. thuringiensis plasmids into B. cereus by cell mating increased the UV sensitivity of the cells and spores. Protoxins encoded by one or more B. thuringiensis plasmids were not involved in spore sensitivity, since a B. thuringiensis strain conditional for protoxin accumulation was equally sensitive at the permissive and nonpermissive temperatures. In addition, introduction of either a cloned protoxin gene, the cloning vector, or another plasmid not containing a protoxin gene into a plasmid-cured strain of B. thuringiensis all increased the UV sensitivity of the spores. Although the variety of small, acid-soluble proteins was the same in the spores of all strains examined, the quantity of dipicolinic acid was about twice as high in the plasmid-containing strains, and this may account for the differences in UV sensitivity of the spores. The cells of some strains harboring only B. thuringiensis plasmids were much more sensitive than cells of any of the other strains, and the differences were much greater than observed with spores.

  9. Multilocus sequence typing of IncN plasmids

    DEFF Research Database (Denmark)

    García-Fernández, Aurora; Villa, Laura; Moodley, Arshnee;

    2011-01-01

    OBJECTIVES: Incompatibility group N (IncN) plasmids have been associated with the dissemination of antimicrobial resistance and are a major vehicle for the spread of blaVIM-1 in humans and blaCTX-M-1 in animals. A plasmid multilocus sequence typing (pMLST) scheme was developed for rapid categoriz......OBJECTIVES: Incompatibility group N (IncN) plasmids have been associated with the dissemination of antimicrobial resistance and are a major vehicle for the spread of blaVIM-1 in humans and blaCTX-M-1 in animals. A plasmid multilocus sequence typing (pMLST) scheme was developed for rapid...... in different countries from both animals and humans belonged to ST1, suggesting dissemination of an epidemic plasmid through the food chain. Fifteen of 17 plasmids carrying blaVIM-1 from Klebsiella pneumoniae and Escherichia coli, isolated during a 5year period in Greece were assigned to ST10, suggesting...... that spread and persistence of this particular IncN-carrying blaVIM-1 lineage in Greece. CONCLUSIONS: This study proposes the use of pMLST as a suitable and rapid method for identification of IncN epidemic plasmid lineages. The recent spread of blaCTX-M-1 among humans and animals seems to be associated...

  10. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals

    Directory of Open Access Journals (Sweden)

    Lukasz eDziewit

    2015-03-01

    Full Text Available The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland. It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m Lubin mine were taken and twenty bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e. they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.

  11. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals

    Science.gov (United States)

    Dziewit, Lukasz; Pyzik, Adam; Szuplewska, Magdalena; Matlakowska, Renata; Mielnicki, Sebastian; Wibberg, Daniel; Schlüter, Andreas; Pühler, Alfred; Bartosik, Dariusz

    2015-01-01

    The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface. PMID:26074880

  12. Separation of plasmid DNA topoisomers by multimodal chromatography.

    Science.gov (United States)

    Silva-Santos, A Rita; Alves, Cláudia P A; Prazeres, Duarte Miguel F; Azevedo, Ana M

    2016-06-15

    The ability to analyze the distribution of topoisomers in a plasmid DNA sample is important when evaluating the quality of preparations intended for gene therapy and DNA vaccination or when performing biochemical studies on the action of topoisomerases and gyrases. Here, we describe the separation of supercoiled (sc) and open circular (oc) topoisomers by multimodal chromatography. A medium modified with the ligand N-benzyl-N-methyl ethanolamine and an elution scheme with increasing NaCl concentration are used to accomplish the baseline separation of sc and oc plasmid. The utility of the method is demonstrated by quantitating topoisomers in a purified plasmid sample. PMID:27033004

  13. Influenza Plasmid DNA Vaccines: Progress and Prospects.

    Science.gov (United States)

    Bicho, Diana; Queiroz, João António; Tomaz, Cândida Teixeira

    2015-01-01

    Current influenza vaccines have long been used to fight flu infectious; however, recent advances highlight the importance of produce new alternatives. Even though traditional influenza vaccines are safe and usually effective, they need to be uploaded every year to anticipate circulating flu viruses. This limitation together with the use of embryonated chicken eggs as the substrate for vaccine production, is time-consuming and could involve potential biohazards in growth of new virus strains. Plasmid DNA produced by prokaryote microorganisms and encoding foreign proteins had emerged as a promising therapeutic tool. This technology allows the expression of a gene of interest by eukaryotic cells in order to induce protective immune responses against the pathogen of interest. In this review, we discuss the strategies to choose the best DNA vaccine to be applied in the treatment and prevention of influenza. Specifically, we give an update of influenza DNA vaccines developments, all involved techniques, their main characteristics, applicability and technical features to obtain the best option against influenza infections.

  14. Amyloid beta-protein and lipid rafts: focused on biogenesis and catabolism.

    Science.gov (United States)

    Araki, Wataru; Tamaoka, Akira

    2015-01-01

    Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity. γ-Secretase is enriched in lipid rafts, which are considered an important site for Aβ generation. Additionally, Aβ-degrading peptidases located in lipid rafts, such as neprilysin, appear to play a role in Aβ catabolism. This mini-review focuses on the roles of lipid rafts in the biogenesis and catabolism of Aβ, covering recent research on the relationship between lipid rafts and the three secretases or Aβ-degrading peptidases. Furthermore, the significance of lipid rafts in Aβ aggregation and neurotoxicity is briefly summarized.

  15. The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM that optimizes biodegradation of m-xylene

    Directory of Open Access Journals (Sweden)

    Silva-Rocha Rafael

    2011-11-01

    Full Text Available Abstract Background The genetic network of the TOL plasmid pWW0 of the soil bacterium Pseudomonas putida mt-2 for catabolism of m-xylene is an archetypal model for environmental biodegradation of aromatic pollutants. Although nearly every metabolic and transcriptional component of this regulatory system is known to an extraordinary molecular detail, the complexity of its architecture is still perplexing. To gain an insight into the inner layout of this network a logic model of the TOL system was implemented, simulated and experimentally validated. This analysis made sense of the specific regulatory topology out on the basis of an unprecedented network motif around which the entire genetic circuit for m-xylene catabolism gravitates. Results The most salient feature of the whole TOL regulatory network is the control exerted by two distinct but still intertwined regulators (XylR and XylS on expression of two separated catabolic operons (upper and lower for catabolism of m-xylene. Following model reduction, a minimal modular circuit composed by five basic variables appeared to suffice for fully describing the operation of the entire system. In silico simulation of the effect of various perturbations were compared with experimental data in which specific portions of the network were activated with selected inducers: m-xylene, o-xylene, 3-methylbenzylalcohol and 3-methylbenzoate. The results accredited the ability of the model to faithfully describe network dynamics. This analysis revealed that the entire regulatory structure of the TOL system enables the action an unprecedented metabolic amplifier motif (MAM. This motif synchronizes expression of the upper and lower portions of a very long metabolic system when cells face the head pathway substrate, m-xylene. Conclusion Logic modeling of the TOL circuit accounted for the intricate regulatory topology of this otherwise simple metabolic device. The found MAM appears to ensure a simultaneous expression

  16. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate. PMID:26161636

  17. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway.

    Science.gov (United States)

    Rosado, Ivan V; Langevin, Frédéric; Crossan, Gerry P; Takata, Minoru; Patel, Ketan J

    2011-11-13

    Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival.

  18. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes

    OpenAIRE

    Tasse, Lena; Bercovici, Juliette; Pizzut-Serin, Sandra; Robe, Patrick; Tap, Julien; Klopp, Christophe; Cantarel, Brandi L; Coutinho, Pedro M; Henrissat, Bernard; Leclerc, Marion; Doré, Joël; Monsan, Pierre; Remaud-Simeon, Magali; Potocki-Veronese, Gabrielle

    2010-01-01

    The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes invo...

  19. Cloning and Analysis of a Large Plasmid pBMB165 from Bacillus thuringiensis Revealed a Novel Plasmid Organization

    OpenAIRE

    Yueying Wang; Donghai Peng; Zhaoxia Dong; Lei Zhu; Suxia Guo; Ming Sun

    2013-01-01

    In this study, we report a rapid cloning strategy for large native plasmids via a contig linkage map by BAC libraries. Using this method, we cloned a large plasmid pBMB165 from Bacillus thuringiensis serovar tenebrionis strain YBT-1765. Complete sequencing showed that pBMB165 is 77,627 bp long with a GC-content of 35.36%, and contains 103 open reading frames (ORFs). Sequence analysis and comparison reveals that pBMB165 represents a novel plasmid organization: it mainly consists of a pXO2-like...

  20. Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number.

    OpenAIRE

    Nesvera, J; Pátek, M; Hochmannová, J; Abrhámová, Z; Becvárová, V; Jelínkova, M; Vohradský, J

    1997-01-01

    The complete nucleotide sequence (4,826 bp) of the cryptic plasmid pGA1 from Corynebacterium glutamicum was determined. DNA sequence analysis revealed four putative coding regions (open reading frame A [ORFA], ORFA2, ORFB, and ORFC). ORFC was identified as a rep gene coding for an initiator of plasmid replication (Rep) according to the high level of homology of its deduced amino acid sequence with the Rep proteins of plasmids pSR1 (from C. glutamicum) and pNG2 (from Corynebacterium diphtheria...

  1. Characterization of the Double-Partitioning Modules of R27: Correlating Plasmid Stability with Plasmid Localization

    OpenAIRE

    Trevor D Lawley; Taylor, Diane E.

    2003-01-01

    Plasmid R27 contains two independent partitioning modules, designated Par1 and Par2, within transfer region 2. Par1 is member of the type I partitioning family (Walker-type ATPase), and Par2 is a member of the type II partitioning family (actin-type ATPase). Stability tests of cloned Par1 and Par2 and insertional disruptions of Par1 and Par2 within R27 demonstrated that Par1 is the major stability determinant whereas Par2 is the minor stability determinant. Creation of double-partitioning mut...

  2. Effects of Zinc Magnesium Aspartate (ZMA Supplementation on Training Adaptations and Markers of Anabolism and Catabolism

    Directory of Open Access Journals (Sweden)

    Almada Anthony

    2004-12-01

    Full Text Available Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P or ZMA 30–60 minutes prior to going to sleep during 8-weeks of standardized resistance-training. Subjects completed testing sessions at 0, 4, and 8 weeks that included body composition assessment as determined by dual energy X-ray absorptiometry, 1-RM and muscular endurance tests on the bench and leg press, a Wingate anaerobic power test, and blood analysis to assess anabolic/catabolic status as well as markers of health. Data were analyzed using repeated measures ANOVA. Results indicated that ZMA supplementation non-significantly increased serum zinc levels by 11 – 17% (p = 0.12. However, no significant differences were observed between groups in anabolic or catabolic hormone status, body composition, 1-RM bench press and leg press, upper or lower body muscular endurance, or cycling anaerobic capacity. Results indicate that ZMA supplementation during training does not appear to enhance training adaptations in resistance trained populations.

  3. Increased fat catabolism sustains water balance during fasting in zebra finches.

    Science.gov (United States)

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. PMID:27582561

  4. The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence.

    Science.gov (United States)

    Ougham, H; Hörtensteiner, S; Armstead, I; Donnison, I; King, I; Thomas, H; Mur, L

    2008-09-01

    The pathway of chlorophyll catabolism during leaf senescence is known in a fair amount of biochemical and cell biological detail. In the last few years, genes encoding a number of the catabolic enzymes have been characterized, including the key ring-opening activities, phaeophorbide a oxygenase (PaO) and red chlorophyll catabolite reductase (RCCR). Recently, a gene that modulates disassembly of chlorophyll-protein complexes and activation of pigment ring-opening has been isolated by comparative mapping in monocot species, positional cloning exploiting rice genomics resources and functional testing in Arabidopsis. The corresponding gene in pea has been identified as Mendel's I locus (green/yellow cotyledons). Mutations in this and other chlorophyll catabolic genes have significant consequences, both for the course of leaf senescence and senescence-like stress responses, notably hypersensitivity to pathogen challenge. Loss of chlorophyll can occur via routes other than the PaO/RCCR pathway, resulting in changes that superficially resemble senescence. Such 'pseudosenescence' responses tend to be pathological rather than physiological and may differ from senescence in fundamental aspects of biochemistry and regulation. PMID:18721307

  5. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    Science.gov (United States)

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome.

  6. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Mcintyre, Mhairi; Nielsen, Jens

    2004-01-01

    The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars. In the cultivat......The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars...... of key enzymes in the xylose utilisation pathway revealed that xylose metabolism was occurring in the creA deleted strain, even at high glucose concentrations. Conversely, in the wild type strain, activities of the key enzymes for xylose metabolism increased only when the effects of glucose repression...... had been relieved. Xylose was both a repressor and an inducer of xylanases at the same time. The creA mutation seemed to have pleiotropic effects on carbohydratases and carbon catabolism....

  7. SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation.

    Science.gov (United States)

    Pang, Shanshan; Lynn, Dana A; Lo, Jacqueline Y; Paek, Jennifer; Curran, Sean P

    2014-10-06

    Mechanisms that coordinate different metabolic pathways, such as glucose and lipid, have been recognized. However, a potential interaction between amino acid and lipid metabolism remains largely elusive. Here we show that during starvation of Caenorhabditis elegans, proline catabolism is coupled with lipid metabolism by SKN-1. Mutation of alh-6, a conserved proline catabolic enzyme, accelerates fat mobilization, enhances the expression of genes involved in fatty acid oxidation and reduces survival in response to fasting. This metabolic coordination is mediated by the activation of the transcription factor SKN-1/Nrf2, possibly due to the accumulation of the alh-6 substrate P5C, and also requires the transcriptional co-regulator MDT-15. Constitutive activation of SKN-1 induces a similar transcriptional response, which protects animals from fat accumulation when fed a high carbohydrate diet. In human cells, an orthologous alh-6 enzyme, ALDH4A1, is also linked to the activity of Nrf2, the human orthologue of SKN-1, and regulates the expression of lipid metabolic genes. Our findings identify a link between proline catabolism and lipid metabolism, and uncover a physiological role for SKN-1 in metabolism.

  8. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  9. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats.

    Science.gov (United States)

    Pan, Yi-Hsuan; Zhang, Yijian; Cui, Jie; Liu, Yang; McAllan, Bronwyn M; Liao, Chen-Chung; Zhang, Shuyi

    2013-01-01

    Some mammals hibernate in response to harsh environments. Although hibernating mammals may metabolize proteins, the nitrogen metabolic pathways commonly activated during hibernation are not fully characterized. In contrast to the hypothesis of amino acid preservation, we found evidence of amino acid metabolism as three of five key enzymes, including phenylalanine hydroxylase (PAH), homogentisate 1,2-dioxygenase (HGD), fumarylacetoacetase (FAH), involved in phenylalanine and tyrosine catabolism were co-upregulated during hibernation in two distantly related species of bats, Myotis ricketti and Rhinolophus ferrumequinum. In addition, the levels of phenylalanine in the livers of these bats were significantly decreased during hibernation. Because phenylalanine and tyrosine are both glucogenic and ketogenic, these results indicate the role of this catabolic pathway in energy supply. Since any deficiency in the catabolism of these two amino acids can cause accumulations of toxic metabolites, these results also suggest the detoxification role of these enzymes during hibernation. A higher selective constraint on PAH, HPD, and HGD in hibernators than in non-hibernators was observed, and hibernators had more conserved amino acid residues in each of these enzymes than non-hibernators. These conserved amino acid residues are mostly located in positions critical for the structure and activity of the enzymes. Taken together, results of this work provide novel insights in nitrogen metabolism and removal of harmful metabolites during bat hibernation.

  10. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.

    Science.gov (United States)

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-09-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.

  11. A series of template plasmids for Escherichia coli genome engineering.

    Science.gov (United States)

    Deb, Shalini S; Reshamwala, Shamlan M S; Lali, Arvind M

    2016-06-01

    Metabolic engineering strategies often employ multi-copy episomal vectors to overexpress genes. However, chromosome-based overexpression is preferred as it avoids the use of selective pressure and reduces metabolic burden on the cell. We have constructed a series of template plasmids for λ Red-mediated Escherichia coli genome engineering. The template plasmids allow construction of genome integrating cassettes that can be used to integrate single copies of DNA sequences at predetermined sites or replace promoter regions. The constructed cassettes provide flexibility in terms of expression levels achieved and antibiotics used for selection, as well as allowing construction of marker-free strains. The modular design of the template plasmids allows replacement of genetic parts to construct new templates. Gene integration and promoter replacement using the template plasmids are illustrated. PMID:27071533

  12. Construction and Identification of Plasmid pTA-TUB2

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An about 1.40 Kb target gene fragment was yielded by PCR amplification with the plasmid pRB 129,which was identified by restriction enzyme digestion that the PCR product was TU B2 gene.The gene was digested by the restriction enzyme and was linked with pTA plasmid to construct pTA-TU B2 plasmid.The plasmid was transformed into Chaetomium spp.by PEG method and the transformation rate was 27/(2×105) and it is nine times higher than that of pRB 129.The transformants can grow on the PDA containing 1 000 μg*mL-1 carbendazim,which is 1 000 times higher than the original Chaetomium spp.The resistance was stable after 10 times transfer on non-selective medium.

  13. Characterization of Nocardia Plasmid pXT107

    Institute of Scientific and Technical Information of China (English)

    Hai-Yang XIA; Yong-Qiang TIAN; Ran ZHANG; Kai-Chun LIN; Zhong-Jun QIN

    2006-01-01

    Nocardia, Rhodococcus and Streptornyces, all members of the actinomycetes family, are Gram-positive eubacteria with high G+C content and able to form mycelium. We report here a newly identified plasmid pXT107 of Nocardia sp. 107, one of the smallest circular plasmids found in Nocardia.The complete nucleotide sequence of pXT107 consisted of 4335 bp with 65% G+C content, and encoded one replication extragenic palindromic (Rep) and six hypothetical proteins. The Rep, double-strand origin and single-strand origin of pXT107 resembled those of typical rolling-circle-replication plasmids, such as pNI100 of Nocardia, pRE8424 of Rhodococcus and plJ101 of Streptomyces. The Escherichia coli-Nocardia shuttle plasmid pHAQ22, containing thc rep gene of pXT107, is able to propagate in Nocardia but not in Streptomyces.

  14. Simple generic model for dynamic experiments with Saccharomyces cerevisiae in continuous culture. Decoupling between anabolism and catabolism

    DEFF Research Database (Denmark)

    Duboc, Philippe Jean; von Stockar, U.; Villadsen, John

    1998-01-01

    The dynamic behavior of a continuous culture of Saccharomyces cerevisiae subjected to a sudden increase in the dilution rate has been successfully modelled for anaerobic growth on glucose, and for aerobic growth on acetate, on ethanol, and on glucose. The catabolism responded by an immediate jump...... whereas biosynthesis did not. Thus catabolism was in excess to anabolism. The model considers the decoupling between biosynthesis and catabolism, both types of reactions being modelled by first-order kinetic expressions evolving towards maximal values. Yield parameters and maximal reaction rates were...... identified in steady state continuous cultures or during batch experiments. Only the time constant of biosynthesis regeneration, tau(x), and the time constant of catabolic capacity regeneration, tau(cat), had to be identified during transient experiments. In most experiments 7, was around 3 h, and tau...

  15. Pharmaceutical development of the plasmid DNA vaccine pDERMATT

    OpenAIRE

    Quaak, S.G.L.

    2009-01-01

    The discovery of tumor specific antigens and self tolerance mechanisms against these antigens led to the assumption that antigens circulating at sufficient concentration levels could break this self tolerance mechanism and evoke immunological antitumor effects. pDERMATT (plasmid DNA encoding recombinant MART-1 and tetanus toxin fragment-c) is a plasmid that encodes for MART-1, a melanoma associated antigen that is expressed in a large fraction of melanomas. In animal models administration of ...

  16. Isolation and properties of plasmids from Deinococcus radiodurans Sark

    International Nuclear Information System (INIS)

    Radioresistant bacterium, Deinococcus radiodurans, can repair completely almost all of DNA damages including double strand breaks induced by gamma-rays up to about 5 kGy. In order to reveal the repair mechanism, it is necessary to develop a cloning vector available for the genetic analysis. We tried to isolate plasmids from D.radiodurans Sark strain. In the present paper the isolation and properties of plasmids were described. (author)

  17. Plasmid transfer and genetic recombination by protoplast fusion in staphylococci.

    OpenAIRE

    Götz, F; Ahrné, S.; Lindberg, M

    1981-01-01

    The experimental conditions for plasmid transfer and genetic recombination in Staphylococcus aureus and some coagulase-negative staphylococci by protoplast fusion are described. Protoplasts were prepared by treatment with lysostaphin and lysozyme in a buffered medium with 0.7 to 0.8 M sucrose. Regeneration of cell walls was accomplished on a hypertonic agar medium containing succinate and bovine serum albumin. Transfer of plasmids occurred after treatment of the protoplast mixtures with polye...

  18. Transfer of conjugative plasmids among bacteria under environmentally relevant conditions

    DEFF Research Database (Denmark)

    Musovic, Sanin

    at spredningskapacitet af en konjugerbare plasmid, der koder for kviksølv resistens via merA genet, finder sted under substrat begrænsede forhold til syntetisk bakterielt samfund. Plasmid overførsel var meget forhøjet ved kontinuert udsættelse af mikrokosms for en høj koncentration af kviksølv. De forskellige vækstrater...

  19. Construction of a bioluminescence reporter plasmid for Francisella tularensis

    OpenAIRE

    Bina, Xiaowen R.; Miller, Mark A.; James E Bina

    2010-01-01

    A Francisella tularensis shuttle vector that constitutively expresses the Photorhabdus luminescens lux operon in type A and type B strains of F. tularensis was constructed. The bioluminescence reporter plasmid was introduced into the live vaccine strain of F. tularensis and used to follow F. tularensis growth in a murine intranasal challenge model in real time by bioluminescence imaging. The results show that the new bioluminescence reporter plasmid represents a useful tool for tularemia rese...

  20. Plasmid vector with temperature-controlled gene expression

    International Nuclear Information System (INIS)

    In plasmid pBR327, a fragment 169 b.p. long including promotor p3 of the bla gene has been deleted. The deletional derivative so obtained (pSP2) has been used to construct a recombinant plasmid bearing a fragment of phage λ DNA with the p/sub R/ promotor and the gene of the temperature-sensitive repressor cI. It has been shown that the plasmid vector so constructed (pCE119) with promotor cR performs repressor-cI-controlled transcription of the bla gene, as a result of which induction for an hour at 420C leads to an almost 100-fold increase in the amount of product of the bla gene as compared with that at 320C. The possibility of the use of plasmid cPE119 for the expression of other genes has been demonstrated for the case of the semisynthetic β-galactosidase gene of E. coli. In this case, on induction of the cells with recombinant plasmid pCEZ12 for 3 hours at 420C, a 300-fold increase in the amount of active β-galactosidase, as compared with that at 320C, was observed. It is important to point out that under these conditions (at 420C), at least 99% of the cells containing the plasmid retain the phenotype lacZ+, which indicates the stability of the proposed vector system

  1. Plasmid copy number noise in monoclonal populations of bacteria

    Science.gov (United States)

    Wong Ng, Jérôme; Chatenay, Didier; Robert, Jérôme; Poirier, Michael Guy

    2010-01-01

    Plasmids are extra chromosomal DNA that can confer to their hosts’ supplementary characteristics such as antibiotic resistance. Plasmids code for their copy number through their own replication frequency. Even though the biochemical networks underlying the plasmid copy number (PCN) regulation processes have been studied and modeled, no measurement of the heterogeneity in PCN within a whole population has been done. We have developed a fluorescent-based measurement system, which enables determination of the mean and noise in PCN within a monoclonal population of bacteria. Two different fluorescent protein reporters were inserted: one on the chromosome and the other on the plasmid. The fluorescence of these bacteria was measured with a microfluidic flow cytometry device. We show that our measurements are consistent with known plasmid characteristics. We find that the partitioning system lowers the PCN mean and standard deviation. Finally, bacterial populations were allowed to grow without selective pressure. In this case, we were able to determine the plasmid loss rate and growth inhibition effect.

  2. Plasmid-free T7-based Escherichia coli expression systems.

    Science.gov (United States)

    Striedner, Gerald; Pfaffenzeller, Irene; Markus, Luchner; Nemecek, Sabine; Grabherr, Reingard; Bayer, Karl

    2010-03-01

    In order to release host cells from plasmid-mediated increases in metabolic load and high gene dosages, we developed a plasmid-free, T7-based E. coli expression system in which the target gene is site-specifically integrated into the genome of the host. With this system, plasmid-loss, a source of instability for conventional expression systems, was eliminated. At the same time, system leakiness, a challenging problem with recombinant systems, was minimized. The efficiency of the T7 RNA polymerase compensates for low gene dosage and provides high rates of recombinant gene expression without fatal consequences to host metabolism. Relative to conventional pET systems, this system permits improved process stability and increases the host cell's capacity for recombinant gene expression, resulting in higher product yields. The stability of the plasmid-free system was proven in chemostat cultivation for 40 generations in a non-induced and for 10 generations in a fully induced state. For this reason plasmid-free systems benefit the development of continuous production processes with E. coli. However, time and effort of the more complex cloning procedure have to be considered in relation to the advantages of plasmid-free systems in upstream-processing. PMID:19891007

  3. Construction and Use of Flow Cytometry Optimized Plasmid-Sensor Strains

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Oregaard, Gunnar; Sørensen, Søren Johannes;

    2009-01-01

    stability of the plasmid is high. The method presented here relies on a phenotypic (green fluorescence protein) marker, which is switched on if the host bacteria loses the residing plasmid. The incorporation of flow cytometry for single-cell detection and discrimination between plasmid-free and plasmid...

  4. Comparative analysis of conjugative plasmids mediating gentamicin resistance in Staphylococcus aureus.

    OpenAIRE

    Goering, R. V.; Ruff, E A

    1983-01-01

    Five gentamicin-resistant clinical isolates of Staphylococcus aureus were found to contain self-transmissible plasmids of 32 to 37 megadaltons in size. Restriction endonuclease digests of the plasmids were markedly similar to those of reference plasmids of unrelated geographical origin, thus suggesting the significant contribution of common conjugal plasmids to the emergence of gentamicin resistance in S. aureus populations.

  5. Insulin resistance is a two-sided mechanism acting under opposite catabolic and anabolic conditions.

    Science.gov (United States)

    Schwartsburd, Polina

    2016-04-01

    The survival of multi-cellular organisms depends on the organism ability to maintain glucose homeostasis for time of low/high nutrient availability or high energy needs, and the ability to fight infections or stress. These effects are realized through the insulin controlled transport of blood glucose into the insulin-responsive cells such as muscle, fat and liver cells. Reduction in the ability of these cells to take glucose from the blood in response to normal circulating levels of insulin is known as insulin resistance (IR). Chronic IR is a key pathological feature of obesity, type 2 diabetes, sepsis and cancer cachexia, however temporal IR are widely met in fasting/ hibernation, pregnancy, anti-bacterial immunity, exercise and stress. Paradoxically, a certain part of the IR-cases is associated with catabolic metabolism, whereas the other is related to anabolic pathways. How can this paradoxical IR-response be explained? What is the metabolic basis of this IR variability and its physiological and pathological impacts? An answer to these questions might be achieved through the hypothesis in which IR is considered as a two-sided mechanism acting under opposite metabolic conditions (catabolism and anabolism) but with the common aim to sustain glucose homeostasis in a wide metabolic range. To test this hypothesis, I examined the main metabolic distinctions between the varied IR-cases and their dependence on the blood glucose concentration, level of the IR-threshold, and catabolic/anabolic activation. On the basis of the established interrelations, a simple model of IR-distribution has been developed. The model revealed the «U-type distribution» form with separation into two main IR-groups, each determined in the catabolic or anabolic conditions with one exception - type 2 diabetes and its paradoxical catabolic activation in anabolic conditions. The dual opposing (or complementary) role for the IR opens a new possibility for better understanding the cause and

  6. Transfer of chimeric plasmids among Salmonella typhimurium strains by P22 transduction.

    OpenAIRE

    Orbach, M J; Jackson, E N

    1982-01-01

    Salmonella typhimurium bacteriophage P22 transduced plasmids having P22 sequences inserted in the vector pBR322 with high frequency. Analysis of the structure of the transducing particle DNA and the transduced plasmids indicates that this plasmid transduction involves two homologous recombination events. In the donor cell, a single recombination between the phage and the homologous sequences on the plasmid inserted the plasmid into the phage chromosome, which was then packaged by headfuls int...

  7. Tyrosine Partners Coordinate DNA Nicking by the Salmonella typhimurium Plasmid pCU1 Relaxase Enzyme

    OpenAIRE

    Nash, Rebekah P.; Niblock, Franklin C.; Redinbo, Matthew R.

    2011-01-01

    Conjugative plasmid transfer results in the spread of antibiotic resistance genes and virulence factors between bacterial cells. Plasmid transfer is dependent upon the DNA nicking activity of a plasmid-encoded relaxase enzyme. Tyrosine residues within the relaxase cleave the DNA plasmid nic site in a highly sequence-specific manner. The conjugative resistance plasmid pCU1 encodes a relaxase with four tyrosine residues surrounding its active site (Y18,19,26,27). We use activity assays to demon...

  8. Linear Plasmid SLP2 Is Maintained by Partitioning, Intrahyphal Spread, and Conjugal Transfer in Streptomyces▿

    OpenAIRE

    Hsu, Chin-Chen; Chen, Carton W.

    2009-01-01

    Low-copy-number plasmids generally encode a partitioning system to ensure proper segregation after replication. Little is known about partitioning of linear plasmids in Streptomyces. SLP2 is a 50-kb low-copy-number linear plasmid in Streptomyces lividans, which contains a typical parAB partitioning operon. In S. lividans and Streptomyces coelicolor, a parAB deletion resulted in moderate plasmid loss and growth retardation of colonies. The latter was caused by conjugal transfer from plasmid-co...

  9. Plasmids and rickettsial evolution: insight from Rickettsia felis.

    Directory of Open Access Journals (Sweden)

    Joseph J Gillespie

    Full Text Available BACKGROUND: The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG or spotted fever group (SFG rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria. METHODOLOGY/PRINCIPAL FINDINGS: Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives also occur in AG (but not SFG rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFdelta, is an artifact of the original genome assembly. CONCLUSION/SIGNIFICANCE: Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in

  10. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1.

    Directory of Open Access Journals (Sweden)

    Sung Ho Yun

    Full Text Available Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs. Genome sequence analysis revealed that the large plasmid pLA1 present in N. pentaromativorans US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of N. pentaromativorans US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, N. pentaromativorans US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that N. pentaromativorans US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in N. pentaromativorans US6-1.

  11. Unravelling the complete genome sequence of Advenella mimigardefordensis strain DPN7T and novel insights in the catabolism of the xenobiotic polythioester precursor 3,3'-dithiodipropionate.

    Science.gov (United States)

    Wübbeler, Jan Hendrik; Hiessl, Sebastian; Schuldes, Jörg; Thürmer, Andrea; Daniel, Rolf; Steinbüchel, Alexander

    2014-07-01

    Advenella mimigardefordensis strain DPN7(T) is a remarkable betaproteobacterium because of its extraordinary ability to use the synthetic disulfide 3,3'-dithiodipropionic acid (DTDP) as the sole carbon source and electron donor for aerobic growth. One application of DTDP is as a precursor substrate for biotechnically synthesized polythioesters (PTEs), which are interesting non-degradable biopolymers applicable for plastics materials. Metabolic engineering for optimization of PTE production requires an understanding of DTDP conversion. The genome of A. mimigardefordensis strain DPN7(T) was sequenced and annotated. The circular chromosome was found to be composed of 4,740,516 bp and 4112 predicted ORFs, whereas the circular plasmid consisted of 23,610 bp and 24 predicted ORFs. The genes participating in DTDP catabolism had been characterized in detail previously, but knowing the complete genome sequence and with support of Tn5: :mob-induced mutants, putatively involved transporter proteins and a transcriptional regulator were also identified. Most probably, DTDP is transported into the cell by a specific tripartite tricarboxylate transport system and is then cleaved by the disulfide reductase LpdA, sulfoxygenated by the 3-mercaptopropionate dioxygenase Mdo, activated by the CoA ligase SucCD and desulfinated by the acyl-CoA dehydrogenase-like desulfinase AcdA. Regulation of this pathway is presumably performed by a transcriptional regulator of the xenobiotic response element family. The excessive sulfate that is inevitably produced is secreted by the cells by a unique sulfate exporter of the CPA (cation : proton antiporter) superfamily.

  12. Plasma-activated air mediates plasmid DNA delivery in vivo.

    Science.gov (United States)

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  13. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eLeprince

    2015-01-01

    Full Text Available Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signalling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K, VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1, a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  14. Resistance training minimizes catabolic effects induced by sleep deprivation in rats.

    Science.gov (United States)

    Mônico-Neto, Marcos; Antunes, Hanna Karen Moreira; Lee, Kil Sun; Phillips, Stuart M; Giampá, Sara Quaglia de Campos; Souza, Helton de Sá; Dáttilo, Murilo; Medeiros, Alessandra; de Moraes, Wilson Max; Tufik, Sergio; de Mello, Marco Túlio

    2015-11-01

    Sleep deprivation (SD) can induce muscle atrophy. We aimed to investigate the changes underpinning SD-induced muscle atrophy and the impact of this condition on rats that were previously submitted to resistance training (RT). Adult male Wistar EPM-1 rats were randomly allocated into 1 of 5 groups: control, sham, SD (for 96 h), RT, and RT+SD. The major outcomes of this study were muscle fiber cross-sectional area (CSA), anabolic and catabolic hormone profiles, and the abundance of select proteins involved in muscle protein synthesis and degradation pathways. SD resulted in muscle atrophy; however, when SD was combined with RT, the reduction in muscle fiber CSA was attenuated. The levels of IGF-1 and testosterone were reduced in SD animals, and the RT+SD group had higher levels of these hormones than the SD group. Corticosterone was increased in the SD group compared with the control group, and this increase was minimized in the RT+SD group. The increases in corticosterone concentrations paralleled changes in the abundance of ubiquitinated proteins and the autophagic proteins LC3 and p62/SQSTM1, suggesting that corticosterone may trigger these changes. SD induced weight loss, but this loss was minimized in the RT+SD group. We conclude that SD induced muscle atrophy, probably because of the increased corticosterone and catabolic signal. High-intensity RT performed before SD was beneficial in containing muscle loss induced by SD. It also minimized the catabolic signal and increased synthetic activity, thereby minimizing the body's weight loss. PMID:26513007

  15. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases.

    Science.gov (United States)

    Ferraz, Maria J; Marques, André R A; Appelman, Monique D; Verhoek, Marri; Strijland, Anneke; Mirzaian, Mina; Scheij, Saskia; Ouairy, Cécile M; Lahav, Daniel; Wisse, Patrick; Overkleeft, Herman S; Boot, Rolf G; Aerts, Johannes M

    2016-03-01

    Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.

  16. Regulation of fructose uptake and catabolism by succinate in Azospirillum brasilense.

    OpenAIRE

    Mukherjee, A; S. Ghosh

    1987-01-01

    Fructose uptake and catabolism in Azospirillum brasilense is dependent on three fructose-inducible enzymes (fru-enzymes): (i) enzyme I and (ii) enzyme II of the phosphoenolpyruvate:fructose phosphotransferase system and (iii) 1-phosphofructokinase. In minimal medium containing 3.7 mM succinate and 22 mM fructose as sources of carbon, growth of A. brasilense was diauxic, succinate being utilized in the first phase of growth and fructose in the second phase with a lag period between the two gro...

  17. Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer.

    Science.gov (United States)

    Kennedy, Kelly M; Scarbrough, Peter M; Ribeiro, Anthony; Richardson, Rachel; Yuan, Hong; Sonveaux, Pierre; Landon, Chelsea D; Chi, Jen-Tsan; Pizzo, Salvatore; Schroeder, Thies; Dewhirst, Mark W

    2013-01-01

    Lactate accumulation in tumors has been associated with metastases and poor overall survival in cancer patients. Lactate promotes angiogenesis and metastasis, providing rationale for understanding how it is processed by cells. The concentration of lactate in tumors is a balance between the amount produced, amount carried away by vasculature and if/how it is catabolized by aerobic tumor or stromal cells. We examined lactate metabolism in human normal and breast tumor cell lines and rat breast cancer: 1. at relevant concentrations, 2. under aerobic vs. hypoxic conditions, 3. under conditions of normo vs. hypoglucosis. We also compared the avidity of tumors for lactate vs. glucose and identified key lactate catabolites to reveal how breast cancer cells process it. Lactate was non-toxic at clinically relevant concentrations. It was taken up and catabolized to alanine and glutamate by all cell lines. Kinetic uptake rates of lactate in vivo surpassed that of glucose in R3230Ac mammary carcinomas. The uptake appeared specific to aerobic tumor regions, consistent with the proposed "metabolic symbiont" model; here lactate produced by hypoxic cells is used by aerobic cells. We investigated whether treatment with alpha-cyano-4-hydroxycinnamate (CHC), a MCT1 inhibitor, would kill cells in the presence of high lactate. Both 0.1 mM and 5 mM CHC prevented lactate uptake in R3230Ac cells at lactate concentrations at ≤ 20 mM but not at 40 mM. 0.1 mM CHC was well-tolerated by R3230Ac and MCF7 cells, but 5 mM CHC killed both cell lines ± lactate, indicating off-target effects. This study showed that breast cancer cells tolerate and use lactate at clinically relevant concentrations in vitro (± glucose) and in vivo. We provided additional support for the metabolic symbiont model and discovered that breast cells prevailingly take up and catabolize lactate, providing rationale for future studies on manipulation of lactate catabolism pathways for therapy.

  18. Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit.

    Science.gov (United States)

    Ozga, Jocelyn A; Reinecke, Dennis M; Ayele, Belay T; Ngo, Phuong; Nadeau, Courtney; Wickramarathna, Aruna D

    2009-05-01

    In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA(20) to bioactive GA(1)) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA(20) to GA(29)), suggesting a concerted regulation to increase levels of bioactive GA(1) following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA(1) to GA(8)) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA(1), leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [(14)C]GA(12) to [(14)C]GA(1) only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA(1) required for initial fruit set and growth. PMID:19297588

  19. Biochemical and Structural Characterization of a Ureidoglycine Aminotransferase in the Klebsiella pneumoniae Uric Acid Catabolic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Ealick, Steven E. (Cornell)

    2010-09-03

    Many plants, fungi, and bacteria catabolize allantoin as a mechanism for nitrogen assimilation. Recent reports have shown that in plants and some bacteria the product of hydrolysis of allantoin by allantoinase is the unstable intermediate ureidoglycine. While this molecule can spontaneously decay, genetic analysis of some bacterial genomes indicates that an aminotransferase may be present in the pathway. Here we present evidence that Klebsiella pneumoniae HpxJ is an aminotransferase that preferentially converts ureidoglycine and an {alpha}-keto acid into oxalurate and the corresponding amino acid. We determined the crystal structure of HpxJ, allowing us to present an explanation for substrate specificity.

  20. D-Allose catabolism of Escherichia coli

    DEFF Research Database (Denmark)

    Poulsen, Tim S.; Chang, Ying-Ying; Hove-Jensen, Bjarne

    1999-01-01

    gene) were Als-. Transcription of the two allose operons, measured as β-galactosidase activity specified by alsI-lacZ+ or alsE-lacZ+ operon fusions, was induced by allose. Ribose also caused derepression of expression of the regulon under conditions in which ribose phosphate catabolism was impaired.......Genes involved in allose utilization of Escherichia coli K-12 are organized in at least two operons, alsRBACE and alsI, located next to each other on the chromosome but divergently transcribed. Mutants defective in alsI (allose 6-phosphate isomerase gene) and alsE (allulose 6-phosphate epimerase...

  1. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae

    DEFF Research Database (Denmark)

    Johnson, Timothy J.; Bielak, Eliza Maria; Fortini, Daniela;

    2012-01-01

    and biofilm formation. Previous plasmid-based replicon typing procedures have indicated that the prevalence of IncX plasmids is low among members of the Enterobacteriaceae. However, examination of a number of IncX-like plasmid sequences and their occurrence in various organisms suggests that IncX plasmid......, based upon these sequences and subtypes, was then developed. Use of this revised typing procedure revealed that IncX plasmid occurrence among bacterial populations is much more common than had previously been acknowledged. Thus, this revised procedure can be used to better discern the occurrence of Inc...

  2. Recombinogenic engineering of conjugative plasmids with fluorescent marker cassettes

    DEFF Research Database (Denmark)

    Reisner, A.; Molin, Søren; Zechner, E.L.

    2002-01-01

    An efficient approach for the insertion of fluorescent marker genes with sequence specificity into conjugative plasmids in Escherichia coli is described. For this purpose, homologous recombination of linear double-stranded targeting DNA was mediated by the bacteriophage lambda recombination...... functions using very short regions of homology. Initial manipulation of the IncFII target plasmids R1 and R1drd19 indicated that the linear targeting DNA should be devoid of all extraneous homologies to. the target molecule for optimal insertion specificity. Indeed, a simple recombination assay proved...... resistance genes and fluorescent markers. The choice of 5' non-homologous extensions in primer pairs used for amplifying the marker cassettes determines the site specificity of the targeting DNA. This methodology is applicable to the modification of all plasmids that replicate in E coli and is not restricted...

  3. A novel plasmid pEA68 of Erwinia amylovora and the description of a new family of plasmids.

    Science.gov (United States)

    Ismail, Emadeldeen; Blom, Jochen; Bultreys, Alain; Ivanović, Milan; Obradović, Aleksa; van Doorn, Joop; Bergsma-Vlami, Maria; Maes, Martine; Willems, Anne; Duffy, Brion; Stockwell, Virginia O; Smits, Theo H M; Puławska, Joanna

    2014-12-01

    Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.

  4. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Debets, Alfons J M; Slakhorst, S Marijke; Hoekstra, Rolf F

    2008-01-01

    Since the first description of a linear mitochondrial plasmid in Podospora anserina, pAL2-1, and homologous plasmids have gone from being considered beneficial longevity plasmids, via neutral genetic elements, toward mutator plasmids causing senescence. The plasmid has an invertron structure, with t

  5. Anion exchange purification of plasmid DNA using expanded bed adsorption.

    Science.gov (United States)

    Ferreira, G N; Cabral, J M; Prazeres, D M

    2000-01-01

    Recent developments in gene therapy with non-viral vectors and DNA vaccination have increased the demand for large amounts of pharmaceutical-grade plasmid DNA. The high viscosity of process streams is of major concern in the purification of plasmids, since it can cause high back pressures in column operations, thus limiting the throughput. In order to avoid these high back pressures, expanded bed anion exchange chromatography was evaluated as an alternative to fixed bed chromatography. A Streamline 25 column filled with 100 ml of Streamline QXL media, was equilibrated with 0.5 M NaCl in TE (10 mM Tris, 1 mM EDTA, pH = 8.0) buffer at an upward flow of 300 cmh-1, E. coli lysates (obtained from up to 3 liters of fermentation broth) were injected in the column. After washing out the unbound material, the media was allowed to sediment and the plasmid was eluted with 1 M NaCl in TE buffer at a downward flow of 120 cmh-1. Purification factors of 36 +/- 1 fold, 26 +/- 0.4 plasmid purity, and close to 100% yields were obtained when less than one settled column volume of plasmid feed was injected. However, both recovery yield and purity abruptly decreased when larger amounts were processed-values of 35 +/- 2 and 5 +/- 0.7 were obtained for the recovery yield and purity, respectively, when 250 ml of feedstock were processed. In these cases, gel clogging and expansion collapse were observed. The processing of larger volumes, thus larger plasmid quantities, was only possible by performing an isopropanol precipitation step prior to the chromatographic step. This step led to an enhancement of the purification step.

  6. The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAtC58.

    Science.gov (United States)

    Hynes, M F; Simon, R; Pühler, A

    1985-03-01

    Agrobacterium tumefaciens strains LBA275 and LBA290 were cured of their cryptic plasmid pAtC58 by the introduction of the Rhizobium meliloti plasmid pRme41a, which is incompatible with pAtC58. pRme41a and pTiC58, the resident Ti plasmid of LBA275, were subsequently eliminated by growth at supraoptimal temperature (40 degrees C). The resulting plasmid-free Agrobacterium strains, UBAPF1 and UBAPF2, have proved extremely useful for the study of Rhizobium plasmids. The loss of the cryptic plasmid pAtC58 has no effect on the tumor-forming ability of the Agrobacterium strains; when the Ti plasmid is present, normal tumors are formed on Kalanchoe daigremontiana. PMID:4001194

  7. Characterization of atypical Aeromonas salmonicida isolates by ribotyping and plasmid profiling

    DEFF Research Database (Denmark)

    Pedersen, Karl; Dalsgaard, Inger; Larsen, J.L.

    1996-01-01

    ) and plasmid profiles. Most epidemiologically unrelated strains had different ribotypes, whereas isolates from the same outbreak were identical. All strains, except one, carried one or more large plasmids (>55 kbp) and all strains, except two, additionally carried one or more smaller plasmids. Many strains...... isolated from the same outbreak showed different plasmid profiles although some plasmids were identical. The results suggest the existence of several atypical Aer, salmonicida. It also seems that ribotypes are stable properties for these bacteria while the plasmids are more labile....

  8. Restriction Fragment Length Polymorphisms of Virulence Plasmids in Rhodococcus equi

    OpenAIRE

    Takai, Shinji; Shoda, Masato; Sasaki, Yukako; Tsubaki, Shiro; Fortier, Guillaume; Pronost, Stephane; Rahal, Karim; Becu, Teotimo; Begg, Angela; Browning, Glenn; Nicholson, Vivian M.; Prescott, John F.

    1999-01-01

    Virulent Rhodococcus equi, which is a well-known cause of pyogranulomatous pneumonia in foals, possesses a large plasmid encoding virulence-associated 15- to 17-kDa antigens. Foal and soil isolates from five countries—Argentina, Australia, Canada, France, and Japan—were investigated for the presence of 15- to 17-kDa antigens by colony blotting, using the monoclonal antibody 10G5, and the gene coding for 15- to 17-kDa antigens by PCR. Plasmid DNAs extracted from positive isolates were digested...

  9. Sustained plasmid DNA release from dissolving mineral coatings

    OpenAIRE

    Choi, Siyoung; Murphy, William L.

    2010-01-01

    Calcium phosphate (Ca-P) minerals such as hydroxyapatite are able to bind a diverse range of biological molecules due to the presence of anions and cations in their crystal structure. The well-characterized ability of Ca-P minerals to bind and release plasmid DNA, coupled with the ability of biodegradable Ca-P coatings to form on the surface of common biomaterials, provides a potential mechanism for controlled release of plasmid DNA from various biomaterials. In this study we hypothesized tha...

  10. Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism.

    Science.gov (United States)

    Nemecek-Marshall, M; Wojciechowski, C; Wagner, W P; Fall, R

    1999-12-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of L-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. L-Leucine, but not D-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of L-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only alpha-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d(7))-L-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  11. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites.

    Science.gov (United States)

    Jaganath, Indu B; Mullen, William; Lean, Michael E J; Edwards, Christine A; Crozier, Alan

    2009-10-15

    The role of colonic microflora in the breakdown of quercetin-3-O-rutinoside (rutin) was investigated. An in vitro fermentation model was used and (i) 28 micromol of rutin and (ii) 55 micromol of quercetin plus 18 x 10(6) dpm of [4-(14)C]quercetin (60 nmol) were incubated with fresh fecal samples from three human volunteers, in the presence and absence of glucose. The accumulation of quercetin during in vitro fermentation demonstrated that deglycosylation is the initial step in the breakdown of rutin. The subsequent degradation of quercetin was dependent upon the interindividual composition of the bacterial microflora and was directed predominantly toward the production of either hydroxyphenylacetic acid derivatives or hydroxybenzoic acids. Possible catabolic pathways for these conversions are proposed. The presence of glucose as a carbon source stimulated the growth and production of bacterial microflora responsible for both the deglycosylation of rutin and the catabolism of quercetin. 3,4-Dihydroxyphenylacetic acid accumulated in large amounts in the fecal samples and was found to possess significant reducing power and free radical scavenging activity. This catabolite may play a key role in the overall antioxidant capacity of the colonic lumen after the ingestion of quercetin-rich foods.

  12. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Todd, Jonathan D.; Thrash, J. Cameron; Qian, Yanping; Qian, Michael C.; Temperton, Ben; Guo, Jiazhen; Fowler, EMily K.; Aldrich, Joshua T.; Nicora, Carrie D.; Lipton, Mary S.; Smith, Richard D.; De Leenheer, Patrick; Payne, Samuel H.; Johnston, Andrew W.; Davie-Martin, Cleo L.; Halsey, Kimberly H.; Giovannoni, Stephen J.

    2016-05-16

    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a DMSP lyase, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis. These findings suggest that DMSP supply and demand relationships in Pelagibacter metabolism are important to determining rates of oceanic DMS production.

  13. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.

  14. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity[S

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-01-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  15. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.

    Science.gov (United States)

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E; Rhee, Kyu Y; Jacobs, William R; Berney, Michael; Blanchard, John S

    2016-03-25

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb. PMID:26858255

  16. Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.

    Science.gov (United States)

    Zhang, Minjie; Mani, Sriniwasan B; He, Yao; Hall, Amber M; Xu, Lin; Li, Yefu; Zurakowski, David; Jay, Gregory D; Warman, Matthew L

    2016-08-01

    Joints that have degenerated as a result of aging or injury contain dead chondrocytes and damaged cartilage. Some studies have suggested that chondrocyte death precedes cartilage damage, but how the loss of chondrocytes affects cartilage integrity is not clear. In this study, we examined whether chondrocyte death undermines cartilage integrity in aging and injury using a rapid 3D confocal cartilage imaging technique coupled with standard histology. We induced autonomous expression of diphtheria toxin to kill articular surface chondrocytes in mice and determined that chondrocyte death did not lead to cartilage damage. Moreover, cartilage damage after surgical destabilization of the medial meniscus of the knee was increased in mice with intact chondrocytes compared with animals whose chondrocytes had been killed, suggesting that chondrocyte death does not drive cartilage damage in response to injury. These data imply that chondrocyte catabolism, not death, contributes to articular cartilage damage following injury. Therefore, therapies targeted at reducing the catabolic phenotype may protect against degenerative joint disease. PMID:27427985

  17. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism.

    Science.gov (United States)

    Madiraju, Anila K; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T; Kibbey, Richard G; Shulman, Gerald I

    2016-06-14

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  18. Correlating denitrifying catabolic genes with N2O and N2 emissions from swine slurry composting.

    Science.gov (United States)

    Angnes, G; Nicoloso, R S; da Silva, M L B; de Oliveira, P A V; Higarashi, M M; Mezzari, M P; Miller, P R M

    2013-07-01

    This work evaluated N dynamics that occurs over time within swine slurry composting piles. Real-time quantitative PCR (qPCR) analyzes were conducted to estimate concentrations of bacteria community harboring specific catabolic nitrifying-ammonium monooxygenase (amoA), and denitrifying nitrate- (narG), nitrite- (nirS and nirG), nitric oxide- (norB) and nitrous oxide reductases (nosZ) genes. NH3-N, N2O-N, N2-N emissions represented 15.4 ± 1.9%, 5.4 ± 0.9%, and 79.1 ± 2.0% of the total nitrogen losses, respectively. Among the genes tested, temporal distribution of narG, nirS, and nosZ concentration correlated significantly (pcompost pile. Considering our current empirical limitations to accurately measure N2 emissions from swine slurry composting at field scale the use of these catabolic genes could represent a promising monitoring tool to aid minimize our uncertainties on biological N mass balances in these systems.

  19. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice.

  20. Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism.

    Science.gov (United States)

    Briand, François; Mayoux, Eric; Brousseau, Emmanuel; Burr, Noémie; Urbain, Isabelle; Costard, Clément; Mark, Michael; Sulpice, Thierry

    2016-07-01

    In clinical trials, a small increase in LDL cholesterol has been reported with sodium-glucose cotransporter 2 (SGLT2) inhibitors. The mechanisms by which the SGLT2 inhibitor empagliflozin increases LDL cholesterol levels were investigated in hamsters with diet-induced dyslipidemia. Compared with vehicle, empagliflozin 30 mg/kg/day for 2 weeks significantly reduced fasting blood glucose by 18%, with significant increase in fasting plasma LDL cholesterol, free fatty acids, and total ketone bodies by 25, 49, and 116%, respectively. In fasting conditions, glycogen hepatic levels were further reduced by 84% with empagliflozin, while 3-hydroxy-3-methylglutaryl-CoA reductase activity and total cholesterol hepatic levels were 31 and 10% higher, respectively (both P empagliflozin. Importantly, none of these parameters were changed by empagliflozin in fed conditions. Empagliflozin significantly reduced the catabolism of (3)H-cholesteryl oleate-labeled LDL injected intravenously by 20%, indicating that empagliflozin raises LDL levels through reduced catabolism. Unexpectedly, empagliflozin also reduced intestinal cholesterol absorption in vivo, which led to a significant increase in LDL- and macrophage-derived cholesterol fecal excretion (both P empagliflozin, by switching energy metabolism from carbohydrate to lipid utilization, moderately increases ketone production and LDL cholesterol levels. Interestingly, empagliflozin also reduces intestinal cholesterol absorption, which in turn promotes LDL- and macrophage-derived cholesterol fecal excretion. PMID:27207551

  1. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    Science.gov (United States)

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  2. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    International Nuclear Information System (INIS)

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with [3H]arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of [3H]free fatty acids. These effects were attenuated in Ca2+-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca2+ with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of [3H]free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca2+ influx and that at least 80% of the [3H]free fatty acid accumulation required calcium

  3. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    Energy Technology Data Exchange (ETDEWEB)

    Damron, D.S.; Dorman, R.V. (Kent State Univ., OH (USA))

    1990-06-01

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with ({sup 3}H)arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of ({sup 3}H)free fatty acids. These effects were attenuated in Ca{sup 2}{sup +}-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca{sup 2}{sup +} with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of ({sup 3}H)free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca{sup 2}{sup +} influx and that at least 80% of the ({sup 3}H)free fatty acid accumulation required calcium.

  4. Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum.

    Science.gov (United States)

    Du, Lei; Ma, Li; Qi, Feifei; Zheng, Xianliang; Jiang, Chengying; Li, Ailei; Wan, Xiaobo; Liu, Shuang-Jiang; Li, Shengying

    2016-03-18

    4-Cresol is not only a significant synthetic intermediate for production of many aromatic chemicals, but also a priority environmental pollutant because of its toxicity to higher organisms. In our previous studies, a gene cluster implicated to be involved in 4-cresol catabolism, creCDEFGHIR, was identified in Corynebacterium glutamicum and partially characterized in vivo. In this work, we report on the discovery of a novel 4-cresol biodegradation pathway that employs phosphorylated intermediates. This unique pathway initiates with the phosphorylation of the hydroxyl group of 4-cresol, which is catalyzed by a novel 4-methylbenzyl phosphate synthase, CreHI. Next, a unique class I P450 system, CreJEF, specifically recognizes phosphorylated intermediates and successively oxidizes the aromatic methyl group into carboxylic acid functionality via alcohol and aldehyde intermediates. Moreover, CreD (phosphohydrolase), CreC (alcohol dehydrogenase), and CreG (aldehyde dehydrogenase) were also found to be required for efficient oxidative transformations in this pathway. Steady-state kinetic parameters (Km and kcat) for each catabolic step were determined, and these results suggest that kinetic controls serve a key role in directing the metabolic flux to the most energy effective route.

  5. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.

    Science.gov (United States)

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E; Rhee, Kyu Y; Jacobs, William R; Berney, Michael; Blanchard, John S

    2016-03-25

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb.

  6. Opposing effects of apolipoprotein m on catabolism of apolipoprotein B-containing lipoproteins and atherosclerosis

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Pedersen, Tanja Xenia; Gordts, Philip L S M;

    2010-01-01

    (LDL). Objective: We explored putative links between apoM and very-low-density (VLDL)/LDL metabolism and the antiatherogenic potential of apoM in vivo. Methods and Results: Plasma apoM was increased approximately 2.1 and approximately 1.5 fold in mice lacking LDL receptors (Ldlr(-/-)) and expressing...... dysfunctional LDL receptor-related protein 1 (Lrp1(n2/n2)), respectively, but was unaffected in apoE-deficient (ApoE(-/-)) mice. Thus, pathways controlling catabolism of VLDL and LDL affect plasma apoM. Overexpression ( approximately 10-fold) of human apoM increased (50% to 70%) and apoM deficiency decreased......M impairs the catabolism of VLDL/LDL that occurs independently of the LDL receptor and LRP1. ApoM overexpression decreased atherosclerosis in ApoE(-/-) (60%) and cholate/cholesterol-fed wild-type mice (70%). However, in Ldlr(-/-) mice the antiatherogenic effect of apoM was attenuated by its VLDL...

  7. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids

    Science.gov (United States)

    Grottoli, Andréa G.; Rodrigues, Lisa J.

    2011-09-01

    Corals rely on stored energy reserves (i.e., lipids, carbohydrates, and protein) to survive bleaching events. To better understand the physiological implications of coral bleaching on lipid catabolism and/or synthesis, we measured the δ13C of coral total lipids (δ13CTL) in experimentally bleached (treatment) and non-bleached (control) Porites compressa and Montipora capitata corals immediately after bleaching and after 1.5 and 4 months of recovery on the reef. Overall δ13CTL values in treatment corals were significantly lower than in control corals because of a 1.9 and 3.4‰ decrease in δ13CTL immediately after bleaching in P. compressa and M. capitata, respectively. The decrease in δ13CTL coincided with decreases in total lipid concentration, indicating that corals catabolized δ13C-enriched lipids. Since storage lipids are primarily depleted during bleaching, we hypothesize that they are isotopically enriched relative to other lipid classes. This work further helps clarify our understanding of changes to coral metabolism and biogeochemistry when bleached and helps elucidate how lipid classes may influence recovery from bleaching and ultimately coral survival.

  8. Catabolism and Deactivation of the Lipid-derived Hormone Jasmonoyl-isoleucine

    Directory of Open Access Journals (Sweden)

    Abraham JK Koo

    2012-02-01

    Full Text Available The oxylipin hormone jasmonate controls myriad processes involved in plant growth, development and immune function. The discovery of jasmonoyl-L-isoleucine (JA-Ile as the major bioactive form of the hormone highlights the need to understand biochemical and cell biological processes underlying JA-Ile homeostasis. Among the major metabolic control points governing the accumulation of JA-Ile in plant tissues are the availability of jasmonic acid, the immediate precursor of JA-Ile, and oxidative enzymes involved in catabolism and deactivation of the hormone. Recent studies indicate that JA-Ile turnover is mediated by a ω-oxidation pathway involving members of the CYP94 family of cytochromes P450. This discovery opens new opportunities to genetically manipulate JA-Ile levels for enhanced resistance to environmental stress, and further highlights ω-oxidation as a conserved pathway for catabolism of lipid-derived signals in plants and animals. Functional characterization of the full complement of CYP94 P450s promises to reveal new pathways for jasmonate metabolism and provide insight into the evolution of oxylipin signaling in land plants.

  9. The ygeW encoded protein from Escherichia coli is a knotted ancestral catabolic transcarbamylase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongdong; Jin, Zhongmin; Yu, Xiaolin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang (Maryland); (GWU); (Georgia)

    2012-06-28

    Purine degradation plays an essential role in nitrogen metabolism in most organisms. Uric acid is the final product of purine catabolism in humans, anthropoid apes, birds, uricotelic reptiles, and almost all insects. Elevated levels of uric acid in blood (hyperuricemia) cause human diseases such as gout, kidney stones, and renal failure. Although no enzyme has been identified that further degrades uric acid in humans, it can be oxidized to produce allantoin by free-radical attack. Indeed, elevated levels of allantoin are found in patients with rheumatoid arthritis, chronic lung disease, bacterial meningitis, and noninsulin-dependent diabetes mellitus. In other mammals, some insects and gastropods, uric acid is enzymatically degraded to the more soluble allantoin through the sequential action of three enzymes: urate oxidase, 5-hydroxyisourate (HIU) hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase. Therefore, an elective treatment for acute hyperuricemia is the administration of urate oxidase. Many organisms, including plants, some fungi and several bacteria, are able to catabolize allantoin to release nitrogen, carbon, and energy. In Arabidopsis thaliana and Eschrichia coli, S-allantoin has recently been shown to be degraded to glycolate and urea by four enzymes: allantoinase, allantoate amidohydrolase, ureidoglycine aminohydrolase, and ureidoglycolate amidohydrolase.

  10. A highly selectable and highly transferable Ti plasmid to study conjugal host range and Ti plasmid dissemination in complex ecosystems.

    Science.gov (United States)

    Teyssier-Cuvelle, S; Oger, P; Mougel, C; Groud, K; Farrand, S K; Nesme, X

    2004-07-01

    A conjugal donor system, ST2, was constructed to study the conjugal dissemination of a Ti plasmid to wild-type recipient bacteria in vitro and in situ. The system consisted of a polyauxotrophic derivative of C58 harboring a hyperconjugative and highly selectable Ti plasmid, pSTiEGK, which was constructed by inserting a multiple antibiotic resistance cassette in the traM- mcpA region of pTiC58Delta accR. ST2 transfers pSTiEGK constitutively at frequencies up to 10(-1) to plasmidless Agrobacterium recipients. The host range of pSTiEGK includes all the known genomic species of Agrobacterium, indigenous soil agrobacteria and some Rhizobium and Phyllobacterium spp. All transconjugants became pathogenic upon acquisition of the Ti plasmid and were also able to transfer pSTiEGK by conjugation. This host range was indistinguishable from that of its wild-type parent pTiC58, and therefore pSTiEGK constitute a valid proxy to study the dissemination of Ti plasmids directly in the environment. Transconjugants can be selected on a combination of four antibiotics, which efficiently prevents the growth of the indigenous microbiota present in complex environments. The transfer of pSTiEGK to members of the genus Agrobacterium was affected primarily by the plasmid content of the recipient strain (10(3)- to 10(5)-fold reduction), e.g., the presence of incompatible plasmids. As a consequence, a species should be considered permissive to Ti transfer whenever one permissive isolate is found. PMID:15164241

  11. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates.

    Directory of Open Access Journals (Sweden)

    Jing Han

    Full Text Available Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.

  12. Genetic Characterization of ExPEC-Like Virulence Plasmids among a Subset of NMEC.

    Science.gov (United States)

    Nicholson, Bryon A; West, Aaron C; Mangiamele, Paul; Barbieri, Nicolle; Wannemuehler, Yvonne; Nolan, Lisa K; Logue, Catherine M; Li, Ganwu

    2016-01-01

    Neonatal Meningitis Escherichia coli (NMEC) is one of the most common causes of neonatal bacterial meningitis in the US and elsewhere resulting in mortality or neurologic deficits in survivors. Large plasmids have been shown experimentally to increase the virulence of NMEC in the rat model of neonatal meningitis. Here, 9 ExPEC-like plasmids were isolated from NMEC and sequenced to identify the core and accessory plasmid genes of ExPEC-like virulence plasmids in NMEC and create an expanded plasmid phylogeny. Results showed sequenced virulence plasmids carry a strongly conserved core of genes with predicted functions in five distinct categories including: virulence, metabolism, plasmid stability, mobile elements, and unknown genes. The major functions of virulence-associated and plasmid core genes serve to increase in vivo fitness by adding multiple iron uptake systems to the genetic repertoire to facilitate NMEC's survival in the host's low iron environment, and systems to enhance bacterial resistance to host innate immunity. Phylogenetic analysis based on these core plasmid genes showed that at least two lineages of ExPEC-like plasmids could be discerned. Further, virulence plasmids from Avian Pathogenic E. coli and NMEC plasmids could not be differentiated based solely on the genes of the core plasmid genome. PMID:26800268

  13. Genetic Characterization of ExPEC-Like Virulence Plasmids among a Subset of NMEC.

    Directory of Open Access Journals (Sweden)

    Bryon A Nicholson

    Full Text Available Neonatal Meningitis Escherichia coli (NMEC is one of the most common causes of neonatal bacterial meningitis in the US and elsewhere resulting in mortality or neurologic deficits in survivors. Large plasmids have been shown experimentally to increase the virulence of NMEC in the rat model of neonatal meningitis. Here, 9 ExPEC-like plasmids were isolated from NMEC and sequenced to identify the core and accessory plasmid genes of ExPEC-like virulence plasmids in NMEC and create an expanded plasmid phylogeny. Results showed sequenced virulence plasmids carry a strongly conserved core of genes with predicted functions in five distinct categories including: virulence, metabolism, plasmid stability, mobile elements, and unknown genes. The major functions of virulence-associated and plasmid core genes serve to increase in vivo fitness by adding multiple iron uptake systems to the genetic repertoire to facilitate NMEC's survival in the host's low iron environment, and systems to enhance bacterial resistance to host innate immunity. Phylogenetic analysis based on these core plasmid genes showed that at least two lineages of ExPEC-like plasmids could be discerned. Further, virulence plasmids from Avian Pathogenic E. coli and NMEC plasmids could not be differentiated based solely on the genes of the core plasmid genome.

  14. Plasmid-determined copper resistance in Pseudomonas syringae from impatiens

    Energy Technology Data Exchange (ETDEWEB)

    Cooksey, D.A. (Univ. of California, Riverside (USA))

    1990-01-01

    A strain of Pseudomonas syringae was recently identified as the cause of a new foliar blight of impatiens. The bacterium was resistant to copper compounds, which are used on a variety of crops for bacterial and fungal disease control. The bacterium contained a single 47-kilobase plasmid (pPSI1) that showed homology to a copper resistance operon previously cloned and characterized from P. syringae pv. tomato plasmid pPT23D (D. Cooksey, Appl. Environ. Microbiol. 53:454-456, 1987). pPSI1 was transformed by electroporation into a copper-sensitive P. syringae strain, and the resulting transformants were copper resistant. A physical map of pPSI1 was constructed, and the extent of homology to pPT23D outside the copper resistance operon was determined in Southern hybridizations. The two plasmids shared approximately 20 kilobases of homologous DNA, with the remainder of each plasmid showing no detectable homology. The homologous regions hybridized strongly, but there was little or no conservation of restriction enzyme recognition sites.

  15. Studying plasmid horizontal transfer in situ: a critical review

    DEFF Research Database (Denmark)

    Sørensen, Søren Johannes; Bailey, Mark; Hansen, Lars Hestbjerg;

    2005-01-01

    This review deals with the prospective, experimental documentation of horizontal gene transfer (HGT) and its role in real-time, local adaptation. We have focused on plasmids and their function as an accessory and/or adaptive gene pool. Studies of the extent of HGT in natural environments have...

  16. New tetracycline resistance determinant on R plasmids from Vibrio anguillarum.

    OpenAIRE

    Aoki, T.; Satoh, T.; Kitao, T.

    1987-01-01

    Two classes of tetracycline resistance determinants on R plasmids were detected in Vibrio anguillarum strains isolated from ayu (sweat fish; Plecoglossus altivelis) farms in Japan. Tetracycline resistance genes categorized as class B were prevalent from 1973 to 1977; however, a new tetracycline resistance gene, which was not classified into tetracycline resistance determinant class A, B, C, or D, has been prevalent since 1981.

  17. Use of plasmid DNA for induction of protective immunity

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    2004-01-01

    Vaccines based on plasmid DNA have been tested for a number of fish pathogens but so far it is only in case of the rhabdoviruses, where the technology has been a real break through in vaccine research. Aspects of dose, time-course and mechanisms of protection, as well as practical use are discussed....

  18. Pharmaceutical development of the plasmid DNA vaccine pDERMATT

    NARCIS (Netherlands)

    Quaak, S.G.L.

    2009-01-01

    The discovery of tumor specific antigens and self tolerance mechanisms against these antigens led to the assumption that antigens circulating at sufficient concentration levels could break this self tolerance mechanism and evoke immunological antitumor effects. pDERMATT (plasmid DNA encoding recombi

  19. Stability of Integrated Plasmids in the Chromosome of Lactococcus lactis

    NARCIS (Netherlands)

    Leenhouts, Kees J.; Kok, Jan; Venema, Gerhardus

    1990-01-01

    Derivatives of plasmids pBR322, pUB110, pSC101, and pTB19, all containing an identical fragment of lactococcal chromosomal DNA, were integrated via a Campbell-like mechanism into the same chromosomal site of Lactococcus lactis MG1363, and the transformants were analyzed for the stability of the inte

  20. Plasmid containing a DNA ligase gene from Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.; Griffin, K.; Setlow, J.K.

    1984-05-01

    A ligase gene from Haemophilus influenzae was cloned into the shuttle vector pDM2. Although the plasmid did not affect X-ray sensitivity, it caused an increase in UV sensitivity of the wild-type but not excision-defective H. influenzae and a decrease in UV sensitivity of the rec-1 mutant. 14 references, 2 figures.

  1. Influence of black gram (Vigna mungo) trypsin inhibitory fraction on the hepatic protein catabolism in male albino mice.

    Science.gov (United States)

    Kamalakannan, V; Sathyamoorthy, A V; Motlag, D B

    1984-01-01

    The effect of black gram and black gram trypsin inhibitor on the protein catabolism of male albino mice has been investigated. Group 1 was given autoclaved black gram (control), Group II raw black gram and Group III the autoclaved black gram incorporated with 1% black gram trypsin inhibitor. Blood as well as urinary urea and creatine were found to be elevated in Groups II and III. Increased levels of arginase, ornithine transcarbamylase and transaminases were noted in Groups II and III. The results suggested an enhanced catabolism of proteins evoked by the native black gram trypsin inhibitor.

  2. A Key ABA Catabolic Gene, OsABA8ox3, Is Involved in Drought Stress Resistance in Rice

    OpenAIRE

    Shanlan Cai; Guobin Jiang; Nenghui Ye; Zhizhan Chu; Xuezhong Xu; Jianhua Zhang; Guohui Zhu

    2015-01-01

    Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was prom...

  3. Characterization of the Lactobacillus plantarum plasmid pCD033 and generation of the plasmid free strain L. plantarum 3NSH.

    Science.gov (United States)

    Heiss, Silvia; Grabherr, Reingard; Heinl, Stefan

    2015-09-01

    Lactobacillus plantarum CD033, a strain isolated from grass silage in Austria, harbors a 7.9 kb plasmid designated pCD033. Sequence analysis identified 14 open reading frames and 8 of these were supposed to be putative coding sequences. Gene annotation revealed no putative essential genes being plasmid encoded, but a plasmid addiction system based on a PemI/PemK-like toxin-antitoxin system, able to stabilize plasmid maintenance. Absence of a replication initiation protein, a double strand origin as well as a single strand origin on plasmid pCD033 suggests replication via a new type of theta mechanism, whereby plasmid replication is potentially initiated and regulated by non-coding RNA. Detailed examination of segregational stability of plasmid vectors consisting of pCD033-fragments, combined with a selection marker, resulted in definition of a stably maintained minimal replicon. A gene encoding a RepB/OrfX-like protein was found to be not essential for plasmid replication. Alignment of the amino acid sequence of this protein with related proteins unveiled a highly conserved amino acid motif (LLDQQQ). L. plantarum CD033 was cured of pCD033 resulting in the novel plasmid free strain L. plantarum 3NSH. Plasmid curing demonstrated that no essential features are provided by pCD033 under laboratory conditions.

  4. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian;

    2016-01-01

    and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS......Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution...... of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli We use experimental evolution, mathematical modelling...

  5. Design of expanded bed supports for the recovery of plasmid DNA by anion exchange adsorption

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Søndergaard, M.; Thomas, Owen R. T.

    2001-01-01

    In this study we detail the rational design of new chromatographic adsorbents tailored for the capture of plasmid DNA. Features present on current chromatographic supports that can significantly enhance plasmid binding capacity have been identified in packed bed chromatography experiments...

  6. Conservation of plasmids among plant-pathogenic Pseudomonas syringae isolates of diverse origins.

    Science.gov (United States)

    von Bodman, S B; Shaw, P D

    1987-05-01

    Thirty isolates of Pseudomonas syringae pv. tabaci, pv. angulata (pathogens on tobacco), pv. coronafaciens, and pv. striafaciens (pathogens on oats) were examined for plasmid DNAs. The strains were obtained from plants throughout the world, some over 50 years ago. Of the 22 tobacco pathogens, 16 contain predominantly one type of plasmid, the pJP27.00 type. The remaining six tobacco-specific strains do not harbor detectable plasmids. The oat pathogens contain one, two, or three plasmids. DNA homology studies indicate that the plasmid DNAs are highly conserved. More importantly, the plasmids harbored by strains isolated from one host plant are conserved most stringently; e.g., the plasmids from the tobacco pathogens are, with one exception, indistinguishable by restriction endonuclease digestion and Southern hybridization. There is also extensive homology among plasmids indigenous to the oat-specific P. syringae pv. coronafaciens and pv. striafaciens strains. PMID:3628554

  7. Transcription of ColE1Ap mbeC induced by conjugative plasmids from twelve different incompatibility groups.

    OpenAIRE

    Selvaratnam, S; Gealt, M A

    1993-01-01

    Although nonconjugative mobilizable plasmids require helping functions of conjugative plasmids in order to be mobilized into recipients, at least some genes from the nonconjugative plasmids may be induced to assist in the DNA transfer process. Conjugative plasmids from 12 different incompatibility groups mobilized the nonconjugative plasmid ColE1Ap between Escherichia coli strains. Introduction of any of the conjugative plasmids into the ColE1Ap-containing strain resulted in an induction of m...

  8. Plasmid profiling of bacterial isolates from confined environments

    Science.gov (United States)

    van Houdt, Rob; Provoost, Ann; Coninx, Ilse; Leys, Natalie; Mergeay, Max

    Plasmid profiling of bacterial isolates from confined environments R. Van Houdt, I. Coninx, A. Provoost, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. Human exploration of extreme and isolated hostile environments such as space requires special confined small volume habitats to protect and house the crew. However, human confinement in such small volume habitats has restrictions on waste disposal and personal hygiene and inevitably generates a particular community of microorganisms within the habitat. These microorganisms are mainly originating from the crew (skin, mucous membranes, upper respiratory tract, mouth, and gastrointestinal tract) but also include the residing environmental microorganisms. Earth-based confined habitats such as the Antarctic Research Station Concordia are used as test beds for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. The dynamics of the environmental microbial population in such a test bed could render additional insights in assessing the potential health risks in long-duration space missions. Not only total bacterial contamination levels are important, but it is essential to identify also the predominant microbial taxa and their mobile genetic elements (MGE). These MGEs could be exchanged between bacteria by horizontal gene transfer and may alter the pathogenic potential since they often carry antibiotic resistance or more in general adaptation-enhancing traits. In this study several bacterial strains isolated in the Concordia research station were examined for their plasmid content. An optimized protocol for extraction of large plasmids showed the present of at least one plasmid in 50% of the strains. For all strains the minimal inhibitory concentration of a range of antibiotics was determined indicating resistance to

  9. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Subtil Thorsten

    2012-03-01

    Full Text Available Abstract Background In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism. Results To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose. Conclusion Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization

  10. Comparison of electrically mediated and liposome-complexed plasmid DNA delivery to the skin

    OpenAIRE

    Heller, Loree C.; Jaroszeski, Mark J; Coppola, Domenico; Heller, Richard

    2008-01-01

    Background Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo, including the skin. We have previously demonstrated efficient delivery of plasmid DNA to the skin utilizing a custom-built four-plate electrode. The experiments described here further evaluate cutaneous plasmid delivery using in vivo electroporation. Plasmid expression levels are compared to those after liposome mediated delivery. Methods Enhanced electrically-mediated delivery, and ...

  11. Identification of tetracycline-resistant R-plasmids in Streptococcus agalactiae (group B).

    OpenAIRE

    Burdett, V

    1980-01-01

    In this report, 30 tetracycline-resistant clinical isolates of group B Streptococcus were examined to assess the extent to which tetracycline resistance is plasmid mediated. Of these, 27 showed no physical or genetic evidence of plasmid-mediated resistance; however, one conjugative and two small (3.5 X 10(6)-dalton) multicopy non-self-transmissible tetracycline resistance plasmids were identified. The conjugative plasmid was transmissible to Streptococcus faecalis as well as to Streptococcus ...

  12. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community

    DEFF Research Database (Denmark)

    Klümper, Uli; Riber, Leise; Dechesne, Arnaud;

    2014-01-01

    Conjugal plasmids can provide microbes with full complements of new genes and constitute potent vehicles for horizontal gene transfer. Conjugal plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer...... bacteria and can, therefore, directly connect large proportions of the soil bacterial gene pool. This finding reinforces the evolutionary and medical significances of these plasmids....

  13. Incidence of Plasmids in Thermus spp. Isolated in Yellowstone National Park

    OpenAIRE

    Munster, Michael J.; Munster, Ann P.; Sharp, Richard J.

    1985-01-01

    Forty-eight strains of Thermus spp. were isolated from thermal sites in Yellowstone National Park, Wyo., and 62.5% showed evidence of plasmid DNA. Attempts to assign function to the plasmid DNA were unsuccessful, and the presence of plasmid DNA could not be correlated with antibiotic or heavy metal resistance. A number of these cryptic plasmids are now being investigated for their potential as vectors for molecular cloning in Thermus spp.

  14. Conservation of Plasmid-Encoded Traits among Bean-Nodulating Rhizobium Species

    OpenAIRE

    Brom, Susana; Girard, Lourdes; García-de los Santos, Alejandro; Sanjuan-Pinilla, Julio M.; Olivares, José; Sanjuan, Juan

    2002-01-01

    Rhizobium etli type strain CFN42 contains six plasmids. We analyzed the distribution of genetic markers from some of these plasmids in bean-nodulating strains belonging to different species (Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum, and Sinorhizobium fredii). Our results indicate that independent of geographic origin, R. etli strains usually share not only the pSym plasmid but also other plasmids containing symbiosis-related genes, with a similar organi...

  15. A DNA polymerase mutation that suppresses the segregation bias of an ARS plasmid in Saccharomyces cerevisiae.

    OpenAIRE

    Houtteman, S W; Elder, R T

    1993-01-01

    Yeast autonomously replicating sequence (ARS) plasmids exhibit an unusual segregation pattern during mitosis. While the nucleus divides equally into mother and daughter cells, all copies of the ARS plasmid will often remain in the mother cell. A screen was designed to isolate mutations that suppress this segregation bias. A plasmid with a weak ARS (wARS) that displayed an extremely high segregation bias was constructed. When cells were grown under selection for the wARS plasmid, the resulting...

  16. Modulation of ColE1-like Plasmid Replication for Recombinant Gene Expression

    OpenAIRE

    Camps, Manel

    2010-01-01

    ColE1-like plasmids constitute the most popular vectors for recombinant protein expression. ColE1 plasmid replication is tightly controlled by an antisense RNA mechanism that is highly dynamic, tuning plasmid metabolic burden to the physiological state of the host. Plasmid homeostasis is upset upon induction of recombinant protein expression because of non-physiological levels of expression and because of the frequently biased amino acid composition of recombinant proteins. Disregulation of p...

  17. Participation of the lytic replicon in bacteriophage P1 plasmid maintenance.

    OpenAIRE

    Yarmolinsky, M B; Hansen, E B; Jafri, S; Chattoraj, D K

    1989-01-01

    P1 bacteriophage carries at least two replicons: a plasmid replicon and a viral lytic replicon. Since the isolated plasmid replicon can maintain itself stably at the low copy number characteristic of intact P1 prophage, it has been assumed that this replicon is responsible for driving prophage replication. We provide evidence that when replication from the plasmid replicon is prevented, prophage replication continues, albeit at a reduced rate. The residual plasmid replication is due to incomp...

  18. Stability in Escherichia coli of an antibiotic resistance plasmid from Bacteroides fragilis.

    OpenAIRE

    Rashtchian, A; Booth, S J

    1981-01-01

    A Bacteroides fragilis strain resistant to penicillin G, tetracycline, and clindamycin was screened for the presence of plasmid deoxyribonucleic acid (DNA). Agarose gel electrophoresis of ethanol-precipitated DNA from cleared lysates of this strain revealed two plasmid DNA bands. The molecular weights of the plasmids were estimated by their relative mobility in agarose gel and compared with standard plasmids with known molecular weights. The molecular weights were 3.40 +/- 0.20 x 10(6) and 1....

  19. Properties of R1162, a broad-host-range, high-copy-number plasmid.

    OpenAIRE

    R. MEYER; Hinds, M; Brasch, M.

    1982-01-01

    Regions of plasmid DNA encoding characteristic properties of the IncQ (P-4) group plasmid R1162 were identified by mutagenesis and in vitro cloning. Coding sequences sufficient for expression of incompatibility and efficient conjugal mobilization by plasmid R751 were found to be linked to the origin of DNA replication. In contrast, there was a region remote from the origin, and active in trans, that was required for plasmid maintenance. A derivative that was temperature sensitive for stabilit...

  20. Characterization of different plasmid-borne dihydropteroate synthases mediating bacterial resistance to sulfonamides.

    OpenAIRE

    Swedberg, G; Sköld, O

    1980-01-01

    Plasmid-borne resistance to sulfonamides was studied in both newly isolated and earlier characterized R plasmids. Two different classes of drug-resistant dihydropteroate synthases were found to be responsible for most cases of plasmid-mediated sulfonamide resistance. The plasmid-coded enzymes could be completely separated from their chromosomal counterpart and also showed differences in heat stability and molecular size. The resistant and chromosomal enzymes could bind the normal substrate, p...

  1. The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi

    OpenAIRE

    Mollie W Jewett; Lawrence, Kevin; Bestor, Aaron C; Tilly, Kit; Grimm, Dorothee; Shaw, Pamela; VanRaden, Mark; Gherardini, Frank; Rosa, Patricia A.

    2007-01-01

    Borrelia burgdorferi, the aetiological agent of Lyme disease, follows a life cycle that involves passage between the tick vector and the mammalian host. To investigate the role of the 36 kb linear plasmid, lp36 (also designated the B. burgdorferi K plasmid), in the infectious cycle of B. burgdorferi, we examined a clone lacking this plasmid, but containing all other plasmids known to be required for infectivity. Our results indicated that lp36 was not required for spirochete survival in the t...

  2. Plasmid vectors for Xylella fastidiosa utilizing a toxin-antitoxin system for plasmid stability in the absence of antibiotic selection

    Science.gov (United States)

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacte...

  3. Studies on the expression of plasmid-borne genes in the endosymbiotic state of Rhizobium leguminosarum

    NARCIS (Netherlands)

    Krol, A.J.M.

    1982-01-01

    The subject matter of the research reported in this thesis is the role of plasmid-borne genes of Rhizobium in symbiosis and nitrogen fixation. Plasmid DNA was isolated from Rhizobium leguminosarum strain PRE and the expression of plasmid DNA in nitrogen fixing nodules was investigated by hybridizati

  4. Presence and analysis of plasmids in human and animal associated Arcobacter species

    DEFF Research Database (Denmark)

    Douidah, Laid; De Zutter, Lieven; Van Nieuwerburgh, Filip;

    2014-01-01

    In this study, we report the screening of four Arcobacter species for the presence of small and large plasmids. Plasmids were present in 9.9% of the 273 examined strains. One Arcobacter cryaerophilus and four Arcobacter butzleri plasmids were selected for further sequencing. The size of three sma...

  5. Novel plasmid conferring kanamycin and tetracycline resistance in turkey-derived Campylobacter jejuni strain 11601MD

    Science.gov (United States)

    In Campylobacter spp., resistance to the antibiotics kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095 bp.) harboring tet(O) was identified in...

  6. DETERMINATION OF PROTEIN CATABOLIC RATE IN PATIENTS ON CHRONIC INTERMITTENT HEMODIALYSIS - UREA OUTPUT MEASUREMENTS COMPARED WITH DIETARY-PROTEIN INTAKE AND WITH CALCULATION OF UREA GENERATION RATE

    NARCIS (Netherlands)

    STEGEMAN, CA; HUISMAN, RM; DEROUW, B; JOOSTEMA, A; DEJONG, PE

    1995-01-01

    We assessed the agreement between different methods of determining protein catabolic rate (PCR) in hemodialysis patients and the possible influence of postdialysis urea rebound and the length of the interdialytic interval on the PCR determination. Protein catabolic rate derived from measured total u

  7. A forward genetic approach in Chlamydomonas reinhardtii as a strategy for exploring starch catabolism.

    Directory of Open Access Journals (Sweden)

    Hande Tunçay

    Full Text Available A screen was recently developed to study the mobilization of starch in the unicellular green alga Chlamydomonas reinhardtii. This screen relies on starch synthesis accumulation during nitrogen starvation followed by the supply of nitrogen and the switch to darkness. Hence multiple regulatory networks including those of nutrient starvation, cell cycle control and light to dark transitions are likely to impact the recovery of mutant candidates. In this paper we monitor the specificity of this mutant screen by characterizing the nature of the genes disrupted in the selected mutants. We show that one third of the mutants consisted of strains mutated in genes previously reported to be of paramount importance in starch catabolism such as those encoding β-amylases, the maltose export protein, and branching enzyme I. The other mutants were defective for previously uncharacterized functions some of which are likely to define novel proteins affecting starch mobilization in green algae.

  8. Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Bradley Smith

    2016-10-01

    Full Text Available Metabolic reprogramming is critical to oncogenesis, but the emergence and function of this profound reorganization remain poorly understood. Here we find that cooperating oncogenic mutations drive large-scale metabolic reprogramming, which is both intrinsic to cancer cells and obligatory for the transition to malignancy. This involves synergistic regulation of several genes encoding metabolic enzymes, including the lactate dehydrogenases LDHA and LDHB and mitochondrial glutamic pyruvate transaminase 2 (GPT2. Notably, GPT2 engages activated glycolysis to drive the utilization of glutamine as a carbon source for TCA cycle anaplerosis in colon cancer cells. Our data indicate that the Warburg effect supports oncogenesis via GPT2-mediated coupling of pyruvate production to glutamine catabolism. Although critical to the cancer phenotype, GPT2 activity is dispensable in cells that are not fully transformed, thus pinpointing a metabolic vulnerability specifically associated with cancer cell progression to malignancy.

  9. Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Darling, T.N.; Davis, D.G.; London, R.E.; Blum, J.J.

    1987-10-01

    Leishmania braziliensis panamensis promastigotes were incubated with glucose as the sole carbon source. About one-fifth of the glucose consumed under aerobic conditions was oxidized to CO/sub 2/. Nuclear magnetic resonance studies with (1-/sup 13/C)glucose showed that the other products released were succinate, acetate, alanine, pyruvate, and lactate. Under anaerobic conditions, lactate output increased, glycerol became a major product, and, surprisingly, glucose consumption decreased. Enzymatic assays showed that the lactate formed was D(-)-lactate. The release of alanine during incubation with glucose as the sole carbon source suggested that appreciable proteolysis occurred, consistent with our observation that a large amount of ammonia was released under these conditions. The discoveries that D-lactate is a product of L. braziliensis glucose catabolism, that glycerol is produced under anaerobic conditions, and that the cells exhibit a reverse Pasteur effect open the way for detailed studies of the pathways of glucose metabolism and their regulation in this organism.

  10. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    Energy Technology Data Exchange (ETDEWEB)

    Leissring, Malcolm A.; Malito, Enrico; Hedouin, Sabrine; Reinstatler, Lael; Sahara, Tomoko; Abdul-Hay, Samer O.; Choudhry, Shakeel; Maharvi, Ghulam M.; Fauq, Abdul H.; Huzarska, Malwina; May, Philip S.; Choi, Sungwoon; Logan, Todd P.; Turk, Benjamin E.; Cantley, Lewis C.; Manolopoulou, Marika; Tang, Wei-Jen; Stein, Ross L.; Cuny, Gregory D.; Selkoe, Dennis J. (Harvard-Med); (BWH); (Yale-MED); (Scripps); (UC); (Mayo)

    2010-09-20

    Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are {approx} 10{sup 6} times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-a-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's 'closed,' inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  11. Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2.

    Science.gov (United States)

    Nguyen, Thi Phi Oanh; Helbling, Damian E; Bers, Karolien; Fida, Tekle Tafese; Wattiez, Ruddy; Kohler, Hans-Peter E; Springael, Dirk; De Mot, René

    2014-10-01

    The widespread agricultural application of carbofuran and concomitant contamination of surface and ground waters has raised health concerns due to the reported toxic effects of this insecticide and its degradation products. Most bacteria that degrade carbofuran only perform partial degradation involving carbamate hydrolysis without breakdown of the resulting phenolic metabolite. The capacity to mineralize carbofuran beyond the benzofuran ring has been reported for some bacterial strains, especially sphingomonads, and some common metabolites, including carbofuran phenol, were identified. In the current study, the catabolism of carbofuran by Novosphingobium sp. KN65.2 (LMG 28221), a strain isolated from a carbofuran-exposed Vietnamese soil and utilizing the compound as a sole carbon and nitrogen source, was studied. Several KN65.2 plasposon mutants with diminished or abolished capacity to degrade and mineralize carbofuran were generated and characterized. Metabolic profiling of representative mutants revealed new metabolic intermediates, in addition to the initial hydrolysis product carbofuran phenol. The promiscuous carbofuran-hydrolyzing enzyme Mcd, which is present in several bacteria lacking carbofuran ring mineralization capacity, is not encoded by the Novosphingobium sp. KN65.2 genome. An alternative hydrolase gene required for this step was not identified, but the constitutively expressed genes of the unique cfd operon, including the oxygenase genes cfdC and cfdE, could be linked to further degradation of the phenolic metabolite. A third involved oxygenase gene, cfdI, and the transporter gene cftA, encoding a TonB-dependent outer membrane receptor with potential regulatory function, are located outside the cfd cluster. This study has revealed the first dedicated carbofuran catabolic genes and provides insight in the early steps of benzofuran ring degradation.

  12. Role of Myofibrillar Protein Catabolism in Development of Glucocorticoid Myopathy: Aging and Functional Activity Aspects

    Directory of Open Access Journals (Sweden)

    Teet Seene

    2016-05-01

    Full Text Available Muscle weakness in corticosteroid myopathy is mainly the result of the destruction and atrophy of the myofibrillar compartment of fast-twitch muscle fibers. Decrease of titin and myosin, and the ratio of nebulin and MyHC in myopathic muscle, shows that these changes of contractile and elastic proteins are the result of increased catabolism of the abovementioned proteins in skeletal muscle. Slow regeneration of skeletal muscle is in good correlation with a decreased number of satellite cells under the basal lamina of muscle fibers. Aging causes a reduction of AMP-activated protein kinase (AMPK activity as the result of the reduced function of the mitochondrial compartment. AMPK activity increases as a result of increased functional activity. Resistance exercise causes anabolic and anticatabolic effects in skeletal muscle: muscle fibers experience hypertrophy while higher myofibrillar proteins turn over. These changes are leading to the qualitative remodeling of muscle fibers. As a result of these changes, possible maximal muscle strength is increasing. Endurance exercise improves capillary blood supply, increases mitochondrial biogenesis and muscle oxidative capacity, and causes a faster turnover rate of sarcoplasmic proteins as well as qualitative remodeling of type I and IIA muscle fibers. The combination of resistance and endurance exercise may be the fastest way to prevent or decelerate muscle atrophy due to the anabolic and anticatabolic effects of exercise combined with an increase in oxidative capacity. The aim of the present short review is to assess the role of myofibrillar protein catabolism in the development of glucocorticoid-caused myopathy from aging and physical activity aspects.

  13. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin.

    Directory of Open Access Journals (Sweden)

    Malcolm A Leissring

    Full Text Available BACKGROUND: Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE, a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. METHODOLOGY/PRINCIPAL FINDINGS: We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are approximately 10(6 times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's "closed," inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. CONCLUSIONS/SIGNIFICANCE: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  14. Microbial life in frozen boreal soils-environmental constraints on catabolic and anabolic activity

    Science.gov (United States)

    Oquist, M. G.; Sparrman, T.; Haei, M.; Segura, J.; Schleucher, J.; Nilsson, M. B.

    2013-12-01

    Microbial activity in frozen soils has recently gained increasing attention and the fact that soil microorganisms can perform significant metabolic activity at temperatures below freezing is apparent. However, to what extent microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is still very uncertain. This presentation will address how the fundamental environmental factors of temperature, liquid water availability and substrate availability combine to regulate rates of catabolic and anabolic microbial processes in frozen soils. The presented results are gained from investigations of the surface layers of boreal forest soils with seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. In turn, the capacity for a specific soil to retain liquid water at sub-zero temperatures is controlled by the structural composition of the soil, and especially the soil organic matter is of integral importance. We also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless

  15. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  16. Expansion of a Plasmid Classification System for Gram-Positive Bacteria and Determination of the Diversity of Plasmids in Staphylococcus aureus Strains of Human, Animal, and Food Origins

    OpenAIRE

    Lozano, Carmen; García-Migura, Lourdes; Aspiroz, Carmen; Zarazaga, Myriam; Torres, Carmen; Aarestrup, Frank Møller

    2012-01-01

    An expansion of a previously described plasmid classification was performed and used to reveal the plasmid content of a collection of 92 Staphylococcus aureus strains of different origins. rep genes of other genera were detected in Staphylococcus. S1 pulsed-field gel electrophoresis (PFGE) hybridizations were performed with 18 representative S. aureus strains, and a high number of plasmids of different sizes and organizations were detected.

  17. Determination of plasmid copy number reveals the total plasmid DNA amount is greater than the chromosomal DNA amount in Bacillus thuringiensis YBT-1520.

    Directory of Open Access Journals (Sweden)

    Chunying Zhong

    Full Text Available Bacillus thuringiensis is the most widely used bacterial bio-insecticide, and most insecticidal crystal protein-coding genes are located on plasmids. Most strains of B. thuringiensis harbor numerous diverse plasmids, although the plasmid copy numbers (PCNs of all native plasmids in this host and the corresponding total plasmid DNA amount remains unknown. In this study, we determined the PCNs of 11 plasmids (ranging from 2 kb to 416 kb in a sequenced B. thuringiensis subsp. kurstaki strain YBT-1520 using real-time qPCR. PCNs were found to range from 1.38 to 172, and were negatively correlated to plasmid size. The amount of total plasmid DNA (∼8.7 Mbp was 1.62-fold greater than the amount of chromosomal DNA (∼5.4 Mbp at the mid-exponential growth stage (OD(600 = 2.0 of the organism. Furthermore, we selected three plasmids with different sizes and replication mechanisms to determine the PCNs over the entire life cycle. We found that the PCNs dynamically shifted at different stages, reaching their maximum during the mid-exponential growth or stationary phases and remaining stable and close to their minimum after the prespore formation stage. The PCN of pBMB2062, which is the smallest plasmid (2062 bp and has the highest PCN of those tested, varied in strain YBT-1520, HD-1, and HD-136 (172, 115, and 94, respectively. These findings provide insight into both the total plasmid DNA amount of B. thuringiensis and the strong ability of the species to harbor plasmids.

  18. Role of the 85-Kilobase Plasmid and Plasmid-Encoded Virulence-Associated Protein A in Intracellular Survival and Virulence of Rhodococcus equi

    OpenAIRE

    Giguère, Steeve; Hondalus, Mary K.; Yager, Julie A.; Darrah, Patricia; Mosser, David M.; Prescott, John F.

    1999-01-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages and a cause of pneumonia in young horses (foals) and immunocompromised people. Isolates of R. equi from pneumonic foals typically contain large, 85- or 90-kb plasmids encoding a highly immunogenic virulence-associated protein (VapA). The objective of this study was to determine the role of the 85-kb plasmid and VapA in the intracellular survival and virulence of R. equi. Clinical isolates containing the plasmid and expres...

  19. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Jensen, J B; Egsgaard, H; Van Onckelen, H;

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid chromatogr...

  20. Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    ter Schure, E G; Silljé, H H; Vermeulen, E E; Kalhorn, J W; Verkleij, A J; Boonstra, J; Verrips, C T

    1998-01-01

    Growth of Saccharomyces cerevisiae on ammonia and glutamine decreases the expression of many nitrogen catabolic genes to low levels. To discriminate between ammonia- and glutamine-driven repression of GAP1, PUT4, GDH1 and GLN1, a gln1-37 mutant was used. This mutant is not able to convert ammonia in

  1. CATABOLISM OF AROMATIC BIOGENIC AMINES BY 'PSEUDOMONAS AERUGINOSA' PA01 VIA META CLEAVAGE OF HOMOPROTOCATECHUIC ACID (JOURNAL VERSION)

    Science.gov (United States)

    Pseudomonas aruginosa PA01 catabolized the aromatic amines tyramine and octopamine through 4-hydroxyphenylacetic acid and 3,4-dihydroxyphenylacetic acid (HPA). Meta ring cleavage was mediated by 3-4-dihydroxyphenylacetate 2,3-dioxygenase (HPADO), producing 2-hydroxy-5-carboxymeth...

  2. Oxidised low density lipoprotein causes human macrophage cell death through oxidant generation and inhibition of key catabolic enzymes.

    Science.gov (United States)

    Katouah, Hanadi; Chen, Alpha; Othman, Izani; Gieseg, Steven P

    2015-10-01

    Oxidised low density lipoprotein (oxLDL) is thought to be a significant contributor to the death of macrophage cells observed in advanced atherosclerotic plaques. Using human-derived U937 cells we have examined the effect of cytotoxic oxLDL on oxidative stress and cellular catabolism. Within 3h of the addition of oxLDL, there was a rapid, concentration dependent rise in cellular reactive oxygen species followed by the loss of cellular GSH, and the enzyme activity of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and aconitase. The loss of these catabolic enzymes was accompanied by the loss of cellular ATP and lower lactate generation. Addition of the macrophage antioxidant 7,8-dihydroneopterin inhibited the ROS generation, glutathione loss and catabolic inactivation. NOX was shown to be activated by oxLDL addition while apocynin inhibited the loss of GSH and cell viability. The data suggests that oxLDL triggers an excess of ROS production through NOX activation, and catabolic failure through thiol oxidation resulting in cell death. PMID:26255116

  3. Increased VLDL in nephrotic patients results from a decreased catabolism while increased LDL results from increased synthesis

    NARCIS (Netherlands)

    de Sain-van der Velden, M; Kaysen, GA; Barrett, HA; Stellaard, F; Gadellaa, MM; Voorbij, HA; Reijngoud, DJ; Rabelink, TJ

    1998-01-01

    Increased very low density lipoprotein (VLDL) in nephrotic patients results from a decreased catabolism while increased low density lipoprotein (LDL) results from increased synthesis. Hyperlipidemias a hallmark of nephrotic syndrome that has been associated with increased risk for ischemic heart dis

  4. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    Directory of Open Access Journals (Sweden)

    V. Barquissau

    2016-05-01

    Conclusions: Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria.

  5. Inflammatory and catabolic signalling in intervertebral discs: The roles of NF-B and MAP Kinases

    Directory of Open Access Journals (Sweden)

    K Wuertz

    2012-02-01

    Full Text Available Painful intervertebral disc disease is characterised not only by an imbalance between anabolic (i.e., matrix synthesis and catabolic (i.e., matrix degradation processes, but also by inflammatory mechanisms. The increased expression and synthesis of matrix metalloproteinases and inflammatory factors is mediated by specific signal transduction, in particular the nuclear factor-kappaB (NF-kB and mitogen-activated protein kinase (MAPK-mediated pathways. NF-kB and MAPK have been identified as the master regulators of inflammation and catabolism in several musculoskeletal disorders (e.g., osteoarthritis, and recently growing evidence supports the importance of these signalling pathways in painful disc disease. With continuing research exploiting in vitro and in vivo model systems to elucidate the roles of these pathways in disc degeneration, it may be possible in the near future to specifically target these major inflammatory / catabolic signalling pathways to treat painful degenerative disc disease. In this perspective, we aim to summarise the current state of knowledge concerning the inflammatory and catabolic molecular pathways of intervertebral disc disease (IDD, with a detailed description of NF-kB and MAP kinase-mediated signal transduction in disc cells. Furthermore, we will discuss the emerging novel molecular treatment modalities for IDD using pharmacological inhibitors targeting these pathways.

  6. Plasmid-Chromosome Recombination of Irradiated Shuttle Vector DNA in African Green Monkey Kidney Cells.

    Science.gov (United States)

    Mudgett, John Stuart

    1987-09-01

    An autonomously replicating shuttle vector was used to investigate the enhancement of plasmid-chromosome recombination in mammalian host cells by ultraviolet light and gamma radiation. Sequences homologous to the shuttle vector were stably inserted into the genome of African Green Monkey kidney cells to act as the target substrate for these recombination events. The SV40- and pBR322-derived plasmid DNA was irradiated with various doses of radiation before transfection into the transformed mammalian host cells. The successful homologous transfer of the bacterial ampicillin resistance (amp^{rm r}) gene from the inserted sequences to replace a mutant amp^->=ne on the shuttle vector was identified by plasmid extraction and transformation into E. coli host cells. Ultraviolet light (UV) was found not to induce homologous plasmid-chromosome recombination, while gamma radiation increased the frequency of recombinant plasmids detected. The introduction of specific double -strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was found to be increased by plasmid UV irradiation, but not to change with time. Plasmid survival, recombination, and mutagenesis were not affected by treating the mammalian host cells with UV light prior to plasmid transfection. The amp^{rm r} recombinant plasmid molecules analyzed were found to be mostly the result of nonconservative exchanges which appeared to involve both homologous and possibly nonhomologous interactions with the host chromosome. The observation that these recombinant structures were obtained from all of the plasmid alterations investigated suggests a common mechanistic origin for plasmid -chromosome recombination in these mammalian cells.

  7. The stb operon balances the requirements for vegetative stability and conjugative transfer of plasmid R388.

    Directory of Open Access Journals (Sweden)

    Catherine Guynet

    2011-05-01

    Full Text Available The conjugative plasmid R388 and a number of other plasmids carry an operon, stbABC, adjacent to the origin of conjugative transfer. We investigated the role of the stbA, stbB, and stbC genes. Deletion of stbA affected both conjugation and stability. It led to a 50-fold increase in R388 transfer frequency, as well as to high plasmid loss. In contrast, deletion of stbB abolished conjugation but provoked no change in plasmid stability. Deletion of stbC showed no effect, neither in conjugation nor in stability. Deletion of the entire stb operon had no effect on conjugation, which remained as in the wild-type plasmid, but led to a plasmid loss phenotype similar to that of the R388ΔstbA mutant. We concluded that StbA is required for plasmid stability and that StbA and StbB control conjugation. We next observed the intracellular positioning of R388 DNA molecules and showed that they localize as discrete foci evenly distributed in live Escherichia coli cells. Plasmid instability of the R388ΔΔstbA mutant correlated with aberrant localization of the plasmid DNA molecules as clusters, either at one cell pole, at both poles, or at the cell center. In contrast, plasmid molecules in the R388ΔΔstbB mutant were mostly excluded from the cell poles. Thus, results indicate that defects in both plasmid maintenance and transfer are a consequence of variations in the intracellular positioning of plasmid DNA. We propose that StbA and StbB constitute an atypical plasmid stabilization system that reconciles two modes of plasmid R388 physiology: a maintenance mode (replication and segregation and a propagation mode (conjugation. The consequences of this novel concept in plasmid physiology will be discussed.

  8. Coupling between the Basic Replicon and the Kis-Kid Maintenance System of Plasmid R1: Modulation by Kis Antitoxin Levels and Involvement in Control of Plasmid Replication

    OpenAIRE

    Juan López-Villarejo; Damián Lobato-Márquez; Ramón Díaz-Orejas

    2015-01-01

    kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease in these cells and that this acts as the switch that activates the Kid toxin; activated Kid toxin reduces copB-mRNA levels and this increases RepA levels that increases plasmid copy number. In support of this model we now repo...

  9. Coupling between the Basic Replicon and the Kis-Kid Maintenance System of Plasmid R1: Modulation by Kis Antitoxin Levels and Involvement in Control of Plasmid Replication

    Directory of Open Access Journals (Sweden)

    Juan López-Villarejo

    2015-02-01

    Full Text Available kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease in these cells and that this acts as the switch that activates the Kid toxin; activated Kid toxin reduces copB-mRNA levels and this increases RepA levels that increases plasmid copy number. In support of this model we now report that: (i the Kis antitoxin levels do decrease in cells containing a mini-R1 plasmid carrying a repA mutation that reduces plasmid copy number; (ii kid-dependent replication rescue is abolished in cells in which the Kis antitoxin levels or the CopB levels are increased. Unexpectedly we found that this coordination significantly increases both the copy number of the repA mutant and of the wt mini-R1 plasmid. This indicates that the coordination between plasmid replication functions and kis-kid system contributes significantly to control plasmid R1 replication.

  10. Studies on the plasmid stability, plasmid copy number and endo(1, 3)(1, 4) b-glucanase production by free and alginate immobilised recombinant saccharomyces cerevisiae cells

    OpenAIRE

    Canavan, Peter D.

    1994-01-01

    A recombinant yeast strain, Saccharomyces cerevisiae DBY746, containing the plasmid pJG317, was grown in a variety of fermentation modes including batch, serial batch and chemostat culture incorporating a wide range of media types Plasmid pJG317 consists of a 2^-denved yeast episomal plasmid containing the gene which encodes for the bacterial enzyme endo (1,3)(1,4) P-glucanase. The concentration of enzyme produced appears to be proportional to the number of plasmid copies per cell. Specific e...

  11. Presence of Glycopeptide-Encoding Plasmids in Enterococcal Isolates from Food and Humans in Denmark

    DEFF Research Database (Denmark)

    Migura, Lourdes Garcia; Valenzuela, Antonio Jesus Sanchez; Jensen, Lars Bogø

    2011-01-01

    developed techniques for classification of plasmids. Replicons associated with sex pheromone-inducible plasmids were detected in all GR E. faecalis, whereas GR Enterococcus faecium contained plasmids known to be widely distributed among enterococci. vanA resistance is common in E. faecium isolates from meat...... elements (MGE) such as plasmids and transposons. Presence of MGE was tested in all GRE isolated from food in Denmark in 2005–2007 including the first vanA mediated Enterococcus faecalis isolated from food. The ability of these plasmids to transfer and persist among enterococci was investigated using newly...

  12. Enterococcus faecalis hemolysin-bacteriocin plasmids belong to the same incompatibility group.

    OpenAIRE

    Colmar, I; Horaud, T

    1987-01-01

    Plasmid pair coexistence was studied both among nine Enterococcus faecalis hemolysin-bacteriocin (Hly-Bcn) plasmids, including pJH2, pAD1, pAM gamma 1, and pIP964, and between pIP964 and five R plasmids. Some of the Hly-Bcn plasmids used were derivatives encoding resistance to erythromycin or tetracycline. The Hly-Bcn plasmids were incompatible with each other; 40 to 100% displacement was observed bilaterally for eight pairs and unilaterally for one pair. In contrast, pIP964 stably coexisted ...

  13. [Plasmids of streptomycetes strains isolated from soils of Ukraine with different anthropogenic loading].

    Science.gov (United States)

    Luk'ianchuk, V V; Polishchuk, L V; Matseliukh, B P

    2010-01-01

    Screening of plasmid DNA was carried out among 94 streptomycetes cultures which were isolated from the samples of Ukrainian soils with different anthropogenic contamination. Seventeen streptomycetes strains containing plasmid DNA were found. It is established that some cultures contain more than one plasmid (Streptomyces sp.M15, S.sp.T8, S.sp.T19). Depending on a molecular sizes the found plasmids were divided in 2 groups: 3 kb-15 kb, and 30 kb-70 kb. Research of a few morphological and physiological properties of plasmid strains of streptomycetes was carried out. The paper is presented in Ukrainian. PMID:21117293

  14. Investigation of diversity of plasmids carrying the blaTEM-52 gene

    DEFF Research Database (Denmark)

    Bielak, Eliza Maria; Bergenholtz, Rikke D.; Jørgensen, Mikael Skaanning;

    2011-01-01

    OBJECTIVES: To investigate the diversity of plasmids that carry blaTEM-52 genes among Escherichia coli and Salmonella enterica originating from animals, meat products and humans. METHODS: A collection of 22 blaTEM-52-encoding plasmids was characterized by restriction fragment length polymorphism...... of self-transfer to a plasmid-free E. coli recipient. CONCLUSIONS: The blaTEM-52 gene found in humans could have been transmitted on transferable plasmids originating from animal sources. Some of the blaTEM-52 plasmids carry replicons that differ from the classical ones. Two novel replicons were detected...

  15. Structural and genetic analyses of a par locus that regulates plasmid partition in Bacillus subtilis.

    OpenAIRE

    Chang, S.; Chang, S Y; Gray, O

    1987-01-01

    The Bacillus plasmid pLS11 partitions faithfully during cell division. Using a partition-deficient plasmid vector, we randomly cloned DNA fragments of plasmid pLS11 and identified the locus that regulates plasmid partition (par) by cis complementation in Bacillus subtilis. The cloned par gene conferred upon the vector plasmid a high degree of segregational stability. The par locus was mapped to a 167-base-pair segment on pLS11, and its nucleotide sequence was determined. The cloned par fragme...

  16. cmp, a cis-acting plasmid locus that increases interaction between replication origin and initiator protein.

    OpenAIRE

    Gennaro, M L; Novick, R P

    1986-01-01

    pT181, a 4.4-kilobase multicopy plasmid of Staphylococcus aureus, encodes a trans-acting initiator protein, RepC, which was rate limiting for replication. Deletions in a 500-base-pair region of the plasmid external to the minimal replicon decreased the ability of the plasmid to compete with a coexisting incompatible plasmid. These deletions, which define a region called cmp (for competition), appeared to affect the interaction of RepC and the plasmid origin of replication. However, in the hom...

  17. Remarkable stability of an instability-prone lentiviral vector plasmid in Escherichia coli Stbl3

    OpenAIRE

    Al-Allaf, Faisal A.; Tolmachov, Oleg E.; Zambetti, Lia Paola; Tchetchelnitski, Viktoria; Mehmet, Huseyin

    2012-01-01

    Large-scale production of plasmid DNA to prepare therapeutic gene vectors or DNA-based vaccines requires a suitable bacterial host, which can stably maintain the plasmid DNA during industrial cultivation. Plasmid loss during bacterial cell divisions and structural changes in the plasmid DNA can dramatically reduce the yield of the desired recombinant plasmid DNA. While generating an HIV-based gene vector containing a bicistronic expression cassette 5′-Olig2cDNA-IRES-dsRed2-3′, we encountered ...

  18. The incC Sequence Is Required for R27 Plasmid Stability

    OpenAIRE

    Tassinari, Eleonora; Aznar, Sonia; Urcola, Imanol; Prieto, Alejandro; Hüttener, Mário; Juárez, Antonio

    2016-01-01

    IncHI plasmids account for multiple antimicrobial resistance in Salmonella and other enterobacterial genera. These plasmids are generally very stable in their bacterial hosts. R27 is the archetype of IncHI1 plasmids. A high percentage of the R27-encoded open reading frames (ORFs) (66.7%) do not show similarity to any known ORFs. We performed a deletion analysis of all non-essential R27 DNA sequences to search for hitherto non-identified plasmid functions that might be required for plasmid sta...

  19. Sialic acid transport and catabolism are cooperatively regulated by SiaR and CRP in nontypeable Haemophilus influenzae

    Directory of Open Access Journals (Sweden)

    Johnston Jason W

    2010-09-01

    Full Text Available Abstract Background The transport and catabolism of sialic acid, a critical virulence factor for nontypeable Haemophilus influenzae, is regulated by two transcription factors, SiaR and CRP. Results Using a mutagenesis approach, glucosamine-6-phosphate (GlcN-6P was identified as a co-activator for SiaR. Evidence for the cooperative regulation of both the sialic acid catabolic and transport operons suggested that cooperativity between SiaR and CRP is required for regulation. cAMP was unable to influence the expression of the catabolic operon in the absence of SiaR but was able to induce catabolic operon expression when both SiaR and GlcN-6P were present. Alteration of helical phasing supported this observation by uncoupling SiaR and CRP regulation. The insertion of one half-turn of DNA between the SiaR and CRP operators resulted in the loss of SiaR-mediated repression of the transport operon while eliminating cAMP-dependent induction of the catabolic operon when GlcN-6P was present. SiaR and CRP were found to bind to their respective operators simultaneously and GlcN-6P altered the interaction of SiaR with its operator. Conclusions These results suggest multiple novel features for the regulation of these two adjacent operons. SiaR functions as both a repressor and an activator and SiaR and CRP interact to regulate both operons from a single set of operators.

  20. Conjugative plasmids: Vessels of the communal gene pool

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    Comparative whole-genome analyses have demonstrated that horizontal gene transfer (HGT) provides a significant contribution to prokaryotic genome innovation. The evolution of specific prokaryotes is therefore tightly linked to the environment in which they live and the communal pool of genes...... available within that environment. Here we use the term supergenome to describe the set of all genes that a prokaryotic ‘individual' can draw on within a particular environmental setting. Conjugative plasmids can be considered particularly successful entities within the communal pool, which have enabled HGT...... to the hosts and, potentially, other resident prokaryotes within specific environmental niches. Insight into the evolution of plasmid modules therefore contributes to our knowledge of gene dissemination and evolution within prokaryotic communities. This communal pool provides the prokaryotes with an important...

  1. Plasmids and packaging cell lines for use in phage display

    Science.gov (United States)

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  2. Cationic lipids delay the transfer of plasmid DNA to lysosomes.

    Science.gov (United States)

    Wattiaux, R; Jadot, M; Laurent, N; Dubois, F; Wattiaux-De Coninck, S

    1996-10-14

    Plasmid 35S DNA, naked or associated with different cationic lipid preparations was injected to rats. Subcellular distribution of radioactivity in the liver one hour after injection, was established by centrifugation methods. Results show that at that time, 35S DNA has reached lysosomes. On the contrary, when 35S DNA was complexed with lipids, radioactivity remains located in organelles whose distribution after differential and isopycnic centrifugation, is clearly distinct from that of arylsulfatase, lysosome marker enzyme. Injection of Triton WR 1339, a specific density perturbant of lysosomes, four days before 35S DNA injection causes a density decrease of radioactivity bearing structures, apparent one hour after naked 35S DNA injection but visible only after more than five hours, when 35S DNA associated with a cationic lipid is injected. These observations show that cationic lipids delay the transfer to lysosomes, of plasmid DNA taken up by the liver.

  3. Polymerase chain reaction-based gene removal from plasmids

    Directory of Open Access Journals (Sweden)

    Vishnu Vardhan Krishnamurthy

    2015-09-01

    Full Text Available This data article contains supplementary figures and methods to the research article entitled, “Multiplex gene removal by two-step polymerase chain reactions” (Krishnamurthy et al., Anal. Biochem., 2015, doi:http://dx.doi.org/10.1016/j.ab.2015.03.033, which presents a restriction-enzyme free method to remove multiple DNA segments from plasmids. Restriction-free cloning methods have dramatically improved the flexibility and speed of genetic manipulation compared to conventional assays based on restriction enzyme digestion (Lale and Valla, 2014. DNA Cloning and Assembly Methods, vol. 1116. Here, we show the basic scheme and characterize the success rate for single and multiplex gene removal from plasmids. In addition, we optimize experimental conditions, including the amount of template, multiple primers mixing, and buffers for DpnI treatment, used in the one-pot reaction for multiplex gene removal.

  4. Current trends in separation of plasmid DNA vaccines: a review.

    Science.gov (United States)

    Ghanem, Ashraf; Healey, Robert; Adly, Frady G

    2013-01-14

    Plasmid DNA (pDNA)-based vaccines offer more rapid avenues for development and production if compared to those of conventional virus-based vaccines. They do not rely on time- or labour-intensive cell culture processes and allow greater flexibility in shipping and storage. Stimulating antibodies and cell-mediated components of the immune system are considered as some of the major advantages associated with the use of pDNA vaccines. This review summarizes the current trends in the purification of pDNA vaccines for practical and analytical applications. Special attention is paid to chromatographic techniques aimed at reducing the steps of final purification, post primary isolation and intermediate recovery, in order to reduce the number of steps necessary to reach a purified end product from the crude plasmid.

  5. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids.

    Science.gov (United States)

    Wegrzyn, Katarzyna E; Gross, Marta; Uciechowska, Urszula; Konieczny, Igor

    2016-01-01

    The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells. PMID:27563644

  6. Rapid Construction of Recombinant Plasmids by QuickStep-Cloning.

    Science.gov (United States)

    Jajesniak, Pawel; Wong, Tuck Seng

    2017-01-01

    QuickStep-Cloning is a novel molecular cloning technique that builds upon the concepts of asymmetric PCR and megaprimer-based amplification of whole plasmid. It was designed specifically to address the major drawbacks of previously reported cloning methods. The fully optimized protocol allows for a seamless integration of a long DNA fragment into any position within a plasmid of choice, in a time-efficient and cost-effective manner, without the need of a tedious DNA gel purification, a restriction digestion, and an enzymatic ligation. QuickStep-Cloning can be completed in less than 6 h, significantly faster than most of the existing cloning methods, while retaining high efficiency. PMID:27671943

  7. Characterization of two novel plasmids from Geobacillus sp. 610 and 1121 strains.

    Science.gov (United States)

    Kananavičiūtė, Rūta; Butaitė, Elena; Citavičius, Donaldas

    2014-01-01

    We describe two cryptic low molecular weight plasmids, pGTD7 (3279bp) and pGTG5 (1540bp), isolated from Geobacillus sp. 610 and 1121 strains, respectively. Homology analysis of the replication protein (Rep) sequences and detection of ssDNA indicate that both of them replicate via rolling circle mechanism. As revealed by sequence similarities of dso region and Rep protein, plasmid pGTD7 belongs to pC194/pUB110 plasmid family. The replicon of pGTD7 was proved to be functional in another Geobacillus host. For this purpose, a construct pUCK7, containing a replicon of the analyzed plasmid, was created and transferred to G. stearothermophilus NUB3621R strain by electroporation. Plasmid pGTG5, based on Rep protein sequence similarity, was found to be related mostly to some poorly characterized bacterial plasmids. Rep proteins encoded by these plasmids contain conservative motifs that are most similar to those of Microviridae phages. This feature suggests that pGTG5, together with other plasmids containing the same motifs, could constitute a new family of bacterial plasmids. To date, pGTG5 is the smallest plasmid identified in bacteria belonging to the genus Geobacillus. The two plasmids described in this study can be used for the construction of new vectors suitable for biotechnologically important bacteria of the genus Geobacillus.

  8. Differences in the stability of the plasmids of Yersinia pestis cultures in vitro: impact on virulence

    Directory of Open Access Journals (Sweden)

    TC Leal-Balbino

    2004-11-01

    Full Text Available Plasmid and chromosomal genes encode determinants of virulence for Yersinia pestis, the causative agent of plague. However, in vitro, Y. pestis genome is very plastic and several changes have been described. To evaluate the alterations in the plasmid content of the cultures in vitro and the impact of the alterations to their pathogenicity, three Y. pestis isolates were submitted to serial subculture, analysis of the plasmid content, and testing for the presence of characteristic genes in each plasmid of colonies selected after subculture. Different results were obtained with each strain. The plasmid content of one of them was shown to be stable; no apparent alteration was produced through 32 subcultures. In the other two strains, several alterations were observed. LD50 in mice of the parental strains and the derived cultures with different plasmid content were compared. No changes in the virulence plasmid content could be specifically correlated with changes in the LD50.

  9. STABILITY OF PLASMIDS IN 5 STRAINS OF SALMONELLA MAINTAINED IN STAB CULTURE AT DIFFERENT TEMPERATURES

    DEFF Research Database (Denmark)

    Olsen, J. E.; Brown, D. J.; Baggesen, Dorte Lau;

    1994-01-01

    Four strains of Salmonella berta and one of Salm. enteritidis were stored as stab cultures in sugar-free agar at 5 degrees, 22 degrees and 30 degrees C and in 15% glycerol at -80 degrees C. The stability of the plasmid profiles in each of the strains was monitored over a period of 2.5 years....... Plasmid profiles were stable in all strains stored at -80 degrees C, and only six of 450 colonies examined from strains kept in sugar-free agar at 5 degrees C had lost plasmid molecules. Seventy of 440 colonies from stab cultures that were kept at 22 degrees C, and 71 of 440 colonies at 30 degrees C...... showed changed plasmid profiles. The total number of plasmids lost increased with time, and occasionally, more than one plasmid molecule was lost in the same strain. The virulence associated plasmid of Salm. enteritidis was remarkably stable as it was maintained in all colonies examined at all...

  10. Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA.

    OpenAIRE

    Macaluso, A; Mettus, A M

    1991-01-01

    The transformation efficiency of Bacillus thuringiensis depends upon the source of plasmid DNA. DNA isolated from B. thuringiensis, Bacillus megaterium, or a Dam- Dcm- Escherichia coli strain efficiently transformed several B. thuringiensis strains, B. thuringiensis strains were grouped according to which B. thuringiensis backgrounds were suitable sources of DNA for transformation of other B. thuringiensis strains, suggesting that B. thuringiensis strains differ in DNA modification and restri...

  11. Reconstruction of the yeast 2 micron plasmid partitioning mechanism.

    OpenAIRE

    Dobson, M J; Yull, F E; Molina, M.; Kingsman, S M; Kingsman, A J

    1988-01-01

    The effect of the yeast 2 micron circle encoded REP1 and REP2 gene products on plasmid partitioning and copy number control was analyzed by removing the open reading frames from their normal sequence context and transcriptional control regions and directing their expression using heterologous promoters in [cir0] host strains. Both the REP1 and REP2 gene products are directly required at appropriate levels of expression to reconstitute the 2 microns circle partitioning system in conjunction wi...

  12. Plasmid Mediated Antibiotic Resistance in Isolated Bacteria From Burned Patients

    OpenAIRE

    Beige, Fahimeh; Baseri Salehi, Majid; Bahador, Nima; Mobasherzadeh, Sina

    2014-01-01

    Background: Nowadays, the treatment of burned patients is difficult because of the high frequency of infection with antibiotic resistance bacteria. Objectives: This study was conducted to evaluate the level of antibiotic resistance in Gram-negative bacteria and its relation with the existence of plasmid. Materials and Methods: The samples were collected from two hundred twenty hospitalized burned patients in Isfahan burn hospital during a three-month period (March 2012 to June 2012). The samp...

  13. Enhancer-activated plasmid transcription complexes contain constrained supercoiling.

    OpenAIRE

    Bonilla, P J; Freytag, S O; Lutter, L C

    1991-01-01

    It has been proposed that transcriptionally active chromatin contains totally unconstrained supercoiling. The results of recent studies have raised the possibility that this topological state is the property of highly transcribed genes. Since the transcription rate of RNA polymerase II genes can be dramatically increased by the presence of an enhancer, we have determined if the transcription complex of an enhancer-activated plasmid contains totally unconstrained supercoils. Following transfec...

  14. Plasmid addiction systems: perspectives and applications in biotechnology

    OpenAIRE

    Kroll, Jens; Klinter, Stefan; Schneider,Cornelia; Voß, Isabella; Steinbüchel, Alexander

    2010-01-01

    Summary Biotechnical production processes often operate with plasmid‐based expression systems in well‐established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high‐value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid‐free cells lead to losses in the entire product recovery a...

  15. Spaceflight Effects on Genetics and Plasmids of Streptomycetes

    Science.gov (United States)

    Voeikova, T. A.; Emelyanova, L. K.; Tyaglov, B. V.; Novikova, L. M.; Goins, T. L.; Pyle, B. H.

    2008-06-01

    In 2007, experiments with streptomycetes were conducted during a 12-day flight of the Russian Foton-M3 spacecraft. The flight (F), synchronous control (SC) and laboratory control (LC) specimens were kept at 30°C. The objective of the experiments was to study spaceflight effects on the streptomycetes growth, differentiation, pigmentation, enzyme formation, genetic stability of plasmid and crossing between strains. It was found that the frequency of strain Streptomyces lividans segregation, the enzyme synthesis, pigmentation, and the level of sporulation were higher in F than in SC organisms. The study of pIJ702 plasmid inheritance in S. lividans showed that the frequency of plasmid loss in F and LC was similar and lower than that in SC specimens. The study of melanin synthesis in S. lividans (pIJ702) strain demonstrated decreased melanin specific yield and increased biomass accumulation in F microorganisms. HPTLC analysis of melanin showed that the number, molecular mass and the percentage of fractions were similar in SC and LC but different in F organisms. The study of spaceflight effects on genetic recombination in crosses between Streptomyces coelicolor A3(2) auxotrophic mutants showed that the frequency of various recombinant classes in F specimens differed from that in SC and LC. The frequency of a distal donor marker entry to the recipient in F was higher than in SC and LC.

  16. DNA immunization with plasmids expressing hCGbeta-chimeras.

    Science.gov (United States)

    Terrazzini, Nadia; Hannesdóttir, Sólveig; Delves, Peter J; Lund, Torben

    2004-06-01

    Human chorionic gonadotropin has been used as an anti-fertility vaccine and as a target for cancer immunotherapy. We have explored the use of DNA immunization with the aim of improving the immunogenicity of this hormone. Stimulating the muscle with electric pulses following intramuscular injection of plasmids expressing hCGbeta resulted in higher levels of human chorionic gonadotropin (hCG)-specific antibodies, which could be further enhanced following a protein boost with hCG mixed with adjuvant. DNA vaccines encoding a membrane attached or a secreted form of hCGbeta produced similar-albeit relatively modest-antibody responses. Providing hCGbeta with additional T cell help by vaccinating with a plasmid encoding a hCGbeta-hFc fusion protein did not further increase the antibody levels in the immunized animals. However, immunization of mice with a construct encoding hCGbeta fused to C3d(3) produced significantly lower antibody levels relative to mice immunized with the hCGbeta-alone expression plasmid, even though the hCGbeta-C3d(3) chimera was expected to facilitate cross-linking of the antigen-specific B-cell receptor and CR2 thereby lowering the threshold of activation. Thus the limiting factor determining the antibody levels following hCGbeta immunization, at least for DNA immunization, is related to the amount of protein available rather than the form of protein produced or lack of T cell epitopes. PMID:15149771

  17. Two domains at the origin are required for replication and maintenance of broad-host-range plasmid R1162.

    OpenAIRE

    Kim, Y.J.; Lin, L. S.; Meyer, R. J.

    1987-01-01

    Two domains at the replicative origin of broad-host-range plasmid R1162 are required in cis for plasmid maintenance in Escherichia coli and for plasmid DNA replication in cell extracts. Increasing the distance between the domains reduces replication in vitro, without substantially changing plasmid DNA content or stability in vivo.

  18. Bacillus anthracis Virulent Plasmid pX02 Genes Found in Large Plasmids of Two Other Bacillus Species

    OpenAIRE

    Luna, Vicki A.; King, Debra S.; Peak, K. Kealy; Reeves, Frank; Heberlein-Larson, Lea; Veguilla, William; Heller, L.; Duncan, Kathleen E; Cannons, Andrew C.; Amuso, Philip; Cattani, Jacqueline

    2006-01-01

    In order to cause the disease anthrax, Bacillus anthracis requires two plasmids, pX01 and pX02, which carry toxin and capsule genes, respectively, that are used as genetic targets in the laboratory detection of the bacterium. Clinical, forensic, and environmental samples that test positive by PCR protocols established by the Centers for Disease Control and Prevention for B. anthracis are considered to be potentially B. anthracis until confirmed by culture and a secondary battery of tests. We ...

  19. Type 3 Fimbriae Encoded on Plasmids Are Expressed from a Unique Promoter without Affecting Host Motility, Facilitating an Exceptional Phenotype That Enhances Conjugal Plasmid Transfer

    Science.gov (United States)

    Madsen, Jonas Stenløkke; Riber, Leise; Kot, Witold; Basfeld, Alrun; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2016-01-01

    Horizontal gene transfer (HGT), the transmission of genetic material to a recipient that is not the progeny of the donor, is fundamental in bacterial evolution. HGT is often mediated by mobile genetic elements such as conjugative plasmids, which may be in conflict with the chromosomal elements of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed to have originated. We find that mrkABCDFs of plasmids are highly expressed via a unique promoter that differs from the original Klebsiella promoter resulting in fundamental behavioral consequences. Plasmid associated mrkABCDFs did not influence the swimming behavior of the host, that hereby acquired an exceptional phenotype being able to both actively swim (planktonic behavior) and express biofilm associated fimbriae (sessile behavior). We show that this exceptional phenotype enhances the conjugal transfer of the plasmid. PMID:27627107

  20. Type 3 fimbriae encoded on plasmids are expressed from a unique promoter without affecting host motility, facilitating an exceptional phenotype that enhances conjugal plasmid transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Riber, Leise; Kot, Witold Piotr;

    2016-01-01

    of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded...

  1. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene.

    Directory of Open Access Journals (Sweden)

    Dexi Bi

    Full Text Available Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3'-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa.

  2. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene.

    Science.gov (United States)

    Bi, Dexi; Xie, Yingzhou; Tai, Cui; Jiang, Xiaofei; Zhang, Jie; Harrison, Ewan M; Jia, Shiru; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2016-01-01

    Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3'-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa. PMID:26841043

  3. Type 3 Fimbriae Encoded on Plasmids Are Expressed from a Unique Promoter without Affecting Host Motility, Facilitating an Exceptional Phenotype That Enhances Conjugal Plasmid Transfer.

    Science.gov (United States)

    Madsen, Jonas Stenløkke; Riber, Leise; Kot, Witold; Basfeld, Alrun; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2016-01-01

    Horizontal gene transfer (HGT), the transmission of genetic material to a recipient that is not the progeny of the donor, is fundamental in bacterial evolution. HGT is often mediated by mobile genetic elements such as conjugative plasmids, which may be in conflict with the chromosomal elements of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed to have originated. We find that mrkABCDFs of plasmids are highly expressed via a unique promoter that differs from the original Klebsiella promoter resulting in fundamental behavioral consequences. Plasmid associated mrkABCDFs did not influence the swimming behavior of the host, that hereby acquired an exceptional phenotype being able to both actively swim (planktonic behavior) and express biofilm associated fimbriae (sessile behavior). We show that this exceptional phenotype enhances the conjugal transfer of the plasmid. PMID:27627107

  4. Expansion of a plasmid classification system for Gram-positive bacteria and determination of the diversity of plasmids in Staphylococcus aureus strains of human, animal, and food origins

    DEFF Research Database (Denmark)

    Lozano, C.; Garcia-Migura, L.; Aspiroz, C.;

    2012-01-01

    An expansion of a previously described plasmid classification was performed and used to reveal the plasmid content of a collection of 92 Staphylococcus aureus strains of different origins. rep genes of other genera were detected in Staphylococcus. S1 pulsed-field gel electrophoresis (PFGE...

  5. Genetic transformation of a clinical (genital tract, plasmid-free isolate of Chlamydia trachomatis: engineering the plasmid as a cloning vector.

    Directory of Open Access Journals (Sweden)

    Yibing Wang

    Full Text Available Our study had three objectives: to extend the plasmid-based transformation protocol to a clinical isolate of C. trachomatis belonging to the trachoma biovar, to provide "proof of principle" that it is possible to "knock out" selected plasmid genes (retaining a replication competent plasmid and to investigate the plasticity of the plasmid. A recently developed, plasmid-based transformation protocol for LGV isolates of C. trachomatis was modified and a plasmid-free, genital tract C. trachomatis isolate from Sweden (SWFP- was genetically transformed. Transformation of this non-LGV C. trachomatis host required a centrifugation step, but the absence of the natural plasmid removed the need for plaque purification of transformants. Transformants expressed GFP, were penicillin resistant and iodine stain positive for accumulated glycogen. The transforming plasmid did not recombine with the host chromosome. A derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene was engineered. CDS5 encodes pgp3, a protein secreted from the inclusion into the cell cytoplasm. This plasmid (pCDS5KO was used to transform C. trachomatis SWFP-, and established that pgp3 is dispensable for plasmid function. The work shows it is possible to selectively delete segments of the chlamydial plasmid, and this is the first step towards a detailed molecular dissection of the role of the plasmid. The 3.6 kb β-galactosidase cassette was inserted into the deletion site of CDS5 to produce plasmid placZ-CDS5KO. Transformants were penicillin resistant, expressed GFP and stained for glycogen. In addition, they expressed β-galactosidase showing that the lacZ cassette was functional in C. trachomatis. An assay was developed that allowed the visualisation of individual inclusions by X-gal staining. The ability to express active β-galactosidase within chlamydial inclusions is an important advance as it allows simple, rapid assays to measure directly chlamydial infectivity without

  6. RK2 plasmid dynamics in Caulobacter crescentus cells--two modes of DNA replication initiation.

    Science.gov (United States)

    Wegrzyn, Katarzyna; Witosinska, Monika; Schweiger, Pawel; Bury, Katarzyna; Jenal, Urs; Konieczny, Igor

    2013-06-01

    Undisturbed plasmid dynamics is required for the stable maintenance of plasmid DNA in bacterial cells. In this work, we analysed subcellular localization, DNA synthesis and nucleoprotein complex formation of plasmid RK2 during the cell cycle of Caulobacter crescentus. Our microscopic observations showed asymmetrical distribution of plasmid RK2 foci between the two compartments of Caulobacter predivisional cells, resulting in asymmetrical allocation of plasmids to progeny cells. Moreover, using a quantitative PCR (qPCR) method, we estimated that multiple plasmid particles form a single fluorescent focus and that the number of plasmids per focus is approximately equal in both swarmer and predivisional Caulobacter cells. Analysis of the dynamics of TrfA-oriV complex formation during the Caulobacter cell cycle revealed that TrfA binds oriV primarily during the G1 phase, however, plasmid DNA synthesis occurs during the S and G2 phases of the Caulobacter cell cycle. Both in vitro and in vivo analysis of RK2 replication initiation in C. crescentus cells demonstrated that it is independent of the Caulobacter DnaA protein in the presence of the longer version of TrfA protein, TrfA-44. However, in vivo stability tests of plasmid RK2 derivatives suggested that a DnaA-dependent mode of plasmid replication initiation is also possible.

  7. A polymerization-based method to construct a plasmid containing clustered DNA damage and a mismatch.

    Science.gov (United States)

    Takahashi, Momoko; Akamatsu, Ken; Shikazono, Naoya

    2016-10-01

    Exposure of biological materials to ionizing radiation often induces clustered DNA damage. The mutagenicity of clustered DNA damage can be analyzed with plasmids carrying a clustered DNA damage site, in which the strand bias of a replicating plasmid (i.e., the degree to which each of the two strands of the plasmid are used as the template for replication of the plasmid) can help to clarify how clustered DNA damage enhances the mutagenic potential of comprising lesions. Placement of a mismatch near a clustered DNA damage site can help to determine the strand bias, but present plasmid-based methods do not allow insertion of a mismatch at a given site in the plasmid. Here, we describe a polymerization-based method for constructing a plasmid containing clustered DNA lesions and a mismatch. The presence of a DNA lesion and a mismatch in the plasmid was verified by enzymatic treatment and by determining the relative abundance of the progeny plasmids derived from each of the two strands of the plasmid. PMID:27449134

  8. Combination of recreational soccer and caloric restricted diet reduces markers of protein catabolism and cardiovascular risk in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    de Sousa, M Vieira; Fukui, R; Krustrup, Peter;

    2016-01-01

    D) patients. Objective: We compared the effects of acute and chronic soccer training plus calorie-restricted diet on protein catabolism and cardiovascular risk markers in T2D. Design, setting and subjects: Fifty-one T2D patients (61.1±6.4 years, 29 females: 22 males) were randomly allocated...... levels were suggestive of lower muscle protein catabolism. Conclusions: Recreational soccer training was popular and safe, and was associated with decreased plasma glucose and IGFBP-3 levels, decreased ammoniagenesis, and increased lipolytic activity and IGF-1/IGFBP-3 ratio, all indicative of attenuated...... catabolism....

  9. Plasmids of the pRM/pRF family occur in diverse Rickettsia species.

    Science.gov (United States)

    Baldridge, Gerald D; Burkhardt, Nicole Y; Felsheim, Roderick F; Kurtti, Timothy J; Munderloh, Ulrike G

    2008-02-01

    The recent discoveries of the pRF and pRM plasmids of Rickettsia felis and R. monacensis have contravened the long-held dogma that plasmids are not present in the bacterial genus Rickettsia (Rickettsiales; Rickettsiaceae). We report the existence of plasmids in R. helvetica, R. peacockii, R. amblyommii, and R. massiliae isolates from ixodid ticks and in an R. hoogstraalii isolate from an argasid tick. R. peacockii and four isolates of R. amblyommii from widely separated geographic locations contained plasmids that comigrated with pRM during pulsed-field gel electrophoresis and larger plasmids with mobilities similar to that of pRF. The R. peacockii plasmids were lost during long-term serial passage in cultured cells. R. montanensis did not contain a plasmid. Southern blots showed that sequences similar to those of a DnaA-like replication initiator protein, a small heat shock protein 2, and the Sca12 cell surface antigen genes on pRM and pRF were present on all of the plasmids except for that of R. massiliae, which lacked the heat shock gene and was the smallest of the plasmids. The R. hoogstraalii plasmid was most similar to pRM and contained apparent homologs of proline/betaine transporter and SpoT stringent response genes on pRM and pRF that were absent from the other plasmids. The R. hoogstraalii, R. helvetica, and R. amblyommii plasmids contained homologs of a pRM-carried gene similar to a Nitrobacter sp. helicase RecD/TraA gene, but none of the plasmids hybridized with a probe derived from a pRM-encoded gene similar to a Burkholderia sp. transposon resolvase gene.

  10. Effect of excessive cadmium chloride on the plasmids of E. coli HB 101 in vivo

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    After Escherichia coli HB101 with plasmid pWH58, pWH98, or pTBa5 were cultered respectively in amp LB broth which contained 50 mg/L CdCl2 constantly for 24 h, these plasmids were isolated from E. coli, and the effect of excessive CdCl2 on the E. coli HB101 and plasmid DNA was studied by surveying the growth of E. coli HB101 and plasmid, argarose gel electrophoresis and analysis of restriction fragment length polymorphism (RFLP) of plasmids, and plasmid transformation. The results showed that 50 mg/L CdCl2 treatment lagged the growth of E. coli HB101 for at least 4h, but after grown for 24h there were not significant differences in the growths of E. coli HB101s and the productions of plasmids between the treatment and control. These results implified that E. coli HB101 have induced adaptability to cadmium stress and excessive CdCl2 did not inhibit the replication and amp+ gene's expression of plasmid DNA in vivo of E. coli significantly. 50 mg/L CdCl2 treatment for 24 hours might cause the sequence's change of plasmid DNA, but could not lead to the random breakage of plasmid DNA strands. Moreover, after 50 mg/L of CdCl2 treatment in vivo the transformation activities of plasmid did not altered, implied excessive CdCl2 could not affect the superhelical structure of plasmid and also not break the loop of plasmid DNA evidently.

  11. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance.

    Directory of Open Access Journals (Sweden)

    Mark Eppinger

    Full Text Available Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.

  12. Plasmid DNA Supercoiling and Gyrase Activity in Escherichia coli Wild-Type and rpoS Stationary-Phase Cells

    Science.gov (United States)

    Reyes-Domínguez, Yazmid; Contreras-Ferrat, Gabriel; Ramírez-Santos, Jesús; Membrillo-Hernández, Jorge; Gómez-Eichelmann, M. Carmen

    2003-01-01

    Stationary-phase cells displayed a distribution of relaxed plasmids and had the ability to recover plasmid supercoiling as soon as nutrients became available. Preexisting gyrase molecules in these cells were responsible for this recovery. Stationary-phase rpoS cells showed a bimodal distribution of plasmids and failed to supercoil plasmids after the addition of nutrients, suggesting that rpoS plays a role in the regulation of plasmid topology during the stationary phase. PMID:12533486

  13. Planktonic versus biofilm catabolic communities: importance of the biofilm for species selection and pesticide degradation.

    Science.gov (United States)

    Verhagen, Pieter; De Gelder, Leen; Hoefman, Sven; De Vos, Paul; Boon, Nico

    2011-07-01

    Chloropropham-degrading cultures were obtained from sludge and soil samples by using two different enrichment techniques: (i) planktonic enrichments in shaken liquid medium and (ii) biofilm enrichments on two types of solid matrixes (plastic chips and gravel). Denaturing gradient gel electrophoresis fingerprinting showed that planktonic and biofilm cultures had a different community composition depending on the presence and type of added solid matrix during enrichment. This was reflected in the unique chloropropham-degrading species that could be isolated from the different cultures. Planktonic and biofilm cultures also differed in chloropropham-degrading activity. With biofilm cultures, slower chloropropham removal was observed, but with less build-up of the toxic intermediate 3-chloroaniline. Disruption of the biofilm architecture resulted in degradation characteristics shifting toward those of the free suspensions, indicating the importance of a well-established biofilm structure for good performance. These results show that biofilm-mediated enrichment techniques can be used to select for pollutant-degrading microorganisms that like to proliferate in a biofilm and that cannot be isolated using conventional shaken-liquid procedures. Furthermore, the influence of the biofilm architecture on the pesticide degradation characteristics suggests that for bioaugmentation the use of biofilm catabolic communities might be a proficient alternative to using planktonic freely suspended cultures. PMID:21602394

  14. Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits

    Institute of Scientific and Technical Information of China (English)

    Andrej Kochevenko; Wagner L.Araújo; Gregory S.Maloney; Denise M.Tieman; Phuc Thi Do; Mark G.Taylor; Harry J.Klee; Alisdair R.Fernie

    2012-01-01

    The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine,isoleucine,and valine.These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids.Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized,their catabolism in plants is not yet completely understood.We previously characterized the branched chain amino acid transaminase gene family in tomato,revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes.Here,we examined possible functions of the enzymes during fruit development.We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3,evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3.We quantitatively tested,via precursor and isotope feeding experiments,the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles.Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration,but also reveal that keto acids,rather than amino acids,are the likely precursors for the branched chain flavor volatiles.

  15. Metabolic switch during adipogenesis: From branched chain amino acid catabolism to lipid synthesis.

    Science.gov (United States)

    Halama, Anna; Horsch, Marion; Kastenmüller, Gabriele; Möller, Gabriele; Kumar, Pankaj; Prehn, Cornelia; Laumen, Helmut; Hauner, Hans; Hrabĕ de Angelis, Martin; Beckers, Johannes; Suhre, Karsten; Adamski, Jerzy

    2016-01-01

    Fat cell metabolism has an impact on body homeostasis and its proper function. Nevertheless, the knowledge about simultaneous metabolic processes, which occur during adipogenesis and in mature adipocytes, is limited. Identification of key metabolic events associated with fat cell metabolism could be beneficial in the field of novel drug development, drug repurposing, as well as for the discovery of patterns predicting obesity risk. The main objective of our work was to provide comprehensive characterization of metabolic processes occurring during adipogenesis and in mature adipocytes. In order to globally determine crucial metabolic pathways involved in fat cell metabolism, metabolomics and transcriptomics approaches were applied. We observed significantly regulated metabolites correlating with significantly regulated genes at different stages of adipogenesis. We identified the synthesis of phosphatidylcholines, the metabolism of even and odd chain fatty acids, as well as the catabolism of branched chain amino acids (BCAA; leucine, isoleucine and valine) as key regulated pathways. Our further analysis led to identification of an enzymatic switch comprising the enzymes Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthase) and Auh (AU RNA binding protein/enoyl-CoA hydratase) which connects leucine degradation with cholesterol synthesis. In addition, propionyl-CoA, a product of isoleucine degradation, was identified as a putative substrate for odd chain fatty acid synthesis. The uncovered crosstalks between BCAA and lipid metabolism during adipogenesis might contribute to the understanding of molecular mechanisms of obesity and have potential implications in obesity prediction. PMID:26408941

  16. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice.

    Science.gov (United States)

    Niewiadomski, Julie; Zhou, James Q; Roman, Heather B; Liu, Xiaojing; Hirschberger, Lawrence L; Locasale, Jason W; Stipanuk, Martha H

    2016-01-01

    To gain further insights into the effects of elevated cysteine levels on energy metabolism and the possible mechanisms underlying these effects, we conducted studies in cysteine dioxygenase (Cdo1)-null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression are also seen in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggests impaired mitochondrial β-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2 S production and impairments in energy metabolism suggest that H2 S signaling could be involved.

  17. Redundancy in putrescine catabolism in solvent tolerant Pseudomonas putida S12.

    Science.gov (United States)

    Bandounas, Luaine; Ballerstedt, Hendrik; de Winde, Johannes H; Ruijssenaars, Harald J

    2011-06-10

    Pseudomonas putida S12 is a promising platform organism for the biological production of substituted aromatic compounds due to its extreme tolerance towards toxic chemicals. Solvent or aromatic stress tolerance may be due to membrane modifications and efflux pumps; however in general, polyamines have also been implicated in stressed cells. Previous transcriptomics results of P. putida strains producing an aromatic compound, or being exposed to the solvent toluene, indicated differentially expressed genes involved in polyamine transport and metabolism. Therefore, the metabolism of the polyamine, putrescine was investigated in P. putida S12, as no putrescine degradation pathways have been described for this strain. Via transcriptome analysis various, often redundant, putrescine-induced genes were identified as being potentially involved in putrescine catabolism via oxidative deamination and transamination. A series of knockout mutants were constructed in which up to six of these genes were sequentially deleted, and although putrescine degradation was affected in some of these mutants, complete elimination of putrescine degradation in P. putida S12 was not achieved. Evidence was found for the presence of an alternative pathway for putrescine degradation involving γ-glutamylation. The occurrence of multiple putrescine degradation routes in the solvent-tolerant P. putida S12 is indicative of the importance of controlling polyamine homeostasis, as well as of the high metabolic flexibility exhibited by this microorganism.

  18. Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Scheuner, Carmen; Goker, Markus; Mavromatis, Kostas; Hooper, Sean D.; Porat, Iris; Klenk, Hans-Peter; Ivanova, Natalia; Kyrpides, Nikos

    2011-05-03

    The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.

  19. Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism.

    Science.gov (United States)

    Delangle, Aurélie; Prouvost, Anne-France; Cogez, Virginie; Bohin, Jean-Pierre; Lacroix, Jean-Marie; Cotte-Pattat, Nicole Hugouvieux

    2007-10-01

    beta-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK(2). Degradation of galactans would be catalyzed by the periplasmic 1,4-beta-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-beta-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny. PMID:17644603

  20. Experimental evidence of a xylose-catabolic pathway on the pAO1 megaplasmid of Arthrobacter nicotinovorans

    Directory of Open Access Journals (Sweden)

    Marius Mihasan

    2012-09-01

    Full Text Available The pAO1 megaplasmid of A. nicotinovorans consists of 165 ORF's related mainly to nicotine degradation, uptake and utilization of carbohydrates, amino acids and sarcosine. A putative sugar catabolic pathway consisting of 11 ORF's organized as a single operon were previously described. The current work brings experimental data supporting the existence of a D-Xylose catabolic pathway on the pAO1 megaplasmid. When grown on D-xylose containing media, the cells harboring the pAO1 megaplasmid grow to higher cell densities and also express the OxRe protein coded by the megaplasmid. A putative pathway similar to Weimberg pentose pathway is postulated, in which D-xylose is transported in the cell by the ABC-type transport system and then transformed using the putative sugar-dehidrogenase OxRe to D-xylonate, which is further degrated to 2-ketoglutarate and integrated into the general metabolism of the cell

  1. Multiple drug resistant carbapenemases producing Acinetobacter baumannii isolates harbours multiple R-plasmids

    Directory of Open Access Journals (Sweden)

    Rajagopalan Saranathan

    2014-01-01

    Full Text Available Background & objectives: The nosocomial human pathogen Acinetobacter baumannii has high propensity to develop resistance to antimicrobials and to become multidrug resistant (MDR, consequently complicating the treatment. This study was carried out to investigate the presence of resistant plasmids (R-plasmids among the clinical isolates of A. baumannii. In addition, the study was performed to check the presence of common β-lactamases encoding genes on these plasmids. Methods: A total of 55 clinical isolates of A. baumannii were included in the study and all were subjected to plasmid DNA isolation, followed by PCR to check the presence of resistance gene determinants such as blaOXA-23 , blaOXA-51, blaOXA-58 and blaIMP-1 on these plasmids that encode for oxacillinase (OXA and metallo-β-lactamase (MBL type of carbapenemases. Plasmid curing experiments were carried out on selected isolates using ethidium bromide and acridine orange as curing agents and the antibiotic resistance profiles were evaluated before and after curing. Results: All the isolates were identified as A. baumannii by 16SrDNA amplification and sequencing. Plasmid DNA isolated from these isolates showed the occurrence of multiple plasmids with size ranging from 500bp to ≥ 25 kb. The percentage of blaOXA-51 and blaOXA-23 on plasmids were found to be 78 and 42 per cent, respectively and 20 isolates (36% carried blaIMP-1 gene on plasmids. Significant difference was observed in the antibiograms of plasmid cured isolates when compared to their parental ones. The clinical isolates became susceptible to more than two antibiotic classes after curing of plasmids indicating plasmid borne resistance. Interpretation & conclusions: Our study determined the plasmid mediated resistance mechanisms and occurrence of different resistance genes on various plasmids isolated from MDR A. baumannii. The present findings showed the evidence for antibiotic resistance mediated through multiple plasmids in

  2. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat Dawid; Weber Christian; Lorenzen Wolfram; Bode Helge B; Boles Eckhard

    2012-01-01

    Abstract Background The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobut...

  3. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat, Dawid; Weber, Christian; Lorenzen, Wolfram; Bode, Helge Björn; Boles, Eckhard

    2012-01-01

    Background: The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. ...

  4. The influence of environmental parameters on the catabolism of branched-chain amino acids by Staphylococcus xylosus and Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Olesen, Pelle Thonning; Stahnke, Louise Heller

    2004-01-01

    Degradation of the amino acids leucine, isoleucine and valine into branched flavour compounds by Staphylococcus xylosus and Staphylococcus carnosus was studied using resting cell cultures added to a defined reaction medium under different environmental conditions relevant to sausage fermentation...... detection (GC/FID). Main volatile catabolic products of leucine, isoleucine and valine were 3-methylbutanoic, 2-methylbutanoic and 2-methylpropanoic acids, respectively. The generation of branched flavour compounds was influenced significantly by most of the investigated environmental parameters...

  5. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types

    Science.gov (United States)

    Amend, Jan P.; McCollom, Thomas M.; Hentscher, Michael; Bach, Wolfgang

    2011-10-01

    Active deep-sea hydrothermal vents are hosted by a range of different rock types, including basalt, peridotite, and felsic rocks. The associated hydrothermal fluids exhibit substantial chemical variability, which is largely attributable to compositional differences among the underlying host rocks. Numerical models were used to evaluate the energetics of seven inorganic redox reactions (potential catabolisms of chemolithoautotrophs) and numerous biomolecule synthesis reactions (anabolism) in a representative sampling of these systems, where chemical gradients are established by mixing hydrothermal fluid with seawater. The wide ranging fluid compositions dictate demonstrable differences in Gibbs energies (Δ G r) of these catabolic and anabolic reactions in three peridotite-hosted, six basalt-hosted, one troctolite-basalt hybrid, and two felsic rock-hosted systems. In peridotite-hosted systems at low to moderate temperatures (10), hydrogen oxidation yields the most catabolic energy, but the oxidation of methane, ferrous iron, and sulfide can also be moderately exergonic. At higher temperatures, and consequent SW:HF mixing ratios anabolism in chemolithoautotrophs—represented here by the synthesis of amino acids, nucleotides, fatty acids, saccharides, and amines—were generally most favorable at moderate temperatures (22-32 °C) and corresponding SW:HF mixing ratios (˜15). In peridotite-hosted and the troctolite-basalt hybrid systems, Δ G r for primary biomass synthesis yielded up to ˜900 J per g dry cell mass. The energetics of anabolism in basalt- and felsic rock-hosted systems were far less favorable. The results suggest that in peridotite-hosted (and troctolite-basalt hybrid) systems, compared with their basalt (and felsic rock) counterparts, microbial catabolic strategies—and consequently variations in microbial phylotypes—may be far more diverse and some biomass synthesis may yield energy rather than imposing a high energetic cost.

  6. Separation and partial characterization of the enzymes of the toluene-4-monooxygenase catabolic pathway in Pseudomonas mendocina KR1.

    OpenAIRE

    Whited, G M; Gibson, D T

    1991-01-01

    The route of toluene degradation by Pseudomonas mendocina KR1 was studied by separating or purifying from toluene-grown cells the catabolic enzymes responsible for oxidation of p-cresol through the ring cleavage step. Enzymatic transformations corresponding to each of the metabolic steps in the proposed degradative pathway were conducted with cell-free preparations. p-Cresol was metabolized by the enzyme p-cresol methylhydroxylase to p-hydroxybenzaldehyde. p-Hydroxybenzaldehyde was further ox...

  7. Characterization of a Cryptic and Intriguing Low Molecular Weight Plasmid.

    Science.gov (United States)

    Carneiro, Lilian C; Mendes, Paulo Vinicius C; Silva, Silvana P; Souza, Guilherme R L; Bataus, Luiz Artur M

    2016-03-01

    The complete nucleotide sequence of cryptic plasmid pVCM04 isolated from Salmonella enterica serovar Enteritidis was determined and analyzed. pVCM04 contains 3853 bp with 53.6 % GC content and has twelve ORFs with more than 50 amino acids. Five of these sequences showed homology with replication and mobilization proteins. ORF1 and ORF2 showed homology with replication proteins, while ORFs 3-5 showed homology with mobilization proteins. The pVCM04 possesses a region associated with the theta-type replication mechanism. BLASTn search analysis revealed unexpectedly no similarity with sequences deposited in GenBank. The nucleotide sequence of pVCM04 can be divided into two arms: the region between nucleotides 552-1774 (encoding RepA and RepB) and the region between nucleotides 1775-3853 (encoding MobA, MobB and MobC). Codon bias pattern is distinct between mobA and repA, so the program Modeltest was used to select the best evolutionary model to study these genes. The result of ModelTest (model GTR+G for mobA and model HKY+G for repA) suggests that these genes would be subject to different selective pressures. Considering the differences in the codon usage, the selection of two different evolutionary models, and the absence of plasmids with homology to pVCM04 in GenBank, we believe that pVCM04 is a chimeric molecule and represents a new plasmid lineage. PMID:26670037

  8. Strategies and approaches in plasmidome studies – uncovering plasmid diversity disregarding of linear elements?

    Directory of Open Access Journals (Sweden)

    Julian Rafael Dib

    2015-05-01

    Full Text Available The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognised not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture–dependent or –independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e. the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which – despite their frequent occurrence in a large number of bacteria – are largely neglected in prevalent plasmidome conceptions.

  9. Strategies and approaches in plasmidome studies—uncovering plasmid diversity disregarding of linear elements?

    Science.gov (United States)

    Dib, Julián R.; Wagenknecht, Martin; Farías, María E.; Meinhardt, Friedhelm

    2015-01-01

    The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognized not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture-dependent or -independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e., the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which—despite their frequent occurrence in a large number of bacteria—are largely neglected in prevalent plasmidome conceptions. PMID:26074886

  10. Long- term manure exposure increases soil bacterial community potential for plasmid uptake

    DEFF Research Database (Denmark)

    Musovic, Sanin; Klümper, Uli; Dechesne, Arnaud;

    2014-01-01

    Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive and main......Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive...... and maintain the plasmids. The community permissiveness increased up to 100% in communities derived from manured soil. While the plasmid transfer frequency was significantly influenced by both the type of plasmid and the agronomic treatment, the diversity of the transconjugal pools was purely plasmid dependent...

  11. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian;

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution...... sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions...... consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts....

  12. Plasmid-associated transfer of tetracycline resistance in Bacteroides ruminicola.

    OpenAIRE

    Flint, H J; Thomson, A. M.; Bisset, J

    1988-01-01

    Tetracycline resistance was transferred at frequencies between 10(-7) and 10(-6) per recipient cell in anaerobic matings between two strains of the strictly anaerobic rumen bacterium Bacteroides ruminicola. The donor strain, 223/M2/7, was a multiple-plasmid-bearing tetracycline-resistant strain from the ovine rumen, and the recipient, F101, was a rifampin-resistant mutant of B14, a bovine strain belonging to B. ruminicola subsp. brevis. Resistance transfer could occur in the presence of DNase...

  13. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soil microbes play a major role in ecological processes and are closely associated with the aboveground plant community. In order to understand the effects of vegetation type on the characteristics of soil microbial communities, the soil microbial communities were assessed by plate counts, phospholipid fatty acid (PLFA) and Biolog microplate techniques in five plant communities, i.e., soybean field (SF), artificial turf (AT), artificial shrub (AS), natural shrub (NS), and maize field (MF) in Jinan, Shandong Province, North China. The results showed that plant diversity had little discernible effect on microbial biomass but a positive impact on the evennessof utilized substrates in Biolog microplate. Legumes could significantly enhance the number of cultural microorganisms, microbial biomass, and community catabolic diversity. Except for SF dominated by legumes, the biomass of fungi and the catabolic diversity of microbial community were higher in less disturbed soil beneath NS than in frequently disturbed soils beneath the other vegetation types. These results confirmed that high number of plant species, legumes, and natural vegetation types tend to support soil microbial communities with higher function. The present study also found a significant correlation between the number of cultured bacteria and catabolic diversity of the bacterial community. Different research methods led to varied results in this study. The combination of several approaches is recommended for accurately describing the characteristics of microbial communities in many respects.

  14. Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage.

    Science.gov (United States)

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa; Ziola, Barry

    2015-02-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.

  15. Characterization and molecular cloning in Escherichia coli of a plasmid from the mollicute Spiroplasma citri.

    OpenAIRE

    Mouches, C; Barroso, G.; Bové, J M

    1983-01-01

    Two plasmids, pMH1 with 7 kilobase pairs and pM41 with 8 kilobase pairs, were purified from the plant pathogen Spiroplasma citri and characterized by restriction mapping. Upon in vitro DNA recombination with plasmid pBR328 as a vector, we have cloned pMH1 in Escherichia coli. A radioactive probe obtained upon nick translation of the recombinant plasmid was used to further characterize and compare pMH1 and pM41.

  16. Cloning in Streptococcus lactis of plasmid-mediated UV resistance and effect on prophage stability

    International Nuclear Information System (INIS)

    Plasmid pIL7 (33 kilobases) from Streptococcus lactis enhances UV resistance and prophage stability. A 5.4-kilobase pIL7 fragment carrying genes coding for both characters was cloned into S. lactis, using plasmid pHV1301 as the cloning vector. The recombinant plasmid was subsequently transferred to three other S. lactis strains by transformation or protoplast fusion. Cloned genes were expressed in all tested strains

  17. Reporter gene expression in dendritic cells after gene gun administration of plasmid DNA

    OpenAIRE

    Watkins, Craig; Hopkins, John; Harkiss, Gordon

    2005-01-01

    Dendritic cells (DC) play an integral role in plasmid DNA vaccination. However, the interaction between plasmid DNA and DC in vivo is incompletely understood. In this report, we utilise the sheep pseudoafferent cannulation model to examine the interaction between plasmid DNA encoding enhanced green fluorescent protein (pEGFP) and afferent lymph DC (ALDC) following gene gun administration. The results show that peaks of fluorescent ALDC tended to appear around days 1-4 and 9-13, then erratical...

  18. A stable luciferase reporter plasmid for in vivo imaging in murine models of Staphylococcus aureus infections.

    Science.gov (United States)

    Bacconi, Marta; Haag, Andreas F; Torre, Antonina; Castagnetti, Andrea; Chiarot, Emiliano; Delany, Isabel; Bensi, Giuliano

    2016-04-01

    In vivo imaging of bioluminescent bacteria permits their visualization in infected mice, allowing spatial and temporal evaluation of infection progression. Most available bioluminescent strains were obtained by integration of the luciferase genes into the bacterial chromosome, a challenging and time-consuming approach. Recently, episomal plasmids were used, which were introduced in bacteria and expressed all genes required for bioluminescence emission. However, the plasmid was progressively lost in vitro and in vivo, if bacteria were not maintained under antibiotic selective pressure. Increased stability could be obtained inserting into the plasmid backbone sequences that assured plasmid partition between daughter bacterial cells, or caused death of bacteria that had lost the plasmid. So far, no detailed analysis was performed of either plasmid stability in vivo or contribution of different stabilizing sequence types. Here we report the construction of a plasmid, which includes the Photorhabdus luminescens lux cassette expressed under the control of a Staphylococcus aureus specific gene promoter, and toxin/antitoxin (T/A) and partition sequences (Par) conferring stability and transmissibility of the plasmid. Following infection of mice with S. aureus carrying this plasmid, we demonstrated that the promoter-lux fusion was functional in vivo, that the plasmid was retained by 70-100% of bacterial cells 7 days post-infection, and that both stabilizing sequence types were required to maximize plasmid retention. These data suggest that the plasmid can be a valuable tool to study gene expression and bacterial spread in small laboratory animals infected with S. aureus or possibly other Gram-positive human pathogens. PMID:26685857

  19. A New Extant Respirometric Assay to Estimate Intrinsic Growth Parameters Applied to Study Plasmid Metabolic Burden

    DEFF Research Database (Denmark)

    Seoane, Jose Miguel; Sin, Gürkan; Lardon, Laurent;

    2010-01-01

    burden caused by the carriage of a pWW0 TOL plasmid in the model organism Pseudomonas putida KT2440; The metabolic,burden associated was manifested as a reduction in the yield and the specific growth rate of the host, with both plasmid maintenance and the over-expression of recombinant proteins from...... the plasmid contributing equally to the overall effect. Biotechnol. Bioeng. 2010;105: 141-149. (C) 2009 Wiley Periodicals, Inc....

  20. Physical characterization of plasmids determining synthesis of a microcin which inhibits methionine synthesis in Escherichia coli.

    OpenAIRE

    Perez-Diaz, J C; Clowes, R C

    1980-01-01

    Plasmid deoxyribonucleic acid (DNA) isolated from each of three antibiotic-resistant clinical strains of Escherichia coli producing the same microcin showed multiple bands upon agarose gel electrophoresis. Transformants selected either for microcin resistance or ampicillin resistance yielded plasmid DNA corresponding in size to only one of the multiple bands. Plasmids, isolated from all three hosts, which determined microcin resistance and microcin production measured about 4 megadaltons by s...

  1. Parallel Compensatory Evolution Stabilizes Plasmids across the Parasitism-Mutualism Continuum

    OpenAIRE

    Harrison, Ellie; Guymer, David; Spiers, Andrew J.; Paterson, Steve; Brockhurst, Michael A.

    2015-01-01

    Plasmids drive genomic diversity in bacteria via horizontal gene transfer [1, 2]; nevertheless, explaining their survival in bacterial populations is challenging [3]. Theory predicts that irrespective of their net fitness effects, plasmids should be lost: when parasitic (costs outweigh benefits), plasmids should decline due to purifying selection [4-6], yet under mutualism (benefits outweigh costs), selection favors the capture of beneficial accessory genes by the chromosome and loss of the c...

  2. Stability of plasmid content in Salmonella wien in late phases of the epidemic history.

    OpenAIRE

    Casalino, M.; Comanducci, A; Nicoletti, M; Maimone, F

    1984-01-01

    Prevalence, genetic characteristics, and EcoRI cleavage analysis of plasmids identified in clinical strains of Salmonella wien isolated in recent years showed that the plasmid content in this serotype has remained uniform and stable over more than a decade and also late in the epidemic history. No correlation between decrease in S. wien isolations and naturally occurring systematic changes in the DNA of its most common FIme plasmid was structurally detectable.

  3. Differences in the stability of the plasmids of Yersinia pestis cultures in vitro: impact on virulence

    OpenAIRE

    TC Leal-Balbino; NC Leal; CV Lopes; AMP de Almeida

    2004-01-01

    Plasmid and chromosomal genes encode determinants of virulence for Yersinia pestis, the causative agent of plague. However, in vitro, Y. pestis genome is very plastic and several changes have been described. To evaluate the alterations in the plasmid content of the cultures in vitro and the impact of the alterations to their pathogenicity, three Y. pestis isolates were submitted to serial subculture, analysis of the plasmid content, and testing for the presence of characteristic genes in each...

  4. Adaptation of model genetically engineered microorganisms to lake water: growth rate enhancements and plasmid loss.

    OpenAIRE

    Sobecky, P A; Schell, M A; Moran, M. A.; Hodson, R. E.

    1992-01-01

    When a genetically engineered microorganism (GEM) is released into a natural ecosystem, its survival, and hence its potential environmental impact, depends on its genetic stability and potential for growth under highly oligotrophic conditions. In this study, we compared plasmid stability and potential for growth on low concentrations of organic nutrients of strains of Pseudomonas putida serving as model GEMs. Plasmid-free and plasmid-bearing (NAH7) prototrophic isogenic strains and two amino-...

  5. Cloning in Streptococcus lactis of plasmid-mediated UV resistance and effect on prophage stability.

    OpenAIRE

    Chopin, M C; Chopin, A; Rouault, A.; Simon, D.

    1986-01-01

    Plasmid pIL7 (33 kilobases) from Streptococcus lactis enhances UV resistance and prophage stability. A 5.4-kilobase pIL7 fragment carrying genes coding for both characters was cloned into S. lactis, using plasmid pHV1301 as the cloning vector. The recombinant plasmid was subsequently transferred to three other S. lactis strains by transformation or protoplast fusion. Cloned genes were expressed in all tested strains.

  6. Replication and segregational stability of Bacillus plasmid pBAA1.

    OpenAIRE

    DEVINE, KEVIN; MC CONNELL, DAVID JOHN

    1989-01-01

    PUBLISHED A cryptic plasmid, pBAA1, was identified in an industrial Bacillus strain. The plasmid is 6.8 kilobases in size and is present in cells at a copy number of approximately 5 per chromosome equivalent. The plasmid has been maintained under industrial fermentation conditions without apparent selective pressure and so is assumed to be partition proficient. The minimal replicon was localized to a 1.4-kilobase fragment which also contains the functions required for copy number control. ...

  7. A cell engineering strategy to enhance supercoiled plasmid DNA production for gene therapy

    OpenAIRE

    Hassan, S.; Keshavarz-Moore, E.; J. Ward

    2016-01-01

    With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS) would increase DNA gyrase-mediated plasmid supercoiling. SGS from 3 different replicons, (the Mu b...

  8. Cefotaxime resistant Escherichia coli collected from a healthy volunteer; characterisation and the effect of plasmid loss.

    Directory of Open Access Journals (Sweden)

    Miranda Kirchner

    Full Text Available In this study 6 CTX-M positive E. coli isolates collected during a clinical study examining the effect of antibiotic use in a human trial were analysed. The aim of the study was to analyse these isolates and assess the effect of full or partial loss of plasmid genes on bacterial fitness and pathogenicity. A DNA array was utilised to assess resistance and virulence gene carriage. Plasmids were characterised by PCR-based replicon typing and addiction system multiplex PCR. A phenotypic array and insect virulence model were utilised to assess the effect of plasmid-loss in E. coli of a large multi-resistance plasmid. All six E. coli carrying bla CTX-M-14 were detected from a single participant and were identical by pulse field gel electrophoresis and MLST. Plasmid profiling and arrays indicated absence of a large multi-drug resistance (MDR F-replicon plasmid carrying blaTEM, aadA4, strA, strB, dfrA17/19, sul1, and tetB from one isolate. Although this isolate partially retained the plasmid it showed altered fitness characteristics e.g. inability to respire in presence of antiseptics, similar to a plasmid-cured strain. However, unlike the plasmid-cured or plasmid harbouring strains, the survival rate for Galleria mellonella infected by the former strain was approximately 5-times lower, indicating other possible changes accompanying partial plasmid loss. In conclusion, our results demonstrated that an apparently healthy individual can harbour bla CTX-M-14 E. coli strains. In one such strain, isolated from the same individual, partial absence of a large MDR plasmid resulted in altered fitness and virulence characteristics, which may have implications in the ability of this strain to infect and any subsequent treatment.

  9. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance

    OpenAIRE

    Bottery, Michael; Wood, A. Jamie; Brockhurst, Michael

    2016-01-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid in Escherichia coli depend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug ...

  10. Stable isotope resolved metabolomics revealed the role of anabolic and catabolic processes in glyphosate-induced amino acid accumulation in Amaranthus palmeri biotypes

    Science.gov (United States)

    Using stable isotope resolved metabolomics (SIRM), we characterized the role of anabolic (de novo synthesis) vs catabolic (protein catalysis) processes contributing to free amino acid pools in glyphosate susceptible (S) and resistant (R) Amaranthus palmeri biotypes. Following exposure to glyphosate ...

  11. The regulatory logic of m-xylene biodegradation by Pseudomonas putida mt-2 exposed by dynamic modelling of the principal node Ps/Pr of the TOL plasmid.

    Science.gov (United States)

    Koutinas, Michalis; Lam, Ming-Chi; Kiparissides, Alexandros; Silva-Rocha, Rafael; Godinho, Miguel; Livingston, Andrew G; Pistikopoulos, Efstratios N; de Lorenzo, Victor; Dos Santos, Vitor A P Martins; Mantalaris, Athanasios

    2010-06-01

    The structure of the extant transcriptional control network of the TOL plasmid pWW0 born by Pseudomonas putida mt-2 for biodegradation of m-xylene is far more complex than one would consider necessary from a mere engineering point of view. In order to penetrate the underlying logic of such a network, which controls a major environmental cleanup bioprocess, we have developed a dynamic model of the key regulatory node formed by the Ps/Pr promoters of pWW0, where the clustering of control elements is maximal. The model layout was validated with batch cultures estimating parameter values and its predictive capability was confirmed with independent sets of experimental data. The model revealed how regulatory outputs originated in the divergent and overlapping Ps/Pr segment, which expresses the transcription factors XylS and XylR respectively, are computed into distinct instructions to the upper and lower catabolic xyl operons for either simultaneous or stepwise consumption of m-xylene and/or succinate. In this respect, the model reveals that the architecture of the Ps/Pr is poised to discriminate the abundance of alternative and competing C sources, in particular m-xylene versus succinate. The proposed framework provides a first systemic understanding of the causality and connectivity of the regulatory elements that shape this exemplary regulatory network, facilitating the use of model analysis towards genetic circuit optimization.

  12. Plasmids which make their host bacteria mutable as well as resistant to ultraviolet irradiation

    International Nuclear Information System (INIS)

    Some of the naturally occurring Iα, I zeta, M, N, O and T group plasmids increase both the mutability and UV resistance of their host bacteria, while group H and S plasmids only increase mutability. This suggests that these two plasmid-mediated repair functions are separable. The two functions have no direct relation to their restriction-modification systems and nitrofuran resistant functions. In addition, the close linking between the restriction-modification genes and these repair function genes was suggested in group N plasmids. (author)

  13. Modular construction of plasmids by parallel assembly of linear vector components.

    Science.gov (United States)

    Gao, XinZheng; Yan, Pu; Shen, Wentao; Li, Xiaoying; Zhou, Peng; Li, Yuenan

    2013-06-15

    Construction of plasmids is the basic and pivotal technology in molecular biology. The common method for constructing plasmids is to cut DNA fragments by restriction enzymes and then join the resulting fragments using ligase. We present here a modified Golden Gate cloning method for modular construction of plasmids. Unlike the original Golden Gate cloning system for cloning from entry vector to expression vector, this method can be used to construct plasmids immediately from linear DNA fragments. After polymerase chain reaction (PCR) amplification for flanking with BsaI sites, multiple linear DNA components (modules) can be parallel assembled into a circle plasmid by a single restriction-ligation reaction using the method. This method is flexible to construct different types of plasmids because the modules can be freely selected and assembled in any combination. This method was applied successfully to construct a prokaryotic expression plasmid from four modules and a plant expression plasmid from five modules (fragments). The results suggest that this method provides a simple and flexible platform for modular construction of plasmids.

  14. Effects of medium composition on the production of plasmid DNA vector potentially for human gene therapy

    Institute of Scientific and Technical Information of China (English)

    XU Zhi-nan; SHEN Wen-he; CHEN Hao; CEN Pei-lin

    2005-01-01

    Plasmid vector is increasingly applied to gene therapy or gene vaccine. The production of plasmid pCMV-AP3 for cancer gene therapy was conducted in a modified MBL medium using a recombinant E. coli BL21 system. The effects of different MMBL components on plasmid yield, cell mass and specific plasmid DNA productivity were evaluated on shake-flask scale. The results showed that glucose was the optimal carbon source. High plasmid yield (58.3 mg/L) was obtained when 5.0 g/L glucose was added to MMBL. Glycerol could be chosen as a complementary carbon source because of the highest specific plasmid productivity (37.9 mg DNA/g DCW). After tests of different levels of nitrogen source and inorganic phosphate, a modified MMBL medium was formulated for optimal plasmid production. Further study showed that the initial acetate addition (less than 4.0 g/L) in MMBL improved plasmid production significantly, although it inhibited cell growth. The results will be useful for large-scale plasmid production using recombinant E. coli system.

  15. Peaceful coexistence amongst Borrelia plasmids: getting by with a little help from their friends?

    OpenAIRE

    Chaconas, George; Norris, Steven J

    2013-01-01

    Borrelia species comprise a unique genus of bacterial pathogens. These organisms contain a segmented genome with up to two dozen plasmids ranging in size from 5kb up to about 200 kb. The plasmids have also been referred to as mini-chromosomes or essential genetic elements, as some of them carry information important for infection of vertebrates or for survival in the tick vector. Most of the plasmids are linear with covalently closed hairpin telomeres and these linear plasmids are in a consta...

  16. Postsymbiotic plasmid acquisition and evolution of the repA1-replicon in Buchnera aphidicola

    Science.gov (United States)

    Van Ham, Roeland C. H. J.; González-Candelas, Fernando; Silva, Francisco J.; Sabater, Beatriz; Moya, Andrés; Latorre, Amparo

    2000-01-01

    Buchnera aphidicola is an obligate, strictly vertically transmitted, bacterial symbiont of aphids. It supplies its host with essential amino acids, nutrients required by aphids but deficient in their diet of plant phloem sap. Several lineages of Buchnera show adaptation to their nutritional role in the form of plasmid-mediated amplification of key-genes involved in the biosynthesis of tryptophan (trpEG) and leucine (leuABCD). Phylogenetic analyses of these plasmid-encoded functions have thus far suggested the absence of horizontal plasmid exchange among lineages of Buchnera. Here, we describe three new Buchnera plasmids, obtained from species of the aphid host families Lachnidae and Pemphigidae. All three plasmids belong to the repA1 family of Buchnera plasmids, which is characterized by the presence of a repA1-replicon responsible for replication initiation. A comprehensive analysis of this family of plasmids unexpectedly revealed significantly incongruent phylogenies for different plasmid and chromosomally encoded loci. We infer from these incongruencies a case of horizontal plasmid transfer in Buchnera. This process may have been mediated by secondary endosymbionts, which occasionally undergo horizontal transmission in aphids. PMID:10984505

  17. High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA.

    OpenAIRE

    Santamaria, R I; Gil, J.A.; Martin, J. F.

    1985-01-01

    An efficient polyethylene glycol-assisted method for transformation of Brevibacterium lactofermentum protoplasts that uses plasmid vectors has been developed. Two small plasmids, pUL330 (5.2 kilobases) and pUL340 (5.8 kilobases), both containing the kanamycin resistance gene from transposon Tn5 and the replication origin of the natural plasmid pBL1 of B. lactofermentum, were selected as vectors. Supercoiled forms of the plasmids yielded a 100-fold higher transformation frequency than did line...

  18. Quantifying and visualizing the transfer of exogenous plasmids to environmental microbial communities

    DEFF Research Database (Denmark)

    Dechesne, Arnaud

    2015-01-01

    Plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, their transfer potential to complex communities has not been comprehensively studied. The ability...... take up a model plasmid?) and in term of diversity (what type of bacteria take up the plasmid?). The method takes advantage of fluorescent marker genes, image analysis, flow cytometry and next generation sequencing. We revealed that an unexpectedly high diversity of soil microbes can take up broad host...

  19. Replication of the R6K plasmid during the Escherichia coli cell cycle.

    OpenAIRE

    Keasling, J.D.; Palsson, B O; Cooper, S.

    1992-01-01

    The cell-cycle replication pattern of the R6K plasmid has been investigated by using the membrane-elution technique to produce cells labelled at different times during the division cycle and scintillation counting for quantitative analysis of radioactive plasmid DNA. The high-copy plasmid R6K replicates exponentially in a cell-cycle-independent manner. A mini-R6K plasmid deleted for the ori alpha origin of replication also replicates, exponentially in a cell-cycle-independent manner.

  20. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector

    Science.gov (United States)

    Ludwig, D. L.; Bruschi, C. V.

    1991-01-01

    The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.

  1. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance.

    Science.gov (United States)

    Bottery, Michael J; Wood, A Jamie; Brockhurst, Michael A

    2016-04-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid inEscherichia colidepend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug resistance (modifying enzyme) occurred at drug concentrations exceeding the MIC of the plasmid-free strain. PMID:26787694

  2. Simian virus 40 promoters direct expression of the tetracycline gene in plasmid pACYC184.

    OpenAIRE

    Jenkins, F J; Howett, M K; Rapp, F

    1983-01-01

    Insertion of HindIII DNA fragments into the HindIII site of plasmid pACYC184 destroys the promoter of the plasmid tetracycline resistance gene and causes Escherichia coli cells harboring recombinant plasmids to be tetracycline sensitive and chloramphenicol resistant. The HindIII-C DNA fragment of simian virus 40 contains the two virus promoters and the virus origin of replication. We report the isolation of recombinant plasmids that contained the simian virus 40 HindIII-C DNA fragment at the ...

  3. Conjugal transfer and characterization of bacteriocin plasmids in group N (lactic acid) streptococci.

    Science.gov (United States)

    Neve, H; Geis, A; Teuber, M

    1984-01-01

    Thirteen bacteriocin-producing strains of group N (lactic acid) streptococci were screened for their potential to transfer this property by conjugation to Streptococcus lactis subsp. diacetylactis Bu2-60. Bacteriocin production in three strains was plasmid encoded as shown by conjugal transfer and by analysis of cured, bacteriocin-negative derivatives of the donor strains and the transconjugants. With Streptococcus cremoris strains 9B4 and 4G6 and S. lactis subsp. diacetylactis 6F7 as donors, bacteriocin-producing transconjugants were isolated with frequencies ranging from ca. 2 X 10(-2) to 2 X 10(-1) per recipient cell. Bacteriocin-producing transconjugants had acquired a 39.6-megadalton plasmid from the donor strains 9B4 and 4G6, and a 75-megadalton plasmid from the donor strain 6F7. As shown by restriction endonuclease analysis, the plasmids from strains 9B4 and 4G6 were almost identical. The plasmid from strain 6F7 yielded some additional fragments not present in the two other plasmids. In hybridization experiments any of the three plasmids strongly hybridized with each other and with some other bacteriocin but nontransmissible plasmids from other S. cremoris strains. Homology was also detected to a variety of cryptic plasmids in lactic acid streptococci. Images PMID:6321437

  4. Low-dose plasmid DNA treatment increases plasma vasopressin and regulates blood pressure in experimental endotoxemia

    OpenAIRE

    Malardo Thiago; Batalhão Marcelo E; Panunto-Castelo Ademilson; Almeida Luciana P; Padilha Everton; Fontoura Isabela C; Silva Célio L; Carnio Evelin C; Coelho-Castelo Arlete AM

    2012-01-01

    Abstract Background Although plasmid DNA encoding an antigen from pathogens or tumor cells has been widely studied as vaccine, the use of plasmid vector (without insert) as therapeutic agent requires further investigation. Results Here, we showed that plasmid DNA (pcDNA3) at low doses inhibits the production of IL-6 and TNF-α by lipopolysaccharide (LPS)-stimulated macrophage cell line J774. These findings led us to evaluate whether plasmid DNA could act as an anti-inflammatory agent in a Wist...

  5. Plasmid profile in oral Fusobacterium nucleatum from humans and Cebus apella monkeys

    Directory of Open Access Journals (Sweden)

    Paula Marcia O.

    2003-01-01

    Full Text Available Fusobacterium nucleatum is a strict anaerobe and is indigenous of the human oral cavity. This organism is commonly recovered from different monomicrobial and mixed infections in humans and animals. In this study, the plasmid profile, the plasmid stability and the penicillin-resistance association in oral F. nucleatum isolated from periodontal patients, healthy subjects and Cebus apella monkeys were evaluated. Forty-five F. nucleatum strains from patients, 38 from healthy subjects and seven from C. apella were identified and analyzed. Plasmid extraction was performed in all the isolated strains. These elements were found in 26.7% strains from patients and one strain from C. apella. Strains from healthy subjects did not show any plasmid. Most of strains showed two plasmid bands ranging from 4 to 16 Kb, but digestions with endonucleases showed that they belonged to a single plasmid. The plasmid profile was similar and stable in human and monkey strains. Also, plasmids were classified into three groups according to size. Two strains were positive to beta-lactamase production and no plasmid DNA-hybridization with a beta-lactamase gene probe was observed, suggesting a chromosomal resistance.

  6. The stb operon balances the requirements for vegetative stability and conjugative transfer of plasmid R388

    OpenAIRE

    Catherine Guynet; Ana Cuevas; Gabriel Moncalián; Fernando de la Cruz

    2011-01-01

    The conjugative plasmid R388 and a number of other plasmids carry an operon, stbABC, adjacent to the origin of conjugative transfer. We investigated the role of the stbA, stbB, and stbC genes. Deletion of stbA affected both conjugation and stability. It led to a 50-fold increase in R388 transfer frequency, as well as to high plasmid loss. In contrast, deletion of stbB abolished conjugation but provoked no change in plasmid stability. Deletion of stbC showed no effect, neither in conjugation n...

  7. Autoregulation of the stability operon of IncFII plasmid NR1.

    OpenAIRE

    Tabuchi, A; Min, Y N; Womble, D D; Rownd, R H

    1992-01-01

    The stb locus of IncFII plasmid NR1, which mediates stable inheritance of the plasmid, is composed of an essential cis-acting DNA site located upstream from two tandem genes that encode essential stability proteins. The two tandem genes, stbA and stbB, are transcribed as an operon from promoter PAB. Using PAB-lacZ gene fusions, it was found that the stb operon is autoregulated. A low-copy-number stb+ plasmid introduced into the same cell with the PAB-lacZ fusion plasmid repressed beta-galacto...

  8. Construction of Recombinant Plasmid Containing S. Mutans F-ATPase β Subunit Gene

    Institute of Scientific and Technical Information of China (English)

    YU Dan-ni; JIANG Li

    2005-01-01

    objective: construct a homologous recombinant plasmid which was expected to be transformed into S. mutans Methods: a region at the 5' terminus of the S. mutans F-ATPase β subunit gene was amplified by PCR, the PCR product was inserted into vector pVA891, yielding recombinant plasmid. Results: the DNA sequence of the recombinant plasmid was identified correct in whole by restriction endonuclease and DNA sequence techniques. Conclusion: the recombinant plasmid of S. mutans DNA was cloned in effect ,it may assist in construction of homologues recombinant mutant.

  9. High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis.

    Science.gov (United States)

    Sheppard, Anna E; Nakad, Rania; Saebelfeld, Manja; Masche, Anna C; Dierking, Katja; Schulenburg, Hinrich

    2016-01-01

    In bacterial pathogens, virulence factors are often carried on plasmids and other mobile genetic elements, and as such, plasmid evolution is central in understanding pathogenicity. Bacillus thuringiensis is an invertebrate pathogen that uses plasmid-encoded crystal (Cry) toxins to establish infections inside the host. Our study aimed to quantify stability of two Cry toxin-encoding plasmids, BTI_23p and BTI_16p, under standard laboratory culturing conditions. These two plasmids are part of the genome of the B. thuringiensis strain MYBT18679, which is of particular interest because of its high pathogenicity towards nematodes. One of the plasmids, BTI_23p, was found to be highly unstable, with substantial loss occurring within a single growth cycle. Nevertheless, longer term experimental evolution in the absence of a host revealed maintenance of the plasmid at low levels in the bacterial populations. BTI_23p encodes two nematicidal Cry toxins, Cry21Aa2 and Cry14Aa1. Consistent with previous findings, loss of the plasmid abolished pathogenicity towards the nematode Caenorhabditis elegans, which could be rescued by addition of Cry21Aa2-expressing Escherichia coli. These results implicate BTI_23p as a plasmid that is required for successful infection, yet unstable when present at high frequency in the population, consistent with the role of Cry toxins as public goods. PMID:26592941

  10. Roles of a sustained activation of NCED3 and the synergistic regulation of ABA biosynthesis and catabolism in ABA signal production in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    REN HuiBo; JIA WenSuo; FAN YiJian; GAO ZhiHui; WEI KaiFa; LI GuiFen; LIU Jing; CHEN Lin; LI BingBing; HU JianFang

    2007-01-01

    ABA, acting as a stress signal, plays crucial roles in plant resistance to water stress. Because ABA signal production is based on ABA biosynthesis, the regulation of NCED, a key enzyme in the ABA biosynthesis pathway, is normally thought of as the sole factor controlling ABA signal production. Here we demonstrate that ABA catabolism in combination with a synergistic regulation of ABA biosynthesis plays a crucial role in governing ABA signal production. Water stress induced a significant accumulation of ABA, which exhibited different patterns in detached and attached leaves. ABA catabolism followed a temporal trend of exponential decay for both basic and stress ABA, and there was little difference in the catabolic half-lives of basic ABA and stress ABA. Thus, the absolute rate of ABA catabolism, i.e. the amount of ABA catabolized per unit time, increases with increased ABA accumulation. From the dynamic processes of ABA biosynthesis and catabolism, it can be inferred that stress ABA accumulation may be governed by a synergistic regulation of all the steps in the ABA biosynthesis pathway. Moreover, to maintain an elevated level of stress ABA sustained activation of NCED3 should be required. This inference was supported by further findings that the genes encoding major enzymes in the ABA biosynthesis pathway, e.g. NCED3, AAO3 and ABA3 were all activated by water stress, and with ABA accumulation progressing, the expressions of NCED3, AAO3 and ABA3 remained activated. Data on ABA catabolism and gene expression jointly indicate that ABA signal production is controlled by a sustained activation of NCED3 and the synergistic regulation of ABA biosynthesis and catabolism.

  11. Complete Genome Sequence of the d-Amino Acid Catabolism Bacterium Phaeobacter sp. Strain JL2886, Isolated from Deep Seawater of the South China Sea.

    Science.gov (United States)

    Fu, Yingnan; Wang, Rui; Zhang, Zilian; Jiao, Nianzhi

    2016-01-01

    Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea, can catabolize d-amino acids. Here, we report the complete genome sequence of Phaeobacter sp. JL2886. It comprises ~4.06 Mbp, with a G+C content of 61.52%. A total of 3,913 protein-coding genes and 10 genes related to d-amino acid catabolism were obtained. PMID:27587825

  12. The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of l-Phenylalanine, l-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida

    OpenAIRE

    Arias-Barrau, Elsa; Olivera, Elías R.; Luengo, José M.; Fernández, Cristina; Galán, Beatriz; García, José L.; Díaz, Eduardo; Miñambres, Baltasar

    2004-01-01

    Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Wherea...

  13. Mutations in a Partitioning Protein and Altered Chromatin Structure at the Partitioning Locus Prevent Cohesin Recruitment by the Saccharomyces cerevisiae Plasmid and Cause Plasmid Missegregation

    OpenAIRE

    Yang, Xian-Mei; Mehta, Shwetal; Uzri, Dina; Jayaram, Makkuni; Velmurugan, Soundarapandian

    2004-01-01

    The 2μm circle is a highly persistent “selfish” DNA element resident in the Saccharomyces cerevisiae nucleus whose stability approaches that of the chromosomes. The plasmid partitioning system, consisting of two plasmid-encoded proteins, Rep1p and Rep2p, and a cis-acting locus, STB, apparently feeds into the chromosome segregation pathway. The Rep proteins assist the recruitment of the yeast cohesin complex to STB during the S phase, presumably to apportion the replicated plasmid molecules eq...

  14. Concerted transfer of the virulence Ti plasmid and companion at plasmid in the Agrobacterium tumefaciens-induced plant tumour

    OpenAIRE

    Planamente, Sara; Mondy, Samuel; Dessaux, Yves; Moréra, Solange; Faure, Denis

    2013-01-01

    The plant pathogen Agrobacterium tumefaciensC58 harbours three independent type IV secretion (T4SS) machineries. T4SS(T-DNA) promotes the transfer of the T-DNA to host plant cells, provoking tumour development and accumulation of opines such as nopaline and agrocinopines. T4SS(pTi) and T4SS(pAt) control the bacterial conjugation of the Ti and At plasmids respectively. Expression of T4SS(pTi) is controlled by the agrocinopine-responsive transcriptional repressor AccR. In this work, we compared...

  15. Using Plasmids as DNA Vaccines for Infectious Diseases.

    Science.gov (United States)

    Tregoning, John S; Kinnear, Ekaterina

    2014-12-01

    DNA plasmids can be used to induce a protective (or therapeutic) immune response by delivering genes encoding vaccine antigens. That naked DNA (without the refinement of coat proteins or host evasion systems) can cross from outside the cell into the nucleus and be expressed is particularly remarkable given the sophistication of the immune system in preventing infection by pathogens. As a result of the ease, low cost, and speed of custom gene synthesis, DNA vaccines dangle a tantalizing prospect of the next wave of vaccine technology, promising individual designer vaccines for cancer or mass vaccines with a rapid response time to emerging pandemics. There is considerable enthusiasm for the use of DNA vaccination as an approach, but this enthusiasm should be tempered by the successive failures in clinical trials to induce a potent immune response. The technology is evolving with the development of improved delivery systems that increase expression levels, particularly electroporation and the incorporation of genetically encoded adjuvants. This review will introduce some key concepts in the use of DNA plasmids as vaccines, including how the DNA enters the cell and is expressed, how it induces an immune response, and a summary of clinical trials with DNA vaccines. The review also explores the advances being made in vector design, delivery, formulation, and adjuvants to try to realize the promise of this technology for new vaccines. If the immunogenicity and expression barriers can be cracked, then DNA vaccines may offer a step change in mass vaccination.

  16. Adsorption behavior of plasmid DNA onto perfusion chromatographic matrix

    Institute of Scientific and Technical Information of China (English)

    Miladys LIMONTA; Lourdes ZUMALACARREGUI; Dayana SOLER

    2012-01-01

    Anion exchange chromatography is the most popular chromatographic method for plasmid separa-tion.POROS RI 50 is a perfusion chromatographic support which is a reversed phase matrix and is an alterna-tive to conventional ones due to its mass transfer properties.The adsorption and elution of the pIDKE2 plasmidonto reversed phase POROS RI 50 was studied.Langmuir isotherm model was adjusted in order to get the max-imum adsorption capacity and the dissociation constant for POROS RI 50-plasmid DNA (pDNA) system.Break-through curves were obtained for volumetric flows between 0.69-3.33mL/min,given dynamic capacity up to2.3 times higher than those reported for ionic exchange matrix used during the purification process of plasmidswith similar size to that of pIDKE2.The efficiency was less than 45% for the flow conditions and initial concen-tration studied,which means that the support will not be operated under saturation circumstances.

  17. Vitamin A deficiency increases protein catabolism and induces urea cycle enzymes in rats.

    Science.gov (United States)

    Esteban-Pretel, Guillermo; Marín, M Pilar; Cabezuelo, Francisco; Moreno, Verónica; Renau-Piqueras, Jaime; Timoneda, Joaquín; Barber, Teresa

    2010-04-01

    Chronic vitamin A deficiency induces a substantial delay in the rates of weight and height gain in both humans and experimental animals. This effect has been associated with an impaired nutrient metabolism and loss of body protein. Therefore, we analyzed the effect of vitamin A deficiency on endogenous proteolysis and nitrogen metabolism and its reversibility with all-trans retinoic acid (RA). Male weanling rats, housed in pairs, were pair-fed a vitamin A-deficient (VAD) or control diet until they were 60 d old. A group of deficient rats were further treated with daily intraperitoneal injections of all-trans RA for 10 d. Final body and tissue (i.e. liver and heart) weights were significantly lower and tissue:body weight ratios were similar in VAD rats and in controls. Conversely, the epididymal white fat:body weight ratio and the plasma concentrations of alanine aminotransferase and adiponectin were significantly higher in VAD rats, which also had hepatic macrovesicular lipid accumulations. Plasma and gastrocnemius muscle 3-methylhistidine, urine nitrogen, and plasma and urine urea concentrations were all significantly higher in the VAD group. The expression of the genes encoding urea cycle enzymes and their activities increased in VAD livers. These changes were partially reverted by all-trans RA. We propose that fuel partitioning in vitamin A deficiency may shift from fatty acids to protein catabolism as an energy source. Our results emphasize the importance of vitamin A on the energy balance control system and they provide an explanation for the role of vitamin A in protein turnover, development, and growth.

  18. Estimating fermentative amino acid catabolism in the small intestine of growing pigs.

    Science.gov (United States)

    Columbus, D A; Cant, J P; de Lange, C F M

    2015-11-01

    Fermentative catabolism (FAAC) of dietary and endogenous amino acids (AA) in the small intestine contributes to loss of AA available for protein synthesis and body maintenance functions in pigs. A continuous isotope infusion study was performed to determine whole body urea flux, urea recycling and FAAC in the small intestine of ileal-cannulated growing pigs fed a control diet (CON, 18.6% CP; n=6), a high fibre diet with 12% added pectin (HF, 17.7% CP; n = 4) or a low-protein diet (LP, 13.4% CP; n = 6). (15)N-ammonium chloride and (13)C-urea were infused intragastrically and intravenously, respectively, for 4 days. Recovery of ammonia at the distal ileum was increased by feeding additional fibre when compared with the CON (P > 0.05) but was not affected by dietary protein (0.24, 0.39 and 0.14 mmol nitrogen/kg BW/day for CON, HF and LP, respectively; P small intestine suggesting rapid absorption of ammonia before the distal ileum and lack of uniformity of enrichment in the digesta ammonia pool. A two-pool model was developed to determine possible value ranges for nitrogen flux in the small intestine assuming rapid absorption of ammonia.Maximum estimated FAAC based on this model was significantly lower when dietary protein content was decreased (32.9, 33.4 and 17.4 mmol nitrogen/kg BW/day; P small intestine nitrogen flux( P > 0.05)compared with CON. The two-pool model developed in the present study allows for estimation of FAAC but still has limitations. Quantifying FAAC in the small intestine of pigs, as well as other non-ruminants and humans, offers a number of challenges but warrants further investigation.

  19. Organic matter mineralization in frozen boreal soils-environmental constraints on catabolic and anabolic microbial activity

    Science.gov (United States)

    Oquist, Mats G.; Sparrman, Tobias; Schleucher, Jürgen; Nilsson, Mats B.

    2014-05-01

    Heterotrophic microbial mineralization of soil organic matter (SOM) and associated production and emission of atmospheric trace gases proceed during the winter months in the frozen soils of high latitude ecosystems. However, in what ways this microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is uncertain. This presentation will address how temperature, water availability and substrate availability combine to regulate rates of microbial activity at below freezing temperatures and the implications of this activity for SOM mineralization in the surface layers of boreal forest soils experiencing seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. Using stable isotope labeling (13C) we also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity prior to substrate uptake. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless, the soil microbial population appear very adapted to seasonal freezing with respect to their metabolic performance.

  20. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes.

    Science.gov (United States)

    Tasse, Lena; Bercovici, Juliette; Pizzut-Serin, Sandra; Robe, Patrick; Tap, Julien; Klopp, Christophe; Cantarel, Brandi L; Coutinho, Pedro M; Henrissat, Bernard; Leclerc, Marion; Doré, Joël; Monsan, Pierre; Remaud-Simeon, Magali; Potocki-Veronese, Gabrielle

    2010-11-01

    The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes involved in dietary fiber breakdown. High-throughput functional screens were first applied to a library covering 5.4 × 10(9) bp of metagenomic DNA, allowing the isolation of 310 clones showing beta-glucanase, hemicellulase, galactanase, amylase, or pectinase activities. Based on the results of refined secondary screens, sequencing efforts were reduced to 0.84 Mb of nonredundant metagenomic DNA, corresponding to 26 clones that were particularly efficient for the degradation of raw plant polysaccharides. Seventy-three CAZymes from 35 different families were discovered. This corresponds to a fivefold target-gene enrichment compared to random sequencing of the human gut metagenome. Thirty-three of these CAZy encoding genes are highly homologous to prevalent genes found in the gut microbiome of at least 20 individuals for whose metagenomic data are available. Moreover, 18 multigenic clusters encoding complementary enzyme activities for plant cell wall degradation were also identified. Gene taxonomic assignment is consistent with horizontal gene transfer events in dominant gut species and provides new insights into the human gut functional trophic chain. PMID:20841432

  1. IncHI2 Plasmids Are Predominant in Antibiotic-Resistant Salmonella Isolates

    Science.gov (United States)

    Chen, Wenyao; Fang, Tingzi; Zhou, Xiujuan; Zhang, Daofeng; Shi, Xianming; Shi, Chunlei

    2016-01-01

    The wide usage of antibiotics contributes to the increase in the prevalence of antibiotic-resistant Salmonella. Plasmids play a critical role in horizontal transfer of antibiotic resistance markers in Salmonella. This study aimed to screen and characterize plasmid profiles responsible for antibiotic resistance in Salmonella and ultimately to clarify the molecular mechanism of transferable plasmid-mediated antibiotic resistance. A total of 226 Salmonella isolates were examined for antimicrobial susceptibility by a disk diffusion method. Thirty-two isolates (14.2%) were resistant to at least one antibiotic. The presence of plasmid-mediated quinolone resistance (PMQR) genes and β-lactamase genes were established by PCR amplification. PCR-based replicon typing revealed that these 32 isolates represented seven plasmid incompatibility groups (IncP, HI2, A/C, FIIs, FIA, FIB, and I1), and the IncHI2 (59.4%) was predominant. Antibiotic resistance markers located on plasmids were identified through plasmid curing. Fifteen phenotypic variants were obtained with the curing efficiency of 46.9% (15/32). The cured plasmids mainly belong to the HI2 incompatibility group. The elimination of IncHI2 plasmids correlated with the loss of β-lactamase genes (blaOXA-1 and blaTEM-1) and PMQR genes (qnrA and aac(6′)-Ib-cr). Both IncHI2 and IncI1 plasmids in a S. enterica serovar Indiana isolate SJTUF 10584 were lost by curing. The blaCMY -2-carrying plasmid pS10584 from SJTUF 10584 was fully sequenced. Sequence analysis revealed that it possessed a plasmid scaffold typical for IncI1 plasmids with the unique genetic arrangement of IS1294-ΔISEcp1-blaCMY -2-blc-sugE-ΔecnR inserted into the colicin gene cia. These data suggested that IncHI2 was the major plasmid lineage contributing to the dissemination of antibiotic resistance in Salmonella and the activity of multiple mobile genetic elements may contribute to antibiotic resistance evolution and dissemination between different plasmid

  2. Novel assay to measure the plasmid mobilizing potential of mixed microbial communities

    Directory of Open Access Journals (Sweden)

    Uli eKlümper

    2014-12-01

    Full Text Available Mobilizable plasmids lack necessary genes for complete conjugation and are therefore non-self-transmissible. Instead, they rely on the conjugation system of conjugal plasmids to be horizontally transferred to new recipients. While community permissiveness, the fraction of a mixed microbial community that can receive self-transmissible conjugal plasmids, has been studied, the intrinsic ability of a community to mobilize plasmids that lack conjugation systems is unexplored. Here, we present a novel framework and experimental method to estimate the mobilization potential of mixed communities. We compare the transfer frequency of a mobilizable plasmid to that of a mobilizing and conjugal plasmid measured for a model strain and for the assayed community. With Pseudomonas putida carrying the gfp-tagged mobilizable RSF1010 plasmid as donor strain, we conducted solid surface mating experiments with either a P. putida strain carrying the mobilizing plasmid RP4 or a model bacterial community that was extracted from the inner walls of a domestic shower conduit. Additionally, we estimated the permissiveness of the same community for RP4 using P. putida as donor strain. The permissiveness of the model community for RP4 (at 1.16x10-4 transconjugants per recipient (T/R was similar to that previously measured for soil microbial communities. RSF1010 was mobilized by the model community at a frequency of 1.16x10-5 T/R, only one order of magnitude lower than its permissiveness to RP4. This mobilization frequency is unexpectedly high considering that (i mobilization requires the presence of mobilizing conjugal plasmids within the permissive fraction of the recipients; (ii in pure culture experiments with P. putida retromobilization of RSF1010 through RP4 only took place in approximately half of the donors receiving the conjugal plasmid in the first step. Further work is needed to establish how plasmid mobilization potential varies within and across microbial

  3. Plasmids of Carotenoid-Producing Paracoccus spp. (Alphaproteobacteria) - Structure, Diversity and Evolution

    Science.gov (United States)

    Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz

    2013-01-01

    Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria. PMID:24260361

  4. Introduction of temperature-sensitive helper and donor plasmids into Bac-to-Bac baculovirus expression systems

    Institute of Scientific and Technical Information of China (English)

    Zhihong; Huang; Ao; Li; Mengjia; Pan; Wenbi; Wu; Meijin; Yuan; Kai; Yang

    2015-01-01

    In the baculovirus shuttle vector(bacmid) system, a helper plasmid and a donor plasmid are employed to insert heterologous genes into a cloned baculovirus genome via Tn7 transposition in Escherichia coli. The helper and donor plasmids are usually cotransfected with constructed bacmids into insect cells, which will lead to integration of these plasmids into the viral genome,and hence to the production of defective virions. In this study, to facilitate the preparation of plasmid-free recombinant bacmids, we modified a set of helper and donor plasmids by replacing their replication origins with that of a temperature-sensitive(ts) plasmid, p SIM6. Using the resulting ts helper plasmid p MON7124 ts and the ts donor plasmid p FB1ts-PH-GFP, a recombinant bacmid,b Ac WT-PG(-), was constructed, and the transposition efficiency was found to be 33.1%. The plasmids were then removed by culturing at 37 °C. For b Ac WT-PG(-), the infectious progeny virus titer and the protein expression level under the control of the polyhedrin promoter were similar to those of a bacmid constructed with unmodified helper and donor plasmids. These ts plasmids will be useful for obtaining plasmid-free bacmids for both heterologous protein production and fundamental studies of baculovirus biology.

  5. Complete genome sequences of Incl1 Plasmids carrying extended-spectrum B-Lactamase genes

    NARCIS (Netherlands)

    Brouwer, M.S.M.; Bossers, A.; Harders, F.; Essen-Zandbergen, van A.; Mevius, D.J.; Smith, H.E.

    2014-01-01

    Extended spectrum beta-lactamases (ESBLs) confer resistance to clinically relevant antibiotics. Often, the resistance genes are carried by conjugative plasmids which are responsible for dissemination. Five IncI1 plasmids carrying ESBLs from commensal and clinical Escherichia coli isolates were compl

  6. Diversity and stability of plasmids from glycopeptide resistant Enterococcus faecium isolated from pigs in Denmark

    DEFF Research Database (Denmark)

    Hasman, H.; Villadsen, A. G.; Aarestrup, Frank Møller

    2005-01-01

    was seen at the end of the 7-year period, coinciding with the ban in 1998 of the macrolide tylosin as growth promoter for pig production. The stability of the plasmid in its original host was compared with stability of the same plasmid in BM4105RF, when both strains were maintained in liquid cultures...

  7. A Simple and Inexpensive Method for Sending Binary Vector Plasmid DNA by Mail

    Science.gov (United States)

    We describe a simple cost-effective technique for the transport of plasmid DNA by mail. Our results demonstrate that common multipurpose printing paper is a satisfactory substrate and superior to the more absorbent 3MM chromatography paper for the transport of plasmid DNA through the U.S. first clas...

  8. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    NARCIS (Netherlands)

    Dang, H. M.; van Goethem, M. J.; van der Graaf, E. R.; Brandenburg, S.; Hoekstra, R.; Schlatholter, T.

    2010-01-01

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with (12)C ions under spread-out Bragg peak conditions

  9. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.;

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...

  10. A new generation of T7 RNA polymerase-independent inducible expression plasmids for Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Jack Sunter

    Full Text Available Expression of transgenes is central to forward and reverse genetic analysis in Trypanosoma brucei. The inducible expression of transgenes in trypanosomes is based on the tetracycline repressor binding to a tetracycline operator to prevent transcription in the absence of tetracycline. The same inducible system is used to produce double-stranded RNA for RNAi knockdown of target genes. This study describes a new plasmid pSPR2.1 that drives consistent high-level expression of tetracycline repressor in procyclic form trypanosomes. A complementary expression plasmid, p3227, was constructed. The major difference between this and current plasmids is the separation of the inducible transgene and selectable marker promoters by the plasmid backbone. The plasmid p3227 was able to support inducible expression in cell lines containing pSPR2.1 as well as the established Lister 427 29-13 cell line. p3666, a derivative of p3227, was made for inducible expression of stem loop RNAi constructs and was effective for knockdown of DRBD3, which had proved problematic using existing RNAi plasmids with head-to-head promoters. The plasmid system was also able to support inducible transgene expression and DRBD3 RNAi knockdown in bloodstream form cells expressing tetracycline repressor from an integrated copy of the plasmid pHD1313.

  11. Specific structural probing of plasmid-coded ribosomal RNAs from Escherichia coli

    DEFF Research Database (Denmark)

    Aagaard, C; Rosendahl, G; Dam, M;

    1991-01-01

    The preferred method for construction and in vivo expression of mutagenised Escherichia coli ribosomal RNAs (rRNAs) is via high copy number plasmids. Transcription of wild-type rRNA from the seven chromosomal rrn operons in strains harbouring plasmid-coded mutant rRNAs leads to a heterogeneous...

  12. Application of a plasmid classification system to determine prevalence of replicon families among multidrug resistant enterococci

    Science.gov (United States)

    The presence and transfer of plasmids from commensal bacteria to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. However, prevalence of plasmids from commensal bacteria in food animals such as the enterococci remains largely unknown. In this study, the prevale...

  13. Nucleotide sequence analysis of the lactococcal EPS plasmid pNZ4000

    NARCIS (Netherlands)

    Kranenburg, van R.; Kleerebezem, M.; Vos, de W.M.

    2000-01-01

    The complete 42180-bp nucleotide sequence of the mobilization plasmid pNZ4000, coding for exopolysaccharide (EPS) production in Lactococcus lactis, was determined. This plasmid contains a region involved in EPS biosynthesis, four functional replicons, a region containing mobilization genes, and thre

  14. Vector insert-targeted integrative antisense expression system for plasmid stabilization.

    Science.gov (United States)

    Luke, Jeremy M; Carnes, Aaron E; Hodgson, Clague P; Williams, James A

    2011-01-01

    Some DNA vaccine and gene therapy vector-encoded transgenes are toxic to the E. coli plasmid production host resulting in poor production yields. For plasmid products undergoing clinical evaluation, sequence modification to eliminate toxicity is undesirable because an altered vector is a new chemical entity. We hypothesized that: (1) insert-encoded toxicity is mediated by unintended expression of a toxic insert-encoded protein from spurious bacterial promoters; and (2) that toxicity could be eliminated with antisense RNA-mediated translation inhibition. We developed the pINT PR PL vector, a chromosomally integrable RNA expression vector, and utilized it to express insert-complementary (anti-insert) RNA from a single defined site in the bacterial chromosome. Anti-insert RNA eliminated leaky fluorescent protein expression from a target plasmid. A toxic retroviral gag pol helper plasmid produced in a gag pol anti-insert strain had fourfold improved plasmid fermentation yields. Plasmid fermentation yields were also fourfold improved when a DNA vaccine plasmid containing a toxic Influenza serotype H1 hemagglutinin transgene was grown in an H1 sense strand anti-insert production strain, suggesting that in this case toxicity was mediated by an antisense alternative reading frame-encoded peptide. This anti-insert chromosomal RNA expression technology is a general approach to improve production yields with plasmid-based vectors that encode toxic transgenes, or toxic alternative frame peptides. PMID:20607625

  15. EFFECTS OF SEGREGATION AND SELECTION ON INSTABILITY OF PLASMID PACYC184 IN 'ESCHERICHIA COLI'B

    Science.gov (United States)

    The authors use a mathematical model to analyze the dynamics of loss of nonconjugative pACYC184 from populations of Escherichia coli B in glucose-limited continuous culture. The model incorporates both plasmid segregation and selection against plasmid carriage. It is concluded th...

  16. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae.

    Science.gov (United States)

    Conlan, Sean; Thomas, Pamela J; Deming, Clayton; Park, Morgan; Lau, Anna F; Dekker, John P; Snitkin, Evan S; Clark, Tyson A; Luong, Khai; Song, Yi; Tsai, Yu-Chih; Boitano, Matthew; Dayal, Jyoti; Brooks, Shelise Y; Schmidt, Brian; Young, Alice C; Thomas, James W; Bouffard, Gerard G; Blakesley, Robert W; Mullikin, James C; Korlach, Jonas; Henderson, David K; Frank, Karen M; Palmore, Tara N; Segre, Julia A

    2014-09-17

    Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem resistance genes on a wide array of plasmids. K. pneumoniae and E. cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, indicating that plasmid transfer between organisms was unlikely within this patient. We did, however, find evidence of horizontal transfer of carbapenemase-encoding plasmids between K. pneumoniae, E. cloacae, and C. freundii in the hospital environment. Our data, including full plasmid identification, challenge assumptions about horizontal gene transfer events within patients and identify possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by K. pneumoniae, E. coli, E. cloacae, and Pantoea species, in unrelated patients and in the hospital environment. PMID:25232178

  17. [IncP-7 plasmids' classification based on structural diversity of their basic replicons].

    Science.gov (United States)

    Volkova, O V; Panov, A V; Kosheleva, I A; Boronin, A M

    2013-01-01

    The structural diversity of basic replicons and repB gene of the IncP-7 plasmids' collection was firstly assessed on the basis of PCR, restriction analysis and partial sequencing. It has been revealed that DNA fragment containing gene for UvrD-like helicase RepB is a part of all known P-7 replicons, but often serves as hot place for diverse IS-elements invasion. The first system of P-7 plasmids' classification has been worked out on the basis of determined repA-oriV-par WABC nucleotide divergency. Most degradation plasmids established to be belonging to large beta-subgroup, streptomycin resistance plasmid Rms148 (IncP-7 archetype)--to alpha-subgroup, carbazole degradation plasmid pCAR1 and NAH/SAL-plasmids from pY-line (Yamal oil deposits)--to gamma-subgroup and CAP-plasmid pBS270 with potentially reduced P-7 replicon--to delta-subgroup. It has been observed that the type of IncP-7 basic replicon molecular organization does not correlate with fixed phenotypic character in most cases, that is plasmids encoding different phenotypic markers could be members of the same P-7 subgroup. PMID:23808156

  18. A positive selection vector for the analysis of structural plasmid instability in Bacillus subtilis

    NARCIS (Netherlands)

    Meima, R; Venema, G; Bron, S

    1996-01-01

    A system for the positive selection of structural plasmid rearrangements in Bacillus subtilis was developed. Random deletions removing a transcription terminator structure in the assay plasmid, designated pGP100, resulted in expression of the cat-86 gene, under control of a constitutive bacteriophag

  19. Conjugative transfer of broad host range plasmids to an acidobacterial strain, Edaphobacter aggregans.

    Science.gov (United States)

    Bouhajja, Emna; Efthymiopoulos, Theocharis; George, Isabelle F; Moreels, David; Van Houdt, Rob; Mergeay, Max; Agathos, Spiros N

    2016-03-10

    The Acidobacteria phylum is of high ecological interest. Its members are ubiquitous and particularly abundant in soils but many are recalcitrant to cultivation in the laboratory. Thus, the ability of Acidobacteria to capture and maintain plasmids remains largely unexplored. In this work we tested the transfer and the stability of (i) the PromA plasmid pMOL98 and (ii) the IncQ plasmid pKT230 to the acidobacterial strain Edaphobacter aggregans DSM 19364. To this end quantitative conjugation assays were performed and transconjugants were scored for plasmid-borne antibiotic selection markers. The tested plasmids were transferred and maintained in the new host. Plasmid pMOL98 was more stable than pKT230 in Ed. aggregans in the absence of positive selection. Thus, from an ecological point of view, we have extended the host range of PromA and IncQ plasmids for the first time to an acidobacterial strain. Furthermore, we have uncovered the potential of Acidobacteria to capture as-yet-unknown plasmids and to foster the development of new cloning and expression systems for the exploitation of biotechnologically valuable soil resources. PMID:26808872

  20. Photoregulation of protein plasmid expression in vitro and in vivo using BHQ caging group

    Institute of Scientific and Technical Information of China (English)

    Zhi Ping Zhang; Yi Ming Li; Xiao Yun Chen; Qing Xiang Guo

    2011-01-01

    Green fluorescent protein (GFP) plasmid was caged by 8-bromo-7-hydroxyquinolinyl chromophore (BHQ) for controlling its expression with exact spatiotemporal resolution. In vitro and in vivo experiments clearly verified that, comparing with Bhc caging, the expression level of caged GFP plasmid was dramatically decreased and then efficiently restored after subsequent photolysis.

  1. Partition-associated incompatibility caused by random assortment of pure plasmid clusters

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Sherratt, David J; Gerdes, Kenn;

    2005-01-01

    Summary Bacterial plasmids and chromosomes encode centromere-like partition loci that actively segregate DNA before cell division. The molecular mechanism behind DNA segregation in bacteria is largely unknown. Here we analyse the mechanism of partition-associated incompatibility for plasmid pB171...

  2. Homology and repair of UV-irradiated plasmid DNA in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Cabrea-Juarez, E.; Setlow, J.K.

    1983-02-01

    UV-irradiated plasmid pNov1 containing a cloned fragment of chromosomal DNA could be repaired by excision, but plasmid p2265 without homology to the chromosome could not. Establishment of pNov1 was more UV resistant in Rec/sup -/ than in Rec/sup +/ cells. 19 references, 2 figures.

  3. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients

    DEFF Research Database (Denmark)

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke;

    2016-01-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from sev...

  4. Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual‐based modelling study

    DEFF Research Database (Denmark)

    Merkey, Brian; Lardon, Laurent; Seoane, Jose Miguel;

    2011-01-01

    Plasmid invasion in biofilms is often surprisingly limited in spite of the close contact of cells in a biofilm. We hypothesized that this poor plasmid spread into deeper biofilm layers is caused by a dependence of conjugation on the growth rate (relative to the maximum growth rate) of the donor. ...

  5. Genomic and Functional Characterization of qnr-Encoding Plasmids from Municipal Wastewater Biosolid Klebsiella pneumoniae Isolates

    Science.gov (United States)

    Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie

    2015-01-01

    Municipal wastewater treatment facilities are considered to be “hotspots” for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7–9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3

  6. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals.

    Science.gov (United States)

    Gullberg, Erik; Albrecht, Lisa M; Karlsson, Christoffer; Sandegren, Linus; Andersson, Dan I

    2014-01-01

    How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Importance: Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to

  7. Frequency and diversity of small cryptic plasmids in the genus Rahnella

    Directory of Open Access Journals (Sweden)

    Summers David K

    2010-02-01

    Full Text Available Abstract Background Rahnella is a widely distributed genus belonging to the Enterobacteriaceae and frequently present on vegetables. Although Rahnella has interesting agro-economical and industrial properties and several strains possess antibiotic resistances and toxin genes which might spread within microbial communities, little is known about plasmids of this genus. Thus, we isolated a number of Rahnella strains and investigated their complements of small plasmids. Results In total 53 strains were investigated and 11 plasmids observed. Seven belonged to the ColE1 family; one was ColE2-like and three shared homology to rolling circle plasmids. One of them belonged to the pC194/pUB110 family and two showed similarity to poorly characterised plasmid groups. The G+C content of two rolling circle plasmids deviated considerably from that of Rahnella, indicating that their usual hosts might belong to other genera. Most ColE1-like plasmids formed a subgroup within the ColE1 family that seems to be fairly specific for Rahnella. Intriguingly, the multimer resolution sites of all ColE1-like plasmids had the same orientation with respect to the origin of replication. This arrangement might be necessary to prevent inappropriate synthesis of a small regulatory RNA that regulates cell division. Although the ColE1-like plasmids did not possess any mobilisation system, they shared large parts with high sequence identity in coding and non-coding regions. In addition, highly homologous regions of plasmids isolated from Rahnella and the chromosomes of Erwinia tasmaniensis and Photorhabdus luminescens could be identified. Conclusions For the genus Rahnella we observed plasmid-containing isolates at a frequency of 19%, which is in the average range for Enterobacteriaceae. These plasmids belonged to diffent groups with members of the ColE1-family most frequently found. Regions of striking sequence homology of plasmids and bacterial chromosomes highlight the

  8. Sequence comparisons of plasmids pBJS-O of Spiroplasma citri and pSKU146 of S. kunkelii: implications for plasmid evolution

    Directory of Open Access Journals (Sweden)

    Fletcher Jacqueline

    2005-12-01

    Full Text Available Abstract Background Spiroplasma citri BR3-3X and S. kunkelii CR2-3X cause serious diseases worldwide on citrus and maize species, respectively. S. citri BR3-3X harbors a plasmid, pBJS-Original (pBJS-O, that encodes the spiroplasma adhesion related protein 1 (SARP1, a protein implicated in binding of the pathogen to cells of its leafhopper vector, Circulifer tenellus. The S. kunkelii CR2-3X plasmid, pSKU146, encodes a homolog of SARP1, Sk-ARP1. Due to the close phylogenetic relationship of the two pathogens, we hypothesized that the two plasmids are closely related as well. Results The nucleotide sequence of pBJS-O was determined and compared to the sequences of a plasmid from BR3-T (pBJS-T, which is a multiply passaged leafhopper transmissible derivative of BR3-3X, and to known plasmid sequences including that of pSKU146. In addition to arp1, the 13,374 bp pBJS-O sequence putatively contains nine genes, recognized as open reading frames (ORFs. Several pBJS-O ORFs have homologs on pSKU146. However, the sequences flanking soj-like genes on both plasmids were found to be more distant from one another than sequences in any other region. Further, unlike pSKU146, pBJS-O lacks the conserved oriT region characteristic of the IncP group of bacterial plasmids. We were unable to identify a region in pBJS-O resembling a known plasmid origin of transfer. In regions where sequence was available for the plasmid from both BR3-3X and BR3-T, the pBJS-T sequence had a 0.4 kb deletion relative to its progenitor, pBJS-O. Southern blot hybridization of extrachromosomal DNA from various S. citri strains and spiroplasma species to an arp-specific probe and a probe made from the entire plasmid DNA of BR3-3X revealed limited conservation of both sequences in the genus Spiroplasma. Finally, we also report the presence on the BR3-3X chromosome of arp2, an S. citri homolog of arp1 that encodes the predicted protein SARP2. The C-terminal domain of SARP2 is homologous to that

  9. Carotenoid Biosynthetic and Catabolic Pathways: Gene Expression and Carotenoid Content in Grains of Maize Landraces

    Directory of Open Access Journals (Sweden)

    Rafael da Silva Messias

    2014-01-01

    Full Text Available Plant carotenoids have been implicated in preventing several age-related diseases, and they also provide vitamin A precursors; therefore, increasing the content of carotenoids in maize grains is of great interest. It is not well understood, however, how the carotenoid biosynthetic pathway is regulated. Fortunately, the maize germplasm exhibits a high degree of genetic diversity that can be exploited for this purpose. Here, the accumulation of carotenoids and the expression of genes from carotenoid metabolic and catabolic pathways were investigated in several maize landraces. The carotenoid content in grains varied from 10.03, in the white variety MC5, to 61.50 μg·g−1, in the yellow-to-orange variety MC3, and the major carotenoids detected were lutein and zeaxanthin. PSY1 (phythoene synthase expression showed a positive correlation with the total carotenoid content. Additionally, the PSY1 and HYD3 (ferredoxin-dependent di-iron monooxygenase expression levels were positively correlated with β-cryptoxanthin and zeaxanthin, while CYP97C (cytochrome P450-type monooxygenase expression did not correlate with any of the carotenoids. In contrast, ZmCCD1 (carotenoid dioxygenase was more highly expressed at the beginning of grain development, as well as in the white variety, and its expression was inversely correlated with the accumulation of several carotenoids, suggesting that CCD1 is also an important enzyme to be considered when attempting to improve the carotenoid content in maize. The MC27 and MC1 varieties showed the highest HYD3/CYP97C ratios, suggesting that they are promising candidates for increasing the zeaxanthin content; in contrast, MC14 and MC7 showed low HYD3/CYP97C, suggesting that they may be useful in biofortification efforts aimed at promoting the accumulation of provitamin A. The results of this study demonstrate the use of maize germplasm to provide insight into the regulation of genes involved in the carotenoid pathway, which

  10. CYP24, the enzyme that catabolizes the antiproliferative agent vitamin D, is increased in lung cancer.

    Science.gov (United States)

    Parise, Robert A; Egorin, Merrill J; Kanterewicz, Beatriz; Taimi, Mohammed; Petkovich, Martin; Lew, April M; Chuang, Samuel S; Nichols, Mark; El-Hefnawy, Talal; Hershberger, Pamela A

    2006-10-15

    1Alpha,25-dihydroxyvitamin D3 (1,25D3) displays potent antiproliferative activity in a variety of tumor model systems and is currently under investigation in clinical trials in cancer. Studies were initiated to explore its potential in nonsmall cell lung cancer (NSCLC), as effective approaches to the treatment of that disease are needed. In evaluating factors that may affect activity in NSCLC, the authors found that CYP24 (25-hydroxyvitamin D3-24-hydroxylase), the enzyme that catabolizes 1,25D3, is frequently expressed in NSCLC cell lines but not in the nontumorigenic bronchial epithelial cell line, Beas2B. CYP24 expression by RT-PCR was also detected in 10/18 primary lung tumors but in only 1/11 normal lung tissue specimens. Tumor-specific CYP24 upregulation was confirmed at the protein level via immunoblot analysis of patient-matched normal lung tissue and lung tumor extracts. Enzymatically active CYP24 is expected to desensitize NSCLC cells to 1,25D3. The authors therefore implemented a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay for 1,25D3 and its CYP24-generated metabolites to determine whether NSCLC cells express active enzyme. Analysis of NSCLC cell cultures revealed time-dependent loss of 1,25D3 coincident with the appearance of CYP24-generated metabolites. MK-24(S)-S(O)(NH)-Ph-1, a specific inhibitor of CYP24, slowed the loss of 1,25D3 and increased 1,25D3 half-life. Furthermore, combination of 1,25D3 with MK-24(S)-S(O)(NH)-Ph-1 resulted in a significant decrease in the concentration of 1,25D3 required to achieve maximum growth inhibition in NSCLC cells. These data suggest that increased CYP24 expression in lung tumors restricts 1,25D3 activity and support the preclinical evaluation of CYP24 inhibitors for lung cancer treatment. PMID:16708384

  11. Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Xu, Tao [University of Oklahoma, Norman; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Graham, David E [ORNL; He, Zhili [University of Oklahoma, Norman; Zhou, Jizhong [University of Oklahoma, Norman

    2014-01-01

    Background Clostridium cellulolyticum can degrade lignocellulosic biomass, and ferment the soluble sugars to produce valuable chemicals such as lactate, acetate, ethanol and hydrogen. However, the cellulose utilization efficiency of C. cellulolyticum still remains very low, impeding its application in consolidated bioprocessing for biofuels production. In this study, two metabolic engineering strategies were exploited to improve cellulose utilization efficiency, including sporulation abolishment and carbon overload alleviation. Results The spo0A gene at locus Ccel_1894, which encodes a master sporulation regulator was inactivated. The spo0A mutant abolished the sporulation ability. In a high concentration of cellulose (50 g/l), the performance of the spo0A mutant increased dramatically in terms of maximum growth, final concentrations of three major metabolic products, and cellulose catabolism. The microarray and gas chromatography mass spectrometry (GC-MS) analyses showed that the valine, leucine and isoleucine biosynthesis pathways were up-regulated in the spo0A mutant. Based on this information, a partial isobutanol producing pathway modified from valine biosynthesis was introduced into C. cellulolyticum strains to further increase cellulose consumption by alleviating excessive carbon load. The introduction of this synthetic pathway to the wild-type strain improved cellulose consumption from 17.6 g/l to 28.7 g/l with a production of 0.42 g/l isobutanol in the 50 g/l cellulose medium. However, the spo0A mutant strain did not appreciably benefit from introduction of this synthetic pathway and the cellulose utilization efficiency did not further increase. A technical highlight in this study was that an in vivo promoter strength evaluation protocol was developed using anaerobic fluorescent protein and flow cytometry for C. cellulolyticum. Conclusions In this study, we inactivated the spo0A gene and introduced a heterologous synthetic pathway to manipulate the stress

  12. Antibiotic resistance and plasmid carriage among Escherichia coli isolates from chicken meat in Malaysia

    International Nuclear Information System (INIS)

    Escherichia coli isolates from 131 raw chicken meat samples were tested for susceptibility to 12 antibiotics. Plasmids were isolated from many samples and their DNA molecular weight calculated. An 81.7% plasmid occurrence rate was observed among the isolates, ranging from 0 to 8 in number and with sizes from 1.2 to 118.6 MDa. Plasmids were detected in 93.8% of E. coIi isolates resistant to all 12 antibiotics, and in 90.5% of E. coli isolates resistant to 11. Three (2.8%) isolates harboured 8 plasmids and were resistant to all 12 antibiotics. Antibiotic resistant genes in bacteria are usually carried in extrachromosomal DNA and it is postulated that E. coli with a high number of plasmids possesses wider resistance to antibiotics. (author)

  13. A Bipolar Spindle of Antiparallel ParM Filaments Drives Bacterial Plasmid Segregation

    DEFF Research Database (Denmark)

    Gayathri, P; Fujii, T; Møller-Jensen, Jakob;

    2012-01-01

    To ensure their stable inheritance by daughter cells during cell division, bacterial low copy-number plasmids make simple DNA segregating machines that use an elongating protein filament between sister plasmids. In the ParMRC system of Escherichia coli R1 plasmid, ParM, an actin-like protein, forms...... the spindle between ParRC complexes on sister plasmids. Using a combination of structural work and total internal reflection fluorescence microscopy, we show that ParRC bound and could accelerate growth at only one end of polar ParM filaments, mechanistically resembling eukaryotic formins. The architecture...... of ParM filaments enabled two ParRC-bound filaments to associate in an antiparallel orientation, forming a bipolar spindle. The spindle elongated as a bundle of at least two antiparallel filaments, thereby pushing two plasmid clusters toward the poles....

  14. Tn5-induced pBS286 plasmid mutations blocking early stages of napthalene oxidation

    International Nuclear Information System (INIS)

    The authors present data on the further analysis of the structural and functional organization of the nah region of plasmid pBS286 controlling the constitutive oxidation of naphthalene by Pseudomonas putida cells. They have studied Tn5-induced mutations blocking early stages of naphthalene oxidation. They present and discuss data providing evidence that, in contrast to plasmid NAH7, the mechanism of regulation of the nahl operon of plasmid NPL-1, the parent plasmid of plasmid pBS286, with inducible synthesis of naphthalene dioxygenase can include elements of a negative control with participation of the regulatory locus R, located proximal to the structural nah genes and closely linked to or overlapped by the inverted control DNA segment (4.2 kb). They also present data on the possibility of regulation of the activity of the catechol-splitting meta-pathway genes with the participation of products of early stages of naphthalene oxidation

  15. Simultaneous catabolism of plant-derived aromatic compounds results in enhanced growth for members of the Roseobacter lineage.

    Science.gov (United States)

    Gulvik, Christopher A; Buchan, Alison

    2013-06-01

    Plant-derived aromatic compounds are important components of the dissolved organic carbon pool in coastal salt marshes, and their mineralization by resident bacteria contributes to carbon cycling in these systems. Members of the roseobacter lineage of marine bacteria are abundant in coastal salt marshes, and several characterized strains, including Sagittula stellata E-37, utilize aromatic compounds as primary growth substrates. The genome sequence of S. stellata contains multiple, potentially competing, aerobic ring-cleaving pathways. Preferential hierarchies in substrate utilization and complex transcriptional regulation have been demonstrated to be the norm in many soil bacteria that also contain multiple ring-cleaving pathways. The purpose of this study was to ascertain whether substrate preference exists in S. stellata when the organism is provided a mixture of aromatic compounds that proceed through different ring-cleaving pathways. We focused on the protocatechuate (pca) and the aerobic benzoyl coenzyme A (box) pathways and the substrates known to proceed through them, p-hydroxybenzoate (POB) and benzoate, respectively. When these two substrates were provided at nonlimiting carbon concentrations, temporal patterns of cell density, gene transcript abundance, enzyme activity, and substrate concentrations indicated that S. stellata simultaneously catabolized both substrates. Furthermore, enhanced growth rates were observed when S. stellata was provided both compounds simultaneously compared to the rates of cells grown singly with an equimolar concentration of either substrate alone. This simultaneous-catabolism phenotype was also demonstrated in another lineage member, Ruegeria pomeroyi DSS-3. These findings challenge the paradigm of sequential aromatic catabolism reported for soil bacteria and contribute to the growing body of physiological evidence demonstrating the metabolic versatility of roseobacters.

  16. Plasmid DNA Analysis of Pasteurella multocida Serotype B isolated from Haemorrhagic Septicaemia outbreaks in Malaysia

    Directory of Open Access Journals (Sweden)

    Jamal, H.

    2005-01-01

    Full Text Available A total of 150 purified isolates of Pasteurella multocida serotype B were used (Salmah, 2004 for plasmid DNA curing experiment to determine hyaluronidase activity, antibiotic resistance pattern (ARP and mice lethality test (LD50 for their role of pathogenicity. A plasmid curing experiment was carried out by using the intercalating agent; ethidium bromide and rifampicin, where it was found all the plasmids had been cured (plasmidless from Pasteurella multocida. All of these plasmidless isolates maintained their phenotypic characteristics. They showed the same antibiotic resistancepattern as before curing, produced hyaluronidase and possessed lethality activity in mice when injected intraperitoneally(i.p. Based on this observation, the antibiotic resistance, hyaluronidase activity and mice virulence could probably be chromosomal-mediated. Plasmids were detected 100% in all P. multocida isolates with identical profile of 2 plasmids size 3.0 and 5.5 kb. No large plasmids could be detected in all isolates. Since all the isolates appeared to have identicalplasmid profiles, they were subjected to restriction enzyme(RE analysis. From RE analysis results obtained, it can be concluded that the plasmid DNA in serotype B isolates are identical. Only 4 of 32 REs were found to cleave these plasmids with identical restriction fingerprints; BglII, HaeIII, RsaI and SspI. From RE analysis results, it can be concluded that the plasmid DNA isolates are identical. This plasmid might not played any role in pathogenicity of Pasteurella multocida serotype B, however this information is important for the construction of shuttle vectors in genetic studies of the pathogenicity of haemorrhagic septicaemia(HS.

  17. Plasmid profile analysis in identification of epidemic strains of Salmonella enterica serovar Enteritidis

    Directory of Open Access Journals (Sweden)

    Miljković-Selimović Biljana

    2008-01-01

    Full Text Available Background/Aim. As illness caused by Sallmonella enterica serovar Enteritidis (S. Enteritidis occurs not only as sporadic cases but as outbreaks, to reveal the source and routes of spreading of infection it is necessary to identify epidemic strain by the use of some typing methods. To determine whether plasmid profile analysis, as genotyping method, could be applied for the investigation of epidemic strains, isolates of S. Enteritidis, recovered from patient's stools and food associated with outbreaks and those isolated from sporadic cases of diarrhea, were investigated. Methods. Investigation of antibiotic resistance was performed by Kirby - Bauer disc-diffusion method. Isolation of plasmid DNA was carried out by Birnboim and Dolly alkaline lysis method, modified by Ish-Horovitz. Results. Out of 276 izolates of S. Enteritidis 94 were isolated from patient's stools and food associated with outbreaks and 182 were isolated from sporadic cases of diarrhea. The presence of 12 plasmid profiles was established. An average correlation degree of plasmid profiles between the strains was 0.84, that implies high degree of similarity of plasmid profiles of epidemic and non- epidemic strains isolated at our geographic region for the given period of time. Conclusion. The strains of S. Enteritidis, isolated in outbreaks of enterocolitis as well as from spordic cases of diarrhea in the same period of time and at the same area, frequently exhibit the same plasmid profile characterized by a single plasmid of 38 MDa. Therefore, in most cases plasmid profile analysis is not valuable in the identification of epidemic strains of S. Enteritidis. However, for this purpose plasmid profile analysis could be used when drug-resistant strains of S. Enteritidis are isolated, as they often possess additional resistant plasmids what increases discrimination power of this method.

  18. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids.

    Directory of Open Access Journals (Sweden)

    Sherwood R Casjens

    Full Text Available Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.

  19. Diversity of plasmids encoding histidine decarboxylase gene in Tetragenococcus spp. isolated from Japanese fish sauce.

    Science.gov (United States)

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yano, Yutaka

    2011-07-15

    Nineteen isolates of histamine producing halophilic bacteria were isolated from four fish sauce mashes, each mash accumulating over 1000 ppm of histamine. The complete sequences of the plasmids encoding the pyruvoyl dependent histidine decarboxylase gene (hdcA), which is harbored in histamine producing bacteria, were determined. In conjunction, the sequence regions adjacent to hdcA were analyzed to provide information regarding its genetic origin. As reference strains, Tetragenococcus halophilus H and T. muriaticus JCM10006(T) were also studied. Phenotypic and 16S rRNA gene sequence analyses identified all isolates as T. halophilus, a predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR, Southern blot, and complete plasmid sequencing) of the histamine producing isolates confirmed that all the isolates harbored approximately 21-37 kbp plasmids encoding a single copy of the hdc cluster consisting of four genes related to histamine production. Analysis of hdc clusters, including spacer regions, indicated >99% sequence similarity among the isolates. All of the plasmids sequenced encoded traA, however genes related to plasmid conjugation, namely mob genes and oriT, were not identified. Two putative mobile genetic elements, ISLP1-like and IS200-like, respectively, were identified in the up- and downstream region of the hdc cluster of all plasmids. Most of the sequences, except hdc cluster and two adjacent IS elements, were diverse among plasmids, suggesting that each histamine producers harbored a different histamine-related plasmid. These results suggested that the hdc cluster was not spread by clonal dissemination depending on the specific plasmid and that the hdc cluster in tetragenococcal plasmid was likely encoded on transformable elements. PMID:21616548

  20. Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids

    Energy Technology Data Exchange (ETDEWEB)

    Casjens S. R.; Dunn J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Schutzer, S. E.; Gilcrease, E. B.; Huang, W. M.; Vujadinovic, M.; Aron, J. K.; Vargas, L. C.; Freeman, S.; Radune, D.; Weidman, J. F.; Dimitrov, G. I.; Khouri, H. M.; Sosa, J. E.; Halpin, R. A.; Fraser, C. M.

    2012-03-14

    Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi {approx}900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short {le}20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.